1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) Intel Corporation. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include "spdk/stdinc.h" 35 36 #include "env_internal.h" 37 38 #include <rte_config.h> 39 #include <rte_memory.h> 40 #include <rte_eal_memconfig.h> 41 42 #include "spdk_internal/assert.h" 43 44 #include "spdk/assert.h" 45 #include "spdk/likely.h" 46 #include "spdk/queue.h" 47 #include "spdk/util.h" 48 #include "spdk/memory.h" 49 #include "spdk/env_dpdk.h" 50 #include "spdk/log.h" 51 52 #ifndef __linux__ 53 #define VFIO_ENABLED 0 54 #else 55 #include <linux/version.h> 56 #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0) 57 #define VFIO_ENABLED 1 58 #include <linux/vfio.h> 59 #include <rte_vfio.h> 60 61 struct spdk_vfio_dma_map { 62 struct vfio_iommu_type1_dma_map map; 63 TAILQ_ENTRY(spdk_vfio_dma_map) tailq; 64 }; 65 66 struct vfio_cfg { 67 int fd; 68 bool enabled; 69 bool noiommu_enabled; 70 unsigned device_ref; 71 TAILQ_HEAD(, spdk_vfio_dma_map) maps; 72 pthread_mutex_t mutex; 73 }; 74 75 static struct vfio_cfg g_vfio = { 76 .fd = -1, 77 .enabled = false, 78 .noiommu_enabled = false, 79 .device_ref = 0, 80 .maps = TAILQ_HEAD_INITIALIZER(g_vfio.maps), 81 .mutex = PTHREAD_MUTEX_INITIALIZER 82 }; 83 84 #else 85 #define VFIO_ENABLED 0 86 #endif 87 #endif 88 89 #if DEBUG 90 #define DEBUG_PRINT(...) SPDK_ERRLOG(__VA_ARGS__) 91 #else 92 #define DEBUG_PRINT(...) 93 #endif 94 95 #define FN_2MB_TO_4KB(fn) (fn << (SHIFT_2MB - SHIFT_4KB)) 96 #define FN_4KB_TO_2MB(fn) (fn >> (SHIFT_2MB - SHIFT_4KB)) 97 98 #define MAP_256TB_IDX(vfn_2mb) ((vfn_2mb) >> (SHIFT_1GB - SHIFT_2MB)) 99 #define MAP_1GB_IDX(vfn_2mb) ((vfn_2mb) & ((1ULL << (SHIFT_1GB - SHIFT_2MB)) - 1)) 100 101 /* Page is registered */ 102 #define REG_MAP_REGISTERED (1ULL << 62) 103 104 /* A notification region barrier. The 2MB translation entry that's marked 105 * with this flag must be unregistered separately. This allows contiguous 106 * regions to be unregistered in the same chunks they were registered. 107 */ 108 #define REG_MAP_NOTIFY_START (1ULL << 63) 109 110 /* Translation of a single 2MB page. */ 111 struct map_2mb { 112 uint64_t translation_2mb; 113 }; 114 115 /* Second-level map table indexed by bits [21..29] of the virtual address. 116 * Each entry contains the address translation or error for entries that haven't 117 * been retrieved yet. 118 */ 119 struct map_1gb { 120 struct map_2mb map[1ULL << (SHIFT_1GB - SHIFT_2MB)]; 121 }; 122 123 /* Top-level map table indexed by bits [30..47] of the virtual address. 124 * Each entry points to a second-level map table or NULL. 125 */ 126 struct map_256tb { 127 struct map_1gb *map[1ULL << (SHIFT_256TB - SHIFT_1GB)]; 128 }; 129 130 /* Page-granularity memory address translation */ 131 struct spdk_mem_map { 132 struct map_256tb map_256tb; 133 pthread_mutex_t mutex; 134 uint64_t default_translation; 135 struct spdk_mem_map_ops ops; 136 void *cb_ctx; 137 TAILQ_ENTRY(spdk_mem_map) tailq; 138 }; 139 140 /* Registrations map. The 64 bit translations are bit fields with the 141 * following layout (starting with the low bits): 142 * 0 - 61 : reserved 143 * 62 - 63 : flags 144 */ 145 static struct spdk_mem_map *g_mem_reg_map; 146 static TAILQ_HEAD(spdk_mem_map_head, spdk_mem_map) g_spdk_mem_maps = 147 TAILQ_HEAD_INITIALIZER(g_spdk_mem_maps); 148 static pthread_mutex_t g_spdk_mem_map_mutex = PTHREAD_MUTEX_INITIALIZER; 149 150 static bool g_legacy_mem; 151 152 /* 153 * Walk the currently registered memory via the main memory registration map 154 * and call the new map's notify callback for each virtually contiguous region. 155 */ 156 static int 157 mem_map_notify_walk(struct spdk_mem_map *map, enum spdk_mem_map_notify_action action) 158 { 159 size_t idx_256tb; 160 uint64_t idx_1gb; 161 uint64_t contig_start = UINT64_MAX; 162 uint64_t contig_end = UINT64_MAX; 163 struct map_1gb *map_1gb; 164 int rc; 165 166 if (!g_mem_reg_map) { 167 return -EINVAL; 168 } 169 170 /* Hold the memory registration map mutex so no new registrations can be added while we are looping. */ 171 pthread_mutex_lock(&g_mem_reg_map->mutex); 172 173 for (idx_256tb = 0; 174 idx_256tb < sizeof(g_mem_reg_map->map_256tb.map) / sizeof(g_mem_reg_map->map_256tb.map[0]); 175 idx_256tb++) { 176 map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb]; 177 178 if (!map_1gb) { 179 if (contig_start != UINT64_MAX) { 180 /* End of of a virtually contiguous range */ 181 rc = map->ops.notify_cb(map->cb_ctx, map, action, 182 (void *)contig_start, 183 contig_end - contig_start + VALUE_2MB); 184 /* Don't bother handling unregister failures. It can't be any worse */ 185 if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) { 186 goto err_unregister; 187 } 188 } 189 contig_start = UINT64_MAX; 190 continue; 191 } 192 193 for (idx_1gb = 0; idx_1gb < sizeof(map_1gb->map) / sizeof(map_1gb->map[0]); idx_1gb++) { 194 if ((map_1gb->map[idx_1gb].translation_2mb & REG_MAP_REGISTERED) && 195 (contig_start == UINT64_MAX || 196 (map_1gb->map[idx_1gb].translation_2mb & REG_MAP_NOTIFY_START) == 0)) { 197 /* Rebuild the virtual address from the indexes */ 198 uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB); 199 200 if (contig_start == UINT64_MAX) { 201 contig_start = vaddr; 202 } 203 204 contig_end = vaddr; 205 } else { 206 if (contig_start != UINT64_MAX) { 207 /* End of of a virtually contiguous range */ 208 rc = map->ops.notify_cb(map->cb_ctx, map, action, 209 (void *)contig_start, 210 contig_end - contig_start + VALUE_2MB); 211 /* Don't bother handling unregister failures. It can't be any worse */ 212 if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) { 213 goto err_unregister; 214 } 215 216 /* This page might be a part of a neighbour region, so process 217 * it again. The idx_1gb will be incremented immediately. 218 */ 219 idx_1gb--; 220 } 221 contig_start = UINT64_MAX; 222 } 223 } 224 } 225 226 pthread_mutex_unlock(&g_mem_reg_map->mutex); 227 return 0; 228 229 err_unregister: 230 /* Unwind to the first empty translation so we don't unregister 231 * a region that just failed to register. 232 */ 233 idx_256tb = MAP_256TB_IDX((contig_start >> SHIFT_2MB) - 1); 234 idx_1gb = MAP_1GB_IDX((contig_start >> SHIFT_2MB) - 1); 235 contig_start = UINT64_MAX; 236 contig_end = UINT64_MAX; 237 238 /* Unregister any memory we managed to register before the failure */ 239 for (; idx_256tb < SIZE_MAX; idx_256tb--) { 240 map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb]; 241 242 if (!map_1gb) { 243 if (contig_end != UINT64_MAX) { 244 /* End of of a virtually contiguous range */ 245 map->ops.notify_cb(map->cb_ctx, map, 246 SPDK_MEM_MAP_NOTIFY_UNREGISTER, 247 (void *)contig_start, 248 contig_end - contig_start + VALUE_2MB); 249 } 250 contig_end = UINT64_MAX; 251 continue; 252 } 253 254 for (; idx_1gb < UINT64_MAX; idx_1gb--) { 255 if ((map_1gb->map[idx_1gb].translation_2mb & REG_MAP_REGISTERED) && 256 (contig_end == UINT64_MAX || (map_1gb->map[idx_1gb].translation_2mb & REG_MAP_NOTIFY_START) == 0)) { 257 /* Rebuild the virtual address from the indexes */ 258 uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB); 259 260 if (contig_end == UINT64_MAX) { 261 contig_end = vaddr; 262 } 263 contig_start = vaddr; 264 } else { 265 if (contig_end != UINT64_MAX) { 266 /* End of of a virtually contiguous range */ 267 map->ops.notify_cb(map->cb_ctx, map, 268 SPDK_MEM_MAP_NOTIFY_UNREGISTER, 269 (void *)contig_start, 270 contig_end - contig_start + VALUE_2MB); 271 idx_1gb++; 272 } 273 contig_end = UINT64_MAX; 274 } 275 } 276 idx_1gb = sizeof(map_1gb->map) / sizeof(map_1gb->map[0]) - 1; 277 } 278 279 pthread_mutex_unlock(&g_mem_reg_map->mutex); 280 return rc; 281 } 282 283 struct spdk_mem_map * 284 spdk_mem_map_alloc(uint64_t default_translation, const struct spdk_mem_map_ops *ops, void *cb_ctx) 285 { 286 struct spdk_mem_map *map; 287 int rc; 288 289 map = calloc(1, sizeof(*map)); 290 if (map == NULL) { 291 return NULL; 292 } 293 294 if (pthread_mutex_init(&map->mutex, NULL)) { 295 free(map); 296 return NULL; 297 } 298 299 map->default_translation = default_translation; 300 map->cb_ctx = cb_ctx; 301 if (ops) { 302 map->ops = *ops; 303 } 304 305 if (ops && ops->notify_cb) { 306 pthread_mutex_lock(&g_spdk_mem_map_mutex); 307 rc = mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_REGISTER); 308 if (rc != 0) { 309 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 310 DEBUG_PRINT("Initial mem_map notify failed\n"); 311 pthread_mutex_destroy(&map->mutex); 312 free(map); 313 return NULL; 314 } 315 TAILQ_INSERT_TAIL(&g_spdk_mem_maps, map, tailq); 316 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 317 } 318 319 return map; 320 } 321 322 void 323 spdk_mem_map_free(struct spdk_mem_map **pmap) 324 { 325 struct spdk_mem_map *map; 326 size_t i; 327 328 if (!pmap) { 329 return; 330 } 331 332 map = *pmap; 333 334 if (!map) { 335 return; 336 } 337 338 if (map->ops.notify_cb) { 339 pthread_mutex_lock(&g_spdk_mem_map_mutex); 340 mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_UNREGISTER); 341 TAILQ_REMOVE(&g_spdk_mem_maps, map, tailq); 342 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 343 } 344 345 for (i = 0; i < sizeof(map->map_256tb.map) / sizeof(map->map_256tb.map[0]); i++) { 346 free(map->map_256tb.map[i]); 347 } 348 349 pthread_mutex_destroy(&map->mutex); 350 351 free(map); 352 *pmap = NULL; 353 } 354 355 int 356 spdk_mem_register(void *vaddr, size_t len) 357 { 358 struct spdk_mem_map *map; 359 int rc; 360 void *seg_vaddr; 361 size_t seg_len; 362 uint64_t reg; 363 364 if ((uintptr_t)vaddr & ~MASK_256TB) { 365 DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr); 366 return -EINVAL; 367 } 368 369 if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) { 370 DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n", 371 __func__, vaddr, len); 372 return -EINVAL; 373 } 374 375 if (len == 0) { 376 return 0; 377 } 378 379 pthread_mutex_lock(&g_spdk_mem_map_mutex); 380 381 seg_vaddr = vaddr; 382 seg_len = len; 383 while (seg_len > 0) { 384 reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL); 385 if (reg & REG_MAP_REGISTERED) { 386 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 387 return -EBUSY; 388 } 389 seg_vaddr += VALUE_2MB; 390 seg_len -= VALUE_2MB; 391 } 392 393 seg_vaddr = vaddr; 394 seg_len = 0; 395 while (len > 0) { 396 spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB, 397 seg_len == 0 ? REG_MAP_REGISTERED | REG_MAP_NOTIFY_START : REG_MAP_REGISTERED); 398 seg_len += VALUE_2MB; 399 vaddr += VALUE_2MB; 400 len -= VALUE_2MB; 401 } 402 403 TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) { 404 rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_REGISTER, seg_vaddr, seg_len); 405 if (rc != 0) { 406 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 407 return rc; 408 } 409 } 410 411 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 412 return 0; 413 } 414 415 int 416 spdk_mem_unregister(void *vaddr, size_t len) 417 { 418 struct spdk_mem_map *map; 419 int rc; 420 void *seg_vaddr; 421 size_t seg_len; 422 uint64_t reg, newreg; 423 424 if ((uintptr_t)vaddr & ~MASK_256TB) { 425 DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr); 426 return -EINVAL; 427 } 428 429 if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) { 430 DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n", 431 __func__, vaddr, len); 432 return -EINVAL; 433 } 434 435 pthread_mutex_lock(&g_spdk_mem_map_mutex); 436 437 /* The first page must be a start of a region. Also check if it's 438 * registered to make sure we don't return -ERANGE for non-registered 439 * regions. 440 */ 441 reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL); 442 if ((reg & REG_MAP_REGISTERED) && (reg & REG_MAP_NOTIFY_START) == 0) { 443 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 444 return -ERANGE; 445 } 446 447 seg_vaddr = vaddr; 448 seg_len = len; 449 while (seg_len > 0) { 450 reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL); 451 if ((reg & REG_MAP_REGISTERED) == 0) { 452 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 453 return -EINVAL; 454 } 455 seg_vaddr += VALUE_2MB; 456 seg_len -= VALUE_2MB; 457 } 458 459 newreg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL); 460 /* If the next page is registered, it must be a start of a region as well, 461 * otherwise we'd be unregistering only a part of a region. 462 */ 463 if ((newreg & REG_MAP_NOTIFY_START) == 0 && (newreg & REG_MAP_REGISTERED)) { 464 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 465 return -ERANGE; 466 } 467 seg_vaddr = vaddr; 468 seg_len = 0; 469 470 while (len > 0) { 471 reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL); 472 spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB, 0); 473 474 if (seg_len > 0 && (reg & REG_MAP_NOTIFY_START)) { 475 TAILQ_FOREACH_REVERSE(map, &g_spdk_mem_maps, spdk_mem_map_head, tailq) { 476 rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len); 477 if (rc != 0) { 478 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 479 return rc; 480 } 481 } 482 483 seg_vaddr = vaddr; 484 seg_len = VALUE_2MB; 485 } else { 486 seg_len += VALUE_2MB; 487 } 488 489 vaddr += VALUE_2MB; 490 len -= VALUE_2MB; 491 } 492 493 if (seg_len > 0) { 494 TAILQ_FOREACH_REVERSE(map, &g_spdk_mem_maps, spdk_mem_map_head, tailq) { 495 rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len); 496 if (rc != 0) { 497 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 498 return rc; 499 } 500 } 501 } 502 503 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 504 return 0; 505 } 506 507 int 508 spdk_mem_reserve(void *vaddr, size_t len) 509 { 510 struct spdk_mem_map *map; 511 void *seg_vaddr; 512 size_t seg_len; 513 uint64_t reg; 514 515 if ((uintptr_t)vaddr & ~MASK_256TB) { 516 DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr); 517 return -EINVAL; 518 } 519 520 if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) { 521 DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n", 522 __func__, vaddr, len); 523 return -EINVAL; 524 } 525 526 if (len == 0) { 527 return 0; 528 } 529 530 pthread_mutex_lock(&g_spdk_mem_map_mutex); 531 532 /* Check if any part of this range is already registered */ 533 seg_vaddr = vaddr; 534 seg_len = len; 535 while (seg_len > 0) { 536 reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL); 537 if (reg & REG_MAP_REGISTERED) { 538 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 539 return -EBUSY; 540 } 541 seg_vaddr += VALUE_2MB; 542 seg_len -= VALUE_2MB; 543 } 544 545 /* Simply set the translation to the memory map's default. This allocates the space in the 546 * map but does not provide a valid translation. */ 547 spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, len, 548 g_mem_reg_map->default_translation); 549 550 TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) { 551 spdk_mem_map_set_translation(map, (uint64_t)vaddr, len, map->default_translation); 552 } 553 554 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 555 return 0; 556 } 557 558 static struct map_1gb * 559 mem_map_get_map_1gb(struct spdk_mem_map *map, uint64_t vfn_2mb) 560 { 561 struct map_1gb *map_1gb; 562 uint64_t idx_256tb = MAP_256TB_IDX(vfn_2mb); 563 size_t i; 564 565 if (spdk_unlikely(idx_256tb >= SPDK_COUNTOF(map->map_256tb.map))) { 566 return NULL; 567 } 568 569 map_1gb = map->map_256tb.map[idx_256tb]; 570 571 if (!map_1gb) { 572 pthread_mutex_lock(&map->mutex); 573 574 /* Recheck to make sure nobody else got the mutex first. */ 575 map_1gb = map->map_256tb.map[idx_256tb]; 576 if (!map_1gb) { 577 map_1gb = malloc(sizeof(struct map_1gb)); 578 if (map_1gb) { 579 /* initialize all entries to default translation */ 580 for (i = 0; i < SPDK_COUNTOF(map_1gb->map); i++) { 581 map_1gb->map[i].translation_2mb = map->default_translation; 582 } 583 map->map_256tb.map[idx_256tb] = map_1gb; 584 } 585 } 586 587 pthread_mutex_unlock(&map->mutex); 588 589 if (!map_1gb) { 590 DEBUG_PRINT("allocation failed\n"); 591 return NULL; 592 } 593 } 594 595 return map_1gb; 596 } 597 598 int 599 spdk_mem_map_set_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size, 600 uint64_t translation) 601 { 602 uint64_t vfn_2mb; 603 struct map_1gb *map_1gb; 604 uint64_t idx_1gb; 605 struct map_2mb *map_2mb; 606 607 if ((uintptr_t)vaddr & ~MASK_256TB) { 608 DEBUG_PRINT("invalid usermode virtual address %" PRIu64 "\n", vaddr); 609 return -EINVAL; 610 } 611 612 /* For now, only 2 MB-aligned registrations are supported */ 613 if (((uintptr_t)vaddr & MASK_2MB) || (size & MASK_2MB)) { 614 DEBUG_PRINT("invalid %s parameters, vaddr=%" PRIu64 " len=%" PRIu64 "\n", 615 __func__, vaddr, size); 616 return -EINVAL; 617 } 618 619 vfn_2mb = vaddr >> SHIFT_2MB; 620 621 while (size) { 622 map_1gb = mem_map_get_map_1gb(map, vfn_2mb); 623 if (!map_1gb) { 624 DEBUG_PRINT("could not get %p map\n", (void *)vaddr); 625 return -ENOMEM; 626 } 627 628 idx_1gb = MAP_1GB_IDX(vfn_2mb); 629 map_2mb = &map_1gb->map[idx_1gb]; 630 map_2mb->translation_2mb = translation; 631 632 size -= VALUE_2MB; 633 vfn_2mb++; 634 } 635 636 return 0; 637 } 638 639 int 640 spdk_mem_map_clear_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size) 641 { 642 return spdk_mem_map_set_translation(map, vaddr, size, map->default_translation); 643 } 644 645 inline uint64_t 646 spdk_mem_map_translate(const struct spdk_mem_map *map, uint64_t vaddr, uint64_t *size) 647 { 648 const struct map_1gb *map_1gb; 649 const struct map_2mb *map_2mb; 650 uint64_t idx_256tb; 651 uint64_t idx_1gb; 652 uint64_t vfn_2mb; 653 uint64_t cur_size; 654 uint64_t prev_translation; 655 uint64_t orig_translation; 656 657 if (spdk_unlikely(vaddr & ~MASK_256TB)) { 658 DEBUG_PRINT("invalid usermode virtual address %p\n", (void *)vaddr); 659 return map->default_translation; 660 } 661 662 vfn_2mb = vaddr >> SHIFT_2MB; 663 idx_256tb = MAP_256TB_IDX(vfn_2mb); 664 idx_1gb = MAP_1GB_IDX(vfn_2mb); 665 666 map_1gb = map->map_256tb.map[idx_256tb]; 667 if (spdk_unlikely(!map_1gb)) { 668 return map->default_translation; 669 } 670 671 cur_size = VALUE_2MB - _2MB_OFFSET(vaddr); 672 map_2mb = &map_1gb->map[idx_1gb]; 673 if (size == NULL || map->ops.are_contiguous == NULL || 674 map_2mb->translation_2mb == map->default_translation) { 675 if (size != NULL) { 676 *size = spdk_min(*size, cur_size); 677 } 678 return map_2mb->translation_2mb; 679 } 680 681 orig_translation = map_2mb->translation_2mb; 682 prev_translation = orig_translation; 683 while (cur_size < *size) { 684 vfn_2mb++; 685 idx_256tb = MAP_256TB_IDX(vfn_2mb); 686 idx_1gb = MAP_1GB_IDX(vfn_2mb); 687 688 map_1gb = map->map_256tb.map[idx_256tb]; 689 if (spdk_unlikely(!map_1gb)) { 690 break; 691 } 692 693 map_2mb = &map_1gb->map[idx_1gb]; 694 if (!map->ops.are_contiguous(prev_translation, map_2mb->translation_2mb)) { 695 break; 696 } 697 698 cur_size += VALUE_2MB; 699 prev_translation = map_2mb->translation_2mb; 700 } 701 702 *size = spdk_min(*size, cur_size); 703 return orig_translation; 704 } 705 706 static void 707 memory_hotplug_cb(enum rte_mem_event event_type, 708 const void *addr, size_t len, void *arg) 709 { 710 if (event_type == RTE_MEM_EVENT_ALLOC) { 711 spdk_mem_register((void *)addr, len); 712 713 if (!spdk_env_dpdk_external_init()) { 714 return; 715 } 716 717 /* When the user initialized DPDK separately, we can't 718 * be sure that --match-allocations RTE flag was specified. 719 * Without this flag, DPDK can free memory in different units 720 * than it was allocated. It doesn't work with things like RDMA MRs. 721 * 722 * For such cases, we mark segments so they aren't freed. 