1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) Intel Corporation. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include "spdk/stdinc.h" 35 36 #include "env_internal.h" 37 38 #include <rte_config.h> 39 #include <rte_memory.h> 40 #include <rte_eal_memconfig.h> 41 42 #include "spdk_internal/assert.h" 43 44 #include "spdk/assert.h" 45 #include "spdk/likely.h" 46 #include "spdk/queue.h" 47 #include "spdk/util.h" 48 #include "spdk/memory.h" 49 #include "spdk/env_dpdk.h" 50 #include "spdk/log.h" 51 52 #ifndef __linux__ 53 #define VFIO_ENABLED 0 54 #else 55 #include <linux/version.h> 56 #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0) 57 #define VFIO_ENABLED 1 58 #include <linux/vfio.h> 59 #include <rte_vfio.h> 60 61 struct spdk_vfio_dma_map { 62 struct vfio_iommu_type1_dma_map map; 63 TAILQ_ENTRY(spdk_vfio_dma_map) tailq; 64 }; 65 66 struct vfio_cfg { 67 int fd; 68 bool enabled; 69 bool noiommu_enabled; 70 unsigned device_ref; 71 TAILQ_HEAD(, spdk_vfio_dma_map) maps; 72 pthread_mutex_t mutex; 73 }; 74 75 static struct vfio_cfg g_vfio = { 76 .fd = -1, 77 .enabled = false, 78 .noiommu_enabled = false, 79 .device_ref = 0, 80 .maps = TAILQ_HEAD_INITIALIZER(g_vfio.maps), 81 .mutex = PTHREAD_MUTEX_INITIALIZER 82 }; 83 84 #else 85 #define VFIO_ENABLED 0 86 #endif 87 #endif 88 89 #if DEBUG 90 #define DEBUG_PRINT(...) SPDK_ERRLOG(__VA_ARGS__) 91 #else 92 #define DEBUG_PRINT(...) 93 #endif 94 95 #define FN_2MB_TO_4KB(fn) (fn << (SHIFT_2MB - SHIFT_4KB)) 96 #define FN_4KB_TO_2MB(fn) (fn >> (SHIFT_2MB - SHIFT_4KB)) 97 98 #define MAP_256TB_IDX(vfn_2mb) ((vfn_2mb) >> (SHIFT_1GB - SHIFT_2MB)) 99 #define MAP_1GB_IDX(vfn_2mb) ((vfn_2mb) & ((1ULL << (SHIFT_1GB - SHIFT_2MB)) - 1)) 100 101 /* Page is registered */ 102 #define REG_MAP_REGISTERED (1ULL << 62) 103 104 /* A notification region barrier. The 2MB translation entry that's marked 105 * with this flag must be unregistered separately. This allows contiguous 106 * regions to be unregistered in the same chunks they were registered. 107 */ 108 #define REG_MAP_NOTIFY_START (1ULL << 63) 109 110 /* Translation of a single 2MB page. */ 111 struct map_2mb { 112 uint64_t translation_2mb; 113 }; 114 115 /* Second-level map table indexed by bits [21..29] of the virtual address. 116 * Each entry contains the address translation or error for entries that haven't 117 * been retrieved yet. 118 */ 119 struct map_1gb { 120 struct map_2mb map[1ULL << (SHIFT_1GB - SHIFT_2MB)]; 121 }; 122 123 /* Top-level map table indexed by bits [30..47] of the virtual address. 124 * Each entry points to a second-level map table or NULL. 125 */ 126 struct map_256tb { 127 struct map_1gb *map[1ULL << (SHIFT_256TB - SHIFT_1GB)]; 128 }; 129 130 /* Page-granularity memory address translation */ 131 struct spdk_mem_map { 132 struct map_256tb map_256tb; 133 pthread_mutex_t mutex; 134 uint64_t default_translation; 135 struct spdk_mem_map_ops ops; 136 void *cb_ctx; 137 TAILQ_ENTRY(spdk_mem_map) tailq; 138 }; 139 140 /* Registrations map. The 64 bit translations are bit fields with the 141 * following layout (starting with the low bits): 142 * 0 - 61 : reserved 143 * 62 - 63 : flags 144 */ 145 static struct spdk_mem_map *g_mem_reg_map; 146 static TAILQ_HEAD(spdk_mem_map_head, spdk_mem_map) g_spdk_mem_maps = 147 TAILQ_HEAD_INITIALIZER(g_spdk_mem_maps); 148 static pthread_mutex_t g_spdk_mem_map_mutex = PTHREAD_MUTEX_INITIALIZER; 149 150 static bool g_legacy_mem; 151 152 /* 153 * Walk the currently registered memory via the main memory registration map 154 * and call the new map's notify callback for each virtually contiguous region. 155 */ 156 static int 157 mem_map_notify_walk(struct spdk_mem_map *map, enum spdk_mem_map_notify_action action) 158 { 159 size_t idx_256tb; 160 uint64_t idx_1gb; 161 uint64_t contig_start = UINT64_MAX; 162 uint64_t contig_end = UINT64_MAX; 163 struct map_1gb *map_1gb; 164 int rc; 165 166 if (!g_mem_reg_map) { 167 return -EINVAL; 168 } 169 170 /* Hold the memory registration map mutex so no new registrations can be added while we are looping. */ 171 pthread_mutex_lock(&g_mem_reg_map->mutex); 172 173 for (idx_256tb = 0; 174 idx_256tb < sizeof(g_mem_reg_map->map_256tb.map) / sizeof(g_mem_reg_map->map_256tb.map[0]); 175 idx_256tb++) { 176 map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb]; 177 178 if (!map_1gb) { 179 if (contig_start != UINT64_MAX) { 180 /* End of of a virtually contiguous range */ 181 rc = map->ops.notify_cb(map->cb_ctx, map, action, 182 (void *)contig_start, 183 contig_end - contig_start + VALUE_2MB); 184 /* Don't bother handling unregister failures. It can't be any worse */ 185 if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) { 186 goto err_unregister; 187 } 188 } 189 contig_start = UINT64_MAX; 190 continue; 191 } 192 193 for (idx_1gb = 0; idx_1gb < sizeof(map_1gb->map) / sizeof(map_1gb->map[0]); idx_1gb++) { 194 if ((map_1gb->map[idx_1gb].translation_2mb & REG_MAP_REGISTERED) && 195 (contig_start == UINT64_MAX || 196 (map_1gb->map[idx_1gb].translation_2mb & REG_MAP_NOTIFY_START) == 0)) { 197 /* Rebuild the virtual address from the indexes */ 198 uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB); 199 200 if (contig_start == UINT64_MAX) { 201 contig_start = vaddr; 202 } 203 204 contig_end = vaddr; 205 } else { 206 if (contig_start != UINT64_MAX) { 207 /* End of of a virtually contiguous range */ 208 rc = map->ops.notify_cb(map->cb_ctx, map, action, 209 (void *)contig_start, 210 contig_end - contig_start + VALUE_2MB); 211 /* Don't bother handling unregister failures. It can't be any worse */ 212 if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) { 213 goto err_unregister; 214 } 215 216 /* This page might be a part of a neighbour region, so process 217 * it again. The idx_1gb will be incremented immediately. 