xref: /spdk/lib/nvme/nvme.c (revision 16d862d0380886f6fc765f68a87e240bb4295595)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2015 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2020 Mellanox Technologies LTD. All rights reserved.
4  */
5 
6 #include "spdk/config.h"
7 #include "spdk/nvmf_spec.h"
8 #include "spdk/string.h"
9 #include "spdk/env.h"
10 #include "nvme_internal.h"
11 #include "nvme_io_msg.h"
12 
13 #define SPDK_NVME_DRIVER_NAME "spdk_nvme_driver"
14 
15 struct nvme_driver	*g_spdk_nvme_driver;
16 pid_t			g_spdk_nvme_pid;
17 
18 /* gross timeout of 180 seconds in milliseconds */
19 static int g_nvme_driver_timeout_ms = 3 * 60 * 1000;
20 
21 /* Per-process attached controller list */
22 static TAILQ_HEAD(, spdk_nvme_ctrlr) g_nvme_attached_ctrlrs =
23 	TAILQ_HEAD_INITIALIZER(g_nvme_attached_ctrlrs);
24 
25 /* Returns true if ctrlr should be stored on the multi-process shared_attached_ctrlrs list */
26 static bool
27 nvme_ctrlr_shared(const struct spdk_nvme_ctrlr *ctrlr)
28 {
29 	return ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE;
30 }
31 
32 void
33 nvme_ctrlr_connected(struct spdk_nvme_probe_ctx *probe_ctx,
34 		     struct spdk_nvme_ctrlr *ctrlr)
35 {
36 	TAILQ_INSERT_TAIL(&probe_ctx->init_ctrlrs, ctrlr, tailq);
37 }
38 
39 static void
40 nvme_ctrlr_detach_async_finish(struct spdk_nvme_ctrlr *ctrlr)
41 {
42 	nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
43 	if (nvme_ctrlr_shared(ctrlr)) {
44 		TAILQ_REMOVE(&g_spdk_nvme_driver->shared_attached_ctrlrs, ctrlr, tailq);
45 	} else {
46 		TAILQ_REMOVE(&g_nvme_attached_ctrlrs, ctrlr, tailq);
47 	}
48 	nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
49 }
50 
51 static int
52 nvme_ctrlr_detach_async(struct spdk_nvme_ctrlr *ctrlr,
53 			struct nvme_ctrlr_detach_ctx **_ctx)
54 {
55 	struct nvme_ctrlr_detach_ctx *ctx;
56 	int ref_count;
57 
58 	nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
59 
60 	ref_count = nvme_ctrlr_get_ref_count(ctrlr);
61 	assert(ref_count > 0);
62 
63 	if (ref_count == 1) {
64 		/* This is the last reference to the controller, so we need to
65 		 * allocate a context to destruct it.
66 		 */
67 		ctx = calloc(1, sizeof(*ctx));
68 		if (ctx == NULL) {
69 			nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
70 
71 			return -ENOMEM;
72 		}
73 		ctx->ctrlr = ctrlr;
74 		ctx->cb_fn = nvme_ctrlr_detach_async_finish;
75 
76 		nvme_ctrlr_proc_put_ref(ctrlr);
77 
78 		nvme_io_msg_ctrlr_detach(ctrlr);
79 
80 		nvme_ctrlr_destruct_async(ctrlr, ctx);
81 
82 		*_ctx = ctx;
83 	} else {
84 		nvme_ctrlr_proc_put_ref(ctrlr);
85 	}
86 
87 	nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
88 
89 	return 0;
90 }
91 
92 static int
93 nvme_ctrlr_detach_poll_async(struct nvme_ctrlr_detach_ctx *ctx)
94 {
95 	int rc;
96 
97 	rc = nvme_ctrlr_destruct_poll_async(ctx->ctrlr, ctx);
98 	if (rc == -EAGAIN) {
99 		return -EAGAIN;
100 	}
101 
102 	free(ctx);
103 
104 	return rc;
105 }
106 
107 int
108 spdk_nvme_detach(struct spdk_nvme_ctrlr *ctrlr)
109 {
110 	struct nvme_ctrlr_detach_ctx *ctx = NULL;
111 	int rc;
112 
113 	rc = nvme_ctrlr_detach_async(ctrlr, &ctx);
114 	if (rc != 0) {
115 		return rc;
116 	} else if (ctx == NULL) {
117 		/* ctrlr was detached from the caller process but any other process
118 		 * still attaches it.
119 		 */
120 		return 0;
121 	}
122 
123 	while (1) {
124 		rc = nvme_ctrlr_detach_poll_async(ctx);
125 		if (rc != -EAGAIN) {
126 			break;
127 		}
128 		nvme_delay(1000);
129 	}
130 
131 	return 0;
132 }
133 
134 int
135 spdk_nvme_detach_async(struct spdk_nvme_ctrlr *ctrlr,
136 		       struct spdk_nvme_detach_ctx **_detach_ctx)
137 {
138 	struct spdk_nvme_detach_ctx *detach_ctx;
139 	struct nvme_ctrlr_detach_ctx *ctx = NULL;
140 	int rc;
141 
142 	if (ctrlr == NULL || _detach_ctx == NULL) {
143 		return -EINVAL;
144 	}
145 
146 	/* Use a context header to poll detachment for multiple controllers.
147 	 * Allocate an new one if not allocated yet, or use the passed one otherwise.
148 	 */
149 	detach_ctx = *_detach_ctx;
150 	if (detach_ctx == NULL) {
151 		detach_ctx = calloc(1, sizeof(*detach_ctx));
152 		if (detach_ctx == NULL) {
153 			return -ENOMEM;
154 		}
155 		TAILQ_INIT(&detach_ctx->head);
156 	}
157 
158 	rc = nvme_ctrlr_detach_async(ctrlr, &ctx);
159 	if (rc != 0 || ctx == NULL) {
160 		/* If this detach failed and the context header is empty, it means we just
161 		 * allocated the header and need to free it before returning.
162 		 */
163 		if (TAILQ_EMPTY(&detach_ctx->head)) {
164 			free(detach_ctx);
165 		}
166 		return rc;
167 	}
168 
169 	/* Append a context for this detachment to the context header. */
170 	TAILQ_INSERT_TAIL(&detach_ctx->head, ctx, link);
171 
172 	*_detach_ctx = detach_ctx;
173 
174 	return 0;
175 }
176 
177 int
178 spdk_nvme_detach_poll_async(struct spdk_nvme_detach_ctx *detach_ctx)
179 {
180 	struct nvme_ctrlr_detach_ctx *ctx, *tmp_ctx;
181 	int rc;
182 
183 	if (detach_ctx == NULL) {
184 		return -EINVAL;
185 	}
186 
187 	TAILQ_FOREACH_SAFE(ctx, &detach_ctx->head, link, tmp_ctx) {
188 		TAILQ_REMOVE(&detach_ctx->head, ctx, link);
189 
190 		rc = nvme_ctrlr_detach_poll_async(ctx);
191 		if (rc == -EAGAIN) {
192 			/* If not -EAGAIN, ctx was freed by nvme_ctrlr_detach_poll_async(). */
193 			TAILQ_INSERT_HEAD(&detach_ctx->head, ctx, link);
194 		}
195 	}
196 
197 	if (!TAILQ_EMPTY(&detach_ctx->head)) {
198 		return -EAGAIN;
199 	}
200 
201 	free(detach_ctx);
202 	return 0;
203 }
204 
205 void
206 spdk_nvme_detach_poll(struct spdk_nvme_detach_ctx *detach_ctx)
207 {
208 	while (detach_ctx && spdk_nvme_detach_poll_async(detach_ctx) == -EAGAIN) {
209 		;
210 	}
211 }
212 
213 void
214 nvme_completion_poll_cb(void *arg, const struct spdk_nvme_cpl *cpl)
215 {
216 	struct nvme_completion_poll_status	*status = arg;
217 
218 	if (status->timed_out) {
219 		/* There is no routine waiting for the completion of this request, free allocated memory */
220 		spdk_free(status->dma_data);
221 		free(status);
222 		return;
223 	}
224 
225 	/*
226 	 * Copy status into the argument passed by the caller, so that
227 	 *  the caller can check the status to determine if the
228 	 *  the request passed or failed.
