1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) Intel Corporation. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include "spdk/stdinc.h" 35 36 #include "env_internal.h" 37 38 #include <rte_config.h> 39 #include <rte_memory.h> 40 #include <rte_eal_memconfig.h> 41 42 #include "spdk_internal/assert.h" 43 44 #include "spdk/assert.h" 45 #include "spdk/likely.h" 46 #include "spdk/queue.h" 47 #include "spdk/util.h" 48 #include "spdk/memory.h" 49 #include "spdk/env_dpdk.h" 50 51 #ifdef __FreeBSD__ 52 #define VFIO_ENABLED 0 53 #else 54 #include <linux/version.h> 55 #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0) 56 #define VFIO_ENABLED 1 57 #include <linux/vfio.h> 58 #include <rte_vfio.h> 59 60 struct spdk_vfio_dma_map { 61 struct vfio_iommu_type1_dma_map map; 62 struct vfio_iommu_type1_dma_unmap unmap; 63 TAILQ_ENTRY(spdk_vfio_dma_map) tailq; 64 }; 65 66 struct vfio_cfg { 67 int fd; 68 bool enabled; 69 bool noiommu_enabled; 70 unsigned device_ref; 71 TAILQ_HEAD(, spdk_vfio_dma_map) maps; 72 pthread_mutex_t mutex; 73 }; 74 75 static struct vfio_cfg g_vfio = { 76 .fd = -1, 77 .enabled = false, 78 .noiommu_enabled = false, 79 .device_ref = 0, 80 .maps = TAILQ_HEAD_INITIALIZER(g_vfio.maps), 81 .mutex = PTHREAD_MUTEX_INITIALIZER 82 }; 83 84 #else 85 #define VFIO_ENABLED 0 86 #endif 87 #endif 88 89 #if DEBUG 90 #define DEBUG_PRINT(...) fprintf(stderr, __VA_ARGS__) 91 #else 92 #define DEBUG_PRINT(...) 93 #endif 94 95 #define FN_2MB_TO_4KB(fn) (fn << (SHIFT_2MB - SHIFT_4KB)) 96 #define FN_4KB_TO_2MB(fn) (fn >> (SHIFT_2MB - SHIFT_4KB)) 97 98 #define MAP_256TB_IDX(vfn_2mb) ((vfn_2mb) >> (SHIFT_1GB - SHIFT_2MB)) 99 #define MAP_1GB_IDX(vfn_2mb) ((vfn_2mb) & ((1ULL << (SHIFT_1GB - SHIFT_2MB)) - 1)) 100 101 /* Page is registered */ 102 #define REG_MAP_REGISTERED (1ULL << 62) 103 104 /* A notification region barrier. The 2MB translation entry that's marked 105 * with this flag must be unregistered separately. This allows contiguous 106 * regions to be unregistered in the same chunks they were registered. 107 */ 108 #define REG_MAP_NOTIFY_START (1ULL << 63) 109 110 /* Translation of a single 2MB page. */ 111 struct map_2mb { 112 uint64_t translation_2mb; 113 }; 114 115 /* Second-level map table indexed by bits [21..29] of the virtual address. 116 * Each entry contains the address translation or error for entries that haven't 117 * been retrieved yet. 118 */ 119 struct map_1gb { 120 struct map_2mb map[1ULL << (SHIFT_1GB - SHIFT_2MB)]; 121 }; 122 123 /* Top-level map table indexed by bits [30..47] of the virtual address. 124 * Each entry points to a second-level map table or NULL. 125 */ 126 struct map_256tb { 127 struct map_1gb *map[1ULL << (SHIFT_256TB - SHIFT_1GB)]; 128 }; 129 130 /* Page-granularity memory address translation */ 131 struct spdk_mem_map { 132 struct map_256tb map_256tb; 133 pthread_mutex_t mutex; 134 uint64_t default_translation; 135 struct spdk_mem_map_ops ops; 136 void *cb_ctx; 137 TAILQ_ENTRY(spdk_mem_map) tailq; 138 }; 139 140 /* Registrations map. The 64 bit translations are bit fields with the 141 * following layout (starting with the low bits): 142 * 0 - 61 : reserved 143 * 62 - 63 : flags 144 */ 145 static struct spdk_mem_map *g_mem_reg_map; 146 static TAILQ_HEAD(spdk_mem_map_head, spdk_mem_map) g_spdk_mem_maps = 147 TAILQ_HEAD_INITIALIZER(g_spdk_mem_maps); 148 static pthread_mutex_t g_spdk_mem_map_mutex = PTHREAD_MUTEX_INITIALIZER; 149 150 static bool g_legacy_mem; 151 152 /* 153 * Walk the currently registered memory via the main memory registration map 154 * and call the new map's notify callback for each virtually contiguous region. 155 */ 156 static int 157 mem_map_notify_walk(struct spdk_mem_map *map, enum spdk_mem_map_notify_action action) 158 { 159 size_t idx_256tb; 160 uint64_t idx_1gb; 161 uint64_t contig_start = UINT64_MAX; 162 uint64_t contig_end = UINT64_MAX; 163 struct map_1gb *map_1gb; 164 int rc; 165 166 if (!g_mem_reg_map) { 167 return -EINVAL; 168 } 169 170 /* Hold the memory registration map mutex so no new registrations can be added while we are looping. */ 171 pthread_mutex_lock(&g_mem_reg_map->mutex); 172 173 for (idx_256tb = 0; 174 idx_256tb < sizeof(g_mem_reg_map->map_256tb.map) / sizeof(g_mem_reg_map->map_256tb.map[0]); 175 idx_256tb++) { 176 map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb]; 177 178 if (!map_1gb) { 179 if (contig_start != UINT64_MAX) { 180 /* End of of a virtually contiguous range */ 181 rc = map->ops.notify_cb(map->cb_ctx, map, action, 182 (void *)contig_start, 183 contig_end - contig_start + VALUE_2MB); 184 /* Don't bother handling unregister failures. It can't be any worse */ 185 if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) { 186 goto err_unregister; 187 } 188 } 189 contig_start = UINT64_MAX; 190 continue; 191 } 192 193 for (idx_1gb = 0; idx_1gb < sizeof(map_1gb->map) / sizeof(map_1gb->map[0]); idx_1gb++) { 194 if ((map_1gb->map[idx_1gb].translation_2mb & REG_MAP_REGISTERED) && 195 (contig_start == UINT64_MAX || 196 (map_1gb->map[idx_1gb].translation_2mb & REG_MAP_NOTIFY_START) == 0)) { 197 /* Rebuild the virtual address from the indexes */ 198 uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB); 199 200 if (contig_start == UINT64_MAX) { 201 contig_start = vaddr; 202 } 203 204 contig_end = vaddr; 205 } else { 206 if (contig_start != UINT64_MAX) { 207 /* End of of a virtually contiguous range */ 208 rc = map->ops.notify_cb(map->cb_ctx, map, action, 209 (void *)contig_start, 210 contig_end - contig_start + VALUE_2MB); 211 /* Don't bother handling unregister failures. It can't be any worse */ 212 if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) { 213 goto err_unregister; 214 } 215 216 /* This page might be a part of a neighbour region, so process 217 * it again. The idx_1gb will be incremented immediately. 218 */ 219 idx_1gb--; 220 } 221 contig_start = UINT64_MAX; 222 } 223 } 224 } 225 226 pthread_mutex_unlock(&g_mem_reg_map->mutex); 227 return 0; 228 229 err_unregister: 230 /* Unwind to the first empty translation so we don't unregister 231 * a region that just failed to register. 232 */ 233 idx_256tb = MAP_256TB_IDX((contig_start >> SHIFT_2MB) - 1); 234 idx_1gb = MAP_1GB_IDX((contig_start >> SHIFT_2MB) - 1); 235 contig_start = UINT64_MAX; 236 contig_end = UINT64_MAX; 237 238 /* Unregister any memory we managed to register before the failure */ 239 for (; idx_256tb < SIZE_MAX; idx_256tb--) { 240 map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb]; 241 242 if (!map_1gb) { 243 if (contig_end != UINT64_MAX) { 244 /* End of of a virtually contiguous range */ 245 map->ops.notify_cb(map->cb_ctx, map, 246 SPDK_MEM_MAP_NOTIFY_UNREGISTER, 247 (void *)contig_start, 248 contig_end - contig_start + VALUE_2MB); 249 } 250 contig_end = UINT64_MAX; 251 continue; 252 } 253 254 for (; idx_1gb < UINT64_MAX; idx_1gb--) { 255 if ((map_1gb->map[idx_1gb].translation_2mb & REG_MAP_REGISTERED) && 256 (contig_end == UINT64_MAX || (map_1gb->map[idx_1gb].translation_2mb & REG_MAP_NOTIFY_START) == 0)) { 257 /* Rebuild the virtual address from the indexes */ 258 uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB); 259 260 if (contig_end == UINT64_MAX) { 261 contig_end = vaddr; 262 } 263 contig_start = vaddr; 264 } else { 265 if (contig_end != UINT64_MAX) { 266 /* End of of a virtually contiguous range */ 267 map->ops.notify_cb(map->cb_ctx, map, 268 SPDK_MEM_MAP_NOTIFY_UNREGISTER, 269 (void *)contig_start, 270 contig_end - contig_start + VALUE_2MB); 271 idx_1gb++; 272 } 273 contig_end = UINT64_MAX; 274 } 275 } 276 idx_1gb = sizeof(map_1gb->map) / sizeof(map_1gb->map[0]) - 1; 277 } 278 279 pthread_mutex_unlock(&g_mem_reg_map->mutex); 280 return rc; 281 } 282 283 struct spdk_mem_map * 284 spdk_mem_map_alloc(uint64_t default_translation, const struct spdk_mem_map_ops *ops, void *cb_ctx) 285 { 286 struct spdk_mem_map *map; 287 int rc; 288 289 map = calloc(1, sizeof(*map)); 290 if (map == NULL) { 291 return NULL; 292 } 293 294 if (pthread_mutex_init(&map->mutex, NULL)) { 295 free(map); 296 return NULL; 297 } 298 299 map->default_translation = default_translation; 300 map->cb_ctx = cb_ctx; 301 if (ops) { 302 map->ops = *ops; 303 } 304 305 if (ops && ops->notify_cb) { 306 pthread_mutex_lock(&g_spdk_mem_map_mutex); 307 rc = mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_REGISTER); 308 if (rc != 0) { 309 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 310 DEBUG_PRINT("Initial mem_map notify failed\n"); 311 pthread_mutex_destroy(&map->mutex); 312 free(map); 313 return NULL; 314 } 315 TAILQ_INSERT_TAIL(&g_spdk_mem_maps, map, tailq); 316 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 317 } 318 319 return map; 320 } 321 322 void 323 spdk_mem_map_free(struct spdk_mem_map **pmap) 324 { 325 struct spdk_mem_map *map; 326 size_t i; 327 328 if (!pmap) { 329 return; 330 } 331 332 map = *pmap; 333 334 if (!map) { 335 return; 336 } 337 338 if (map->ops.notify_cb) { 339 pthread_mutex_lock(&g_spdk_mem_map_mutex); 340 mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_UNREGISTER); 341 TAILQ_REMOVE(&g_spdk_mem_maps, map, tailq); 342 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 343 } 344 345 for (i = 0; i < sizeof(map->map_256tb.map) / sizeof(map->map_256tb.map[0]); i++) { 346 free(map->map_256tb.map[i]); 347 } 348 349 pthread_mutex_destroy(&map->mutex); 350 351 free(map); 352 *pmap = NULL; 353 } 354 355 int 356 spdk_mem_register(void *vaddr, size_t len) 357 { 358 struct spdk_mem_map *map; 359 int rc; 360 void *seg_vaddr; 361 size_t seg_len; 362 uint64_t reg; 363 364 if ((uintptr_t)vaddr & ~MASK_256TB) { 365 DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr); 366 return -EINVAL; 367 } 368 369 if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) { 370 DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n", 371 __func__, vaddr, len); 372 return -EINVAL; 373 } 374 375 if (len == 0) { 376 return 0; 377 } 378 379 pthread_mutex_lock(&g_spdk_mem_map_mutex); 380 381 seg_vaddr = vaddr; 382 seg_len = len; 383 while (seg_len > 0) { 384 reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL); 385 if (reg & REG_MAP_REGISTERED) { 386 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 387 return -EBUSY; 388 } 389 seg_vaddr += VALUE_2MB; 390 seg_len -= VALUE_2MB; 391 } 392 393 seg_vaddr = vaddr; 394 seg_len = 0; 395 while (len > 0) { 396 spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB, 397 seg_len == 0 ? REG_MAP_REGISTERED | REG_MAP_NOTIFY_START : REG_MAP_REGISTERED); 398 seg_len += VALUE_2MB; 399 vaddr += VALUE_2MB; 400 len -= VALUE_2MB; 401 } 402 403 TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) { 404 rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_REGISTER, seg_vaddr, seg_len); 405 if (rc != 0) { 406 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 407 return rc; 408 } 409 } 410 411 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 412 return 0; 413 } 414 415 int 416 spdk_mem_unregister(void *vaddr, size_t len) 417 { 418 struct spdk_mem_map *map; 419 int rc; 420 void *seg_vaddr; 421 size_t seg_len; 422 uint64_t reg, newreg; 423 424 if ((uintptr_t)vaddr & ~MASK_256TB) { 425 DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr); 426 return -EINVAL; 427 } 428 429 if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) { 430 DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n", 431 __func__, vaddr, len); 432 return -EINVAL; 433 } 434 435 pthread_mutex_lock(&g_spdk_mem_map_mutex); 436 437 /* The first page must be a start of a region. Also check if it's 438 * registered to make sure we don't return -ERANGE for non-registered 439 * regions. 440 */ 441 reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL); 442 if ((reg & REG_MAP_REGISTERED) && (reg & REG_MAP_NOTIFY_START) == 0) { 443 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 444 return -ERANGE; 445 } 446 447 seg_vaddr = vaddr; 448 seg_len = len; 449 while (seg_len > 0) { 450 reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL); 451 if ((reg & REG_MAP_REGISTERED) == 0) { 452 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 453 return -EINVAL; 454 } 455 seg_vaddr += VALUE_2MB; 456 seg_len -= VALUE_2MB; 457 } 458 459 newreg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL); 460 /* If the next page is registered, it must be a start of a region as well, 461 * otherwise we'd be unregistering only a part of a region. 462 */ 463 if ((newreg & REG_MAP_NOTIFY_START) == 0 && (newreg & REG_MAP_REGISTERED)) { 464 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 465 return -ERANGE; 466 } 467 seg_vaddr = vaddr; 468 seg_len = 0; 469 470 while (len > 0) { 471 reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL); 472 spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB, 0); 473 474 if (seg_len > 0 && (reg & REG_MAP_NOTIFY_START)) { 475 TAILQ_FOREACH_REVERSE(map, &g_spdk_mem_maps, spdk_mem_map_head, tailq) { 476 rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len); 477 if (rc != 0) { 478 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 479 return rc; 480 } 481 } 482 483 seg_vaddr = vaddr; 484 seg_len = VALUE_2MB; 485 } else { 486 seg_len += VALUE_2MB; 487 } 488 489 vaddr += VALUE_2MB; 490 len -= VALUE_2MB; 491 } 492 493 if (seg_len > 0) { 494 TAILQ_FOREACH_REVERSE(map, &g_spdk_mem_maps, spdk_mem_map_head, tailq) { 495 rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len); 496 if (rc != 0) { 497 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 498 return rc; 499 } 500 } 501 } 502 503 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 504 return 0; 505 } 506 507 int 508 spdk_mem_reserve(void *vaddr, size_t len) 509 { 510 struct spdk_mem_map *map; 511 void *seg_vaddr; 512 size_t seg_len; 513 uint64_t reg; 514 515 if ((uintptr_t)vaddr & ~MASK_256TB) { 516 DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr); 517 return -EINVAL; 518 } 519 520 if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) { 521 DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n", 522 __func__, vaddr, len); 523 return -EINVAL; 524 } 525 526 if (len == 0) { 527 return 0; 528 } 529 530 pthread_mutex_lock(&g_spdk_mem_map_mutex); 531 532 /* Check if any part of this range is already registered */ 533 seg_vaddr = vaddr; 534 seg_len = len; 535 while (seg_len > 0) { 536 reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL); 537 if (reg & REG_MAP_REGISTERED) { 538 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 539 return -EBUSY; 540 } 541 seg_vaddr += VALUE_2MB; 542 seg_len -= VALUE_2MB; 543 } 544 545 /* Simply set the translation to the memory map's default. This allocates the space in the 546 * map but does not provide a valid translation. */ 547 spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, len, 548 g_mem_reg_map->default_translation); 549 550 TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) { 551 spdk_mem_map_set_translation(map, (uint64_t)vaddr, len, map->default_translation); 552 } 553 554 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 555 return 0; 556 } 557 558 static