1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright (C) 2016 Intel Corporation. All rights reserved. 3 * Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved. 4 * Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 5 */ 6 7 #include "spdk/stdinc.h" 8 9 #include "spdk/bdev.h" 10 11 #include "spdk/accel.h" 12 #include "spdk/config.h" 13 #include "spdk/env.h" 14 #include "spdk/thread.h" 15 #include "spdk/likely.h" 16 #include "spdk/queue.h" 17 #include "spdk/nvme_spec.h" 18 #include "spdk/scsi_spec.h" 19 #include "spdk/notify.h" 20 #include "spdk/util.h" 21 #include "spdk/trace.h" 22 #include "spdk/dma.h" 23 24 #include "spdk/bdev_module.h" 25 #include "spdk/log.h" 26 #include "spdk/string.h" 27 28 #include "bdev_internal.h" 29 #include "spdk_internal/trace_defs.h" 30 #include "spdk_internal/assert.h" 31 32 #ifdef SPDK_CONFIG_VTUNE 33 #include "ittnotify.h" 34 #include "ittnotify_types.h" 35 int __itt_init_ittlib(const char *, __itt_group_id); 36 #endif 37 38 #define SPDK_BDEV_IO_POOL_SIZE (64 * 1024 - 1) 39 #define SPDK_BDEV_IO_CACHE_SIZE 256 40 #define SPDK_BDEV_AUTO_EXAMINE true 41 #define BUF_SMALL_CACHE_SIZE 128 42 #define BUF_LARGE_CACHE_SIZE 16 43 #define NOMEM_THRESHOLD_COUNT 8 44 45 #define SPDK_BDEV_QOS_TIMESLICE_IN_USEC 1000 46 #define SPDK_BDEV_QOS_MIN_IO_PER_TIMESLICE 1 47 #define SPDK_BDEV_QOS_MIN_BYTE_PER_TIMESLICE 512 48 #define SPDK_BDEV_QOS_MIN_IOS_PER_SEC 1000 49 #define SPDK_BDEV_QOS_MIN_BYTES_PER_SEC (1024 * 1024) 50 #define SPDK_BDEV_QOS_MAX_MBYTES_PER_SEC (UINT64_MAX / (1024 * 1024)) 51 #define SPDK_BDEV_QOS_LIMIT_NOT_DEFINED UINT64_MAX 52 #define SPDK_BDEV_IO_POLL_INTERVAL_IN_MSEC 1000 53 54 /* The maximum number of children requests for a UNMAP or WRITE ZEROES command 55 * when splitting into children requests at a time. 56 */ 57 #define SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS (8) 58 #define BDEV_RESET_CHECK_OUTSTANDING_IO_PERIOD 1000000 59 60 /* The maximum number of children requests for a COPY command 61 * when splitting into children requests at a time. 62 */ 63 #define SPDK_BDEV_MAX_CHILDREN_COPY_REQS (8) 64 65 #define LOG_ALREADY_CLAIMED_ERROR(detail, bdev) \ 66 log_already_claimed(SPDK_LOG_ERROR, __LINE__, __func__, detail, bdev) 67 #ifdef DEBUG 68 #define LOG_ALREADY_CLAIMED_DEBUG(detail, bdev) \ 69 log_already_claimed(SPDK_LOG_DEBUG, __LINE__, __func__, detail, bdev) 70 #else 71 #define LOG_ALREADY_CLAIMED_DEBUG(detail, bdev) do {} while(0) 72 #endif 73 74 static void log_already_claimed(enum spdk_log_level level, const int line, const char *func, 75 const char *detail, struct spdk_bdev *bdev); 76 77 static const char *qos_rpc_type[] = {"rw_ios_per_sec", 78 "rw_mbytes_per_sec", "r_mbytes_per_sec", "w_mbytes_per_sec" 79 }; 80 81 TAILQ_HEAD(spdk_bdev_list, spdk_bdev); 82 83 RB_HEAD(bdev_name_tree, spdk_bdev_name); 84 85 static int 86 bdev_name_cmp(struct spdk_bdev_name *name1, struct spdk_bdev_name *name2) 87 { 88 return strcmp(name1->name, name2->name); 89 } 90 91 RB_GENERATE_STATIC(bdev_name_tree, spdk_bdev_name, node, bdev_name_cmp); 92 93 struct spdk_bdev_mgr { 94 struct spdk_mempool *bdev_io_pool; 95 96 void *zero_buffer; 97 98 TAILQ_HEAD(bdev_module_list, spdk_bdev_module) bdev_modules; 99 100 struct spdk_bdev_list bdevs; 101 struct bdev_name_tree bdev_names; 102 103 bool init_complete; 104 bool module_init_complete; 105 106 struct spdk_spinlock spinlock; 107 108 TAILQ_HEAD(, spdk_bdev_open_async_ctx) async_bdev_opens; 109 110 #ifdef SPDK_CONFIG_VTUNE 111 __itt_domain *domain; 112 #endif 113 }; 114 115 static struct spdk_bdev_mgr g_bdev_mgr = { 116 .bdev_modules = TAILQ_HEAD_INITIALIZER(g_bdev_mgr.bdev_modules), 117 .bdevs = TAILQ_HEAD_INITIALIZER(g_bdev_mgr.bdevs), 118 .bdev_names = RB_INITIALIZER(g_bdev_mgr.bdev_names), 119 .init_complete = false, 120 .module_init_complete = false, 121 .async_bdev_opens = TAILQ_HEAD_INITIALIZER(g_bdev_mgr.async_bdev_opens), 122 }; 123 124 static void 125 __attribute__((constructor)) 126 _bdev_init(void) 127 { 128 spdk_spin_init(&g_bdev_mgr.spinlock); 129 } 130 131 typedef void (*lock_range_cb)(struct lba_range *range, void *ctx, int status); 132 133 typedef void (*bdev_copy_bounce_buffer_cpl)(void *ctx, int rc); 134 135 struct lba_range { 136 struct spdk_bdev *bdev; 137 uint64_t offset; 138 uint64_t length; 139 bool quiesce; 140 void *locked_ctx; 141 struct spdk_thread *owner_thread; 142 struct spdk_bdev_channel *owner_ch; 143 TAILQ_ENTRY(lba_range) tailq; 144 TAILQ_ENTRY(lba_range) tailq_module; 145 }; 146 147 static struct spdk_bdev_opts g_bdev_opts = { 148 .bdev_io_pool_size = SPDK_BDEV_IO_POOL_SIZE, 149 .bdev_io_cache_size = SPDK_BDEV_IO_CACHE_SIZE, 150 .bdev_auto_examine = SPDK_BDEV_AUTO_EXAMINE, 151 .iobuf_small_cache_size = BUF_SMALL_CACHE_SIZE, 152 .iobuf_large_cache_size = BUF_LARGE_CACHE_SIZE, 153 }; 154 155 static spdk_bdev_init_cb g_init_cb_fn = NULL; 156 static void *g_init_cb_arg = NULL; 157 158 static spdk_bdev_fini_cb g_fini_cb_fn = NULL; 159 static void *g_fini_cb_arg = NULL; 160 static struct spdk_thread *g_fini_thread = NULL; 161 162 struct spdk_bdev_qos_limit { 163 /** IOs or bytes allowed per second (i.e., 1s). */ 164 uint64_t limit; 165 166 /** Remaining IOs or bytes allowed in current timeslice (e.g., 1ms). 167 * For remaining bytes, allowed to run negative if an I/O is submitted when 168 * some bytes are remaining, but the I/O is bigger than that amount. The 169 * excess will be deducted from the next timeslice. 170 */ 171 int64_t remaining_this_timeslice; 172 173 /** Minimum allowed IOs or bytes to be issued in one timeslice (e.g., 1ms). */ 174 uint32_t min_per_timeslice; 175 176 /** Maximum allowed IOs or bytes to be issued in one timeslice (e.g., 1ms). */ 177 uint32_t max_per_timeslice; 178 179 /** Function to check whether to queue the IO. 180 * If The IO is allowed to pass, the quota will be reduced correspondingly. 