229 	 */
230 	memcpy(&status->cpl, cpl, sizeof(*cpl));
231 	status->done = true;
232 }
233 
234 static void
235 dummy_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
236 {
237 }
238 
239 int
240 nvme_wait_for_completion_robust_lock_timeout_poll(struct spdk_nvme_qpair *qpair,
241 		struct nvme_completion_poll_status *status,
242 		pthread_mutex_t *robust_mutex)
243 {
244 	int rc;
245 
246 	if (robust_mutex) {
247 		nvme_robust_mutex_lock(robust_mutex);
248 	}
249 
250 	if (qpair->poll_group) {
251 		rc = (int)spdk_nvme_poll_group_process_completions(qpair->poll_group->group, 0,
252 				dummy_disconnected_qpair_cb);
253 	} else {
254 		rc = spdk_nvme_qpair_process_completions(qpair, 0);
255 	}
256 
257 	if (robust_mutex) {
258 		nvme_robust_mutex_unlock(robust_mutex);
259 	}
260 
261 	if (rc < 0) {
262 		status->cpl.status.sct = SPDK_NVME_SCT_GENERIC;
263 		status->cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
264 		goto error;
265 	}
266 
267 	if (!status->done && status->timeout_tsc && spdk_get_ticks() > status->timeout_tsc) {
268 		goto error;
269 	}
270 
271 	if (qpair->ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
272 		union spdk_nvme_csts_register csts = spdk_nvme_ctrlr_get_regs_csts(qpair->ctrlr);
273 		if (csts.raw == SPDK_NVME_INVALID_REGISTER_VALUE) {
274 			status->cpl.status.sct = SPDK_NVME_SCT_GENERIC;
275 			status->cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
276 			goto error;
277 		}
278 	}
279 
280 	if (!status->done) {
281 		return -EAGAIN;
282 	} else if (spdk_nvme_cpl_is_error(&status->cpl)) {
283 		return -EIO;
284 	} else {
285 		return 0;
286 	}
287 error:
288 	/* Either transport error occurred or we've timed out.  Either way, if the response hasn't
289 	 * been received yet, mark the command as timed out, so the status gets freed when the
290 	 * command is completed or aborted.
291 	 */
292 	if (!status->done) {
293 		status->timed_out = true;
294 	}
295 
296 	return -ECANCELED;
297 }
298 
299 /**
300  * Poll qpair for completions until a command completes.
301  *
302  * \param qpair queue to poll
303  * \param status completion status. The user must fill this structure with zeroes before calling
304  * this function
305  * \param robust_mutex optional robust mutex to lock while polling qpair
306  * \param timeout_in_usecs optional timeout
307  *
308  * \return 0 if command completed without error,
309  * -EIO if command completed with error,
310  * -ECANCELED if command is not completed due to transport/device error or time expired
311  *
312  *  The command to wait upon must be submitted with nvme_completion_poll_cb as the callback
313  *  and status as the callback argument.
314  */
315 int
316 nvme_wait_for_completion_robust_lock_timeout(
317 	struct spdk_nvme_qpair *qpair,
318 	struct nvme_completion_poll_status *status,
319 	pthread_mutex_t *robust_mutex,
320 	uint64_t timeout_in_usecs)
321 {
322 	int rc;
323 
324 	if (timeout_in_usecs) {
325 		status->timeout_tsc = spdk_get_ticks() + timeout_in_usecs *
326 				      spdk_get_ticks_hz() / SPDK_SEC_TO_USEC;
327 	} else {
328 		status->timeout_tsc = 0;
329 	}
330 
331 	status->cpl.status_raw = 0;
332 	do {
333 		rc = nvme_wait_for_completion_robust_lock_timeout_poll(qpair, status, robust_mutex);
334 	} while (rc == -EAGAIN);
335 
336 	return rc;
337 }
338 
339 /**
340  * Poll qpair for completions until a command completes.
341  *
342  * \param qpair queue to poll
343  * \param status completion status. The user must fill this structure with zeroes before calling
344  * this function
345  * \param robust_mutex optional robust mutex to lock while polling qpair
346  *
347  * \return 0 if command completed without error,
348  * -EIO if command completed with error,
349  * -ECANCELED if command is not completed due to transport/device error
350  *
351  * The command to wait upon must be submitted with nvme_completion_poll_cb as the callback
352  * and status as the callback argument.
353  */
354 int
355 nvme_wait_for_completion_robust_lock(
356 	struct spdk_nvme_qpair *qpair,
357 	struct nvme_completion_poll_status *status,
358 	pthread_mutex_t *robust_mutex)
359 {
360 	return nvme_wait_for_completion_robust_lock_timeout(qpair, status, robust_mutex, 0);
361 }
362 
363 int
364 nvme_wait_for_completion(struct spdk_nvme_qpair *qpair,
365 			 struct nvme_completion_poll_status *status)
366 {
367 	return nvme_wait_for_completion_robust_lock_timeout(qpair, status, NULL, 0);
368 }
369 
370 /**
371  * Poll qpair for completions until a command completes.
372  *
373  * \param qpair queue to poll
374  * \param status completion status. The user must fill this structure with zeroes before calling
375  * this function
376  * \param timeout_in_usecs optional timeout
377  *
378  * \return 0 if command completed without error,
379  * -EIO if command completed with error,
380  * -ECANCELED if command is not completed due to transport/device error or time expired
381  *
382  * The command to wait upon must be submitted with nvme_completion_poll_cb as the callback
383  * and status as the callback argument.
384  */
385 int
386 nvme_wait_for_completion_timeout(struct spdk_nvme_qpair *qpair,
387 				 struct nvme_completion_poll_status *status,
388 				 uint64_t timeout_in_usecs)
389 {
390 	return nvme_wait_for_completion_robust_lock_timeout(qpair, status, NULL, timeout_in_usecs);
391 }
392 
393 static void
394 nvme_user_copy_cmd_complete(void *arg, const struct spdk_nvme_cpl *cpl)
395 {
396 	struct nvme_request *req = arg;
397 	spdk_nvme_cmd_cb user_cb_fn;
398 	void *user_cb_arg;
399 	enum spdk_nvme_data_transfer xfer;
400 
401 	if (req->user_buffer && req->payload_size) {
402 		/* Copy back to the user buffer */
403 		assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
404 		xfer = spdk_nvme_opc_get_data_transfer(req->cmd.opc);
405 		if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
406 		    xfer == SPDK_NVME_DATA_BIDIRECTIONAL) {
407 			assert(req->pid == getpid());
408 			memcpy(req->user_buffer, req->payload.contig_or_cb_arg, req->payload_size);
409 		}
410 	}
411 
412 	user_cb_fn = req->user_cb_fn;
413 	user_cb_arg = req->user_cb_arg;
414 	nvme_cleanup_user_req(req);
415 
416 	/* Call the user's original callback now that the buffer has been copied */
417 	user_cb_fn(user_cb_arg, cpl);
418 
419 }
420 
421 /**
422  * Allocate a request as well as a DMA-capable buffer to copy to/from the user's buffer.
423  *
424  * This is intended for use in non-fast-path functions (admin commands, reservations, etc.)
425  * where the overhead of a copy is not a problem.