struct map_1gb * 559 mem_map_get_map_1gb(struct spdk_mem_map *map, uint64_t vfn_2mb) 560 { 561 struct map_1gb *map_1gb; 562 uint64_t idx_256tb = MAP_256TB_IDX(vfn_2mb); 563 size_t i; 564 565 if (spdk_unlikely(idx_256tb >= SPDK_COUNTOF(map->map_256tb.map))) { 566 return NULL; 567 } 568 569 map_1gb = map->map_256tb.map[idx_256tb]; 570 571 if (!map_1gb) { 572 pthread_mutex_lock(&map->mutex); 573 574 /* Recheck to make sure nobody else got the mutex first. */ 575 map_1gb = map->map_256tb.map[idx_256tb]; 576 if (!map_1gb) { 577 map_1gb = malloc(sizeof(struct map_1gb)); 578 if (map_1gb) { 579 /* initialize all entries to default translation */ 580 for (i = 0; i < SPDK_COUNTOF(map_1gb->map); i++) { 581 map_1gb->map[i].translation_2mb = map->default_translation; 582 } 583 map->map_256tb.map[idx_256tb] = map_1gb; 584 } 585 } 586 587 pthread_mutex_unlock(&map->mutex); 588 589 if (!map_1gb) { 590 DEBUG_PRINT("allocation failed\n"); 591 return NULL; 592 } 593 } 594 595 return map_1gb; 596 } 597 598 int 599 spdk_mem_map_set_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size, 600 uint64_t translation) 601 { 602 uint64_t vfn_2mb; 603 struct map_1gb *map_1gb; 604 uint64_t idx_1gb; 605 struct map_2mb *map_2mb; 606 607 if ((uintptr_t)vaddr & ~MASK_256TB) { 608 DEBUG_PRINT("invalid usermode virtual address %lu\n", vaddr); 609 return -EINVAL; 610 } 611 612 /* For now, only 2 MB-aligned registrations are supported */ 613 if (((uintptr_t)vaddr & MASK_2MB) || (size & MASK_2MB)) { 614 DEBUG_PRINT("invalid %s parameters, vaddr=%lu len=%ju\n", 615 __func__, vaddr, size); 616 return -EINVAL; 617 } 618 619 vfn_2mb = vaddr >> SHIFT_2MB; 620 621 while (size) { 622 map_1gb = mem_map_get_map_1gb(map, vfn_2mb); 623 if (!map_1gb) { 624 DEBUG_PRINT("could not get %p map\n", (void *)vaddr); 625 return -ENOMEM; 626 } 627 628 idx_1gb = MAP_1GB_IDX(vfn_2mb); 629 map_2mb = &map_1gb->map[idx_1gb]; 630 map_2mb->translation_2mb = translation; 631 632 size -= VALUE_2MB; 633 vfn_2mb++; 634 } 635 636 return 0; 637 } 638 639 int 640 spdk_mem_map_clear_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size) 641 { 642 return spdk_mem_map_set_translation(map, vaddr, size, map->default_translation); 643 } 644 645 inline uint64_t 646 spdk_mem_map_translate(const struct spdk_mem_map *map, uint64_t vaddr, uint64_t *size) 647 { 648 const struct map_1gb *map_1gb; 649 const struct map_2mb *map_2mb; 650 uint64_t idx_256tb; 651 uint64_t idx_1gb; 652 uint64_t vfn_2mb; 653 uint64_t cur_size; 654 uint64_t prev_translation; 655 uint64_t orig_translation; 656 657 if (spdk_unlikely(vaddr & ~MASK_256TB)) { 658 DEBUG_PRINT("invalid usermode virtual address %p\n", (void *)vaddr); 659 return map->default_translation; 660 } 661 662 vfn_2mb = vaddr >> SHIFT_2MB; 663 idx_256tb = MAP_256TB_IDX(vfn_2mb); 664 idx_1gb = MAP_1GB_IDX(vfn_2mb); 665 666 map_1gb = map->map_256tb.map[idx_256tb]; 667 if (spdk_unlikely(!map_1gb)) { 668 return map->default_translation; 669 } 670 671 cur_size = VALUE_2MB - _2MB_OFFSET(vaddr); 672 map_2mb = &map_1gb->map[idx_1gb]; 673 if (size == NULL || map->ops.are_contiguous == NULL || 674 map_2mb->translation_2mb == map->default_translation) { 675 if (size != NULL) { 676 *size = spdk_min(*size, cur_size); 677 } 678 return map_2mb->translation_2mb; 679 } 680 681 orig_translation = map_2mb->translation_2mb; 682 prev_translation = orig_translation; 683 while (cur_size < *size) { 684 vfn_2mb++; 685 idx_256tb = MAP_256TB_IDX(vfn_2mb); 686 idx_1gb = MAP_1GB_IDX(vfn_2mb); 687 688 map_1gb = map->map_256tb.map[idx_256tb]; 689 if (spdk_unlikely(!map_1gb)) { 690 break; 691 } 692 693 map_2mb = &map_1gb->map[idx_1gb]; 694 if (!map->ops.are_contiguous(prev_translation, map_2mb->translation_2mb)) { 695 break; 696 } 697 698 cur_size += VALUE_2MB; 699 prev_translation = map_2mb->translation_2mb; 700 } 701 702 *size = spdk_min(*size, cur_size); 703 return orig_translation; 704 } 705 706 static void 707 memory_hotplug_cb(enum rte_mem_event event_type, 708 const void *addr, size_t len, void *arg) 709 { 710 if (event_type == RTE_MEM_EVENT_ALLOC) { 711 spdk_mem_register((void *)addr, len); 712 713 #if RTE_VERSION >= RTE_VERSION_NUM(19, 02, 0, 0) 714 if (!spdk_env_dpdk_external_init()) { 715 return; 716 } 717 #endif 718 719 /* Prior to DPDK 19.02, we have to worry about DPDK 720 * freeing memory in different units than it was allocated. 721 * That doesn't work with things like RDMA MRs. So for 722 * those versions of DPDK, mark each segment so that DPDK 723 * won't later free it. That ensures we don't have to deal 724 * with that scenario. 725 * 726 * DPDK 19.02 added the --match-allocations RTE flag to 727 * avoid this condition. 728 * 729 * Note: if the user initialized DPDK separately, we can't 730 * be sure that --match-allocations was specified, so need 731 * to still mark the segments so they aren't freed. 