218 */ 219 idx_1gb--; 220 } 221 contig_start = UINT64_MAX; 222 } 223 } 224 } 225 226 pthread_mutex_unlock(&g_mem_reg_map->mutex); 227 return 0; 228 229 err_unregister: 230 /* Unwind to the first empty translation so we don't unregister 231 * a region that just failed to register. 232 */ 233 idx_256tb = MAP_256TB_IDX((contig_start >> SHIFT_2MB) - 1); 234 idx_1gb = MAP_1GB_IDX((contig_start >> SHIFT_2MB) - 1); 235 contig_start = UINT64_MAX; 236 contig_end = UINT64_MAX; 237 238 /* Unregister any memory we managed to register before the failure */ 239 for (; idx_256tb < SIZE_MAX; idx_256tb--) { 240 map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb]; 241 242 if (!map_1gb) { 243 if (contig_end != UINT64_MAX) { 244 /* End of of a virtually contiguous range */ 245 map->ops.notify_cb(map->cb_ctx, map, 246 SPDK_MEM_MAP_NOTIFY_UNREGISTER, 247 (void *)contig_start, 248 contig_end - contig_start + VALUE_2MB); 249 } 250 contig_end = UINT64_MAX; 251 continue; 252 } 253 254 for (; idx_1gb < UINT64_MAX; idx_1gb--) { 255 if ((map_1gb->map[idx_1gb].translation_2mb & REG_MAP_REGISTERED) && 256 (contig_end == UINT64_MAX || (map_1gb->map[idx_1gb].translation_2mb & REG_MAP_NOTIFY_START) == 0)) { 257 /* Rebuild the virtual address from the indexes */ 258 uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB); 259 260 if (contig_end == UINT64_MAX) { 261 contig_end = vaddr; 262 } 263 contig_start = vaddr; 264 } else { 265 if (contig_end != UINT64_MAX) { 266 /* End of of a virtually contiguous range */ 267 map->ops.notify_cb(map->cb_ctx, map, 268 SPDK_MEM_MAP_NOTIFY_UNREGISTER, 269 (void *)contig_start, 270 contig_end - contig_start + VALUE_2MB); 271 idx_1gb++; 272 } 273 contig_end = UINT64_MAX; 274 } 275 } 276 idx_1gb = sizeof(map_1gb->map) / sizeof(map_1gb->map[0]) - 1; 277 } 278 279 pthread_mutex_unlock(&g_mem_reg_map->mutex); 280 return rc; 281 } 282 283 struct spdk_mem_map * 284 spdk_mem_map_alloc(uint64_t default_translation, const struct spdk_mem_map_ops *ops, void *cb_ctx) 285 { 286 struct spdk_mem_map *map; 287 int rc; 288 289 map = calloc(1, sizeof(*map)); 290 if (map == NULL) { 291 return NULL; 292 } 293 294 if (pthread_mutex_init(&map->mutex, NULL)) { 295 free(map); 296 return NULL; 297 } 298 299 map->default_translation = default_translation; 300 map->cb_ctx = cb_ctx; 301 if (ops) { 302 map->ops = *ops; 303 } 304 305 if (ops && ops->notify_cb) { 306 pthread_mutex_lock(&g_spdk_mem_map_mutex); 307 rc = mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_REGISTER); 308 if (rc != 0) { 309 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 310 DEBUG_PRINT("Initial mem_map notify failed\n"); 311 pthread_mutex_destroy(&map->mutex); 312 free(map); 313 return NULL; 314 } 315 TAILQ_INSERT_TAIL(&g_spdk_mem_maps, map, tailq); 316 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 317 } 318 319 return map; 320 } 321 322 void 323 spdk_mem_map_free(struct spdk_mem_map **pmap) 324 { 325 struct spdk_mem_map *map; 326 size_t i; 327 328 if (!pmap) { 329 return; 330 } 331 332 map = *pmap; 333 334 if (!map) { 335 return; 336 } 337 338 if (map->ops.notify_cb) { 339 pthread_mutex_lock(&g_spdk_mem_map_mutex); 340 mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_UNREGISTER); 341 TAILQ_REMOVE(&g_spdk_mem_maps, map, tailq); 342 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 343 } 344 345 for (i = 0; i < sizeof(map->map_256tb.map) / sizeof(map->map_256tb.map[0]); i++) { 346 free(map->map_256tb.map[i]); 347 } 348 349 pthread_mutex_destroy(&map->mutex); 350 351 free(map); 352 *pmap = NULL; 353 } 354 355 int 356 spdk_mem_register(void *vaddr, size_t len) 357 { 358 struct spdk_mem_map *map; 359 int rc; 360 void *seg_vaddr; 361 size_t seg_len; 362 uint64_t reg; 363 364 if ((uintptr_t)vaddr & ~MASK_256TB) { 365 DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr); 366 return -EINVAL; 367 } 368 369 if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) { 370 DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n", 371 __func__, vaddr, len); 372 return -EINVAL; 373 } 374 375 if (len == 0) { 376 return 0; 377 } 378 379 pthread_mutex_lock(&g_spdk_mem_map_mutex); 380 381 seg_vaddr = vaddr; 382 seg_len = len; 383 while (seg_len > 0) { 384 reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL); 385 if (reg & REG_MAP_REGISTERED) { 386 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 387 return -EBUSY; 388 } 389 seg_vaddr += VALUE_2MB; 