426  */
427 struct nvme_request *
428 nvme_allocate_request_user_copy(struct spdk_nvme_qpair *qpair,
429 				void *buffer, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn,
430 				void *cb_arg, bool host_to_controller)
431 {
432 	struct nvme_request *req;
433 	void *dma_buffer = NULL;
434 
435 	if (buffer && payload_size) {
436 		dma_buffer = spdk_zmalloc(payload_size, 4096, NULL,
437 					  SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
438 		if (!dma_buffer) {
439 			return NULL;
440 		}
441 
442 		if (host_to_controller) {
443 			memcpy(dma_buffer, buffer, payload_size);
444 		}
445 	}
446 
447 	req = nvme_allocate_request_contig(qpair, dma_buffer, payload_size, nvme_user_copy_cmd_complete,
448 					   NULL);
449 	if (!req) {
450 		spdk_free(dma_buffer);
451 		return NULL;
452 	}
453 
454 	req->user_cb_fn = cb_fn;
455 	req->user_cb_arg = cb_arg;
456 	req->user_buffer = buffer;
457 	req->cb_arg = req;
458 
459 	return req;
460 }
461 
462 /**
463  * Check if a request has exceeded the controller timeout.
464  *
465  * \param req request to check for timeout.
466  * \param cid command ID for command submitted by req (will be passed to timeout_cb_fn)
467  * \param active_proc per-process data for the controller associated with req
468  * \param now_tick current time from spdk_get_ticks()
469  * \return 0 if requests submitted more recently than req should still be checked for timeouts, or
470  * 1 if requests newer than req need not be checked.
471  *
472  * The request's timeout callback will be called if needed; the caller is only responsible for
473  * calling this function on each outstanding request.
474  */
475 int
476 nvme_request_check_timeout(struct nvme_request *req, uint16_t cid,
477 			   struct spdk_nvme_ctrlr_process *active_proc,
478 			   uint64_t now_tick)
479 {
480 	struct spdk_nvme_qpair *qpair = req->qpair;
481 	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
482 	uint64_t timeout_ticks = nvme_qpair_is_admin_queue(qpair) ?
483 				 active_proc->timeout_admin_ticks : active_proc->timeout_io_ticks;
484 
485 	assert(active_proc->timeout_cb_fn != NULL);
486 
487 	if (req->timed_out || req->submit_tick == 0) {
488 		return 0;
489 	}
490 
491 	if (req->pid != g_spdk_nvme_pid) {
492 		return 0;
493 	}
494 
495 	if (nvme_qpair_is_admin_queue(qpair) &&
496 	    req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
497 		return 0;
498 	}
499 
500 	if (req->submit_tick + timeout_ticks > now_tick) {
501 		return 1;
502 	}
503 
504 	req->timed_out = true;
505 
506 	/*
507 	 * We don't want to expose the admin queue to the user,
508 	 * so when we're timing out admin commands set the
509 	 * qpair to NULL.
510 	 */
511 	active_proc->timeout_cb_fn(active_proc->timeout_cb_arg, ctrlr,
512 				   nvme_qpair_is_admin_queue(qpair) ? NULL : qpair,
513 				   cid);
514 	return 0;
515 }
516 
517 int
518 nvme_robust_mutex_init_shared(pthread_mutex_t *mtx)
519 {
520 	int rc = 0;
521 
522 #ifdef __FreeBSD__
523 	pthread_mutex_init(mtx, NULL);
524 #else
525 	pthread_mutexattr_t attr;
526 
527 	if (pthread_mutexattr_init(&attr)) {
528 		return -1;
529 	}
530 	if (pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
531 	    pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) ||
532 	    pthread_mutex_init(mtx, &attr)) {
533 		rc = -1;
534 	}
535 	pthread_mutexattr_destroy(&attr);
536 #endif
537 
538 	return rc;
539 }
540 
541 int
542 nvme_driver_init(void)
543 {
544 	static pthread_mutex_t g_init_mutex = PTHREAD_MUTEX_INITIALIZER;
545 	int ret = 0;
546 	/* Any socket ID */
547 	int socket_id = -1;
548 
549 	/* Use a special process-private mutex to ensure the global
550 	 * nvme driver object (g_spdk_nvme_driver) gets initialized by
551 	 * only one thread.  Once that object is established and its
552 	 * mutex is initialized, we can unlock this mutex and use that
553 	 * one instead.
554 	 */
555 	pthread_mutex_lock(&g_init_mutex);
556 
557 	/* Each process needs its own pid. */
558 	g_spdk_nvme_pid = getpid();
559 
560 	/*
561 	 * Only one thread from one process will do this driver init work.
562 	 * The primary process will reserve the shared memory and do the
563 	 *  initialization.
564 	 * The secondary process will lookup the existing reserved memory.
565 	 */
566 	if (spdk_process_is_primary()) {
567 		/* The unique named memzone already reserved. */
568 		if (g_spdk_nvme_driver != NULL) {
569 			pthread_mutex_unlock(&g_init_mutex);
570 			return 0;
571 		} else {
572 			g_spdk_nvme_driver = spdk_memzone_reserve(SPDK_NVME_DRIVER_NAME,
573 					     sizeof(struct nvme_driver), socket_id,
574 					     SPDK_MEMZONE_NO_IOVA_CONTIG);
575 		}
576 
577 		if (g_spdk_nvme_driver == NULL) {
578 			SPDK_ERRLOG("primary process failed to reserve memory\n");
579 			pthread_mutex_unlock(&g_init_mutex);
580 			return -1;
581 		}
582 	} else {
583 		g_spdk_nvme_driver = spdk_memzone_lookup(SPDK_NVME_DRIVER_NAME);
584 
585 		/* The unique named memzone already reserved by the primary process. */
586 		if (g_spdk_nvme_driver != NULL) {
587 			int ms_waited = 0;
588 
589 			/* Wait the nvme driver to get initialized. */
590 			while ((g_spdk_nvme_driver->initialized == false) &&
591 			       (ms_waited < g_nvme_driver_timeout_ms)) {
592 				ms_waited++;
593 				nvme_delay(1000); /* delay 1ms */
594 			}
595 			if (g_spdk_nvme_driver->initialized == false) {
596 				SPDK_ERRLOG("timeout waiting for primary process to init\n");
597 				pthread_mutex_unlock(&g_init_mutex);
598 				return -1;
599 			}
600 		} else {
601 			SPDK_ERRLOG("primary process is not started yet\n");
602 			pthread_mutex_unlock(&g_init_mutex);
603 			return -1;
604 		}
605 
606 		pthread_mutex_unlock(&g_init_mutex);
607 		return 0;
608 	}
609 
610 	/*
611 	 * At this moment, only one thread from the primary process will do
612 	 * the g_spdk_nvme_driver initialization
613 	 */
614 	assert(spdk_process_is_primary());
615 
616 	ret = nvme_robust_mutex_init_shared(&g_spdk_nvme_driver->lock);
617 	if (ret != 0) {
618 		SPDK_ERRLOG("failed to initialize mutex\n");
619 		spdk_memzone_free(SPDK_NVME_DRIVER_NAME);
620 		pthread_mutex_unlock(&g_init_mutex);
621 		return ret;
622 	}
623 
624 	/* The lock in the shared g_spdk_nvme_driver object is now ready to
625 	 * be used - so we can unlock the g_init_mutex here.