723 */ 724 while (len > 0) { 725 struct rte_memseg *seg; 726 727 seg = rte_mem_virt2memseg(addr, NULL); 728 assert(seg != NULL); 729 seg->flags |= RTE_MEMSEG_FLAG_DO_NOT_FREE; 730 addr = (void *)((uintptr_t)addr + seg->hugepage_sz); 731 len -= seg->hugepage_sz; 732 } 733 } else if (event_type == RTE_MEM_EVENT_FREE) { 734 spdk_mem_unregister((void *)addr, len); 735 } 736 } 737 738 static int 739 memory_iter_cb(const struct rte_memseg_list *msl, 740 const struct rte_memseg *ms, size_t len, void *arg) 741 { 742 return spdk_mem_register(ms->addr, len); 743 } 744 745 int 746 mem_map_init(bool legacy_mem) 747 { 748 g_legacy_mem = legacy_mem; 749 750 g_mem_reg_map = spdk_mem_map_alloc(0, NULL, NULL); 751 if (g_mem_reg_map == NULL) { 752 DEBUG_PRINT("memory registration map allocation failed\n"); 753 return -ENOMEM; 754 } 755 756 /* 757 * Walk all DPDK memory segments and register them 758 * with the main memory map 759 */ 760 rte_mem_event_callback_register("spdk", memory_hotplug_cb, NULL); 761 rte_memseg_contig_walk(memory_iter_cb, NULL); 762 return 0; 763 } 764 765 bool 766 spdk_iommu_is_enabled(void) 767 { 768 #if VFIO_ENABLED 769 return g_vfio.enabled && !g_vfio.noiommu_enabled; 770 #else 771 return false; 772 #endif 773 } 774 775 struct spdk_vtophys_pci_device { 776 struct rte_pci_device *pci_device; 777 TAILQ_ENTRY(spdk_vtophys_pci_device) tailq; 778 }; 779 780 static pthread_mutex_t g_vtophys_pci_devices_mutex = PTHREAD_MUTEX_INITIALIZER; 781 static TAILQ_HEAD(, spdk_vtophys_pci_device) g_vtophys_pci_devices = 782 TAILQ_HEAD_INITIALIZER(g_vtophys_pci_devices); 783 784 static struct spdk_mem_map *g_vtophys_map; 785 static struct spdk_mem_map *g_phys_ref_map; 786 787 #if VFIO_ENABLED 788 static int 789 vtophys_iommu_map_dma(uint64_t vaddr, uint64_t iova, uint64_t size) 790 { 791 struct spdk_vfio_dma_map *dma_map; 792 uint64_t refcount; 793 int ret; 794 795 refcount = spdk_mem_map_translate(g_phys_ref_map, iova, NULL); 796 assert(refcount < UINT64_MAX); 797 if (refcount > 0) { 798 spdk_mem_map_set_translation(g_phys_ref_map, iova, size, refcount + 1); 799 return 0; 800 } 801 802 dma_map = calloc(1, sizeof(*dma_map)); 803 if (dma_map == NULL) { 804 return -ENOMEM; 805 } 806 807 dma_map->map.argsz = sizeof(dma_map->map); 808 dma_map->map.flags = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE; 809 dma_map->map.vaddr = vaddr; 810 dma_map->map.iova = iova; 811 dma_map->map.size = size; 812 813 pthread_mutex_lock(&g_vfio.mutex); 814 if (g_vfio.device_ref == 0) { 815 /* VFIO requires at least one device (IOMMU group) to be added to 816 * a VFIO container before it is possible to perform any IOMMU 817 * operations on that container. This memory will be mapped once 818 * the first device (IOMMU group) is hotplugged. 819 * 820 * Since the vfio container is managed internally by DPDK, it is 821 * also possible that some device is already in that container, but 822 * it's not managed by SPDK - e.g. an NIC attached internally 823 * inside DPDK. We could map the memory straight away in such 824 * scenario, but there's no need to do it. DPDK devices clearly 825 * don't need our mappings and hence we defer the mapping 826 * unconditionally until the first SPDK-managed device is 827 * hotplugged. 828 */ 829 goto out_insert; 830 } 831 832 ret = ioctl(g_vfio.fd, VFIO_IOMMU_MAP_DMA, &dma_map->map); 833 if (ret) { 834 /* There are cases the vfio container doesn't have IOMMU group, it's safe for this case */ 835 SPDK_NOTICELOG("Cannot set up DMA mapping, error %d, ignored\n", errno); 836 } 837 838 out_insert: 839 TAILQ_INSERT_TAIL(&g_vfio.maps, dma_map, tailq); 840 pthread_mutex_unlock(&g_vfio.mutex); 841 spdk_mem_map_set_translation(g_phys_ref_map, iova, size, refcount + 1); 842 return 0; 843 } 844 845 static int 846 vtophys_iommu_unmap_dma(uint64_t iova, uint64_t size) 847 { 848 struct spdk_vfio_dma_map *dma_map; 849 uint64_t refcount; 850 int ret; 851 struct vfio_iommu_type1_dma_unmap unmap = {}; 852 853 pthread_mutex_lock(&g_vfio.mutex); 854 TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) { 855 if (dma_map->map.iova == iova) { 856 break; 857 } 858 } 859 860 if (dma_map == NULL) { 861 DEBUG_PRINT("Cannot clear DMA mapping for IOVA %"PRIx64" - it's not mapped\n", iova); 862 pthread_mutex_unlock(&g_vfio.mutex); 863 return -ENXIO; 864 } 865 866 refcount = spdk_mem_map_translate(g_phys_ref_map, iova, NULL); 867 assert(refcount < UINT64_MAX); 868 if (refcount > 0) { 869 spdk_mem_map_set_translation(g_phys_ref_map, iova, size, refcount - 1); 870 } 871 872 /* We still have outstanding references, don't clear it. */ 873 if (refcount > 1) { 874 pthread_mutex_unlock(&g_vfio.mutex); 875 return 0; 876 } 877 878 /** don't support partial or multiple-page unmap for now */ 879 assert(dma_map->map.size == size); 880 881 if (g_vfio.device_ref == 0) { 882 /* Memory is not mapped anymore, just remove it's references */ 883 goto out_remove; 884 } 885 886 unmap.argsz = sizeof(unmap); 887 unmap.flags = 0; 888 unmap.iova = dma_map->map.iova; 889 unmap.size = dma_map->map.size; 890 ret = ioctl(g_vfio.fd, VFIO_IOMMU_UNMAP_DMA, &unmap); 891 if (ret) { 892 SPDK_NOTICELOG("Cannot clear DMA mapping, error %d, ignored\n", errno); 893 } 894 895 out_remove: 896 TAILQ_REMOVE(&g_vfio.maps, dma_map, tailq); 897 pthread_mutex_unlock(&g_vfio.mutex); 898 free(dma_map); 899 return 0; 900 } 901 #endif 902 903 static uint64_t 904 vtophys_get_paddr_memseg(uint64_t vaddr) 905 { 906 uintptr_t paddr; 907 struct rte_memseg *seg; 908 909 seg = rte_mem_virt2memseg((void *)(uintptr_t)vaddr, NULL); 910 if (seg != NULL) { 911 paddr = seg->iova; 912 if (paddr == RTE_BAD_IOVA) { 913 return SPDK_VTOPHYS_ERROR; 914 } 915 paddr += (vaddr - (uintptr_t)seg->addr); 916 return paddr; 917 } 918 919 return SPDK_VTOPHYS_ERROR; 920 } 921 922 /* Try to get the paddr from /proc/self/pagemap */ 923 static uint64_t 924 vtophys_get_paddr_pagemap(uint64_t vaddr) 925 { 926 uintptr_t paddr; 927 928 /* Silence static analyzers */ 929 assert(vaddr != 0); 930 paddr = rte_mem_virt2iova((void *)vaddr); 931 if (paddr == RTE_BAD_IOVA) { 932 /* 933 * The vaddr may be valid but doesn't have a backing page 934 * assigned yet. Touch the page to ensure a backing page 935 * gets assigned, then try to translate again. 