390 seg_len -= VALUE_2MB; 391 } 392 393 seg_vaddr = vaddr; 394 seg_len = 0; 395 while (len > 0) { 396 spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB, 397 seg_len == 0 ? REG_MAP_REGISTERED | REG_MAP_NOTIFY_START : REG_MAP_REGISTERED); 398 seg_len += VALUE_2MB; 399 vaddr += VALUE_2MB; 400 len -= VALUE_2MB; 401 } 402 403 TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) { 404 rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_REGISTER, seg_vaddr, seg_len); 405 if (rc != 0) { 406 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 407 return rc; 408 } 409 } 410 411 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 412 return 0; 413 } 414 415 int 416 spdk_mem_unregister(void *vaddr, size_t len) 417 { 418 struct spdk_mem_map *map; 419 int rc; 420 void *seg_vaddr; 421 size_t seg_len; 422 uint64_t reg, newreg; 423 424 if ((uintptr_t)vaddr & ~MASK_256TB) { 425 DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr); 426 return -EINVAL; 427 } 428 429 if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) { 430 DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n", 431 __func__, vaddr, len); 432 return -EINVAL; 433 } 434 435 pthread_mutex_lock(&g_spdk_mem_map_mutex); 436 437 /* The first page must be a start of a region. Also check if it's 438 * registered to make sure we don't return -ERANGE for non-registered 439 * regions. 440 */ 441 reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL); 442 if ((reg & REG_MAP_REGISTERED) && (reg & REG_MAP_NOTIFY_START) == 0) { 443 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 444 return -ERANGE; 445 } 446 447 seg_vaddr = vaddr; 448 seg_len = len; 449 while (seg_len > 0) { 450 reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL); 451 if ((reg & REG_MAP_REGISTERED) == 0) { 452 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 453 return -EINVAL; 454 } 455 seg_vaddr += VALUE_2MB; 456 seg_len -= VALUE_2MB; 457 } 458 459 newreg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL); 460 /* If the next page is registered, it must be a start of a region as well, 461 * otherwise we'd be unregistering only a part of a region. 462 */ 463 if ((newreg & REG_MAP_NOTIFY_START) == 0 && (newreg & REG_MAP_REGISTERED)) { 464 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 465 return -ERANGE; 466 } 467 seg_vaddr = vaddr; 468 seg_len = 0; 469 470 while (len > 0) { 471 reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL); 472 spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB, 0); 473 474 if (seg_len > 0 && (reg & REG_MAP_NOTIFY_START)) { 475 TAILQ_FOREACH_REVERSE(map, &g_spdk_mem_maps, spdk_mem_map_head, tailq) { 476 rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len); 477 if (rc != 0) { 478 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 479 return rc; 480 } 481 } 482 483 seg_vaddr = vaddr; 484 seg_len = VALUE_2MB; 485 } else { 486 seg_len += VALUE_2MB; 487 } 488 489 vaddr += VALUE_2MB; 490 len -= VALUE_2MB; 491 } 492 493 if (seg_len > 0) { 494 TAILQ_FOREACH_REVERSE(map, &g_spdk_mem_maps, spdk_mem_map_head, tailq) { 495 rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len); 496 if (rc != 0) { 497 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 498 return rc; 499 } 500 } 501 } 502 503 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 504 return 0; 505 } 506 507 int 508 spdk_mem_reserve(void *vaddr, size_t len) 509 { 510 struct spdk_mem_map *map; 511 void *seg_vaddr; 512 size_t seg_len; 513 uint64_t reg; 514 515 if ((uintptr_t)vaddr & ~MASK_256TB) { 516 DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr); 517 return -EINVAL; 518 } 519 520 if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) { 521 DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n", 522 __func__, vaddr, len); 523 return -EINVAL; 524 } 525 526 if (len == 0) { 527 return 0; 528 } 529 530 pthread_mutex_lock(&g_spdk_mem_map_mutex); 531 532 /* Check if any part of this range is already registered */ 533 seg_vaddr = vaddr; 534 seg_len = len; 535 while (seg_len > 0) { 536 reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL); 537 if (reg & REG_MAP_REGISTERED) { 538 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 539 return -EBUSY; 540 } 541 seg_vaddr += VALUE_2MB; 542 seg_len -= VALUE_2MB; 543 } 544 545 /* Simply set the translation to the memory map's default. This allocates the space in the 546 * map but does not provide a valid translation. */ 547 spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, len, 548 g_mem_reg_map->default_translation); 549 550 TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) { 551 spdk_mem_map_set_translation(map, (uint64_t)vaddr, len, map->default_translation); 552 } 553 554 pthread_mutex_unlock(&g_spdk_mem_map_mutex); 555 return 0; 556 } 557 558 static struct map_1gb * 559 mem_map_get_map_1gb(struct spdk_mem_map *map, uint64_t vfn_2mb) 560 { 561 struct map_1gb *map_1gb; 562 uint64_t idx_256tb = MAP_256TB_IDX(vfn_2mb); 563 size_t i; 564 565 if (spdk_unlikely(idx_256tb >= SPDK_COUNTOF(map->map_256tb.map))) { 566 return NULL; 567 } 568 569 map_1gb = map->map_256tb.map[idx_256tb]; 