626 	 */
627 	pthread_mutex_unlock(&g_init_mutex);
628 	nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
629 
630 	g_spdk_nvme_driver->initialized = false;
631 	g_spdk_nvme_driver->hotplug_fd = spdk_pci_event_listen();
632 	if (g_spdk_nvme_driver->hotplug_fd < 0) {
633 		SPDK_DEBUGLOG(nvme, "Failed to open uevent netlink socket\n");
634 	}
635 
636 	TAILQ_INIT(&g_spdk_nvme_driver->shared_attached_ctrlrs);
637 
638 	spdk_uuid_generate(&g_spdk_nvme_driver->default_extended_host_id);
639 
640 	nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
641 
642 	return ret;
643 }
644 
645 /* This function must only be called while holding g_spdk_nvme_driver->lock */
646 int
647 nvme_ctrlr_probe(const struct spdk_nvme_transport_id *trid,
648 		 struct spdk_nvme_probe_ctx *probe_ctx, void *devhandle)
649 {
650 	struct spdk_nvme_ctrlr *ctrlr;
651 	struct spdk_nvme_ctrlr_opts opts;
652 
653 	assert(trid != NULL);
654 
655 	spdk_nvme_ctrlr_get_default_ctrlr_opts(&opts, sizeof(opts));
656 
657 	if (!probe_ctx->probe_cb || probe_ctx->probe_cb(probe_ctx->cb_ctx, trid, &opts)) {
658 		ctrlr = nvme_get_ctrlr_by_trid_unsafe(trid);
659 		if (ctrlr) {
660 			/* This ctrlr already exists. */
661 
662 			if (ctrlr->is_destructed) {
663 				/* This ctrlr is being destructed asynchronously. */
664 				SPDK_ERRLOG("NVMe controller for SSD: %s is being destructed\n",
665 					    trid->traddr);
666 				return -EBUSY;
667 			}
668 
669 			/* Increase the ref count before calling attach_cb() as the user may
670 			* call nvme_detach() immediately. */
671 			nvme_ctrlr_proc_get_ref(ctrlr);
672 
673 			if (probe_ctx->attach_cb) {
674 				nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
675 				probe_ctx->attach_cb(probe_ctx->cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
676 				nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
677 			}
678 			return 0;
679 		}
680 
681 		ctrlr = nvme_transport_ctrlr_construct(trid, &opts, devhandle);
682 		if (ctrlr == NULL) {
683 			SPDK_ERRLOG("Failed to construct NVMe controller for SSD: %s\n", trid->traddr);
684 			return -1;
685 		}
686 		ctrlr->remove_cb = probe_ctx->remove_cb;
687 		ctrlr->cb_ctx = probe_ctx->cb_ctx;
688 
689 		nvme_qpair_set_state(ctrlr->adminq, NVME_QPAIR_ENABLED);
690 		TAILQ_INSERT_TAIL(&probe_ctx->init_ctrlrs, ctrlr, tailq);
691 		return 0;
692 	}
693 
694 	return 1;
695 }
696 
697 static void
698 nvme_ctrlr_poll_internal(struct spdk_nvme_ctrlr *ctrlr,
699 			 struct spdk_nvme_probe_ctx *probe_ctx)
700 {
701 	int rc = 0;
702 
703 	rc = nvme_ctrlr_process_init(ctrlr);
704 
705 	if (rc) {
706 		/* Controller failed to initialize. */
707 		TAILQ_REMOVE(&probe_ctx->init_ctrlrs, ctrlr, tailq);
708 		SPDK_ERRLOG("Failed to initialize SSD: %s\n", ctrlr->trid.traddr);
709 		nvme_ctrlr_lock(ctrlr);
710 		nvme_ctrlr_fail(ctrlr, false);
711 		nvme_ctrlr_unlock(ctrlr);
712 		nvme_ctrlr_destruct(ctrlr);
713 		return;
714 	}
715 
716 	if (ctrlr->state != NVME_CTRLR_STATE_READY) {
717 		return;
718 	}
719 
720 	STAILQ_INIT(&ctrlr->io_producers);
721 
722 	/*
723 	 * Controller has been initialized.
724 	 *  Move it to the attached_ctrlrs list.
725 	 */
726 	TAILQ_REMOVE(&probe_ctx->init_ctrlrs, ctrlr, tailq);
727 
728 	nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
729 	if (nvme_ctrlr_shared(ctrlr)) {
730 		TAILQ_INSERT_TAIL(&g_spdk_nvme_driver->shared_attached_ctrlrs, ctrlr, tailq);
731 	} else {
732 		TAILQ_INSERT_TAIL(&g_nvme_attached_ctrlrs, ctrlr, tailq);
733 	}
734 
735 	/*
736 	 * Increase the ref count before calling attach_cb() as the user may
737 	 * call nvme_detach() immediately.
738 	 */
739 	nvme_ctrlr_proc_get_ref(ctrlr);
740 	nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
741 
742 	if (probe_ctx->attach_cb) {
743 		probe_ctx->attach_cb(probe_ctx->cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
744 	}
745 }
746 
747 static int
748 nvme_init_controllers(struct spdk_nvme_probe_ctx *probe_ctx)
749 {
750 	int rc = 0;
751 
752 	while (true) {
753 		rc = spdk_nvme_probe_poll_async(probe_ctx);
754 		if (rc != -EAGAIN) {
755 			return rc;
756 		}
757 	}
758 
759 	return rc;
760 }
761 
762 /* This function must not be called while holding g_spdk_nvme_driver->lock */
763 static struct spdk_nvme_ctrlr *
764 nvme_get_ctrlr_by_trid(const struct spdk_nvme_transport_id *trid)
765 {
766 	struct spdk_nvme_ctrlr *ctrlr;
767 
768 	nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
769 	ctrlr = nvme_get_ctrlr_by_trid_unsafe(trid);
770 	nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
771 
772 	return ctrlr;
773 }
774 
775 /* This function must be called while holding g_spdk_nvme_driver->lock */
776 struct spdk_nvme_ctrlr *
777 nvme_get_ctrlr_by_trid_unsafe(const struct spdk_nvme_transport_id *trid)
778 {
779 	struct spdk_nvme_ctrlr *ctrlr;
780 
781 	/* Search per-process list */
782 	TAILQ_FOREACH(ctrlr, &g_nvme_attached_ctrlrs, tailq) {
783 		if (spdk_nvme_transport_id_compare(&ctrlr->trid, trid) == 0) {
784 			return ctrlr;
785 		}
786 	}
787 
788 	/* Search multi-process shared list */
789 	TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq) {
790 		if (spdk_nvme_transport_id_compare(&ctrlr->trid, trid) == 0) {
791 			return ctrlr;
792 		}
793 	}
794 
795 	return NULL;
796 }
797 
798 /* This function must only be called while holding g_spdk_nvme_driver->lock */
799 static int
800 nvme_probe_internal(struct spdk_nvme_probe_ctx *probe_ctx,
801 		    bool direct_connect)
802 {
803 	int rc;
804 	struct spdk_nvme_ctrlr *ctrlr, *ctrlr_tmp;
805 
806 	if (strlen(probe_ctx->trid.trstring) == 0) {
807 		/* If user didn't provide trstring, derive it from trtype */
808 		spdk_nvme_trid_populate_transport(&probe_ctx->trid, probe_ctx->trid.trtype);
809 	}
810 
811 	if (!spdk_nvme_transport_available_by_name(probe_ctx->trid.trstring)) {
812 		SPDK_ERRLOG("NVMe trtype %u (%s) not available\n",
813 			    probe_ctx->trid.trtype, probe_ctx->trid.trstring);
814 		return -1;
815 	}
816 
817 	nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
818 
819 	rc = nvme_transport_ctrlr_scan(probe_ctx, direct_connect);
820 	if (rc != 0) {
821 		SPDK_ERRLOG("NVMe ctrlr scan failed\n");
822 		TAILQ_FOREACH_SAFE(ctrlr, &probe_ctx->init_ctrlrs, tailq, ctrlr_tmp) {
823 			TAILQ_REMOVE(&probe_ctx->init_ctrlrs, ctrlr, tailq);
824 			nvme_transport_ctrlr_destruct(ctrlr);
825 		}
826 		nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
827 		return -1;
828 	}
829 
830 	/*
831 	 * Probe controllers on the shared_attached_ctrlrs list
832 	 */
833 	if (!spdk_process_is_primary() && (probe_ctx->trid.trtype == SPDK_NVME_TRANSPORT_PCIE)) {
834 		TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq) {
835 			/* Do not attach other ctrlrs if user specify a valid trid */
836 			if ((strlen(probe_ctx->trid.traddr) != 0) &&
837 			    (spdk_nvme_transport_id_compare(&probe_ctx->trid, &ctrlr->trid))) {
838 				continue;
839 			}
840 
841 			/* Do not attach if we failed to initialize it in this process */
842 			if (nvme_ctrlr_get_current_process(ctrlr) == NULL) {
843 				continue;
844 			}
845 
846 			nvme_ctrlr_proc_get_ref(ctrlr);
847 
848 			/*
849 			 * Unlock while calling attach_cb() so the user can call other functions
850 			 *  that may take the driver lock, like nvme_detach().