181 */ 182 bool (*queue_io)(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io); 183 184 /** Function to rewind the quota once the IO was allowed to be sent by this 185 * limit but queued due to one of the further limits. 186 */ 187 void (*rewind_quota)(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io); 188 }; 189 190 struct spdk_bdev_qos { 191 /** Types of structure of rate limits. */ 192 struct spdk_bdev_qos_limit rate_limits[SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES]; 193 194 /** The channel that all I/O are funneled through. */ 195 struct spdk_bdev_channel *ch; 196 197 /** The thread on which the poller is running. */ 198 struct spdk_thread *thread; 199 200 /** Size of a timeslice in tsc ticks. */ 201 uint64_t timeslice_size; 202 203 /** Timestamp of start of last timeslice. */ 204 uint64_t last_timeslice; 205 206 /** Poller that processes queued I/O commands each time slice. */ 207 struct spdk_poller *poller; 208 }; 209 210 struct spdk_bdev_mgmt_channel { 211 /* 212 * Each thread keeps a cache of bdev_io - this allows 213 * bdev threads which are *not* DPDK threads to still 214 * benefit from a per-thread bdev_io cache. Without 215 * this, non-DPDK threads fetching from the mempool 216 * incur a cmpxchg on get and put. 217 */ 218 bdev_io_stailq_t per_thread_cache; 219 uint32_t per_thread_cache_count; 220 uint32_t bdev_io_cache_size; 221 222 struct spdk_iobuf_channel iobuf; 223 224 TAILQ_HEAD(, spdk_bdev_shared_resource) shared_resources; 225 TAILQ_HEAD(, spdk_bdev_io_wait_entry) io_wait_queue; 226 }; 227 228 /* 229 * Per-module (or per-io_device) data. Multiple bdevs built on the same io_device 230 * will queue here their IO that awaits retry. It makes it possible to retry sending 231 * IO to one bdev after IO from other bdev completes. 232 */ 233 struct spdk_bdev_shared_resource { 234 /* The bdev management channel */ 235 struct spdk_bdev_mgmt_channel *mgmt_ch; 236 237 /* 238 * Count of I/O submitted to bdev module and waiting for completion. 239 * Incremented before submit_request() is called on an spdk_bdev_io. 240 */ 241 uint64_t io_outstanding; 242 243 /* 244 * Queue of IO awaiting retry because of a previous NOMEM status returned 245 * on this channel. 246 */ 247 bdev_io_tailq_t nomem_io; 248 249 /* 250 * Threshold which io_outstanding must drop to before retrying nomem_io. 251 */ 252 uint64_t nomem_threshold; 253 254 /* I/O channel allocated by a bdev module */ 255 struct spdk_io_channel *shared_ch; 256 257 struct spdk_poller *nomem_poller; 258 259 /* Refcount of bdev channels using this resource */ 260 uint32_t ref; 261 262 TAILQ_ENTRY(spdk_bdev_shared_resource) link; 263 }; 264 265 #define BDEV_CH_RESET_IN_PROGRESS (1 << 0) 266 #define BDEV_CH_QOS_ENABLED (1 << 1) 267 268 struct spdk_bdev_channel { 269 struct spdk_bdev *bdev; 270 271 /* The channel for the underlying device */ 272 struct spdk_io_channel *channel; 273 274 /* Accel channel */ 275 struct spdk_io_channel *accel_channel; 276 277 /* Per io_device per thread data */ 278 struct spdk_bdev_shared_resource *shared_resource; 279 280 struct spdk_bdev_io_stat *stat; 281 282 /* 283 * Count of I/O submitted to the underlying dev module through this channel 284 * and waiting for completion. 285 */ 286 uint64_t io_outstanding; 287 288 /* 289 * List of all submitted I/Os including I/O that are generated via splitting. 290 */ 291 bdev_io_tailq_t io_submitted; 292 293 /* 294 * List of spdk_bdev_io that are currently queued because they write to a locked 295 * LBA range. 296 */ 297 bdev_io_tailq_t io_locked; 298 299 /* List of I/Os with accel sequence being currently executed */ 300 bdev_io_tailq_t io_accel_exec; 301 302 /* List of I/Os doing memory domain pull/push */ 303 bdev_io_tailq_t io_memory_domain; 304 305 uint32_t flags; 306 307 /* Counts number of bdev_io in the io_submitted TAILQ */ 308 uint16_t queue_depth; 309 310 uint16_t trace_id; 311 312 struct spdk_histogram_data *histogram; 313 314 #ifdef SPDK_CONFIG_VTUNE 315 uint64_t start_tsc; 316 uint64_t interval_tsc; 317 __itt_string_handle *handle; 318 struct spdk_bdev_io_stat *prev_stat; 319 #endif 320 321 bdev_io_tailq_t queued_resets; 322 323 lba_range_tailq_t locked_ranges; 324 325 /** List of I/Os queued by QoS. */ 326 bdev_io_tailq_t qos_queued_io; 327 }; 328 329 struct media_event_entry { 330 struct spdk_bdev_media_event event; 331 TAILQ_ENTRY(media_event_entry) tailq; 332 }; 333 334 #define MEDIA_EVENT_POOL_SIZE 64 335 336 struct spdk_bdev_desc { 337 struct spdk_bdev *bdev; 338 struct spdk_thread *thread; 339 struct { 340 spdk_bdev_event_cb_t event_fn; 341 void *ctx; 342 } callback; 343 bool closed; 344 bool write; 345 bool memory_domains_supported; 346 bool accel_sequence_supported[SPDK_BDEV_NUM_IO_TYPES]; 347 struct spdk_spinlock spinlock; 348 uint32_t refs; 349 TAILQ_HEAD(, media_event_entry) pending_media_events; 350 TAILQ_HEAD(, media_event_entry) free_media_events; 351 struct media_event_entry *media_events_buffer; 352 TAILQ_ENTRY(spdk_bdev_desc) link; 353 354 uint64_t timeout_in_sec; 355 spdk_bdev_io_timeout_cb cb_fn; 356 void *cb_arg; 357 struct spdk_poller *io_timeout_poller; 358 struct spdk_bdev_module_claim *claim; 359 }; 360 361 struct spdk_bdev_iostat_ctx { 362 struct spdk_bdev_io_stat *stat; 363 spdk_bdev_get_device_stat_cb cb; 364 void *cb_arg; 365 }; 366 367 struct set_qos_limit_ctx { 368 void (*cb_fn)(void *cb_arg, int status); 369 void *cb_arg; 370 struct spdk_bdev *bdev; 371 }; 372 373 struct spdk_bdev_channel_iter { 374 spdk_bdev_for_each_channel_msg fn; 375 spdk_bdev_for_each_channel_done cpl; 376 struct spdk_io_channel_iter *i; 377 void *ctx; 378 }; 379 380 struct spdk_bdev_io_error_stat { 381 uint32_t