570 571 if (!map_1gb) { 572 pthread_mutex_lock(&map->mutex); 573 574 /* Recheck to make sure nobody else got the mutex first. */ 575 map_1gb = map->map_256tb.map[idx_256tb]; 576 if (!map_1gb) { 577 map_1gb = malloc(sizeof(struct map_1gb)); 578 if (map_1gb) { 579 /* initialize all entries to default translation */ 580 for (i = 0; i < SPDK_COUNTOF(map_1gb->map); i++) { 581 map_1gb->map[i].translation_2mb = map->default_translation; 582 } 583 map->map_256tb.map[idx_256tb] = map_1gb; 584 } 585 } 586 587 pthread_mutex_unlock(&map->mutex); 588 589 if (!map_1gb) { 590 DEBUG_PRINT("allocation failed\n"); 591 return NULL; 592 } 593 } 594 595 return map_1gb; 596 } 597 598 int 599 spdk_mem_map_set_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size, 600 uint64_t translation) 601 { 602 uint64_t vfn_2mb; 603 struct map_1gb *map_1gb; 604 uint64_t idx_1gb; 605 struct map_2mb *map_2mb; 606 607 if ((uintptr_t)vaddr & ~MASK_256TB) { 608 DEBUG_PRINT("invalid usermode virtual address %" PRIu64 "\n", vaddr); 609 return -EINVAL; 610 } 611 612 /* For now, only 2 MB-aligned registrations are supported */ 613 if (((uintptr_t)vaddr & MASK_2MB) || (size & MASK_2MB)) { 614 DEBUG_PRINT("invalid %s parameters, vaddr=%" PRIu64 " len=%" PRIu64 "\n", 615 __func__, vaddr, size); 616 return -EINVAL; 617 } 618 619 vfn_2mb = vaddr >> SHIFT_2MB; 620 621 while (size) { 622 map_1gb = mem_map_get_map_1gb(map, vfn_2mb); 623 if (!map_1gb) { 624 DEBUG_PRINT("could not get %p map\n", (void *)vaddr); 625 return -ENOMEM; 626 } 627 628 idx_1gb = MAP_1GB_IDX(vfn_2mb); 629 map_2mb = &map_1gb->map[idx_1gb]; 630 map_2mb->translation_2mb = translation; 631 632 size -= VALUE_2MB; 633 vfn_2mb++; 634 } 635 636 return 0; 637 } 638 639 int 640 spdk_mem_map_clear_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size) 641 { 642 return spdk_mem_map_set_translation(map, vaddr, size, map->default_translation); 643 } 644 645 inline uint64_t 646 spdk_mem_map_translate(const struct spdk_mem_map *map, uint64_t vaddr, uint64_t *size) 647 { 648 const struct map_1gb *map_1gb; 649 const struct map_2mb *map_2mb; 650 uint64_t idx_256tb; 651 uint64_t idx_1gb; 652 uint64_t vfn_2mb; 653 uint64_t cur_size; 654 uint64_t prev_translation; 655 uint64_t orig_translation; 656 657 if (spdk_unlikely(vaddr & ~MASK_256TB)) { 658 DEBUG_PRINT("invalid usermode virtual address %p\n", (void *)vaddr); 659 return map->default_translation; 660 } 661 662 vfn_2mb = vaddr >> SHIFT_2MB; 663 idx_256tb = MAP_256TB_IDX(vfn_2mb); 664 idx_1gb = MAP_1GB_IDX(vfn_2mb); 665 666 map_1gb = map->map_256tb.map[idx_256tb]; 667 if (spdk_unlikely(!map_1gb)) { 668 return map->default_translation; 669 } 670 671 cur_size = VALUE_2MB - _2MB_OFFSET(vaddr); 672 map_2mb = &map_1gb->map[idx_1gb]; 673 if (size == NULL || map->ops.are_contiguous == NULL || 674 map_2mb->translation_2mb == map->default_translation) { 675 if (size != NULL) { 676 *size = spdk_min(*size, cur_size); 677 } 678 return map_2mb->translation_2mb; 679 } 680 681 orig_translation = map_2mb->translation_2mb; 682 prev_translation = orig_translation; 683 while (cur_size < *size) { 684 vfn_2mb++; 685 idx_256tb = MAP_256TB_IDX(vfn_2mb); 686 idx_1gb = MAP_1GB_IDX(vfn_2mb); 687 688 map_1gb = map->map_256tb.map[idx_256tb]; 689 if (spdk_unlikely(!map_1gb)) { 690 break; 691 } 692 693 map_2mb = &map_1gb->map[idx_1gb]; 694 if (!map->ops.are_contiguous(prev_translation, map_2mb->translation_2mb)) { 695 break; 696 } 697 698 cur_size += VALUE_2MB; 699 prev_translation = map_2mb->translation_2mb; 700 } 701 702 *size = spdk_min(*size, cur_size); 703 return orig_translation; 704 } 705 706 static void 707 memory_hotplug_cb(enum rte_mem_event event_type, 708 const void *addr, size_t len, void *arg) 709 { 710 if (event_type == RTE_MEM_EVENT_ALLOC) { 711 spdk_mem_register((void *)addr, len); 712 713 #if RTE_VERSION >= RTE_VERSION_NUM(19, 02, 0, 0) 714 if (!spdk_env_dpdk_external_init()) { 715 return; 716 } 717 #endif 718 719 /* Prior to DPDK 19.02, we have to worry about DPDK 720 * freeing memory in different units than it was allocated. 721 * That doesn't work with things like RDMA MRs. So for 722 * those versions of DPDK, mark each segment so that DPDK 723 * won't later free it. That ensures we don't have to deal 724 * with that scenario. 725 * 726 * DPDK 19.02 added the --match-allocations RTE flag to 727 * avoid this condition. 728 * 729 * Note: if the user initialized DPDK separately, we can't 730 * be sure that --match-allocations was specified, so need 731 * to still mark the segments so they aren't freed. 