1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) Intel Corporation. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include "spdk/stdinc.h" 35 36 #include "env_internal.h" 37 38 #include <rte_config.h> 39 #include <rte_memory.h> 40 #include <rte_eal_memconfig.h> 41 42 #include "spdk_internal/assert.h" 43 44 #include "spdk/assert.h" 45 #include "spdk/likely.h" 46 #include "spdk/queue.h" 47 #include "spdk/util.h" 48 #include "spdk/memory.h" 49 #include "spdk/env_dpdk.h" 50 #include "spdk/log.h" 51 52 #ifdef __FreeBSD__ 53 #define VFIO_ENABLED 0 54 #else 55 #include <linux/version.h> 56 #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0) 57 #define VFIO_ENABLED 1 58 #include <linux/vfio.h> 59 #include <rte_vfio.h> 60 61 struct spdk_vfio_dma_map { 62 struct vfio_iommu_type1_dma_map map; 63 struct vfio_iommu_type1_dma_unmap unmap; 64 TAILQ_ENTRY(spdk_vfio_dma_map) tailq; 65 }; 66 67 struct vfio_cfg { 68 int fd; 69 bool enabled; 70 bool noiommu_enabled; 71 unsigned device_ref; 72 TAILQ_HEAD(, spdk_vfio_dma_map) maps; 73 pthread_mutex_t mutex; 74 }; 75 76 static struct vfio_cfg g_vfio = { 77 .fd = -1, 78 .enabled = false, 79 .noiommu_enabled = false, 80 .device_ref = 0, 81 .maps = TAILQ_HEAD_INITIALIZER(g_vfio.maps), 82 .mutex = PTHREAD_MUTEX_INITIALIZER 83 }; 84 85 #else 86 #define VFIO_ENABLED 0 87 #endif 88 #endif 89 90 #if DEBUG 91 #define DEBUG_PRINT(...) SPDK_ERRLOG(__VA_ARGS__) 92 #else 93 #define DEBUG_PRINT(...) 94 #endif 95 96 #define FN_2MB_TO_4KB(fn) (fn << (SHIFT_2MB - SHIFT_4KB)) 97 #define FN_4KB_TO_2MB(fn) (fn >> (SHIFT_2MB - SHIFT_4KB)) 98 99 #define MAP_256TB_IDX(vfn_2mb) ((vfn_2mb) >> (SHIFT_1GB - SHIFT_2MB)) 100 #define MAP_1GB_IDX(vfn_2mb) ((vfn_2mb) & ((1ULL << (SHIFT_1GB - SHIFT_2MB)) - 1)) 101 102 /* Page is registered */ 103 #define REG_MAP_REGISTERED (1ULL << 62) 104 105 /* A notification region barrier. The 2MB translation entry that's marked 106 * with this flag must be unregistered separately. This allows contiguous 107 * regions to be unregistered in the same chunks they were registered. 108 */ 109 #define REG_MAP_NOTIFY_START (1ULL << 63) 110 111 /* Translation of a single 2MB page. */ 112 struct map_2mb { 113 uint64_t translation_2mb; 114 }; 115 116 /* Second-level map table indexed by bits [21..29] of the virtual address. 117 * Each entry contains the address translation or error for entries that haven't 118 * been retrieved yet. 119 */ 120 struct map_1gb { 121 struct map_2mb map[1ULL << (SHIFT_1GB - SHIFT_2MB)]; 122 }; 123 124 /* Top-level map table indexed by bits [30..47] of the virtual address. 125 * Each entry points to a second-level map table or NULL. 126 */ 127 struct map_256tb { 128 struct map_1gb *map[1ULL << (SHIFT_256TB - SHIFT_1GB)]; 129 }; 130 131 /* Page-granularity memory address translation */ 132 struct spdk_mem_map { 133 struct map_256tb map_256tb; 134 pthread_mutex_t mutex; 135 uint64_t default_translation; 136 struct spdk_mem_map_ops ops; 137 void *cb_ctx; 138 TAILQ_ENTRY(spdk_mem_map) tailq; 139 }; 140 141 /* Registrations map. The 64 bit translations are bit fields with the 142 * following layout (starting with the low bits): 143 * 0 - 61 : reserved 144 * 62 - 63 : flags 145 */ 146 static struct spdk_mem_map *g_mem_reg_map; 147 static TAILQ_HEAD(spdk_mem_map_head, spdk_mem_map) g_spdk_mem_maps = 148 TAILQ_HEAD_INITIALIZER(g_spdk_mem_maps); 149 static pthread_mutex_t g_spdk_mem_map_mutex = PTHREAD_MUTEX_INITIALIZER; 150 151 static bool g_legacy_mem; 152 153 /* 154 * Walk the currently registered memory via the main memory registration map 155 * and call the new map's notify callback for each virtually contiguous region. 156 */ 157 static int 158 mem_map_notify_walk(struct spdk_mem_map *map, enum spdk_mem_map_notify_action action) 159 { 160 size_t idx_256tb; 161 uint64_t idx_1gb; 162 uint64_t contig_start = UINT64_MAX; 163 uint64_t contig_end = UINT64_MAX; 164 struct map_1gb *map_1gb; 165 int rc; 166 167 if (!g_mem_reg_map) { 168 return -EINVAL; 169 } 170 171 /* Hold the memory registration map mutex so no new registrations can be added while we are looping. */ 172 pthread_mutex_lock(&g_mem_reg_map->mutex); 173 174 for (idx_256tb = 0; 175 idx_256tb < sizeof(g_mem_reg_map->map_256tb.map) / sizeof(g_mem_reg_map->map_256tb.map[0]); 176 idx_256tb++) { 177 map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb]; 178 179 if (!map_1gb) { 180 if (contig_start != UINT64_MAX) { 181 /* End of of a virtually contiguous range */ 182 rc = map->ops.notify_cb(map->cb_ctx, map, action, 183 (void *)contig_start, 184 contig_end - contig_start + VALUE_2MB); 185 /* Don't bother handling unregister failures. It can't be any worse */ 186 if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) { 187 goto err_unregister; 188 } 189 } 190 contig_start = UINT64_MAX; 191 continue; 192 } 193 194 for (idx_1gb = 0; idx_1gb < sizeof(map_1gb->map) / sizeof(map_1gb->map[0]); idx_1gb++) { 195 if ((map_1gb->map[idx_1gb].translation_2mb & REG_MAP_REGISTERED) && 196 (contig_start == UINT64_MAX || 