1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) Intel Corporation. All rights reserved. 5 * Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include "spdk/stdinc.h" 35 36 #include "spdk/bdev.h" 37 38 #include "spdk/config.h" 39 #include "spdk/env.h" 40 #include "spdk/thread.h" 41 #include "spdk/likely.h" 42 #include "spdk/queue.h" 43 #include "spdk/nvme_spec.h" 44 #include "spdk/scsi_spec.h" 45 #include "spdk/notify.h" 46 #include "spdk/util.h" 47 #include "spdk/trace.h" 48 49 #include "spdk/bdev_module.h" 50 #include "spdk/log.h" 51 #include "spdk/string.h" 52 53 #include "bdev_internal.h" 54 55 #ifdef SPDK_CONFIG_VTUNE 56 #include "ittnotify.h" 57 #include "ittnotify_types.h" 58 int __itt_init_ittlib(const char *, __itt_group_id); 59 #endif 60 61 #define SPDK_BDEV_IO_POOL_SIZE (64 * 1024 - 1) 62 #define SPDK_BDEV_IO_CACHE_SIZE 256 63 #define SPDK_BDEV_AUTO_EXAMINE true 64 #define BUF_SMALL_POOL_SIZE 8191 65 #define BUF_LARGE_POOL_SIZE 1023 66 #define NOMEM_THRESHOLD_COUNT 8 67 #define ZERO_BUFFER_SIZE 0x100000 68 69 #define OWNER_BDEV 0x2 70 71 #define OBJECT_BDEV_IO 0x2 72 73 #define TRACE_GROUP_BDEV 0x3 74 #define TRACE_BDEV_IO_START SPDK_TPOINT_ID(TRACE_GROUP_BDEV, 0x0) 75 #define TRACE_BDEV_IO_DONE SPDK_TPOINT_ID(TRACE_GROUP_BDEV, 0x1) 76 77 #define SPDK_BDEV_QOS_TIMESLICE_IN_USEC 1000 78 #define SPDK_BDEV_QOS_MIN_IO_PER_TIMESLICE 1 79 #define SPDK_BDEV_QOS_MIN_BYTE_PER_TIMESLICE 512 80 #define SPDK_BDEV_QOS_MIN_IOS_PER_SEC 1000 81 #define SPDK_BDEV_QOS_MIN_BYTES_PER_SEC (1024 * 1024) 82 #define SPDK_BDEV_QOS_LIMIT_NOT_DEFINED UINT64_MAX 83 #define SPDK_BDEV_IO_POLL_INTERVAL_IN_MSEC 1000 84 85 #define SPDK_BDEV_POOL_ALIGNMENT 512 86 87 /* The maximum number of children requests for a UNMAP or WRITE ZEROES command 88 * when splitting into children requests at a time. 89 */ 90 #define SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS (8) 91 92 static const char *qos_rpc_type[] = {"rw_ios_per_sec", 93 "rw_mbytes_per_sec", "r_mbytes_per_sec", "w_mbytes_per_sec" 94 }; 95 96 TAILQ_HEAD(spdk_bdev_list, spdk_bdev); 97 98 RB_HEAD(bdev_name_tree, spdk_bdev_name); 99 100 static int 101 bdev_name_cmp(struct spdk_bdev_name *name1, struct spdk_bdev_name *name2) 102 { 103 return strcmp(name1->name, name2->name); 104 } 105 106 RB_GENERATE_STATIC(bdev_name_tree, spdk_bdev_name, node, bdev_name_cmp); 107 108 struct spdk_bdev_mgr { 109 struct spdk_mempool *bdev_io_pool; 110 111 struct spdk_mempool *buf_small_pool; 112 struct spdk_mempool *buf_large_pool; 113 114 void *zero_buffer; 115 116 TAILQ_HEAD(bdev_module_list, spdk_bdev_module) bdev_modules; 117 118 struct spdk_bdev_list bdevs; 119 struct bdev_name_tree bdev_names; 120 121 bool init_complete; 122 bool module_init_complete; 123 124 pthread_mutex_t mutex; 125 126 #ifdef SPDK_CONFIG_VTUNE 127 __itt_domain *domain; 128 #endif 129 }; 130 131 static struct spdk_bdev_mgr g_bdev_mgr = { 132 .bdev_modules = TAILQ_HEAD_INITIALIZER(g_bdev_mgr.bdev_modules), 133 .bdevs = TAILQ_HEAD_INITIALIZER(g_bdev_mgr.bdevs), 134 .bdev_names = RB_INITIALIZER(g_bdev_mgr.bdev_names), 135 .init_complete = false, 136 .module_init_complete = false, 137 .mutex = PTHREAD_MUTEX_INITIALIZER, 138 }; 139 140 typedef void (*lock_range_cb)(void *ctx, int status); 141 142 struct lba_range { 143 uint64_t offset; 144 uint64_t length; 145 void *locked_ctx; 146 struct spdk_bdev_channel *owner_ch; 147 TAILQ_ENTRY(lba_range) tailq; 148 }; 149 150 static struct spdk_bdev_opts g_bdev_opts = { 151 .bdev_io_pool_size = SPDK_BDEV_IO_POOL_SIZE, 152 .bdev_io_cache_size = SPDK_BDEV_IO_CACHE_SIZE, 153 .bdev_auto_examine = SPDK_BDEV_AUTO_EXAMINE, 154 .small_buf_pool_size = BUF_SMALL_POOL_SIZE, 155 .large_buf_pool_size = BUF_LARGE_POOL_SIZE, 156 }; 157 158 static spdk_bdev_init_cb g_init_cb_fn = NULL; 159 static void *g_init_cb_arg = NULL; 160 161 static spdk_bdev_fini_cb g_fini_cb_fn = NULL; 162 static void *g_fini_cb_arg = NULL; 163 static struct spdk_thread *g_fini_thread = NULL; 164 165 struct spdk_bdev_qos_limit { 166 /** IOs or bytes allowed per second (i.e., 1s). */ 167 uint64_t limit; 168 169 /** Remaining IOs or bytes allowed in current timeslice (e.g., 1ms). 170 * For remaining bytes, allowed to run negative if an I/O is submitted when 171 * some bytes are remaining, but the I/O is bigger than that amount. The 172 * excess will be deducted from the next timeslice. 173 */ 174 int64_t remaining_this_timeslice; 175 176 /** Minimum allowed IOs or bytes to be issued in one timeslice (e.g., 1ms). */ 177 uint32_t min_per_timeslice; 178 179 /** Maximum allowed IOs or bytes to be issued in one timeslice (e.g., 1ms). */ 180 uint32_t max_per_timeslice; 181 182 /** Function to check whether to queue the IO. */ 183 bool (*queue_io)(const struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io); 184 185 /** Function to update for the submitted IO. */ 186 void (*update_quota)(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io); 187 }; 188 189 struct spdk_bdev_qos { 190 /** Types of structure of rate limits. */ 191 struct spdk_bdev_qos_limit rate_limits[SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES]; 192 193 /** The channel that all I/O are funneled through. */ 194 struct spdk_bdev_channel *ch; 195 196 /** The thread on which the poller is running. */ 197 struct spdk_thread *thread; 198 199 /** Queue of I/O waiting to be issued. */ 200 bdev_io_tailq_t queued; 201 202 /** Size of a timeslice in tsc ticks. */ 203 uint64_t timeslice_size; 204 205 /** Timestamp of start of last timeslice. */ 206 uint64_t last_timeslice; 207 208 /** Poller that processes queued I/O commands each time slice. */ 209 struct spdk_poller *poller; 210 }; 211 212 struct spdk_bdev_mgmt_channel { 213 bdev_io_stailq_t need_buf_small; 214 bdev_io_stailq_t need_buf_large; 215 216 /* 217 * Each thread keeps a cache of bdev_io - this allows 218 * bdev threads which are *not* DPDK threads to still 219 * benefit from a per-thread bdev_io cache. Without 220 * this, non-DPDK threads fetching from the mempool 221 * incur a cmpxchg on get and put. 222 */ 223 bdev_io_stailq_t per_thread_cache; 224 uint32_t per_thread_cache_count; 225 uint32_t bdev_io_cache_size; 226 227 TAILQ_HEAD(, spdk_bdev_shared_resource) shared_resources; 228 TAILQ_HEAD(, spdk_bdev_io_wait_entry) io_wait_queue; 229 }; 230 231 /* 232 * Per-module (or per-io_device) data. Multiple bdevs built on the same io_device 233 * will queue here their IO that awaits retry. It makes it possible to retry sending 234 * IO to one bdev after IO from other bdev completes. 235 */ 236 struct spdk_bdev_shared_resource { 237 /* The bdev management channel */ 238 struct spdk_bdev_mgmt_channel *mgmt_ch; 239 240 /* 241 * Count of I/O submitted to bdev module and waiting for completion. 242 * Incremented before submit_request() is called on an spdk_bdev_io. 243 */ 244 uint64_t io_outstanding; 245 246 /* 247 * Queue of IO awaiting retry because of a previous NOMEM status returned 248 * on this channel. 249 */ 250 bdev_io_tailq_t nomem_io; 251 252 /* 253 * Threshold which io_outstanding must drop to before retrying nomem_io. 254 */ 255 uint64_t nomem_threshold; 256 257 /* I/O channel allocated by a bdev module */ 258 struct spdk_io_channel *shared_ch; 259 260 /* Refcount of bdev channels using this resource */ 261 uint32_t ref; 262 263 TAILQ_ENTRY(spdk_bdev_shared_resource) link; 264 }; 265 266 #define BDEV_CH_RESET_IN_PROGRESS (1 << 0) 267 #define BDEV_CH_QOS_ENABLED (1 << 1) 268 269 struct spdk_bdev_channel { 270 struct spdk_bdev *bdev; 271 272 /* The channel for the underlying device */ 273 struct spdk_io_channel *channel; 274 275 /* Per io_device per thread data */ 276 struct spdk_bdev_shared_resource *shared_resource; 277 278 struct spdk_bdev_io_stat stat; 279 280 /* 281 * Count of I/O submitted to the underlying dev module through this channel 282 * and waiting for completion. 283 */ 284 uint64_t io_outstanding; 285 286 /* 287 * List of all submitted I/Os including I/O that are generated via splitting. 288 */ 289 bdev_io_tailq_t io_submitted; 290 291 /* 292 * List of spdk_bdev_io that are currently queued because they write to a locked 293 * LBA range. 294 */ 295 bdev_io_tailq_t io_locked; 296 297 uint32_t flags; 298 299 struct spdk_histogram_data *histogram; 300 301 #ifdef SPDK_CONFIG_VTUNE 302 uint64_t start_tsc; 303 uint64_t interval_tsc; 304 __itt_string_handle *handle; 305 struct spdk_bdev_io_stat prev_stat; 306 #endif 307 308 bdev_io_tailq_t queued_resets; 309 310 lba_range_tailq_t locked_ranges; 311 }; 312 313 struct media_event_entry { 314 struct spdk_bdev_media_event event; 315 TAILQ_ENTRY(media_event_entry) tailq; 316 }; 317 318 #define MEDIA_EVENT_POOL_SIZE 64 319 320 struct spdk_bdev_desc { 321 struct spdk_bdev *bdev; 322 struct spdk_thread *thread; 323 struct { 324 spdk_bdev_event_cb_t event_fn; 325 void *ctx; 326 } callback; 327 bool closed; 328 bool write; 329 pthread_mutex_t mutex; 330 uint32_t refs; 331 TAILQ_HEAD(, media_event_entry) pending_media_events; 332 TAILQ_HEAD(, media_event_entry) free_media_events; 333 struct media_event_entry *media_events_buffer; 334 TAILQ_ENTRY(spdk_bdev_desc) link; 335 336 uint64_t timeout_in_sec; 337 spdk_bdev_io_timeout_cb cb_fn; 338 void *cb_arg; 339 struct spdk_poller *io_timeout_poller; 340 }; 341 342 struct spdk_bdev_iostat_ctx { 343 struct spdk_bdev_io_stat *stat; 344 spdk_bdev_get_device_stat_cb cb; 345 void *cb_arg; 346 }; 347 348 struct set_qos_limit_ctx { 349 void (*cb_fn)(void *cb_arg, int status); 350 void *cb_arg; 351 struct spdk_bdev *bdev; 352 }; 353 354 #define __bdev_to_io_dev(bdev) (((char *)bdev) + 1) 355 #define __bdev_from_io_dev(io_dev) ((struct spdk_bdev *)(((char *)io_dev) - 1)) 356 357 static void bdev_write_zero_buffer_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg); 358 static void bdev_write_zero_buffer_next(void *_bdev_io); 359 360 static void bdev_enable_qos_msg(struct spdk_io_channel_iter *i); 361 static void bdev_enable_qos_done(struct spdk_io_channel_iter *i, int status); 362 363 static int 364 bdev_readv_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 365 struct iovec *iov, int iovcnt, void *md_buf, uint64_t offset_blocks, 366 uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg); 367 static int 368 bdev_writev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 369 struct iovec *iov, int iovcnt, void *md_buf, 370 uint64_t offset_blocks, uint64_t num_blocks, 371 spdk_bdev_io_completion_cb cb, void *cb_arg); 372 373 static int 374 bdev_lock_lba_range(struct spdk_bdev_desc *desc, struct spdk_io_channel *_ch, 375 uint64_t offset, uint64_t length, 376 lock_range_cb cb_fn, void *cb_arg); 377 378 static int 379 bdev_unlock_lba_range(struct spdk_bdev_desc *desc, struct spdk_io_channel *_ch, 380 uint64_t offset, uint64_t length, 381 lock_range_cb cb_fn, void *cb_arg); 382 383 static inline void bdev_io_complete(void *ctx); 384 385 static bool bdev_abort_queued_io(bdev_io_tailq_t *queue, struct spdk_bdev_io *bio_to_abort); 386 static bool bdev_abort_buf_io(bdev_io_stailq_t *queue, struct spdk_bdev_io *bio_to_abort); 387 388 void 389 spdk_bdev_get_opts(struct spdk_bdev_opts *opts, size_t opts_size) 390 { 391 if (!opts) { 392 SPDK_ERRLOG("opts should not be NULL\n"); 393 return; 394 } 395 396 if (!opts_size) { 397 SPDK_ERRLOG("opts_size should not be zero value\n"); 398 return; 399 } 400 401 opts->opts_size = opts_size; 402 403 #define SET_FIELD(field) \ 404 if (offsetof(struct spdk_bdev_opts, field) + sizeof(opts->field) <= opts_size) { \ 405 opts->field = g_bdev_opts.field; \ 406 } \ 407 408 SET_FIELD(bdev_io_pool_size); 409 SET_FIELD(bdev_io_cache_size); 410 SET_FIELD(bdev_auto_examine); 411 SET_FIELD(small_buf_pool_size); 412 SET_FIELD(large_buf_pool_size); 413 414 /* Do not remove this statement, you should always update this statement when you adding a new field, 415 * and do not forget to add the SET_FIELD statement for your added field. */ 416 SPDK_STATIC_ASSERT(sizeof(struct spdk_bdev_opts) == 32, "Incorrect size"); 417 418 #undef SET_FIELD 419 } 420 421 int 422 spdk_bdev_set_opts(struct spdk_bdev_opts *opts) 423 { 424 uint32_t min_pool_size; 425 426 if (!opts) { 427 SPDK_ERRLOG("opts cannot be NULL\n"); 428 return -1; 429 } 430 431 if (!opts->opts_size) { 432 SPDK_ERRLOG("opts_size inside opts cannot be zero value\n"); 433 return -1; 434 } 435 436 /* 437 * Add 1 to the thread count to account for the extra mgmt_ch that gets created during subsystem 438 * initialization. A second mgmt_ch will be created on the same thread when the application starts 439 * but before the deferred put_io_channel event is executed for the first mgmt_ch. 440 */ 441 min_pool_size = opts->bdev_io_cache_size * (spdk_thread_get_count() + 1); 442 if (opts->bdev_io_pool_size < min_pool_size) { 443 SPDK_ERRLOG("bdev_io_pool_size %" PRIu32 " is not compatible with bdev_io_cache_size %" PRIu32 444 " and %" PRIu32 " threads\n", opts->bdev_io_pool_size, opts->bdev_io_cache_size, 445 spdk_thread_get_count()); 446 SPDK_ERRLOG("bdev_io_pool_size must be at least %" PRIu32 "\n", min_pool_size); 447 return -1; 448 } 449 450 if (opts->small_buf_pool_size < BUF_SMALL_POOL_SIZE) { 451 SPDK_ERRLOG("small_buf_pool_size must be at least %" PRIu32 "\n", BUF_SMALL_POOL_SIZE); 452 return -1; 453 } 454 455 if (opts->large_buf_pool_size < BUF_LARGE_POOL_SIZE) { 456 SPDK_ERRLOG("large_buf_pool_size must be at least %" PRIu32 "\n", BUF_LARGE_POOL_SIZE); 457 return -1; 458 } 459 460 #define SET_FIELD(field) \ 461 if (offsetof(struct spdk_bdev_opts, field) + sizeof(opts->field) <= opts->opts_size) { \ 462 g_bdev_opts.field = opts->field; \ 463 } \ 464 465 SET_FIELD(bdev_io_pool_size); 466 SET_FIELD(bdev_io_cache_size); 467 SET_FIELD(bdev_auto_examine); 468 SET_FIELD(small_buf_pool_size); 469 SET_FIELD(large_buf_pool_size); 470 471 g_bdev_opts.opts_size = opts->opts_size; 472 473 #undef SET_FIELD 474 475 return 0; 476 } 477 478 struct spdk_bdev_wait_for_examine_ctx { 479 struct spdk_poller *poller; 480 spdk_bdev_wait_for_examine_cb cb_fn; 481 void *cb_arg; 482 }; 483 484 static bool 485 bdev_module_all_actions_completed(void); 486 487 static int 488 bdev_wait_for_examine_cb(void *arg) 489 { 490 struct spdk_bdev_wait_for_examine_ctx *ctx = arg; 491 492 if (!bdev_module_all_actions_completed()) { 493 return SPDK_POLLER_IDLE; 494 } 495 496 spdk_poller_unregister(&ctx->poller); 497 ctx->cb_fn(ctx->cb_arg); 498 free(ctx); 499 500 return SPDK_POLLER_BUSY; 501 } 502 503 int 504 spdk_bdev_wait_for_examine(spdk_bdev_wait_for_examine_cb cb_fn, void *cb_arg) 505 { 506 struct spdk_bdev_wait_for_examine_ctx *ctx; 507 508 ctx = calloc(1, sizeof(*ctx)); 509 if (ctx == NULL) { 510 return -ENOMEM; 511 } 512 ctx->cb_fn = cb_fn; 513 ctx->cb_arg = cb_arg; 514 ctx->poller = SPDK_POLLER_REGISTER(bdev_wait_for_examine_cb, ctx, 0); 515 516 return 0; 517 } 518 519 struct spdk_bdev_examine_item { 520 char *name; 521 TAILQ_ENTRY(spdk_bdev_examine_item) link; 522 }; 523 524 TAILQ_HEAD(spdk_bdev_examine_allowlist, spdk_bdev_examine_item); 525 526 struct spdk_bdev_examine_allowlist g_bdev_examine_allowlist = TAILQ_HEAD_INITIALIZER( 527 g_bdev_examine_allowlist); 528 529 static inline bool 530 bdev_examine_allowlist_check(const char *name) 531 { 532 struct spdk_bdev_examine_item *item; 533 TAILQ_FOREACH(item, &g_bdev_examine_allowlist, link) { 534 if (strcmp(name, item->name) == 0) { 535 return true; 536 } 537 } 538 return false; 539 } 540 541 static inline void 542 bdev_examine_allowlist_free(void) 543 { 544 struct spdk_bdev_examine_item *item; 545 while (!TAILQ_EMPTY(&g_bdev_examine_allowlist)) { 546 item = TAILQ_FIRST(&g_bdev_examine_allowlist); 547 TAILQ_REMOVE(&g_bdev_examine_allowlist, item, link); 548 free(item->name); 549 free(item); 550 } 551 } 552 553 static inline bool 554 bdev_in_examine_allowlist(struct spdk_bdev *bdev) 555 { 556 struct spdk_bdev_alias *tmp; 557 if (bdev_examine_allowlist_check(bdev->name)) { 558 return true; 559 } 560 TAILQ_FOREACH(tmp, &bdev->aliases, tailq) { 561 if (bdev_examine_allowlist_check(tmp->alias.name)) { 562 return true; 563 } 564 } 565 return false; 566 } 567 568 static inline bool 569 bdev_ok_to_examine(struct spdk_bdev *bdev) 570 { 571 if (g_bdev_opts.bdev_auto_examine) { 572 return true; 573 } else { 574 return bdev_in_examine_allowlist(bdev); 575 } 576 } 577 578 static void 579 bdev_examine(struct spdk_bdev *bdev) 580 { 581 struct spdk_bdev_module *module; 582 uint32_t action; 583 584 TAILQ_FOREACH(module, &g_bdev_mgr.bdev_modules, internal.tailq) { 585 if (module->examine_config && bdev_ok_to_examine(bdev)) { 586 action = module->internal.action_in_progress; 587 module->internal.action_in_progress++; 588 module->examine_config(bdev); 589 if (action != module->internal.action_in_progress) { 590 SPDK_ERRLOG("examine_config for module %s did not call spdk_bdev_module_examine_done()\n", 591 module->name); 592 } 593 } 594 } 595 596 if (bdev->internal.claim_module && bdev_ok_to_examine(bdev)) { 597 if (bdev->internal.claim_module->examine_disk) { 598 bdev->internal.claim_module->internal.action_in_progress++; 599 bdev->internal.claim_module->examine_disk(bdev); 600 } 601 return; 602 } 603 604 TAILQ_FOREACH(module, &g_bdev_mgr.bdev_modules, internal.tailq) { 605 if (module->examine_disk && bdev_ok_to_examine(bdev)) { 606 module->internal.action_in_progress++; 607 module->examine_disk(bdev); 608 } 609 } 610 } 611 612 int 613 spdk_bdev_examine(const char *name) 614 { 615 struct spdk_bdev *bdev; 616 struct spdk_bdev_examine_item *item; 617 618 if (g_bdev_opts.bdev_auto_examine) { 619 SPDK_ERRLOG("Manual examine is not allowed if auto examine is enabled"); 620 return -EINVAL; 621 } 622 623 if (bdev_examine_allowlist_check(name)) { 624 SPDK_ERRLOG("Duplicate bdev name for manual examine: %s\n", name); 625 return -EEXIST; 626 } 627 628 item = calloc(1, sizeof(*item)); 629 if (!item) { 630 return -ENOMEM; 631 } 632 item->name = strdup(name); 633 if (!item->name) { 634 free(item); 635 return -ENOMEM; 636 } 637 TAILQ_INSERT_TAIL(&g_bdev_examine_allowlist, item, link); 638 639 bdev = spdk_bdev_get_by_name(name); 640 if (bdev) { 641 bdev_examine(bdev); 642 } 643 return 0; 644 } 645 646 static inline void 647 bdev_examine_allowlist_config_json(struct spdk_json_write_ctx *w) 648 { 649 struct spdk_bdev_examine_item *item; 650 TAILQ_FOREACH(item, &g_bdev_examine_allowlist, link) { 651 spdk_json_write_object_begin(w); 652 spdk_json_write_named_string(w, "method", "bdev_examine"); 653 spdk_json_write_named_object_begin(w, "params"); 654 spdk_json_write_named_string(w, "name", item->name); 655 spdk_json_write_object_end(w); 656 spdk_json_write_object_end(w); 657 } 658 } 659 660 struct spdk_bdev * 661 spdk_bdev_first(void) 662 { 663 struct spdk_bdev *bdev; 664 665 bdev = TAILQ_FIRST(&g_bdev_mgr.bdevs); 666 if (bdev) { 667 SPDK_DEBUGLOG(bdev, "Starting bdev iteration at %s\n", bdev->name); 668 } 669 670 return bdev; 671 } 672 673 struct spdk_bdev * 674 spdk_bdev_next(struct spdk_bdev *prev) 675 { 676 struct spdk_bdev *bdev; 677 678 bdev = TAILQ_NEXT(prev, internal.link); 679 if (bdev) { 680 SPDK_DEBUGLOG(bdev, "Continuing bdev iteration at %s\n", bdev->name); 681 } 682 683 return bdev; 684 } 685 686 static struct spdk_bdev * 687 _bdev_next_leaf(struct spdk_bdev *bdev) 688 { 689 while (bdev != NULL) { 690 if (bdev->internal.claim_module == NULL) { 691 return bdev; 692 } else { 693 bdev = TAILQ_NEXT(bdev, internal.link); 694 } 695 } 696 697 return bdev; 698 } 699 700 struct spdk_bdev * 701 spdk_bdev_first_leaf(void) 702 { 703 struct spdk_bdev *bdev; 704 705 bdev = _bdev_next_leaf(TAILQ_FIRST(&g_bdev_mgr.bdevs)); 706 707 if (bdev) { 708 SPDK_DEBUGLOG(bdev, "Starting bdev iteration at %s\n", bdev->name); 709 } 710 711 return bdev; 712 } 713 714 struct spdk_bdev * 715 spdk_bdev_next_leaf(struct spdk_bdev *prev) 716 { 717 struct spdk_bdev *bdev; 718 719 bdev = _bdev_next_leaf(TAILQ_NEXT(prev, internal.link)); 720 721 if (bdev) { 722 SPDK_DEBUGLOG(bdev, "Continuing bdev iteration at %s\n", bdev->name); 723 } 724 725 return bdev; 726 } 727 728 struct spdk_bdev * 729 spdk_bdev_get_by_name(const char *bdev_name) 730 { 731 struct spdk_bdev_name find; 732 struct spdk_bdev_name *res; 733 734 find.name = (char *)bdev_name; 735 res = RB_FIND(bdev_name_tree, &g_bdev_mgr.bdev_names, &find); 736 if (res != NULL) { 737 return res->bdev; 738 } 739 740 return NULL; 741 } 742 743 void 744 spdk_bdev_io_set_buf(struct spdk_bdev_io *bdev_io, void *buf, size_t len) 745 { 746 struct iovec *iovs; 747 748 if (bdev_io->u.bdev.iovs == NULL) { 749 bdev_io->u.bdev.iovs = &bdev_io->iov; 750 bdev_io->u.bdev.iovcnt = 1; 751 } 752 753 iovs = bdev_io->u.bdev.iovs; 754 755 assert(iovs != NULL); 756 assert(bdev_io->u.bdev.iovcnt >= 1); 757 758 iovs[0].iov_base = buf; 759 iovs[0].iov_len = len; 760 } 761 762 void 763 spdk_bdev_io_set_md_buf(struct spdk_bdev_io *bdev_io, void *md_buf, size_t len) 764 { 765 assert((len / spdk_bdev_get_md_size(bdev_io->bdev)) >= bdev_io->u.bdev.num_blocks); 766 bdev_io->u.bdev.md_buf = md_buf; 767 } 768 769 static bool 770 _is_buf_allocated(const struct iovec *iovs) 771 { 772 if (iovs == NULL) { 773 return false; 774 } 775 776 return iovs[0].iov_base != NULL; 777 } 778 779 static bool 780 _are_iovs_aligned(struct iovec *iovs, int iovcnt, uint32_t alignment) 781 { 782 int i; 783 uintptr_t iov_base; 784 785 if (spdk_likely(alignment == 1)) { 786 return true; 787 } 788 789 for (i = 0; i < iovcnt; i++) { 790 iov_base = (uintptr_t)iovs[i].iov_base; 791 if ((iov_base & (alignment - 1)) != 0) { 792 return false; 793 } 794 } 795 796 return true; 797 } 798 799 static void 800 _copy_iovs_to_buf(void *buf, size_t buf_len, struct iovec *iovs, int iovcnt) 801 { 802 int i; 803 size_t len; 804 805 for (i = 0; i < iovcnt; i++) { 806 len = spdk_min(iovs[i].iov_len, buf_len); 807 memcpy(buf, iovs[i].iov_base, len); 808 buf += len; 809 buf_len -= len; 810 } 811 } 812 813 static void 814 _copy_buf_to_iovs(struct iovec *iovs, int iovcnt, void *buf, size_t buf_len) 815 { 816 int i; 817 size_t len; 818 819 for (i = 0; i < iovcnt; i++) { 820 len = spdk_min(iovs[i].iov_len, buf_len); 821 memcpy(iovs[i].iov_base, buf, len); 822 buf += len; 823 buf_len -= len; 824 } 825 } 826 827 static void 828 _bdev_io_set_bounce_buf(struct spdk_bdev_io *bdev_io, void *buf, size_t len) 829 { 830 /* save original iovec */ 831 bdev_io->internal.orig_iovs = bdev_io->u.bdev.iovs; 832 bdev_io->internal.orig_iovcnt = bdev_io->u.bdev.iovcnt; 833 /* set bounce iov */ 834 bdev_io->u.bdev.iovs = &bdev_io->internal.bounce_iov; 835 bdev_io->u.bdev.iovcnt = 1; 836 /* set bounce buffer for this operation */ 837 bdev_io->u.bdev.iovs[0].iov_base = buf; 838 bdev_io->u.bdev.iovs[0].iov_len = len; 839 /* if this is write path, copy data from original buffer to bounce buffer */ 840 if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) { 841 _copy_iovs_to_buf(buf, len, bdev_io->internal.orig_iovs, bdev_io->internal.orig_iovcnt); 842 } 843 } 844 845 static void 846 _bdev_io_set_bounce_md_buf(struct spdk_bdev_io *bdev_io, void *md_buf, size_t len) 847 { 848 /* save original md_buf */ 849 bdev_io->internal.orig_md_buf = bdev_io->u.bdev.md_buf; 850 /* set bounce md_buf */ 851 bdev_io->u.bdev.md_buf = md_buf; 852 853 if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) { 854 memcpy(md_buf, bdev_io->internal.orig_md_buf, len); 855 } 856 } 857 858 static void 859 bdev_io_get_buf_complete(struct spdk_bdev_io *bdev_io, void *buf, bool status) 860 { 861 struct spdk_io_channel *ch = spdk_bdev_io_get_io_channel(bdev_io); 862 863 if (spdk_unlikely(bdev_io->internal.get_aux_buf_cb != NULL)) { 864 bdev_io->internal.get_aux_buf_cb(ch, bdev_io, buf); 865 bdev_io->internal.get_aux_buf_cb = NULL; 866 } else { 867 assert(bdev_io->internal.get_buf_cb != NULL); 868 bdev_io->internal.buf = buf; 869 bdev_io->internal.get_buf_cb(ch, bdev_io, status); 870 bdev_io->internal.get_buf_cb = NULL; 871 } 872 } 873 874 static void 875 _bdev_io_set_buf(struct spdk_bdev_io *bdev_io, void *buf, uint64_t len) 876 { 877 struct spdk_bdev *bdev = bdev_io->bdev; 878 bool buf_allocated; 879 uint64_t md_len, alignment; 880 void *aligned_buf; 881 882 if (spdk_unlikely(bdev_io->internal.get_aux_buf_cb != NULL)) { 883 bdev_io_get_buf_complete(bdev_io, buf, true); 884 return; 885 } 886 887 alignment = spdk_bdev_get_buf_align(bdev); 888 buf_allocated = _is_buf_allocated(bdev_io->u.bdev.iovs); 889 aligned_buf = (void *)(((uintptr_t)buf + (alignment - 1)) & ~(alignment - 1)); 890 891 if (buf_allocated) { 892 _bdev_io_set_bounce_buf(bdev_io, aligned_buf, len); 893 } else { 894 spdk_bdev_io_set_buf(bdev_io, aligned_buf, len); 895 } 896 897 if (spdk_bdev_is_md_separate(bdev)) { 898 aligned_buf = (char *)aligned_buf + len; 899 md_len = bdev_io->u.bdev.num_blocks * bdev->md_len; 900 901 assert(((uintptr_t)aligned_buf & (alignment - 1)) == 0); 902 903 if (bdev_io->u.bdev.md_buf != NULL) { 904 _bdev_io_set_bounce_md_buf(bdev_io, aligned_buf, md_len); 905 } else { 906 spdk_bdev_io_set_md_buf(bdev_io, aligned_buf, md_len); 907 } 908 } 909 bdev_io_get_buf_complete(bdev_io, buf, true); 910 } 911 912 static void 913 _bdev_io_put_buf(struct spdk_bdev_io *bdev_io, void *buf, uint64_t buf_len) 914 { 915 struct spdk_bdev *bdev = bdev_io->bdev; 916 struct spdk_mempool *pool; 917 struct spdk_bdev_io *tmp; 918 bdev_io_stailq_t *stailq; 919 struct spdk_bdev_mgmt_channel *ch; 920 uint64_t md_len, alignment; 921 922 md_len = spdk_bdev_is_md_separate(bdev) ? bdev_io->u.bdev.num_blocks * bdev->md_len : 0; 923 alignment = spdk_bdev_get_buf_align(bdev); 924 ch = bdev_io->internal.ch->shared_resource->mgmt_ch; 925 926 if (buf_len + alignment + md_len <= SPDK_BDEV_BUF_SIZE_WITH_MD(SPDK_BDEV_SMALL_BUF_MAX_SIZE) + 927 SPDK_BDEV_POOL_ALIGNMENT) { 928 pool = g_bdev_mgr.buf_small_pool; 929 stailq = &ch->need_buf_small; 930 } else { 931 pool = g_bdev_mgr.buf_large_pool; 932 stailq = &ch->need_buf_large; 933 } 934 935 if (STAILQ_EMPTY(stailq)) { 936 spdk_mempool_put(pool, buf); 937 } else { 938 tmp = STAILQ_FIRST(stailq); 939 STAILQ_REMOVE_HEAD(stailq, internal.buf_link); 940 _bdev_io_set_buf(tmp, buf, tmp->internal.buf_len); 941 } 942 } 943 944 static void 945 bdev_io_put_buf(struct spdk_bdev_io *bdev_io) 946 { 947 assert(bdev_io->internal.buf != NULL); 948 _bdev_io_put_buf(bdev_io, bdev_io->internal.buf, bdev_io->internal.buf_len); 949 bdev_io->internal.buf = NULL; 950 } 951 952 void 953 spdk_bdev_io_put_aux_buf(struct spdk_bdev_io *bdev_io, void *buf) 954 { 955 uint64_t len = bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen; 956 957 assert(buf != NULL); 958 _bdev_io_put_buf(bdev_io, buf, len); 959 } 960 961 static void 962 _bdev_io_unset_bounce_buf(struct spdk_bdev_io *bdev_io) 963 { 964 if (spdk_likely(bdev_io->internal.orig_iovcnt == 0)) { 965 assert(bdev_io->internal.orig_md_buf == NULL); 966 return; 967 } 968 969 /* if this is read path, copy data from bounce buffer to original buffer */ 970 if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ && 971 bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) { 972 _copy_buf_to_iovs(bdev_io->internal.orig_iovs, 973 bdev_io->internal.orig_iovcnt, 974 bdev_io->internal.bounce_iov.iov_base, 975 bdev_io->internal.bounce_iov.iov_len); 976 } 977 /* set original buffer for this io */ 978 bdev_io->u.bdev.iovcnt = bdev_io->internal.orig_iovcnt; 979 bdev_io->u.bdev.iovs = bdev_io->internal.orig_iovs; 980 /* disable bouncing buffer for this io */ 981 bdev_io->internal.orig_iovcnt = 0; 982 bdev_io->internal.orig_iovs = NULL; 983 984 /* do the same for metadata buffer */ 985 if (spdk_unlikely(bdev_io->internal.orig_md_buf != NULL)) { 986 assert(spdk_bdev_is_md_separate(bdev_io->bdev)); 987 988 if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ && 989 bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) { 990 memcpy(bdev_io->internal.orig_md_buf, bdev_io->u.bdev.md_buf, 991 bdev_io->u.bdev.num_blocks * spdk_bdev_get_md_size(bdev_io->bdev)); 992 } 993 994 bdev_io->u.bdev.md_buf = bdev_io->internal.orig_md_buf; 995 bdev_io->internal.orig_md_buf = NULL; 996 } 997 998 /* We want to free the bounce buffer here since we know we're done with it (as opposed 999 * to waiting for the conditional free of internal.buf in spdk_bdev_free_io()). 