732 */ 733 while (len > 0) { 734 struct rte_memseg *seg; 735 736 seg = rte_mem_virt2memseg(addr, NULL); 737 assert(seg != NULL); 738 seg->flags |= RTE_MEMSEG_FLAG_DO_NOT_FREE; 739 addr = (void *)((uintptr_t)addr + seg->hugepage_sz); 740 len -= seg->hugepage_sz; 741 } 742 } else if (event_type == RTE_MEM_EVENT_FREE) { 743 spdk_mem_unregister((void *)addr, len); 744 } 745 } 746 747 static int 748 memory_iter_cb(const struct rte_memseg_list *msl, 749 const struct rte_memseg *ms, size_t len, void *arg) 750 { 751 return spdk_mem_register(ms->addr, len); 752 } 753 754 int 755 mem_map_init(bool legacy_mem) 756 { 757 g_legacy_mem = legacy_mem; 758 759 g_mem_reg_map = spdk_mem_map_alloc(0, NULL, NULL); 760 if (g_mem_reg_map == NULL) { 761 DEBUG_PRINT("memory registration map allocation failed\n"); 762 return -ENOMEM; 763 } 764 765 /* 766 * Walk all DPDK memory segments and register them 767 * with the main memory map 768 */ 769 rte_mem_event_callback_register("spdk", memory_hotplug_cb, NULL); 770 rte_memseg_contig_walk(memory_iter_cb, NULL); 771 return 0; 772 } 773 774 bool 775 spdk_iommu_is_enabled(void) 776 { 777 #if VFIO_ENABLED 778 return g_vfio.enabled && !g_vfio.noiommu_enabled; 779 #else 780 return false; 781 #endif 782 } 783 784 struct spdk_vtophys_pci_device { 785 struct rte_pci_device *pci_device; 786 TAILQ_ENTRY(spdk_vtophys_pci_device) tailq; 787 }; 788 789 static pthread_mutex_t g_vtophys_pci_devices_mutex = PTHREAD_MUTEX_INITIALIZER; 790 static TAILQ_HEAD(, spdk_vtophys_pci_device) g_vtophys_pci_devices = 791 TAILQ_HEAD_INITIALIZER(g_vtophys_pci_devices); 792 793 static struct spdk_mem_map *g_vtophys_map; 794 static struct spdk_mem_map *g_phys_ref_map; 795 796 #if VFIO_ENABLED 797 static int 798 vtophys_iommu_map_dma(uint64_t vaddr, uint64_t iova, uint64_t size) 799 { 800 struct spdk_vfio_dma_map *dma_map; 801 uint64_t refcount; 802 int ret; 803 804 refcount = spdk_mem_map_translate(g_phys_ref_map, iova, NULL); 805 assert(refcount < UINT64_MAX); 806 if (refcount > 0) { 807 spdk_mem_map_set_translation(g_phys_ref_map, iova, size, refcount + 1); 808 return 0; 809 } 810 811 dma_map = calloc(1, sizeof(*dma_map)); 812 if (dma_map == NULL) { 813 return -ENOMEM; 814 } 815 816 dma_map->map.argsz = sizeof(dma_map->map); 817 dma_map->map.flags = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE; 818 dma_map->map.vaddr = vaddr; 819 dma_map->map.iova = iova; 820 dma_map->map.size = size; 821 822 pthread_mutex_lock(&g_vfio.mutex); 823 if (g_vfio.device_ref == 0) { 824 /* VFIO requires at least one device (IOMMU group) to be added to 825 * a VFIO container before it is possible to perform any IOMMU 826 * operations on that container. This memory will be mapped once 827 * the first device (IOMMU group) is hotplugged. 828 * 829 * Since the vfio container is managed internally by DPDK, it is 830 * also possible that some device is already in that container, but 831 * it's not managed by SPDK - e.g. an NIC attached internally 832 * inside DPDK. We could map the memory straight away in such 833 * scenario, but there's no need to do it. DPDK devices clearly 834 * don't need our mappings and hence we defer the mapping 835 * unconditionally until the first SPDK-managed device is 836 * hotplugged. 837 */ 838 goto out_insert; 839 } 840 841 ret = ioctl(g_vfio.fd, VFIO_IOMMU_MAP_DMA, &dma_map->map); 842 if (ret) { 843 DEBUG_PRINT("Cannot set up DMA mapping, error %d\n", errno); 844 pthread_mutex_unlock(&g_vfio.mutex); 845 free(dma_map); 846 return ret; 847 } 848 849 out_insert: 850 TAILQ_INSERT_TAIL(&g_vfio.maps, dma_map, tailq); 851 pthread_mutex_unlock(&g_vfio.mutex); 852 spdk_mem_map_set_translation(g_phys_ref_map, iova, size, refcount + 1); 853 return 0; 854 } 855 856 static int 857 vtophys_iommu_unmap_dma(uint64_t iova, uint64_t size) 858 { 859 struct spdk_vfio_dma_map *dma_map; 860 uint64_t refcount; 861 int ret; 862 struct vfio_iommu_type1_dma_unmap unmap = {}; 863 864 pthread_mutex_lock(&g_vfio.mutex); 865 TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) { 866 if (dma_map->map.iova == iova) { 867 break; 868 } 869 } 870 871 if (dma_map == NULL) { 872 DEBUG_PRINT("Cannot clear DMA mapping for IOVA %"PRIx64" - it's not mapped\n", iova); 873 pthread_mutex_unlock(&g_vfio.mutex); 874 return -ENXIO; 875 } 876 877 refcount = spdk_mem_map_translate(g_phys_ref_map, iova, NULL); 878 assert(refcount < UINT64_MAX); 879 if (refcount > 0) { 880 spdk_mem_map_set_translation(g_phys_ref_map, iova, size, refcount - 1); 881 } 882 883 /* We still have outstanding references, don't clear it. */ 884 if (refcount > 1) { 885 pthread_mutex_unlock(&g_vfio.mutex); 886 return 0; 887 } 888 889 /** don't support partial or multiple-page unmap for now */ 890 assert(dma_map->map.size == size); 891 892 if (g_vfio.device_ref == 0) { 893 /* Memory is not mapped anymore, just remove it's references */ 894 goto out_remove; 895 } 896 897 unmap.argsz = sizeof(unmap); 898 unmap.flags = 0; 899 unmap.iova = dma_map->map.iova; 900 unmap.size = dma_map->map.size; 901 ret = ioctl(g_vfio.fd, VFIO_IOMMU_UNMAP_DMA, &unmap); 902 if (ret) { 903 DEBUG_PRINT("Cannot clear DMA mapping, error %d\n", errno); 904 pthread_mutex_unlock(&g_vfio.mutex); 905 return ret; 906 } 907 908 out_remove: 909 TAILQ_REMOVE(&g_vfio.maps, dma_map, tailq); 910 pthread_mutex_unlock(&g_vfio.mutex); 911 free(dma_map); 912 return 0; 913 } 914 #endif 915 916 static uint64_t 917 vtophys_get_paddr_memseg(uint64_t vaddr) 918 { 919 uintptr_t paddr; 920 struct rte_memseg *seg; 921 922 seg = rte_mem_virt2memseg((void *)(uintptr_t)vaddr, NULL); 923 if (seg != NULL) { 924 #if RTE_VERSION >= RTE_VERSION_NUM(19, 11, 0, 0) 925 paddr = seg->iova; 926 #else 927 paddr = seg->phys_addr; 928 #endif 929 if (paddr == RTE_BAD_IOVA) { 930 return SPDK_VTOPHYS_ERROR; 931 } 932 paddr += (vaddr - (uintptr_t)seg->addr); 933 return paddr; 934 } 935 936 return SPDK_VTOPHYS_ERROR; 937 } 938 939 /* Try to get the paddr from /proc/self/pagemap */ 940 static uint64_t 941 vtophys_get_paddr_pagemap(uint64_t vaddr) 942 { 943 uintptr_t paddr; 944 945 /* Silence static analyzers */ 946 assert(vaddr != 0); 947 paddr = rte_mem_virt2iova((void *)vaddr); 948 if (paddr == RTE_BAD_IOVA) { 949 /* 950 * The vaddr may be valid but doesn't have a backing page 951 * assigned yet. Touch the page to ensure a backing page 952 * gets assigned, then try to translate again. 