error_status[-SPDK_MIN_BDEV_IO_STATUS]; 382 }; 383 384 enum bdev_io_retry_state { 385 BDEV_IO_RETRY_STATE_INVALID, 386 BDEV_IO_RETRY_STATE_PULL, 387 BDEV_IO_RETRY_STATE_PULL_MD, 388 BDEV_IO_RETRY_STATE_SUBMIT, 389 BDEV_IO_RETRY_STATE_PUSH, 390 BDEV_IO_RETRY_STATE_PUSH_MD, 391 }; 392 393 #define __bdev_to_io_dev(bdev) (((char *)bdev) + 1) 394 #define __bdev_from_io_dev(io_dev) ((struct spdk_bdev *)(((char *)io_dev) - 1)) 395 #define __io_ch_to_bdev_ch(io_ch) ((struct spdk_bdev_channel *)spdk_io_channel_get_ctx(io_ch)) 396 #define __io_ch_to_bdev_mgmt_ch(io_ch) ((struct spdk_bdev_mgmt_channel *)spdk_io_channel_get_ctx(io_ch)) 397 398 static inline void bdev_io_complete(void *ctx); 399 static inline void bdev_io_complete_unsubmitted(struct spdk_bdev_io *bdev_io); 400 static void bdev_io_push_bounce_md_buf(struct spdk_bdev_io *bdev_io); 401 static void bdev_io_push_bounce_data(struct spdk_bdev_io *bdev_io); 402 403 static void bdev_write_zero_buffer_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg); 404 static int bdev_write_zero_buffer(struct spdk_bdev_io *bdev_io); 405 406 static void bdev_enable_qos_msg(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 407 struct spdk_io_channel *ch, void *_ctx); 408 static void bdev_enable_qos_done(struct spdk_bdev *bdev, void *_ctx, int status); 409 410 static int bdev_readv_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 411 struct iovec *iov, int iovcnt, void *md_buf, uint64_t offset_blocks, 412 uint64_t num_blocks, 413 struct spdk_memory_domain *domain, void *domain_ctx, 414 struct spdk_accel_sequence *seq, uint32_t dif_check_flags, 415 spdk_bdev_io_completion_cb cb, void *cb_arg); 416 static int bdev_writev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 417 struct iovec *iov, int iovcnt, void *md_buf, 418 uint64_t offset_blocks, uint64_t num_blocks, 419 struct spdk_memory_domain *domain, void *domain_ctx, 420 struct spdk_accel_sequence *seq, uint32_t dif_check_flags, 421 uint32_t nvme_cdw12_raw, uint32_t nvme_cdw13_raw, 422 spdk_bdev_io_completion_cb cb, void *cb_arg); 423 424 static int bdev_lock_lba_range(struct spdk_bdev_desc *desc, struct spdk_io_channel *_ch, 425 uint64_t offset, uint64_t length, 426 lock_range_cb cb_fn, void *cb_arg); 427 428 static int bdev_unlock_lba_range(struct spdk_bdev_desc *desc, struct spdk_io_channel *_ch, 429 uint64_t offset, uint64_t length, 430 lock_range_cb cb_fn, void *cb_arg); 431 432 static bool bdev_abort_queued_io(bdev_io_tailq_t *queue, struct spdk_bdev_io *bio_to_abort); 433 static bool bdev_abort_buf_io(struct spdk_bdev_mgmt_channel *ch, struct spdk_bdev_io *bio_to_abort); 434 435 static bool claim_type_is_v2(enum spdk_bdev_claim_type type); 436 static void bdev_desc_release_claims(struct spdk_bdev_desc *desc); 437 static void claim_reset(struct spdk_bdev *bdev); 438 439 static void bdev_ch_retry_io(struct spdk_bdev_channel *bdev_ch); 440 441 #define bdev_get_ext_io_opt(opts, field, defval) \ 442 ((opts) != NULL ? SPDK_GET_FIELD(opts, field, defval) : (defval)) 443 444 static inline void 445 bdev_ch_add_to_io_submitted(struct spdk_bdev_io *bdev_io) 446 { 447 TAILQ_INSERT_TAIL(&bdev_io->internal.ch->io_submitted, bdev_io, internal.ch_link); 448 bdev_io->internal.ch->queue_depth++; 449 } 450 451 static inline void 452 bdev_ch_remove_from_io_submitted(struct spdk_bdev_io *bdev_io) 453 { 454 TAILQ_REMOVE(&bdev_io->internal.ch->io_submitted, bdev_io, internal.ch_link); 455 bdev_io->internal.ch->queue_depth--; 456 } 457 458 void 459 spdk_bdev_get_opts(struct spdk_bdev_opts *opts, size_t opts_size) 460 { 461 if (!opts) { 462 SPDK_ERRLOG("opts should not be NULL\n"); 463 return; 464 } 465 466 if (!opts_size) { 467 SPDK_ERRLOG("opts_size should not be zero value\n"); 468 return; 469 } 470 471 opts->opts_size = opts_size; 472 473 #define SET_FIELD(field) \ 474 if (offsetof(struct spdk_bdev_opts, field) + sizeof(opts->field) <= opts_size) { \ 475 opts->field = g_bdev_opts.field; \ 476 } \ 477 478 SET_FIELD(bdev_io_pool_size); 479 SET_FIELD(bdev_io_cache_size); 480 SET_FIELD(bdev_auto_examine); 481 SET_FIELD(iobuf_small_cache_size); 482 SET_FIELD(iobuf_large_cache_size); 483 484 /* Do not remove this statement, you should always update this statement when you adding a new field, 485 * and do not forget to add the SET_FIELD statement for your added field. */ 486 SPDK_STATIC_ASSERT(sizeof(struct spdk_bdev_opts) == 32, "Incorrect size"); 487 488 #undef SET_FIELD 489 } 490 491 int 492 spdk_bdev_set_opts(struct spdk_bdev_opts *opts) 493 { 494 uint32_t min_pool_size; 495 496 if (!opts) { 497 SPDK_ERRLOG("opts cannot be NULL\n"); 498 return -1; 499 } 500 501 if (!opts->opts_size) { 502 SPDK_ERRLOG("opts_size inside opts cannot be zero value\n"); 503 return -1; 504 } 505 506 /* 507 * Add 1 to the thread count to account for the extra mgmt_ch that gets created during subsystem 508 * initialization. A second mgmt_ch will be created on the same thread when the application starts 509 * but before the deferred put_io_channel event is executed for the first mgmt_ch. 510 */ 511 min_pool_size = opts->bdev_io_cache_size * (spdk_thread_get_count() + 1); 512 if (opts->bdev_io_pool_size < min_pool_size) { 513 SPDK_ERRLOG("bdev_io_pool_size %" PRIu32 " is not compatible with bdev_io_cache_size %" PRIu32 514 " and %" PRIu32 " threads\n", opts->bdev_io_pool_size, opts->bdev_io_cache_size, 515 spdk_thread_get_count()); 516 SPDK_ERRLOG("bdev_io_pool_size must be at least %" PRIu32 "\n", min_pool_size); 517 return -1; 518 } 519 520 #define SET_FIELD(field) \ 521 if (offsetof(struct spdk_bdev_opts, field) + sizeof(opts->field) <= opts->opts_size) { \ 522 g_bdev_opts.field = opts->field; \ 523 } \ 524 525 SET_FIELD(bdev_io_pool_size); 526 SET_FIELD(bdev_io_cache_size); 527 SET_FIELD(bdev_auto_examine); 528 