1000 */ 1001 bdev_io_put_buf(bdev_io); 1002 } 1003 1004 static void 1005 bdev_io_get_buf(struct spdk_bdev_io *bdev_io, uint64_t len) 1006 { 1007 struct spdk_bdev *bdev = bdev_io->bdev; 1008 struct spdk_mempool *pool; 1009 bdev_io_stailq_t *stailq; 1010 struct spdk_bdev_mgmt_channel *mgmt_ch; 1011 uint64_t alignment, md_len; 1012 void *buf; 1013 1014 alignment = spdk_bdev_get_buf_align(bdev); 1015 md_len = spdk_bdev_is_md_separate(bdev) ? bdev_io->u.bdev.num_blocks * bdev->md_len : 0; 1016 1017 if (len + alignment + md_len > SPDK_BDEV_BUF_SIZE_WITH_MD(SPDK_BDEV_LARGE_BUF_MAX_SIZE) + 1018 SPDK_BDEV_POOL_ALIGNMENT) { 1019 SPDK_ERRLOG("Length + alignment %" PRIu64 " is larger than allowed\n", 1020 len + alignment); 1021 bdev_io_get_buf_complete(bdev_io, NULL, false); 1022 return; 1023 } 1024 1025 mgmt_ch = bdev_io->internal.ch->shared_resource->mgmt_ch; 1026 1027 bdev_io->internal.buf_len = len; 1028 1029 if (len + alignment + md_len <= SPDK_BDEV_BUF_SIZE_WITH_MD(SPDK_BDEV_SMALL_BUF_MAX_SIZE) + 1030 SPDK_BDEV_POOL_ALIGNMENT) { 1031 pool = g_bdev_mgr.buf_small_pool; 1032 stailq = &mgmt_ch->need_buf_small; 1033 } else { 1034 pool = g_bdev_mgr.buf_large_pool; 1035 stailq = &mgmt_ch->need_buf_large; 1036 } 1037 1038 buf = spdk_mempool_get(pool); 1039 if (!buf) { 1040 STAILQ_INSERT_TAIL(stailq, bdev_io, internal.buf_link); 1041 } else { 1042 _bdev_io_set_buf(bdev_io, buf, len); 1043 } 1044 } 1045 1046 void 1047 spdk_bdev_io_get_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_buf_cb cb, uint64_t len) 1048 { 1049 struct spdk_bdev *bdev = bdev_io->bdev; 1050 uint64_t alignment; 1051 1052 assert(cb != NULL); 1053 bdev_io->internal.get_buf_cb = cb; 1054 1055 alignment = spdk_bdev_get_buf_align(bdev); 1056 1057 if (_is_buf_allocated(bdev_io->u.bdev.iovs) && 1058 _are_iovs_aligned(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, alignment)) { 1059 /* Buffer already present and aligned */ 1060 cb(spdk_bdev_io_get_io_channel(bdev_io), bdev_io, true); 1061 return; 1062 } 1063 1064 bdev_io_get_buf(bdev_io, len); 1065 } 1066 1067 void 1068 spdk_bdev_io_get_aux_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_aux_buf_cb cb) 1069 { 1070 uint64_t len = bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen; 1071 1072 assert(cb != NULL); 1073 assert(bdev_io->internal.get_aux_buf_cb == NULL); 1074 bdev_io->internal.get_aux_buf_cb = cb; 1075 bdev_io_get_buf(bdev_io, len); 1076 } 1077 1078 static int 1079 bdev_module_get_max_ctx_size(void) 1080 { 1081 struct spdk_bdev_module *bdev_module; 1082 int max_bdev_module_size = 0; 1083 1084 TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, internal.tailq) { 1085 if (bdev_module->get_ctx_size && bdev_module->get_ctx_size() > max_bdev_module_size) { 1086 max_bdev_module_size = bdev_module->get_ctx_size(); 1087 } 1088 } 1089 1090 return max_bdev_module_size; 1091 } 1092 1093 static void 1094 bdev_qos_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w) 1095 { 1096 int i; 1097 struct spdk_bdev_qos *qos = bdev->internal.qos; 1098 uint64_t limits[SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES]; 1099 1100 if (!qos) { 1101 return; 1102 } 1103 1104 spdk_bdev_get_qos_rate_limits(bdev, limits); 1105 1106 spdk_json_write_object_begin(w); 1107 spdk_json_write_named_string(w, "method", "bdev_set_qos_limit"); 1108 1109 spdk_json_write_named_object_begin(w, "params"); 1110 spdk_json_write_named_string(w, "name", bdev->name); 1111 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 1112 if (limits[i] > 0) { 1113 spdk_json_write_named_uint64(w, qos_rpc_type[i], limits[i]); 1114 } 1115 } 1116 spdk_json_write_object_end(w); 1117 1118 spdk_json_write_object_end(w); 1119 } 1120 1121 void 1122 spdk_bdev_subsystem_config_json(struct spdk_json_write_ctx *w) 1123 { 1124 struct spdk_bdev_module *bdev_module; 1125 struct spdk_bdev *bdev; 1126 1127 assert(w != NULL); 1128 1129 spdk_json_write_array_begin(w); 1130 1131 spdk_json_write_object_begin(w); 1132 spdk_json_write_named_string(w, "method", "bdev_set_options"); 1133 spdk_json_write_named_object_begin(w, "params"); 1134 spdk_json_write_named_uint32(w, "bdev_io_pool_size", g_bdev_opts.bdev_io_pool_size); 1135 spdk_json_write_named_uint32(w, "bdev_io_cache_size", g_bdev_opts.bdev_io_cache_size); 1136 spdk_json_write_named_bool(w, "bdev_auto_examine", g_bdev_opts.bdev_auto_examine); 1137 spdk_json_write_object_end(w); 1138 spdk_json_write_object_end(w); 1139 1140 bdev_examine_allowlist_config_json(w); 1141 1142 TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, internal.tailq) { 1143 if (bdev_module->config_json) { 1144 bdev_module->config_json(w); 1145 } 1146 } 1147 1148 pthread_mutex_lock(&g_bdev_mgr.mutex); 1149 1150 TAILQ_FOREACH(bdev, &g_bdev_mgr.bdevs, internal.link) { 1151 if (bdev->fn_table->write_config_json) { 1152 bdev->fn_table->write_config_json(bdev, w); 1153 } 1154 1155 bdev_qos_config_json(bdev, w); 1156 } 1157 1158 pthread_mutex_unlock(&g_bdev_mgr.mutex); 1159 1160 /* This has to be last RPC in array to make sure all bdevs finished examine */ 1161 spdk_json_write_object_begin(w); 1162 spdk_json_write_named_string(w, "method", "bdev_wait_for_examine"); 1163 spdk_json_write_object_end(w); 1164 1165 spdk_json_write_array_end(w); 1166 } 1167 1168 static int 1169 bdev_mgmt_channel_create(void *io_device, void *ctx_buf) 1170 { 1171 struct spdk_bdev_mgmt_channel *ch = ctx_buf; 1172 struct spdk_bdev_io *bdev_io; 1173 uint32_t i; 1174 1175 STAILQ_INIT(&ch->need_buf_small); 1176 STAILQ_INIT(&ch->need_buf_large); 1177 1178 STAILQ_INIT(&ch->per_thread_cache); 1179 ch->bdev_io_cache_size = g_bdev_opts.bdev_io_cache_size; 1180 1181 /* Pre-populate bdev_io cache to ensure this thread cannot be starved. */ 1182 ch->per_thread_cache_count = 0; 1183 for (i = 0; i < ch->bdev_io_cache_size; i++) { 1184 bdev_io = spdk_mempool_get(g_bdev_mgr.bdev_io_pool); 1185 assert(bdev_io != NULL); 1186 ch->per_thread_cache_count++; 1187 STAILQ_INSERT_HEAD(&ch->per_thread_cache, bdev_io, internal.buf_link); 1188 } 1189 1190 TAILQ_INIT(&ch->shared_resources); 1191 TAILQ_INIT(&ch->io_wait_queue); 1192 1193 return 0; 1194 } 1195 1196 static void 1197 bdev_mgmt_channel_destroy(void *io_device, void *ctx_buf) 1198 { 1199 struct spdk_bdev_mgmt_channel *ch = ctx_buf; 1200 struct spdk_bdev_io *bdev_io; 1201 1202 if (!STAILQ_EMPTY(&ch->need_buf_small) || !STAILQ_EMPTY(&ch->need_buf_large)) { 1203 SPDK_ERRLOG("Pending I/O list wasn't empty on mgmt channel free\n"); 1204 } 1205 1206 if (!TAILQ_EMPTY(&ch->shared_resources)) { 1207 SPDK_ERRLOG("Module channel list wasn't empty on mgmt channel free\n"); 1208 } 1209 1210 while (!STAILQ_EMPTY(&ch->per_thread_cache)) { 1211 bdev_io = STAILQ_FIRST(&ch->per_thread_cache); 1212 STAILQ_REMOVE_HEAD(&ch->per_thread_cache, internal.buf_link); 1213 ch->per_thread_cache_count--; 1214 spdk_mempool_put(g_bdev_mgr.bdev_io_pool, (void *)bdev_io); 1215 } 1216 1217 assert(ch->per_thread_cache_count == 0); 1218 } 1219 1220 static void 1221 bdev_init_complete(int rc) 1222 { 1223 spdk_bdev_init_cb cb_fn = g_init_cb_fn; 1224 void *cb_arg = g_init_cb_arg; 1225 struct spdk_bdev_module *m; 1226 1227 g_bdev_mgr.init_complete = true; 1228 g_init_cb_fn = NULL; 1229 g_init_cb_arg = NULL; 1230 1231 /* 1232 * For modules that need to know when subsystem init is complete, 1233 * inform them now. 1234 */ 1235 if (rc == 0) { 1236 TAILQ_FOREACH(m, &g_bdev_mgr.bdev_modules, internal.tailq) { 1237 if (m->init_complete) { 1238 m->init_complete(); 1239 } 1240 } 1241 } 1242 1243 cb_fn(cb_arg, rc); 1244 } 1245 1246 static bool 1247 bdev_module_all_actions_completed(void) 1248 { 1249 struct spdk_bdev_module *m; 1250 1251 TAILQ_FOREACH(m, &g_bdev_mgr.bdev_modules, internal.tailq) { 1252 if (m->internal.action_in_progress > 0) { 1253 return false; 1254 } 1255 } 1256 return true; 1257 } 1258 1259 static void 1260 bdev_module_action_complete(void) 1261 { 1262 /* 1263 * Don't finish bdev subsystem initialization if 1264 * module pre-initialization is still in progress, or 1265 * the subsystem been already initialized. 1266 */ 1267 if (!g_bdev_mgr.module_init_complete || g_bdev_mgr.init_complete) { 1268 return; 1269 } 1270 1271 /* 1272 * Check all bdev modules for inits/examinations in progress. If any 1273 * exist, return immediately since we cannot finish bdev subsystem 1274 * initialization until all are completed. 1275 */ 1276 if (!bdev_module_all_actions_completed()) { 1277 return; 1278 } 1279 1280 /* 1281 * Modules already finished initialization - now that all 1282 * the bdev modules have finished their asynchronous I/O 1283 * processing, the entire bdev layer can be marked as complete. 1284 */ 1285 bdev_init_complete(0); 1286 } 1287 1288 static void 1289 bdev_module_action_done(struct spdk_bdev_module *module) 1290 { 1291 assert(module->internal.action_in_progress > 0); 1292 module->internal.action_in_progress--; 1293 bdev_module_action_complete(); 1294 } 1295 1296 void 1297 spdk_bdev_module_init_done(struct spdk_bdev_module *module) 1298 { 1299 bdev_module_action_done(module); 1300 } 1301 1302 void 1303 spdk_bdev_module_examine_done(struct spdk_bdev_module *module) 1304 { 1305 bdev_module_action_done(module); 1306 } 1307 1308 /** The last initialized bdev module */ 1309 static struct spdk_bdev_module *g_resume_bdev_module = NULL; 1310 1311 static void 1312 bdev_init_failed(void *cb_arg) 1313 { 1314 struct spdk_bdev_module *module = cb_arg; 1315 1316 module->internal.action_in_progress--; 1317 bdev_init_complete(-1); 1318 } 1319 1320 static int 1321 bdev_modules_init(void) 1322 { 1323 struct spdk_bdev_module *module; 1324 int rc = 0; 1325 1326 TAILQ_FOREACH(module, &g_bdev_mgr.bdev_modules, internal.tailq) { 1327 g_resume_bdev_module = module; 1328 if (module->async_init) { 1329 module->internal.action_in_progress = 1; 1330 } 1331 rc = module->module_init(); 1332 if (rc != 0) { 1333 /* Bump action_in_progress to prevent other modules from completion of modules_init 1334 * Send message to defer application shutdown until resources are cleaned up */ 1335 module->internal.action_in_progress = 1; 1336 spdk_thread_send_msg(spdk_get_thread(), bdev_init_failed, module); 1337 return rc; 1338 } 1339 } 1340 1341 g_resume_bdev_module = NULL; 1342 return 0; 1343 } 1344 1345 void 1346 spdk_bdev_initialize(spdk_bdev_init_cb cb_fn, void *cb_arg) 1347 { 1348 int cache_size; 1349 int rc = 0; 1350 char mempool_name[32]; 1351 1352 assert(cb_fn != NULL); 1353 1354 g_init_cb_fn = cb_fn; 1355 g_init_cb_arg = cb_arg; 1356 1357 spdk_notify_type_register("bdev_register"); 1358 spdk_notify_type_register("bdev_unregister"); 1359 1360 snprintf(mempool_name, sizeof(mempool_name), "bdev_io_%d", getpid()); 1361 1362 g_bdev_mgr.bdev_io_pool = spdk_mempool_create(mempool_name, 1363 g_bdev_opts.bdev_io_pool_size, 1364 sizeof(struct spdk_bdev_io) + 1365 bdev_module_get_max_ctx_size(), 1366 0, 1367 SPDK_ENV_SOCKET_ID_ANY); 1368 1369 if (g_bdev_mgr.bdev_io_pool == NULL) { 1370 SPDK_ERRLOG("could not allocate spdk_bdev_io pool\n"); 1371 bdev_init_complete(-1); 1372 return; 1373 } 1374 1375 /** 1376 * Ensure no more than half of the total buffers end up local caches, by 1377 * using spdk_env_get_core_count() to determine how many local caches we need 1378 * to account for. 1379 */ 1380 cache_size = BUF_SMALL_POOL_SIZE / (2 * spdk_env_get_core_count()); 1381 snprintf(mempool_name, sizeof(mempool_name), "buf_small_pool_%d", getpid()); 1382 1383 g_bdev_mgr.buf_small_pool = spdk_mempool_create(mempool_name, 1384 g_bdev_opts.small_buf_pool_size, 1385 SPDK_BDEV_BUF_SIZE_WITH_MD(SPDK_BDEV_SMALL_BUF_MAX_SIZE) + 1386 SPDK_BDEV_POOL_ALIGNMENT, 1387 cache_size, 1388 SPDK_ENV_SOCKET_ID_ANY); 1389 if (!g_bdev_mgr.buf_small_pool) { 1390 SPDK_ERRLOG("create rbuf small pool failed\n"); 1391 bdev_init_complete(-1); 1392 return; 1393 } 1394 1395 cache_size = BUF_LARGE_POOL_SIZE / (2 * spdk_env_get_core_count()); 1396 snprintf(mempool_name, sizeof(mempool_name), "buf_large_pool_%d", getpid()); 1397 1398 g_bdev_mgr.buf_large_pool = spdk_mempool_create(mempool_name, 1399 g_bdev_opts.large_buf_pool_size, 1400 SPDK_BDEV_BUF_SIZE_WITH_MD(SPDK_BDEV_LARGE_BUF_MAX_SIZE) + 1401 SPDK_BDEV_POOL_ALIGNMENT, 1402 cache_size, 1403 SPDK_ENV_SOCKET_ID_ANY); 1404 if (!g_bdev_mgr.buf_large_pool) { 1405 SPDK_ERRLOG("create rbuf large pool failed\n"); 1406 bdev_init_complete(-1); 1407 return; 1408 } 1409 1410 g_bdev_mgr.zero_buffer = spdk_zmalloc(ZERO_BUFFER_SIZE, ZERO_BUFFER_SIZE, 1411 NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 1412 if (!g_bdev_mgr.zero_buffer) { 1413 SPDK_ERRLOG("create bdev zero buffer failed\n"); 1414 bdev_init_complete(-1); 1415 return; 1416 } 1417 1418 #ifdef SPDK_CONFIG_VTUNE 1419 g_bdev_mgr.domain = __itt_domain_create("spdk_bdev"); 1420 #endif 1421 1422 spdk_io_device_register(&g_bdev_mgr, bdev_mgmt_channel_create, 1423 bdev_mgmt_channel_destroy, 1424 sizeof(struct spdk_bdev_mgmt_channel), 1425 "bdev_mgr"); 1426 1427 rc = bdev_modules_init(); 1428 g_bdev_mgr.module_init_complete = true; 1429 if (rc != 0) { 1430 SPDK_ERRLOG("bdev modules init failed\n"); 1431 return; 1432 } 1433 1434 bdev_module_action_complete(); 1435 } 1436 1437 static void 1438 bdev_mgr_unregister_cb(void *io_device) 1439 { 1440 spdk_bdev_fini_cb cb_fn = g_fini_cb_fn; 1441 1442 if (g_bdev_mgr.bdev_io_pool) { 1443 if (spdk_mempool_count(g_bdev_mgr.bdev_io_pool) != g_bdev_opts.bdev_io_pool_size) { 1444 SPDK_ERRLOG("bdev IO pool count is %zu but should be %u\n", 1445 spdk_mempool_count(g_bdev_mgr.bdev_io_pool), 1446 g_bdev_opts.bdev_io_pool_size); 1447 } 1448 1449 spdk_mempool_free(g_bdev_mgr.bdev_io_pool); 1450 } 1451 1452 if (g_bdev_mgr.buf_small_pool) { 1453 if (spdk_mempool_count(g_bdev_mgr.buf_small_pool) != g_bdev_opts.small_buf_pool_size) { 1454 SPDK_ERRLOG("Small buffer pool count is %zu but should be %u\n", 1455 spdk_mempool_count(g_bdev_mgr.buf_small_pool), 1456 g_bdev_opts.small_buf_pool_size); 1457 assert(false); 1458 } 1459 1460 spdk_mempool_free(g_bdev_mgr.buf_small_pool); 1461 } 1462 1463 if (g_bdev_mgr.buf_large_pool) { 1464 if (spdk_mempool_count(g_bdev_mgr.buf_large_pool) != g_bdev_opts.large_buf_pool_size) { 1465 SPDK_ERRLOG("Large buffer pool count is %zu but should be %u\n", 1466 spdk_mempool_count(g_bdev_mgr.buf_large_pool), 1467 g_bdev_opts.large_buf_pool_size); 1468 assert(false); 1469 } 1470 1471 spdk_mempool_free(g_bdev_mgr.buf_large_pool); 1472 } 1473 1474 spdk_free(g_bdev_mgr.zero_buffer); 1475 1476 bdev_examine_allowlist_free(); 1477 1478 cb_fn(g_fini_cb_arg); 1479 g_fini_cb_fn = NULL; 1480 g_fini_cb_arg = NULL; 1481 g_bdev_mgr.init_complete = false; 1482 g_bdev_mgr.module_init_complete = false; 1483 } 1484 1485 static void 1486 bdev_module_finish_iter(void *arg) 1487 { 1488 struct spdk_bdev_module *bdev_module; 1489 1490 /* FIXME: Handling initialization failures is broken now, 1491 * so we won't even try cleaning up after successfully 1492 * initialized modules. if module_init_complete is false, 1493 * just call spdk_bdev_mgr_unregister_cb 1494 */ 1495 if (!g_bdev_mgr.module_init_complete) { 1496 bdev_mgr_unregister_cb(NULL); 1497 return; 1498 } 1499 1500 /* Start iterating from the last touched module */ 1501 if (!g_resume_bdev_module) { 1502 bdev_module = TAILQ_LAST(&g_bdev_mgr.bdev_modules, bdev_module_list); 1503 } else { 1504 bdev_module = TAILQ_PREV(g_resume_bdev_module, bdev_module_list, 1505 internal.tailq); 1506 } 1507 1508 while (bdev_module) { 1509 if (bdev_module->async_fini) { 1510 /* Save our place so we can resume later. We must 1511 * save the variable here, before calling module_fini() 1512 * below, because in some cases the module may immediately 1513 * call spdk_bdev_module_finish_done() and re-enter 1514 * this function to continue iterating. */ 1515 g_resume_bdev_module = bdev_module; 1516 } 1517 1518 if (bdev_module->module_fini) { 1519 bdev_module->module_fini(); 1520 } 1521 1522 if (bdev_module->async_fini) { 1523 return; 1524 } 1525 1526 bdev_module = TAILQ_PREV(bdev_module, bdev_module_list, 1527 internal.tailq); 1528 } 1529 1530 g_resume_bdev_module = NULL; 1531 spdk_io_device_unregister(&g_bdev_mgr, bdev_mgr_unregister_cb); 1532 } 1533 1534 void 1535 spdk_bdev_module_finish_done(void) 1536 { 1537 if (spdk_get_thread() != g_fini_thread) { 1538 spdk_thread_send_msg(g_fini_thread, bdev_module_finish_iter, NULL); 1539 } else { 1540 bdev_module_finish_iter(NULL); 1541 } 1542 } 1543 1544 static void 1545 bdev_finish_unregister_bdevs_iter(void *cb_arg, int bdeverrno) 1546 { 1547 struct spdk_bdev *bdev = cb_arg; 1548 1549 if (bdeverrno && bdev) { 1550 SPDK_WARNLOG("Unable to unregister bdev '%s' during spdk_bdev_finish()\n", 1551 bdev->name); 1552 1553 /* 1554 * Since the call to spdk_bdev_unregister() failed, we have no way to free this 1555 * bdev; try to continue by manually removing this bdev from the list and continue 1556 * with the next bdev in the list. 1557 */ 1558 TAILQ_REMOVE(&g_bdev_mgr.bdevs, bdev, internal.link); 1559 } 1560 1561 if (TAILQ_EMPTY(&g_bdev_mgr.bdevs)) { 1562 SPDK_DEBUGLOG(bdev, "Done unregistering bdevs\n"); 1563 /* 1564 * Bdev module finish need to be deferred as we might be in the middle of some context 1565 * (like bdev part free) that will use this bdev (or private bdev driver ctx data) 1566 * after returning. 1567 */ 1568 spdk_thread_send_msg(spdk_get_thread(), bdev_module_finish_iter, NULL); 1569 return; 1570 } 1571 1572 /* 1573 * Unregister last unclaimed bdev in the list, to ensure that bdev subsystem 1574 * shutdown proceeds top-down. The goal is to give virtual bdevs an opportunity 1575 * to detect clean shutdown as opposed to run-time hot removal of the underlying 1576 * base bdevs. 1577 * 1578 * Also, walk the list in the reverse order. 1579 */ 1580 for (bdev = TAILQ_LAST(&g_bdev_mgr.bdevs, spdk_bdev_list); 1581 bdev; bdev = TAILQ_PREV(bdev, spdk_bdev_list, internal.link)) { 1582 if (bdev->internal.claim_module != NULL) { 1583 SPDK_DEBUGLOG(bdev, "Skipping claimed bdev '%s'(<-'%s').\n", 1584 bdev->name, bdev->internal.claim_module->name); 1585 continue; 1586 } 1587 1588 SPDK_DEBUGLOG(bdev, "Unregistering bdev '%s'\n", bdev->name); 1589 spdk_bdev_unregister(bdev, bdev_finish_unregister_bdevs_iter, bdev); 1590 return; 1591 } 1592 1593 /* 1594 * If any bdev fails to unclaim underlying bdev properly, we may face the 1595 * case of bdev list consisting of claimed bdevs only (if claims are managed 1596 * correctly, this would mean there's a loop in the claims graph which is 1597 * clearly impossible). Warn and unregister last bdev on the list then. 1598 */ 1599 for (bdev = TAILQ_LAST(&g_bdev_mgr.bdevs, spdk_bdev_list); 1600 bdev; bdev = TAILQ_PREV(bdev, spdk_bdev_list, internal.link)) { 1601 SPDK_WARNLOG("Unregistering claimed bdev '%s'!\n", bdev->name); 1602 spdk_bdev_unregister(bdev, bdev_finish_unregister_bdevs_iter, bdev); 1603 return; 1604 } 1605 } 1606 1607 void 1608 spdk_bdev_finish(spdk_bdev_fini_cb cb_fn, void *cb_arg) 1609 { 1610 struct spdk_bdev_module *m; 1611 1612 assert(cb_fn != NULL); 1613 1614 g_fini_thread = spdk_get_thread(); 1615 1616 g_fini_cb_fn = cb_fn; 1617 g_fini_cb_arg = cb_arg; 1618 1619 TAILQ_FOREACH(m, &g_bdev_mgr.bdev_modules, internal.tailq) { 1620 if (m->fini_start) { 1621 m->fini_start(); 1622 } 1623 } 1624 1625 bdev_finish_unregister_bdevs_iter(NULL, 0); 1626 } 1627 1628 struct spdk_bdev_io * 1629 bdev_channel_get_io(struct spdk_bdev_channel *channel) 1630 { 1631 struct spdk_bdev_mgmt_channel *ch = channel->shared_resource->mgmt_ch; 1632 struct spdk_bdev_io *bdev_io; 1633 1634 if (ch->per_thread_cache_count > 0) { 1635 bdev_io = STAILQ_FIRST(&ch->per_thread_cache); 1636 STAILQ_REMOVE_HEAD(&ch->per_thread_cache, internal.buf_link); 1637 ch->per_thread_cache_count--; 1638 } else if (spdk_unlikely(!TAILQ_EMPTY(&ch->io_wait_queue))) { 1639 /* 1640 * Don't try to look for bdev_ios in the global pool if there are 1641 * waiters on bdev_ios - we don't want this caller to jump the line. 1642 */ 1643 bdev_io = NULL; 1644 } else { 1645 bdev_io = spdk_mempool_get(g_bdev_mgr.bdev_io_pool); 1646 } 1647 1648 return bdev_io; 1649 } 1650 1651 void 1652 spdk_bdev_free_io(struct spdk_bdev_io *bdev_io) 1653 { 1654 struct spdk_bdev_mgmt_channel *ch; 1655 1656 assert(bdev_io != NULL); 1657 assert(bdev_io->internal.status != SPDK_BDEV_IO_STATUS_PENDING); 1658 1659 ch = bdev_io->internal.ch->shared_resource->mgmt_ch; 1660 1661 if (bdev_io->internal.buf != NULL) { 1662 bdev_io_put_buf(bdev_io); 1663 } 1664 1665 if (ch->per_thread_cache_count < ch->bdev_io_cache_size) { 1666 ch->per_thread_cache_count++; 1667 STAILQ_INSERT_HEAD(&ch->per_thread_cache, bdev_io, internal.buf_link); 1668 while (ch->per_thread_cache_count > 0 && !TAILQ_EMPTY(&ch->io_wait_queue)) { 1669 struct spdk_bdev_io_wait_entry *entry; 1670 1671 entry = TAILQ_FIRST(&ch->io_wait_queue); 1672 TAILQ_REMOVE(&ch->io_wait_queue, entry, link); 1673 entry->cb_fn(entry->cb_arg); 1674 } 1675 } else { 1676 /* We should never have a full cache with entries on the io wait queue. */ 1677 assert(TAILQ_EMPTY(&ch->io_wait_queue)); 1678 spdk_mempool_put(g_bdev_mgr.bdev_io_pool, (void *)bdev_io); 1679 } 1680 } 1681 1682 static bool 1683 bdev_qos_is_iops_rate_limit(enum spdk_bdev_qos_rate_limit_type limit) 1684 { 1685 assert(limit != SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES); 1686 1687 switch (limit) { 1688 case SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT: 1689 return true; 1690 case SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT: 1691 case SPDK_BDEV_QOS_R_BPS_RATE_LIMIT: 1692 case SPDK_BDEV_QOS_W_BPS_RATE_LIMIT: 1693 return false; 1694 case SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES: 1695 default: 1696 return false; 1697 } 1698 } 1699 1700 static bool 1701 bdev_qos_io_to_limit(struct spdk_bdev_io *bdev_io) 1702 { 1703 switch (bdev_io->type) { 1704 case SPDK_BDEV_IO_TYPE_NVME_IO: 1705 case SPDK_BDEV_IO_TYPE_NVME_IO_MD: 1706 case SPDK_BDEV_IO_TYPE_READ: 1707 case SPDK_BDEV_IO_TYPE_WRITE: 1708 return true; 1709 case SPDK_BDEV_IO_TYPE_ZCOPY: 1710 if (bdev_io->u.bdev.zcopy.start) { 1711 return true; 1712 } else { 1713 return false; 1714 } 1715 default: 1716 return false; 1717 } 1718 } 1719 1720 static bool 1721 bdev_is_read_io(struct spdk_bdev_io *bdev_io) 1722 { 1723 switch (bdev_io->type) { 1724 case SPDK_BDEV_IO_TYPE_NVME_IO: 1725 case SPDK_BDEV_IO_TYPE_NVME_IO_MD: 1726 /* Bit 1 (0x2) set for read operation */ 1727 if (bdev_io->u.nvme_passthru.cmd.opc & SPDK_NVME_OPC_READ) { 1728 return true; 1729 } else { 1730 return false; 1731 } 1732 case SPDK_BDEV_IO_TYPE_READ: 1733 return true; 1734 case SPDK_BDEV_IO_TYPE_ZCOPY: 1735 /* Populate to read from disk */ 1736 if (bdev_io->u.bdev.zcopy.populate) { 1737 return true; 1738 } else { 1739 return false; 1740 } 1741 default: 1742 return false; 1743 } 1744 } 1745 1746 static uint64_t 1747 bdev_get_io_size_in_byte(struct spdk_bdev_io *bdev_io) 1748 { 1749 struct spdk_bdev *bdev = bdev_io->bdev; 1750 1751 switch (bdev_io->type) { 1752 case SPDK_BDEV_IO_TYPE_NVME_IO: 1753 case SPDK_BDEV_IO_TYPE_NVME_IO_MD: 1754 return bdev_io->u.nvme_passthru.nbytes; 1755 case SPDK_BDEV_IO_TYPE_READ: 1756 case SPDK_BDEV_IO_TYPE_WRITE: 1757 return bdev_io->u.bdev.num_blocks * bdev->blocklen; 1758 case SPDK_BDEV_IO_TYPE_ZCOPY: 1759 /* Track the data in the start phase only */ 1760 if (bdev_io->u.bdev.zcopy.start) { 1761 return bdev_io->u.bdev.num_blocks * bdev->blocklen; 1762 } else { 1763 return 0; 1764 } 1765 default: 1766 return 0; 1767 } 1768 } 1769 1770 static bool 1771 bdev_qos_rw_queue_io(const struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 1772 { 1773 if (limit->max_per_timeslice > 0 && limit->remaining_this_timeslice <= 0) { 1774 return true; 1775 } else { 1776 return false; 1777 } 1778 } 1779 1780 static bool 1781 bdev_qos_r_queue_io(const struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 1782 { 1783 if (bdev_is_read_io(io) == false) { 1784 return false; 1785 } 1786 1787 return bdev_qos_rw_queue_io(limit, io); 1788 } 1789 1790 static bool 1791 bdev_qos_w_queue_io(const struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 1792 { 1793 if (bdev_is_read_io(io) == true) { 1794 return false; 1795 } 1796 1797 return bdev_qos_rw_queue_io(limit, io); 1798 } 1799 1800 static void 1801 bdev_qos_rw_iops_update_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 1802 { 1803 limit->remaining_this_timeslice--; 1804 } 1805 1806 static void 1807 bdev_qos_rw_bps_update_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 1808 { 1809 limit->remaining_this_timeslice -= bdev_get_io_size_in_byte(io); 1810 } 1811 1812 static void 1813 bdev_qos_r_bps_update_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 1814 { 1815 if (bdev_is_read_io(io) == false) { 1816 return; 1817 } 1818 1819 return bdev_qos_rw_bps_update_quota(limit, io); 1820 } 1821 1822 static void 1823 bdev_qos_w_bps_update_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 1824 { 1825 if (bdev_is_read_io(io) == true) { 1826 return; 1827 } 1828 1829 return bdev_qos_rw_bps_update_quota(limit, io); 1830 } 1831 1832 static void 1833 bdev_qos_set_ops(struct spdk_bdev_qos *qos) 1834 { 1835 int i; 1836 1837 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 1838 if (qos->rate_limits[i].limit == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) { 1839 qos->rate_limits[i].queue_io = NULL; 1840 qos->rate_limits[i].update_quota = NULL; 1841 continue; 1842 } 1843 1844 switch (i) { 1845 case SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT: 1846 qos->rate_limits[i].queue_io = bdev_qos_rw_queue_io; 1847 qos->rate_limits[i].update_quota = bdev_qos_rw_iops_update_quota; 1848 break; 1849 case SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT: 1850 qos->rate_limits[i].queue_io = bdev_qos_rw_queue_io; 1851 qos->rate_limits[i].update_quota = bdev_qos_rw_bps_update_quota; 1852 break; 1853 case SPDK_BDEV_QOS_R_BPS_RATE_LIMIT: 1854 qos->rate_limits[i].queue_io = bdev_qos_r_queue_io; 1855 qos->rate_limits[i].update_quota = bdev_qos_r_bps_update_quota; 1856 break; 1857 case SPDK_BDEV_QOS_W_BPS_RATE_LIMIT: 1858 qos->rate_limits[i].queue_io = bdev_qos_w_queue_io; 1859 qos->rate_limits[i].update_quota = bdev_qos_w_bps_update_quota; 1860 break; 1861 default: 1862 break; 1863 } 1864 } 1865 } 1866 1867 static void 1868 _bdev_io_complete_in_submit(struct spdk_bdev_channel *bdev_ch, 1869 struct spdk_bdev_io *bdev_io, 1870 enum spdk_bdev_io_status status) 1871 { 1872 struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource; 1873 1874 bdev_io->internal.in_submit_request = true; 1875 bdev_ch->io_outstanding++; 1876 shared_resource->io_outstanding++; 1877 spdk_bdev_io_complete(bdev_io, status); 1878 bdev_io->internal.in_submit_request = false; 1879 } 1880 1881 static inline void 1882 bdev_io_do_submit(struct spdk_bdev_channel *bdev_ch, struct spdk_bdev_io *bdev_io) 1883 { 1884 struct spdk_bdev *bdev = bdev_io->bdev; 1885 struct spdk_io_channel *ch = bdev_ch->channel; 1886 struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource; 1887 1888 if (spdk_unlikely(bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT)) { 1889 struct spdk_bdev_mgmt_channel *mgmt_channel = shared_resource->mgmt_ch; 1890 struct spdk_bdev_io *bio_to_abort = bdev_io->u.abort.bio_to_abort; 1891 1892 if (bdev_abort_queued_io(&shared_resource->nomem_io, bio_to_abort) || 1893 bdev_abort_buf_io(&mgmt_channel->need_buf_small, bio_to_abort) || 1894 bdev_abort_buf_io(&mgmt_channel->need_buf_large, bio_to_abort)) { 1895 _bdev_io_complete_in_submit(bdev_ch, bdev_io, 1896 SPDK_BDEV_IO_STATUS_SUCCESS); 1897 return; 1898 } 1899 } 1900 1901 if (spdk_likely(TAILQ_EMPTY(&shared_resource->nomem_io))) { 1902 bdev_ch->io_outstanding++; 1903 shared_resource->io_outstanding++; 1904 bdev_io->internal.in_submit_request = true; 1905 bdev->fn_table->submit_request(ch, bdev_io); 1906 bdev_io->internal.in_submit_request = false; 1907 } else { 1908 TAILQ_INSERT_TAIL(&shared_resource->nomem_io, bdev_io, internal.link); 1909 } 1910 } 1911 1912 static int 1913 bdev_qos_io_submit(struct spdk_bdev_channel *ch, struct spdk_bdev_qos *qos) 1914 { 1915 struct spdk_bdev_io *bdev_io = NULL, *tmp = NULL; 1916 int i, submitted_ios = 0; 1917 1918 TAILQ_FOREACH_SAFE(bdev_io, &qos->queued, internal.link, tmp) { 1919 if (bdev_qos_io_to_limit(bdev_io) == true) { 1920 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 1921 if (!qos->rate_limits[i].queue_io) { 1922 continue; 1923 } 1924 1925 if (qos->rate_limits[i].queue_io(&qos->rate_limits[i], 1926 bdev_io) == true) { 1927 return submitted_ios; 1928 } 1929 } 1930 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 1931 if (!qos->rate_limits[i].update_quota) { 1932 continue; 1933 } 1934 1935 qos->rate_limits[i].update_quota(&qos->rate_limits[i], bdev_io); 1936 } 1937 } 1938 1939 TAILQ_REMOVE(&qos->queued, bdev_io, internal.link); 1940 bdev_io_do_submit(ch, bdev_io); 1941 submitted_ios++; 1942 } 1943 1944 return submitted_ios; 1945 } 1946 1947 static void 1948 bdev_queue_io_wait_with_cb(struct spdk_bdev_io *bdev_io, spdk_bdev_io_wait_cb cb_fn) 1949 { 1950 int rc; 1951 1952 bdev_io->internal.waitq_entry.bdev = bdev_io->bdev; 1953 bdev_io->internal.waitq_entry.cb_fn = cb_fn; 1954 bdev_io->internal.waitq_entry.cb_arg = bdev_io; 1955 rc = spdk_bdev_queue_io_wait(bdev_io->bdev, spdk_io_channel_from_ctx(bdev_io->internal.ch), 1956 &bdev_io->internal.waitq_entry); 1957 if (rc != 0) { 1958 SPDK_ERRLOG("Queue IO failed, rc=%d\n", rc); 1959 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 1960 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 1961 } 1962 } 1963 1964 static bool 1965 bdev_rw_should_split(struct spdk_bdev_io *bdev_io) 1966 { 1967 uint32_t io_boundary = bdev_io->bdev->optimal_io_boundary; 1968 uint32_t max_size = bdev_io->bdev->max_segment_size; 1969 int max_segs = bdev_io->bdev->max_num_segments; 1970 1971 io_boundary = bdev_io->bdev->split_on_optimal_io_boundary ? io_boundary : 0; 1972 1973 if (spdk_likely(!io_boundary && !max_segs && !max_size)) { 1974 return false; 1975 } 1976 1977 if (io_boundary) { 1978 uint64_t start_stripe, end_stripe; 1979 1980 start_stripe = bdev_io->u.bdev.offset_blocks; 1981 end_stripe = start_stripe + bdev_io->u.bdev.num_blocks - 1; 1982 /* Avoid expensive div operations if possible. These spdk_u32 functions are very cheap. */ 1983 if (spdk_likely(spdk_u32_is_pow2(io_boundary))) { 1984 start_stripe >>= spdk_u32log2(io_boundary); 1985 end_stripe >>= spdk_u32log2(io_boundary); 1986 } else { 1987 start_stripe /= io_boundary; 1988 end_stripe /= io_boundary; 1989 } 1990 1991 if (start_stripe != end_stripe) { 1992 return true; 1993 } 1994 } 1995 1996 if (max_segs) { 1997 if (bdev_io->u.bdev.iovcnt > max_segs) { 1998 return true; 1999 } 2000 } 2001 2002 if (max_size) { 2003 for (int i = 0; i < bdev_io->u.bdev.iovcnt; i++) { 2004 if (bdev_io->u.bdev.iovs[i].iov_len > max_size) { 2005 return true; 2006 } 2007 } 2008 } 2009 2010 return false; 2011 } 2012 2013 static bool 2014 bdev_unmap_should_split(struct spdk_bdev_io *bdev_io) 2015 { 2016 uint32_t num_unmap_segments; 2017 2018 if (!bdev_io->bdev->max_unmap || !bdev_io->bdev->max_unmap_segments) { 2019 return false; 2020 } 2021 num_unmap_segments = spdk_divide_round_up(bdev_io->u.bdev.num_blocks, bdev_io->bdev->max_unmap); 2022 if (num_unmap_segments > bdev_io->bdev->max_unmap_segments) { 2023 return true; 2024 } 2025 2026 return false; 2027 } 2028 2029 static bool 2030 bdev_write_zeroes_should_split(struct spdk_bdev_io *bdev_io) 2031 { 2032 if (!bdev_io->bdev->max_write_zeroes) { 2033 return false; 2034 } 2035 2036 if (bdev_io->u.bdev.num_blocks > bdev_io->bdev->max_write_zeroes) { 2037 return true; 2038 } 2039 2040 return false; 2041 } 2042 2043 static bool 2044 bdev_io_should_split(struct spdk_bdev_io *bdev_io) 2045 { 2046 switch (bdev_io->type) { 2047 case SPDK_BDEV_IO_TYPE_READ: 2048 case SPDK_BDEV_IO_TYPE_WRITE: 2049 return bdev_rw_should_split(bdev_io); 2050 case SPDK_BDEV_IO_TYPE_UNMAP: 2051 return bdev_unmap_should_split(bdev_io); 2052 case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: 2053 return bdev_write_zeroes_should_split(bdev_io); 2054 default: 2055 return false; 2056 } 2057 } 2058 2059 static uint32_t 2060 _to_next_boundary(uint64_t offset, uint32_t boundary) 2061 { 2062 return (boundary - (offset % boundary)); 2063 } 2064 2065 static void 2066 bdev_io_split_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg); 2067 2068 static void 2069 _bdev_rw_split(void *_bdev_io); 2070 2071 static void 2072 bdev_unmap_split(struct spdk_bdev_io *bdev_io); 2073 2074 static void 2075 _bdev_unmap_split(void *_bdev_io) 2076 { 2077 return bdev_unmap_split((struct spdk_bdev_io *)_bdev_io); 2078 } 2079 2080 static void 2081 bdev_write_zeroes_split(struct spdk_bdev_io *bdev_io); 2082 2083 static void 2084 _bdev_write_zeroes_split(void *_bdev_io) 2085 { 2086 return bdev_write_zeroes_split((struct spdk_bdev_io *)_bdev_io); 2087 } 2088 2089 static int 2090 bdev_io_split_submit(struct spdk_bdev_io *bdev_io, struct iovec *iov, int iovcnt, void *md_buf, 2091 uint64_t num_blocks, uint64_t *offset, uint64_t *remaining) 2092 { 2093 int rc; 2094 uint64_t current_offset, current_remaining; 2095 spdk_bdev_io_wait_cb io_wait_fn; 2096 2097 current_offset = *offset; 2098 current_remaining = *remaining; 2099 2100 bdev_io->u.bdev.split_outstanding++; 2101 2102 io_wait_fn = _bdev_rw_split; 2103 switch (bdev_io->type) { 2104 case SPDK_BDEV_IO_TYPE_READ: 2105 rc = bdev_readv_blocks_with_md(bdev_io->internal.desc, 2106 spdk_io_channel_from_ctx(bdev_io->internal.ch), 2107 iov, iovcnt, md_buf, current_offset, 2108 num_blocks, 2109 bdev_io_split_done, bdev_io); 2110 break; 2111 case SPDK_BDEV_IO_TYPE_WRITE: 2112 rc = bdev_writev_blocks_with_md(bdev_io->internal.desc, 2113 spdk_io_channel_from_ctx(bdev_io->internal.ch), 2114 iov, iovcnt, md_buf, current_offset, 2115 num_blocks, 2116 bdev_io_split_done, bdev_io); 2117 break; 2118 case SPDK_BDEV_IO_TYPE_UNMAP: 2119 io_wait_fn = _bdev_unmap_split; 2120 rc = spdk_bdev_unmap_blocks(bdev_io->internal.desc, 2121 spdk_io_channel_from_ctx(bdev_io->internal.ch), 2122 current_offset, num_blocks, 2123 bdev_io_split_done, bdev_io); 2124 break; 2125 case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: 2126 io_wait_fn = _bdev_write_zeroes_split; 2127 rc = spdk_bdev_write_zeroes_blocks(bdev_io->internal.desc, 2128 spdk_io_channel_from_ctx(bdev_io->internal.ch), 2129 current_offset, num_blocks, 2130 bdev_io_split_done, bdev_io); 2131 break; 2132 default: 2133 assert(false); 2134 rc = -EINVAL; 2135 break; 2136 } 2137 2138 if (rc == 0) { 2139 current_offset += num_blocks; 2140 current_remaining -= num_blocks; 2141 bdev_io->u.bdev.split_current_offset_blocks = current_offset; 2142 bdev_io->u.bdev.split_remaining_num_blocks = current_remaining; 2143 *offset = current_offset; 2144 *remaining = current_remaining; 2145 } else { 2146 bdev_io->u.bdev.split_outstanding--; 2147 if (rc == -ENOMEM) { 2148 if (bdev_io->u.bdev.split_outstanding == 0) { 2149 /* No I/O is outstanding. Hence we should wait here. */ 2150 bdev_queue_io_wait_with_cb(bdev_io, io_wait_fn); 2151 } 2152 } else { 2153 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 2154 if (bdev_io->u.bdev.split_outstanding == 0) { 2155 spdk_trace_record_tsc(spdk_get_ticks(), TRACE_BDEV_IO_DONE, 0, 0, 2156 (uintptr_t)bdev_io, 0); 2157 TAILQ_REMOVE(&bdev_io->internal.ch->io_submitted, bdev_io, internal.ch_link); 2158 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 2159 } 2160 } 2161 } 2162 2163 return rc; 2164 } 2165 2166 static void 2167 _bdev_rw_split(void *_bdev_io) 2168 { 2169 struct iovec *parent_iov, *iov; 2170 struct spdk_bdev_io *bdev_io = _bdev_io; 2171 struct spdk_bdev *bdev = bdev_io->bdev; 2172 uint64_t parent_offset, current_offset, remaining; 2173 uint32_t parent_iov_offset, parent_iovcnt, parent_iovpos, child_iovcnt; 2174 uint32_t to_next_boundary, to_next_boundary_bytes, to_last_block_bytes; 2175 uint32_t iovcnt, iov_len, child_iovsize; 2176 uint32_t blocklen = bdev->blocklen; 2177 uint32_t io_boundary = bdev->optimal_io_boundary; 2178 uint32_t max_segment_size = bdev->max_segment_size; 2179 uint32_t max_child_iovcnt = bdev->max_num_segments; 2180 void *md_buf = NULL; 2181 int rc; 2182 2183 max_segment_size = max_segment_size ? max_segment_size : UINT32_MAX; 2184 max_child_iovcnt = max_child_iovcnt ? spdk_min(max_child_iovcnt, BDEV_IO_NUM_CHILD_IOV) : 2185 BDEV_IO_NUM_CHILD_IOV; 2186 io_boundary = bdev->split_on_optimal_io_boundary ? io_boundary : UINT32_MAX; 2187 2188 remaining = bdev_io->u.bdev.split_remaining_num_blocks; 2189 current_offset = bdev_io->u.bdev.split_current_offset_blocks; 2190 parent_offset = bdev_io->u.bdev.offset_blocks; 2191 parent_iov_offset = (current_offset - parent_offset) * blocklen; 2192 parent_iovcnt = bdev_io->u.bdev.iovcnt; 2193 2194 for (parent_iovpos = 0; parent_iovpos < parent_iovcnt; parent_iovpos++) { 2195 parent_iov = &bdev_io->u.bdev.iovs[parent_iovpos]; 2196 if (parent_iov_offset < parent_iov->iov_len) { 2197 break; 2198 } 2199 parent_iov_offset -= parent_iov->iov_len; 2200 } 2201 2202 child_iovcnt = 0; 2203 while (remaining > 0 && parent_iovpos < parent_iovcnt && child_iovcnt < BDEV_IO_NUM_CHILD_IOV) { 2204 to_next_boundary = _to_next_boundary(current_offset, io_boundary); 2205 to_next_boundary = spdk_min(remaining, to_next_boundary); 2206 to_next_boundary_bytes = to_next_boundary * blocklen; 2207 2208 iov = &bdev_io->child_iov[child_iovcnt]; 2209 iovcnt = 0; 2210 2211 if (bdev_io->u.bdev.md_buf) { 2212 md_buf = (char *)bdev_io->u.bdev.md_buf + 2213 (current_offset - parent_offset) * spdk_bdev_get_md_size(bdev); 2214 } 2215 2216 child_iovsize = spdk_min(BDEV_IO_NUM_CHILD_IOV - child_iovcnt, max_child_iovcnt); 2217 while (to_next_boundary_bytes > 0 && parent_iovpos < parent_iovcnt && 2218 iovcnt < child_iovsize) { 2219 parent_iov = &bdev_io->u.bdev.iovs[parent_iovpos]; 2220 iov_len = parent_iov->iov_len - parent_iov_offset; 2221 2222 iov_len = spdk_min(iov_len, max_segment_size); 2223 iov_len = spdk_min(iov_len, to_next_boundary_bytes); 2224 to_next_boundary_bytes -= iov_len; 2225 2226 bdev_io->child_iov[child_iovcnt].iov_base = parent_iov->iov_base + parent_iov_offset; 2227 bdev_io->child_iov[child_iovcnt].iov_len = iov_len; 2228 2229 if (iov_len < parent_iov->iov_len - parent_iov_offset) { 2230 parent_iov_offset += iov_len; 2231 } else { 2232 parent_iovpos++; 2233 parent_iov_offset = 0; 2234 } 2235 child_iovcnt++; 2236 iovcnt++; 2237 } 2238 2239 if (to_next_boundary_bytes > 0) { 2240 /* We had to stop this child I/O early because we ran out of 2241 * child_iov space or were limited by max_num_segments. 2242 * Ensure the iovs to be aligned with block size and 2243 * then adjust to_next_boundary before starting the 2244 * child I/O. 2245 */ 2246 assert(child_iovcnt == BDEV_IO_NUM_CHILD_IOV || 2247 iovcnt == child_iovsize); 2248 to_last_block_bytes = to_next_boundary_bytes % blocklen; 2249 if (to_last_block_bytes != 0) { 2250 uint32_t child_iovpos = child_iovcnt - 1; 2251 /* don't decrease child_iovcnt when it equals to BDEV_IO_NUM_CHILD_IOV 2252 * so the loop will naturally end 2253 */ 2254 2255 to_last_block_bytes = blocklen - to_last_block_bytes; 2256 to_next_boundary_bytes += to_last_block_bytes; 2257 while (to_last_block_bytes > 0 && iovcnt > 0) { 2258 iov_len = spdk_min(to_last_block_bytes, 2259 bdev_io->child_iov[child_iovpos].iov_len); 2260 bdev_io->child_iov[child_iovpos].iov_len -= iov_len; 2261 if (bdev_io->child_iov[child_iovpos].iov_len == 0) { 2262 child_iovpos--; 2263 if (--iovcnt == 0) { 2264 /* If the child IO is less than a block size just return. 2265 * If the first child IO of any split round is less than 2266 * a block size, an error exit. 2267 */ 2268 if (bdev_io->u.bdev.split_outstanding == 0) { 2269 SPDK_ERRLOG("The first child io was less than a block size\n"); 2270 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 2271 spdk_trace_record_tsc(spdk_get_ticks(), TRACE_BDEV_IO_DONE, 0, 0, 2272 (uintptr_t)bdev_io, 0); 2273 TAILQ_REMOVE(&bdev_io->internal.ch->io_submitted, bdev_io, internal.ch_link); 2274 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 2275 } 2276 2277 return; 2278 } 2279 } 2280 2281 to_last_block_bytes -= iov_len; 2282 2283 if (parent_iov_offset == 0) { 2284 parent_iovpos--; 2285 parent_iov_offset = bdev_io->u.bdev.iovs[parent_iovpos].iov_len; 2286 } 2287 parent_iov_offset -= iov_len; 2288 } 2289 2290 assert(to_last_block_bytes == 0); 2291 } 2292 to_next_boundary -= to_next_boundary_bytes / blocklen; 2293 } 2294 2295 rc = bdev_io_split_submit(bdev_io, iov, iovcnt, md_buf, to_next_boundary, 2296 ¤t_offset, &remaining); 2297 if (spdk_unlikely(rc)) { 2298 return; 2299 } 2300 } 2301 } 2302 2303 static void 2304 bdev_unmap_split(struct spdk_bdev_io *bdev_io) 2305 { 2306 uint64_t offset, unmap_blocks, remaining, max_unmap_blocks; 2307 uint32_t num_children_reqs = 0; 2308 int rc; 2309 2310 offset = bdev_io->u.bdev.split_current_offset_blocks; 2311 remaining = bdev_io->u.bdev.split_remaining_num_blocks; 2312 max_unmap_blocks = bdev_io->bdev->max_unmap * bdev_io->bdev->max_unmap_segments; 2313 2314 while (remaining && (num_children_reqs < SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS)) { 2315 unmap_blocks = spdk_min(remaining, max_unmap_blocks); 2316 2317 rc = bdev_io_split_submit(bdev_io, NULL, 0, NULL, unmap_blocks, 2318 &offset, &remaining); 2319 if (spdk_likely(rc == 0)) { 2320 num_children_reqs++; 2321 } else { 2322 return; 2323 } 2324 } 2325 } 2326 2327 static void 2328 bdev_write_zeroes_split(struct spdk_bdev_io *bdev_io) 2329 { 2330 uint64_t offset, write_zeroes_blocks, remaining; 2331 uint32_t num_children_reqs = 0; 2332 int rc; 2333 2334 offset = bdev_io->u.bdev.split_current_offset_blocks; 2335 remaining = bdev_io->u.bdev.split_remaining_num_blocks; 2336 2337 while (remaining && (num_children_reqs < SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS)) { 2338 write_zeroes_blocks = spdk_min(remaining, bdev_io->bdev->max_write_zeroes); 2339 2340 rc = bdev_io_split_submit(bdev_io, NULL, 0, NULL, write_zeroes_blocks, 2341 &offset, &remaining); 2342 if (spdk_likely(rc == 0)) { 2343 num_children_reqs++; 2344 } else { 2345 return; 2346 } 2347 } 2348 } 2349 2350 static void 2351 bdev_io_split_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 2352 { 2353 struct spdk_bdev_io *parent_io = cb_arg; 2354 2355 spdk_bdev_free_io(bdev_io); 2356 2357 if (!success) { 2358 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 2359 /* If any child I/O failed, stop further splitting process. */ 2360 parent_io->u.bdev.split_current_offset_blocks += parent_io->u.bdev.split_remaining_num_blocks; 2361 parent_io->u.bdev.split_remaining_num_blocks = 0; 2362 } 2363 parent_io->u.bdev.split_outstanding--; 2364 if (parent_io->u.bdev.split_outstanding != 0) { 2365 return; 2366 } 2367 2368 /* 2369 * Parent I/O finishes when all blocks are consumed. 2370 */ 2371 if (parent_io->u.bdev.split_remaining_num_blocks == 0) { 2372 assert(parent_io->internal.cb != bdev_io_split_done); 2373 spdk_trace_record_tsc(spdk_get_ticks(), TRACE_BDEV_IO_DONE, 0, 0, 2374 (uintptr_t)parent_io, 0); 2375 TAILQ_REMOVE(&parent_io->internal.ch->io_submitted, parent_io, internal.ch_link); 2376 parent_io->internal.cb(parent_io, parent_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS, 2377 parent_io->internal.caller_ctx); 2378 return; 2379 } 2380 2381 /* 2382 * Continue with the splitting process. This function will complete the parent I/O if the 2383 * splitting is done. 2384 */ 2385 switch (parent_io->type) { 2386 case SPDK_BDEV_IO_TYPE_READ: 2387 case SPDK_BDEV_IO_TYPE_WRITE: 2388 _bdev_rw_split(parent_io); 2389 break; 2390 case SPDK_BDEV_IO_TYPE_UNMAP: 2391 bdev_unmap_split(parent_io); 2392 break; 2393 case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: 2394 bdev_write_zeroes_split(parent_io); 2395 break; 2396 default: 2397 assert(false); 2398 break; 2399 } 2400 } 2401 2402 static void 2403 bdev_rw_split_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io, bool success); 2404 2405 static void 2406 bdev_io_split(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io) 2407 { 2408 bdev_io->u.bdev.split_current_offset_blocks = bdev_io->u.bdev.offset_blocks; 2409 bdev_io->u.bdev.split_remaining_num_blocks = bdev_io->u.bdev.num_blocks; 2410 bdev_io->u.bdev.split_outstanding = 0; 2411 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; 2412 2413 switch (bdev_io->type) { 2414 case SPDK_BDEV_IO_TYPE_READ: 2415 case SPDK_BDEV_IO_TYPE_WRITE: 2416 if (_is_buf_allocated(bdev_io->u.bdev.iovs)) { 2417 _bdev_rw_split(bdev_io); 2418 } else { 2419 assert(bdev_io->type == SPDK_BDEV_IO_TYPE_READ); 2420 spdk_bdev_io_get_buf(bdev_io, bdev_rw_split_get_buf_cb, 2421 bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen); 2422 } 2423 break; 2424 case SPDK_BDEV_IO_TYPE_UNMAP: 2425 bdev_unmap_split(bdev_io); 2426 break; 2427 case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: 2428 bdev_write_zeroes_split(bdev_io); 2429 break; 2430 default: 2431 assert(false); 2432 break; 2433 } 2434 } 2435 2436 static void 2437 bdev_rw_split_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io, bool success) 2438 { 2439 if (!success) { 2440 spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED); 2441 return; 2442 } 2443 2444 _bdev_rw_split(bdev_io); 2445 } 2446 2447 /* Explicitly mark this inline, since it's used as a function pointer and otherwise won't 2448 * be inlined, at least on some compilers. 2449 */ 2450 static inline void 2451 _bdev_io_submit(void *ctx) 2452 { 2453 struct spdk_bdev_io *bdev_io = ctx; 2454 struct spdk_bdev *bdev = bdev_io->bdev; 2455 struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch; 2456 uint64_t tsc; 2457 2458 tsc = spdk_get_ticks(); 2459 bdev_io->internal.submit_tsc = tsc; 2460 spdk_trace_record_tsc(tsc, TRACE_BDEV_IO_START, 0, 0, (uintptr_t)bdev_io, bdev_io->type); 2461 2462 if (spdk_likely(bdev_ch->flags == 0)) { 2463 bdev_io_do_submit(bdev_ch, bdev_io); 2464 return; 2465 } 2466 2467 if (bdev_ch->flags & BDEV_CH_RESET_IN_PROGRESS) { 2468 _bdev_io_complete_in_submit(bdev_ch, bdev_io, SPDK_BDEV_IO_STATUS_ABORTED); 2469 } else if (bdev_ch->flags & BDEV_CH_QOS_ENABLED) { 2470 if (spdk_unlikely(bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) && 2471 bdev_abort_queued_io(&bdev->internal.qos->queued, bdev_io->u.abort.bio_to_abort)) { 2472 _bdev_io_complete_in_submit(bdev_ch, bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS); 2473 } else { 2474 TAILQ_INSERT_TAIL(&bdev->internal.qos->queued, bdev_io, internal.link); 2475 bdev_qos_io_submit(bdev_ch, bdev->internal.qos); 2476 } 2477 } else { 2478 SPDK_ERRLOG("unknown bdev_ch flag %x found\n", bdev_ch->flags); 2479 _bdev_io_complete_in_submit(bdev_ch, bdev_io, SPDK_BDEV_IO_STATUS_FAILED); 2480 } 2481 } 2482 2483 bool 2484 bdev_lba_range_overlapped(struct lba_range *range1, struct lba_range *range2); 2485 2486 bool 2487 bdev_lba_range_overlapped(struct lba_range *range1, struct lba_range *range2) 2488 { 2489 if (range1->length == 0 || range2->length == 0) { 2490 return false; 2491 } 2492 2493 if (range1->offset + range1->length <= range2->offset) { 2494 return false; 2495 } 2496 2497 if (range2->offset + range2->length <= range1->offset) { 2498 return false; 2499 } 2500 2501 return true; 2502 } 2503 2504 static bool 2505 bdev_io_range_is_locked(struct spdk_bdev_io *bdev_io, struct lba_range *range) 2506 { 2507 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 2508 struct lba_range r; 2509 2510 switch (bdev_io->type) { 2511 case SPDK_BDEV_IO_TYPE_NVME_IO: 2512 case SPDK_BDEV_IO_TYPE_NVME_IO_MD: 2513 /* Don't try to decode the NVMe command - just assume worst-case and that 2514 * it overlaps a locked range. 2515 */ 2516 return true; 2517 case SPDK_BDEV_IO_TYPE_WRITE: 2518 case SPDK_BDEV_IO_TYPE_UNMAP: 2519 case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: 2520 case SPDK_BDEV_IO_TYPE_ZCOPY: 2521 r.offset = bdev_io->u.bdev.offset_blocks; 2522 r.length = bdev_io->u.bdev.num_blocks; 2523 if (!bdev_lba_range_overlapped(range, &r)) { 2524 /* This I/O doesn't overlap the specified LBA range. */ 2525 return false; 2526 } else if (range->owner_ch == ch && range->locked_ctx == bdev_io->internal.caller_ctx) { 2527 /* This I/O overlaps, but the I/O is on the same channel that locked this 2528 * range, and the caller_ctx is the same as the locked_ctx. This means 2529 * that this I/O is associated with the lock, and is allowed to execute. 2530 */ 2531 return false; 2532 } else { 2533 return true; 2534 } 2535 default: 2536 return false; 2537 } 2538 } 2539 2540 void 2541 bdev_io_submit(struct spdk_bdev_io *bdev_io) 2542 { 2543 struct spdk_bdev *bdev = bdev_io->bdev; 2544 struct spdk_thread *thread = spdk_bdev_io_get_thread(bdev_io); 2545 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 2546 2547 assert(thread != NULL); 2548 assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_PENDING); 2549 2550 if (!TAILQ_EMPTY(&ch->locked_ranges)) { 2551 struct lba_range *range; 2552 2553 TAILQ_FOREACH(range, &ch->locked_ranges, tailq) { 2554 if (bdev_io_range_is_locked(bdev_io, range)) { 2555 TAILQ_INSERT_TAIL(&ch->io_locked, bdev_io, internal.ch_link); 2556 return; 2557 } 2558 } 2559 } 2560 2561 TAILQ_INSERT_TAIL(&ch->io_submitted, bdev_io, internal.ch_link); 2562 2563 if (bdev_io_should_split(bdev_io)) { 2564 bdev_io->internal.submit_tsc = spdk_get_ticks(); 2565 spdk_trace_record_tsc(bdev_io->internal.submit_tsc, TRACE_BDEV_IO_START, 0, 0, 2566 (uintptr_t)bdev_io, bdev_io->type); 2567 bdev_io_split(NULL, bdev_io); 2568 return; 2569 } 2570 2571 if (ch->flags & BDEV_CH_QOS_ENABLED) { 2572 if ((thread == bdev->internal.qos->thread) || !bdev->internal.qos->thread) { 2573 _bdev_io_submit(bdev_io); 2574 } else { 2575 bdev_io->internal.io_submit_ch = ch; 2576 bdev_io->internal.ch = bdev->internal.qos->ch; 2577 spdk_thread_send_msg(bdev->internal.qos->thread, _bdev_io_submit, bdev_io); 2578 } 2579 } else { 2580 _bdev_io_submit(bdev_io); 2581 } 2582 } 2583 2584 static void 2585 bdev_io_submit_reset(struct spdk_bdev_io *bdev_io) 2586 { 2587 struct spdk_bdev *bdev = bdev_io->bdev; 2588 struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch; 2589 struct spdk_io_channel *ch = bdev_ch->channel; 2590 2591 assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_PENDING); 2592 2593 bdev_io->internal.in_submit_request = true; 2594 bdev->fn_table->submit_request(ch, bdev_io); 2595 bdev_io->internal.in_submit_request = false; 2596 } 2597 2598 void 2599 bdev_io_init(struct spdk_bdev_io *bdev_io, 2600 struct spdk_bdev *bdev, void *cb_arg, 2601 spdk_bdev_io_completion_cb cb) 2602 { 2603 bdev_io->bdev = bdev; 2604 bdev_io->internal.caller_ctx = cb_arg; 2605 bdev_io->internal.cb = cb; 2606 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_PENDING; 2607 bdev_io->internal.in_submit_request = false; 2608 bdev_io->internal.buf = NULL; 2609 bdev_io->internal.io_submit_ch = NULL; 2610 bdev_io->internal.orig_iovs = NULL; 2611 bdev_io->internal.orig_iovcnt = 0; 2612 bdev_io->internal.orig_md_buf = NULL; 2613 bdev_io->internal.error.nvme.cdw0 = 0; 2614 bdev_io->num_retries = 0; 2615 bdev_io->internal.get_buf_cb = NULL; 2616 bdev_io->internal.get_aux_buf_cb = NULL; 2617 } 2618 2619 static bool 2620 bdev_io_type_supported(struct spdk_bdev *bdev, enum spdk_bdev_io_type io_type) 2621 { 2622 return bdev->fn_table->io_type_supported(bdev->ctxt, io_type); 2623 } 2624 2625 bool 2626 spdk_bdev_io_type_supported(struct spdk_bdev *bdev, enum spdk_bdev_io_type io_type) 2627 { 2628 bool supported; 2629 2630 supported = bdev_io_type_supported(bdev, io_type); 2631 2632 if (!supported) { 2633 switch (io_type) { 2634 case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: 2635 /* The bdev layer will emulate write zeroes as long as write is supported. */ 2636 supported = bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE); 2637 break; 2638 default: 2639 break; 2640 } 2641 } 2642 2643 return supported; 2644 } 2645 2646 int 2647 spdk_bdev_dump_info_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w) 2648 { 2649 if (bdev->fn_table->dump_info_json) { 2650 return bdev->fn_table->dump_info_json(bdev->ctxt, w); 2651 } 2652 2653 return 0; 2654 } 2655 2656 static void 2657 bdev_qos_update_max_quota_per_timeslice(struct spdk_bdev_qos *qos) 2658 { 2659 uint32_t max_per_timeslice = 0; 2660 int i; 2661 2662 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 2663 if (qos->rate_limits[i].limit == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) { 2664 qos->rate_limits[i].max_per_timeslice = 0; 2665 continue; 2666 } 2667 2668 max_per_timeslice = qos->rate_limits[i].limit * 2669 SPDK_BDEV_QOS_TIMESLICE_IN_USEC / SPDK_SEC_TO_USEC; 2670 2671 qos->rate_limits[i].max_per_timeslice = spdk_max(max_per_timeslice, 2672 qos->rate_limits[i].min_per_timeslice); 2673 2674 qos->rate_limits[i].remaining_this_timeslice = qos->rate_limits[i].max_per_timeslice; 2675 } 2676 2677 bdev_qos_set_ops(qos); 2678 } 2679 2680 static int 2681 bdev_channel_poll_qos(void *arg) 2682 { 2683 struct spdk_bdev_qos *qos = arg; 2684 uint64_t now = spdk_get_ticks(); 2685 int i; 2686 2687 if (now < (qos->last_timeslice + qos->timeslice_size)) { 2688 /* We received our callback earlier than expected - return 2689 * immediately and wait to do accounting until at least one 2690 * timeslice has actually expired. This should never happen 2691 * with a well-behaved timer implementation. 