953 */ 954 rte_atomic64_read((rte_atomic64_t *)vaddr); 955 paddr = rte_mem_virt2iova((void *)vaddr); 956 } 957 if (paddr == RTE_BAD_IOVA) { 958 /* Unable to get to the physical address. */ 959 return SPDK_VTOPHYS_ERROR; 960 } 961 962 return paddr; 963 } 964 965 /* Try to get the paddr from pci devices */ 966 static uint64_t 967 vtophys_get_paddr_pci(uint64_t vaddr) 968 { 969 struct spdk_vtophys_pci_device *vtophys_dev; 970 uintptr_t paddr; 971 struct rte_pci_device *dev; 972 struct rte_mem_resource *res; 973 unsigned r; 974 975 pthread_mutex_lock(&g_vtophys_pci_devices_mutex); 976 TAILQ_FOREACH(vtophys_dev, &g_vtophys_pci_devices, tailq) { 977 dev = vtophys_dev->pci_device; 978 979 for (r = 0; r < PCI_MAX_RESOURCE; r++) { 980 res = &dev->mem_resource[r]; 981 if (res->phys_addr && vaddr >= (uint64_t)res->addr && 982 vaddr < (uint64_t)res->addr + res->len) { 983 paddr = res->phys_addr + (vaddr - (uint64_t)res->addr); 984 DEBUG_PRINT("%s: %p -> %p\n", __func__, (void *)vaddr, 985 (void *)paddr); 986 pthread_mutex_unlock(&g_vtophys_pci_devices_mutex); 987 return paddr; 988 } 989 } 990 } 991 pthread_mutex_unlock(&g_vtophys_pci_devices_mutex); 992 993 return SPDK_VTOPHYS_ERROR; 994 } 995 996 static int 997 vtophys_notify(void *cb_ctx, struct spdk_mem_map *map, 998 enum spdk_mem_map_notify_action action, 999 void *vaddr, size_t len) 1000 { 1001 int rc = 0, pci_phys = 0; 1002 uint64_t paddr; 1003 1004 if ((uintptr_t)vaddr & ~MASK_256TB) { 1005 DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr); 1006 return -EINVAL; 1007 } 1008 1009 if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) { 1010 DEBUG_PRINT("invalid parameters, vaddr=%p len=%ju\n", 1011 vaddr, len); 1012 return -EINVAL; 1013 } 1014 1015 /* Get the physical address from the DPDK memsegs */ 1016 paddr = vtophys_get_paddr_memseg((uint64_t)vaddr); 1017 1018 switch (action) { 1019 case SPDK_MEM_MAP_NOTIFY_REGISTER: 1020 if (paddr == SPDK_VTOPHYS_ERROR) { 1021 /* This is not an address that DPDK is managing. */ 1022 #if VFIO_ENABLED 1023 enum rte_iova_mode iova_mode; 1024 1025 #if RTE_VERSION >= RTE_VERSION_NUM(19, 11, 0, 0) 1026 iova_mode = rte_eal_iova_mode(); 1027 #else 1028 iova_mode = rte_eal_get_configuration()->iova_mode; 1029 #endif 1030 1031 if (spdk_iommu_is_enabled() && iova_mode == RTE_IOVA_VA) { 1032 /* We'll use the virtual address as the iova to match DPDK. */ 1033 paddr = (uint64_t)vaddr; 1034 rc = vtophys_iommu_map_dma((uint64_t)vaddr, paddr, len); 1035 if (rc) { 1036 return -EFAULT; 1037 } 1038 while (len > 0) { 1039 rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr); 1040 if (rc != 0) { 1041 return rc; 1042 } 1043 vaddr += VALUE_2MB; 1044 paddr += VALUE_2MB; 1045 len -= VALUE_2MB; 1046 } 1047 } else 1048 #endif 1049 { 1050 /* Get the physical address from /proc/self/pagemap. */ 1051 paddr = vtophys_get_paddr_pagemap((uint64_t)vaddr); 1052 if (paddr == SPDK_VTOPHYS_ERROR) { 1053 /* Get the physical address from PCI devices */ 1054 paddr = vtophys_get_paddr_pci((uint64_t)vaddr); 1055 if (paddr == SPDK_VTOPHYS_ERROR) { 1056 DEBUG_PRINT("could not get phys addr for %p\n", vaddr); 1057 return -EFAULT; 1058 } 1059 /* The beginning of this address range points to a PCI resource, 1060 * so the rest must point to a PCI resource as well. 1061 */ 1062 pci_phys = 1; 1063 } 1064 1065 /* Get paddr for each 2MB chunk in this address range */ 1066 while (len > 0) { 1067 /* Get the physical address from /proc/self/pagemap. */ 1068 if (pci_phys) { 1069 paddr = vtophys_get_paddr_pci((uint64_t)vaddr); 1070 } else { 1071 paddr = vtophys_get_paddr_pagemap((uint64_t)vaddr); 1072 } 1073 1074 if (paddr == SPDK_VTOPHYS_ERROR) { 1075 DEBUG_PRINT("could not get phys addr for %p\n", vaddr); 1076 return -EFAULT; 1077 } 1078 1079 /* Since PCI paddr can break the 2MiB physical alignment skip this check for that. */ 1080 if (!pci_phys && (paddr & MASK_2MB)) { 1081 DEBUG_PRINT("invalid paddr 0x%" PRIx64 " - must be 2MB aligned\n", paddr); 1082 return -EINVAL; 1083 } 1084 #if VFIO_ENABLED 1085 /* If the IOMMU is on, but DPDK is using iova-mode=pa, we want to register this memory 1086 * with the IOMMU using the physical address to match. */ 1087 if (spdk_iommu_is_enabled()) { 1088 rc = vtophys_iommu_map_dma((uint64_t)vaddr, paddr, VALUE_2MB); 1089 if (rc) { 1090 DEBUG_PRINT("Unable to assign vaddr %p to paddr 0x%" PRIx64 "\n", vaddr, paddr); 1091 return -EFAULT; 