732 */ 733 while (len > 0) { 734 struct rte_memseg *seg; 735 736 seg = rte_mem_virt2memseg(addr, NULL); 737 assert(seg != NULL); 738 seg->flags |= RTE_MEMSEG_FLAG_DO_NOT_FREE; 739 addr = (void *)((uintptr_t)addr + seg->hugepage_sz); 740 len -= seg->hugepage_sz; 741 } 742 } else if (event_type == RTE_MEM_EVENT_FREE) { 743 spdk_mem_unregister((void *)addr, len); 744 } 745 } 746 747 static int 748 memory_iter_cb(const struct rte_memseg_list *msl, 749 const struct rte_memseg *ms, size_t len, void *arg) 750 { 751 return spdk_mem_register(ms->addr, len); 752 } 753 754 int 755 mem_map_init(bool legacy_mem) 756 { 757 g_legacy_mem = legacy_mem; 758 759 g_mem_reg_map = spdk_mem_map_alloc(0, NULL, NULL); 760 if (g_mem_reg_map == NULL) { 761 DEBUG_PRINT("memory registration map allocation failed\n"); 762 return -ENOMEM; 763 } 764 765 /* 766 * Walk all DPDK memory segments and register them 767 * with the master memory map 768 */ 769 rte_mem_event_callback_register("spdk", memory_hotplug_cb, NULL); 770 rte_memseg_contig_walk(memory_iter_cb, NULL); 771 return 0; 772 } 773 774 bool 775 spdk_iommu_is_enabled(void) 776 { 777 #if VFIO_ENABLED 778 return g_vfio.enabled && !g_vfio.noiommu_enabled; 779 #else 780 return false; 781 #endif 782 } 783 784 struct spdk_vtophys_pci_device { 785 struct rte_pci_device *pci_device; 786 TAILQ_ENTRY(spdk_vtophys_pci_device) tailq; 787 }; 788 789 static pthread_mutex_t g_vtophys_pci_devices_mutex = PTHREAD_MUTEX_INITIALIZER; 790 static TAILQ_HEAD(, spdk_vtophys_pci_device) g_vtophys_pci_devices = 791 TAILQ_HEAD_INITIALIZER(g_vtophys_pci_devices); 792 793 static struct spdk_mem_map *g_vtophys_map; 794 static struct spdk_mem_map *g_phys_ref_map; 795 796 #if VFIO_ENABLED 797 static int 798 vtophys_iommu_map_dma(uint64_t vaddr, uint64_t iova, uint64_t size) 799 { 800 struct spdk_vfio_dma_map *dma_map; 801 uint64_t refcount; 802 int ret; 803 804 refcount = spdk_mem_map_translate(g_phys_ref_map, iova, NULL); 805 assert(refcount < UINT64_MAX); 806 if (refcount > 0) { 807 spdk_mem_map_set_translation(g_phys_ref_map, iova, size, refcount + 1); 808 return 0; 809 } 810 811 dma_map = calloc(1, sizeof(*dma_map)); 812 if (dma_map == NULL) { 813 return -ENOMEM; 814 } 815 816 dma_map->map.argsz = sizeof(dma_map->map); 817 dma_map->map.flags = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE; 818 dma_map->map.vaddr = vaddr; 819 dma_map->map.iova = iova; 820 dma_map->map.size = size; 821 822 dma_map->unmap.argsz = sizeof(dma_map->unmap); 823 dma_map->unmap.flags = 0; 824 dma_map->unmap.iova = iova; 825 dma_map->unmap.size = size; 826 827 pthread_mutex_lock(&g_vfio.mutex); 828 if (g_vfio.device_ref == 0) { 829 /* VFIO requires at least one device (IOMMU group) to be added to 830 * a VFIO container before it is possible to perform any IOMMU 831 * operations on that container. This memory will be mapped once 832 * the first device (IOMMU group) is hotplugged. 833 * 834 * Since the vfio container is managed internally by DPDK, it is 835 * also possible that some device is already in that container, but 836 * it's not managed by SPDK - e.g. an NIC attached internally 837 * inside DPDK. We could map the memory straight away in such 838 * scenario, but there's no need to do it. DPDK devices clearly 839 * don't need our mappings and hence we defer the mapping 840 * unconditionally until the first SPDK-managed device is 841 * hotplugged. 842 */ 843 goto out_insert; 844 } 845 846 ret = ioctl(g_vfio.fd, VFIO_IOMMU_MAP_DMA, &dma_map->map); 847 if (ret) { 848 DEBUG_PRINT("Cannot set up DMA mapping, error %d\n", errno); 849 pthread_mutex_unlock(&g_vfio.mutex); 850 free(dma_map); 851 return ret; 852 } 853 854 out_insert: 855 TAILQ_INSERT_TAIL(&g_vfio.maps, dma_map, tailq); 856 pthread_mutex_unlock(&g_vfio.mutex); 857 spdk_mem_map_set_translation(g_phys_ref_map, iova, size, refcount + 1); 858 return 0; 859 } 860 861 static int 862 vtophys_iommu_unmap_dma(uint64_t iova, uint64_t size) 863 { 864 struct spdk_vfio_dma_map *dma_map; 865 uint64_t refcount; 866 int ret; 867 868 pthread_mutex_lock(&g_vfio.mutex); 869 TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) { 870 if (dma_map->map.iova == iova) { 871 break; 872 } 873 } 874 875 if (dma_map == NULL) { 876 DEBUG_PRINT("Cannot clear DMA mapping for IOVA %"PRIx64" - it's not mapped\n", iova); 877 pthread_mutex_unlock(&g_vfio.mutex); 878 return -ENXIO; 879 } 880 881 refcount = spdk_mem_map_translate(g_phys_ref_map, iova, NULL); 882 assert(refcount < UINT64_MAX); 883 if (refcount > 0) { 884 spdk_mem_map_set_translation(g_phys_ref_map, iova, size, refcount - 1); 885 } 886 887 /* We still have outstanding references, don't clear it. */ 888 if (refcount > 1) { 889 pthread_mutex_unlock(&g_vfio.mutex); 890 return 0; 891 } 892 893 /** don't support partial or multiple-page unmap for now */ 894 assert(dma_map->map.size == size); 895 896 if (g_vfio.device_ref == 0) { 897 /* Memory is not mapped anymore, just remove it's references */ 898 goto out_remove; 899 } 900 901 902 ret = ioctl(g_vfio.fd, VFIO_IOMMU_UNMAP_DMA, &dma_map->unmap); 903 if (ret) { 904 DEBUG_PRINT("Cannot clear DMA mapping, error %d\n", errno); 905 pthread_mutex_unlock(&g_vfio.mutex); 