2692 */ 2693 return SPDK_POLLER_IDLE; 2694 } 2695 2696 /* Reset for next round of rate limiting */ 2697 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 2698 /* We may have allowed the IOs or bytes to slightly overrun in the last 2699 * timeslice. remaining_this_timeslice is signed, so if it's negative 2700 * here, we'll account for the overrun so that the next timeslice will 2701 * be appropriately reduced. 2702 */ 2703 if (qos->rate_limits[i].remaining_this_timeslice > 0) { 2704 qos->rate_limits[i].remaining_this_timeslice = 0; 2705 } 2706 } 2707 2708 while (now >= (qos->last_timeslice + qos->timeslice_size)) { 2709 qos->last_timeslice += qos->timeslice_size; 2710 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 2711 qos->rate_limits[i].remaining_this_timeslice += 2712 qos->rate_limits[i].max_per_timeslice; 2713 } 2714 } 2715 2716 return bdev_qos_io_submit(qos->ch, qos); 2717 } 2718 2719 static void 2720 bdev_channel_destroy_resource(struct spdk_bdev_channel *ch) 2721 { 2722 struct spdk_bdev_shared_resource *shared_resource; 2723 struct lba_range *range; 2724 2725 while (!TAILQ_EMPTY(&ch->locked_ranges)) { 2726 range = TAILQ_FIRST(&ch->locked_ranges); 2727 TAILQ_REMOVE(&ch->locked_ranges, range, tailq); 2728 free(range); 2729 } 2730 2731 spdk_put_io_channel(ch->channel); 2732 2733 shared_resource = ch->shared_resource; 2734 2735 assert(TAILQ_EMPTY(&ch->io_locked)); 2736 assert(TAILQ_EMPTY(&ch->io_submitted)); 2737 assert(ch->io_outstanding == 0); 2738 assert(shared_resource->ref > 0); 2739 shared_resource->ref--; 2740 if (shared_resource->ref == 0) { 2741 assert(shared_resource->io_outstanding == 0); 2742 TAILQ_REMOVE(&shared_resource->mgmt_ch->shared_resources, shared_resource, link); 2743 spdk_put_io_channel(spdk_io_channel_from_ctx(shared_resource->mgmt_ch)); 2744 free(shared_resource); 2745 } 2746 } 2747 2748 /* Caller must hold bdev->internal.mutex. */ 2749 static void 2750 bdev_enable_qos(struct spdk_bdev *bdev, struct spdk_bdev_channel *ch) 2751 { 2752 struct spdk_bdev_qos *qos = bdev->internal.qos; 2753 int i; 2754 2755 /* Rate limiting on this bdev enabled */ 2756 if (qos) { 2757 if (qos->ch == NULL) { 2758 struct spdk_io_channel *io_ch; 2759 2760 SPDK_DEBUGLOG(bdev, "Selecting channel %p as QoS channel for bdev %s on thread %p\n", ch, 2761 bdev->name, spdk_get_thread()); 2762 2763 /* No qos channel has been selected, so set one up */ 2764 2765 /* Take another reference to ch */ 2766 io_ch = spdk_get_io_channel(__bdev_to_io_dev(bdev)); 2767 assert(io_ch != NULL); 2768 qos->ch = ch; 2769 2770 qos->thread = spdk_io_channel_get_thread(io_ch); 2771 2772 TAILQ_INIT(&qos->queued); 2773 2774 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 2775 if (bdev_qos_is_iops_rate_limit(i) == true) { 2776 qos->rate_limits[i].min_per_timeslice = 2777 SPDK_BDEV_QOS_MIN_IO_PER_TIMESLICE; 2778 } else { 2779 qos->rate_limits[i].min_per_timeslice = 2780 SPDK_BDEV_QOS_MIN_BYTE_PER_TIMESLICE; 2781 } 2782 2783 if (qos->rate_limits[i].limit == 0) { 2784 qos->rate_limits[i].limit = SPDK_BDEV_QOS_LIMIT_NOT_DEFINED; 2785 } 2786 } 2787 bdev_qos_update_max_quota_per_timeslice(qos); 2788 qos->timeslice_size = 2789 SPDK_BDEV_QOS_TIMESLICE_IN_USEC * spdk_get_ticks_hz() / SPDK_SEC_TO_USEC; 2790 qos->last_timeslice = spdk_get_ticks(); 2791 qos->poller = SPDK_POLLER_REGISTER(bdev_channel_poll_qos, 2792 qos, 2793 SPDK_BDEV_QOS_TIMESLICE_IN_USEC); 2794 } 2795 2796 ch->flags |= BDEV_CH_QOS_ENABLED; 2797 } 2798 } 2799 2800 struct poll_timeout_ctx { 2801 struct spdk_bdev_desc *desc; 2802 uint64_t timeout_in_sec; 2803 spdk_bdev_io_timeout_cb cb_fn; 2804 void *cb_arg; 2805 }; 2806 2807 static void 2808 bdev_desc_free(struct spdk_bdev_desc *desc) 2809 { 2810 pthread_mutex_destroy(&desc->mutex); 2811 free(desc->media_events_buffer); 2812 free(desc); 2813 } 2814 2815 static void 2816 bdev_channel_poll_timeout_io_done(struct spdk_io_channel_iter *i, int status) 2817 { 2818 struct poll_timeout_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 2819 struct spdk_bdev_desc *desc = ctx->desc; 2820 2821 free(ctx); 2822 2823 pthread_mutex_lock(&desc->mutex); 2824 desc->refs--; 2825 if (desc->closed == true && desc->refs == 0) { 2826 pthread_mutex_unlock(&desc->mutex); 2827 bdev_desc_free(desc); 2828 return; 2829 } 2830 pthread_mutex_unlock(&desc->mutex); 2831 } 2832 2833 static void 2834 bdev_channel_poll_timeout_io(struct spdk_io_channel_iter *i) 2835 { 2836 struct poll_timeout_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 2837 struct spdk_io_channel *io_ch = spdk_io_channel_iter_get_channel(i); 2838 struct spdk_bdev_channel *bdev_ch = spdk_io_channel_get_ctx(io_ch); 2839 struct spdk_bdev_desc *desc = ctx->desc; 2840 struct spdk_bdev_io *bdev_io; 2841 uint64_t now; 2842 2843 pthread_mutex_lock(&desc->mutex); 2844 if (desc->closed == true) { 2845 pthread_mutex_unlock(&desc->mutex); 2846 spdk_for_each_channel_continue(i, -1); 2847 return; 2848 } 2849 pthread_mutex_unlock(&desc->mutex); 2850 2851 now = spdk_get_ticks(); 2852 TAILQ_FOREACH(bdev_io, &bdev_ch->io_submitted, internal.ch_link) { 2853 /* Exclude any I/O that are generated via splitting. */ 2854 if (bdev_io->internal.cb == bdev_io_split_done) { 2855 continue; 2856 } 2857 2858 /* Once we find an I/O that has not timed out, we can immediately 2859 * exit the loop. 2860 */ 2861 if (now < (bdev_io->internal.submit_tsc + 2862 ctx->timeout_in_sec * spdk_get_ticks_hz())) { 2863 goto end; 2864 } 2865 2866 if (bdev_io->internal.desc == desc) { 2867 ctx->cb_fn(ctx->cb_arg, bdev_io); 2868 } 2869 } 2870 2871 end: 2872 spdk_for_each_channel_continue(i, 0); 2873 } 2874 2875 static int 2876 bdev_poll_timeout_io(void *arg) 2877 { 2878 struct spdk_bdev_desc *desc = arg; 2879 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 2880 struct poll_timeout_ctx *ctx; 2881 2882 ctx = calloc(1, sizeof(struct poll_timeout_ctx)); 2883 if (!ctx) { 2884 SPDK_ERRLOG("failed to allocate memory\n"); 2885 return SPDK_POLLER_BUSY; 2886 } 2887 ctx->desc = desc; 2888 ctx->cb_arg = desc->cb_arg; 2889 ctx->cb_fn = desc->cb_fn; 2890 ctx->timeout_in_sec = desc->timeout_in_sec; 2891 2892 /* Take a ref on the descriptor in case it gets closed while we are checking 2893 * all of the channels. 2894 */ 2895 pthread_mutex_lock(&desc->mutex); 2896 desc->refs++; 2897 pthread_mutex_unlock(&desc->mutex); 2898 2899 spdk_for_each_channel(__bdev_to_io_dev(bdev), 2900 bdev_channel_poll_timeout_io, 2901 ctx, 2902 bdev_channel_poll_timeout_io_done); 2903 2904 return SPDK_POLLER_BUSY; 2905 } 2906 2907 int 2908 spdk_bdev_set_timeout(struct spdk_bdev_desc *desc, uint64_t timeout_in_sec, 2909 spdk_bdev_io_timeout_cb cb_fn, void *cb_arg) 2910 { 2911 assert(desc->thread == spdk_get_thread()); 2912 2913 spdk_poller_unregister(&desc->io_timeout_poller); 2914 2915 if (timeout_in_sec) { 2916 assert(cb_fn != NULL); 2917 desc->io_timeout_poller = SPDK_POLLER_REGISTER(bdev_poll_timeout_io, 2918 desc, 2919 SPDK_BDEV_IO_POLL_INTERVAL_IN_MSEC * SPDK_SEC_TO_USEC / 2920 1000); 2921 if (desc->io_timeout_poller == NULL) { 2922 SPDK_ERRLOG("can not register the desc timeout IO poller\n"); 2923 return -1; 2924 } 2925 } 2926 2927 desc->cb_fn = cb_fn; 2928 desc->cb_arg = cb_arg; 2929 desc->timeout_in_sec = timeout_in_sec; 2930 2931 return 0; 2932 } 2933 2934 static int 2935 bdev_channel_create(void *io_device, void *ctx_buf) 2936 { 2937 struct spdk_bdev *bdev = __bdev_from_io_dev(io_device); 2938 struct spdk_bdev_channel *ch = ctx_buf; 2939 struct spdk_io_channel *mgmt_io_ch; 2940 struct spdk_bdev_mgmt_channel *mgmt_ch; 2941 struct spdk_bdev_shared_resource *shared_resource; 2942 struct lba_range *range; 2943 2944 ch->bdev = bdev; 2945 ch->channel = bdev->fn_table->get_io_channel(bdev->ctxt); 2946 if (!ch->channel) { 2947 return -1; 2948 } 2949 2950 assert(ch->histogram == NULL); 2951 if (bdev->internal.histogram_enabled) { 2952 ch->histogram = spdk_histogram_data_alloc(); 2953 if (ch->histogram == NULL) { 2954 SPDK_ERRLOG("Could not allocate histogram\n"); 2955 } 2956 } 2957 2958 mgmt_io_ch = spdk_get_io_channel(&g_bdev_mgr); 2959 if (!mgmt_io_ch) { 2960 spdk_put_io_channel(ch->channel); 2961 return -1; 2962 } 2963 2964 mgmt_ch = spdk_io_channel_get_ctx(mgmt_io_ch); 2965 TAILQ_FOREACH(shared_resource, &mgmt_ch->shared_resources, link) { 2966 if (shared_resource->shared_ch == ch->channel) { 2967 spdk_put_io_channel(mgmt_io_ch); 2968 shared_resource->ref++; 2969 break; 2970 } 2971 } 2972 2973 if (shared_resource == NULL) { 2974 shared_resource = calloc(1, sizeof(*shared_resource)); 2975 if (shared_resource == NULL) { 2976 spdk_put_io_channel(ch->channel); 2977 spdk_put_io_channel(mgmt_io_ch); 2978 return -1; 2979 } 2980 2981 shared_resource->mgmt_ch = mgmt_ch; 2982 shared_resource->io_outstanding = 0; 2983 TAILQ_INIT(&shared_resource->nomem_io); 2984 shared_resource->nomem_threshold = 0; 2985 shared_resource->shared_ch = ch->channel; 2986 shared_resource->ref = 1; 2987 TAILQ_INSERT_TAIL(&mgmt_ch->shared_resources, shared_resource, link); 2988 } 2989 2990 memset(&ch->stat, 0, sizeof(ch->stat)); 2991 ch->stat.ticks_rate = spdk_get_ticks_hz(); 2992 ch->io_outstanding = 0; 2993 TAILQ_INIT(&ch->queued_resets); 2994 TAILQ_INIT(&ch->locked_ranges); 2995 ch->flags = 0; 2996 ch->shared_resource = shared_resource; 2997 2998 TAILQ_INIT(&ch->io_submitted); 2999 TAILQ_INIT(&ch->io_locked); 3000 3001 #ifdef SPDK_CONFIG_VTUNE 3002 { 3003 char *name; 3004 __itt_init_ittlib(NULL, 0); 3005 name = spdk_sprintf_alloc("spdk_bdev_%s_%p", ch->bdev->name, ch); 3006 if (!name) { 3007 bdev_channel_destroy_resource(ch); 3008 return -1; 3009 } 3010 ch->handle = __itt_string_handle_create(name); 3011 free(name); 3012 ch->start_tsc = spdk_get_ticks(); 3013 ch->interval_tsc = spdk_get_ticks_hz() / 100; 3014 memset(&ch->prev_stat, 0, sizeof(ch->prev_stat)); 3015 } 3016 #endif 3017 3018 pthread_mutex_lock(&bdev->internal.mutex); 3019 bdev_enable_qos(bdev, ch); 3020 3021 TAILQ_FOREACH(range, &bdev->internal.locked_ranges, tailq) { 3022 struct lba_range *new_range; 3023 3024 new_range = calloc(1, sizeof(*new_range)); 3025 if (new_range == NULL) { 3026 pthread_mutex_unlock(&bdev->internal.mutex); 3027 bdev_channel_destroy_resource(ch); 3028 return -1; 3029 } 3030 new_range->length = range->length; 3031 new_range->offset = range->offset; 3032 new_range->locked_ctx = range->locked_ctx; 3033 TAILQ_INSERT_TAIL(&ch->locked_ranges, new_range, tailq); 3034 } 3035 3036 pthread_mutex_unlock(&bdev->internal.mutex); 3037 3038 return 0; 3039 } 3040 3041 /* 3042 * Abort I/O that are waiting on a data buffer. These types of I/O are 3043 * linked using the spdk_bdev_io internal.buf_link TAILQ_ENTRY. 3044 */ 3045 static void 3046 bdev_abort_all_buf_io(bdev_io_stailq_t *queue, struct spdk_bdev_channel *ch) 3047 { 3048 bdev_io_stailq_t tmp; 3049 struct spdk_bdev_io *bdev_io; 3050 3051 STAILQ_INIT(&tmp); 3052 3053 while (!STAILQ_EMPTY(queue)) { 3054 bdev_io = STAILQ_FIRST(queue); 3055 STAILQ_REMOVE_HEAD(queue, internal.buf_link); 3056 if (bdev_io->internal.ch == ch) { 3057 spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED); 3058 } else { 3059 STAILQ_INSERT_TAIL(&tmp, bdev_io, internal.buf_link); 3060 } 3061 } 3062 3063 STAILQ_SWAP(&tmp, queue, spdk_bdev_io); 3064 } 3065 3066 /* 3067 * Abort I/O that are queued waiting for submission. These types of I/O are 3068 * linked using the spdk_bdev_io link TAILQ_ENTRY. 3069 */ 3070 static void 3071 bdev_abort_all_queued_io(bdev_io_tailq_t *queue, struct spdk_bdev_channel *ch) 3072 { 3073 struct spdk_bdev_io *bdev_io, *tmp; 3074 3075 TAILQ_FOREACH_SAFE(bdev_io, queue, internal.link, tmp) { 3076 if (bdev_io->internal.ch == ch) { 3077 TAILQ_REMOVE(queue, bdev_io, internal.link); 3078 /* 3079 * spdk_bdev_io_complete() assumes that the completed I/O had 3080 * been submitted to the bdev module. Since in this case it 3081 * hadn't, bump io_outstanding to account for the decrement 3082 * that spdk_bdev_io_complete() will do. 3083 */ 3084 if (bdev_io->type != SPDK_BDEV_IO_TYPE_RESET) { 3085 ch->io_outstanding++; 3086 ch->shared_resource->io_outstanding++; 3087 } 3088 spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED); 3089 } 3090 } 3091 } 3092 3093 static bool 3094 bdev_abort_queued_io(bdev_io_tailq_t *queue, struct spdk_bdev_io *bio_to_abort) 3095 { 3096 struct spdk_bdev_io *bdev_io; 3097 3098 TAILQ_FOREACH(bdev_io, queue, internal.link) { 3099 if (bdev_io == bio_to_abort) { 3100 TAILQ_REMOVE(queue, bio_to_abort, internal.link); 3101 spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_ABORTED); 3102 return true; 3103 } 3104 } 3105 3106 return false; 3107 } 3108 3109 static bool 3110 bdev_abort_buf_io(bdev_io_stailq_t *queue, struct spdk_bdev_io *bio_to_abort) 3111 { 3112 struct spdk_bdev_io *bdev_io; 3113 3114 STAILQ_FOREACH(bdev_io, queue, internal.buf_link) { 3115 if (bdev_io == bio_to_abort) { 3116 STAILQ_REMOVE(queue, bio_to_abort, spdk_bdev_io, internal.buf_link); 3117 spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_ABORTED); 3118 return true; 3119 } 3120 } 3121 3122 return false; 3123 } 3124 3125 static void 3126 bdev_qos_channel_destroy(void *cb_arg) 3127 { 3128 struct spdk_bdev_qos *qos = cb_arg; 3129 3130 spdk_put_io_channel(spdk_io_channel_from_ctx(qos->ch)); 3131 spdk_poller_unregister(&qos->poller); 3132 3133 SPDK_DEBUGLOG(bdev, "Free QoS %p.\n", qos); 3134 3135 free(qos); 3136 } 3137 3138 static int 3139 bdev_qos_destroy(struct spdk_bdev *bdev) 3140 { 3141 int i; 3142 3143 /* 3144 * Cleanly shutting down the QoS poller is tricky, because 3145 * during the asynchronous operation the user could open 3146 * a new descriptor and create a new channel, spawning 3147 * a new QoS poller. 3148 * 3149 * The strategy is to create a new QoS structure here and swap it 3150 * in. The shutdown path then continues to refer to the old one 3151 * until it completes and then releases it. 3152 */ 3153 struct spdk_bdev_qos *new_qos, *old_qos; 3154 3155 old_qos = bdev->internal.qos; 3156 3157 new_qos = calloc(1, sizeof(*new_qos)); 3158 if (!new_qos) { 3159 SPDK_ERRLOG("Unable to allocate memory to shut down QoS.\n"); 3160 return -ENOMEM; 3161 } 3162 3163 /* Copy the old QoS data into the newly allocated structure */ 3164 memcpy(new_qos, old_qos, sizeof(*new_qos)); 3165 3166 /* Zero out the key parts of the QoS structure */ 3167 new_qos->ch = NULL; 3168 new_qos->thread = NULL; 3169 new_qos->poller = NULL; 3170 TAILQ_INIT(&new_qos->queued); 3171 /* 3172 * The limit member of spdk_bdev_qos_limit structure is not zeroed. 3173 * It will be used later for the new QoS structure. 3174 */ 3175 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 3176 new_qos->rate_limits[i].remaining_this_timeslice = 0; 3177 new_qos->rate_limits[i].min_per_timeslice = 0; 3178 new_qos->rate_limits[i].max_per_timeslice = 0; 3179 } 3180 3181 bdev->internal.qos = new_qos; 3182 3183 if (old_qos->thread == NULL) { 3184 free(old_qos); 3185 } else { 3186 spdk_thread_send_msg(old_qos->thread, bdev_qos_channel_destroy, old_qos); 3187 } 3188 3189 /* It is safe to continue with destroying the bdev even though the QoS channel hasn't 3190 * been destroyed yet. The destruction path will end up waiting for the final 3191 * channel to be put before it releases resources. */ 3192 3193 return 0; 3194 } 3195 3196 static void 3197 bdev_io_stat_add(struct spdk_bdev_io_stat *total, struct spdk_bdev_io_stat *add) 3198 { 3199 total->bytes_read += add->bytes_read; 3200 total->num_read_ops += add->num_read_ops; 3201 total->bytes_written += add->bytes_written; 3202 total->num_write_ops += add->num_write_ops; 3203 total->bytes_unmapped += add->bytes_unmapped; 3204 total->num_unmap_ops += add->num_unmap_ops; 3205 total->read_latency_ticks += add->read_latency_ticks; 3206 total->write_latency_ticks += add->write_latency_ticks; 3207 total->unmap_latency_ticks += add->unmap_latency_ticks; 3208 } 3209 3210 static void 3211 bdev_channel_destroy(void *io_device, void *ctx_buf) 3212 { 3213 struct spdk_bdev_channel *ch = ctx_buf; 3214 struct spdk_bdev_mgmt_channel *mgmt_ch; 3215 struct spdk_bdev_shared_resource *shared_resource = ch->shared_resource; 3216 3217 SPDK_DEBUGLOG(bdev, "Destroying channel %p for bdev %s on thread %p\n", ch, ch->bdev->name, 3218 spdk_get_thread()); 3219 3220 /* This channel is going away, so add its statistics into the bdev so that they don't get lost. */ 3221 pthread_mutex_lock(&ch->bdev->internal.mutex); 3222 bdev_io_stat_add(&ch->bdev->internal.stat, &ch->stat); 3223 pthread_mutex_unlock(&ch->bdev->internal.mutex); 3224 3225 mgmt_ch = shared_resource->mgmt_ch; 3226 3227 bdev_abort_all_queued_io(&ch->queued_resets, ch); 3228 bdev_abort_all_queued_io(&shared_resource->nomem_io, ch); 3229 bdev_abort_all_buf_io(&mgmt_ch->need_buf_small, ch); 3230 bdev_abort_all_buf_io(&mgmt_ch->need_buf_large, ch); 3231 3232 if (ch->histogram) { 3233 spdk_histogram_data_free(ch->histogram); 3234 } 3235 3236 bdev_channel_destroy_resource(ch); 3237 } 3238 3239 static int 3240 bdev_name_add(struct spdk_bdev_name *bdev_name, struct spdk_bdev *bdev, const char *name) 3241 { 3242 bdev_name->name = strdup(name); 3243 if (bdev_name->name == NULL) { 3244 SPDK_ERRLOG("Unable to allocate bdev name\n"); 3245 return -ENOMEM; 3246 } 3247 3248 bdev_name->bdev = bdev; 3249 RB_INSERT(bdev_name_tree, &g_bdev_mgr.bdev_names, bdev_name); 3250 return 0; 3251 } 3252 3253 static void 3254 bdev_name_del(struct spdk_bdev_name *bdev_name) 3255 { 3256 RB_REMOVE(bdev_name_tree, &g_bdev_mgr.bdev_names, bdev_name); 3257 free(bdev_name->name); 3258 } 3259 3260 int 3261 spdk_bdev_alias_add(struct spdk_bdev *bdev, const char *alias) 3262 { 3263 struct spdk_bdev_alias *tmp; 3264 int ret; 3265 3266 if (alias == NULL) { 3267 SPDK_ERRLOG("Empty alias passed\n"); 3268 return -EINVAL; 3269 } 3270 3271 if (spdk_bdev_get_by_name(alias)) { 3272 SPDK_ERRLOG("Bdev name/alias: %s already exists\n", alias); 3273 return -EEXIST; 3274 } 3275 3276 tmp = calloc(1, sizeof(*tmp)); 3277 if (tmp == NULL) { 3278 SPDK_ERRLOG("Unable to allocate alias\n"); 3279 return -ENOMEM; 3280 } 3281 3282 ret = bdev_name_add(&tmp->alias, bdev, alias); 3283 if (ret != 0) { 3284 free(tmp); 3285 return ret; 3286 } 3287 3288 TAILQ_INSERT_TAIL(&bdev->aliases, tmp, tailq); 3289 3290 return 0; 3291 } 3292 3293 int 3294 spdk_bdev_alias_del(struct spdk_bdev *bdev, const char *alias) 3295 { 3296 struct spdk_bdev_alias *tmp; 3297 3298 TAILQ_FOREACH(tmp, &bdev->aliases, tailq) { 3299 if (strcmp(alias, tmp->alias.name) == 0) { 3300 TAILQ_REMOVE(&bdev->aliases, tmp, tailq); 3301 bdev_name_del(&tmp->alias); 3302 free(tmp); 3303 return 0; 3304 } 3305 } 3306 3307 SPDK_INFOLOG(bdev, "Alias %s does not exists\n", alias); 3308 3309 return -ENOENT; 3310 } 3311 3312 void 3313 spdk_bdev_alias_del_all(struct spdk_bdev *bdev) 3314 { 3315 struct spdk_bdev_alias *p, *tmp; 3316 3317 TAILQ_FOREACH_SAFE(p, &bdev->aliases, tailq, tmp) { 3318 TAILQ_REMOVE(&bdev->aliases, p, tailq); 3319 bdev_name_del(&p->alias); 3320 free(p); 3321 } 3322 } 3323 3324 struct spdk_io_channel * 3325 spdk_bdev_get_io_channel(struct spdk_bdev_desc *desc) 3326 { 3327 return spdk_get_io_channel(__bdev_to_io_dev(spdk_bdev_desc_get_bdev(desc))); 3328 } 3329 3330 void * 3331 spdk_bdev_get_module_ctx(struct spdk_bdev_desc *desc) 3332 { 3333 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 3334 void *ctx = NULL; 3335 3336 if (bdev->fn_table->get_module_ctx) { 3337 ctx = bdev->fn_table->get_module_ctx(bdev->ctxt); 3338 } 3339 3340 return ctx; 3341 } 3342 3343 const char * 3344 spdk_bdev_get_module_name(const struct spdk_bdev *bdev) 3345 { 3346 return bdev->module->name; 3347 } 3348 3349 const char * 3350 spdk_bdev_get_name(const struct spdk_bdev *bdev) 3351 { 3352 return bdev->name; 3353 } 3354 3355 const char * 3356 spdk_bdev_get_product_name(const struct spdk_bdev *bdev) 3357 { 3358 return bdev->product_name; 3359 } 3360 3361 const struct spdk_bdev_aliases_list * 3362 spdk_bdev_get_aliases(const struct spdk_bdev *bdev) 3363 { 3364 return &bdev->aliases; 3365 } 3366 3367 uint32_t 3368 spdk_bdev_get_block_size(const struct spdk_bdev *bdev) 3369 { 3370 return bdev->blocklen; 3371 } 3372 3373 uint32_t 3374 spdk_bdev_get_write_unit_size(const struct spdk_bdev *bdev) 3375 { 3376 return bdev->write_unit_size; 3377 } 3378 3379 uint64_t 3380 spdk_bdev_get_num_blocks(const struct spdk_bdev *bdev) 3381 { 3382 return bdev->blockcnt; 3383 } 3384 3385 const char * 3386 spdk_bdev_get_qos_rpc_type(enum spdk_bdev_qos_rate_limit_type type) 3387 { 3388 return qos_rpc_type[type]; 3389 } 3390 3391 void 3392 spdk_bdev_get_qos_rate_limits(struct spdk_bdev *bdev, uint64_t *limits) 3393 { 3394 int i; 3395 3396 memset(limits, 0, sizeof(*limits) * SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES); 3397 3398 pthread_mutex_lock(&bdev->internal.mutex); 3399 if (bdev->internal.qos) { 3400 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 3401 if (bdev->internal.qos->rate_limits[i].limit != 3402 SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) { 3403 limits[i] = bdev->internal.qos->rate_limits[i].limit; 3404 if (bdev_qos_is_iops_rate_limit(i) == false) { 3405 /* Change from Byte to Megabyte which is user visible. */ 3406 limits[i] = limits[i] / 1024 / 1024; 3407 } 3408 } 3409 } 3410 } 3411 pthread_mutex_unlock(&bdev->internal.mutex); 3412 } 3413 3414 size_t 3415 spdk_bdev_get_buf_align(const struct spdk_bdev *bdev) 3416 { 3417 return 1 << bdev->required_alignment; 3418 } 3419 3420 uint32_t 3421 spdk_bdev_get_optimal_io_boundary(const struct spdk_bdev *bdev) 3422 { 3423 return bdev->optimal_io_boundary; 3424 } 3425 3426 bool 3427 spdk_bdev_has_write_cache(const struct spdk_bdev *bdev) 3428 { 3429 return bdev->write_cache; 3430 } 3431 3432 const struct spdk_uuid * 3433 spdk_bdev_get_uuid(const struct spdk_bdev *bdev) 3434 { 3435 return &bdev->uuid; 3436 } 3437 3438 uint16_t 3439 spdk_bdev_get_acwu(const struct spdk_bdev *bdev) 3440 { 3441 return bdev->acwu; 3442 } 3443 3444 uint32_t 3445 spdk_bdev_get_md_size(const struct spdk_bdev *bdev) 3446 { 3447 return bdev->md_len; 3448 } 3449 3450 bool 3451 spdk_bdev_is_md_interleaved(const struct spdk_bdev *bdev) 3452 { 3453 return (bdev->md_len != 0) && bdev->md_interleave; 3454 } 3455 3456 bool 3457 spdk_bdev_is_md_separate(const struct spdk_bdev *bdev) 3458 { 3459 return (bdev->md_len != 0) && !bdev->md_interleave; 3460 } 3461 3462 bool 3463 spdk_bdev_is_zoned(const struct spdk_bdev *bdev) 3464 { 3465 return bdev->zoned; 3466 } 3467 3468 uint32_t 3469 spdk_bdev_get_data_block_size(const struct spdk_bdev *bdev) 3470 { 3471 if (spdk_bdev_is_md_interleaved(bdev)) { 3472 return bdev->blocklen - bdev->md_len; 3473 } else { 3474 return bdev->blocklen; 3475 } 3476 } 3477 3478 uint32_t 3479 spdk_bdev_get_physical_block_size(const struct spdk_bdev *bdev) 3480 { 3481 return bdev->phys_blocklen; 3482 } 3483 3484 static uint32_t 3485 _bdev_get_block_size_with_md(const struct spdk_bdev *bdev) 3486 { 3487 if (!spdk_bdev_is_md_interleaved(bdev)) { 3488 return bdev->blocklen + bdev->md_len; 3489 } else { 3490 return bdev->blocklen; 3491 } 3492 } 3493 3494 enum spdk_dif_type spdk_bdev_get_dif_type(const struct spdk_bdev *bdev) 3495 { 3496 if (bdev->md_len != 0) { 3497 return bdev->dif_type; 3498 } else { 3499 return SPDK_DIF_DISABLE; 3500 } 3501 } 3502 3503 bool 3504 spdk_bdev_is_dif_head_of_md(const struct spdk_bdev *bdev) 3505 { 3506 if (spdk_bdev_get_dif_type(bdev) != SPDK_DIF_DISABLE) { 3507 return bdev->dif_is_head_of_md; 3508 } else { 3509 return false; 3510 } 3511 } 3512 3513 bool 3514 spdk_bdev_is_dif_check_enabled(const struct spdk_bdev *bdev, 3515 enum spdk_dif_check_type check_type) 3516 { 3517 if (spdk_bdev_get_dif_type(bdev) == SPDK_DIF_DISABLE) { 3518 return false; 3519 } 3520 3521 switch (check_type) { 3522 case SPDK_DIF_CHECK_TYPE_REFTAG: 3523 return (bdev->dif_check_flags & SPDK_DIF_FLAGS_REFTAG_CHECK) != 0; 3524 case SPDK_DIF_CHECK_TYPE_APPTAG: 3525 return (bdev->dif_check_flags & SPDK_DIF_FLAGS_APPTAG_CHECK) != 0; 3526 case SPDK_DIF_CHECK_TYPE_GUARD: 3527 return (bdev->dif_check_flags & SPDK_DIF_FLAGS_GUARD_CHECK) != 0; 3528 default: 3529 return false; 3530 } 3531 } 3532 3533 uint64_t 3534 spdk_bdev_get_qd(const struct spdk_bdev *bdev) 3535 { 3536 return bdev->internal.measured_queue_depth; 3537 } 3538 3539 uint64_t 3540 spdk_bdev_get_qd_sampling_period(const struct spdk_bdev *bdev) 3541 { 3542 return bdev->internal.period; 3543 } 3544 3545 uint64_t 3546 spdk_bdev_get_weighted_io_time(const struct spdk_bdev *bdev) 3547 { 3548 return bdev->internal.weighted_io_time; 3549 } 3550 3551 uint64_t 3552 spdk_bdev_get_io_time(const struct spdk_bdev *bdev) 3553 { 3554 return bdev->internal.io_time; 3555 } 3556 3557 static void 3558 _calculate_measured_qd_cpl(struct spdk_io_channel_iter *i, int status) 3559 { 3560 struct spdk_bdev *bdev = spdk_io_channel_iter_get_ctx(i); 3561 3562 bdev->internal.measured_queue_depth = bdev->internal.temporary_queue_depth; 3563 3564 if (bdev->internal.measured_queue_depth) { 3565 bdev->internal.io_time += bdev->internal.period; 3566 bdev->internal.weighted_io_time += bdev->internal.period * bdev->internal.measured_queue_depth; 3567 } 3568 } 3569 3570 static void 3571 _calculate_measured_qd(struct spdk_io_channel_iter *i) 3572 { 3573 struct spdk_bdev *bdev = spdk_io_channel_iter_get_ctx(i); 3574 struct spdk_io_channel *io_ch = spdk_io_channel_iter_get_channel(i); 3575 struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(io_ch); 3576 3577 bdev->internal.temporary_queue_depth += ch->io_outstanding; 3578 spdk_for_each_channel_continue(i, 0); 3579 } 3580 3581 static int 3582 bdev_calculate_measured_queue_depth(void *ctx) 3583 { 3584 struct spdk_bdev *bdev = ctx; 3585 bdev->internal.temporary_queue_depth = 0; 3586 spdk_for_each_channel(__bdev_to_io_dev(bdev), _calculate_measured_qd, bdev, 3587 _calculate_measured_qd_cpl); 3588 return SPDK_POLLER_BUSY; 3589 } 3590 3591 void 3592 spdk_bdev_set_qd_sampling_period(struct spdk_bdev *bdev, uint64_t period) 3593 { 3594 bdev->internal.period = period; 3595 3596 if (bdev->internal.qd_poller != NULL) { 3597 spdk_poller_unregister(&bdev->internal.qd_poller); 3598 bdev->internal.measured_queue_depth = UINT64_MAX; 3599 } 3600 3601 if (period != 0) { 3602 bdev->internal.qd_poller = SPDK_POLLER_REGISTER(bdev_calculate_measured_queue_depth, bdev, 3603 period); 3604 } 3605 } 3606 3607 static void 3608 _resize_notify(void *arg) 3609 { 3610 struct spdk_bdev_desc *desc = arg; 3611 3612 pthread_mutex_lock(&desc->mutex); 3613 desc->refs--; 3614 if (!desc->closed) { 3615 pthread_mutex_unlock(&desc->mutex); 3616 desc->callback.event_fn(SPDK_BDEV_EVENT_RESIZE, 3617 desc->bdev, 3618 desc->callback.ctx); 3619 return; 3620 } else if (0 == desc->refs) { 3621 /* This descriptor was closed after this resize_notify message was sent. 3622 * spdk_bdev_close() could not free the descriptor since this message was 3623 * in flight, so we free it now using bdev_desc_free(). 