SET_FIELD(iobuf_small_cache_size); 529 SET_FIELD(iobuf_large_cache_size); 530 531 g_bdev_opts.opts_size = opts->opts_size; 532 533 #undef SET_FIELD 534 535 return 0; 536 } 537 538 static struct spdk_bdev * 539 bdev_get_by_name(const char *bdev_name) 540 { 541 struct spdk_bdev_name find; 542 struct spdk_bdev_name *res; 543 544 find.name = (char *)bdev_name; 545 res = RB_FIND(bdev_name_tree, &g_bdev_mgr.bdev_names, &find); 546 if (res != NULL) { 547 return res->bdev; 548 } 549 550 return NULL; 551 } 552 553 struct spdk_bdev * 554 spdk_bdev_get_by_name(const char *bdev_name) 555 { 556 struct spdk_bdev *bdev; 557 558 spdk_spin_lock(&g_bdev_mgr.spinlock); 559 bdev = bdev_get_by_name(bdev_name); 560 spdk_spin_unlock(&g_bdev_mgr.spinlock); 561 562 return bdev; 563 } 564 565 struct bdev_io_status_string { 566 enum spdk_bdev_io_status status; 567 const char *str; 568 }; 569 570 static const struct bdev_io_status_string bdev_io_status_strings[] = { 571 { SPDK_BDEV_IO_STATUS_AIO_ERROR, "aio_error" }, 572 { SPDK_BDEV_IO_STATUS_ABORTED, "aborted" }, 573 { SPDK_BDEV_IO_STATUS_FIRST_FUSED_FAILED, "first_fused_failed" }, 574 { SPDK_BDEV_IO_STATUS_MISCOMPARE, "miscompare" }, 575 { SPDK_BDEV_IO_STATUS_NOMEM, "nomem" }, 576 { SPDK_BDEV_IO_STATUS_SCSI_ERROR, "scsi_error" }, 577 { SPDK_BDEV_IO_STATUS_NVME_ERROR, "nvme_error" }, 578 { SPDK_BDEV_IO_STATUS_FAILED, "failed" }, 579 { SPDK_BDEV_IO_STATUS_PENDING, "pending" }, 580 { SPDK_BDEV_IO_STATUS_SUCCESS, "success" }, 581 }; 582 583 static const char * 584 bdev_io_status_get_string(enum spdk_bdev_io_status status) 585 { 586 uint32_t i; 587 588 for (i = 0; i < SPDK_COUNTOF(bdev_io_status_strings); i++) { 589 if (bdev_io_status_strings[i].status == status) { 590 return bdev_io_status_strings[i].str; 591 } 592 } 593 594 return "reserved"; 595 } 596 597 struct spdk_bdev_wait_for_examine_ctx { 598 struct spdk_poller *poller; 599 spdk_bdev_wait_for_examine_cb cb_fn; 600 void *cb_arg; 601 }; 602 603 static bool bdev_module_all_actions_completed(void); 604 605 static int 606 bdev_wait_for_examine_cb(void *arg) 607 { 608 struct spdk_bdev_wait_for_examine_ctx *ctx = arg; 609 610 if (!bdev_module_all_actions_completed()) { 611 return SPDK_POLLER_IDLE; 612 } 613 614 spdk_poller_unregister(&ctx->poller); 615 ctx->cb_fn(ctx->cb_arg); 616 free(ctx); 617 618 return SPDK_POLLER_BUSY; 619 } 620 621 int 622 spdk_bdev_wait_for_examine(spdk_bdev_wait_for_examine_cb cb_fn, void *cb_arg) 623 { 624 struct spdk_bdev_wait_for_examine_ctx *ctx; 625 626 ctx = calloc(1, sizeof(*ctx)); 627 if (ctx == NULL) { 628 return -ENOMEM; 629 } 630 ctx->cb_fn = cb_fn; 631 ctx->cb_arg = cb_arg; 632 ctx->poller = SPDK_POLLER_REGISTER(bdev_wait_for_examine_cb, ctx, 0); 633 634 return 0; 635 } 636 637 struct spdk_bdev_examine_item { 638 char *name; 639 TAILQ_ENTRY(spdk_bdev_examine_item) link; 640 }; 641 642 TAILQ_HEAD(spdk_bdev_examine_allowlist, spdk_bdev_examine_item); 643 644 struct spdk_bdev_examine_allowlist g_bdev_examine_allowlist = TAILQ_HEAD_INITIALIZER( 645 g_bdev_examine_allowlist); 646 647 static inline bool 648 bdev_examine_allowlist_check(const char *name) 649 { 650 struct spdk_bdev_examine_item *item; 651 TAILQ_FOREACH(item, &g_bdev_examine_allowlist, link) { 652 if (strcmp(name, item->name) == 0) { 653 return true; 654 } 655 } 656 return false; 657 } 658 659 static inline void 660 bdev_examine_allowlist_free(void) 661 { 662 struct spdk_bdev_examine_item *item; 663 while (!TAILQ_EMPTY(&g_bdev_examine_allowlist)) { 664 item = TAILQ_FIRST(&g_bdev_examine_allowlist); 665 TAILQ_REMOVE(&g_bdev_examine_allowlist, item, link); 666 free(item->name); 667 free(item); 668 } 669 } 670 671 static inline bool 672 bdev_in_examine_allowlist(struct spdk_bdev *bdev) 673 { 674 struct spdk_bdev_alias *tmp; 675 if (bdev_examine_allowlist_check(bdev->name)) { 676 return true; 677 } 678 TAILQ_FOREACH(tmp, &bdev->aliases, tailq) { 679 if (bdev_examine_allowlist_check(tmp->alias.name)) { 680 return true; 681 } 682 } 683 return false; 684 } 685 686 static inline bool 687 bdev_ok_to_examine(struct spdk_bdev *bdev) 688 { 689 if (g_bdev_opts.bdev_auto_examine) { 690 return true; 691 } else { 692 return bdev_in_examine_allowlist(bdev); 693 } 694 } 695 696 static void 697 bdev_examine(struct spdk_bdev *bdev) 698 { 699 struct spdk_bdev_module *module; 700 struct spdk_bdev_module_claim *claim, *tmpclaim; 701 uint32_t action; 702 703 if (!bdev_ok_to_examine(bdev)) { 704 return; 705 } 706 707 TAILQ_FOREACH(module, &g_bdev_mgr.bdev_modules, internal.tailq) { 708 if (module->examine_config) { 709 spdk_spin_lock(&module->internal.spinlock); 710 action = module->internal.action_in_progress; 711 module->internal.action_in_progress++; 712 spdk_spin_unlock(&module->internal.spinlock); 713 module->examine_config(bdev); 714 if (action != module->internal.action_in_progress) { 715 SPDK_ERRLOG("examine_config for module %s did not call " 716 "spdk_bdev_module_examine_done()\n", module->name); 717 } 718 } 719 } 720 721 spdk_spin_lock(&bdev->internal.spinlock); 722 723 switch (bdev->internal.claim_type) { 724 case SPDK_BDEV_CLAIM_NONE: 725 /* Examine by all bdev modules */ 726 TAILQ_FOREACH(module, &g_bdev_mgr.bdev_modules, internal.tailq) { 727 if (module->examine_disk) { 728 spdk_spin_lock(&module->internal.spinlock); 729 module->internal.action_in_progress++; 730 spdk_spin_unlock(&module->internal.spinlock); 731 spdk_spin_unlock(&bdev->internal.spinlock); 732 module->examine_disk(bdev); 733 spdk_spin_lock(&bdev->internal.spinlock); 734 } 735 } 736 break; 737 case SPDK_BDEV_CLAIM_EXCL_WRITE: 738 /* Examine by the one bdev module with a v1 claim */ 739 module = bdev->internal.claim.v1.module; 740 if (module->examine_disk) { 741 spdk_spin_lock(&module->internal.spinlock); 742 module->internal.action_in_progress++; 743 spdk_spin_unlock(&module->internal.spinlock); 744 spdk_spin_unlock(&bdev->internal.spinlock); 745 module->examine_disk(bdev); 746 return; 747 } 748 break; 749 default: 750 /* Examine by all bdev modules with a v2 claim */ 751 assert(claim_type_is_v2(bdev->internal.claim_type)); 752 /* 753 * Removal of tailq nodes while iterating can cause the iteration to jump out of the 754 * list, perhaps accessing freed memory. Without protection, this could happen 755 * while the lock is dropped during the examine callback. 