906 return ret; 907 } 908 909 out_remove: 910 TAILQ_REMOVE(&g_vfio.maps, dma_map, tailq); 911 pthread_mutex_unlock(&g_vfio.mutex); 912 free(dma_map); 913 return 0; 914 } 915 #endif 916 917 static uint64_t 918 vtophys_get_paddr_memseg(uint64_t vaddr) 919 { 920 uintptr_t paddr; 921 struct rte_memseg *seg; 922 923 seg = rte_mem_virt2memseg((void *)(uintptr_t)vaddr, NULL); 924 if (seg != NULL) { 925 paddr = seg->phys_addr; 926 if (paddr == RTE_BAD_IOVA) { 927 return SPDK_VTOPHYS_ERROR; 928 } 929 paddr += (vaddr - (uintptr_t)seg->addr); 930 return paddr; 931 } 932 933 return SPDK_VTOPHYS_ERROR; 934 } 935 936 /* Try to get the paddr from /proc/self/pagemap */ 937 static uint64_t 938 vtophys_get_paddr_pagemap(uint64_t vaddr) 939 { 940 uintptr_t paddr; 941 942 /* Silence static analyzers */ 943 assert(vaddr != 0); 944 paddr = rte_mem_virt2iova((void *)vaddr); 945 if (paddr == RTE_BAD_IOVA) { 946 /* 947 * The vaddr may be valid but doesn't have a backing page 948 * assigned yet. Touch the page to ensure a backing page 949 * gets assigned, then try to translate again. 950 */ 951 rte_atomic64_read((rte_atomic64_t *)vaddr); 952 paddr = rte_mem_virt2iova((void *)vaddr); 953 } 954 if (paddr == RTE_BAD_IOVA) { 955 /* Unable to get to the physical address. */ 956 return SPDK_VTOPHYS_ERROR; 957 } 958 959 return paddr; 960 } 961 962 /* Try to get the paddr from pci devices */ 963 static uint64_t 964 vtophys_get_paddr_pci(uint64_t vaddr) 965 { 966 struct spdk_vtophys_pci_device *vtophys_dev; 967 uintptr_t paddr; 968 struct rte_pci_device *dev; 969 struct rte_mem_resource *res; 970 unsigned r; 971 972 pthread_mutex_lock(&g_vtophys_pci_devices_mutex); 973 TAILQ_FOREACH(vtophys_dev, &g_vtophys_pci_devices, tailq) { 974 dev = vtophys_dev->pci_device; 975 976 for (r = 0; r < PCI_MAX_RESOURCE; r++) { 977 res = &dev->mem_resource[r]; 978 if (res->phys_addr && vaddr >= (uint64_t)res->addr && 979 vaddr < (uint64_t)res->addr + res->len) { 980 paddr = res->phys_addr + (vaddr - (uint64_t)res->addr); 981 DEBUG_PRINT("%s: %p -> %p\n", __func__, (void *)vaddr, 982 (void *)paddr); 983 pthread_mutex_unlock(&g_vtophys_pci_devices_mutex); 984 return paddr; 985 } 986 } 987 } 988 pthread_mutex_unlock(&g_vtophys_pci_devices_mutex); 989 990 return SPDK_VTOPHYS_ERROR; 991 } 992 993 static int 994 vtophys_notify(void *cb_ctx, struct spdk_mem_map *map, 995 enum spdk_mem_map_notify_action action, 996 void *vaddr, size_t len) 997 { 998 int rc = 0, pci_phys = 0; 999 uint64_t paddr; 1000 1001 if ((uintptr_t)vaddr & ~MASK_256TB) { 1002 DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr); 1003 return -EINVAL; 1004 } 1005 1006 if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) { 1007 DEBUG_PRINT("invalid parameters, vaddr=%p len=%ju\n", 1008 vaddr, len); 1009 return -EINVAL; 1010 } 1011 1012 /* Get the physical address from the DPDK memsegs */ 1013 paddr = vtophys_get_paddr_memseg((uint64_t)vaddr); 1014 1015 switch (action) { 1016 case SPDK_MEM_MAP_NOTIFY_REGISTER: 1017 if (paddr == SPDK_VTOPHYS_ERROR) { 1018 /* This is not an address that DPDK is managing. */ 1019 #if VFIO_ENABLED 1020 enum rte_iova_mode iova_mode; 1021 1022 #if RTE_VERSION >= RTE_VERSION_NUM(19, 11, 0, 0) 1023 iova_mode = rte_eal_iova_mode(); 1024 #else 1025 iova_mode = rte_eal_get_configuration()->iova_mode; 1026 #endif 1027 1028 if (spdk_iommu_is_enabled() && iova_mode == RTE_IOVA_VA) { 1029 /* We'll use the virtual address as the iova to match DPDK. */ 1030 paddr = (uint64_t)vaddr; 1031 rc = vtophys_iommu_map_dma((uint64_t)vaddr, paddr, len); 1032 if (rc) { 1033 return -EFAULT; 1034 } 1035 while (len > 0) { 1036 rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr); 1037 if (rc != 0) { 1038 return rc; 1039 } 1040 vaddr += VALUE_2MB; 1041 paddr += VALUE_2MB; 1042 len -= VALUE_2MB; 1043 } 1044 } else 1045 #endif 1046 { 1047 /* Get the physical address from /proc/self/pagemap. */ 1048 paddr = vtophys_get_paddr_pagemap((uint64_t)vaddr); 1049 if (paddr == SPDK_VTOPHYS_ERROR) { 1050 /* Get the physical address from PCI devices */ 1051 paddr = vtophys_get_paddr_pci((uint64_t)vaddr); 1052 if (paddr == SPDK_VTOPHYS_ERROR) { 1053 DEBUG_PRINT("could not get phys addr for %p\n", vaddr); 1054 return -EFAULT; 1055 } 1056 /* The beginning of this address range points to a PCI resource, 1057 * so the rest must point to a PCI resource as well. 1058 */ 1059 pci_phys = 1; 1060 } 1061 1062 /* Get paddr for each 2MB chunk in this address range */ 1063 while (len > 0) { 1064 /* Get the physical address from /proc/self/pagemap. */ 1065 if (pci_phys) { 1066 paddr = vtophys_get_paddr_pci((uint64_t)vaddr); 1067 } else { 1068 paddr = vtophys_get_paddr_pagemap((uint64_t)vaddr); 1069 } 1070 1071 if (paddr == SPDK_VTOPHYS_ERROR) { 1072 DEBUG_PRINT("could not get phys addr for %p\n", vaddr); 1073 return -EFAULT; 1074 } 1075 1076 /* Since PCI paddr can break the 2MiB physical alignment skip this check for that. */ 1077 if (!pci_phys && (paddr & MASK_2MB)) { 1078 DEBUG_PRINT("invalid paddr 