3624 */ 3625 pthread_mutex_unlock(&desc->mutex); 3626 bdev_desc_free(desc); 3627 return; 3628 } 3629 pthread_mutex_unlock(&desc->mutex); 3630 } 3631 3632 int 3633 spdk_bdev_notify_blockcnt_change(struct spdk_bdev *bdev, uint64_t size) 3634 { 3635 struct spdk_bdev_desc *desc; 3636 int ret; 3637 3638 if (size == bdev->blockcnt) { 3639 return 0; 3640 } 3641 3642 pthread_mutex_lock(&bdev->internal.mutex); 3643 3644 /* bdev has open descriptors */ 3645 if (!TAILQ_EMPTY(&bdev->internal.open_descs) && 3646 bdev->blockcnt > size) { 3647 ret = -EBUSY; 3648 } else { 3649 bdev->blockcnt = size; 3650 TAILQ_FOREACH(desc, &bdev->internal.open_descs, link) { 3651 pthread_mutex_lock(&desc->mutex); 3652 if (!desc->closed) { 3653 desc->refs++; 3654 spdk_thread_send_msg(desc->thread, _resize_notify, desc); 3655 } 3656 pthread_mutex_unlock(&desc->mutex); 3657 } 3658 ret = 0; 3659 } 3660 3661 pthread_mutex_unlock(&bdev->internal.mutex); 3662 3663 return ret; 3664 } 3665 3666 /* 3667 * Convert I/O offset and length from bytes to blocks. 3668 * 3669 * Returns zero on success or non-zero if the byte parameters aren't divisible by the block size. 3670 */ 3671 static uint64_t 3672 bdev_bytes_to_blocks(struct spdk_bdev *bdev, uint64_t offset_bytes, uint64_t *offset_blocks, 3673 uint64_t num_bytes, uint64_t *num_blocks) 3674 { 3675 uint32_t block_size = bdev->blocklen; 3676 uint8_t shift_cnt; 3677 3678 /* Avoid expensive div operations if possible. These spdk_u32 functions are very cheap. */ 3679 if (spdk_likely(spdk_u32_is_pow2(block_size))) { 3680 shift_cnt = spdk_u32log2(block_size); 3681 *offset_blocks = offset_bytes >> shift_cnt; 3682 *num_blocks = num_bytes >> shift_cnt; 3683 return (offset_bytes - (*offset_blocks << shift_cnt)) | 3684 (num_bytes - (*num_blocks << shift_cnt)); 3685 } else { 3686 *offset_blocks = offset_bytes / block_size; 3687 *num_blocks = num_bytes / block_size; 3688 return (offset_bytes % block_size) | (num_bytes % block_size); 3689 } 3690 } 3691 3692 static bool 3693 bdev_io_valid_blocks(struct spdk_bdev *bdev, uint64_t offset_blocks, uint64_t num_blocks) 3694 { 3695 /* Return failure if offset_blocks + num_blocks is less than offset_blocks; indicates there 3696 * has been an overflow and hence the offset has been wrapped around */ 3697 if (offset_blocks + num_blocks < offset_blocks) { 3698 return false; 3699 } 3700 3701 /* Return failure if offset_blocks + num_blocks exceeds the size of the bdev */ 3702 if (offset_blocks + num_blocks > bdev->blockcnt) { 3703 return false; 3704 } 3705 3706 return true; 3707 } 3708 3709 static bool 3710 _bdev_io_check_md_buf(const struct iovec *iovs, const void *md_buf) 3711 { 3712 return _is_buf_allocated(iovs) == (md_buf != NULL); 3713 } 3714 3715 static int 3716 bdev_read_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, void *buf, 3717 void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, 3718 spdk_bdev_io_completion_cb cb, void *cb_arg) 3719 { 3720 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 3721 struct spdk_bdev_io *bdev_io; 3722 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 3723 3724 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 3725 return -EINVAL; 3726 } 3727 3728 bdev_io = bdev_channel_get_io(channel); 3729 if (!bdev_io) { 3730 return -ENOMEM; 3731 } 3732 3733 bdev_io->internal.ch = channel; 3734 bdev_io->internal.desc = desc; 3735 bdev_io->type = SPDK_BDEV_IO_TYPE_READ; 3736 bdev_io->u.bdev.iovs = &bdev_io->iov; 3737 bdev_io->u.bdev.iovs[0].iov_base = buf; 3738 bdev_io->u.bdev.iovs[0].iov_len = num_blocks * bdev->blocklen; 3739 bdev_io->u.bdev.iovcnt = 1; 3740 bdev_io->u.bdev.md_buf = md_buf; 3741 bdev_io->u.bdev.num_blocks = num_blocks; 3742 bdev_io->u.bdev.offset_blocks = offset_blocks; 3743 bdev_io_init(bdev_io, bdev, cb_arg, cb); 3744 3745 bdev_io_submit(bdev_io); 3746 return 0; 3747 } 3748 3749 int 3750 spdk_bdev_read(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3751 void *buf, uint64_t offset, uint64_t nbytes, 3752 spdk_bdev_io_completion_cb cb, void *cb_arg) 3753 { 3754 uint64_t offset_blocks, num_blocks; 3755 3756 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 3757 nbytes, &num_blocks) != 0) { 3758 return -EINVAL; 3759 } 3760 3761 return spdk_bdev_read_blocks(desc, ch, buf, offset_blocks, num_blocks, cb, cb_arg); 3762 } 3763 3764 int 3765 spdk_bdev_read_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3766 void *buf, uint64_t offset_blocks, uint64_t num_blocks, 3767 spdk_bdev_io_completion_cb cb, void *cb_arg) 3768 { 3769 return bdev_read_blocks_with_md(desc, ch, buf, NULL, offset_blocks, num_blocks, cb, cb_arg); 3770 } 3771 3772 int 3773 spdk_bdev_read_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3774 void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, 3775 spdk_bdev_io_completion_cb cb, void *cb_arg) 3776 { 3777 struct iovec iov = { 3778 .iov_base = buf, 3779 }; 3780 3781 if (!spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) { 3782 return -EINVAL; 3783 } 3784 3785 if (!_bdev_io_check_md_buf(&iov, md_buf)) { 3786 return -EINVAL; 3787 } 3788 3789 return bdev_read_blocks_with_md(desc, ch, buf, md_buf, offset_blocks, num_blocks, 3790 cb, cb_arg); 3791 } 3792 3793 int 3794 spdk_bdev_readv(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3795 struct iovec *iov, int iovcnt, 3796 uint64_t offset, uint64_t nbytes, 3797 spdk_bdev_io_completion_cb cb, void *cb_arg) 3798 { 3799 uint64_t offset_blocks, num_blocks; 3800 3801 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 3802 nbytes, &num_blocks) != 0) { 3803 return -EINVAL; 3804 } 3805 3806 return spdk_bdev_readv_blocks(desc, ch, iov, iovcnt, offset_blocks, num_blocks, cb, cb_arg); 3807 } 3808 3809 static int 3810 bdev_readv_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3811 struct iovec *iov, int iovcnt, void *md_buf, uint64_t offset_blocks, 3812 uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) 3813 { 3814 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 3815 struct spdk_bdev_io *bdev_io; 3816 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 3817 3818 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 3819 return -EINVAL; 3820 } 3821 3822 bdev_io = bdev_channel_get_io(channel); 3823 if (!bdev_io) { 3824 return -ENOMEM; 3825 } 3826 3827 bdev_io->internal.ch = channel; 3828 bdev_io->internal.desc = desc; 3829 bdev_io->type = SPDK_BDEV_IO_TYPE_READ; 3830 bdev_io->u.bdev.iovs = iov; 3831 bdev_io->u.bdev.iovcnt = iovcnt; 3832 bdev_io->u.bdev.md_buf = md_buf; 3833 bdev_io->u.bdev.num_blocks = num_blocks; 3834 bdev_io->u.bdev.offset_blocks = offset_blocks; 3835 bdev_io_init(bdev_io, bdev, cb_arg, cb); 3836 3837 bdev_io_submit(bdev_io); 3838 return 0; 3839 } 3840 3841 int spdk_bdev_readv_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3842 struct iovec *iov, int iovcnt, 3843 uint64_t offset_blocks, uint64_t num_blocks, 3844 spdk_bdev_io_completion_cb cb, void *cb_arg) 3845 { 3846 return bdev_readv_blocks_with_md(desc, ch, iov, iovcnt, NULL, offset_blocks, 3847 num_blocks, cb, cb_arg); 3848 } 3849 3850 int 3851 spdk_bdev_readv_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3852 struct iovec *iov, int iovcnt, void *md_buf, 3853 uint64_t offset_blocks, uint64_t num_blocks, 3854 spdk_bdev_io_completion_cb cb, void *cb_arg) 3855 { 3856 if (!spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) { 3857 return -EINVAL; 3858 } 3859 3860 if (!_bdev_io_check_md_buf(iov, md_buf)) { 3861 return -EINVAL; 3862 } 3863 3864 return bdev_readv_blocks_with_md(desc, ch, iov, iovcnt, md_buf, offset_blocks, 3865 num_blocks, cb, cb_arg); 3866 } 3867 3868 static int 3869 bdev_write_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3870 void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, 3871 spdk_bdev_io_completion_cb cb, void *cb_arg) 3872 { 3873 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 3874 struct spdk_bdev_io *bdev_io; 3875 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 3876 3877 if (!desc->write) { 3878 return -EBADF; 3879 } 3880 3881 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 3882 return -EINVAL; 3883 } 3884 3885 bdev_io = bdev_channel_get_io(channel); 3886 if (!bdev_io) { 3887 return -ENOMEM; 3888 } 3889 3890 bdev_io->internal.ch = channel; 3891 bdev_io->internal.desc = desc; 3892 bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE; 3893 bdev_io->u.bdev.iovs = &bdev_io->iov; 3894 bdev_io->u.bdev.iovs[0].iov_base = buf; 3895 bdev_io->u.bdev.iovs[0].iov_len = num_blocks * bdev->blocklen; 3896 bdev_io->u.bdev.iovcnt = 1; 3897 bdev_io->u.bdev.md_buf = md_buf; 3898 bdev_io->u.bdev.num_blocks = num_blocks; 3899 bdev_io->u.bdev.offset_blocks = offset_blocks; 3900 bdev_io_init(bdev_io, bdev, cb_arg, cb); 3901 3902 bdev_io_submit(bdev_io); 3903 return 0; 3904 } 3905 3906 int 3907 spdk_bdev_write(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3908 void *buf, uint64_t offset, uint64_t nbytes, 3909 spdk_bdev_io_completion_cb cb, void *cb_arg) 3910 { 3911 uint64_t offset_blocks, num_blocks; 3912 3913 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 3914 nbytes, &num_blocks) != 0) { 3915 return -EINVAL; 3916 } 3917 3918 return spdk_bdev_write_blocks(desc, ch, buf, offset_blocks, num_blocks, cb, cb_arg); 3919 } 3920 3921 int 3922 spdk_bdev_write_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3923 void *buf, uint64_t offset_blocks, uint64_t num_blocks, 3924 spdk_bdev_io_completion_cb cb, void *cb_arg) 3925 { 3926 return bdev_write_blocks_with_md(desc, ch, buf, NULL, offset_blocks, num_blocks, 3927 cb, cb_arg); 3928 } 3929 3930 int 3931 spdk_bdev_write_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3932 void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, 3933 spdk_bdev_io_completion_cb cb, void *cb_arg) 3934 { 3935 struct iovec iov = { 3936 .iov_base = buf, 3937 }; 3938 3939 if (!spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) { 3940 return -EINVAL; 3941 } 3942 3943 if (!_bdev_io_check_md_buf(&iov, md_buf)) { 3944 return -EINVAL; 3945 } 3946 3947 return bdev_write_blocks_with_md(desc, ch, buf, md_buf, offset_blocks, num_blocks, 3948 cb, cb_arg); 3949 } 3950 3951 static int 3952 bdev_writev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3953 struct iovec *iov, int iovcnt, void *md_buf, 3954 uint64_t offset_blocks, uint64_t num_blocks, 3955 spdk_bdev_io_completion_cb cb, void *cb_arg) 3956 { 3957 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 3958 struct spdk_bdev_io *bdev_io; 3959 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 3960 3961 if (!desc->write) { 3962 return -EBADF; 3963 } 3964 3965 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 3966 return -EINVAL; 3967 } 3968 3969 bdev_io = bdev_channel_get_io(channel); 3970 if (!bdev_io) { 3971 return -ENOMEM; 3972 } 3973 3974 bdev_io->internal.ch = channel; 3975 bdev_io->internal.desc = desc; 3976 bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE; 3977 bdev_io->u.bdev.iovs = iov; 3978 bdev_io->u.bdev.iovcnt = iovcnt; 3979 bdev_io->u.bdev.md_buf = md_buf; 3980 bdev_io->u.bdev.num_blocks = num_blocks; 3981 bdev_io->u.bdev.offset_blocks = offset_blocks; 3982 bdev_io_init(bdev_io, bdev, cb_arg, cb); 3983 3984 bdev_io_submit(bdev_io); 3985 return 0; 3986 } 3987 3988 int 3989 spdk_bdev_writev(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3990 struct iovec *iov, int iovcnt, 3991 uint64_t offset, uint64_t len, 3992 spdk_bdev_io_completion_cb cb, void *cb_arg) 3993 { 3994 uint64_t offset_blocks, num_blocks; 3995 3996 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 3997 len, &num_blocks) != 0) { 3998 return -EINVAL; 3999 } 4000 4001 return spdk_bdev_writev_blocks(desc, ch, iov, iovcnt, offset_blocks, num_blocks, cb, cb_arg); 4002 } 4003 4004 int 4005 spdk_bdev_writev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4006 struct iovec *iov, int iovcnt, 4007 uint64_t offset_blocks, uint64_t num_blocks, 4008 spdk_bdev_io_completion_cb cb, void *cb_arg) 4009 { 4010 return bdev_writev_blocks_with_md(desc, ch, iov, iovcnt, NULL, offset_blocks, 4011 num_blocks, cb, cb_arg); 4012 } 4013 4014 int 4015 spdk_bdev_writev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4016 struct iovec *iov, int iovcnt, void *md_buf, 4017 uint64_t offset_blocks, uint64_t num_blocks, 4018 spdk_bdev_io_completion_cb cb, void *cb_arg) 4019 { 4020 if (!spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) { 4021 return -EINVAL; 4022 } 4023 4024 if (!_bdev_io_check_md_buf(iov, md_buf)) { 4025 return -EINVAL; 4026 } 4027 4028 return bdev_writev_blocks_with_md(desc, ch, iov, iovcnt, md_buf, offset_blocks, 4029 num_blocks, cb, cb_arg); 4030 } 4031 4032 static void 4033 bdev_compare_do_read_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 4034 { 4035 struct spdk_bdev_io *parent_io = cb_arg; 4036 uint8_t *read_buf = bdev_io->u.bdev.iovs[0].iov_base; 4037 int i, rc = 0; 4038 4039 if (!success) { 4040 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 4041 parent_io->internal.cb(parent_io, false, parent_io->internal.caller_ctx); 4042 spdk_bdev_free_io(bdev_io); 4043 return; 4044 } 4045 4046 for (i = 0; i < parent_io->u.bdev.iovcnt; i++) { 4047 rc = memcmp(read_buf, 4048 parent_io->u.bdev.iovs[i].iov_base, 4049 parent_io->u.bdev.iovs[i].iov_len); 4050 if (rc) { 4051 break; 4052 } 4053 read_buf += parent_io->u.bdev.iovs[i].iov_len; 4054 } 4055 4056 spdk_bdev_free_io(bdev_io); 4057 4058 if (rc == 0) { 4059 parent_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; 4060 parent_io->internal.cb(parent_io, true, parent_io->internal.caller_ctx); 4061 } else { 4062 parent_io->internal.status = SPDK_BDEV_IO_STATUS_MISCOMPARE; 4063 parent_io->internal.cb(parent_io, false, parent_io->internal.caller_ctx); 4064 } 4065 } 4066 4067 static void 4068 bdev_compare_do_read(void *_bdev_io) 4069 { 4070 struct spdk_bdev_io *bdev_io = _bdev_io; 4071 int rc; 4072 4073 rc = spdk_bdev_read_blocks(bdev_io->internal.desc, 4074 spdk_io_channel_from_ctx(bdev_io->internal.ch), NULL, 4075 bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, 4076 bdev_compare_do_read_done, bdev_io); 4077 4078 if (rc == -ENOMEM) { 4079 bdev_queue_io_wait_with_cb(bdev_io, bdev_compare_do_read); 4080 } else if (rc != 0) { 4081 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 4082 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 4083 } 4084 } 4085 4086 static int 4087 bdev_comparev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4088 struct iovec *iov, int iovcnt, void *md_buf, 4089 uint64_t offset_blocks, uint64_t num_blocks, 4090 spdk_bdev_io_completion_cb cb, void *cb_arg) 4091 { 4092 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 4093 struct spdk_bdev_io *bdev_io; 4094 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 4095 4096 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 4097 return -EINVAL; 4098 } 4099 4100 bdev_io = bdev_channel_get_io(channel); 4101 if (!bdev_io) { 4102 return -ENOMEM; 4103 } 4104 4105 bdev_io->internal.ch = channel; 4106 bdev_io->internal.desc = desc; 4107 bdev_io->type = SPDK_BDEV_IO_TYPE_COMPARE; 4108 bdev_io->u.bdev.iovs = iov; 4109 bdev_io->u.bdev.iovcnt = iovcnt; 4110 bdev_io->u.bdev.md_buf = md_buf; 4111 bdev_io->u.bdev.num_blocks = num_blocks; 4112 bdev_io->u.bdev.offset_blocks = offset_blocks; 4113 bdev_io_init(bdev_io, bdev, cb_arg, cb); 4114 4115 if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_COMPARE)) { 4116 bdev_io_submit(bdev_io); 4117 return 0; 4118 } 4119 4120 bdev_compare_do_read(bdev_io); 4121 4122 return 0; 4123 } 4124 4125 int 4126 spdk_bdev_comparev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4127 struct iovec *iov, int iovcnt, 4128 uint64_t offset_blocks, uint64_t num_blocks, 4129 spdk_bdev_io_completion_cb cb, void *cb_arg) 4130 { 4131 return bdev_comparev_blocks_with_md(desc, ch, iov, iovcnt, NULL, offset_blocks, 4132 num_blocks, cb, cb_arg); 4133 } 4134 4135 int 4136 spdk_bdev_comparev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4137 struct iovec *iov, int iovcnt, void *md_buf, 4138 uint64_t offset_blocks, uint64_t num_blocks, 4139 spdk_bdev_io_completion_cb cb, void *cb_arg) 4140 { 4141 if (!spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) { 4142 return -EINVAL; 4143 } 4144 4145 if (!_bdev_io_check_md_buf(iov, md_buf)) { 4146 return -EINVAL; 4147 } 4148 4149 return bdev_comparev_blocks_with_md(desc, ch, iov, iovcnt, md_buf, offset_blocks, 4150 num_blocks, cb, cb_arg); 4151 } 4152 4153 static int 4154 bdev_compare_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4155 void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, 4156 spdk_bdev_io_completion_cb cb, void *cb_arg) 4157 { 4158 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 4159 struct spdk_bdev_io *bdev_io; 4160 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 4161 4162 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 4163 return -EINVAL; 4164 } 4165 4166 bdev_io = bdev_channel_get_io(channel); 4167 if (!bdev_io) { 4168 return -ENOMEM; 4169 } 4170 4171 bdev_io->internal.ch = channel; 4172 bdev_io->internal.desc = desc; 4173 bdev_io->type = SPDK_BDEV_IO_TYPE_COMPARE; 4174 bdev_io->u.bdev.iovs = &bdev_io->iov; 4175 bdev_io->u.bdev.iovs[0].iov_base = buf; 4176 bdev_io->u.bdev.iovs[0].iov_len = num_blocks * bdev->blocklen; 4177 bdev_io->u.bdev.iovcnt = 1; 4178 bdev_io->u.bdev.md_buf = md_buf; 4179 bdev_io->u.bdev.num_blocks = num_blocks; 4180 bdev_io->u.bdev.offset_blocks = offset_blocks; 4181 bdev_io_init(bdev_io, bdev, cb_arg, cb); 4182 4183 if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_COMPARE)) { 4184 bdev_io_submit(bdev_io); 4185 return 0; 4186 } 4187 4188 bdev_compare_do_read(bdev_io); 4189 4190 return 0; 4191 } 4192 4193 int 4194 spdk_bdev_compare_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4195 void *buf, uint64_t offset_blocks, uint64_t num_blocks, 4196 spdk_bdev_io_completion_cb cb, void *cb_arg) 4197 { 4198 return bdev_compare_blocks_with_md(desc, ch, buf, NULL, offset_blocks, num_blocks, 4199 cb, cb_arg); 4200 } 4201 4202 int 4203 spdk_bdev_compare_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4204 void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, 4205 spdk_bdev_io_completion_cb cb, void *cb_arg) 4206 { 4207 struct iovec iov = { 4208 .iov_base = buf, 4209 }; 4210 4211 if (!spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) { 4212 return -EINVAL; 4213 } 4214 4215 if (!_bdev_io_check_md_buf(&iov, md_buf)) { 4216 return -EINVAL; 4217 } 4218 4219 return bdev_compare_blocks_with_md(desc, ch, buf, md_buf, offset_blocks, num_blocks, 4220 cb, cb_arg); 4221 } 4222 4223 static void 4224 bdev_comparev_and_writev_blocks_unlocked(void *ctx, int unlock_status) 4225 { 4226 struct spdk_bdev_io *bdev_io = ctx; 4227 4228 if (unlock_status) { 4229 SPDK_ERRLOG("LBA range unlock failed\n"); 4230 } 4231 4232 bdev_io->internal.cb(bdev_io, bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS ? true : 4233 false, bdev_io->internal.caller_ctx); 4234 } 4235 4236 static void 4237 bdev_comparev_and_writev_blocks_unlock(struct spdk_bdev_io *bdev_io, int status) 4238 { 4239 bdev_io->internal.status = status; 4240 4241 bdev_unlock_lba_range(bdev_io->internal.desc, spdk_io_channel_from_ctx(bdev_io->internal.ch), 4242 bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, 4243 bdev_comparev_and_writev_blocks_unlocked, bdev_io); 4244 } 4245 4246 static void 4247 bdev_compare_and_write_do_write_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 4248 { 4249 struct spdk_bdev_io *parent_io = cb_arg; 4250 4251 if (!success) { 4252 SPDK_ERRLOG("Compare and write operation failed\n"); 4253 } 4254 4255 spdk_bdev_free_io(bdev_io); 4256 4257 bdev_comparev_and_writev_blocks_unlock(parent_io, 4258 success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED); 4259 } 4260 4261 static void 4262 bdev_compare_and_write_do_write(void *_bdev_io) 4263 { 4264 struct spdk_bdev_io *bdev_io = _bdev_io; 4265 int rc; 4266 4267 rc = spdk_bdev_writev_blocks(bdev_io->internal.desc, 4268 spdk_io_channel_from_ctx(bdev_io->internal.ch), 4269 bdev_io->u.bdev.fused_iovs, bdev_io->u.bdev.fused_iovcnt, 4270 bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, 4271 bdev_compare_and_write_do_write_done, bdev_io); 4272 4273 4274 if (rc == -ENOMEM) { 4275 bdev_queue_io_wait_with_cb(bdev_io, bdev_compare_and_write_do_write); 4276 } else if (rc != 0) { 4277 bdev_comparev_and_writev_blocks_unlock(bdev_io, SPDK_BDEV_IO_STATUS_FAILED); 4278 } 4279 } 4280 4281 static void 4282 bdev_compare_and_write_do_compare_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 4283 { 4284 struct spdk_bdev_io *parent_io = cb_arg; 4285 4286 spdk_bdev_free_io(bdev_io); 4287 4288 if (!success) { 4289 bdev_comparev_and_writev_blocks_unlock(parent_io, SPDK_BDEV_IO_STATUS_MISCOMPARE); 4290 return; 4291 } 4292 4293 bdev_compare_and_write_do_write(parent_io); 4294 } 4295 4296 static void 4297 bdev_compare_and_write_do_compare(void *_bdev_io) 4298 { 4299 struct spdk_bdev_io *bdev_io = _bdev_io; 4300 int rc; 4301 4302 rc = spdk_bdev_comparev_blocks(bdev_io->internal.desc, 4303 spdk_io_channel_from_ctx(bdev_io->internal.ch), bdev_io->u.bdev.iovs, 4304 bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, 4305 bdev_compare_and_write_do_compare_done, bdev_io); 4306 4307 if (rc == -ENOMEM) { 4308 bdev_queue_io_wait_with_cb(bdev_io, bdev_compare_and_write_do_compare); 4309 } else if (rc != 0) { 4310 bdev_comparev_and_writev_blocks_unlock(bdev_io, SPDK_BDEV_IO_STATUS_FIRST_FUSED_FAILED); 4311 } 4312 } 4313 4314 static void 4315 bdev_comparev_and_writev_blocks_locked(void *ctx, int status) 4316 { 4317 struct spdk_bdev_io *bdev_io = ctx; 4318 4319 if (status) { 4320 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FIRST_FUSED_FAILED; 4321 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 4322 return; 4323 } 4324 4325 bdev_compare_and_write_do_compare(bdev_io); 4326 } 4327 4328 int 4329 spdk_bdev_comparev_and_writev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4330 struct iovec *compare_iov, int compare_iovcnt, 4331 struct iovec *write_iov, int write_iovcnt, 4332 uint64_t offset_blocks, uint64_t num_blocks, 4333 spdk_bdev_io_completion_cb cb, void *cb_arg) 4334 { 4335 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 4336 struct spdk_bdev_io *bdev_io; 4337 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 4338 4339 if (!desc->write) { 4340 return -EBADF; 4341 } 4342 4343 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 4344 return -EINVAL; 4345 } 4346 4347 if (num_blocks > bdev->acwu) { 4348 return -EINVAL; 4349 } 4350 4351 bdev_io = bdev_channel_get_io(channel); 4352 if (!bdev_io) { 4353 return -ENOMEM; 4354 } 4355 4356 bdev_io->internal.ch = channel; 4357 bdev_io->internal.desc = desc; 4358 bdev_io->type = SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE; 4359 bdev_io->u.bdev.iovs = compare_iov; 4360 bdev_io->u.bdev.iovcnt = compare_iovcnt; 4361 bdev_io->u.bdev.fused_iovs = write_iov; 4362 bdev_io->u.bdev.fused_iovcnt = write_iovcnt; 4363 bdev_io->u.bdev.md_buf = NULL; 4364 bdev_io->u.bdev.num_blocks = num_blocks; 4365 bdev_io->u.bdev.offset_blocks = offset_blocks; 4366 bdev_io_init(bdev_io, bdev, cb_arg, cb); 4367 4368 if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE)) { 4369 bdev_io_submit(bdev_io); 4370 return 0; 4371 } 4372 4373 return bdev_lock_lba_range(desc, ch, offset_blocks, num_blocks, 4374 bdev_comparev_and_writev_blocks_locked, bdev_io); 4375 } 4376 4377 int 4378 spdk_bdev_zcopy_start(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4379 struct iovec *iov, int iovcnt, 4380 uint64_t offset_blocks, uint64_t num_blocks, 4381 bool populate, 4382 spdk_bdev_io_completion_cb cb, void *cb_arg) 4383 { 4384 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 4385 struct spdk_bdev_io *bdev_io; 4386 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 4387 4388 if (!desc->write) { 4389 return -EBADF; 4390 } 4391 4392 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 4393 return -EINVAL; 4394 } 4395 4396 if (!spdk_bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_ZCOPY)) { 4397 return -ENOTSUP; 4398 } 4399 4400 bdev_io = bdev_channel_get_io(channel); 4401 if (!bdev_io) { 4402 return -ENOMEM; 4403 } 4404 4405 bdev_io->internal.ch = channel; 4406 bdev_io->internal.desc = desc; 4407 bdev_io->type = SPDK_BDEV_IO_TYPE_ZCOPY; 4408 bdev_io->u.bdev.num_blocks = num_blocks; 4409 bdev_io->u.bdev.offset_blocks = offset_blocks; 4410 bdev_io->u.bdev.iovs = iov; 4411 bdev_io->u.bdev.iovcnt = iovcnt; 4412 bdev_io->u.bdev.md_buf = NULL; 4413 bdev_io->u.bdev.zcopy.populate = populate ? 1 : 0; 4414 bdev_io->u.bdev.zcopy.commit = 0; 4415 bdev_io->u.bdev.zcopy.start = 1; 4416 bdev_io_init(bdev_io, bdev, cb_arg, cb); 4417 4418 bdev_io_submit(bdev_io); 4419 4420 return 0; 4421 } 4422 4423 int 4424 spdk_bdev_zcopy_end(struct spdk_bdev_io *bdev_io, bool commit, 4425 spdk_bdev_io_completion_cb cb, void *cb_arg) 4426 { 4427 if (bdev_io->type != SPDK_BDEV_IO_TYPE_ZCOPY) { 4428 return -EINVAL; 4429 } 4430 4431 bdev_io->u.bdev.zcopy.commit = commit ? 