1092 } 1093 } 1094 #endif 1095 1096 rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr); 1097 if (rc != 0) { 1098 return rc; 1099 } 1100 1101 vaddr += VALUE_2MB; 1102 len -= VALUE_2MB; 1103 } 1104 } 1105 } else { 1106 /* This is an address managed by DPDK. Just setup the translations. */ 1107 while (len > 0) { 1108 paddr = vtophys_get_paddr_memseg((uint64_t)vaddr); 1109 if (paddr == SPDK_VTOPHYS_ERROR) { 1110 DEBUG_PRINT("could not get phys addr for %p\n", vaddr); 1111 return -EFAULT; 1112 } 1113 1114 rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr); 1115 if (rc != 0) { 1116 return rc; 1117 } 1118 1119 vaddr += VALUE_2MB; 1120 len -= VALUE_2MB; 1121 } 1122 } 1123 1124 break; 1125 case SPDK_MEM_MAP_NOTIFY_UNREGISTER: 1126 #if VFIO_ENABLED 1127 if (paddr == SPDK_VTOPHYS_ERROR) { 1128 /* 1129 * This is not an address that DPDK is managing. If vfio is enabled, 1130 * we need to unmap the range from the IOMMU 1131 */ 1132 if (spdk_iommu_is_enabled()) { 1133 uint64_t buffer_len = len; 1134 uint8_t *va = vaddr; 1135 enum rte_iova_mode iova_mode; 1136 1137 #if RTE_VERSION >= RTE_VERSION_NUM(19, 11, 0, 0) 1138 iova_mode = rte_eal_iova_mode(); 1139 #else 1140 iova_mode = rte_eal_get_configuration()->iova_mode; 1141 #endif 1142 /* 1143 * In virtual address mode, the region is contiguous and can be done in 1144 * one unmap. 1145 */ 1146 if (iova_mode == RTE_IOVA_VA) { 1147 paddr = spdk_mem_map_translate(map, (uint64_t)va, &buffer_len); 1148 if (buffer_len != len || paddr != (uintptr_t)va) { 1149 DEBUG_PRINT("Unmapping %p with length %lu failed because " 1150 "translation had address 0x%" PRIx64 " and length %lu\n", 1151 va, len, paddr, buffer_len); 1152 return -EINVAL; 1153 } 1154 rc = vtophys_iommu_unmap_dma(paddr, len); 1155 if (rc) { 1156 DEBUG_PRINT("Failed to iommu unmap paddr 0x%" PRIx64 "\n", paddr); 1157 return -EFAULT; 1158 } 1159 } else if (iova_mode == RTE_IOVA_PA) { 1160 /* Get paddr for each 2MB chunk in this address range */ 1161 while (buffer_len > 0) { 1162 paddr = spdk_mem_map_translate(map, (uint64_t)va, NULL); 1163 1164 if (paddr == SPDK_VTOPHYS_ERROR || buffer_len < VALUE_2MB) { 1165 DEBUG_PRINT("could not get phys addr for %p\n", va); 1166 return -EFAULT; 1167 } 1168 1169 rc = vtophys_iommu_unmap_dma(paddr, VALUE_2MB); 1170 if (rc) { 1171 DEBUG_PRINT("Failed to iommu unmap paddr 0x%" PRIx64 "\n", paddr); 1172 return -EFAULT; 1173 } 1174 1175 va += VALUE_2MB; 1176 buffer_len -= VALUE_2MB; 1177 } 1178 } 1179 } 1180 } 1181 #endif 1182 while (len > 0) { 1183 rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, VALUE_2MB); 1184 if (rc != 0) { 1185 return rc; 1186 } 1187 1188 vaddr += VALUE_2MB; 1189 len -= VALUE_2MB; 1190 } 1191 1192 break; 1193 default: 1194 SPDK_UNREACHABLE(); 1195 } 1196 1197 return rc; 1198 } 1199 1200 static int 1201 vtophys_check_contiguous_entries(uint64_t paddr1, uint64_t paddr2) 1202 { 1203 /* This function is always called with paddrs for two subsequent 1204 * 2MB chunks in virtual address space, so those chunks will be only 1205 * physically contiguous if the physical addresses are 2MB apart 1206 * from each other as well. 1207 */ 1208 return (paddr2 - paddr1 == VALUE_2MB); 1209 } 1210 1211 #if VFIO_ENABLED 1212 1213 static bool 1214 vfio_enabled(void) 1215 { 1216 return rte_vfio_is_enabled("vfio_pci"); 1217 } 1218 1219 /* Check if IOMMU is enabled on the system */ 1220 static bool 1221 has_iommu_groups(void) 1222 { 1223 int count = 0; 1224 DIR *dir = opendir("/sys/kernel/iommu_groups"); 1225 1226 if (dir == NULL) { 1227 return false; 1228 } 1229 1230 while (count < 3 && readdir(dir) != NULL) { 1231 count++; 1232 } 1233 1234 closedir(dir); 1235 /* there will always be ./ and ../ entries */ 1236 return count > 2; 1237 } 1238 1239 static bool 1240 vfio_noiommu_enabled(void) 1241 { 1242 return rte_vfio_noiommu_is_enabled(); 1243 } 1244 1245 static void 1246 vtophys_iommu_init(void) 1247 { 1248 char proc_fd_path[PATH_MAX + 1]; 1249 char link_path[PATH_MAX + 1]; 1250 const char vfio_path[] = "/dev/vfio/vfio"; 1251 DIR *dir; 1252 struct dirent *d; 1253 1254 if (!vfio_enabled()) { 1255 return; 1256 } 1257 1258 if (vfio_noiommu_enabled()) { 1259 g_vfio.noiommu_enabled = true; 1260 } else if (!has_iommu_groups()) { 1261 return; 1262 } 1263 1264 dir = opendir("/proc/self/fd"); 1265 if (!dir) { 1266 DEBUG_PRINT("Failed to open /proc/self/fd (%d)\n", errno); 1267 return; 1268 } 1269 1270 while ((d = readdir(dir)) != NULL) { 1271 if (d->d_type != DT_LNK) { 1272 continue; 1273 } 1274 1275 snprintf(proc_fd_path, sizeof(proc_fd_path), "/proc/self/fd/%s", d->d_name); 1276 if (readlink(proc_fd_path, link_path, sizeof(link_path)) != (sizeof(vfio_path) - 1)) { 1277 continue; 1278 } 1279 1280 if (memcmp(link_path, vfio_path, sizeof(vfio_path) - 1) == 0) { 1281 sscanf(d->d_name, "%d", &g_vfio.fd); 1282 break; 1283 } 1284 } 1285 1286 closedir(dir); 1287 1288 if (g_vfio.fd < 0) { 1289 DEBUG_PRINT("Failed to discover DPDK VFIO container fd.