851 			 */
852 			if (probe_ctx->attach_cb) {
853 				nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
854 				probe_ctx->attach_cb(probe_ctx->cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
855 				nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
856 			}
857 		}
858 	}
859 
860 	nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
861 
862 	return 0;
863 }
864 
865 static void
866 nvme_probe_ctx_init(struct spdk_nvme_probe_ctx *probe_ctx,
867 		    const struct spdk_nvme_transport_id *trid,
868 		    void *cb_ctx,
869 		    spdk_nvme_probe_cb probe_cb,
870 		    spdk_nvme_attach_cb attach_cb,
871 		    spdk_nvme_remove_cb remove_cb)
872 {
873 	probe_ctx->trid = *trid;
874 	probe_ctx->cb_ctx = cb_ctx;
875 	probe_ctx->probe_cb = probe_cb;
876 	probe_ctx->attach_cb = attach_cb;
877 	probe_ctx->remove_cb = remove_cb;
878 	TAILQ_INIT(&probe_ctx->init_ctrlrs);
879 }
880 
881 int
882 spdk_nvme_probe(const struct spdk_nvme_transport_id *trid, void *cb_ctx,
883 		spdk_nvme_probe_cb probe_cb, spdk_nvme_attach_cb attach_cb,
884 		spdk_nvme_remove_cb remove_cb)
885 {
886 	struct spdk_nvme_transport_id trid_pcie;
887 	struct spdk_nvme_probe_ctx *probe_ctx;
888 
889 	if (trid == NULL) {
890 		memset(&trid_pcie, 0, sizeof(trid_pcie));
891 		spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
892 		trid = &trid_pcie;
893 	}
894 
895 	probe_ctx = spdk_nvme_probe_async(trid, cb_ctx, probe_cb,
896 					  attach_cb, remove_cb);
897 	if (!probe_ctx) {
898 		SPDK_ERRLOG("Create probe context failed\n");
899 		return -1;
900 	}
901 
902 	/*
903 	 * Keep going even if one or more nvme_attach() calls failed,
904 	 *  but maintain the value of rc to signal errors when we return.
905 	 */
906 	return nvme_init_controllers(probe_ctx);
907 }
908 
909 static bool
910 nvme_connect_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
911 		      struct spdk_nvme_ctrlr_opts *opts)
912 {
913 	struct spdk_nvme_ctrlr_opts *requested_opts = cb_ctx;
914 
915 	assert(requested_opts);
916 	memcpy(opts, requested_opts, sizeof(*opts));
917 
918 	return true;
919 }
920 
921 static void
922 nvme_ctrlr_opts_init(struct spdk_nvme_ctrlr_opts *opts,
923 		     const struct spdk_nvme_ctrlr_opts *opts_user,
924 		     size_t opts_size_user)
925 {
926 	assert(opts);
927 	assert(opts_user);
928 
929 	spdk_nvme_ctrlr_get_default_ctrlr_opts(opts, opts_size_user);
930 
931 #define FIELD_OK(field) \
932 	offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= (opts->opts_size)
933 
934 #define SET_FIELD(field) \
935 	if (FIELD_OK(field)) { \
936 			opts->field = opts_user->field; \
937 	}
938 
939 #define SET_FIELD_ARRAY(field) \
940 	if (FIELD_OK(field)) { \
941 		memcpy(opts->field, opts_user->field, sizeof(opts_user->field)); \
942 	}
943 
944 	SET_FIELD(num_io_queues);
945 	SET_FIELD(use_cmb_sqs);
946 	SET_FIELD(no_shn_notification);
947 	SET_FIELD(arb_mechanism);
948 	SET_FIELD(arbitration_burst);
949 	SET_FIELD(low_priority_weight);
950 	SET_FIELD(medium_priority_weight);
951 	SET_FIELD(high_priority_weight);
952 	SET_FIELD(keep_alive_timeout_ms);
953 	SET_FIELD(transport_retry_count);
954 	SET_FIELD(io_queue_size);
955 	SET_FIELD_ARRAY(hostnqn);
956 	SET_FIELD(io_queue_requests);
957 	SET_FIELD_ARRAY(src_addr);
958 	SET_FIELD_ARRAY(src_svcid);
959 	SET_FIELD_ARRAY(host_id);
960 	SET_FIELD_ARRAY(extended_host_id);
961 	SET_FIELD(command_set);
962 	SET_FIELD(admin_timeout_ms);
963 	SET_FIELD(header_digest);
964 	SET_FIELD(data_digest);
965 	SET_FIELD(disable_error_logging);
966 	SET_FIELD(transport_ack_timeout);
967 	SET_FIELD(admin_queue_size);
968 	SET_FIELD(fabrics_connect_timeout_us);
969 	SET_FIELD(disable_read_ana_log_page);
970 	SET_FIELD(disable_read_changed_ns_list_log_page);
971 	SET_FIELD_ARRAY(psk);
972 	SET_FIELD(tls_psk);
973 	SET_FIELD(dhchap_key);
974 	SET_FIELD(dhchap_ctrlr_key);
975 	SET_FIELD(dhchap_digests);
976 	SET_FIELD(dhchap_dhgroups);
977 
978 #undef FIELD_OK
979 #undef SET_FIELD
980 #undef SET_FIELD_ARRAY
981 }
982 
983 struct spdk_nvme_ctrlr *
984 spdk_nvme_connect(const struct spdk_nvme_transport_id *trid,
985 		  const struct spdk_nvme_ctrlr_opts *opts, size_t opts_size)
986 {
987 	int rc;
988 	struct spdk_nvme_ctrlr *ctrlr = NULL;
989 	struct spdk_nvme_probe_ctx *probe_ctx;
990 	struct spdk_nvme_ctrlr_opts *opts_local_p = NULL;
991 	struct spdk_nvme_ctrlr_opts opts_local;
992 
993 	if (trid == NULL) {
994 		SPDK_ERRLOG("No transport ID specified\n");
995 		return NULL;
996 	}
997 
998 	if (opts) {
999 		opts_local_p = &opts_local;
1000 		nvme_ctrlr_opts_init(opts_local_p, opts, opts_size);
1001 	}
1002 
1003 	probe_ctx = spdk_nvme_connect_async(trid, opts_local_p, NULL);
1004 	if (!probe_ctx) {
1005 		SPDK_ERRLOG("Create probe context failed\n");
1006 		return NULL;
1007 	}
1008 
1009 	rc = nvme_init_controllers(probe_ctx);
1010 	if (rc != 0) {
1011 		return NULL;
1012 	}
1013 
1014 	ctrlr = nvme_get_ctrlr_by_trid(trid);
1015 
1016 	return ctrlr;
1017 }
1018 
1019 void
1020 spdk_nvme_trid_populate_transport(struct spdk_nvme_transport_id *trid,
1021 				  enum spdk_nvme_transport_type trtype)
1022 {
1023 	const char *trstring;
1024 
1025 	trid->trtype = trtype;
1026 	switch (trtype) {
1027 	case SPDK_NVME_TRANSPORT_FC:
1028 		trstring = SPDK_NVME_TRANSPORT_NAME_FC;
1029 		break;
1030 	case SPDK_NVME_TRANSPORT_PCIE:
1031 		trstring = SPDK_NVME_TRANSPORT_NAME_PCIE;
1032 		break;
1033 	case SPDK_NVME_TRANSPORT_RDMA:
1034 		trstring = SPDK_NVME_TRANSPORT_NAME_RDMA;
1035 		break;
1036 	case SPDK_NVME_TRANSPORT_TCP:
1037 		trstring = SPDK_NVME_TRANSPORT_NAME_TCP;
1038 		break;
1039 	case SPDK_NVME_TRANSPORT_VFIOUSER:
1040 		trstring = SPDK_NVME_TRANSPORT_NAME_VFIOUSER;
1041 		break;
1042 	case SPDK_NVME_TRANSPORT_CUSTOM:
1043 		trstring = SPDK_NVME_TRANSPORT_NAME_CUSTOM;
1044 		break;
1045 	default:
1046 		SPDK_ERRLOG("no available transports\n");
1047 		assert(0);
1048 		return;
1049 	}
1050 	snprintf(trid->trstring, SPDK_NVMF_TRSTRING_MAX_LEN, "%s", trstring);
1051 }
1052 
1053 int
1054 spdk_nvme_transport_id_populate_trstring(struct spdk_nvme_transport_id *trid, const char *trstring)
1055 {
1056 	int i = 0;
1057 
1058 	if (trid == NULL || trstring == NULL) {
1059 		return -EINVAL;
1060 	}
1061 
1062 	/* Note: gcc-11 has some false positive -Wstringop-overread warnings with LTO builds if we
1063 	 * use strnlen here.  So do the trstring copy manually instead.  See GitHub issue #2391.