197 (map_1gb->map[idx_1gb].translation_2mb & REG_MAP_NOTIFY_START) == 0)) { 198 /* Rebuild the virtual address from the indexes */ 199 uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB); 200 201 if (contig_start == UINT64_MAX) { 202 contig_start = vaddr; 203 } 204 205 contig_end = vaddr; 206 } else { 207 if (contig_start != UINT64_MAX) { 208 /* End of of a virtually contiguous range */ 209 rc = map->ops.notify_cb(map->cb_ctx, map, action, 210 (void *)contig_start, 211 contig_end - contig_start + VALUE_2MB); 212 /* Don't bother handling unregister failures. It can't be any worse */ 213 if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) { 214 goto err_unregister; 215 } 216 217 /* This page might be a part of a neighbour region, so process 218 * it again. The idx_1gb will be incremented immediately. 219 */ 220 idx_1gb--; 221 } 222 contig_start = UINT64_MAX; 223 } 224 } 225 } 226 227 pthread_mutex_unlock(&g_mem_reg_map->mutex); 228 return 0; 229 230 err_unregister: 231 /* Unwind to the first empty translation so we don't unregister 232 * a region that just failed to register. 233 */ 234 idx_256tb = MAP_256TB_IDX((contig_start >> SHIFT_2MB) - 1); 235 idx_1gb = MAP_1GB_IDX((contig_start >> SHIFT_2MB) - 1); 236 contig_start = UINT64_MAX; 237 contig_end = UINT64_MAX; 238 239 /* Unregister any memory we managed to register before the failure */ 240 for (; idx_256tb < SIZE_MAX; idx_256tb--) { 241 map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb]; 242 243 if (!map_1gb) { 244 if (contig_end != UINT64_MAX) { 245 /* End of of a virtually contiguous range */ 246 map->ops.notify_cb(map->cb_ctx, map, 247 SPDK_MEM_MAP_NOTIFY_UNREGISTER, 248 (void *)contig_start, 249 contig_end - contig_start + VALUE_2MB); 250 } 251 contig_end = UINT64_MAX; 252 continue; 253 } 254 255 for (; idx_1gb < UINT64_MAX; idx_1gb--) { 256 if ((map_1gb->map[idx_1gb].translation_2mb & REG_MAP_REGISTERED) && 257 (contig_end == UINT64_MAX || (map_1gb->map[idx_1gb].translation_2mb & REG_MAP_NOTIFY_START) == 0)) { 258 /* Rebuild the virtual address from the indexes */ 259 uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB); 260 261 if (contig_end == UINT64_MAX) { 262 contig_end = vaddr; 263 } 264 contig_start = vaddr; 265 } else { 266 if (contig_end != UINT64_MAX) { 267 /* End of of a virtually contiguous range */ 268 map->ops.notify_cb(map->cb_ctx, map, 269 SPDK_MEM_MAP_NOTIFY_UNREGISTER, 270 (void *)contig_start, 271 contig_end - contig_start + VALUE_2MB); 272 idx_1gb++; 273 } 274 contig_end = UINT64_MAX; 275 } 276 } 277 idx_1gb = sizeof(map_1gb->map) / sizeof(map_1gb->map[0]) - 1; 278 } 279 280 pthread_mutex_unlock(&g_mem_reg_map->mutex); 281 return rc; 282 } 283 284 struct spdk_mem_map * 285 spdk_mem_map_alloc(uint64_t default_translation, const struct spdk_mem_map_ops *ops, void *cb_ctx) 286 { 287 struct spdk_mem_map *map; 288 int rc; 289 290 map = calloc(1, sizeof(*map)); 291 if (map == NULL) { 292 return NULL; 293 } 294 295 if (pthread_mutex_init(&map->mutex, NULL)) { 296 free(map); 297 return NULL; 298 } 299 300 map->default_translation = default_translation; 301 map->cb_ctx = cb_ctx; 302 if (ops) { 303 map->ops = *ops; 304 } 305 306 if (ops && ops->notify_cb) { 307 pthread_mutex_lock(&g_spdk_mem_map_mutex); 308 rc = mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_REGISTER); 309 if (rc != 0) { 310 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 311 DEBUG_PRINT("Initial mem_map notify failed\n"); 312 pthread_mutex_destroy(&map->mutex); 313 free(map); 314 return NULL; 315 } 316 TAILQ_INSERT_TAIL(&g_spdk_mem_maps, map, tailq); 317 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 318 } 319 320 return map; 321 } 322 323 void 324 spdk_mem_map_free(struct spdk_mem_map **pmap) 325 { 326 struct spdk_mem_map *map; 327 size_t i; 328 329 if (!pmap) { 330 return; 331 } 332 333 map = *pmap; 334 335 if (!map) { 336 return; 337 } 338 339 if (map->ops.notify_cb) { 340 pthread_mutex_lock(&g_spdk_mem_map_mutex); 341 mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_UNREGISTER); 342 TAILQ_REMOVE(&g_spdk_mem_maps, map, tailq); 343 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 344 } 345 346 for (i = 0; i < sizeof(map->map_256tb.map) / sizeof(map->map_256tb.map[0]); i++) { 347 free(map->map_256tb.map[i]); 348 } 349 350 pthread_mutex_destroy(&map->mutex); 351 352 free(map); 353 *pmap = NULL; 354 } 355 356 int 357 spdk_mem_register(void *vaddr, size_t len) 358 { 359 struct spdk_mem_map *map; 360 int rc; 361 void *seg_vaddr; 362 size_t seg_len; 363 uint64_t reg; 364 365 if ((uintptr_t)vaddr & ~MASK_256TB) { 366 DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr); 367 return -EINVAL; 368 } 369 370 if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) { 371 DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n", 372 __func__, vaddr, len); 373 return -EINVAL; 374 } 375 376 if (len == 0) { 377 return 0; 378 } 379 380 pthread_mutex_lock(&g_spdk_mem_map_mutex); 381 382 seg_vaddr = vaddr; 383 seg_len = len; 384 while (seg_len > 0) { 