\n"); 1290 return; 1291 } 1292 1293 g_vfio.enabled = true; 1294 1295 return; 1296 } 1297 #endif 1298 1299 void 1300 vtophys_pci_device_added(struct rte_pci_device *pci_device) 1301 { 1302 struct spdk_vtophys_pci_device *vtophys_dev; 1303 1304 pthread_mutex_lock(&g_vtophys_pci_devices_mutex); 1305 1306 vtophys_dev = calloc(1, sizeof(*vtophys_dev)); 1307 if (vtophys_dev) { 1308 vtophys_dev->pci_device = pci_device; 1309 TAILQ_INSERT_TAIL(&g_vtophys_pci_devices, vtophys_dev, tailq); 1310 } else { 1311 DEBUG_PRINT("Memory allocation error\n"); 1312 } 1313 pthread_mutex_unlock(&g_vtophys_pci_devices_mutex); 1314 1315 #if VFIO_ENABLED 1316 struct spdk_vfio_dma_map *dma_map; 1317 int ret; 1318 1319 if (!g_vfio.enabled) { 1320 return; 1321 } 1322 1323 pthread_mutex_lock(&g_vfio.mutex); 1324 g_vfio.device_ref++; 1325 if (g_vfio.device_ref > 1) { 1326 pthread_mutex_unlock(&g_vfio.mutex); 1327 return; 1328 } 1329 1330 /* This is the first SPDK device using DPDK vfio. This means that the first 1331 * IOMMU group might have been just been added to the DPDK vfio container. 1332 * From this point it is certain that the memory can be mapped now. 1333 */ 1334 TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) { 1335 ret = ioctl(g_vfio.fd, VFIO_IOMMU_MAP_DMA, &dma_map->map); 1336 if (ret) { 1337 DEBUG_PRINT("Cannot update DMA mapping, error %d\n", errno); 1338 break; 1339 } 1340 } 1341 pthread_mutex_unlock(&g_vfio.mutex); 1342 #endif 1343 } 1344 1345 void 1346 vtophys_pci_device_removed(struct rte_pci_device *pci_device) 1347 { 1348 struct spdk_vtophys_pci_device *vtophys_dev; 1349 1350 pthread_mutex_lock(&g_vtophys_pci_devices_mutex); 1351 TAILQ_FOREACH(vtophys_dev, &g_vtophys_pci_devices, tailq) { 1352 if (vtophys_dev->pci_device == pci_device) { 1353 TAILQ_REMOVE(&g_vtophys_pci_devices, vtophys_dev, tailq); 1354 free(vtophys_dev); 1355 break; 1356 } 1357 } 1358 pthread_mutex_unlock(&g_vtophys_pci_devices_mutex); 1359 1360 #if VFIO_ENABLED 1361 struct spdk_vfio_dma_map *dma_map; 1362 int ret; 1363 1364 if (!g_vfio.enabled) { 1365 return; 1366 } 1367 1368 pthread_mutex_lock(&g_vfio.mutex); 1369 assert(g_vfio.device_ref > 0); 1370 g_vfio.device_ref--; 1371 if (g_vfio.device_ref > 0) { 1372 pthread_mutex_unlock(&g_vfio.mutex); 1373 return; 1374 } 1375 1376 /* This is the last SPDK device using DPDK vfio. If DPDK doesn't have 1377 * any additional devices using it's vfio container, all the mappings 1378 * will be automatically removed by the Linux vfio driver. We unmap 1379 * the memory manually to be able to easily re-map it later regardless 1380 * of other, external factors. 1381 */ 1382 TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) { 1383 struct vfio_iommu_type1_dma_unmap unmap = {}; 1384 unmap.argsz = sizeof(unmap); 1385 unmap.flags = 0; 1386 unmap.iova = dma_map->map.iova; 1387 unmap.size = dma_map->map.size; 1388 ret = ioctl(g_vfio.fd, VFIO_IOMMU_UNMAP_DMA, &unmap); 1389 if (ret) { 1390 DEBUG_PRINT("Cannot unmap DMA memory, error %d\n", errno); 1391 break; 1392 } 1393 } 1394 pthread_mutex_unlock(&g_vfio.mutex); 1395 #endif 1396 } 1397 1398 int 1399 vtophys_init(void) 1400 { 1401 const struct spdk_mem_map_ops vtophys_map_ops = { 1402 .notify_cb = vtophys_notify, 1403 .are_contiguous = vtophys_check_contiguous_entries, 1404 }; 1405 1406 const struct spdk_mem_map_ops phys_ref_map_ops = { 1407 .notify_cb = NULL, 1408 .are_contiguous = NULL, 1409 }; 1410 1411 #if VFIO_ENABLED 1412 vtophys_iommu_init(); 1413 #endif 1414 1415 g_phys_ref_map = spdk_mem_map_alloc(0, &phys_ref_map_ops, NULL); 1416 if (g_phys_ref_map == NULL) { 1417 DEBUG_PRINT("phys_ref map allocation failed.\n"); 1418 return -ENOMEM; 1419 } 1420 1421 g_vtophys_map = spdk_mem_map_alloc(SPDK_VTOPHYS_ERROR, &vtophys_map_ops, NULL); 1422 if (g_vtophys_map == NULL) { 1423 DEBUG_PRINT("vtophys map allocation failed\n"); 1424 return -ENOMEM; 1425 } 1426 return 0; 1427 } 1428 1429 uint64_t 1430 spdk_vtophys(const void *buf, uint64_t *size) 1431 { 1432 uint64_t vaddr, paddr_2mb; 1433 1434 vaddr = (uint64_t)buf; 1435 paddr_2mb = spdk_mem_map_translate(g_vtophys_map, vaddr, size); 1436 1437 /* 1438 * SPDK_VTOPHYS_ERROR has all bits set, so if the lookup returned SPDK_VTOPHYS_ERROR, 1439 * we will still bitwise-or it with the buf offset below, but the result will still be 1440 * SPDK_VTOPHYS_ERROR. However now that we do + rather than | (due to PCI vtophys being 1441 * unaligned) we must now check the return value before addition. 1442 */ 1443 SPDK_STATIC_ASSERT(SPDK_VTOPHYS_ERROR == UINT64_C(-1), "SPDK_VTOPHYS_ERROR should be all 1s"); 1444 if (paddr_2mb == SPDK_VTOPHYS_ERROR) { 1445 return SPDK_VTOPHYS_ERROR; 1446 } else { 1447 return paddr_2mb + (vaddr & MASK_2MB); 1448 } 1449 } 1450 1451 int 1452 spdk_mem_get_fd_and_offset(void *vaddr, uint64_t *offset) 1453 { 1454 struct rte_memseg *seg; 1455 int ret, fd; 1456 1457 seg = rte_mem_virt2memseg(vaddr, NULL); 1458 if (!seg) { 1459 SPDK_ERRLOG("memory %p doesn't exist\n", vaddr); 1460 return -ENOENT; 1461 } 1462 1463 fd = rte_memseg_get_fd_thread_unsafe(seg); 1464 if (fd < 0) { 1465 return fd; 1466 } 1467 1468 ret = rte_memseg_get_fd_offset_thread_unsafe(seg, offset); 1469 if (ret < 0) { 1470 return ret; 1471 } 1472 1473 return fd; 1474 } 1475