936 */ 937 rte_atomic64_read((rte_atomic64_t *)vaddr); 938 paddr = rte_mem_virt2iova((void *)vaddr); 939 } 940 if (paddr == RTE_BAD_IOVA) { 941 /* Unable to get to the physical address. */ 942 return SPDK_VTOPHYS_ERROR; 943 } 944 945 return paddr; 946 } 947 948 /* Try to get the paddr from pci devices */ 949 static uint64_t 950 vtophys_get_paddr_pci(uint64_t vaddr) 951 { 952 struct spdk_vtophys_pci_device *vtophys_dev; 953 uintptr_t paddr; 954 struct rte_pci_device *dev; 955 struct rte_mem_resource *res; 956 unsigned r; 957 958 pthread_mutex_lock(&g_vtophys_pci_devices_mutex); 959 TAILQ_FOREACH(vtophys_dev, &g_vtophys_pci_devices, tailq) { 960 dev = vtophys_dev->pci_device; 961 962 for (r = 0; r < PCI_MAX_RESOURCE; r++) { 963 res = &dev->mem_resource[r]; 964 if (res->phys_addr && vaddr >= (uint64_t)res->addr && 965 vaddr < (uint64_t)res->addr + res->len) { 966 paddr = res->phys_addr + (vaddr - (uint64_t)res->addr); 967 DEBUG_PRINT("%s: %p -> %p\n", __func__, (void *)vaddr, 968 (void *)paddr); 969 pthread_mutex_unlock(&g_vtophys_pci_devices_mutex); 970 return paddr; 971 } 972 } 973 } 974 pthread_mutex_unlock(&g_vtophys_pci_devices_mutex); 975 976 return SPDK_VTOPHYS_ERROR; 977 } 978 979 static int 980 vtophys_notify(void *cb_ctx, struct spdk_mem_map *map, 981 enum spdk_mem_map_notify_action action, 982 void *vaddr, size_t len) 983 { 984 int rc = 0, pci_phys = 0; 985 uint64_t paddr; 986 987 if ((uintptr_t)vaddr & ~MASK_256TB) { 988 DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr); 989 return -EINVAL; 990 } 991 992 if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) { 993 DEBUG_PRINT("invalid parameters, vaddr=%p len=%ju\n", 994 vaddr, len); 995 return -EINVAL; 996 } 997 998 /* Get the physical address from the DPDK memsegs */ 999 paddr = vtophys_get_paddr_memseg((uint64_t)vaddr); 1000 1001 switch (action) { 1002 case SPDK_MEM_MAP_NOTIFY_REGISTER: 1003 if (paddr == SPDK_VTOPHYS_ERROR) { 1004 /* This is not an address that DPDK is managing. */ 1005 #if VFIO_ENABLED 1006 enum rte_iova_mode iova_mode; 1007 1008 iova_mode = rte_eal_iova_mode(); 1009 1010 if (spdk_iommu_is_enabled() && iova_mode == RTE_IOVA_VA) { 1011 /* We'll use the virtual address as the iova to match DPDK. */ 1012 paddr = (uint64_t)vaddr; 1013 rc = vtophys_iommu_map_dma((uint64_t)vaddr, paddr, len); 1014 if (rc) { 1015 return -EFAULT; 1016 } 1017 while (len > 0) { 1018 rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr); 1019 if (rc != 0) { 1020 return rc; 1021 } 1022 vaddr += VALUE_2MB; 1023 paddr += VALUE_2MB; 1024 len -= VALUE_2MB; 1025 } 1026 } else 1027 #endif 1028 { 1029 /* Get the physical address from /proc/self/pagemap. */ 1030 paddr = vtophys_get_paddr_pagemap((uint64_t)vaddr); 1031 if (paddr == SPDK_VTOPHYS_ERROR) { 1032 /* Get the physical address from PCI devices */ 1033 paddr = vtophys_get_paddr_pci((uint64_t)vaddr); 1034 if (paddr == SPDK_VTOPHYS_ERROR) { 1035 DEBUG_PRINT("could not get phys addr for %p\n", vaddr); 1036 return -EFAULT; 1037 } 1038 /* The beginning of this address range points to a PCI resource, 1039 * so the rest must point to a PCI resource as well. 1040 */ 1041 pci_phys = 1; 1042 } 1043 1044 /* Get paddr for each 2MB chunk in this address range */ 1045 while (len > 0) { 1046 /* Get the physical address from /proc/self/pagemap. */ 1047 if (pci_phys) { 1048 paddr = vtophys_get_paddr_pci((uint64_t)vaddr); 1049 } else { 1050 paddr = vtophys_get_paddr_pagemap((uint64_t)vaddr); 1051 } 1052 1053 if (paddr == SPDK_VTOPHYS_ERROR) { 1054 DEBUG_PRINT("could not get phys addr for %p\n", vaddr); 1055 return -EFAULT; 1056 } 1057 1058 /* Since PCI paddr can break the 2MiB physical alignment skip this check for that. */ 1059 if (!pci_phys && (paddr & MASK_2MB)) { 1060 DEBUG_PRINT("invalid paddr 0x%" PRIx64 " - must be 2MB aligned\n", paddr); 1061 return -EINVAL; 1062 } 1063 #if VFIO_ENABLED 1064 /* If the IOMMU is on, but DPDK is using iova-mode=pa, we want to register this memory 1065 * with the IOMMU using the physical address to match. */ 1066 if (spdk_iommu_is_enabled()) { 1067 rc = vtophys_iommu_map_dma((uint64_t)vaddr, paddr, VALUE_2MB); 1068 if (rc) { 1069 DEBUG_PRINT("Unable to assign vaddr %p to paddr 0x%" PRIx64 "\n", vaddr, paddr); 1070 return -EFAULT; 1071 } 1072 } 1073 #endif 1074 1075 rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr); 