385 reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL); 386 if (reg & REG_MAP_REGISTERED) { 387 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 388 return -EBUSY; 389 } 390 seg_vaddr += VALUE_2MB; 391 seg_len -= VALUE_2MB; 392 } 393 394 seg_vaddr = vaddr; 395 seg_len = 0; 396 while (len > 0) { 397 spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB, 398 seg_len == 0 ? REG_MAP_REGISTERED | REG_MAP_NOTIFY_START : REG_MAP_REGISTERED); 399 seg_len += VALUE_2MB; 400 vaddr += VALUE_2MB; 401 len -= VALUE_2MB; 402 } 403 404 TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) { 405 rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_REGISTER, seg_vaddr, seg_len); 406 if (rc != 0) { 407 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 408 return rc; 409 } 410 } 411 412 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 413 return 0; 414 } 415 416 int 417 spdk_mem_unregister(void *vaddr, size_t len) 418 { 419 struct spdk_mem_map *map; 420 int rc; 421 void *seg_vaddr; 422 size_t seg_len; 423 uint64_t reg, newreg; 424 425 if ((uintptr_t)vaddr & ~MASK_256TB) { 426 DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr); 427 return -EINVAL; 428 } 429 430 if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) { 431 DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n", 432 __func__, vaddr, len); 433 return -EINVAL; 434 } 435 436 pthread_mutex_lock(&g_spdk_mem_map_mutex); 437 438 /* The first page must be a start of a region. Also check if it's 439 * registered to make sure we don't return -ERANGE for non-registered 440 * regions. 441 */ 442 reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL); 443 if ((reg & REG_MAP_REGISTERED) && (reg & REG_MAP_NOTIFY_START) == 0) { 444 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 445 return -ERANGE; 446 } 447 448 seg_vaddr = vaddr; 449 seg_len = len; 450 while (seg_len > 0) { 451 reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL); 452 if ((reg & REG_MAP_REGISTERED) == 0) { 453 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 454 return -EINVAL; 455 } 456 seg_vaddr += VALUE_2MB; 457 seg_len -= VALUE_2MB; 458 } 459 460 newreg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL); 461 /* If the next page is registered, it must be a start of a region as well, 462 * otherwise we'd be unregistering only a part of a region. 463 */ 464 if ((newreg & REG_MAP_NOTIFY_START) == 0 && (newreg & REG_MAP_REGISTERED)) { 465 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 466 return -ERANGE; 467 } 468 seg_vaddr = vaddr; 469 seg_len = 0; 470 471 while (len > 0) { 472 reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL); 473 spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB, 0); 474 475 if (seg_len > 0 && (reg & REG_MAP_NOTIFY_START)) { 476 TAILQ_FOREACH_REVERSE(map, &g_spdk_mem_maps, spdk_mem_map_head, tailq) { 477 rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len); 478 if (rc != 0) { 479 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 480 return rc; 481 } 482 } 483 484 seg_vaddr = vaddr; 485 seg_len = VALUE_2MB; 486 } else { 487 seg_len += VALUE_2MB; 488 } 489 490 vaddr += VALUE_2MB; 491 len -= VALUE_2MB; 492 } 493 494 if (seg_len > 0) { 495 TAILQ_FOREACH_REVERSE(map, &g_spdk_mem_maps, spdk_mem_map_head, tailq) { 496 rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len); 497 if (rc != 0) { 498 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 499 return rc; 500 } 501 } 502 } 503 504 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 505 return 0; 506 } 507 508 int 509 spdk_mem_reserve(void *vaddr, size_t len) 510 { 511 struct spdk_mem_map *map; 512 void *seg_vaddr; 513 size_t seg_len; 514 uint64_t reg; 515 516 if ((uintptr_t)vaddr & ~MASK_256TB) { 517 DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr); 518 return -EINVAL; 519 } 520 521 if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) { 522 DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n", 523 __func__, vaddr, len); 524 return -EINVAL; 525 } 526 527 if (len == 0) { 528 return 0; 529 } 530 531 pthread_mutex_lock(&g_spdk_mem_map_mutex); 532 533 /* Check if any part of this range is already registered */ 534 seg_vaddr = vaddr; 535 seg_len = len; 536 while (seg_len > 0) { 537 reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL); 538 if (reg & REG_MAP_REGISTERED) { 539 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 540 return -EBUSY; 541 } 542 seg_vaddr += VALUE_2MB; 543 seg_len -= VALUE_2MB; 544 } 545 546 /* Simply set the translation to the memory map's default. This allocates the space in the 547 * map but does not provide a valid translation. */ 548 spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, len, 549 g_mem_reg_map->default_translation); 550 551 TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) { 552 spdk_mem_map_set_translation(map, (uint64_t)vaddr, len, map->default_translation); 553 } 554 555 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 556 return 0; 557 } 558 559 static struct map_1gb * 560 