756 */ 757 bdev->internal.examine_in_progress++; 758 759 TAILQ_FOREACH(claim, &bdev->internal.claim.v2.claims, link) { 760 module = claim->module; 761 762 if (module == NULL) { 763 /* This is a vestigial claim, held by examine_count */ 764 continue; 765 } 766 767 if (module->examine_disk == NULL) { 768 continue; 769 } 770 771 spdk_spin_lock(&module->internal.spinlock); 772 module->internal.action_in_progress++; 773 spdk_spin_unlock(&module->internal.spinlock); 774 775 /* Call examine_disk without holding internal.spinlock. */ 776 spdk_spin_unlock(&bdev->internal.spinlock); 777 module->examine_disk(bdev); 778 spdk_spin_lock(&bdev->internal.spinlock); 779 } 780 781 assert(bdev->internal.examine_in_progress > 0); 782 bdev->internal.examine_in_progress--; 783 if (bdev->internal.examine_in_progress == 0) { 784 /* Remove any claims that were released during examine_disk */ 785 TAILQ_FOREACH_SAFE(claim, &bdev->internal.claim.v2.claims, link, tmpclaim) { 786 if (claim->desc != NULL) { 787 continue; 788 } 789 790 TAILQ_REMOVE(&bdev->internal.claim.v2.claims, claim, link); 791 free(claim); 792 } 793 if (TAILQ_EMPTY(&bdev->internal.claim.v2.claims)) { 794 claim_reset(bdev); 795 } 796 } 797 } 798 799 spdk_spin_unlock(&bdev->internal.spinlock); 800 } 801 802 int 803 spdk_bdev_examine(const char *name) 804 { 805 struct spdk_bdev *bdev; 806 struct spdk_bdev_examine_item *item; 807 struct spdk_thread *thread = spdk_get_thread(); 808 809 if (spdk_unlikely(!spdk_thread_is_app_thread(thread))) { 810 SPDK_ERRLOG("Cannot examine bdev %s on thread %p (%s)\n", name, thread, 811 thread ? spdk_thread_get_name(thread) : "null"); 812 return -EINVAL; 813 } 814 815 if (g_bdev_opts.bdev_auto_examine) { 816 SPDK_ERRLOG("Manual examine is not allowed if auto examine is enabled"); 817 return -EINVAL; 818 } 819 820 if (bdev_examine_allowlist_check(name)) { 821 SPDK_ERRLOG("Duplicate bdev name for manual examine: %s\n", name); 822 return -EEXIST; 823 } 824 825 item = calloc(1, sizeof(*item)); 826 if (!item) { 827 return -ENOMEM; 828 } 829 item->name = strdup(name); 830 if (!item->name) { 831 free(item); 832 return -ENOMEM; 833 } 834 TAILQ_INSERT_TAIL(&g_bdev_examine_allowlist, item, link); 835 836 bdev = spdk_bdev_get_by_name(name); 837 if (bdev) { 838 bdev_examine(bdev); 839 } 840 return 0; 841 } 842 843 static inline void 844 bdev_examine_allowlist_config_json(struct spdk_json_write_ctx *w) 845 { 846 struct spdk_bdev_examine_item *item; 847 TAILQ_FOREACH(item, &g_bdev_examine_allowlist, link) { 848 spdk_json_write_object_begin(w); 849 spdk_json_write_named_string(w, "method", "bdev_examine"); 850 spdk_json_write_named_object_begin(w, "params"); 851 spdk_json_write_named_string(w, "name", item->name); 852 spdk_json_write_object_end(w); 853 spdk_json_write_object_end(w); 854 } 855 } 856 857 struct spdk_bdev * 858 spdk_bdev_first(void) 859 { 860 struct spdk_bdev *bdev; 861 862 bdev = TAILQ_FIRST(&g_bdev_mgr.bdevs); 863 if (bdev) { 864 SPDK_DEBUGLOG(bdev, "Starting bdev iteration at %s\n", bdev->name); 865 } 866 867 return bdev; 868 } 869 870 struct spdk_bdev * 871 spdk_bdev_next(struct spdk_bdev *prev) 872 { 873 struct spdk_bdev *bdev; 874 875 bdev = TAILQ_NEXT(prev, internal.link); 876 if (bdev) { 877 SPDK_DEBUGLOG(bdev, "Continuing bdev iteration at %s\n", bdev->name); 878 } 879 880 return bdev; 881 } 882 883 static struct spdk_bdev * 884 _bdev_next_leaf(struct spdk_bdev *bdev) 885 { 886 while (bdev != NULL) { 887 if (bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE) { 888 return bdev; 889 } else { 890 bdev = TAILQ_NEXT(bdev, internal.link); 891 } 892 } 893 894 return bdev; 895 } 896 897 struct spdk_bdev * 898 spdk_bdev_first_leaf(void) 899 { 900 struct spdk_bdev *bdev; 901 902 bdev = _bdev_next_leaf(TAILQ_FIRST(&g_bdev_mgr.bdevs)); 903 904 if (bdev) { 905 SPDK_DEBUGLOG(bdev, "Starting bdev iteration at %s\n", bdev->name); 906 } 907 908 return bdev; 909 } 910 911 struct spdk_bdev * 912 spdk_bdev_next_leaf(struct spdk_bdev *prev) 913 { 914 struct spdk_bdev *bdev; 915 916 bdev = _bdev_next_leaf(TAILQ_NEXT(prev, internal.link)); 917 918 if (bdev) { 919 SPDK_DEBUGLOG(bdev, "Continuing bdev iteration at %s\n", bdev->name); 920 } 921 922 return bdev; 923 } 924 925 static inline bool 926 bdev_io_use_memory_domain(struct spdk_bdev_io *bdev_io) 927 { 928 return bdev_io->internal.memory_domain; 929 } 930 931 static inline bool 932 bdev_io_use_accel_sequence(struct spdk_bdev_io *bdev_io) 933 { 934 return bdev_io->internal.has_accel_sequence; 935 } 936 937 static inline void 938 bdev_queue_nomem_io_head(struct spdk_bdev_shared_resource *shared_resource, 939 struct spdk_bdev_io *bdev_io, enum bdev_io_retry_state state) 940 { 941 /* Wait for some of the outstanding I/O to complete before we retry any of the nomem_io. 942 * Normally we will wait for NOMEM_THRESHOLD_COUNT I/O to complete but for low queue depth 943 * channels we will instead wait for half to complete. 