1 : 0; 4432 bdev_io->u.bdev.zcopy.start = 0; 4433 bdev_io->internal.caller_ctx = cb_arg; 4434 bdev_io->internal.cb = cb; 4435 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_PENDING; 4436 4437 bdev_io_submit(bdev_io); 4438 4439 return 0; 4440 } 4441 4442 int 4443 spdk_bdev_write_zeroes(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4444 uint64_t offset, uint64_t len, 4445 spdk_bdev_io_completion_cb cb, void *cb_arg) 4446 { 4447 uint64_t offset_blocks, num_blocks; 4448 4449 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 4450 len, &num_blocks) != 0) { 4451 return -EINVAL; 4452 } 4453 4454 return spdk_bdev_write_zeroes_blocks(desc, ch, offset_blocks, num_blocks, cb, cb_arg); 4455 } 4456 4457 int 4458 spdk_bdev_write_zeroes_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4459 uint64_t offset_blocks, uint64_t num_blocks, 4460 spdk_bdev_io_completion_cb cb, void *cb_arg) 4461 { 4462 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 4463 struct spdk_bdev_io *bdev_io; 4464 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 4465 4466 if (!desc->write) { 4467 return -EBADF; 4468 } 4469 4470 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 4471 return -EINVAL; 4472 } 4473 4474 if (!bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE_ZEROES) && 4475 !bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE)) { 4476 return -ENOTSUP; 4477 } 4478 4479 bdev_io = bdev_channel_get_io(channel); 4480 4481 if (!bdev_io) { 4482 return -ENOMEM; 4483 } 4484 4485 bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE_ZEROES; 4486 bdev_io->internal.ch = channel; 4487 bdev_io->internal.desc = desc; 4488 bdev_io->u.bdev.offset_blocks = offset_blocks; 4489 bdev_io->u.bdev.num_blocks = num_blocks; 4490 bdev_io_init(bdev_io, bdev, cb_arg, cb); 4491 4492 if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE_ZEROES)) { 4493 bdev_io_submit(bdev_io); 4494 return 0; 4495 } 4496 4497 assert(bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE)); 4498 assert(_bdev_get_block_size_with_md(bdev) <= ZERO_BUFFER_SIZE); 4499 bdev_io->u.bdev.split_remaining_num_blocks = num_blocks; 4500 bdev_io->u.bdev.split_current_offset_blocks = offset_blocks; 4501 bdev_write_zero_buffer_next(bdev_io); 4502 4503 return 0; 4504 } 4505 4506 int 4507 spdk_bdev_unmap(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4508 uint64_t offset, uint64_t nbytes, 4509 spdk_bdev_io_completion_cb cb, void *cb_arg) 4510 { 4511 uint64_t offset_blocks, num_blocks; 4512 4513 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 4514 nbytes, &num_blocks) != 0) { 4515 return -EINVAL; 4516 } 4517 4518 return spdk_bdev_unmap_blocks(desc, ch, offset_blocks, num_blocks, cb, cb_arg); 4519 } 4520 4521 int 4522 spdk_bdev_unmap_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4523 uint64_t offset_blocks, uint64_t num_blocks, 4524 spdk_bdev_io_completion_cb cb, void *cb_arg) 4525 { 4526 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 4527 struct spdk_bdev_io *bdev_io; 4528 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 4529 4530 if (!desc->write) { 4531 return -EBADF; 4532 } 4533 4534 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 4535 return -EINVAL; 4536 } 4537 4538 if (num_blocks == 0) { 4539 SPDK_ERRLOG("Can't unmap 0 bytes\n"); 4540 return -EINVAL; 4541 } 4542 4543 bdev_io = bdev_channel_get_io(channel); 4544 if (!bdev_io) { 4545 return -ENOMEM; 4546 } 4547 4548 bdev_io->internal.ch = channel; 4549 bdev_io->internal.desc = desc; 4550 bdev_io->type = SPDK_BDEV_IO_TYPE_UNMAP; 4551 4552 bdev_io->u.bdev.iovs = &bdev_io->iov; 4553 bdev_io->u.bdev.iovs[0].iov_base = NULL; 4554 bdev_io->u.bdev.iovs[0].iov_len = 0; 4555 bdev_io->u.bdev.iovcnt = 1; 4556 4557 bdev_io->u.bdev.offset_blocks = offset_blocks; 4558 bdev_io->u.bdev.num_blocks = num_blocks; 4559 bdev_io_init(bdev_io, bdev, cb_arg, cb); 4560 4561 bdev_io_submit(bdev_io); 4562 return 0; 4563 } 4564 4565 int 4566 spdk_bdev_flush(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4567 uint64_t offset, uint64_t length, 4568 spdk_bdev_io_completion_cb cb, void *cb_arg) 4569 { 4570 uint64_t offset_blocks, num_blocks; 4571 4572 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 4573 length, &num_blocks) != 0) { 4574 return -EINVAL; 4575 } 4576 4577 return spdk_bdev_flush_blocks(desc, ch, offset_blocks, num_blocks, cb, cb_arg); 4578 } 4579 4580 int 4581 spdk_bdev_flush_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4582 uint64_t offset_blocks, uint64_t num_blocks, 4583 spdk_bdev_io_completion_cb cb, void *cb_arg) 4584 { 4585 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 4586 struct spdk_bdev_io *bdev_io; 4587 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 4588 4589 if (!desc->write) { 4590 return -EBADF; 4591 } 4592 4593 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 4594 return -EINVAL; 4595 } 4596 4597 bdev_io = bdev_channel_get_io(channel); 4598 if (!bdev_io) { 4599 return -ENOMEM; 4600 } 4601 4602 bdev_io->internal.ch = channel; 4603 bdev_io->internal.desc = desc; 4604 bdev_io->type = SPDK_BDEV_IO_TYPE_FLUSH; 4605 bdev_io->u.bdev.iovs = NULL; 4606 bdev_io->u.bdev.iovcnt = 0; 4607 bdev_io->u.bdev.offset_blocks = offset_blocks; 4608 bdev_io->u.bdev.num_blocks = num_blocks; 4609 bdev_io_init(bdev_io, bdev, cb_arg, cb); 4610 4611 bdev_io_submit(bdev_io); 4612 return 0; 4613 } 4614 4615 static void 4616 bdev_reset_dev(struct spdk_io_channel_iter *i, int status) 4617 { 4618 struct spdk_bdev_channel *ch = spdk_io_channel_iter_get_ctx(i); 4619 struct spdk_bdev_io *bdev_io; 4620 4621 bdev_io = TAILQ_FIRST(&ch->queued_resets); 4622 TAILQ_REMOVE(&ch->queued_resets, bdev_io, internal.link); 4623 bdev_io_submit_reset(bdev_io); 4624 } 4625 4626 static void 4627 bdev_reset_freeze_channel(struct spdk_io_channel_iter *i) 4628 { 4629 struct spdk_io_channel *ch; 4630 struct spdk_bdev_channel *channel; 4631 struct spdk_bdev_mgmt_channel *mgmt_channel; 4632 struct spdk_bdev_shared_resource *shared_resource; 4633 bdev_io_tailq_t tmp_queued; 4634 4635 TAILQ_INIT(&tmp_queued); 4636 4637 ch = spdk_io_channel_iter_get_channel(i); 4638 channel = spdk_io_channel_get_ctx(ch); 4639 shared_resource = channel->shared_resource; 4640 mgmt_channel = shared_resource->mgmt_ch; 4641 4642 channel->flags |= BDEV_CH_RESET_IN_PROGRESS; 4643 4644 if ((channel->flags & BDEV_CH_QOS_ENABLED) != 0) { 4645 /* The QoS object is always valid and readable while 4646 * the channel flag is set, so the lock here should not 4647 * be necessary. We're not in the fast path though, so 4648 * just take it anyway. */ 4649 pthread_mutex_lock(&channel->bdev->internal.mutex); 4650 if (channel->bdev->internal.qos->ch == channel) { 4651 TAILQ_SWAP(&channel->bdev->internal.qos->queued, &tmp_queued, spdk_bdev_io, internal.link); 4652 } 4653 pthread_mutex_unlock(&channel->bdev->internal.mutex); 4654 } 4655 4656 bdev_abort_all_queued_io(&shared_resource->nomem_io, channel); 4657 bdev_abort_all_buf_io(&mgmt_channel->need_buf_small, channel); 4658 bdev_abort_all_buf_io(&mgmt_channel->need_buf_large, channel); 4659 bdev_abort_all_queued_io(&tmp_queued, channel); 4660 4661 spdk_for_each_channel_continue(i, 0); 4662 } 4663 4664 static void 4665 bdev_start_reset(void *ctx) 4666 { 4667 struct spdk_bdev_channel *ch = ctx; 4668 4669 spdk_for_each_channel(__bdev_to_io_dev(ch->bdev), bdev_reset_freeze_channel, 4670 ch, bdev_reset_dev); 4671 } 4672 4673 static void 4674 bdev_channel_start_reset(struct spdk_bdev_channel *ch) 4675 { 4676 struct spdk_bdev *bdev = ch->bdev; 4677 4678 assert(!TAILQ_EMPTY(&ch->queued_resets)); 4679 4680 pthread_mutex_lock(&bdev->internal.mutex); 4681 if (bdev->internal.reset_in_progress == NULL) { 4682 bdev->internal.reset_in_progress = TAILQ_FIRST(&ch->queued_resets); 4683 /* 4684 * Take a channel reference for the target bdev for the life of this 4685 * reset. This guards against the channel getting destroyed while 4686 * spdk_for_each_channel() calls related to this reset IO are in 4687 * progress. We will release the reference when this reset is 4688 * completed. 4689 */ 4690 bdev->internal.reset_in_progress->u.reset.ch_ref = spdk_get_io_channel(__bdev_to_io_dev(bdev)); 4691 bdev_start_reset(ch); 4692 } 4693 pthread_mutex_unlock(&bdev->internal.mutex); 4694 } 4695 4696 int 4697 spdk_bdev_reset(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4698 spdk_bdev_io_completion_cb cb, void *cb_arg) 4699 { 4700 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 4701 struct spdk_bdev_io *bdev_io; 4702 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 4703 4704 bdev_io = bdev_channel_get_io(channel); 4705 if (!bdev_io) { 4706 return -ENOMEM; 4707 } 4708 4709 bdev_io->internal.ch = channel; 4710 bdev_io->internal.desc = desc; 4711 bdev_io->internal.submit_tsc = spdk_get_ticks(); 4712 bdev_io->type = SPDK_BDEV_IO_TYPE_RESET; 4713 bdev_io->u.reset.ch_ref = NULL; 4714 bdev_io_init(bdev_io, bdev, cb_arg, cb); 4715 4716 pthread_mutex_lock(&bdev->internal.mutex); 4717 TAILQ_INSERT_TAIL(&channel->queued_resets, bdev_io, internal.link); 4718 pthread_mutex_unlock(&bdev->internal.mutex); 4719 4720 TAILQ_INSERT_TAIL(&bdev_io->internal.ch->io_submitted, bdev_io, 4721 internal.ch_link); 4722 4723 bdev_channel_start_reset(channel); 4724 4725 return 0; 4726 } 4727 4728 void 4729 spdk_bdev_get_io_stat(struct spdk_bdev *bdev, struct spdk_io_channel *ch, 4730 struct spdk_bdev_io_stat *stat) 4731 { 4732 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 4733 4734 *stat = channel->stat; 4735 } 4736 4737 static void 4738 bdev_get_device_stat_done(struct spdk_io_channel_iter *i, int status) 4739 { 4740 void *io_device = spdk_io_channel_iter_get_io_device(i); 4741 struct spdk_bdev_iostat_ctx *bdev_iostat_ctx = spdk_io_channel_iter_get_ctx(i); 4742 4743 bdev_iostat_ctx->cb(__bdev_from_io_dev(io_device), bdev_iostat_ctx->stat, 4744 bdev_iostat_ctx->cb_arg, 0); 4745 free(bdev_iostat_ctx); 4746 } 4747 4748 static void 4749 bdev_get_each_channel_stat(struct spdk_io_channel_iter *i) 4750 { 4751 struct spdk_bdev_iostat_ctx *bdev_iostat_ctx = spdk_io_channel_iter_get_ctx(i); 4752 struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i); 4753 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 4754 4755 bdev_io_stat_add(bdev_iostat_ctx->stat, &channel->stat); 4756 spdk_for_each_channel_continue(i, 0); 4757 } 4758 4759 void 4760 spdk_bdev_get_device_stat(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, 4761 spdk_bdev_get_device_stat_cb cb, void *cb_arg) 4762 { 4763 struct spdk_bdev_iostat_ctx *bdev_iostat_ctx; 4764 4765 assert(bdev != NULL); 4766 assert(stat != NULL); 4767 assert(cb != NULL); 4768 4769 bdev_iostat_ctx = calloc(1, sizeof(struct spdk_bdev_iostat_ctx)); 4770 if (bdev_iostat_ctx == NULL) { 4771 SPDK_ERRLOG("Unable to allocate memory for spdk_bdev_iostat_ctx\n"); 4772 cb(bdev, stat, cb_arg, -ENOMEM); 4773 return; 4774 } 4775 4776 bdev_iostat_ctx->stat = stat; 4777 bdev_iostat_ctx->cb = cb; 4778 bdev_iostat_ctx->cb_arg = cb_arg; 4779 4780 /* Start with the statistics from previously deleted channels. */ 4781 pthread_mutex_lock(&bdev->internal.mutex); 4782 bdev_io_stat_add(bdev_iostat_ctx->stat, &bdev->internal.stat); 4783 pthread_mutex_unlock(&bdev->internal.mutex); 4784 4785 /* Then iterate and add the statistics from each existing channel. */ 4786 spdk_for_each_channel(__bdev_to_io_dev(bdev), 4787 bdev_get_each_channel_stat, 4788 bdev_iostat_ctx, 4789 bdev_get_device_stat_done); 4790 } 4791 4792 int 4793 spdk_bdev_nvme_admin_passthru(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4794 const struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, 4795 spdk_bdev_io_completion_cb cb, void *cb_arg) 4796 { 4797 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 4798 struct spdk_bdev_io *bdev_io; 4799 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 4800 4801 if (!desc->write) { 4802 return -EBADF; 4803 } 4804 4805 bdev_io = bdev_channel_get_io(channel); 4806 if (!bdev_io) { 4807 return -ENOMEM; 4808 } 4809 4810 bdev_io->internal.ch = channel; 4811 bdev_io->internal.desc = desc; 4812 bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_ADMIN; 4813 bdev_io->u.nvme_passthru.cmd = *cmd; 4814 bdev_io->u.nvme_passthru.buf = buf; 4815 bdev_io->u.nvme_passthru.nbytes = nbytes; 4816 bdev_io->u.nvme_passthru.md_buf = NULL; 4817 bdev_io->u.nvme_passthru.md_len = 0; 4818 4819 bdev_io_init(bdev_io, bdev, cb_arg, cb); 4820 4821 bdev_io_submit(bdev_io); 4822 return 0; 4823 } 4824 4825 int 4826 spdk_bdev_nvme_io_passthru(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4827 const struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, 4828 spdk_bdev_io_completion_cb cb, void *cb_arg) 4829 { 4830 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 4831 struct spdk_bdev_io *bdev_io; 4832 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 4833 4834 if (!desc->write) { 4835 /* 4836 * Do not try to parse the NVMe command - we could maybe use bits in the opcode 4837 * to easily determine if the command is a read or write, but for now just 4838 * do not allow io_passthru with a read-only descriptor. 4839 */ 4840 return -EBADF; 4841 } 4842 4843 bdev_io = bdev_channel_get_io(channel); 4844 if (!bdev_io) { 4845 return -ENOMEM; 4846 } 4847 4848 bdev_io->internal.ch = channel; 4849 bdev_io->internal.desc = desc; 4850 bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_IO; 4851 bdev_io->u.nvme_passthru.cmd = *cmd; 4852 bdev_io->u.nvme_passthru.buf = buf; 4853 bdev_io->u.nvme_passthru.nbytes = nbytes; 4854 bdev_io->u.nvme_passthru.md_buf = NULL; 4855 bdev_io->u.nvme_passthru.md_len = 0; 4856 4857 bdev_io_init(bdev_io, bdev, cb_arg, cb); 4858 4859 bdev_io_submit(bdev_io); 4860 return 0; 4861 } 4862 4863 int 4864 spdk_bdev_nvme_io_passthru_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4865 const struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, void *md_buf, size_t md_len, 4866 spdk_bdev_io_completion_cb cb, void *cb_arg) 4867 { 4868 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 4869 struct spdk_bdev_io *bdev_io; 4870 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 4871 4872 if (!desc->write) { 4873 /* 4874 * Do not try to parse the NVMe command - we could maybe use bits in the opcode 4875 * to easily determine if the command is a read or write, but for now just 4876 * do not allow io_passthru with a read-only descriptor. 4877 */ 4878 return -EBADF; 4879 } 4880 4881 bdev_io = bdev_channel_get_io(channel); 4882 if (!bdev_io) { 4883 return -ENOMEM; 4884 } 4885 4886 bdev_io->internal.ch = channel; 4887 bdev_io->internal.desc = desc; 4888 bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_IO_MD; 4889 bdev_io->u.nvme_passthru.cmd = *cmd; 4890 bdev_io->u.nvme_passthru.buf = buf; 4891 bdev_io->u.nvme_passthru.nbytes = nbytes; 4892 bdev_io->u.nvme_passthru.md_buf = md_buf; 4893 bdev_io->u.nvme_passthru.md_len = md_len; 4894 4895 bdev_io_init(bdev_io, bdev, cb_arg, cb); 4896 4897 bdev_io_submit(bdev_io); 4898 return 0; 4899 } 4900 4901 static void bdev_abort_retry(void *ctx); 4902 static void bdev_abort(struct spdk_bdev_io *parent_io); 4903 4904 static void 4905 bdev_abort_io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 4906 { 4907 struct spdk_bdev_channel *channel = bdev_io->internal.ch; 4908 struct spdk_bdev_io *parent_io = cb_arg; 4909 struct spdk_bdev_io *bio_to_abort, *tmp_io; 4910 4911 bio_to_abort = bdev_io->u.abort.bio_to_abort; 4912 4913 spdk_bdev_free_io(bdev_io); 4914 4915 if (!success) { 4916 /* Check if the target I/O completed in the meantime. */ 4917 TAILQ_FOREACH(tmp_io, &channel->io_submitted, internal.ch_link) { 4918 if (tmp_io == bio_to_abort) { 4919 break; 4920 } 4921 } 4922 4923 /* If the target I/O still exists, set the parent to failed. */ 4924 if (tmp_io != NULL) { 4925 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 4926 } 4927 } 4928 4929 parent_io->u.bdev.split_outstanding--; 4930 if (parent_io->u.bdev.split_outstanding == 0) { 4931 if (parent_io->internal.status == SPDK_BDEV_IO_STATUS_NOMEM) { 4932 bdev_abort_retry(parent_io); 4933 } else { 4934 bdev_io_complete(parent_io); 4935 } 4936 } 4937 } 4938 4939 static int 4940 bdev_abort_io(struct spdk_bdev_desc *desc, struct spdk_bdev_channel *channel, 4941 struct spdk_bdev_io *bio_to_abort, 4942 spdk_bdev_io_completion_cb cb, void *cb_arg) 4943 { 4944 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 4945 struct spdk_bdev_io *bdev_io; 4946 4947 if (bio_to_abort->type == SPDK_BDEV_IO_TYPE_ABORT || 4948 bio_to_abort->type == SPDK_BDEV_IO_TYPE_RESET) { 4949 /* TODO: Abort reset or abort request. */ 4950 return -ENOTSUP; 4951 } 4952 4953 bdev_io = bdev_channel_get_io(channel); 4954 if (bdev_io == NULL) { 4955 return -ENOMEM; 4956 } 4957 4958 bdev_io->internal.ch = channel; 4959 bdev_io->internal.desc = desc; 4960 bdev_io->type = SPDK_BDEV_IO_TYPE_ABORT; 4961 bdev_io_init(bdev_io, bdev, cb_arg, cb); 4962 4963 if (bdev->split_on_optimal_io_boundary && bdev_io_should_split(bio_to_abort)) { 4964 bdev_io->u.bdev.abort.bio_cb_arg = bio_to_abort; 4965 4966 /* Parent abort request is not submitted directly, but to manage its 4967 * execution add it to the submitted list here. 4968 */ 4969 bdev_io->internal.submit_tsc = spdk_get_ticks(); 4970 TAILQ_INSERT_TAIL(&channel->io_submitted, bdev_io, internal.ch_link); 4971 4972 bdev_abort(bdev_io); 4973 4974 return 0; 4975 } 4976 4977 bdev_io->u.abort.bio_to_abort = bio_to_abort; 4978 4979 /* Submit the abort request to the underlying bdev module. */ 4980 bdev_io_submit(bdev_io); 4981 4982 return 0; 4983 } 4984 4985 static uint32_t 4986 _bdev_abort(struct spdk_bdev_io *parent_io) 4987 { 4988 struct spdk_bdev_desc *desc = parent_io->internal.desc; 4989 struct spdk_bdev_channel *channel = parent_io->internal.ch; 4990 void *bio_cb_arg; 4991 struct spdk_bdev_io *bio_to_abort; 4992 uint32_t matched_ios; 4993 int rc; 4994 4995 bio_cb_arg = parent_io->u.bdev.abort.bio_cb_arg; 4996 4997 /* matched_ios is returned and will be kept by the caller. 4998 * 4999 * This funcion will be used for two cases, 1) the same cb_arg is used for 5000 * multiple I/Os, 2) a single large I/O is split into smaller ones. 5001 * Incrementing split_outstanding directly here may confuse readers especially 5002 * for the 1st case. 5003 * 5004 * Completion of I/O abort is processed after stack unwinding. Hence this trick 5005 * works as expected. 5006 */ 5007 matched_ios = 0; 5008 parent_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; 5009 5010 TAILQ_FOREACH(bio_to_abort, &channel->io_submitted, internal.ch_link) { 5011 if (bio_to_abort->internal.caller_ctx != bio_cb_arg) { 5012 continue; 5013 } 5014 5015 if (bio_to_abort->internal.submit_tsc > parent_io->internal.submit_tsc) { 5016 /* Any I/O which was submitted after this abort command should be excluded. */ 5017 continue; 5018 } 5019 5020 rc = bdev_abort_io(desc, channel, bio_to_abort, bdev_abort_io_done, parent_io); 5021 if (rc != 0) { 5022 if (rc == -ENOMEM) { 5023 parent_io->internal.status = SPDK_BDEV_IO_STATUS_NOMEM; 5024 } else { 5025 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 5026 } 5027 break; 5028 } 5029 matched_ios++; 5030 } 5031 5032 return matched_ios; 5033 } 5034 5035 static void 5036 bdev_abort_retry(void *ctx) 5037 { 5038 struct spdk_bdev_io *parent_io = ctx; 5039 uint32_t matched_ios; 5040 5041 matched_ios = _bdev_abort(parent_io); 5042 5043 if (matched_ios == 0) { 5044 if (parent_io->internal.status == SPDK_BDEV_IO_STATUS_NOMEM) { 5045 bdev_queue_io_wait_with_cb(parent_io, bdev_abort_retry); 5046 } else { 5047 /* For retry, the case that no target I/O was found is success 5048 * because it means target I/Os completed in the meantime. 5049 */ 5050 bdev_io_complete(parent_io); 5051 } 5052 return; 5053 } 5054 5055 /* Use split_outstanding to manage the progress of aborting I/Os. */ 5056 parent_io->u.bdev.split_outstanding = matched_ios; 5057 } 5058 5059 static void 5060 bdev_abort(struct spdk_bdev_io *parent_io) 5061 { 5062 uint32_t matched_ios; 5063 5064 matched_ios = _bdev_abort(parent_io); 5065 5066 if (matched_ios == 0) { 5067 if (parent_io->internal.status == SPDK_BDEV_IO_STATUS_NOMEM) { 5068 bdev_queue_io_wait_with_cb(parent_io, bdev_abort_retry); 5069 } else { 5070 /* The case the no target I/O was found is failure. */ 5071 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 5072 bdev_io_complete(parent_io); 5073 } 5074 return; 5075 } 5076 5077 /* Use split_outstanding to manage the progress of aborting I/Os. */ 5078 parent_io->u.bdev.split_outstanding = matched_ios; 5079 } 5080 5081 int 5082 spdk_bdev_abort(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5083 void *bio_cb_arg, 5084 spdk_bdev_io_completion_cb cb, void *cb_arg) 5085 { 5086 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5087 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 5088 struct spdk_bdev_io *bdev_io; 5089 5090 if (bio_cb_arg == NULL) { 5091 return -EINVAL; 5092 } 5093 5094 if (!spdk_bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_ABORT)) { 5095 return -ENOTSUP; 5096 } 5097 5098 bdev_io = bdev_channel_get_io(channel); 5099 if (bdev_io == NULL) { 5100 return -ENOMEM; 5101 } 5102 5103 bdev_io->internal.ch = channel; 5104 bdev_io->internal.desc = desc; 5105 bdev_io->internal.submit_tsc = spdk_get_ticks(); 5106 bdev_io->type = SPDK_BDEV_IO_TYPE_ABORT; 5107 bdev_io_init(bdev_io, bdev, cb_arg, cb); 5108 5109 bdev_io->u.bdev.abort.bio_cb_arg = bio_cb_arg; 5110 5111 /* Parent abort request is not submitted directly, but to manage its execution, 5112 * add it to the submitted list here. 5113 */ 5114 TAILQ_INSERT_TAIL(&channel->io_submitted, bdev_io, internal.ch_link); 5115 5116 bdev_abort(bdev_io); 5117 5118 return 0; 5119 } 5120 5121 int 5122 spdk_bdev_queue_io_wait(struct spdk_bdev *bdev, struct spdk_io_channel *ch, 5123 struct spdk_bdev_io_wait_entry *entry) 5124 { 5125 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 5126 struct spdk_bdev_mgmt_channel *mgmt_ch = channel->shared_resource->mgmt_ch; 5127 5128 if (bdev != entry->bdev) { 5129 SPDK_ERRLOG("bdevs do not match\n"); 5130 return -EINVAL; 5131 } 5132 5133 if (mgmt_ch->per_thread_cache_count > 0) { 5134 SPDK_ERRLOG("Cannot queue io_wait if spdk_bdev_io available in per-thread cache\n"); 5135 return -EINVAL; 5136 } 5137 5138 TAILQ_INSERT_TAIL(&mgmt_ch->io_wait_queue, entry, link); 5139 return 0; 5140 } 5141 5142 static void 5143 bdev_ch_retry_io(struct spdk_bdev_channel *bdev_ch) 5144 { 5145 struct spdk_bdev *bdev = bdev_ch->bdev; 5146 struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource; 5147 struct spdk_bdev_io *bdev_io; 5148 5149 if (shared_resource->io_outstanding > shared_resource->nomem_threshold) { 5150 /* 5151 * Allow some more I/O to complete before retrying the nomem_io queue. 5152 * Some drivers (such as nvme) cannot immediately take a new I/O in 5153 * the context of a completion, because the resources for the I/O are 5154 * not released until control returns to the bdev poller. Also, we 5155 * may require several small I/O to complete before a larger I/O 5156 * (that requires splitting) can be submitted. 5157 */ 5158 return; 5159 } 5160 5161 while (!TAILQ_EMPTY(&shared_resource->nomem_io)) { 5162 bdev_io = TAILQ_FIRST(&shared_resource->nomem_io); 5163 TAILQ_REMOVE(&shared_resource->nomem_io, bdev_io, internal.link); 5164 bdev_io->internal.ch->io_outstanding++; 5165 shared_resource->io_outstanding++; 5166 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_PENDING; 5167 bdev_io->internal.error.nvme.cdw0 = 0; 5168 bdev_io->num_retries++; 5169 bdev->fn_table->submit_request(spdk_bdev_io_get_io_channel(bdev_io), bdev_io); 5170 if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_NOMEM) { 5171 break; 5172 } 5173 } 5174 } 5175 5176 static inline void 5177 bdev_io_complete(void *ctx) 5178 { 5179 struct spdk_bdev_io *bdev_io = ctx; 5180 struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch; 5181 uint64_t tsc, tsc_diff; 5182 5183 if (spdk_unlikely(bdev_io->internal.in_submit_request || bdev_io->internal.io_submit_ch)) { 5184 /* 5185 * Send the completion to the thread that originally submitted the I/O, 5186 * which may not be the current thread in the case of QoS. 5187 */ 5188 if (bdev_io->internal.io_submit_ch) { 5189 bdev_io->internal.ch = bdev_io->internal.io_submit_ch; 5190 bdev_io->internal.io_submit_ch = NULL; 5191 } 5192 5193 /* 5194 * Defer completion to avoid potential infinite recursion if the 5195 * user's completion callback issues a new I/O. 5196 */ 5197 spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), 5198 bdev_io_complete, bdev_io); 5199 return; 5200 } 5201 5202 tsc = spdk_get_ticks(); 5203 tsc_diff = tsc - bdev_io->internal.submit_tsc; 5204 spdk_trace_record_tsc(tsc, TRACE_BDEV_IO_DONE, 0, 0, (uintptr_t)bdev_io, 0); 5205 5206 TAILQ_REMOVE(&bdev_ch->io_submitted, bdev_io, internal.ch_link); 5207 5208 if (bdev_io->internal.ch->histogram) { 5209 spdk_histogram_data_tally(bdev_io->internal.ch->histogram, tsc_diff); 5210 } 5211 5212 if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) { 5213 switch (bdev_io->type) { 5214 case SPDK_BDEV_IO_TYPE_READ: 5215 bdev_io->internal.ch->stat.bytes_read += bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen; 5216 bdev_io->internal.ch->stat.num_read_ops++; 5217 bdev_io->internal.ch->stat.read_latency_ticks += tsc_diff; 5218 break; 5219 case SPDK_BDEV_IO_TYPE_WRITE: 5220 bdev_io->internal.ch->stat.bytes_written += bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen; 5221 bdev_io->internal.ch->stat.num_write_ops++; 5222 bdev_io->internal.ch->stat.write_latency_ticks += tsc_diff; 5223 break; 5224 case SPDK_BDEV_IO_TYPE_UNMAP: 5225 bdev_io->internal.ch->stat.bytes_unmapped += bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen; 5226 bdev_io->internal.ch->stat.num_unmap_ops++; 5227 bdev_io->internal.ch->stat.unmap_latency_ticks += tsc_diff; 5228 break; 5229 case SPDK_BDEV_IO_TYPE_ZCOPY: 5230 /* Track the data in the start phase only */ 5231 if (bdev_io->u.bdev.zcopy.start) { 5232 if (bdev_io->u.bdev.zcopy.populate) { 5233 bdev_io->internal.ch->stat.bytes_read += 5234 bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen; 5235 bdev_io->internal.ch->stat.num_read_ops++; 5236 bdev_io->internal.ch->stat.read_latency_ticks += tsc_diff; 5237 } else { 5238 bdev_io->internal.ch->stat.bytes_written += 5239 bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen; 5240 bdev_io->internal.ch->stat.num_write_ops++; 5241 bdev_io->internal.ch->stat.write_latency_ticks += tsc_diff; 5242 } 5243 } 5244 break; 5245 default: 5246 break; 5247 } 5248 } 5249 5250 #ifdef SPDK_CONFIG_VTUNE 5251 uint64_t now_tsc = spdk_get_ticks(); 5252 if (now_tsc > (bdev_io->internal.ch->start_tsc + bdev_io->internal.ch->interval_tsc)) { 5253 uint64_t data[5]; 5254 5255 data[0] = bdev_io->internal.ch->stat.num_read_ops - bdev_io->internal.ch->prev_stat.num_read_ops; 5256 data[1] = bdev_io->internal.ch->stat.bytes_read - bdev_io->internal.ch->prev_stat.bytes_read; 5257 data[2] = bdev_io->internal.ch->stat.num_write_ops - bdev_io->internal.ch->prev_stat.num_write_ops; 5258 data[3] = bdev_io->internal.ch->stat.bytes_written - bdev_io->internal.ch->prev_stat.bytes_written; 5259 data[4] = bdev_io->bdev->fn_table->get_spin_time ? 