1064 	 */
1065 
1066 	/* cast official trstring to uppercase version of input. */
1067 	while (i < SPDK_NVMF_TRSTRING_MAX_LEN && trstring[i] != 0) {
1068 		trid->trstring[i] = toupper(trstring[i]);
1069 		i++;
1070 	}
1071 
1072 	if (trstring[i] != 0) {
1073 		return -EINVAL;
1074 	} else {
1075 		trid->trstring[i] = 0;
1076 		return 0;
1077 	}
1078 }
1079 
1080 int
1081 spdk_nvme_transport_id_parse_trtype(enum spdk_nvme_transport_type *trtype, const char *str)
1082 {
1083 	if (trtype == NULL || str == NULL) {
1084 		return -EINVAL;
1085 	}
1086 
1087 	if (strcasecmp(str, "PCIe") == 0) {
1088 		*trtype = SPDK_NVME_TRANSPORT_PCIE;
1089 	} else if (strcasecmp(str, "RDMA") == 0) {
1090 		*trtype = SPDK_NVME_TRANSPORT_RDMA;
1091 	} else if (strcasecmp(str, "FC") == 0) {
1092 		*trtype = SPDK_NVME_TRANSPORT_FC;
1093 	} else if (strcasecmp(str, "TCP") == 0) {
1094 		*trtype = SPDK_NVME_TRANSPORT_TCP;
1095 	} else if (strcasecmp(str, "VFIOUSER") == 0) {
1096 		*trtype = SPDK_NVME_TRANSPORT_VFIOUSER;
1097 	} else {
1098 		*trtype = SPDK_NVME_TRANSPORT_CUSTOM;
1099 	}
1100 	return 0;
1101 }
1102 
1103 const char *
1104 spdk_nvme_transport_id_trtype_str(enum spdk_nvme_transport_type trtype)
1105 {
1106 	switch (trtype) {
1107 	case SPDK_NVME_TRANSPORT_PCIE:
1108 		return "PCIe";
1109 	case SPDK_NVME_TRANSPORT_RDMA:
1110 		return "RDMA";
1111 	case SPDK_NVME_TRANSPORT_FC:
1112 		return "FC";
1113 	case SPDK_NVME_TRANSPORT_TCP:
1114 		return "TCP";
1115 	case SPDK_NVME_TRANSPORT_VFIOUSER:
1116 		return "VFIOUSER";
1117 	case SPDK_NVME_TRANSPORT_CUSTOM:
1118 		return "CUSTOM";
1119 	default:
1120 		return NULL;
1121 	}
1122 }
1123 
1124 int
1125 spdk_nvme_transport_id_parse_adrfam(enum spdk_nvmf_adrfam *adrfam, const char *str)
1126 {
1127 	if (adrfam == NULL || str == NULL) {
1128 		return -EINVAL;
1129 	}
1130 
1131 	if (strcasecmp(str, "IPv4") == 0) {
1132 		*adrfam = SPDK_NVMF_ADRFAM_IPV4;
1133 	} else if (strcasecmp(str, "IPv6") == 0) {
1134 		*adrfam = SPDK_NVMF_ADRFAM_IPV6;
1135 	} else if (strcasecmp(str, "IB") == 0) {
1136 		*adrfam = SPDK_NVMF_ADRFAM_IB;
1137 	} else if (strcasecmp(str, "FC") == 0) {
1138 		*adrfam = SPDK_NVMF_ADRFAM_FC;
1139 	} else {
1140 		return -ENOENT;
1141 	}
1142 	return 0;
1143 }
1144 
1145 const char *
1146 spdk_nvme_transport_id_adrfam_str(enum spdk_nvmf_adrfam adrfam)
1147 {
1148 	switch (adrfam) {
1149 	case SPDK_NVMF_ADRFAM_IPV4:
1150 		return "IPv4";
1151 	case SPDK_NVMF_ADRFAM_IPV6:
1152 		return "IPv6";
1153 	case SPDK_NVMF_ADRFAM_IB:
1154 		return "IB";
1155 	case SPDK_NVMF_ADRFAM_FC:
1156 		return "FC";
1157 	default:
1158 		return NULL;
1159 	}
1160 }
1161 
1162 static size_t
1163 parse_next_key(const char **str, char *key, char *val, size_t key_buf_size, size_t val_buf_size)
1164 {
1165 
1166 	const char *sep, *sep1;
1167 	const char *whitespace = " \t\n";
1168 	size_t key_len, val_len;
1169 
1170 	*str += strspn(*str, whitespace);
1171 
1172 	sep = strchr(*str, ':');
1173 	if (!sep) {
1174 		sep = strchr(*str, '=');
1175 		if (!sep) {
1176 			SPDK_ERRLOG("Key without ':' or '=' separator\n");
1177 			return 0;
1178 		}
1179 	} else {
1180 		sep1 = strchr(*str, '=');
1181 		if ((sep1 != NULL) && (sep1 < sep)) {
1182 			sep = sep1;
1183 		}
1184 	}
1185 
1186 	key_len = sep - *str;
1187 	if (key_len >= key_buf_size) {
1188 		SPDK_ERRLOG("Key length %zu greater than maximum allowed %zu\n",
1189 			    key_len, key_buf_size - 1);
1190 		return 0;
1191 	}
1192 
1193 	memcpy(key, *str, key_len);
1194 	key[key_len] = '\0';
1195 
1196 	*str += key_len + 1; /* Skip key: */
1197 	val_len = strcspn(*str, whitespace);
1198 	if (val_len == 0) {
1199 		SPDK_ERRLOG("Key without value\n");
1200 		return 0;
1201 	}
1202 
1203 	if (val_len >= val_buf_size) {
1204 		SPDK_ERRLOG("Value length %zu greater than maximum allowed %zu\n",
1205 			    val_len, val_buf_size - 1);
1206 		return 0;
1207 	}
1208 
1209 	memcpy(val, *str, val_len);
1210 	val[val_len] = '\0';
1211 
1212 	*str += val_len;
1213 
1214 	return val_len;
1215 }
1216 
1217 int
1218 spdk_nvme_transport_id_parse(struct spdk_nvme_transport_id *trid, const char *str)
1219 {
1220 	size_t val_len;
1221 	char key[32];
1222 	char val[1024];
1223 
1224 	if (trid == NULL || str == NULL) {
1225 		return -EINVAL;
1226 	}
1227 
1228 	while (*str != '\0') {
1229 
1230 		val_len = parse_next_key(&str, key, val, sizeof(key), sizeof(val));
1231 
1232 		if (val_len == 0) {
1233 			SPDK_ERRLOG("Failed to parse transport ID\n");
1234 			return -EINVAL;
1235 		}
1236 
1237 		if (strcasecmp(key, "trtype") == 0) {
1238 			if (spdk_nvme_transport_id_populate_trstring(trid, val) != 0) {
1239 				SPDK_ERRLOG("invalid transport '%s'\n", val);
1240 				return -EINVAL;
1241 			}
1242 			if (spdk_nvme_transport_id_parse_trtype(&trid->trtype, val) != 0) {
1243 				SPDK_ERRLOG("Unknown trtype '%s'\n", val);
1244 				return -EINVAL;
1245 			}
1246 		} else if (strcasecmp(key, "adrfam") == 0) {
1247 			if (spdk_nvme_transport_id_parse_adrfam(&trid->adrfam, val) != 0) {
1248 				SPDK_ERRLOG("Unknown adrfam '%s'\n", val);
1249 				return -EINVAL;
1250 			}
1251 		} else if (strcasecmp(key, "traddr") == 0) {
1252 			if (val_len > SPDK_NVMF_TRADDR_MAX_LEN) {
1253 				SPDK_ERRLOG("traddr length %zu greater than maximum allowed %u\n",
1254 					    val_len, SPDK_NVMF_TRADDR_MAX_LEN);
1255 				return -EINVAL;
1256 			}