mem_map_get_map_1gb(struct spdk_mem_map *map, uint64_t vfn_2mb) 561 { 562 struct map_1gb *map_1gb; 563 uint64_t idx_256tb = MAP_256TB_IDX(vfn_2mb); 564 size_t i; 565 566 if (spdk_unlikely(idx_256tb >= SPDK_COUNTOF(map->map_256tb.map))) { 567 return NULL; 568 } 569 570 map_1gb = map->map_256tb.map[idx_256tb]; 571 572 if (!map_1gb) { 573 pthread_mutex_lock(&map->mutex); 574 575 /* Recheck to make sure nobody else got the mutex first. */ 576 map_1gb = map->map_256tb.map[idx_256tb]; 577 if (!map_1gb) { 578 map_1gb = malloc(sizeof(struct map_1gb)); 579 if (map_1gb) { 580 /* initialize all entries to default translation */ 581 for (i = 0; i < SPDK_COUNTOF(map_1gb->map); i++) { 582 map_1gb->map[i].translation_2mb = map->default_translation; 583 } 584 map->map_256tb.map[idx_256tb] = map_1gb; 585 } 586 } 587 588 pthread_mutex_unlock(&map->mutex); 589 590 if (!map_1gb) { 591 DEBUG_PRINT("allocation failed\n"); 592 return NULL; 593 } 594 } 595 596 return map_1gb; 597 } 598 599 int 600 spdk_mem_map_set_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size, 601 uint64_t translation) 602 { 603 uint64_t vfn_2mb; 604 struct map_1gb *map_1gb; 605 uint64_t idx_1gb; 606 struct map_2mb *map_2mb; 607 608 if ((uintptr_t)vaddr & ~MASK_256TB) { 609 DEBUG_PRINT("invalid usermode virtual address %lu\n", vaddr); 610 return -EINVAL; 611 } 612 613 /* For now, only 2 MB-aligned registrations are supported */ 614 if (((uintptr_t)vaddr & MASK_2MB) || (size & MASK_2MB)) { 615 DEBUG_PRINT("invalid %s parameters, vaddr=%lu len=%ju\n", 616 __func__, vaddr, size); 617 return -EINVAL; 618 } 619 620 vfn_2mb = vaddr >> SHIFT_2MB; 621 622 while (size) { 623 map_1gb = mem_map_get_map_1gb(map, vfn_2mb); 624 if (!map_1gb) { 625 DEBUG_PRINT("could not get %p map\n", (void *)vaddr); 626 return -ENOMEM; 627 } 628 629 idx_1gb = MAP_1GB_IDX(vfn_2mb); 630 map_2mb = &map_1gb->map[idx_1gb]; 631 map_2mb->translation_2mb = translation; 632 633 size -= VALUE_2MB; 634 vfn_2mb++; 635 } 636 637 return 0; 638 } 639 640 int 641 spdk_mem_map_clear_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size) 642 { 643 return spdk_mem_map_set_translation(map, vaddr, size, map->default_translation); 644 } 645 646 inline uint64_t 647 spdk_mem_map_translate(const struct spdk_mem_map *map, uint64_t vaddr, uint64_t *size) 648 { 649 const struct map_1gb *map_1gb; 650 const struct map_2mb *map_2mb; 651 uint64_t idx_256tb; 652 uint64_t idx_1gb; 653 uint64_t vfn_2mb; 654 uint64_t cur_size; 655 uint64_t prev_translation; 656 uint64_t orig_translation; 657 658 if (spdk_unlikely(vaddr & ~MASK_256TB)) { 659 DEBUG_PRINT("invalid usermode virtual address %p\n", (void *)vaddr); 660 return map->default_translation; 661 } 662 663 vfn_2mb = vaddr >> SHIFT_2MB; 664 idx_256tb = MAP_256TB_IDX(vfn_2mb); 665 idx_1gb = MAP_1GB_IDX(vfn_2mb); 666 667 map_1gb = map->map_256tb.map[idx_256tb]; 668 if (spdk_unlikely(!map_1gb)) { 669 return map->default_translation; 670 } 671 672 cur_size = VALUE_2MB - _2MB_OFFSET(vaddr); 673 map_2mb = &map_1gb->map[idx_1gb]; 674 if (size == NULL || map->ops.are_contiguous == NULL || 675 map_2mb->translation_2mb == map->default_translation) { 676 if (size != NULL) { 677 *size = spdk_min(*size, cur_size); 678 } 679 return map_2mb->translation_2mb; 680 } 681 682 orig_translation = map_2mb->translation_2mb; 683 prev_translation = orig_translation; 684 while (cur_size < *size) { 685 vfn_2mb++; 686 idx_256tb = MAP_256TB_IDX(vfn_2mb); 687 idx_1gb = MAP_1GB_IDX(vfn_2mb); 688 689 map_1gb = map->map_256tb.map[idx_256tb]; 690 if (spdk_unlikely(!map_1gb)) { 691 break; 692 } 693 694 map_2mb = &map_1gb->map[idx_1gb]; 695 if (!map->ops.are_contiguous(prev_translation, map_2mb->translation_2mb)) { 696 break; 697 } 698 699 cur_size += VALUE_2MB; 700 prev_translation = map_2mb->translation_2mb; 701 } 702 703 *size = spdk_min(*size, cur_size); 704 return orig_translation; 705 } 706 707 static void 708 memory_hotplug_cb(enum rte_mem_event event_type, 709 const void *addr, size_t len, void *arg) 710 { 711 if (event_type == RTE_MEM_EVENT_ALLOC) { 712 spdk_mem_register((void *)addr, len); 713 714 #if RTE_VERSION >= RTE_VERSION_NUM(19, 02, 0, 0) 715 if (!spdk_env_dpdk_external_init()) { 716 return; 717 } 718 #endif 719 720 /* Prior to DPDK 19.02, we have to worry about DPDK 721 * freeing memory in different units than it was allocated. 722 * That doesn't work with things like RDMA MRs. So for 723 * those versions of DPDK, mark each segment so that DPDK 724 * won't later free it. That ensures we don't have to deal 725 * with that scenario. 726 * 727 * DPDK 19.02 added the --match-allocations RTE flag to 728 * avoid this condition. 729 * 730 * Note: if the user initialized DPDK separately, we can't 731 * be sure that --match-allocations was specified, so need 732 * to still mark the segments so they aren't freed. 