0x%" PRIx64 " - must be 2MB aligned\n", paddr); 1079 return -EINVAL; 1080 } 1081 #if VFIO_ENABLED 1082 /* If the IOMMU is on, but DPDK is using iova-mode=pa, we want to register this memory 1083 * with the IOMMU using the physical address to match. */ 1084 if (spdk_iommu_is_enabled()) { 1085 rc = vtophys_iommu_map_dma((uint64_t)vaddr, paddr, VALUE_2MB); 1086 if (rc) { 1087 DEBUG_PRINT("Unable to assign vaddr %p to paddr 0x%" PRIx64 "\n", vaddr, paddr); 1088 return -EFAULT; 1089 } 1090 } 1091 #endif 1092 1093 rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr); 1094 if (rc != 0) { 1095 return rc; 1096 } 1097 1098 vaddr += VALUE_2MB; 1099 len -= VALUE_2MB; 1100 } 1101 } 1102 } else { 1103 /* This is an address managed by DPDK. Just setup the translations. */ 1104 while (len > 0) { 1105 paddr = vtophys_get_paddr_memseg((uint64_t)vaddr); 1106 if (paddr == SPDK_VTOPHYS_ERROR) { 1107 DEBUG_PRINT("could not get phys addr for %p\n", vaddr); 1108 return -EFAULT; 1109 } 1110 1111 rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr); 1112 if (rc != 0) { 1113 return rc; 1114 } 1115 1116 vaddr += VALUE_2MB; 1117 len -= VALUE_2MB; 1118 } 1119 } 1120 1121 break; 1122 case SPDK_MEM_MAP_NOTIFY_UNREGISTER: 1123 #if VFIO_ENABLED 1124 if (paddr == SPDK_VTOPHYS_ERROR) { 1125 /* 1126 * This is not an address that DPDK is managing. If vfio is enabled, 1127 * we need to unmap the range from the IOMMU 1128 */ 1129 if (spdk_iommu_is_enabled()) { 1130 uint64_t buffer_len = len; 1131 uint8_t *va = vaddr; 1132 enum rte_iova_mode iova_mode; 1133 1134 #if RTE_VERSION >= RTE_VERSION_NUM(19, 11, 0, 0) 1135 iova_mode = rte_eal_iova_mode(); 1136 #else 1137 iova_mode = rte_eal_get_configuration()->iova_mode; 1138 #endif 1139 /* 1140 * In virtual address mode, the region is contiguous and can be done in 1141 * one unmap. 1142 */ 1143 if (iova_mode == RTE_IOVA_VA) { 1144 paddr = spdk_mem_map_translate(map, (uint64_t)va, &buffer_len); 1145 if (buffer_len != len || paddr != (uintptr_t)va) { 1146 DEBUG_PRINT("Unmapping %p with length %lu failed because " 1147 "translation had address 0x%" PRIx64 " and length %lu\n", 1148 va, len, paddr, buffer_len); 1149 return -EINVAL; 1150 } 1151 rc = vtophys_iommu_unmap_dma(paddr, len); 1152 if (rc) { 1153 DEBUG_PRINT("Failed to iommu unmap paddr 0x%" PRIx64 "\n", paddr); 1154 return -EFAULT; 1155 } 1156 } else if (iova_mode == RTE_IOVA_PA) { 1157 /* Get paddr for each 2MB chunk in this address range */ 1158 while (buffer_len > 0) { 1159 paddr = spdk_mem_map_translate(map, (uint64_t)va, NULL); 1160 1161 if (paddr == SPDK_VTOPHYS_ERROR || buffer_len < VALUE_2MB) { 1162 DEBUG_PRINT("could not get phys addr for %p\n", va); 1163 return -EFAULT; 1164 } 1165 1166 rc = vtophys_iommu_unmap_dma(paddr, VALUE_2MB); 1167 if (rc) { 1168 DEBUG_PRINT("Failed to iommu unmap paddr 0x%" PRIx64 "\n", paddr); 1169 return -EFAULT; 1170 } 1171 1172 va += VALUE_2MB; 1173 buffer_len -= VALUE_2MB; 1174 } 1175 } 1176 } 1177 } 1178 #endif 1179 while (len > 0) { 1180 rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, VALUE_2MB); 1181 if (rc != 0) { 1182 return rc; 1183 } 1184 1185 vaddr += VALUE_2MB; 1186 len -= VALUE_2MB; 1187 } 1188 1189 break; 1190 default: 1191 SPDK_UNREACHABLE(); 1192 } 1193 1194 return rc; 1195 } 1196 1197 static int 1198 vtophys_check_contiguous_entries(uint64_t paddr1, uint64_t paddr2) 1199 { 1200 /* This function is always called with paddrs for two subsequent 1201 * 2MB chunks in virtual address space, so those chunks will be only 1202 * physically contiguous if the physical addresses are 2MB apart 1203 * from each other as well. 1204 */ 1205 return (paddr2 - paddr1 == VALUE_2MB); 1206 } 1207 1208 #if VFIO_ENABLED 1209 1210 static bool 1211 vfio_enabled(void) 1212 { 1213 return rte_vfio_is_enabled("vfio_pci"); 1214 } 1215 1216 /* Check if IOMMU is enabled on the system */ 1217 static bool 1218 has_iommu_groups(void) 1219 { 1220 struct dirent *d; 1221 int count = 0; 1222 DIR *dir = opendir("/sys/kernel/iommu_groups"); 1223 1224 if (dir == NULL) { 1225 return false; 1226 } 1227 1228 while (count < 3 && (d = readdir(dir)) != NULL) { 1229 count++; 1230 } 1231 1232 closedir(dir); 1233 /* there will always be ./ and ../ entries */ 1234 return count > 2; 1235 } 1236 1237 static bool 1238 vfio_noiommu_enabled(void) 1239 { 1240 return rte_vfio_noiommu_is_enabled(); 1241 } 1242 1243 static void 1244 vtophys_iommu_init(void) 1245 { 1246 char proc_fd_path[PATH_MAX + 1]; 1247 char link_path[PATH_MAX + 1]; 1248 const char vfio_path[] = "/dev/vfio/vfio"; 1249 DIR *dir; 1250 struct dirent *d; 1251 1252 if (!vfio_enabled()) { 1253 return; 1254 } 1255 1256 if (vfio_noiommu_enabled()) { 1257 g_vfio.noiommu_enabled = true; 1258 } else if (!has_iommu_groups()) { 1259 return; 1260 } 1261 1262 dir = opendir("/proc/self/fd"); 1263 if (!dir) { 1264 DEBUG_PRINT("Failed to open /proc/self/fd (%d)\n", errno); 1265 return; 1266 } 1267 1268 while ((d = readdir(dir)) != NULL) { 1269 if (d->d_type != DT_LNK) { 1270 continue; 1271 } 1272 1273 snprintf(proc_fd_path, sizeof(proc_fd_path), "/proc/self/fd/%s", d->d_name); 1274 if (readlink(proc_fd_path, link_path, sizeof(link_path)) != (sizeof(vfio_path) - 1)) { 1275 continue; 1276 } 1277 1278 if (memcmp(link_path, vfio_path, sizeof(vfio_path) - 1) == 0) { 1279 sscanf(d->d_name, "%d", &g_vfio.fd); 1280 break; 1281 } 1282 } 1283 1284 closedir(dir); 1285 1286 if (g_vfio.fd < 0) { 1287 DEBUG_PRINT("Failed to discover DPDK VFIO container fd.