1257 			memcpy(trid->traddr, val, val_len + 1);
1258 		} else if (strcasecmp(key, "trsvcid") == 0) {
1259 			if (val_len > SPDK_NVMF_TRSVCID_MAX_LEN) {
1260 				SPDK_ERRLOG("trsvcid length %zu greater than maximum allowed %u\n",
1261 					    val_len, SPDK_NVMF_TRSVCID_MAX_LEN);
1262 				return -EINVAL;
1263 			}
1264 			memcpy(trid->trsvcid, val, val_len + 1);
1265 		} else if (strcasecmp(key, "priority") == 0) {
1266 			if (val_len > SPDK_NVMF_PRIORITY_MAX_LEN) {
1267 				SPDK_ERRLOG("priority length %zu greater than maximum allowed %u\n",
1268 					    val_len, SPDK_NVMF_PRIORITY_MAX_LEN);
1269 				return -EINVAL;
1270 			}
1271 			trid->priority = spdk_strtol(val, 10);
1272 		} else if (strcasecmp(key, "subnqn") == 0) {
1273 			if (val_len > SPDK_NVMF_NQN_MAX_LEN) {
1274 				SPDK_ERRLOG("subnqn length %zu greater than maximum allowed %u\n",
1275 					    val_len, SPDK_NVMF_NQN_MAX_LEN);
1276 				return -EINVAL;
1277 			}
1278 			memcpy(trid->subnqn, val, val_len + 1);
1279 		} else if (strcasecmp(key, "hostaddr") == 0) {
1280 			continue;
1281 		} else if (strcasecmp(key, "hostsvcid") == 0) {
1282 			continue;
1283 		} else if (strcasecmp(key, "hostnqn") == 0) {
1284 			continue;
1285 		} else if (strcasecmp(key, "ns") == 0) {
1286 			/*
1287 			 * Special case.  The namespace id parameter may
1288 			 * optionally be passed in the transport id string
1289 			 * for an SPDK application (e.g. spdk_nvme_perf)
1290 			 * and additionally parsed therein to limit
1291 			 * targeting a specific namespace.  For this
1292 			 * scenario, just silently ignore this key
1293 			 * rather than letting it default to logging
1294 			 * it as an invalid key.
1295 			 */
1296 			continue;
1297 		} else if (strcasecmp(key, "alt_traddr") == 0) {
1298 			/*
1299 			 * Used by applications for enabling transport ID failover.
1300 			 * Please see the case above for more information on custom parameters.
1301 			 */
1302 			continue;
1303 		} else {
1304 			SPDK_ERRLOG("Unknown transport ID key '%s'\n", key);
1305 		}
1306 	}
1307 
1308 	return 0;
1309 }
1310 
1311 int
1312 spdk_nvme_host_id_parse(struct spdk_nvme_host_id *hostid, const char *str)
1313 {
1314 
1315 	size_t key_size = 32;
1316 	size_t val_size = 1024;
1317 	size_t val_len;
1318 	char key[key_size];
1319 	char val[val_size];
1320 
1321 	if (hostid == NULL || str == NULL) {
1322 		return -EINVAL;
1323 	}
1324 
1325 	while (*str != '\0') {
1326 
1327 		val_len = parse_next_key(&str, key, val, key_size, val_size);
1328 
1329 		if (val_len == 0) {
1330 			SPDK_ERRLOG("Failed to parse host ID\n");
1331 			return val_len;
1332 		}
1333 
1334 		/* Ignore the rest of the options from the transport ID. */
1335 		if (strcasecmp(key, "trtype") == 0) {
1336 			continue;
1337 		} else if (strcasecmp(key, "adrfam") == 0) {
1338 			continue;
1339 		} else if (strcasecmp(key, "traddr") == 0) {
1340 			continue;
1341 		} else if (strcasecmp(key, "trsvcid") == 0) {
1342 			continue;
1343 		} else if (strcasecmp(key, "subnqn") == 0) {
1344 			continue;
1345 		} else if (strcasecmp(key, "priority") == 0) {
1346 			continue;
1347 		} else if (strcasecmp(key, "ns") == 0) {
1348 			continue;
1349 		} else if (strcasecmp(key, "hostaddr") == 0) {
1350 			if (val_len > SPDK_NVMF_TRADDR_MAX_LEN) {
1351 				SPDK_ERRLOG("hostaddr length %zu greater than maximum allowed %u\n",
1352 					    val_len, SPDK_NVMF_TRADDR_MAX_LEN);
1353 				return -EINVAL;
1354 			}
1355 			memcpy(hostid->hostaddr, val, val_len + 1);
1356 
1357 		} else if (strcasecmp(key, "hostsvcid") == 0) {
1358 			if (val_len > SPDK_NVMF_TRSVCID_MAX_LEN) {
1359 				SPDK_ERRLOG("trsvcid length %zu greater than maximum allowed %u\n",
1360 					    val_len, SPDK_NVMF_TRSVCID_MAX_LEN);
1361 				return -EINVAL;
1362 			}
1363 			memcpy(hostid->hostsvcid, val, val_len + 1);
1364 		} else {
1365 			SPDK_ERRLOG("Unknown transport ID key '%s'\n", key);
1366 		}
1367 	}
1368 
1369 	return 0;
1370 }
1371 
1372 static int
1373 cmp_int(int a, int b)
1374 {
1375 	return a - b;
1376 }
1377 
1378 int
1379 spdk_nvme_transport_id_compare(const struct spdk_nvme_transport_id *trid1,
1380 			       const struct spdk_nvme_transport_id *trid2)
1381 {
1382 	int cmp;
1383 
1384 	if (trid1->trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
1385 		cmp = strcasecmp(trid1->trstring, trid2->trstring);
1386 	} else {
1387 		cmp = cmp_int(trid1->trtype, trid2->trtype);
1388 	}
1389 
1390 	if (cmp) {
1391 		return cmp;
1392 	}
1393 
1394 	if (trid1->trtype == SPDK_NVME_TRANSPORT_PCIE) {
1395 		struct spdk_pci_addr pci_addr1 = {};
1396 		struct spdk_pci_addr pci_addr2 = {};
1397 
1398 		/* Normalize PCI addresses before comparing */
1399 		if (spdk_pci_addr_parse(&pci_addr1, trid1->traddr) < 0 ||
1400 		    spdk_pci_addr_parse(&pci_addr2, trid2->traddr) < 0) {
1401 			return -1;
1402 		}
1403 
1404 		/* PCIe transport ID only uses trtype and traddr */
1405 		return spdk_pci_addr_compare(&pci_addr1, &pci_addr2);
1406 	}
1407 
1408 	cmp = strcasecmp(trid1->traddr, trid2->traddr);
1409 	if (cmp) {
1410 		return cmp;
1411 	}
1412 
1413 	cmp = cmp_int(trid1->adrfam, trid2->adrfam);
1414 	if (cmp) {
1415 		return cmp;
1416 	}
1417 
1418 	cmp = strcasecmp(trid1->trsvcid, trid2->trsvcid);
1419 	if (cmp) {
1420 		return cmp;
1421 	}
1422 
1423 	cmp = strcmp(trid1->subnqn, trid2->subnqn);
1424 	if (cmp) {
1425 		return cmp;
1426 	}
1427 