733 */ 734 while (len > 0) { 735 struct rte_memseg *seg; 736 737 seg = rte_mem_virt2memseg(addr, NULL); 738 assert(seg != NULL); 739 seg->flags |= RTE_MEMSEG_FLAG_DO_NOT_FREE; 740 addr = (void *)((uintptr_t)addr + seg->hugepage_sz); 741 len -= seg->hugepage_sz; 742 } 743 } else if (event_type == RTE_MEM_EVENT_FREE) { 744 spdk_mem_unregister((void *)addr, len); 745 } 746 } 747 748 static int 749 memory_iter_cb(const struct rte_memseg_list *msl, 750 const struct rte_memseg *ms, size_t len, void *arg) 751 { 752 return spdk_mem_register(ms->addr, len); 753 } 754 755 int 756 mem_map_init(bool legacy_mem) 757 { 758 g_legacy_mem = legacy_mem; 759 760 g_mem_reg_map = spdk_mem_map_alloc(0, NULL, NULL); 761 if (g_mem_reg_map == NULL) { 762 DEBUG_PRINT("memory registration map allocation failed\n"); 763 return -ENOMEM; 764 } 765 766 /* 767 * Walk all DPDK memory segments and register them 768 * with the master memory map 769 */ 770 rte_mem_event_callback_register("spdk", memory_hotplug_cb, NULL); 771 rte_memseg_contig_walk(memory_iter_cb, NULL); 772 return 0; 773 } 774 775 bool 776 spdk_iommu_is_enabled(void) 777 { 778 #if VFIO_ENABLED 779 return g_vfio.enabled && !g_vfio.noiommu_enabled; 780 #else 781 return false; 782 #endif 783 } 784 785 struct spdk_vtophys_pci_device { 786 struct rte_pci_device *pci_device; 787 TAILQ_ENTRY(spdk_vtophys_pci_device) tailq; 788 }; 789 790 static pthread_mutex_t g_vtophys_pci_devices_mutex = PTHREAD_MUTEX_INITIALIZER; 791 static TAILQ_HEAD(, spdk_vtophys_pci_device) g_vtophys_pci_devices = 792 TAILQ_HEAD_INITIALIZER(g_vtophys_pci_devices); 793 794 static struct spdk_mem_map *g_vtophys_map; 795 static struct spdk_mem_map *g_phys_ref_map; 796 797 #if VFIO_ENABLED 798 static int 799 vtophys_iommu_map_dma(uint64_t vaddr, uint64_t iova, uint64_t size) 800 { 801 struct spdk_vfio_dma_map *dma_map; 802 uint64_t refcount; 803 int ret; 804 805 refcount = spdk_mem_map_translate(g_phys_ref_map, iova, NULL); 806 assert(refcount < UINT64_MAX); 807 if (refcount > 0) { 808 spdk_mem_map_set_translation(g_phys_ref_map, iova, size, refcount + 1); 809 return 0; 810 } 811 812 dma_map = calloc(1, sizeof(*dma_map)); 813 if (dma_map == NULL) { 814 return -ENOMEM; 815 } 816 817 dma_map->map.argsz = sizeof(dma_map->map); 818 dma_map->map.flags = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE; 819 dma_map->map.vaddr = vaddr; 820 dma_map->map.iova = iova; 821 dma_map->map.size = size; 822 823 dma_map->unmap.argsz = sizeof(dma_map->unmap); 824 dma_map->unmap.flags = 0; 825 dma_map->unmap.iova = iova; 826 dma_map->unmap.size = size; 827 828 pthread_mutex_lock(&g_vfio.mutex); 829 if (g_vfio.device_ref == 0) { 830 /* VFIO requires at least one device (IOMMU group) to be added to 831 * a VFIO container before it is possible to perform any IOMMU 832 * operations on that container. This memory will be mapped once 833 * the first device (IOMMU group) is hotplugged. 834 * 835 * Since the vfio container is managed internally by DPDK, it is 836 * also possible that some device is already in that container, but 837 * it's not managed by SPDK - e.g. an NIC attached internally 838 * inside DPDK. We could map the memory straight away in such 839 * scenario, but there's no need to do it. DPDK devices clearly 840 * don't need our mappings and hence we defer the mapping 841 * unconditionally until the first SPDK-managed device is 842 * hotplugged. 843 */ 844 goto out_insert; 845 } 846 847 ret = ioctl(g_vfio.fd, VFIO_IOMMU_MAP_DMA, &dma_map->map); 848 if (ret) { 849 DEBUG_PRINT("Cannot set up DMA mapping, error %d\n", errno); 850 pthread_mutex_unlock(&g_vfio.mutex); 851 free(dma_map); 852 return ret; 853 } 854 855 out_insert: 856 TAILQ_INSERT_TAIL(&g_vfio.maps, dma_map, tailq); 857 pthread_mutex_unlock(&g_vfio.mutex); 858 spdk_mem_map_set_translation(g_phys_ref_map, iova, size, refcount + 1); 859 return 0; 860 } 861 862 static int 863 vtophys_iommu_unmap_dma(uint64_t iova, uint64_t size) 864 { 865 struct spdk_vfio_dma_map *dma_map; 866 uint64_t refcount; 867 int ret; 868 869 pthread_mutex_lock(&g_vfio.mutex); 870 TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) { 871 if (dma_map->map.iova == iova) { 872 break; 873 } 874 } 875 876 if (dma_map == NULL) { 877 DEBUG_PRINT("Cannot clear DMA mapping for IOVA %"PRIx64" - it's not mapped\n", iova); 878 pthread_mutex_unlock(&g_vfio.mutex); 879 return -ENXIO; 880 } 881 882 refcount = spdk_mem_map_translate(g_phys_ref_map, iova, NULL); 883 assert(refcount < UINT64_MAX); 884 if (refcount > 0) { 885 spdk_mem_map_set_translation(g_phys_ref_map, iova, size, refcount - 1); 886 } 887 888 /* We still have outstanding references, don't clear it. */ 889 if (refcount > 1) { 890 pthread_mutex_unlock(&g_vfio.mutex); 891 return 0; 892 } 893 894 /** don't support partial or multiple-page unmap for now */ 895 assert(dma_map->map.size == size); 896 897 if (g_vfio.device_ref == 0) { 898 /* Memory is not mapped anymore, just remove it's references */ 899 goto out_remove; 900 } 901 902 903 ret = ioctl(g_vfio.fd, VFIO_IOMMU_UNMAP_DMA, &dma_map->unmap); 904 if (ret) { 905 DEBUG_PRINT("Cannot clear DMA mapping, error %d\n", errno); 906 pthread_mutex_unlock(&g_vfio.mutex); 907 return ret; 908 } 909 910 out_remove: 911 