\n"); 1288 return; 1289 } 1290 1291 g_vfio.enabled = true; 1292 1293 return; 1294 } 1295 #endif 1296 1297 void 1298 vtophys_pci_device_added(struct rte_pci_device *pci_device) 1299 { 1300 struct spdk_vtophys_pci_device *vtophys_dev; 1301 1302 pthread_mutex_lock(&g_vtophys_pci_devices_mutex); 1303 1304 vtophys_dev = calloc(1, sizeof(*vtophys_dev)); 1305 if (vtophys_dev) { 1306 vtophys_dev->pci_device = pci_device; 1307 TAILQ_INSERT_TAIL(&g_vtophys_pci_devices, vtophys_dev, tailq); 1308 } else { 1309 DEBUG_PRINT("Memory allocation error\n"); 1310 } 1311 pthread_mutex_unlock(&g_vtophys_pci_devices_mutex); 1312 1313 #if VFIO_ENABLED 1314 struct spdk_vfio_dma_map *dma_map; 1315 int ret; 1316 1317 if (!g_vfio.enabled) { 1318 return; 1319 } 1320 1321 pthread_mutex_lock(&g_vfio.mutex); 1322 g_vfio.device_ref++; 1323 if (g_vfio.device_ref > 1) { 1324 pthread_mutex_unlock(&g_vfio.mutex); 1325 return; 1326 } 1327 1328 /* This is the first SPDK device using DPDK vfio. This means that the first 1329 * IOMMU group might have been just been added to the DPDK vfio container. 1330 * From this point it is certain that the memory can be mapped now. 1331 */ 1332 TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) { 1333 ret = ioctl(g_vfio.fd, VFIO_IOMMU_MAP_DMA, &dma_map->map); 1334 if (ret) { 1335 DEBUG_PRINT("Cannot update DMA mapping, error %d\n", errno); 1336 break; 1337 } 1338 } 1339 pthread_mutex_unlock(&g_vfio.mutex); 1340 #endif 1341 } 1342 1343 void 1344 vtophys_pci_device_removed(struct rte_pci_device *pci_device) 1345 { 1346 struct spdk_vtophys_pci_device *vtophys_dev; 1347 1348 pthread_mutex_lock(&g_vtophys_pci_devices_mutex); 1349 TAILQ_FOREACH(vtophys_dev, &g_vtophys_pci_devices, tailq) { 1350 if (vtophys_dev->pci_device == pci_device) { 1351 TAILQ_REMOVE(&g_vtophys_pci_devices, vtophys_dev, tailq); 1352 free(vtophys_dev); 1353 break; 1354 } 1355 } 1356 pthread_mutex_unlock(&g_vtophys_pci_devices_mutex); 1357 1358 #if VFIO_ENABLED 1359 struct spdk_vfio_dma_map *dma_map; 1360 int ret; 1361 1362 if (!g_vfio.enabled) { 1363 return; 1364 } 1365 1366 pthread_mutex_lock(&g_vfio.mutex); 1367 assert(g_vfio.device_ref > 0); 1368 g_vfio.device_ref--; 1369 if (g_vfio.device_ref > 0) { 1370 pthread_mutex_unlock(&g_vfio.mutex); 1371 return; 1372 } 1373 1374 /* This is the last SPDK device using DPDK vfio. If DPDK doesn't have 1375 * any additional devices using it's vfio container, all the mappings 1376 * will be automatically removed by the Linux vfio driver. We unmap 1377 * the memory manually to be able to easily re-map it later regardless 1378 * of other, external factors. 1379 */ 1380 TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) { 1381 ret = ioctl(g_vfio.fd, VFIO_IOMMU_UNMAP_DMA, &dma_map->unmap); 1382 if (ret) { 1383 DEBUG_PRINT("Cannot unmap DMA memory, error %d\n", errno); 1384 break; 1385 } 1386 } 1387 pthread_mutex_unlock(&g_vfio.mutex); 1388 #endif 1389 } 1390 1391 int 1392 vtophys_init(void) 1393 { 1394 const struct spdk_mem_map_ops vtophys_map_ops = { 1395 .notify_cb = vtophys_notify, 1396 .are_contiguous = vtophys_check_contiguous_entries, 1397 }; 1398 1399 const struct spdk_mem_map_ops phys_ref_map_ops = { 1400 .notify_cb = NULL, 1401 .are_contiguous = NULL, 1402 }; 1403 1404 #if VFIO_ENABLED 1405 vtophys_iommu_init(); 1406 #endif 1407 1408 g_phys_ref_map = spdk_mem_map_alloc(0, &phys_ref_map_ops, NULL); 1409 if (g_phys_ref_map == NULL) { 1410 DEBUG_PRINT("phys_ref map allocation failed.\n"); 1411 return -ENOMEM; 1412 } 1413 1414 g_vtophys_map = spdk_mem_map_alloc(SPDK_VTOPHYS_ERROR, &vtophys_map_ops, NULL); 1415 if (g_vtophys_map == NULL) { 1416 DEBUG_PRINT("vtophys map allocation failed\n"); 1417 return -ENOMEM; 1418 } 1419 return 0; 1420 } 1421 1422 uint64_t 1423 spdk_vtophys(void *buf, uint64_t *size) 1424 { 1425 uint64_t vaddr, paddr_2mb; 1426 1427 vaddr = (uint64_t)buf; 1428 paddr_2mb = spdk_mem_map_translate(g_vtophys_map, vaddr, size); 1429 1430 /* 1431 * SPDK_VTOPHYS_ERROR has all bits set, so if the lookup returned SPDK_VTOPHYS_ERROR, 1432 * we will still bitwise-or it with the buf offset below, but the result will still be 1433 * SPDK_VTOPHYS_ERROR. However now that we do + rather than | (due to PCI vtophys being 1434 * unaligned) we must now check the return value before addition. 1435 */ 1436 SPDK_STATIC_ASSERT(SPDK_VTOPHYS_ERROR == UINT64_C(-1), "SPDK_VTOPHYS_ERROR should be all 1s"); 1437 if (paddr_2mb == SPDK_VTOPHYS_ERROR) { 1438 return SPDK_VTOPHYS_ERROR; 1439 } else { 1440 return paddr_2mb + (vaddr & MASK_2MB); 1441 } 1442 } 1443