5260 bdev_io->bdev->fn_table->get_spin_time(spdk_bdev_io_get_io_channel(bdev_io)) : 0; 5261 5262 __itt_metadata_add(g_bdev_mgr.domain, __itt_null, bdev_io->internal.ch->handle, 5263 __itt_metadata_u64, 5, data); 5264 5265 bdev_io->internal.ch->prev_stat = bdev_io->internal.ch->stat; 5266 bdev_io->internal.ch->start_tsc = now_tsc; 5267 } 5268 #endif 5269 5270 assert(bdev_io->internal.cb != NULL); 5271 assert(spdk_get_thread() == spdk_bdev_io_get_thread(bdev_io)); 5272 5273 bdev_io->internal.cb(bdev_io, bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS, 5274 bdev_io->internal.caller_ctx); 5275 } 5276 5277 static void 5278 bdev_reset_complete(struct spdk_io_channel_iter *i, int status) 5279 { 5280 struct spdk_bdev_io *bdev_io = spdk_io_channel_iter_get_ctx(i); 5281 5282 if (bdev_io->u.reset.ch_ref != NULL) { 5283 spdk_put_io_channel(bdev_io->u.reset.ch_ref); 5284 bdev_io->u.reset.ch_ref = NULL; 5285 } 5286 5287 bdev_io_complete(bdev_io); 5288 } 5289 5290 static void 5291 bdev_unfreeze_channel(struct spdk_io_channel_iter *i) 5292 { 5293 struct spdk_bdev_io *bdev_io = spdk_io_channel_iter_get_ctx(i); 5294 struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); 5295 struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); 5296 struct spdk_bdev_io *queued_reset; 5297 5298 ch->flags &= ~BDEV_CH_RESET_IN_PROGRESS; 5299 while (!TAILQ_EMPTY(&ch->queued_resets)) { 5300 queued_reset = TAILQ_FIRST(&ch->queued_resets); 5301 TAILQ_REMOVE(&ch->queued_resets, queued_reset, internal.link); 5302 spdk_bdev_io_complete(queued_reset, bdev_io->internal.status); 5303 } 5304 5305 spdk_for_each_channel_continue(i, 0); 5306 } 5307 5308 void 5309 spdk_bdev_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status) 5310 { 5311 struct spdk_bdev *bdev = bdev_io->bdev; 5312 struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch; 5313 struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource; 5314 5315 bdev_io->internal.status = status; 5316 5317 if (spdk_unlikely(bdev_io->type == SPDK_BDEV_IO_TYPE_RESET)) { 5318 bool unlock_channels = false; 5319 5320 if (status == SPDK_BDEV_IO_STATUS_NOMEM) { 5321 SPDK_ERRLOG("NOMEM returned for reset\n"); 5322 } 5323 pthread_mutex_lock(&bdev->internal.mutex); 5324 if (bdev_io == bdev->internal.reset_in_progress) { 5325 bdev->internal.reset_in_progress = NULL; 5326 unlock_channels = true; 5327 } 5328 pthread_mutex_unlock(&bdev->internal.mutex); 5329 5330 if (unlock_channels) { 5331 spdk_for_each_channel(__bdev_to_io_dev(bdev), bdev_unfreeze_channel, 5332 bdev_io, bdev_reset_complete); 5333 return; 5334 } 5335 } else { 5336 _bdev_io_unset_bounce_buf(bdev_io); 5337 5338 assert(bdev_ch->io_outstanding > 0); 5339 assert(shared_resource->io_outstanding > 0); 5340 bdev_ch->io_outstanding--; 5341 shared_resource->io_outstanding--; 5342 5343 if (spdk_unlikely(status == SPDK_BDEV_IO_STATUS_NOMEM)) { 5344 TAILQ_INSERT_HEAD(&shared_resource->nomem_io, bdev_io, internal.link); 5345 /* 5346 * Wait for some of the outstanding I/O to complete before we 5347 * retry any of the nomem_io. Normally we will wait for 5348 * NOMEM_THRESHOLD_COUNT I/O to complete but for low queue 5349 * depth channels we will instead wait for half to complete. 5350 */ 5351 shared_resource->nomem_threshold = spdk_max((int64_t)shared_resource->io_outstanding / 2, 5352 (int64_t)shared_resource->io_outstanding - NOMEM_THRESHOLD_COUNT); 5353 return; 5354 } 5355 5356 if (spdk_unlikely(!TAILQ_EMPTY(&shared_resource->nomem_io))) { 5357 bdev_ch_retry_io(bdev_ch); 5358 } 5359 } 5360 5361 bdev_io_complete(bdev_io); 5362 } 5363 5364 void 5365 spdk_bdev_io_complete_scsi_status(struct spdk_bdev_io *bdev_io, enum spdk_scsi_status sc, 5366 enum spdk_scsi_sense sk, uint8_t asc, uint8_t ascq) 5367 { 5368 if (sc == SPDK_SCSI_STATUS_GOOD) { 5369 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; 5370 } else { 5371 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SCSI_ERROR; 5372 bdev_io->internal.error.scsi.sc = sc; 5373 bdev_io->internal.error.scsi.sk = sk; 5374 bdev_io->internal.error.scsi.asc = asc; 5375 bdev_io->internal.error.scsi.ascq = ascq; 5376 } 5377 5378 spdk_bdev_io_complete(bdev_io, bdev_io->internal.status); 5379 } 5380 5381 void 5382 spdk_bdev_io_get_scsi_status(const struct spdk_bdev_io *bdev_io, 5383 int *sc, int *sk, int *asc, int *ascq) 5384 { 5385 assert(sc != NULL); 5386 assert(sk != NULL); 5387 assert(asc != NULL); 5388 assert(ascq != NULL); 5389 5390 switch (bdev_io->internal.status) { 5391 case SPDK_BDEV_IO_STATUS_SUCCESS: 5392 *sc = SPDK_SCSI_STATUS_GOOD; 5393 *sk = SPDK_SCSI_SENSE_NO_SENSE; 5394 *asc = SPDK_SCSI_ASC_NO_ADDITIONAL_SENSE; 5395 *ascq = SPDK_SCSI_ASCQ_CAUSE_NOT_REPORTABLE; 5396 break; 5397 case SPDK_BDEV_IO_STATUS_NVME_ERROR: 5398 spdk_scsi_nvme_translate(bdev_io, sc, sk, asc, ascq); 5399 break; 5400 case SPDK_BDEV_IO_STATUS_SCSI_ERROR: 5401 *sc = bdev_io->internal.error.scsi.sc; 5402 *sk = bdev_io->internal.error.scsi.sk; 5403 *asc = bdev_io->internal.error.scsi.asc; 5404 *ascq = bdev_io->internal.error.scsi.ascq; 5405 break; 5406 default: 5407 *sc = SPDK_SCSI_STATUS_CHECK_CONDITION; 5408 *sk = SPDK_SCSI_SENSE_ABORTED_COMMAND; 5409 *asc = SPDK_SCSI_ASC_NO_ADDITIONAL_SENSE; 5410 *ascq = SPDK_SCSI_ASCQ_CAUSE_NOT_REPORTABLE; 5411 break; 5412 } 5413 } 5414 5415 void 5416 spdk_bdev_io_complete_aio_status(struct spdk_bdev_io *bdev_io, int aio_result) 5417 { 5418 if (aio_result == 0) { 5419 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; 5420 } else { 5421 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_AIO_ERROR; 5422 } 5423 5424 bdev_io->internal.error.aio_result = aio_result; 5425 5426 spdk_bdev_io_complete(bdev_io, bdev_io->internal.status); 5427 } 5428 5429 void 5430 spdk_bdev_io_get_aio_status(const struct spdk_bdev_io *bdev_io, int *aio_result) 5431 { 5432 assert(aio_result != NULL); 5433 5434 if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_AIO_ERROR) { 5435 *aio_result = bdev_io->internal.error.aio_result; 5436 } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) { 5437 *aio_result = 0; 5438 } else { 5439 *aio_result = -EIO; 5440 } 5441 } 5442 5443 void 5444 spdk_bdev_io_complete_nvme_status(struct spdk_bdev_io *bdev_io, uint32_t cdw0, int sct, int sc) 5445 { 5446 if (sct == SPDK_NVME_SCT_GENERIC && sc == SPDK_NVME_SC_SUCCESS) { 5447 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; 5448 } else if (sct == SPDK_NVME_SCT_GENERIC && sc == SPDK_NVME_SC_ABORTED_BY_REQUEST) { 5449 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_ABORTED; 5450 } else { 5451 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_NVME_ERROR; 5452 } 5453 5454 bdev_io->internal.error.nvme.cdw0 = cdw0; 5455 bdev_io->internal.error.nvme.sct = sct; 5456 bdev_io->internal.error.nvme.sc = sc; 5457 5458 spdk_bdev_io_complete(bdev_io, bdev_io->internal.status); 5459 } 5460 5461 void 5462 spdk_bdev_io_get_nvme_status(const struct spdk_bdev_io *bdev_io, uint32_t *cdw0, int *sct, int *sc) 5463 { 5464 assert(sct != NULL); 5465 assert(sc != NULL); 5466 assert(cdw0 != NULL); 5467 5468 if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_NVME_ERROR) { 5469 *sct = bdev_io->internal.error.nvme.sct; 5470 *sc = bdev_io->internal.error.nvme.sc; 5471 } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) { 5472 *sct = SPDK_NVME_SCT_GENERIC; 5473 *sc = SPDK_NVME_SC_SUCCESS; 5474 } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_ABORTED) { 5475 *sct = SPDK_NVME_SCT_GENERIC; 5476 *sc = SPDK_NVME_SC_ABORTED_BY_REQUEST; 5477 } else { 5478 *sct = SPDK_NVME_SCT_GENERIC; 5479 *sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 5480 } 5481 5482 *cdw0 = bdev_io->internal.error.nvme.cdw0; 5483 } 5484 5485 void 5486 spdk_bdev_io_get_nvme_fused_status(const struct spdk_bdev_io *bdev_io, uint32_t *cdw0, 5487 int *first_sct, int *first_sc, int *second_sct, int *second_sc) 5488 { 5489 assert(first_sct != NULL); 5490 assert(first_sc != NULL); 5491 assert(second_sct != NULL); 5492 assert(second_sc != NULL); 5493 assert(cdw0 != NULL); 5494 5495 if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_NVME_ERROR) { 5496 if (bdev_io->internal.error.nvme.sct == SPDK_NVME_SCT_MEDIA_ERROR && 5497 bdev_io->internal.error.nvme.sc == SPDK_NVME_SC_COMPARE_FAILURE) { 5498 *first_sct = bdev_io->internal.error.nvme.sct; 5499 *first_sc = bdev_io->internal.error.nvme.sc; 5500 *second_sct = SPDK_NVME_SCT_GENERIC; 5501 *second_sc = SPDK_NVME_SC_ABORTED_FAILED_FUSED; 5502 } else { 5503 *first_sct = SPDK_NVME_SCT_GENERIC; 5504 *first_sc = SPDK_NVME_SC_SUCCESS; 5505 *second_sct = bdev_io->internal.error.nvme.sct; 5506 *second_sc = bdev_io->internal.error.nvme.sc; 5507 } 5508 } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) { 5509 *first_sct = SPDK_NVME_SCT_GENERIC; 5510 *first_sc = SPDK_NVME_SC_SUCCESS; 5511 *second_sct = SPDK_NVME_SCT_GENERIC; 5512 *second_sc = SPDK_NVME_SC_SUCCESS; 5513 } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_FIRST_FUSED_FAILED) { 5514 *first_sct = SPDK_NVME_SCT_GENERIC; 5515 *first_sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 5516 *second_sct = SPDK_NVME_SCT_GENERIC; 5517 *second_sc = SPDK_NVME_SC_ABORTED_FAILED_FUSED; 5518 } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_MISCOMPARE) { 5519 *first_sct = SPDK_NVME_SCT_MEDIA_ERROR; 5520 *first_sc = SPDK_NVME_SC_COMPARE_FAILURE; 5521 *second_sct = SPDK_NVME_SCT_GENERIC; 5522 *second_sc = SPDK_NVME_SC_ABORTED_FAILED_FUSED; 5523 } else { 5524 *first_sct = SPDK_NVME_SCT_GENERIC; 5525 *first_sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 5526 *second_sct = SPDK_NVME_SCT_GENERIC; 5527 *second_sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 5528 } 5529 5530 *cdw0 = bdev_io->internal.error.nvme.cdw0; 5531 } 5532 5533 struct spdk_thread * 5534 spdk_bdev_io_get_thread(struct spdk_bdev_io *bdev_io) 5535 { 5536 return spdk_io_channel_get_thread(bdev_io->internal.ch->channel); 5537 } 5538 5539 struct spdk_io_channel * 5540 spdk_bdev_io_get_io_channel(struct spdk_bdev_io *bdev_io) 5541 { 5542 return bdev_io->internal.ch->channel; 5543 } 5544 5545 static int 5546 bdev_register(struct spdk_bdev *bdev) 5547 { 5548 char *bdev_name; 5549 int ret; 5550 5551 assert(bdev->module != NULL); 5552 5553 if (!bdev->name) { 5554 SPDK_ERRLOG("Bdev name is NULL\n"); 5555 return -EINVAL; 5556 } 5557 5558 if (!strlen(bdev->name)) { 5559 SPDK_ERRLOG("Bdev name must not be an empty string\n"); 5560 return -EINVAL; 5561 } 5562 5563 if (spdk_bdev_get_by_name(bdev->name)) { 5564 SPDK_ERRLOG("Bdev name:%s already exists\n", bdev->name); 5565 return -EEXIST; 5566 } 5567 5568 /* Users often register their own I/O devices using the bdev name. In 5569 * order to avoid conflicts, prepend bdev_. */ 5570 bdev_name = spdk_sprintf_alloc("bdev_%s", bdev->name); 5571 if (!bdev_name) { 5572 SPDK_ERRLOG("Unable to allocate memory for internal bdev name.\n"); 5573 return -ENOMEM; 5574 } 5575 5576 bdev->internal.status = SPDK_BDEV_STATUS_READY; 5577 bdev->internal.measured_queue_depth = UINT64_MAX; 5578 bdev->internal.claim_module = NULL; 5579 bdev->internal.qd_poller = NULL; 5580 bdev->internal.qos = NULL; 5581 5582 ret = bdev_name_add(&bdev->internal.bdev_name, bdev, bdev->name); 5583 if (ret != 0) { 5584 free(bdev_name); 5585 return ret; 5586 } 5587 5588 /* If the user didn't specify a uuid, generate one. */ 5589 if (spdk_mem_all_zero(&bdev->uuid, sizeof(bdev->uuid))) { 5590 spdk_uuid_generate(&bdev->uuid); 5591 } 5592 5593 if (spdk_bdev_get_buf_align(bdev) > 1) { 5594 if (bdev->split_on_optimal_io_boundary) { 5595 bdev->optimal_io_boundary = spdk_min(bdev->optimal_io_boundary, 5596 SPDK_BDEV_LARGE_BUF_MAX_SIZE / bdev->blocklen); 5597 } else { 5598 bdev->split_on_optimal_io_boundary = true; 5599 bdev->optimal_io_boundary = SPDK_BDEV_LARGE_BUF_MAX_SIZE / bdev->blocklen; 5600 } 5601 } 5602 5603 /* If the user didn't specify a write unit size, set it to one. */ 5604 if (bdev->write_unit_size == 0) { 5605 bdev->write_unit_size = 1; 5606 } 5607 5608 /* Set ACWU value to 1 if bdev module did not set it (does not support it natively) */ 5609 if (bdev->acwu == 0) { 5610 bdev->acwu = 1; 5611 } 5612 5613 if (bdev->phys_blocklen == 0) { 5614 bdev->phys_blocklen = spdk_bdev_get_data_block_size(bdev); 5615 } 5616 5617 TAILQ_INIT(&bdev->internal.open_descs); 5618 TAILQ_INIT(&bdev->internal.locked_ranges); 5619 TAILQ_INIT(&bdev->internal.pending_locked_ranges); 5620 5621 TAILQ_INIT(&bdev->aliases); 5622 5623 bdev->internal.reset_in_progress = NULL; 5624 5625 spdk_io_device_register(__bdev_to_io_dev(bdev), 5626 bdev_channel_create, bdev_channel_destroy, 5627 sizeof(struct spdk_bdev_channel), 5628 bdev_name); 5629 5630 free(bdev_name); 5631 5632 pthread_mutex_init(&bdev->internal.mutex, NULL); 5633 5634 SPDK_DEBUGLOG(bdev, "Inserting bdev %s into list\n", bdev->name); 5635 TAILQ_INSERT_TAIL(&g_bdev_mgr.bdevs, bdev, internal.link); 5636 5637 return 0; 5638 } 5639 5640 static void 5641 bdev_destroy_cb(void *io_device) 5642 { 5643 int rc; 5644 struct spdk_bdev *bdev; 5645 spdk_bdev_unregister_cb cb_fn; 5646 void *cb_arg; 5647 5648 bdev = __bdev_from_io_dev(io_device); 5649 cb_fn = bdev->internal.unregister_cb; 5650 cb_arg = bdev->internal.unregister_ctx; 5651 5652 pthread_mutex_destroy(&bdev->internal.mutex); 5653 free(bdev->internal.qos); 5654 5655 rc = bdev->fn_table->destruct(bdev->ctxt); 5656 if (rc < 0) { 5657 SPDK_ERRLOG("destruct failed\n"); 5658 } 5659 if (rc <= 0 && cb_fn != NULL) { 5660 cb_fn(cb_arg, rc); 5661 } 5662 } 5663 5664 static void 5665 bdev_register_finished(void *arg) 5666 { 5667 struct spdk_bdev *bdev = arg; 5668 5669 spdk_notify_send("bdev_register", spdk_bdev_get_name(bdev)); 5670 } 5671 5672 int 5673 spdk_bdev_register(struct spdk_bdev *bdev) 5674 { 5675 int rc = bdev_register(bdev); 5676 5677 if (rc == 0) { 5678 /* Examine configuration before initializing I/O */ 5679 bdev_examine(bdev); 5680 5681 spdk_bdev_wait_for_examine(bdev_register_finished, bdev); 5682 } 5683 5684 return rc; 5685 } 5686 5687 void 5688 spdk_bdev_destruct_done(struct spdk_bdev *bdev, int bdeverrno) 5689 { 5690 if (bdev->internal.unregister_cb != NULL) { 5691 bdev->internal.unregister_cb(bdev->internal.unregister_ctx, bdeverrno); 5692 } 5693 } 5694 5695 static void 5696 _remove_notify(void *arg) 5697 { 5698 struct spdk_bdev_desc *desc = arg; 5699 5700 pthread_mutex_lock(&desc->mutex); 5701 desc->refs--; 5702 5703 if (!desc->closed) { 5704 pthread_mutex_unlock(&desc->mutex); 5705 desc->callback.event_fn(SPDK_BDEV_EVENT_REMOVE, desc->bdev, desc->callback.ctx); 5706 return; 5707 } else if (0 == desc->refs) { 5708 /* This descriptor was closed after this remove_notify message was sent. 5709 * spdk_bdev_close() could not free the descriptor since this message was 5710 * in flight, so we free it now using bdev_desc_free(). 5711 */ 5712 pthread_mutex_unlock(&desc->mutex); 5713 bdev_desc_free(desc); 5714 return; 5715 } 5716 pthread_mutex_unlock(&desc->mutex); 5717 } 5718 5719 /* Must be called while holding bdev->internal.mutex. 5720 * returns: 0 - bdev removed and ready to be destructed. 5721 * -EBUSY - bdev can't be destructed yet. */ 5722 static int 5723 bdev_unregister_unsafe(struct spdk_bdev *bdev) 5724 { 5725 struct spdk_bdev_desc *desc, *tmp; 5726 int rc = 0; 5727 5728 /* Notify each descriptor about hotremoval */ 5729 TAILQ_FOREACH_SAFE(desc, &bdev->internal.open_descs, link, tmp) { 5730 rc = -EBUSY; 5731 pthread_mutex_lock(&desc->mutex); 5732 /* 5733 * Defer invocation of the event_cb to a separate message that will 5734 * run later on its thread. This ensures this context unwinds and 5735 * we don't recursively unregister this bdev again if the event_cb 5736 * immediately closes its descriptor. 5737 */ 5738 desc->refs++; 5739 spdk_thread_send_msg(desc->thread, _remove_notify, desc); 5740 pthread_mutex_unlock(&desc->mutex); 5741 } 5742 5743 /* If there are no descriptors, proceed removing the bdev */ 5744 if (rc == 0) { 5745 TAILQ_REMOVE(&g_bdev_mgr.bdevs, bdev, internal.link); 5746 SPDK_DEBUGLOG(bdev, "Removing bdev %s from list done\n", bdev->name); 5747 bdev_name_del(&bdev->internal.bdev_name); 5748 spdk_notify_send("bdev_unregister", spdk_bdev_get_name(bdev)); 5749 } 5750 5751 return rc; 5752 } 5753 5754 void 5755 spdk_bdev_unregister(struct spdk_bdev *bdev, spdk_bdev_unregister_cb cb_fn, void *cb_arg) 5756 { 5757 struct spdk_thread *thread; 5758 int rc; 5759 5760 SPDK_DEBUGLOG(bdev, "Removing bdev %s from list\n", bdev->name); 5761 5762 thread = spdk_get_thread(); 5763 if (!thread) { 5764 /* The user called this from a non-SPDK thread. */ 5765 if (cb_fn != NULL) { 5766 cb_fn(cb_arg, -ENOTSUP); 5767 } 5768 return; 5769 } 5770 5771 pthread_mutex_lock(&g_bdev_mgr.mutex); 5772 if (bdev->internal.status == SPDK_BDEV_STATUS_REMOVING) { 5773 pthread_mutex_unlock(&g_bdev_mgr.mutex); 5774 if (cb_fn) { 5775 cb_fn(cb_arg, -EBUSY); 5776 } 5777 return; 5778 } 5779 5780 pthread_mutex_lock(&bdev->internal.mutex); 5781 bdev->internal.status = SPDK_BDEV_STATUS_REMOVING; 5782 bdev->internal.unregister_cb = cb_fn; 5783 bdev->internal.unregister_ctx = cb_arg; 5784 5785 /* Call under lock. */ 5786 rc = bdev_unregister_unsafe(bdev); 5787 pthread_mutex_unlock(&bdev->internal.mutex); 5788 pthread_mutex_unlock(&g_bdev_mgr.mutex); 5789 5790 if (rc == 0) { 5791 spdk_io_device_unregister(__bdev_to_io_dev(bdev), bdev_destroy_cb); 5792 } 5793 } 5794 5795 static int 5796 bdev_start_qos(struct spdk_bdev *bdev) 5797 { 5798 struct set_qos_limit_ctx *ctx; 5799 5800 /* Enable QoS */ 5801 if (bdev->internal.qos && bdev->internal.qos->thread == NULL) { 5802 ctx = calloc(1, sizeof(*ctx)); 5803 if (ctx == NULL) { 5804 SPDK_ERRLOG("Failed to allocate memory for QoS context\n"); 5805 return -ENOMEM; 5806 } 5807 ctx->bdev = bdev; 5808 spdk_for_each_channel(__bdev_to_io_dev(bdev), 5809 bdev_enable_qos_msg, ctx, 5810 bdev_enable_qos_done); 5811 } 5812 5813 return 0; 5814 } 5815 5816 static int 5817 bdev_open(struct spdk_bdev *bdev, bool write, struct spdk_bdev_desc *desc) 5818 { 5819 struct spdk_thread *thread; 5820 int rc = 0; 5821 5822 thread = spdk_get_thread(); 5823 if (!thread) { 5824 SPDK_ERRLOG("Cannot open bdev from non-SPDK thread.\n"); 5825 return -ENOTSUP; 5826 } 5827 5828 SPDK_DEBUGLOG(bdev, "Opening descriptor %p for bdev %s on thread %p\n", desc, bdev->name, 5829 spdk_get_thread()); 5830 5831 desc->bdev = bdev; 5832 desc->thread = thread; 5833 desc->write = write; 5834 5835 pthread_mutex_lock(&bdev->internal.mutex); 5836 if (bdev->internal.status == SPDK_BDEV_STATUS_REMOVING) { 5837 pthread_mutex_unlock(&bdev->internal.mutex); 5838 return -ENODEV; 5839 } 5840 5841 if (write && bdev->internal.claim_module) { 5842 SPDK_ERRLOG("Could not open %s - %s module already claimed it\n", 5843 bdev->name, bdev->internal.claim_module->name); 5844 pthread_mutex_unlock(&bdev->internal.mutex); 5845 return -EPERM; 5846 } 5847 5848 rc = bdev_start_qos(bdev); 5849 if (rc != 0) { 5850 SPDK_ERRLOG("Failed to start QoS on bdev %s\n", bdev->name); 5851 pthread_mutex_unlock(&bdev->internal.mutex); 5852 return rc; 5853 } 5854 5855 TAILQ_INSERT_TAIL(&bdev->internal.open_descs, desc, link); 5856 5857 pthread_mutex_unlock(&bdev->internal.mutex); 5858 5859 return 0; 5860 } 5861 5862 int 5863 spdk_bdev_open_ext(const char *bdev_name, bool write, spdk_bdev_event_cb_t event_cb, 5864 void *event_ctx, struct spdk_bdev_desc **_desc) 5865 { 5866 struct spdk_bdev_desc *desc; 5867 struct spdk_bdev *bdev; 5868 unsigned int event_id; 5869 int rc; 5870 5871 if (event_cb == NULL) { 5872 SPDK_ERRLOG("Missing event callback function\n"); 5873 return -EINVAL; 5874 } 5875 5876 pthread_mutex_lock(&g_bdev_mgr.mutex); 5877 5878 bdev = spdk_bdev_get_by_name(bdev_name); 5879 5880 if (bdev == NULL) { 5881 SPDK_NOTICELOG("Currently unable to find bdev with name: %s\n", bdev_name); 5882 pthread_mutex_unlock(&g_bdev_mgr.mutex); 5883 return -ENODEV; 5884 } 5885 5886 desc = calloc(1, sizeof(*desc)); 5887 if (desc == NULL) { 5888 SPDK_ERRLOG("Failed to allocate memory for bdev descriptor\n"); 5889 pthread_mutex_unlock(&g_bdev_mgr.mutex); 5890 return -ENOMEM; 5891 } 5892 5893 TAILQ_INIT(&desc->pending_media_events); 5894 TAILQ_INIT(&desc->free_media_events); 5895 5896 desc->callback.event_fn = event_cb; 5897 desc->callback.ctx = event_ctx; 5898 pthread_mutex_init(&desc->mutex, NULL); 5899 5900 if (bdev->media_events) { 5901 desc->media_events_buffer = calloc(MEDIA_EVENT_POOL_SIZE, 5902 sizeof(*desc->media_events_buffer)); 5903 if (desc->media_events_buffer == NULL) { 5904 SPDK_ERRLOG("Failed to initialize media event pool\n"); 5905 bdev_desc_free(desc); 5906 pthread_mutex_unlock(&g_bdev_mgr.mutex); 5907 return -ENOMEM; 5908 } 5909 5910 for (event_id = 0; event_id < MEDIA_EVENT_POOL_SIZE; ++event_id) { 5911 TAILQ_INSERT_TAIL(&desc->free_media_events, 5912 &desc->media_events_buffer[event_id], tailq); 5913 } 5914 } 5915 5916 rc = bdev_open(bdev, write, desc); 5917 if (rc != 0) { 5918 bdev_desc_free(desc); 5919 desc = NULL; 5920 } 5921 5922 *_desc = desc; 5923 5924 pthread_mutex_unlock(&g_bdev_mgr.mutex); 5925 5926 return rc; 5927 } 5928 5929 void 5930 spdk_bdev_close(struct spdk_bdev_desc *desc) 5931 { 5932 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5933 int rc; 5934 5935 SPDK_DEBUGLOG(bdev, "Closing descriptor %p for bdev %s on thread %p\n", desc, bdev->name, 5936 spdk_get_thread()); 5937 5938 assert(desc->thread == spdk_get_thread()); 5939 5940 spdk_poller_unregister(&desc->io_timeout_poller); 5941 5942 pthread_mutex_lock(&bdev->internal.mutex); 5943 pthread_mutex_lock(&desc->mutex); 5944 5945 TAILQ_REMOVE(&bdev->internal.open_descs, desc, link); 5946 5947 desc->closed = true; 5948 5949 if (0 == desc->refs) { 5950 pthread_mutex_unlock(&desc->mutex); 5951 bdev_desc_free(desc); 5952 } else { 5953 pthread_mutex_unlock(&desc->mutex); 5954 } 5955 5956 /* If no more descriptors, kill QoS channel */ 5957 if (bdev->internal.qos && TAILQ_EMPTY(&bdev->internal.open_descs)) { 5958 SPDK_DEBUGLOG(bdev, "Closed last descriptor for bdev %s on thread %p. Stopping QoS.\n", 5959 bdev->name, spdk_get_thread()); 5960 5961 if (bdev_qos_destroy(bdev)) { 5962 /* There isn't anything we can do to recover here. Just let the 5963 * old QoS poller keep running. The QoS handling won't change 5964 * cores when the user allocates a new channel, but it won't break. */ 5965 SPDK_ERRLOG("Unable to shut down QoS poller. It will continue running on the current thread.\n"); 5966 } 5967 } 5968 5969 spdk_bdev_set_qd_sampling_period(bdev, 0); 5970 5971 if (bdev->internal.status == SPDK_BDEV_STATUS_REMOVING && TAILQ_EMPTY(&bdev->internal.open_descs)) { 5972 rc = bdev_unregister_unsafe(bdev); 5973 pthread_mutex_unlock(&bdev->internal.mutex); 5974 5975 if (rc == 0) { 5976 spdk_io_device_unregister(__bdev_to_io_dev(bdev), bdev_destroy_cb); 5977 } 5978 } else { 5979 pthread_mutex_unlock(&bdev->internal.mutex); 5980 } 5981 } 5982 5983 int 5984 spdk_bdev_module_claim_bdev(struct spdk_bdev *bdev, struct spdk_bdev_desc *desc, 5985 struct spdk_bdev_module *module) 5986 { 5987 if (bdev->internal.claim_module != NULL) { 5988 SPDK_ERRLOG("bdev %s already claimed by module %s\n", bdev->name, 5989 bdev->internal.claim_module->name); 5990 return -EPERM; 5991 } 5992 5993 if (desc && !desc->write) { 5994 desc->write = true; 5995 } 5996 5997 bdev->internal.claim_module = module; 5998 return 0; 5999 } 6000 6001 void 6002 spdk_bdev_module_release_bdev(struct spdk_bdev *bdev) 6003 { 6004 assert(bdev->internal.claim_module != NULL); 6005 bdev->internal.claim_module = NULL; 6006 } 6007 6008 struct spdk_bdev * 6009 spdk_bdev_desc_get_bdev(struct spdk_bdev_desc *desc) 6010 { 6011 assert(desc != NULL); 6012 return desc->bdev; 6013 } 6014 6015 void 6016 spdk_bdev_io_get_iovec(struct spdk_bdev_io *bdev_io, struct iovec **iovp, int *iovcntp) 6017 { 6018 struct iovec *iovs; 6019 int iovcnt; 6020 6021 if (bdev_io == NULL) { 6022 return; 6023 } 6024 6025 switch (bdev_io->type) { 6026 case SPDK_BDEV_IO_TYPE_READ: 6027 case SPDK_BDEV_IO_TYPE_WRITE: 6028 case SPDK_BDEV_IO_TYPE_ZCOPY: 6029 iovs = bdev_io->u.bdev.iovs; 6030 iovcnt = bdev_io->u.bdev.iovcnt; 6031 break; 6032 default: 6033 iovs = NULL; 6034 iovcnt = 0; 6035 break; 6036 } 6037 6038 if (iovp) { 6039 *iovp = iovs; 6040 } 6041 if (iovcntp) { 6042 *iovcntp = iovcnt; 6043 } 6044 } 6045 6046 void * 6047 spdk_bdev_io_get_md_buf(struct spdk_bdev_io *bdev_io) 6048 { 6049 if (bdev_io == NULL) { 6050 return NULL; 6051 } 6052 6053 if (!spdk_bdev_is_md_separate(bdev_io->bdev)) { 6054 return NULL; 6055 } 6056 6057 if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ || 6058 bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) { 6059 return bdev_io->u.bdev.md_buf; 6060 } 6061 6062 return NULL; 6063 } 6064 6065 void * 6066 spdk_bdev_io_get_cb_arg(struct spdk_bdev_io *bdev_io) 6067 { 6068 if (bdev_io == NULL) { 6069 assert(false); 6070 return NULL; 6071 } 6072 6073 return bdev_io->internal.caller_ctx; 6074 } 6075 6076 void 6077 spdk_bdev_module_list_add(struct spdk_bdev_module *bdev_module) 6078 { 6079 6080 if (spdk_bdev_module_list_find(bdev_module->name)) { 6081 SPDK_ERRLOG("ERROR: module '%s' already registered.\n", bdev_module->name); 6082 assert(false); 6083 } 6084 6085 /* 6086 * Modules with examine callbacks must be initialized first, so they are 6087 * ready to handle examine callbacks from later modules that will 6088 * register physical bdevs. 6089 */ 6090 if (bdev_module->examine_config != NULL || bdev_module->examine_disk != NULL) { 6091 TAILQ_INSERT_HEAD(&g_bdev_mgr.bdev_modules, bdev_module, internal.tailq); 6092 } else { 6093 TAILQ_INSERT_TAIL(&g_bdev_mgr.bdev_modules, bdev_module, internal.tailq); 6094 } 6095 } 6096 6097 struct spdk_bdev_module * 6098 spdk_bdev_module_list_find(const char *name) 6099 { 6100 struct spdk_bdev_module *bdev_module; 6101 6102 TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, internal.tailq) { 6103 if (strcmp(name, bdev_module->name) == 0) { 6104 break; 6105 } 6106 } 6107 6108 return bdev_module; 6109 } 6110 6111 static void 6112 bdev_write_zero_buffer_next(void *_bdev_io) 6113 { 6114 struct spdk_bdev_io *bdev_io = _bdev_io; 6115 uint64_t num_bytes, num_blocks; 6116 void *md_buf = NULL; 6117 int rc; 6118 6119 num_bytes = spdk_min(_bdev_get_block_size_with_md(bdev_io->bdev) * 6120 bdev_io->u.bdev.split_remaining_num_blocks, 6121 ZERO_BUFFER_SIZE); 6122 num_blocks = num_bytes / _bdev_get_block_size_with_md(bdev_io->bdev); 6123 6124 if (spdk_bdev_is_md_separate(bdev_io->bdev)) { 6125 md_buf = (char *)g_bdev_mgr.zero_buffer + 6126 spdk_bdev_get_block_size(bdev_io->bdev) * num_blocks; 6127 } 6128 6129 rc = bdev_write_blocks_with_md(bdev_io->internal.desc, 6130 spdk_io_channel_from_ctx(bdev_io->internal.ch), 6131 g_bdev_mgr.zero_buffer, md_buf, 6132 bdev_io->u.bdev.split_current_offset_blocks, num_blocks, 6133 bdev_write_zero_buffer_done, bdev_io); 6134 if (rc == 0) { 6135 bdev_io->u.bdev.split_remaining_num_blocks -= num_blocks; 6136 bdev_io->u.bdev.split_current_offset_blocks += num_blocks; 6137 } else if (rc == -ENOMEM) { 6138 bdev_queue_io_wait_with_cb(bdev_io, bdev_write_zero_buffer_next); 6139 } else { 6140 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 6141 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 6142 } 6143 } 6144 6145 static void 6146 bdev_write_zero_buffer_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 6147 { 6148 struct spdk_bdev_io *parent_io = cb_arg; 6149 6150 spdk_bdev_free_io(bdev_io); 6151 6152 if (!success) { 6153 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 6154 parent_io->internal.cb(parent_io, false, parent_io->internal.caller_ctx); 6155 return; 6156 } 6157 6158 if (parent_io->u.bdev.split_remaining_num_blocks == 0) { 6159 parent_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; 6160 parent_io->internal.cb(parent_io, true, parent_io->internal.caller_ctx); 6161 return; 6162 } 6163 6164 bdev_write_zero_buffer_next(parent_io); 6165 } 6166 6167 static void 6168 bdev_set_qos_limit_done(struct set_qos_limit_ctx *ctx, int status) 6169 { 6170 pthread_mutex_lock(&ctx->bdev->internal.mutex); 6171 ctx->bdev->internal.qos_mod_in_progress = false; 6172 pthread_mutex_unlock(&ctx->bdev->internal.mutex); 6173 6174 if (ctx->cb_fn) { 6175 ctx->cb_fn(ctx->cb_arg, status); 6176 } 6177 free(ctx); 6178 } 6179 6180 static void 6181 bdev_disable_qos_done(void *cb_arg) 6182 { 6183 struct set_qos_limit_ctx *ctx = cb_arg; 6184 struct spdk_bdev *bdev = ctx->bdev; 6185 struct spdk_bdev_io *bdev_io; 6186 struct spdk_bdev_qos *qos; 6187 6188 pthread_mutex_lock(&bdev->internal.mutex); 6189 qos = bdev->internal.qos; 6190 bdev->internal.qos = NULL; 6191 pthread_mutex_unlock(&bdev->internal.mutex); 6192 6193 while (!TAILQ_EMPTY(&qos->queued)) { 6194 /* Send queued I/O back to their original thread for resubmission. */ 6195 bdev_io = TAILQ_FIRST(&qos->queued); 6196 TAILQ_REMOVE(&qos->queued, bdev_io, internal.link); 6197 6198 if (bdev_io->internal.io_submit_ch) { 6199 /* 6200 * Channel was changed when sending it to the QoS thread - change it back 6201 * before sending it back to the original thread. 