TAILQ_REMOVE(&g_vfio.maps, dma_map, tailq); 912 pthread_mutex_unlock(&g_vfio.mutex); 913 free(dma_map); 914 return 0; 915 } 916 #endif 917 918 static uint64_t 919 vtophys_get_paddr_memseg(uint64_t vaddr) 920 { 921 uintptr_t paddr; 922 struct rte_memseg *seg; 923 924 seg = rte_mem_virt2memseg((void *)(uintptr_t)vaddr, NULL); 925 if (seg != NULL) { 926 #if RTE_VERSION >= RTE_VERSION_NUM(19, 11, 0, 0) 927 paddr = seg->iova; 928 #else 929 paddr = seg->phys_addr; 930 #endif 931 if (paddr == RTE_BAD_IOVA) { 932 return SPDK_VTOPHYS_ERROR; 933 } 934 paddr += (vaddr - (uintptr_t)seg->addr); 935 return paddr; 936 } 937 938 return SPDK_VTOPHYS_ERROR; 939 } 940 941 /* Try to get the paddr from /proc/self/pagemap */ 942 static uint64_t 943 vtophys_get_paddr_pagemap(uint64_t vaddr) 944 { 945 uintptr_t paddr; 946 947 /* Silence static analyzers */ 948 assert(vaddr != 0); 949 paddr = rte_mem_virt2iova((void *)vaddr); 950 if (paddr == RTE_BAD_IOVA) { 951 /* 952 * The vaddr may be valid but doesn't have a backing page 953 * assigned yet. Touch the page to ensure a backing page 954 * gets assigned, then try to translate again. 955 */ 956 rte_atomic64_read((rte_atomic64_t *)vaddr); 957 paddr = rte_mem_virt2iova((void *)vaddr); 958 } 959 if (paddr == RTE_BAD_IOVA) { 960 /* Unable to get to the physical address. */ 961 return SPDK_VTOPHYS_ERROR; 962 } 963 964 return paddr; 965 } 966 967 /* Try to get the paddr from pci devices */ 968 static uint64_t 969 vtophys_get_paddr_pci(uint64_t vaddr) 970 { 971 struct spdk_vtophys_pci_device *vtophys_dev; 972 uintptr_t paddr; 973 struct rte_pci_device *dev; 974 struct rte_mem_resource *res; 975 unsigned r; 976 977 pthread_mutex_lock(&g_vtophys_pci_devices_mutex); 978 TAILQ_FOREACH(vtophys_dev, &g_vtophys_pci_devices, tailq) { 979 dev = vtophys_dev->pci_device; 980 981 for (r = 0; r < PCI_MAX_RESOURCE; r++) { 982 res = &dev->mem_resource[r]; 983 if (res->phys_addr && vaddr >= (uint64_t)res->addr && 984 vaddr < (uint64_t)res->addr + res->len) { 985 paddr = res->phys_addr + (vaddr - (uint64_t)res->addr); 986 DEBUG_PRINT("%s: %p -> %p\n", __func__, (void *)vaddr, 987 (void *)paddr); 988 pthread_mutex_unlock(&g_vtophys_pci_devices_mutex); 989 return paddr; 990 } 991 } 992 } 993 pthread_mutex_unlock(&g_vtophys_pci_devices_mutex); 994 995 return SPDK_VTOPHYS_ERROR; 996 } 997 998 static int 999 vtophys_notify(void *cb_ctx, struct spdk_mem_map *map, 1000 enum spdk_mem_map_notify_action action, 1001 void *vaddr, size_t len) 1002 { 1003 int rc = 0, pci_phys = 0; 1004 uint64_t paddr; 1005 1006 if ((uintptr_t)vaddr & ~MASK_256TB) { 1007 DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr); 1008 return -EINVAL; 1009 } 1010 1011 if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) { 1012 DEBUG_PRINT("invalid parameters, vaddr=%p len=%ju\n", 1013 vaddr, len); 1014 return -EINVAL; 1015 } 1016 1017 /* Get the physical address from the DPDK memsegs */ 1018 paddr = vtophys_get_paddr_memseg((uint64_t)vaddr); 1019 1020 switch (action) { 1021 case SPDK_MEM_MAP_NOTIFY_REGISTER: 1022 if (paddr == SPDK_VTOPHYS_ERROR) { 1023 /* This is not an address that DPDK is managing. */ 1024 #if VFIO_ENABLED 1025 enum rte_iova_mode iova_mode; 1026 1027 #if RTE_VERSION >= RTE_VERSION_NUM(19, 11, 0, 0) 1028 iova_mode = rte_eal_iova_mode(); 1029 #else 1030 iova_mode = rte_eal_get_configuration()->iova_mode; 1031 #endif 1032 1033 if (spdk_iommu_is_enabled() && iova_mode == RTE_IOVA_VA) { 1034 /* We'll use the virtual address as the iova to match DPDK. */ 1035 paddr = (uint64_t)vaddr; 1036 rc = vtophys_iommu_map_dma((uint64_t)vaddr, paddr, len); 1037 if (rc) { 1038 return -EFAULT; 1039 } 1040 while (len > 0) { 1041 rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr); 1042 if (rc != 0) { 1043 return rc; 1044 } 1045 vaddr += VALUE_2MB; 1046 paddr += VALUE_2MB; 1047 len -= VALUE_2MB; 1048 } 1049 } else 1050 #endif 1051 { 1052 /* Get the physical address from /proc/self/pagemap. */ 1053 paddr = vtophys_get_paddr_pagemap((uint64_t)vaddr); 1054 if (paddr == SPDK_VTOPHYS_ERROR) { 1055 /* Get the physical address from PCI devices */ 1056 paddr = vtophys_get_paddr_pci((uint64_t)vaddr); 1057 if (paddr == SPDK_VTOPHYS_ERROR) { 1058 DEBUG_PRINT("could not get phys addr for %p\n", vaddr); 1059 return -EFAULT; 1060 } 1061 /* The beginning of this address range points to a PCI resource, 1062 * so the rest must point to a PCI resource as well. 1063 */ 1064 pci_phys = 1; 1065 } 1066 1067 /* Get paddr for each 2MB chunk in this address range */ 1068 while (len > 0) { 1069 /* Get the physical address from /proc/self/pagemap. */ 1070 if (pci_phys) { 1071 paddr = vtophys_get_paddr_pci((uint64_t)vaddr); 1072 } else { 1073 paddr = vtophys_get_paddr_pagemap((uint64_t)vaddr); 1074 } 1075 1076 if (paddr == SPDK_VTOPHYS_ERROR) { 1077 DEBUG_PRINT("could not get phys addr for %p\n", vaddr); 1078 return -EFAULT; 1079 } 1080 1081 /* Since PCI paddr can break the 2MiB physical alignment skip this check for that. */ 1082 if (!pci_phys && (paddr & MASK_2MB)) { 1083 