944 */ 945 shared_resource->nomem_threshold = spdk_max((int64_t)shared_resource->io_outstanding / 2, 946 (int64_t)shared_resource->io_outstanding - NOMEM_THRESHOLD_COUNT); 947 948 assert(state != BDEV_IO_RETRY_STATE_INVALID); 949 bdev_io->internal.retry_state = state; 950 TAILQ_INSERT_HEAD(&shared_resource->nomem_io, bdev_io, internal.link); 951 } 952 953 static inline void 954 bdev_queue_nomem_io_tail(struct spdk_bdev_shared_resource *shared_resource, 955 struct spdk_bdev_io *bdev_io, enum bdev_io_retry_state state) 956 { 957 /* We only queue IOs at the end of the nomem_io queue if they're submitted by the user while 958 * the queue isn't empty, so we don't need to update the nomem_threshold here */ 959 assert(!TAILQ_EMPTY(&shared_resource->nomem_io)); 960 961 assert(state != BDEV_IO_RETRY_STATE_INVALID); 962 bdev_io->internal.retry_state = state; 963 TAILQ_INSERT_TAIL(&shared_resource->nomem_io, bdev_io, internal.link); 964 } 965 966 void 967 spdk_bdev_io_set_buf(struct spdk_bdev_io *bdev_io, void *buf, size_t len) 968 { 969 struct iovec *iovs; 970 971 if (bdev_io->u.bdev.iovs == NULL) { 972 bdev_io->u.bdev.iovs = &bdev_io->iov; 973 bdev_io->u.bdev.iovcnt = 1; 974 } 975 976 iovs = bdev_io->u.bdev.iovs; 977 978 assert(iovs != NULL); 979 assert(bdev_io->u.bdev.iovcnt >= 1); 980 981 iovs[0].iov_base = buf; 982 iovs[0].iov_len = len; 983 } 984 985 void 986 spdk_bdev_io_set_md_buf(struct spdk_bdev_io *bdev_io, void *md_buf, size_t len) 987 { 988 assert((len / spdk_bdev_get_md_size(bdev_io->bdev)) >= bdev_io->u.bdev.num_blocks); 989 bdev_io->u.bdev.md_buf = md_buf; 990 } 991 992 static bool 993 _is_buf_allocated(const struct iovec *iovs) 994 { 995 if (iovs == NULL) { 996 return false; 997 } 998 999 return iovs[0].iov_base != NULL; 1000 } 1001 1002 static bool 1003 _are_iovs_aligned(struct iovec *iovs, int iovcnt, uint32_t alignment) 1004 { 1005 int i; 1006 uintptr_t iov_base; 1007 1008 if (spdk_likely(alignment == 1)) { 1009 return true; 1010 } 1011 1012 for (i = 0; i < iovcnt; i++) { 1013 iov_base = (uintptr_t)iovs[i].iov_base; 1014 if ((iov_base & (alignment - 1)) != 0) { 1015 return false; 1016 } 1017 } 1018 1019 return true; 1020 } 1021 1022 static inline bool 1023 bdev_io_needs_sequence_exec(struct spdk_bdev_desc *desc, struct spdk_bdev_io *bdev_io) 1024 { 1025 if (!bdev_io->internal.accel_sequence) { 1026 return false; 1027 } 1028 1029 /* For now, we don't allow splitting IOs with an accel sequence and will treat them as if 1030 * bdev module didn't support accel sequences */ 1031 return !desc->accel_sequence_supported[bdev_io->type] || bdev_io->internal.split; 1032 } 1033 1034 static inline void 1035 bdev_io_increment_outstanding(struct spdk_bdev_channel *bdev_ch, 1036 struct spdk_bdev_shared_resource *shared_resource) 1037 { 1038 bdev_ch->io_outstanding++; 1039 shared_resource->io_outstanding++; 1040 } 1041 1042 static inline void 1043 bdev_io_decrement_outstanding(struct spdk_bdev_channel *bdev_ch, 1044 struct spdk_bdev_shared_resource *shared_resource) 1045 { 1046 assert(bdev_ch->io_outstanding > 0); 1047 assert(shared_resource->io_outstanding > 0); 1048 bdev_ch->io_outstanding--; 1049 shared_resource->io_outstanding--; 1050 } 1051 1052 static void 1053 bdev_io_submit_sequence_cb(void *ctx, int status) 1054 { 1055 struct spdk_bdev_io *bdev_io = ctx; 1056 1057 bdev_io->u.bdev.accel_sequence = NULL; 1058 bdev_io->internal.accel_sequence = NULL; 1059 1060 if (spdk_unlikely(status != 0)) { 1061 SPDK_ERRLOG("Failed to execute accel sequence, status=%d\n", status); 1062 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 1063 bdev_io_complete_unsubmitted(bdev_io); 1064 return; 1065 } 1066 1067 bdev_io_submit(bdev_io); 1068 } 1069 1070 static void 1071 bdev_io_exec_sequence_cb(void *ctx, int status) 1072 { 1073 struct spdk_bdev_io *bdev_io = ctx; 1074 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 1075 1076 TAILQ_REMOVE(&bdev_io->internal.ch->io_accel_exec, bdev_io, internal.link); 1077 bdev_io_decrement_outstanding(ch, ch->shared_resource); 1078 1079 if (spdk_unlikely(!TAILQ_EMPTY(&ch->shared_resource->nomem_io))) { 1080 bdev_ch_retry_io(ch); 1081 } 1082 1083 bdev_io->internal.data_transfer_cpl(bdev_io, status); 1084 } 1085 1086 static void 1087 bdev_io_exec_sequence(struct spdk_bdev_io *bdev_io, void (*cb_fn)(void *ctx, int status)) 1088 { 1089 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 1090 1091 assert(bdev_io_needs_sequence_exec(bdev_io->internal.desc, bdev_io)); 1092 assert(bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE || bdev_io->type == SPDK_BDEV_IO_TYPE_READ); 1093 1094 /* Since the operations are appended during submission, they're in the opposite order than 1095 * how we want to execute them for reads (i.e. we need to execute the most recently added 1096 * operation first), so reverse the sequence before executing it. 1097 */ 1098 if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ) { 1099 spdk_accel_sequence_reverse(bdev_io->internal.accel_sequence); 1100 } 1101 1102 TAILQ_INSERT_TAIL(&bdev_io->internal.ch->io_accel_exec, bdev_io, internal.link); 1103 bdev_io_increment_outstanding(ch, ch->shared_resource); 1104 bdev_io->internal.data_transfer_cpl = cb_fn; 1105 1106 spdk_accel_sequence_finish(bdev_io->internal.accel_sequence, 1107 bdev_io_exec_sequence_cb, bdev_io); 1108 } 1109 1110 static void 1111 bdev_io_get_buf_complete(struct spdk_bdev_io *bdev_io, bool status) 1112 { 1113 struct spdk_io_channel *ch = spdk_bdev_io_get_io_channel(bdev_io); 1114 void *buf; 1115 1116 if (spdk_unlikely(bdev_io->internal.get_aux_buf_cb != NULL)) { 1117 buf = bdev_io->internal.buf; 1118 bdev_io->internal.buf = NULL; 1119 bdev_io->internal.get_aux_buf_cb(ch, bdev_io, buf); 1120 bdev_io->internal.get_aux_buf_cb = NULL; 1121 } else { 1122 assert(bdev_io->internal.get_buf_cb != NULL); 1123 bdev_io->internal.get_buf_cb(ch, bdev_io, status); 1124 bdev_io->internal.get_buf_cb = NULL; 1125 } 1126 } 1127 1128 static void 1129 _bdev_io_pull_buffer_cpl(void *ctx, int rc) 1130 { 1131 struct spdk_bdev_io *bdev_io = ctx; 1132 1133 if (rc) { 1134 SPDK_ERRLOG("Set bounce buffer failed