1076 if (rc != 0) { 1077 return rc; 1078 } 1079 1080 vaddr += VALUE_2MB; 1081 len -= VALUE_2MB; 1082 } 1083 } 1084 } else { 1085 /* This is an address managed by DPDK. Just setup the translations. */ 1086 while (len > 0) { 1087 paddr = vtophys_get_paddr_memseg((uint64_t)vaddr); 1088 if (paddr == SPDK_VTOPHYS_ERROR) { 1089 DEBUG_PRINT("could not get phys addr for %p\n", vaddr); 1090 return -EFAULT; 1091 } 1092 1093 rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr); 1094 if (rc != 0) { 1095 return rc; 1096 } 1097 1098 vaddr += VALUE_2MB; 1099 len -= VALUE_2MB; 1100 } 1101 } 1102 1103 break; 1104 case SPDK_MEM_MAP_NOTIFY_UNREGISTER: 1105 #if VFIO_ENABLED 1106 if (paddr == SPDK_VTOPHYS_ERROR) { 1107 /* 1108 * This is not an address that DPDK is managing. If vfio is enabled, 1109 * we need to unmap the range from the IOMMU 1110 */ 1111 if (spdk_iommu_is_enabled()) { 1112 uint64_t buffer_len = len; 1113 uint8_t *va = vaddr; 1114 enum rte_iova_mode iova_mode; 1115 1116 iova_mode = rte_eal_iova_mode(); 1117 /* 1118 * In virtual address mode, the region is contiguous and can be done in 1119 * one unmap. 1120 */ 1121 if (iova_mode == RTE_IOVA_VA) { 1122 paddr = spdk_mem_map_translate(map, (uint64_t)va, &buffer_len); 1123 if (buffer_len != len || paddr != (uintptr_t)va) { 1124 DEBUG_PRINT("Unmapping %p with length %lu failed because " 1125 "translation had address 0x%" PRIx64 " and length %lu\n", 1126 va, len, paddr, buffer_len); 1127 return -EINVAL; 1128 } 1129 rc = vtophys_iommu_unmap_dma(paddr, len); 1130 if (rc) { 1131 DEBUG_PRINT("Failed to iommu unmap paddr 0x%" PRIx64 "\n", paddr); 1132 return -EFAULT; 1133 } 1134 } else if (iova_mode == RTE_IOVA_PA) { 1135 /* Get paddr for each 2MB chunk in this address range */ 1136 while (buffer_len > 0) { 1137 paddr = spdk_mem_map_translate(map, (uint64_t)va, NULL); 1138 1139 if (paddr == SPDK_VTOPHYS_ERROR || buffer_len < VALUE_2MB) { 1140 DEBUG_PRINT("could not get phys addr for %p\n", va); 1141 return -EFAULT; 1142 } 1143 1144 rc = vtophys_iommu_unmap_dma(paddr, VALUE_2MB); 1145 if (rc) { 1146 DEBUG_PRINT("Failed to iommu unmap paddr 0x%" PRIx64 "\n", paddr); 1147 return -EFAULT; 1148 } 1149 1150 va += VALUE_2MB; 1151 buffer_len -= VALUE_2MB; 1152 } 1153 } 1154 } 1155 } 1156 #endif 1157 while (len > 0) { 1158 rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, VALUE_2MB); 1159 if (rc != 0) { 1160 return rc; 1161 } 1162 1163 vaddr += VALUE_2MB; 1164 len -= VALUE_2MB; 1165 } 1166 1167 break; 1168 default: 1169 SPDK_UNREACHABLE(); 1170 } 1171 1172 return rc; 1173 } 1174 1175 static int 1176 vtophys_check_contiguous_entries(uint64_t paddr1, uint64_t paddr2) 1177 { 1178 /* This function is always called with paddrs for two subsequent 1179 * 2MB chunks in virtual address space, so those chunks will be only 1180 * physically contiguous if the physical addresses are 2MB apart 1181 * from each other as well. 1182 */ 1183 return (paddr2 - paddr1 == VALUE_2MB); 1184 } 1185 1186 #if VFIO_ENABLED 1187 1188 static bool 1189 vfio_enabled(void) 1190 { 1191 return rte_vfio_is_enabled("vfio_pci"); 1192 } 1193 1194 /* Check if IOMMU is enabled on the system */ 1195 static bool 1196 has_iommu_groups(void) 1197 { 1198 int count = 0; 1199 DIR *dir = opendir("/sys/kernel/iommu_groups"); 1200 1201 if (dir == NULL) { 1202 return false; 1203 } 1204 1205 while (count < 3 && readdir(dir) != NULL) { 1206 count++; 1207 } 1208 1209 closedir(dir); 1210 /* there will always be ./ and ../ entries */ 1211 return count > 2; 1212 } 1213 1214 static bool 1215 vfio_noiommu_enabled(void) 1216 { 1217 return rte_vfio_noiommu_is_enabled(); 1218 } 1219 1220 static void 1221 vtophys_iommu_init(void) 1222 { 1223 char proc_fd_path[PATH_MAX + 1]; 1224 char link_path[PATH_MAX + 1]; 1225 const char vfio_path[] = "/dev/vfio/vfio"; 1226 DIR *dir; 1227 struct dirent *d; 1228 1229 if (!vfio_enabled()) { 1230 return; 1231 } 1232 1233 if (vfio_noiommu_enabled()) { 1234 g_vfio.noiommu_enabled = true; 1235 } else if (!has_iommu_groups()) { 1236 return; 1237 } 1238 1239 dir = opendir("/proc/self/fd"); 1240 if (!dir) { 1241 DEBUG_PRINT("Failed to open /proc/self/fd (%d)\n", errno); 1242 return; 1243 } 1244 1245 while ((d = readdir(dir)) != NULL) { 1246 if (d->d_type != DT_LNK) { 1247 continue; 1248 } 1249 1250 snprintf(proc_fd_path, sizeof(proc_fd_path), "/proc/self/fd/%s", d->d_name); 1251 if (readlink(proc_fd_path, link_path, sizeof(link_path)) != (sizeof(vfio_path) - 1)) { 1252 continue; 1253 } 1254 1255 if (memcmp(link_path, vfio_path, sizeof(vfio_path) - 1) == 0) { 1256 sscanf(d->d_name, "%d", &g_vfio.fd); 1257 break; 1258 } 1259 } 1260 1261 closedir(dir); 1262 1263 if (g_vfio.fd < 0) { 1264 DEBUG_PRINT("Failed to discover DPDK VFIO container fd.