6202 */ 6203 bdev_io->internal.ch = bdev_io->internal.io_submit_ch; 6204 bdev_io->internal.io_submit_ch = NULL; 6205 } 6206 6207 spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), 6208 _bdev_io_submit, bdev_io); 6209 } 6210 6211 if (qos->thread != NULL) { 6212 spdk_put_io_channel(spdk_io_channel_from_ctx(qos->ch)); 6213 spdk_poller_unregister(&qos->poller); 6214 } 6215 6216 free(qos); 6217 6218 bdev_set_qos_limit_done(ctx, 0); 6219 } 6220 6221 static void 6222 bdev_disable_qos_msg_done(struct spdk_io_channel_iter *i, int status) 6223 { 6224 void *io_device = spdk_io_channel_iter_get_io_device(i); 6225 struct spdk_bdev *bdev = __bdev_from_io_dev(io_device); 6226 struct set_qos_limit_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 6227 struct spdk_thread *thread; 6228 6229 pthread_mutex_lock(&bdev->internal.mutex); 6230 thread = bdev->internal.qos->thread; 6231 pthread_mutex_unlock(&bdev->internal.mutex); 6232 6233 if (thread != NULL) { 6234 spdk_thread_send_msg(thread, bdev_disable_qos_done, ctx); 6235 } else { 6236 bdev_disable_qos_done(ctx); 6237 } 6238 } 6239 6240 static void 6241 bdev_disable_qos_msg(struct spdk_io_channel_iter *i) 6242 { 6243 struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i); 6244 struct spdk_bdev_channel *bdev_ch = spdk_io_channel_get_ctx(ch); 6245 6246 bdev_ch->flags &= ~BDEV_CH_QOS_ENABLED; 6247 6248 spdk_for_each_channel_continue(i, 0); 6249 } 6250 6251 static void 6252 bdev_update_qos_rate_limit_msg(void *cb_arg) 6253 { 6254 struct set_qos_limit_ctx *ctx = cb_arg; 6255 struct spdk_bdev *bdev = ctx->bdev; 6256 6257 pthread_mutex_lock(&bdev->internal.mutex); 6258 bdev_qos_update_max_quota_per_timeslice(bdev->internal.qos); 6259 pthread_mutex_unlock(&bdev->internal.mutex); 6260 6261 bdev_set_qos_limit_done(ctx, 0); 6262 } 6263 6264 static void 6265 bdev_enable_qos_msg(struct spdk_io_channel_iter *i) 6266 { 6267 void *io_device = spdk_io_channel_iter_get_io_device(i); 6268 struct spdk_bdev *bdev = __bdev_from_io_dev(io_device); 6269 struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i); 6270 struct spdk_bdev_channel *bdev_ch = spdk_io_channel_get_ctx(ch); 6271 6272 pthread_mutex_lock(&bdev->internal.mutex); 6273 bdev_enable_qos(bdev, bdev_ch); 6274 pthread_mutex_unlock(&bdev->internal.mutex); 6275 spdk_for_each_channel_continue(i, 0); 6276 } 6277 6278 static void 6279 bdev_enable_qos_done(struct spdk_io_channel_iter *i, int status) 6280 { 6281 struct set_qos_limit_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 6282 6283 bdev_set_qos_limit_done(ctx, status); 6284 } 6285 6286 static void 6287 bdev_set_qos_rate_limits(struct spdk_bdev *bdev, uint64_t *limits) 6288 { 6289 int i; 6290 6291 assert(bdev->internal.qos != NULL); 6292 6293 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 6294 if (limits[i] != SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) { 6295 bdev->internal.qos->rate_limits[i].limit = limits[i]; 6296 6297 if (limits[i] == 0) { 6298 bdev->internal.qos->rate_limits[i].limit = 6299 SPDK_BDEV_QOS_LIMIT_NOT_DEFINED; 6300 } 6301 } 6302 } 6303 } 6304 6305 void 6306 spdk_bdev_set_qos_rate_limits(struct spdk_bdev *bdev, uint64_t *limits, 6307 void (*cb_fn)(void *cb_arg, int status), void *cb_arg) 6308 { 6309 struct set_qos_limit_ctx *ctx; 6310 uint32_t limit_set_complement; 6311 uint64_t min_limit_per_sec; 6312 int i; 6313 bool disable_rate_limit = true; 6314 6315 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 6316 if (limits[i] == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) { 6317 continue; 6318 } 6319 6320 if (limits[i] > 0) { 6321 disable_rate_limit = false; 6322 } 6323 6324 if (bdev_qos_is_iops_rate_limit(i) == true) { 6325 min_limit_per_sec = SPDK_BDEV_QOS_MIN_IOS_PER_SEC; 6326 } else { 6327 /* Change from megabyte to byte rate limit */ 6328 limits[i] = limits[i] * 1024 * 1024; 6329 min_limit_per_sec = SPDK_BDEV_QOS_MIN_BYTES_PER_SEC; 6330 } 6331 6332 limit_set_complement = limits[i] % min_limit_per_sec; 6333 if (limit_set_complement) { 6334 SPDK_ERRLOG("Requested rate limit %" PRIu64 " is not a multiple of %" PRIu64 "\n", 6335 limits[i], min_limit_per_sec); 6336 limits[i] += min_limit_per_sec - limit_set_complement; 6337 SPDK_ERRLOG("Round up the rate limit to %" PRIu64 "\n", limits[i]); 6338 } 6339 } 6340 6341 ctx = calloc(1, sizeof(*ctx)); 6342 if (ctx == NULL) { 6343 cb_fn(cb_arg, -ENOMEM); 6344 return; 6345 } 6346 6347 ctx->cb_fn = cb_fn; 6348 ctx->cb_arg = cb_arg; 6349 ctx->bdev = bdev; 6350 6351 pthread_mutex_lock(&bdev->internal.mutex); 6352 if (bdev->internal.qos_mod_in_progress) { 6353 pthread_mutex_unlock(&bdev->internal.mutex); 6354 free(ctx); 6355 cb_fn(cb_arg, -EAGAIN); 6356 return; 6357 } 6358 bdev->internal.qos_mod_in_progress = true; 6359 6360 if (disable_rate_limit == true && bdev->internal.qos) { 6361 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 6362 if (limits[i] == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED && 6363 (bdev->internal.qos->rate_limits[i].limit > 0 && 6364 bdev->internal.qos->rate_limits[i].limit != 6365 SPDK_BDEV_QOS_LIMIT_NOT_DEFINED)) { 6366 disable_rate_limit = false; 6367 break; 6368 } 6369 } 6370 } 6371 6372 if (disable_rate_limit == false) { 6373 if (bdev->internal.qos == NULL) { 6374 bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos)); 6375 if (!bdev->internal.qos) { 6376 pthread_mutex_unlock(&bdev->internal.mutex); 6377 SPDK_ERRLOG("Unable to allocate memory for QoS tracking\n"); 6378 bdev_set_qos_limit_done(ctx, -ENOMEM); 6379 return; 6380 } 6381 } 6382 6383 if (bdev->internal.qos->thread == NULL) { 6384 /* Enabling */ 6385 bdev_set_qos_rate_limits(bdev, limits); 6386 6387 spdk_for_each_channel(__bdev_to_io_dev(bdev), 6388 bdev_enable_qos_msg, ctx, 6389 bdev_enable_qos_done); 6390 } else { 6391 /* Updating */ 6392 bdev_set_qos_rate_limits(bdev, limits); 6393 6394 spdk_thread_send_msg(bdev->internal.qos->thread, 6395 bdev_update_qos_rate_limit_msg, ctx); 6396 } 6397 } else { 6398 if (bdev->internal.qos != NULL) { 6399 bdev_set_qos_rate_limits(bdev, limits); 6400 6401 /* Disabling */ 6402 spdk_for_each_channel(__bdev_to_io_dev(bdev), 6403 bdev_disable_qos_msg, ctx, 6404 bdev_disable_qos_msg_done); 6405 } else { 6406 pthread_mutex_unlock(&bdev->internal.mutex); 6407 bdev_set_qos_limit_done(ctx, 0); 6408 return; 6409 } 6410 } 6411 6412 pthread_mutex_unlock(&bdev->internal.mutex); 6413 } 6414 6415 struct spdk_bdev_histogram_ctx { 6416 spdk_bdev_histogram_status_cb cb_fn; 6417 void *cb_arg; 6418 struct spdk_bdev *bdev; 6419 int status; 6420 }; 6421 6422 static void 6423 bdev_histogram_disable_channel_cb(struct spdk_io_channel_iter *i, int status) 6424 { 6425 struct spdk_bdev_histogram_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 6426 6427 pthread_mutex_lock(&ctx->bdev->internal.mutex); 6428 ctx->bdev->internal.histogram_in_progress = false; 6429 pthread_mutex_unlock(&ctx->bdev->internal.mutex); 6430 ctx->cb_fn(ctx->cb_arg, ctx->status); 6431 free(ctx); 6432 } 6433 6434 static void 6435 bdev_histogram_disable_channel(struct spdk_io_channel_iter *i) 6436 { 6437 struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); 6438 struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); 6439 6440 if (ch->histogram != NULL) { 6441 spdk_histogram_data_free(ch->histogram); 6442 ch->histogram = NULL; 6443 } 6444 spdk_for_each_channel_continue(i, 0); 6445 } 6446 6447 static void 6448 bdev_histogram_enable_channel_cb(struct spdk_io_channel_iter *i, int status) 6449 { 6450 struct spdk_bdev_histogram_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 6451 6452 if (status != 0) { 6453 ctx->status = status; 6454 ctx->bdev->internal.histogram_enabled = false; 6455 spdk_for_each_channel(__bdev_to_io_dev(ctx->bdev), bdev_histogram_disable_channel, ctx, 6456 bdev_histogram_disable_channel_cb); 6457 } else { 6458 pthread_mutex_lock(&ctx->bdev->internal.mutex); 6459 ctx->bdev->internal.histogram_in_progress = false; 6460 pthread_mutex_unlock(&ctx->bdev->internal.mutex); 6461 ctx->cb_fn(ctx->cb_arg, ctx->status); 6462 free(ctx); 6463 } 6464 } 6465 6466 static void 6467 bdev_histogram_enable_channel(struct spdk_io_channel_iter *i) 6468 { 6469 struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); 6470 struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); 6471 int status = 0; 6472 6473 if (ch->histogram == NULL) { 6474 ch->histogram = spdk_histogram_data_alloc(); 6475 if (ch->histogram == NULL) { 6476 status = -ENOMEM; 6477 } 6478 } 6479 6480 spdk_for_each_channel_continue(i, status); 6481 } 6482 6483 void 6484 spdk_bdev_histogram_enable(struct spdk_bdev *bdev, spdk_bdev_histogram_status_cb cb_fn, 6485 void *cb_arg, bool enable) 6486 { 6487 struct spdk_bdev_histogram_ctx *ctx; 6488 6489 ctx = calloc(1, sizeof(struct spdk_bdev_histogram_ctx)); 6490 if (ctx == NULL) { 6491 cb_fn(cb_arg, -ENOMEM); 6492 return; 6493 } 6494 6495 ctx->bdev = bdev; 6496 ctx->status = 0; 6497 ctx->cb_fn = cb_fn; 6498 ctx->cb_arg = cb_arg; 6499 6500 pthread_mutex_lock(&bdev->internal.mutex); 6501 if (bdev->internal.histogram_in_progress) { 6502 pthread_mutex_unlock(&bdev->internal.mutex); 6503 free(ctx); 6504 cb_fn(cb_arg, -EAGAIN); 6505 return; 6506 } 6507 6508 bdev->internal.histogram_in_progress = true; 6509 pthread_mutex_unlock(&bdev->internal.mutex); 6510 6511 bdev->internal.histogram_enabled = enable; 6512 6513 if (enable) { 6514 /* Allocate histogram for each channel */ 6515 spdk_for_each_channel(__bdev_to_io_dev(bdev), bdev_histogram_enable_channel, ctx, 6516 bdev_histogram_enable_channel_cb); 6517 } else { 6518 spdk_for_each_channel(__bdev_to_io_dev(bdev), bdev_histogram_disable_channel, ctx, 6519 bdev_histogram_disable_channel_cb); 6520 } 6521 } 6522 6523 struct spdk_bdev_histogram_data_ctx { 6524 spdk_bdev_histogram_data_cb cb_fn; 6525 void *cb_arg; 6526 struct spdk_bdev *bdev; 6527 /** merged histogram data from all channels */ 6528 struct spdk_histogram_data *histogram; 6529 }; 6530 6531 static void 6532 bdev_histogram_get_channel_cb(struct spdk_io_channel_iter *i, int status) 6533 { 6534 struct spdk_bdev_histogram_data_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 6535 6536 ctx->cb_fn(ctx->cb_arg, status, ctx->histogram); 6537 free(ctx); 6538 } 6539 6540 static void 6541 bdev_histogram_get_channel(struct spdk_io_channel_iter *i) 6542 { 6543 struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); 6544 struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); 6545 struct spdk_bdev_histogram_data_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 6546 int status = 0; 6547 6548 if (ch->histogram == NULL) { 6549 status = -EFAULT; 6550 } else { 6551 spdk_histogram_data_merge(ctx->histogram, ch->histogram); 6552 } 6553 6554 spdk_for_each_channel_continue(i, status); 6555 } 6556 6557 void 6558 spdk_bdev_histogram_get(struct spdk_bdev *bdev, struct spdk_histogram_data *histogram, 6559 spdk_bdev_histogram_data_cb cb_fn, 6560 void *cb_arg) 6561 { 6562 struct spdk_bdev_histogram_data_ctx *ctx; 6563 6564 ctx = calloc(1, sizeof(struct spdk_bdev_histogram_data_ctx)); 6565 if (ctx == NULL) { 6566 cb_fn(cb_arg, -ENOMEM, NULL); 6567 return; 6568 } 6569 6570 ctx->bdev = bdev; 6571 ctx->cb_fn = cb_fn; 6572 ctx->cb_arg = cb_arg; 6573 6574 ctx->histogram = histogram; 6575 6576 spdk_for_each_channel(__bdev_to_io_dev(bdev), bdev_histogram_get_channel, ctx, 6577 bdev_histogram_get_channel_cb); 6578 } 6579 6580 size_t 6581 spdk_bdev_get_media_events(struct spdk_bdev_desc *desc, struct spdk_bdev_media_event *events, 6582 size_t max_events) 6583 { 6584 struct media_event_entry *entry; 6585 size_t num_events = 0; 6586 6587 for (; num_events < max_events; ++num_events) { 6588 entry = TAILQ_FIRST(&desc->pending_media_events); 6589 if (entry == NULL) { 6590 break; 6591 } 6592 6593 events[num_events] = entry->event; 6594 TAILQ_REMOVE(&desc->pending_media_events, entry, tailq); 6595 TAILQ_INSERT_TAIL(&desc->free_media_events, entry, tailq); 6596 } 6597 6598 return num_events; 6599 } 6600 6601 int 6602 spdk_bdev_push_media_events(struct spdk_bdev *bdev, const struct spdk_bdev_media_event *events, 6603 size_t num_events) 6604 { 6605 struct spdk_bdev_desc *desc; 6606 struct media_event_entry *entry; 6607 size_t event_id; 6608 int rc = 0; 6609 6610 assert(bdev->media_events); 6611 6612 pthread_mutex_lock(&bdev->internal.mutex); 6613 TAILQ_FOREACH(desc, &bdev->internal.open_descs, link) { 6614 if (desc->write) { 6615 break; 6616 } 6617 } 6618 6619 if (desc == NULL || desc->media_events_buffer == NULL) { 6620 rc = -ENODEV; 6621 goto out; 6622 } 6623 6624 for (event_id = 0; event_id < num_events; ++event_id) { 6625 entry = TAILQ_FIRST(&desc->free_media_events); 6626 if (entry == NULL) { 6627 break; 6628 } 6629 6630 TAILQ_REMOVE(&desc->free_media_events, entry, tailq); 6631 TAILQ_INSERT_TAIL(&desc->pending_media_events, entry, tailq); 6632 entry->event = events[event_id]; 6633 } 6634 6635 rc = event_id; 6636 out: 6637 pthread_mutex_unlock(&bdev->internal.mutex); 6638 return rc; 6639 } 6640 6641 void 6642 spdk_bdev_notify_media_management(struct spdk_bdev *bdev) 6643 { 6644 struct spdk_bdev_desc *desc; 6645 6646 pthread_mutex_lock(&bdev->internal.mutex); 6647 TAILQ_FOREACH(desc, &bdev->internal.open_descs, link) { 6648 if (!TAILQ_EMPTY(&desc->pending_media_events)) { 6649 desc->callback.event_fn(SPDK_BDEV_EVENT_MEDIA_MANAGEMENT, bdev, 6650 desc->callback.ctx); 6651 } 6652 } 6653 pthread_mutex_unlock(&bdev->internal.mutex); 6654 } 6655 6656 struct locked_lba_range_ctx { 6657 struct lba_range range; 6658 struct spdk_bdev *bdev; 6659 struct lba_range *current_range; 6660 struct lba_range *owner_range; 6661 struct spdk_poller *poller; 6662 lock_range_cb cb_fn; 6663 void *cb_arg; 6664 }; 6665 6666 static void 6667 bdev_lock_error_cleanup_cb(struct spdk_io_channel_iter *i, int status) 6668 { 6669 struct locked_lba_range_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 6670 6671 ctx->cb_fn(ctx->cb_arg, -ENOMEM); 6672 free(ctx); 6673 } 6674 6675 static void 6676 bdev_unlock_lba_range_get_channel(struct spdk_io_channel_iter *i); 6677 6678 static void 6679 bdev_lock_lba_range_cb(struct spdk_io_channel_iter *i, int status) 6680 { 6681 struct locked_lba_range_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 6682 struct spdk_bdev *bdev = ctx->bdev; 6683 6684 if (status == -ENOMEM) { 6685 /* One of the channels could not allocate a range object. 6686 * So we have to go back and clean up any ranges that were 6687 * allocated successfully before we return error status to 6688 * the caller. We can reuse the unlock function to do that 6689 * clean up. 6690 */ 6691 spdk_for_each_channel(__bdev_to_io_dev(bdev), 6692 bdev_unlock_lba_range_get_channel, ctx, 6693 bdev_lock_error_cleanup_cb); 6694 return; 6695 } 6696 6697 /* All channels have locked this range and no I/O overlapping the range 6698 * are outstanding! Set the owner_ch for the range object for the 6699 * locking channel, so that this channel will know that it is allowed 6700 * to write to this range. 6701 */ 6702 ctx->owner_range->owner_ch = ctx->range.owner_ch; 6703 ctx->cb_fn(ctx->cb_arg, status); 6704 6705 /* Don't free the ctx here. Its range is in the bdev's global list of 6706 * locked ranges still, and will be removed and freed when this range 6707 * is later unlocked. 6708 */ 6709 } 6710 6711 static int 6712 bdev_lock_lba_range_check_io(void *_i) 6713 { 6714 struct spdk_io_channel_iter *i = _i; 6715 struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); 6716 struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); 6717 struct locked_lba_range_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 6718 struct lba_range *range = ctx->current_range; 6719 struct spdk_bdev_io *bdev_io; 6720 6721 spdk_poller_unregister(&ctx->poller); 6722 6723 /* The range is now in the locked_ranges, so no new IO can be submitted to this 6724 * range. But we need to wait until any outstanding IO overlapping with this range 6725 * are completed. 6726 */ 6727 TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) { 6728 if (bdev_io_range_is_locked(bdev_io, range)) { 6729 ctx->poller = SPDK_POLLER_REGISTER(bdev_lock_lba_range_check_io, i, 100); 6730 return SPDK_POLLER_BUSY; 6731 } 6732 } 6733 6734 spdk_for_each_channel_continue(i, 0); 6735 return SPDK_POLLER_BUSY; 6736 } 6737 6738 static void 6739 bdev_lock_lba_range_get_channel(struct spdk_io_channel_iter *i) 6740 { 6741 struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); 6742 struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); 6743 struct locked_lba_range_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 6744 struct lba_range *range; 6745 6746 TAILQ_FOREACH(range, &ch->locked_ranges, tailq) { 6747 if (range->length == ctx->range.length && 6748 range->offset == ctx->range.offset && 6749 range->locked_ctx == ctx->range.locked_ctx) { 6750 /* This range already exists on this channel, so don't add 6751 * it again. This can happen when a new channel is created 6752 * while the for_each_channel operation is in progress. 6753 * Do not check for outstanding I/O in that case, since the 6754 * range was locked before any I/O could be submitted to the 6755 * new channel. 6756 */ 6757 spdk_for_each_channel_continue(i, 0); 6758 return; 6759 } 6760 } 6761 6762 range = calloc(1, sizeof(*range)); 6763 if (range == NULL) { 6764 spdk_for_each_channel_continue(i, -ENOMEM); 6765 return; 6766 } 6767 6768 range->length = ctx->range.length; 6769 range->offset = ctx->range.offset; 6770 range->locked_ctx = ctx->range.locked_ctx; 6771 ctx->current_range = range; 6772 if (ctx->range.owner_ch == ch) { 6773 /* This is the range object for the channel that will hold 6774 * the lock. Store it in the ctx object so that we can easily 6775 * set its owner_ch after the lock is finally acquired. 6776 */ 6777 ctx->owner_range = range; 6778 } 6779 TAILQ_INSERT_TAIL(&ch->locked_ranges, range, tailq); 6780 bdev_lock_lba_range_check_io(i); 6781 } 6782 6783 static void 6784 bdev_lock_lba_range_ctx(struct spdk_bdev *bdev, struct locked_lba_range_ctx *ctx) 6785 { 6786 assert(spdk_get_thread() == ctx->range.owner_ch->channel->thread); 6787 6788 /* We will add a copy of this range to each channel now. */ 6789 spdk_for_each_channel(__bdev_to_io_dev(bdev), bdev_lock_lba_range_get_channel, ctx, 6790 bdev_lock_lba_range_cb); 6791 } 6792 6793 static bool 6794 bdev_lba_range_overlaps_tailq(struct lba_range *range, lba_range_tailq_t *tailq) 6795 { 6796 struct lba_range *r; 6797 6798 TAILQ_FOREACH(r, tailq, tailq) { 6799 if (bdev_lba_range_overlapped(range, r)) { 6800 return true; 6801 } 6802 } 6803 return false; 6804 } 6805 6806 static int 6807 bdev_lock_lba_range(struct spdk_bdev_desc *desc, struct spdk_io_channel *_ch, 6808 uint64_t offset, uint64_t length, 6809 lock_range_cb cb_fn, void *cb_arg) 6810 { 6811 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 6812 struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); 6813 struct locked_lba_range_ctx *ctx; 6814 6815 if (cb_arg == NULL) { 6816 SPDK_ERRLOG("cb_arg must not be NULL\n"); 6817 return -EINVAL; 6818 } 6819 6820 ctx = calloc(1, sizeof(*ctx)); 6821 if (ctx == NULL) { 6822 return -ENOMEM; 6823 } 6824 6825 ctx->range.offset = offset; 6826 ctx->range.length = length; 6827 ctx->range.owner_ch = ch; 6828 ctx->range.locked_ctx = cb_arg; 6829 ctx->bdev = bdev; 6830 ctx->cb_fn = cb_fn; 6831 ctx->cb_arg = cb_arg; 6832 6833 pthread_mutex_lock(&bdev->internal.mutex); 6834 if (bdev_lba_range_overlaps_tailq(&ctx->range, &bdev->internal.locked_ranges)) { 6835 /* There is an active lock overlapping with this range. 6836 * Put it on the pending list until this range no 6837 * longer overlaps with another. 6838 */ 6839 TAILQ_INSERT_TAIL(&bdev->internal.pending_locked_ranges, &ctx->range, tailq); 6840 } else { 6841 TAILQ_INSERT_TAIL(&bdev->internal.locked_ranges, &ctx->range, tailq); 6842 bdev_lock_lba_range_ctx(bdev, ctx); 6843 } 6844 pthread_mutex_unlock(&bdev->internal.mutex); 6845 return 0; 6846 } 6847 6848 static void 6849 bdev_lock_lba_range_ctx_msg(void *_ctx) 6850 { 6851 struct locked_lba_range_ctx *ctx = _ctx; 6852 6853 bdev_lock_lba_range_ctx(ctx->bdev, ctx); 6854 } 6855 6856 static void 6857 bdev_unlock_lba_range_cb(struct spdk_io_channel_iter *i, int status) 6858 { 6859 struct locked_lba_range_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 6860 struct locked_lba_range_ctx *pending_ctx; 6861 struct spdk_bdev_channel *ch = ctx->range.owner_ch; 6862 struct spdk_bdev *bdev = ch->bdev; 6863 struct lba_range *range, *tmp; 6864 6865 pthread_mutex_lock(&bdev->internal.mutex); 6866 /* Check if there are any pending locked ranges that overlap with this range 6867 * that was just unlocked. If there are, check that it doesn't overlap with any 6868 * other locked ranges before calling bdev_lock_lba_range_ctx which will start 6869 * the lock process. 6870 */ 6871 TAILQ_FOREACH_SAFE(range, &bdev->internal.pending_locked_ranges, tailq, tmp) { 6872 if (bdev_lba_range_overlapped(range, &ctx->range) && 6873 !bdev_lba_range_overlaps_tailq(range, &bdev->internal.locked_ranges)) { 6874 TAILQ_REMOVE(&bdev->internal.pending_locked_ranges, range, tailq); 6875 pending_ctx = SPDK_CONTAINEROF(range, struct locked_lba_range_ctx, range); 6876 TAILQ_INSERT_TAIL(&bdev->internal.locked_ranges, range, tailq); 6877 spdk_thread_send_msg(pending_ctx->range.owner_ch->channel->thread, 6878 bdev_lock_lba_range_ctx_msg, pending_ctx); 6879 } 6880 } 6881 pthread_mutex_unlock(&bdev->internal.mutex); 6882 6883 ctx->cb_fn(ctx->cb_arg, status); 6884 free(ctx); 6885 } 6886 6887 static void 6888 bdev_unlock_lba_range_get_channel(struct spdk_io_channel_iter *i) 6889 { 6890 struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); 6891 struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); 6892 struct locked_lba_range_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 6893 TAILQ_HEAD(, spdk_bdev_io) io_locked; 6894 struct spdk_bdev_io *bdev_io; 6895 struct lba_range *range; 6896 6897 TAILQ_FOREACH(range, &ch->locked_ranges, tailq) { 6898 if (ctx->range.offset == range->offset && 6899 ctx->range.length == range->length && 6900 ctx->range.locked_ctx == range->locked_ctx) { 6901 TAILQ_REMOVE(&ch->locked_ranges, range, tailq); 6902 free(range); 6903 break; 6904 } 6905 } 6906 6907 /* Note: we should almost always be able to assert that the range specified 6908 * was found. But there are some very rare corner cases where a new channel 6909 * gets created simultaneously with a range unlock, where this function 6910 * would execute on that new channel and wouldn't have the range. 6911 * We also use this to clean up range allocations when a later allocation 6912 * fails in the locking path. 6913 * So we can't actually assert() here. 6914 */ 6915 6916 /* Swap the locked IO into a temporary list, and then try to submit them again. 6917 * We could hyper-optimize this to only resubmit locked I/O that overlap 6918 * with the range that was just unlocked, but this isn't a performance path so 6919 * we go for simplicity here. 6920 */ 6921 TAILQ_INIT(&io_locked); 6922 TAILQ_SWAP(&ch->io_locked, &io_locked, spdk_bdev_io, internal.ch_link); 6923 while (!TAILQ_EMPTY(&io_locked)) { 6924 bdev_io = TAILQ_FIRST(&io_locked); 6925 TAILQ_REMOVE(&io_locked, bdev_io, internal.ch_link); 6926 bdev_io_submit(bdev_io); 6927 } 6928 6929 spdk_for_each_channel_continue(i, 0); 6930 } 6931 6932 static int 6933 bdev_unlock_lba_range(struct spdk_bdev_desc *desc, struct spdk_io_channel *_ch, 6934 uint64_t offset, uint64_t length, 6935 lock_range_cb cb_fn, void *cb_arg) 6936 { 6937 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 6938 struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); 6939 struct locked_lba_range_ctx *ctx; 6940 struct lba_range *range; 6941 bool range_found = false; 6942 6943 /* Let's make sure the specified channel actually has a lock on 6944 * the specified range. Note that the range must match exactly. 6945 */ 6946 TAILQ_FOREACH(range, &ch->locked_ranges, tailq) { 6947 if (range->offset == offset && range->length == length && 6948 range->owner_ch == ch && range->locked_ctx == cb_arg) { 6949 range_found = true; 6950 break; 6951 } 6952 } 6953 6954 if (!range_found) { 6955 return -EINVAL; 6956 } 6957 6958 pthread_mutex_lock(&bdev->internal.mutex); 6959 /* We confirmed that this channel has locked the specified range. To 6960 * start the unlock the process, we find the range in the bdev's locked_ranges 6961 * and remove it. This ensures new channels don't inherit the locked range. 6962 * Then we will send a message to each channel (including the one specified 6963 * here) to remove the range from its per-channel list. 6964 */ 6965 TAILQ_FOREACH(range, &bdev->internal.locked_ranges, tailq) { 6966 if (range->offset == offset && range->length == length && 6967 range->locked_ctx == cb_arg) { 6968 break; 6969 } 6970 } 6971 if (range == NULL) { 6972 assert(false); 6973 pthread_mutex_unlock(&bdev->internal.mutex); 6974 return -EINVAL; 6975 } 6976 TAILQ_REMOVE(&bdev->internal.locked_ranges, range, tailq); 6977 ctx = SPDK_CONTAINEROF(range, struct locked_lba_range_ctx, range); 6978 pthread_mutex_unlock(&bdev->internal.mutex); 6979 6980 ctx->cb_fn = cb_fn; 6981 ctx->cb_arg = cb_arg; 6982 6983 spdk_for_each_channel(__bdev_to_io_dev(bdev), bdev_unlock_lba_range_get_channel, ctx, 6984 bdev_unlock_lba_range_cb); 6985 return 0; 6986 } 6987 6988 SPDK_LOG_REGISTER_COMPONENT(bdev) 6989 6990 SPDK_TRACE_REGISTER_FN(bdev_trace, "bdev", TRACE_GROUP_BDEV) 6991 { 6992 spdk_trace_register_owner(OWNER_BDEV, 'b'); 6993 spdk_trace_register_object(OBJECT_BDEV_IO, 'i'); 6994 spdk_trace_register_description("BDEV_IO_START", TRACE_BDEV_IO_START, OWNER_BDEV, 6995 OBJECT_BDEV_IO, 1, 6996 SPDK_TRACE_ARG_TYPE_INT, "type"); 6997 spdk_trace_register_description("BDEV_IO_DONE", TRACE_BDEV_IO_DONE, OWNER_BDEV, 6998 OBJECT_BDEV_IO, 0, 6999 SPDK_TRACE_ARG_TYPE_INT, ""); 7000 } 7001