with rc %d\n", rc); 1135 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 1136 } 1137 bdev_io_get_buf_complete(bdev_io, !rc); 1138 } 1139 1140 static void 1141 bdev_io_pull_md_buf_done(void *ctx, int status) 1142 { 1143 struct spdk_bdev_io *bdev_io = ctx; 1144 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 1145 1146 TAILQ_REMOVE(&ch->io_memory_domain, bdev_io, internal.link); 1147 bdev_io_decrement_outstanding(ch, ch->shared_resource); 1148 1149 if (spdk_unlikely(!TAILQ_EMPTY(&ch->shared_resource->nomem_io))) { 1150 bdev_ch_retry_io(ch); 1151 } 1152 1153 assert(bdev_io->internal.data_transfer_cpl); 1154 bdev_io->internal.data_transfer_cpl(bdev_io, status); 1155 } 1156 1157 static void 1158 bdev_io_pull_md_buf(struct spdk_bdev_io *bdev_io) 1159 { 1160 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 1161 int rc = 0; 1162 1163 if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) { 1164 if (bdev_io_use_memory_domain(bdev_io)) { 1165 TAILQ_INSERT_TAIL(&ch->io_memory_domain, bdev_io, internal.link); 1166 bdev_io_increment_outstanding(ch, ch->shared_resource); 1167 rc = spdk_memory_domain_pull_data(bdev_io->internal.memory_domain, 1168 bdev_io->internal.memory_domain_ctx, 1169 &bdev_io->internal.orig_md_iov, 1, 1170 &bdev_io->internal.bounce_md_iov, 1, 1171 bdev_io_pull_md_buf_done, bdev_io); 1172 if (rc == 0) { 1173 /* Continue to submit IO in completion callback */ 1174 return; 1175 } 1176 bdev_io_decrement_outstanding(ch, ch->shared_resource); 1177 TAILQ_REMOVE(&ch->io_memory_domain, bdev_io, internal.link); 1178 if (rc != -ENOMEM) { 1179 SPDK_ERRLOG("Failed to pull data from memory domain %s, rc %d\n", 1180 spdk_memory_domain_get_dma_device_id( 1181 bdev_io->internal.memory_domain), rc); 1182 } 1183 } else { 1184 memcpy(bdev_io->internal.bounce_md_iov.iov_base, 1185 bdev_io->internal.orig_md_iov.iov_base, 1186 bdev_io->internal.orig_md_iov.iov_len); 1187 } 1188 } 1189 1190 if (spdk_unlikely(rc == -ENOMEM)) { 1191 bdev_queue_nomem_io_head(ch->shared_resource, bdev_io, BDEV_IO_RETRY_STATE_PULL_MD); 1192 } else { 1193 assert(bdev_io->internal.data_transfer_cpl); 1194 bdev_io->internal.data_transfer_cpl(bdev_io, rc); 1195 } 1196 } 1197 1198 static void 1199 _bdev_io_pull_bounce_md_buf(struct spdk_bdev_io *bdev_io, void *md_buf, size_t len) 1200 { 1201 /* save original md_buf */ 1202 bdev_io->internal.orig_md_iov.iov_base = bdev_io->u.bdev.md_buf; 1203 bdev_io->internal.orig_md_iov.iov_len = len; 1204 bdev_io->internal.bounce_md_iov.iov_base = md_buf; 1205 bdev_io->internal.bounce_md_iov.iov_len = len; 1206 /* set bounce md_buf */ 1207 bdev_io->u.bdev.md_buf = md_buf; 1208 1209 bdev_io_pull_md_buf(bdev_io); 1210 } 1211 1212 static void 1213 _bdev_io_set_md_buf(struct spdk_bdev_io *bdev_io) 1214 { 1215 struct spdk_bdev *bdev = bdev_io->bdev; 1216 uint64_t md_len; 1217 void *buf; 1218 1219 if (spdk_bdev_is_md_separate(bdev)) { 1220 assert(!bdev_io_use_accel_sequence(bdev_io)); 1221 1222 buf = (char *)bdev_io->u.bdev.iovs[0].iov_base + bdev_io->u.bdev.iovs[0].iov_len; 1223 md_len = bdev_io->u.bdev.num_blocks * bdev->md_len; 1224 1225 assert(((uintptr_t)buf & (spdk_bdev_get_buf_align(bdev) - 1)) == 0); 1226 1227 if (bdev_io->u.bdev.md_buf != NULL) { 1228 _bdev_io_pull_bounce_md_buf(bdev_io, buf, md_len); 1229 return; 1230 } else { 1231 spdk_bdev_io_set_md_buf(bdev_io, buf, md_len); 1232 } 1233 } 1234 1235 bdev_io_get_buf_complete(bdev_io, true); 1236 } 1237 1238 static inline void 1239 bdev_io_pull_data_done(struct spdk_bdev_io *bdev_io, int rc) 1240 { 1241 if (rc) { 1242 SPDK_ERRLOG("Failed to get data buffer\n"); 1243 assert(bdev_io->internal.data_transfer_cpl); 1244 bdev_io->internal.data_transfer_cpl(bdev_io, rc); 1245 return; 1246 } 1247 1248 _bdev_io_set_md_buf(bdev_io); 1249 } 1250 1251 static void 1252 bdev_io_pull_data_done_and_track(void *ctx, int status) 1253 { 1254 struct spdk_bdev_io *bdev_io = ctx; 1255 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 1256 1257 TAILQ_REMOVE(&ch->io_memory_domain, bdev_io, internal.link); 1258 bdev_io_decrement_outstanding(ch, ch->shared_resource); 1259 1260 if (spdk_unlikely(!TAILQ_EMPTY(&ch->shared_resource->nomem_io))) { 1261 bdev_ch_retry_io(ch); 1262 } 1263 1264 bdev_io_pull_data_done(bdev_io, status); 1265 } 1266 1267 static void 1268 bdev_io_pull_data(struct spdk_bdev_io *bdev_io) 1269 { 1270 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 1271 int rc = 0; 1272 1273 /* If we need to exec an accel sequence or the IO uses a memory domain buffer and has a 1274 * sequence, append a copy operation making accel change the src/dst buffers of the previous 1275 * operation */ 1276 if (bdev_io_needs_sequence_exec(bdev_io->internal.desc, bdev_io) || 1277 (bdev_io_use_accel_sequence(bdev_io) && bdev_io_use_memory_domain(bdev_io))) { 1278 if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) { 1279 rc = spdk_accel_append_copy(&bdev_io->internal.accel_sequence, ch->accel_channel, 1280 bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, 1281 NULL, NULL, 1282 bdev_io->internal.orig_iovs, 1283 bdev_io->internal.orig_iovcnt, 1284 bdev_io->internal.memory_domain, 1285 bdev_io->internal.memory_domain_ctx, 1286 NULL, NULL); 1287 } else { 1288 /* We need to reverse the src/dst for reads */ 1289 assert(bdev_io->type == SPDK_BDEV_IO_TYPE_READ); 1290 rc = spdk_accel_append_copy(&bdev_io->internal.accel_sequence, ch->accel_channel, 1291 bdev_io->internal.orig_iovs, 1292 bdev_io->internal.orig_iovcnt, 1293 bdev_io->internal.memory_domain, 1294 bdev_io->internal.memory_domain_ctx, 1295 bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, 1296 NULL, NULL, NULL, NULL); 1297 } 1298 1299 if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) { 1300 SPDK_ERRLOG("Failed to append copy to accel sequence: %p\n", 1301 