\n"); 1265 return; 1266 } 1267 1268 g_vfio.enabled = true; 1269 1270 return; 1271 } 1272 1273 #endif 1274 1275 void 1276 vtophys_pci_device_added(struct rte_pci_device *pci_device) 1277 { 1278 struct spdk_vtophys_pci_device *vtophys_dev; 1279 1280 pthread_mutex_lock(&g_vtophys_pci_devices_mutex); 1281 1282 vtophys_dev = calloc(1, sizeof(*vtophys_dev)); 1283 if (vtophys_dev) { 1284 vtophys_dev->pci_device = pci_device; 1285 TAILQ_INSERT_TAIL(&g_vtophys_pci_devices, vtophys_dev, tailq); 1286 } else { 1287 DEBUG_PRINT("Memory allocation error\n"); 1288 } 1289 pthread_mutex_unlock(&g_vtophys_pci_devices_mutex); 1290 1291 #if VFIO_ENABLED 1292 struct spdk_vfio_dma_map *dma_map; 1293 int ret; 1294 1295 if (!g_vfio.enabled) { 1296 return; 1297 } 1298 1299 pthread_mutex_lock(&g_vfio.mutex); 1300 g_vfio.device_ref++; 1301 if (g_vfio.device_ref > 1) { 1302 pthread_mutex_unlock(&g_vfio.mutex); 1303 return; 1304 } 1305 1306 /* This is the first SPDK device using DPDK vfio. This means that the first 1307 * IOMMU group might have been just been added to the DPDK vfio container. 1308 * From this point it is certain that the memory can be mapped now. 1309 */ 1310 TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) { 1311 ret = ioctl(g_vfio.fd, VFIO_IOMMU_MAP_DMA, &dma_map->map); 1312 if (ret) { 1313 DEBUG_PRINT("Cannot update DMA mapping, error %d\n", errno); 1314 break; 1315 } 1316 } 1317 pthread_mutex_unlock(&g_vfio.mutex); 1318 #endif 1319 } 1320 1321 void 1322 vtophys_pci_device_removed(struct rte_pci_device *pci_device) 1323 { 1324 struct spdk_vtophys_pci_device *vtophys_dev; 1325 1326 pthread_mutex_lock(&g_vtophys_pci_devices_mutex); 1327 TAILQ_FOREACH(vtophys_dev, &g_vtophys_pci_devices, tailq) { 1328 if (vtophys_dev->pci_device == pci_device) { 1329 TAILQ_REMOVE(&g_vtophys_pci_devices, vtophys_dev, tailq); 1330 free(vtophys_dev); 1331 break; 1332 } 1333 } 1334 pthread_mutex_unlock(&g_vtophys_pci_devices_mutex); 1335 1336 #if VFIO_ENABLED 1337 struct spdk_vfio_dma_map *dma_map; 1338 int ret; 1339 1340 if (!g_vfio.enabled) { 1341 return; 1342 } 1343 1344 pthread_mutex_lock(&g_vfio.mutex); 1345 assert(g_vfio.device_ref > 0); 1346 g_vfio.device_ref--; 1347 if (g_vfio.device_ref > 0) { 1348 pthread_mutex_unlock(&g_vfio.mutex); 1349 return; 1350 } 1351 1352 /* This is the last SPDK device using DPDK vfio. If DPDK doesn't have 1353 * any additional devices using it's vfio container, all the mappings 1354 * will be automatically removed by the Linux vfio driver. We unmap 1355 * the memory manually to be able to easily re-map it later regardless 1356 * of other, external factors. 1357 */ 1358 TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) { 1359 struct vfio_iommu_type1_dma_unmap unmap = {}; 1360 unmap.argsz = sizeof(unmap); 1361 unmap.flags = 0; 1362 unmap.iova = dma_map->map.iova; 1363 unmap.size = dma_map->map.size; 1364 ret = ioctl(g_vfio.fd, VFIO_IOMMU_UNMAP_DMA, &unmap); 1365 if (ret) { 1366 DEBUG_PRINT("Cannot unmap DMA memory, error %d\n", errno); 1367 break; 1368 } 1369 } 1370 pthread_mutex_unlock(&g_vfio.mutex); 1371 #endif 1372 } 1373 1374 int 1375 vtophys_init(void) 1376 { 1377 const struct spdk_mem_map_ops vtophys_map_ops = { 1378 .notify_cb = vtophys_notify, 1379 .are_contiguous = vtophys_check_contiguous_entries, 1380 }; 1381 1382 const struct spdk_mem_map_ops phys_ref_map_ops = { 1383 .notify_cb = NULL, 1384 .are_contiguous = NULL, 1385 }; 1386 1387 #if VFIO_ENABLED 1388 vtophys_iommu_init(); 1389 #endif 1390 1391 g_phys_ref_map = spdk_mem_map_alloc(0, &phys_ref_map_ops, NULL); 1392 if (g_phys_ref_map == NULL) { 1393 DEBUG_PRINT("phys_ref map allocation failed.\n"); 1394 return -ENOMEM; 1395 } 1396 1397 g_vtophys_map = spdk_mem_map_alloc(SPDK_VTOPHYS_ERROR, &vtophys_map_ops, NULL); 1398 if (g_vtophys_map == NULL) { 1399 DEBUG_PRINT("vtophys map allocation failed\n"); 1400 spdk_mem_map_free(&g_phys_ref_map); 1401 return -ENOMEM; 1402 } 1403 return 0; 1404 } 1405 1406 uint64_t 1407 spdk_vtophys(const void *buf, uint64_t *size) 1408 { 1409 uint64_t vaddr, paddr_2mb; 1410 1411 vaddr = (uint64_t)buf; 1412 paddr_2mb = spdk_mem_map_translate(g_vtophys_map, vaddr, size); 1413 1414 /* 1415 * SPDK_VTOPHYS_ERROR has all bits set, so if the lookup returned SPDK_VTOPHYS_ERROR, 1416 * we will still bitwise-or it with the buf offset below, but the result will still be 1417 * SPDK_VTOPHYS_ERROR. However now that we do + rather than | (due to PCI vtophys being 1418 * unaligned) we must now check the return value before addition. 1419 */ 1420 SPDK_STATIC_ASSERT(SPDK_VTOPHYS_ERROR == UINT64_C(-1), "SPDK_VTOPHYS_ERROR should be all 1s"); 1421 if (paddr_2mb == SPDK_VTOPHYS_ERROR) { 1422 return SPDK_VTOPHYS_ERROR; 1423 } else { 1424 return paddr_2mb + (vaddr & MASK_2MB); 1425 } 1426 } 1427 1428 int 1429 spdk_mem_get_fd_and_offset(void *vaddr, uint64_t *offset) 1430 { 1431 struct rte_memseg *seg; 1432 int ret, fd; 1433 1434 seg = rte_mem_virt2memseg(vaddr, NULL); 1435 if (!seg) { 1436 SPDK_ERRLOG("memory %p doesn't exist\n", vaddr); 1437 return -ENOENT; 1438 } 1439 1440 fd = rte_memseg_get_fd_thread_unsafe(seg); 1441 if (fd < 0) { 1442 return fd; 1443 } 1444 1445 ret = rte_memseg_get_fd_offset_thread_unsafe(seg, offset); 1446 if (ret < 0) { 1447 return ret; 1448 } 1449 1450 return fd; 1451 } 1452