DEBUG_PRINT("invalid paddr 0x%" PRIx64 " - must be 2MB aligned\n", paddr); 1084 return -EINVAL; 1085 } 1086 #if VFIO_ENABLED 1087 /* If the IOMMU is on, but DPDK is using iova-mode=pa, we want to register this memory 1088 * with the IOMMU using the physical address to match. */ 1089 if (spdk_iommu_is_enabled()) { 1090 rc = vtophys_iommu_map_dma((uint64_t)vaddr, paddr, VALUE_2MB); 1091 if (rc) { 1092 DEBUG_PRINT("Unable to assign vaddr %p to paddr 0x%" PRIx64 "\n", vaddr, paddr); 1093 return -EFAULT; 1094 } 1095 } 1096 #endif 1097 1098 rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr); 1099 if (rc != 0) { 1100 return rc; 1101 } 1102 1103 vaddr += VALUE_2MB; 1104 len -= VALUE_2MB; 1105 } 1106 } 1107 } else { 1108 /* This is an address managed by DPDK. Just setup the translations. */ 1109 while (len > 0) { 1110 paddr = vtophys_get_paddr_memseg((uint64_t)vaddr); 1111 if (paddr == SPDK_VTOPHYS_ERROR) { 1112 DEBUG_PRINT("could not get phys addr for %p\n", vaddr); 1113 return -EFAULT; 1114 } 1115 1116 rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr); 1117 if (rc != 0) { 1118 return rc; 1119 } 1120 1121 vaddr += VALUE_2MB; 1122 len -= VALUE_2MB; 1123 } 1124 } 1125 1126 break; 1127 case SPDK_MEM_MAP_NOTIFY_UNREGISTER: 1128 #if VFIO_ENABLED 1129 if (paddr == SPDK_VTOPHYS_ERROR) { 1130 /* 1131 * This is not an address that DPDK is managing. If vfio is enabled, 1132 * we need to unmap the range from the IOMMU 1133 */ 1134 if (spdk_iommu_is_enabled()) { 1135 uint64_t buffer_len = len; 1136 uint8_t *va = vaddr; 1137 enum rte_iova_mode iova_mode; 1138 1139 #if RTE_VERSION >= RTE_VERSION_NUM(19, 11, 0, 0) 1140 iova_mode = rte_eal_iova_mode(); 1141 #else 1142 iova_mode = rte_eal_get_configuration()->iova_mode; 1143 #endif 1144 /* 1145 * In virtual address mode, the region is contiguous and can be done in 1146 * one unmap. 1147 */ 1148 if (iova_mode == RTE_IOVA_VA) { 1149 paddr = spdk_mem_map_translate(map, (uint64_t)va, &buffer_len); 1150 if (buffer_len != len || paddr != (uintptr_t)va) { 1151 DEBUG_PRINT("Unmapping %p with length %lu failed because " 1152 "translation had address 0x%" PRIx64 " and length %lu\n", 1153 va, len, paddr, buffer_len); 1154 return -EINVAL; 1155 } 1156 rc = vtophys_iommu_unmap_dma(paddr, len); 1157 if (rc) { 1158 DEBUG_PRINT("Failed to iommu unmap paddr 0x%" PRIx64 "\n", paddr); 1159 return -EFAULT; 1160 } 1161 } else if (iova_mode == RTE_IOVA_PA) { 1162 /* Get paddr for each 2MB chunk in this address range */ 1163 while (buffer_len > 0) { 1164 paddr = spdk_mem_map_translate(map, (uint64_t)va, NULL); 1165 1166 if (paddr == SPDK_VTOPHYS_ERROR || buffer_len < VALUE_2MB) { 1167 DEBUG_PRINT("could not get phys addr for %p\n", va); 1168 return -EFAULT; 1169 } 1170 1171 rc = vtophys_iommu_unmap_dma(paddr, VALUE_2MB); 1172 if (rc) { 1173 DEBUG_PRINT("Failed to iommu unmap paddr 0x%" PRIx64 "\n", paddr); 1174 return -EFAULT; 1175 } 1176 1177 va += VALUE_2MB; 1178 buffer_len -= VALUE_2MB; 1179 } 1180 } 1181 } 1182 } 1183 #endif 1184 while (len > 0) { 1185 rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, VALUE_2MB); 1186 if (rc != 0) { 1187 return rc; 1188 } 1189 1190 vaddr += VALUE_2MB; 1191 len -= VALUE_2MB; 1192 } 1193 1194 break; 1195 default: 1196 SPDK_UNREACHABLE(); 1197 } 1198 1199 return rc; 1200 } 1201 1202 static int 1203 vtophys_check_contiguous_entries(uint64_t paddr1, uint64_t paddr2) 1204 { 1205 /* This function is always called with paddrs for two subsequent 1206 * 2MB chunks in virtual address space, so those chunks will be only 1207 * physically contiguous if the physical addresses are 2MB apart 1208 * from each other as well. 1209 */ 1210 return (paddr2 - paddr1 == VALUE_2MB); 1211 } 1212 1213 #if VFIO_ENABLED 1214 1215 static bool 1216 vfio_enabled(void) 1217 { 1218 return rte_vfio_is_enabled("vfio_pci"); 1219 } 1220 1221 /* Check if IOMMU is enabled on the system */ 1222 static bool 1223 has_iommu_groups(void) 1224 { 1225 struct dirent *d; 1226 int count = 0; 1227 DIR *dir = opendir("/sys/kernel/iommu_groups"); 1228 1229 if (dir == NULL) { 1230 return false; 1231 } 1232 1233 while (count < 3 && (d = readdir(dir)) != NULL) { 1234 count++; 1235 } 1236 1237 closedir(dir); 1238 /* there will always be ./ and ../ entries */ 1239 return count > 2; 1240 } 1241 1242 static bool 1243 vfio_noiommu_enabled(void) 1244 { 1245 return rte_vfio_noiommu_is_enabled(); 1246 } 1247 1248 static void 1249 vtophys_iommu_init(void) 1250 { 1251 char proc_fd_path[PATH_MAX + 1]; 1252 char link_path[PATH_MAX + 1]; 1253 const char vfio_path[] = "/dev/vfio/vfio"; 1254 DIR *dir; 1255 struct dirent *d; 1256 1257 if (!vfio_enabled()) { 1258 return; 1259 } 1260 1261 if (vfio_noiommu_enabled()) { 1262 g_vfio.noiommu_enabled = true; 1263 } else if (!has_iommu_groups()) { 1264 return; 1265 } 1266 1267 dir = opendir("/proc/self/fd"); 1268 if (!dir) { 1269 DEBUG_PRINT("Failed to open /proc/self/fd (%d)\n", errno); 1270 return; 1271 } 1272 1273 while ((d = readdir(dir)) != NULL) { 1274 if (d->d_type != DT_LNK) { 1275 continue; 1276 } 1277 1278 snprintf(proc_fd_path, sizeof(proc_fd_path), "/proc/self/fd/%s", d->d_name); 1279 if (readlink(proc_fd_path, link_path, sizeof(link_path)) != (sizeof(vfio_path) - 1)) { 1280 continue; 1281 } 1282 1283 if (memcmp(link_path, vfio_path, sizeof(vfio_path) - 1) == 0) { 1284 sscanf(d->d_name, "%d", &g_vfio.fd); 1285 break; 1286 } 1287 } 1288 1289 closedir(dir); 1290 1291 if (g_vfio.fd < 0) { 1292 DEBUG_PRINT("Failed to discover DPDK VFIO container fd.