1428 	return 0;
1429 }
1430 
1431 int
1432 spdk_nvme_prchk_flags_parse(uint32_t *prchk_flags, const char *str)
1433 {
1434 	size_t val_len;
1435 	char key[32];
1436 	char val[1024];
1437 
1438 	if (prchk_flags == NULL || str == NULL) {
1439 		return -EINVAL;
1440 	}
1441 
1442 	while (*str != '\0') {
1443 		val_len = parse_next_key(&str, key, val, sizeof(key), sizeof(val));
1444 
1445 		if (val_len == 0) {
1446 			SPDK_ERRLOG("Failed to parse prchk\n");
1447 			return -EINVAL;
1448 		}
1449 
1450 		if (strcasecmp(key, "prchk") == 0) {
1451 			if (strcasestr(val, "reftag") != NULL) {
1452 				*prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_REFTAG;
1453 			}
1454 			if (strcasestr(val, "guard") != NULL) {
1455 				*prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_GUARD;
1456 			}
1457 		} else {
1458 			SPDK_ERRLOG("Unknown key '%s'\n", key);
1459 			return -EINVAL;
1460 		}
1461 	}
1462 
1463 	return 0;
1464 }
1465 
1466 const char *
1467 spdk_nvme_prchk_flags_str(uint32_t prchk_flags)
1468 {
1469 	if (prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) {
1470 		if (prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) {
1471 			return "prchk:reftag|guard";
1472 		} else {
1473 			return "prchk:reftag";
1474 		}
1475 	} else {
1476 		if (prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) {
1477 			return "prchk:guard";
1478 		} else {
1479 			return NULL;
1480 		}
1481 	}
1482 }
1483 
1484 struct spdk_nvme_probe_ctx *
1485 spdk_nvme_probe_async(const struct spdk_nvme_transport_id *trid,
1486 		      void *cb_ctx,
1487 		      spdk_nvme_probe_cb probe_cb,
1488 		      spdk_nvme_attach_cb attach_cb,
1489 		      spdk_nvme_remove_cb remove_cb)
1490 {
1491 	int rc;
1492 	struct spdk_nvme_probe_ctx *probe_ctx;
1493 
1494 	rc = nvme_driver_init();
1495 	if (rc != 0) {
1496 		return NULL;
1497 	}
1498 
1499 	probe_ctx = calloc(1, sizeof(*probe_ctx));
1500 	if (!probe_ctx) {
1501 		return NULL;
1502 	}
1503 
1504 	nvme_probe_ctx_init(probe_ctx, trid, cb_ctx, probe_cb, attach_cb, remove_cb);
1505 	rc = nvme_probe_internal(probe_ctx, false);
1506 	if (rc != 0) {
1507 		free(probe_ctx);
1508 		return NULL;
1509 	}
1510 
1511 	return probe_ctx;
1512 }
1513 
1514 int
1515 spdk_nvme_probe_poll_async(struct spdk_nvme_probe_ctx *probe_ctx)
1516 {
1517 	struct spdk_nvme_ctrlr *ctrlr, *ctrlr_tmp;
1518 
1519 	if (!spdk_process_is_primary() && probe_ctx->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
1520 		free(probe_ctx);
1521 		return 0;
1522 	}
1523 
1524 	TAILQ_FOREACH_SAFE(ctrlr, &probe_ctx->init_ctrlrs, tailq, ctrlr_tmp) {
1525 		nvme_ctrlr_poll_internal(ctrlr, probe_ctx);
1526 	}
1527 
1528 	if (TAILQ_EMPTY(&probe_ctx->init_ctrlrs)) {
1529 		nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
1530 		g_spdk_nvme_driver->initialized = true;
1531 		nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
1532 		free(probe_ctx);
1533 		return 0;
1534 	}
1535 
1536 	return -EAGAIN;
1537 }
1538 
1539 struct spdk_nvme_probe_ctx *
1540 spdk_nvme_connect_async(const struct spdk_nvme_transport_id *trid,
1541 			const struct spdk_nvme_ctrlr_opts *opts,
1542 			spdk_nvme_attach_cb attach_cb)
1543 {
1544 	int rc;
1545 	spdk_nvme_probe_cb probe_cb = NULL;
1546 	struct spdk_nvme_probe_ctx *probe_ctx;
1547 
1548 	rc = nvme_driver_init();
1549 	if (rc != 0) {
1550 		return NULL;
1551 	}
1552 
1553 	probe_ctx = calloc(1, sizeof(*probe_ctx));
1554 	if (!probe_ctx) {
1555 		return NULL;
1556 	}
1557 
1558 	if (opts) {
1559 		probe_cb = nvme_connect_probe_cb;
1560 	}
1561 
1562 	nvme_probe_ctx_init(probe_ctx, trid, (void *)opts, probe_cb, attach_cb, NULL);
1563 	rc = nvme_probe_internal(probe_ctx, true);
1564 	if (rc != 0) {
1565 		free(probe_ctx);
1566 		return NULL;
1567 	}
1568 
1569 	return probe_ctx;
1570 }
1571 
1572 int
1573 nvme_parse_addr(struct sockaddr_storage *sa, int family, const char *addr, const char *service,
1574 		long int *port)
1575 {
1576 	struct addrinfo *res;
1577 	struct addrinfo hints;
1578 	int ret;
1579 
1580 	memset(&hints, 0, sizeof(hints));
1581 	hints.ai_family = family;
1582 	hints.ai_socktype = SOCK_STREAM;
1583 	hints.ai_protocol = 0;
1584 
1585 	if (addr == NULL || service == NULL) {
1586 		SPDK_ERRLOG("addr and service must both be non-NULL\n");
1587 		return -EINVAL;
1588 	}
1589 
1590 	*port = spdk_strtol(service, 10);
1591 	if (*port <= 0 || *port >= 65536) {
1592 		SPDK_ERRLOG("Invalid port: %s\n", service);
1593 		return -EINVAL;
1594 	}
1595 
1596 	ret = getaddrinfo(addr, service, &hints, &res);
1597 	if (ret) {
1598 		SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(ret), ret);
1599 		return -(abs(ret));
1600 	}
1601 
1602 	if (res->ai_addrlen > sizeof(*sa)) {
1603 		SPDK_ERRLOG("getaddrinfo() ai_addrlen %zu too large\n", (size_t)res->ai_addrlen);
1604 		ret = -EINVAL;
1605 	} else {
1606 		memcpy(sa, res->ai_addr, res->ai_addrlen);
1607 	}
1608 
1609 	freeaddrinfo(res);
1610 	return ret;
1611 }
1612 
1613 int
1614 nvme_get_default_hostnqn(char *buf, int len)
1615 {
1616 	char uuid[SPDK_UUID_STRING_LEN];
1617 	int rc;
1618 
1619 	spdk_uuid_fmt_lower(uuid, sizeof(uuid), &g_spdk_nvme_driver->default_extended_host_id);
1620 	rc = snprintf(buf, len, "nqn.2014-08.org.nvmexpress:uuid:%s", uuid);
1621 	if (rc < 0 || rc >= len) {
1622 		return -EINVAL;
1623 	}
1624 
1625 	return 0;
1626 }
1627 
1628 SPDK_LOG_REGISTER_COMPONENT(nvme)
1629