\n"); 1293 return; 1294 } 1295 1296 g_vfio.enabled = true; 1297 1298 return; 1299 } 1300 #endif 1301 1302 void 1303 vtophys_pci_device_added(struct rte_pci_device *pci_device) 1304 { 1305 struct spdk_vtophys_pci_device *vtophys_dev; 1306 1307 pthread_mutex_lock(&g_vtophys_pci_devices_mutex); 1308 1309 vtophys_dev = calloc(1, sizeof(*vtophys_dev)); 1310 if (vtophys_dev) { 1311 vtophys_dev->pci_device = pci_device; 1312 TAILQ_INSERT_TAIL(&g_vtophys_pci_devices, vtophys_dev, tailq); 1313 } else { 1314 DEBUG_PRINT("Memory allocation error\n"); 1315 } 1316 pthread_mutex_unlock(&g_vtophys_pci_devices_mutex); 1317 1318 #if VFIO_ENABLED 1319 struct spdk_vfio_dma_map *dma_map; 1320 int ret; 1321 1322 if (!g_vfio.enabled) { 1323 return; 1324 } 1325 1326 pthread_mutex_lock(&g_vfio.mutex); 1327 g_vfio.device_ref++; 1328 if (g_vfio.device_ref > 1) { 1329 pthread_mutex_unlock(&g_vfio.mutex); 1330 return; 1331 } 1332 1333 /* This is the first SPDK device using DPDK vfio. This means that the first 1334 * IOMMU group might have been just been added to the DPDK vfio container. 1335 * From this point it is certain that the memory can be mapped now. 1336 */ 1337 TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) { 1338 ret = ioctl(g_vfio.fd, VFIO_IOMMU_MAP_DMA, &dma_map->map); 1339 if (ret) { 1340 DEBUG_PRINT("Cannot update DMA mapping, error %d\n", errno); 1341 break; 1342 } 1343 } 1344 pthread_mutex_unlock(&g_vfio.mutex); 1345 #endif 1346 } 1347 1348 void 1349 vtophys_pci_device_removed(struct rte_pci_device *pci_device) 1350 { 1351 struct spdk_vtophys_pci_device *vtophys_dev; 1352 1353 pthread_mutex_lock(&g_vtophys_pci_devices_mutex); 1354 TAILQ_FOREACH(vtophys_dev, &g_vtophys_pci_devices, tailq) { 1355 if (vtophys_dev->pci_device == pci_device) { 1356 TAILQ_REMOVE(&g_vtophys_pci_devices, vtophys_dev, tailq); 1357 free(vtophys_dev); 1358 break; 1359 } 1360 } 1361 pthread_mutex_unlock(&g_vtophys_pci_devices_mutex); 1362 1363 #if VFIO_ENABLED 1364 struct spdk_vfio_dma_map *dma_map; 1365 int ret; 1366 1367 if (!g_vfio.enabled) { 1368 return; 1369 } 1370 1371 pthread_mutex_lock(&g_vfio.mutex); 1372 assert(g_vfio.device_ref > 0); 1373 g_vfio.device_ref--; 1374 if (g_vfio.device_ref > 0) { 1375 pthread_mutex_unlock(&g_vfio.mutex); 1376 return; 1377 } 1378 1379 /* This is the last SPDK device using DPDK vfio. If DPDK doesn't have 1380 * any additional devices using it's vfio container, all the mappings 1381 * will be automatically removed by the Linux vfio driver. We unmap 1382 * the memory manually to be able to easily re-map it later regardless 1383 * of other, external factors. 1384 */ 1385 TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) { 1386 ret = ioctl(g_vfio.fd, VFIO_IOMMU_UNMAP_DMA, &dma_map->unmap); 1387 if (ret) { 1388 DEBUG_PRINT("Cannot unmap DMA memory, error %d\n", errno); 1389 break; 1390 } 1391 } 1392 pthread_mutex_unlock(&g_vfio.mutex); 1393 #endif 1394 } 1395 1396 int 1397 vtophys_init(void) 1398 { 1399 const struct spdk_mem_map_ops vtophys_map_ops = { 1400 .notify_cb = vtophys_notify, 1401 .are_contiguous = vtophys_check_contiguous_entries, 1402 }; 1403 1404 const struct spdk_mem_map_ops phys_ref_map_ops = { 1405 .notify_cb = NULL, 1406 .are_contiguous = NULL, 1407 }; 1408 1409 #if VFIO_ENABLED 1410 vtophys_iommu_init(); 1411 #endif 1412 1413 g_phys_ref_map = spdk_mem_map_alloc(0, &phys_ref_map_ops, NULL); 1414 if (g_phys_ref_map == NULL) { 1415 DEBUG_PRINT("phys_ref map allocation failed.\n"); 1416 return -ENOMEM; 1417 } 1418 1419 g_vtophys_map = spdk_mem_map_alloc(SPDK_VTOPHYS_ERROR, &vtophys_map_ops, NULL); 1420 if (g_vtophys_map == NULL) { 1421 DEBUG_PRINT("vtophys map allocation failed\n"); 1422 return -ENOMEM; 1423 } 1424 return 0; 1425 } 1426 1427 uint64_t 1428 spdk_vtophys(const void *buf, uint64_t *size) 1429 { 1430 uint64_t vaddr, paddr_2mb; 1431 1432 vaddr = (uint64_t)buf; 1433 paddr_2mb = spdk_mem_map_translate(g_vtophys_map, vaddr, size); 1434 1435 /* 1436 * SPDK_VTOPHYS_ERROR has all bits set, so if the lookup returned SPDK_VTOPHYS_ERROR, 1437 * we will still bitwise-or it with the buf offset below, but the result will still be 1438 * SPDK_VTOPHYS_ERROR. However now that we do + rather than | (due to PCI vtophys being 1439 * unaligned) we must now check the return value before addition. 1440 */ 1441 SPDK_STATIC_ASSERT(SPDK_VTOPHYS_ERROR == UINT64_C(-1), "SPDK_VTOPHYS_ERROR should be all 1s"); 1442 if (paddr_2mb == SPDK_VTOPHYS_ERROR) { 1443 return SPDK_VTOPHYS_ERROR; 1444 } else { 1445 return paddr_2mb + (vaddr & MASK_2MB); 1446 } 1447 } 1448