bdev_io->internal.accel_sequence); 1302 } 1303 } else if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) { 1304 /* if this is write path, copy data from original buffer to bounce buffer */ 1305 if (bdev_io_use_memory_domain(bdev_io)) { 1306 TAILQ_INSERT_TAIL(&ch->io_memory_domain, bdev_io, internal.link); 1307 bdev_io_increment_outstanding(ch, ch->shared_resource); 1308 rc = spdk_memory_domain_pull_data(bdev_io->internal.memory_domain, 1309 bdev_io->internal.memory_domain_ctx, 1310 bdev_io->internal.orig_iovs, 1311 (uint32_t) bdev_io->internal.orig_iovcnt, 1312 bdev_io->u.bdev.iovs, 1, 1313 bdev_io_pull_data_done_and_track, 1314 bdev_io); 1315 if (rc == 0) { 1316 /* Continue to submit IO in completion callback */ 1317 return; 1318 } 1319 TAILQ_REMOVE(&ch->io_memory_domain, bdev_io, internal.link); 1320 bdev_io_decrement_outstanding(ch, ch->shared_resource); 1321 if (rc != -ENOMEM) { 1322 SPDK_ERRLOG("Failed to pull data from memory domain %s\n", 1323 spdk_memory_domain_get_dma_device_id( 1324 bdev_io->internal.memory_domain)); 1325 } 1326 } else { 1327 assert(bdev_io->u.bdev.iovcnt == 1); 1328 spdk_copy_iovs_to_buf(bdev_io->u.bdev.iovs[0].iov_base, 1329 bdev_io->u.bdev.iovs[0].iov_len, 1330 bdev_io->internal.orig_iovs, 1331 bdev_io->internal.orig_iovcnt); 1332 } 1333 } 1334 1335 if (spdk_unlikely(rc == -ENOMEM)) { 1336 bdev_queue_nomem_io_head(ch->shared_resource, bdev_io, BDEV_IO_RETRY_STATE_PULL); 1337 } else { 1338 bdev_io_pull_data_done(bdev_io, rc); 1339 } 1340 } 1341 1342 static void 1343 _bdev_io_pull_bounce_data_buf(struct spdk_bdev_io *bdev_io, void *buf, size_t len, 1344 bdev_copy_bounce_buffer_cpl cpl_cb) 1345 { 1346 struct spdk_bdev_shared_resource *shared_resource = bdev_io->internal.ch->shared_resource; 1347 1348 bdev_io->internal.data_transfer_cpl = cpl_cb; 1349 /* save original iovec */ 1350 bdev_io->internal.orig_iovs = bdev_io->u.bdev.iovs; 1351 bdev_io->internal.orig_iovcnt = bdev_io->u.bdev.iovcnt; 1352 /* set bounce iov */ 1353 bdev_io->u.bdev.iovs = &bdev_io->internal.bounce_iov; 1354 bdev_io->u.bdev.iovcnt = 1; 1355 /* set bounce buffer for this operation */ 1356 bdev_io->u.bdev.iovs[0].iov_base = buf; 1357 bdev_io->u.bdev.iovs[0].iov_len = len; 1358 1359 if (spdk_unlikely(!TAILQ_EMPTY(&shared_resource->nomem_io))) { 1360 bdev_queue_nomem_io_tail(shared_resource, bdev_io, BDEV_IO_RETRY_STATE_PULL); 1361 } else { 1362 bdev_io_pull_data(bdev_io); 1363 } 1364 } 1365 1366 static void 1367 _bdev_io_set_buf(struct spdk_bdev_io *bdev_io, void *buf, uint64_t len) 1368 { 1369 struct spdk_bdev *bdev = bdev_io->bdev; 1370 bool buf_allocated; 1371 uint64_t alignment; 1372 void *aligned_buf; 1373 1374 bdev_io->internal.buf = buf; 1375 1376 if (spdk_unlikely(bdev_io->internal.get_aux_buf_cb != NULL)) { 1377 bdev_io_get_buf_complete(bdev_io, true); 1378 return; 1379 } 1380 1381 alignment = spdk_bdev_get_buf_align(bdev); 1382 buf_allocated = _is_buf_allocated(bdev_io->u.bdev.iovs); 1383 aligned_buf = (void *)(((uintptr_t)buf + (alignment - 1)) & ~(alignment - 1)); 1384 1385 if (buf_allocated) { 1386 _bdev_io_pull_bounce_data_buf(bdev_io, aligned_buf, len, _bdev_io_pull_buffer_cpl); 1387 /* Continue in completion callback */ 1388 return; 1389 } else { 1390 spdk_bdev_io_set_buf(bdev_io, aligned_buf, len); 1391 } 1392 1393 _bdev_io_set_md_buf(bdev_io); 1394 } 1395 1396 static inline uint64_t 1397 bdev_io_get_max_buf_len(struct spdk_bdev_io *bdev_io, uint64_t len) 1398 { 1399 struct spdk_bdev *bdev = bdev_io->bdev; 1400 uint64_t md_len, alignment; 1401 1402 md_len = spdk_bdev_is_md_separate(bdev) ? bdev_io->u.bdev.num_blocks * bdev->md_len : 0; 1403 1404 /* 1 byte alignment needs 0 byte of extra space, 64 bytes alignment needs 63 bytes of extra space, etc. */ 1405 alignment = spdk_bdev_get_buf_align(bdev) - 1; 1406 1407 return len + alignment + md_len; 1408 } 1409 1410 static void 1411 _bdev_io_put_buf(struct spdk_bdev_io *bdev_io, void *buf, uint64_t buf_len) 1412 { 1413 struct spdk_bdev_mgmt_channel *ch; 1414 1415 ch = bdev_io->internal.ch->shared_resource->mgmt_ch; 1416 spdk_iobuf_put(&ch->iobuf, buf, bdev_io_get_max_buf_len(bdev_io, buf_len)); 1417 } 1418 1419 static void 1420 bdev_io_put_buf(struct spdk_bdev_io *bdev_io) 1421 { 1422 assert(bdev_io->internal.buf != NULL); 1423 _bdev_io_put_buf(bdev_io, bdev_io->internal.buf, bdev_io->internal.buf_len); 1424 bdev_io->internal.buf = NULL; 1425 } 1426 1427 void 1428 spdk_bdev_io_put_aux_buf(struct spdk_bdev_io *bdev_io, void *buf) 1429 { 1430 uint64_t len = bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen; 1431 1432 assert(buf != NULL); 1433 _bdev_io_put_buf(bdev_io, buf, len); 1434 } 1435 1436 static inline void 1437 bdev_submit_request(struct spdk_bdev *bdev, struct spdk_io_channel *ioch, 1438 struct spdk_bdev_io *bdev_io) 1439 { 1440 /* After a request is submitted to a bdev module, the ownership of an accel sequence 1441 * associated with that bdev_io is transferred to the bdev module. So, clear the internal 1442 * sequence pointer to make sure we won't touch it anymore. */ 1443 if ((bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE || 1444 bdev_io->type == SPDK_BDEV_IO_TYPE_READ) && bdev_io->u.bdev.accel_sequence != NULL) { 1445 assert(!bdev_io_needs_sequence_exec(bdev_io->internal.desc, bdev_io)); 1446 bdev_io->internal.accel_sequence = NULL; 1447 } 1448 1449 bdev->fn_table->submit_request(ioch, bdev_io); 1450 } 1451 1452 static inline void 1453 bdev_ch_resubmit_io(struct spdk_bdev_shared_resource *shared_resource, struct spdk_bdev_io *bdev_io) 1454 { 1455 struct spdk_bdev *bdev = bdev_io->bdev; 1456 1457 bdev_io_increment_outstanding(bdev_io->internal.ch, shared_resource); 1458 bdev_io->internal.error.nvme.cdw0 = 0; 1459 bdev_io->num_retries++; 1460 bdev_submit_request(bdev, spdk_bdev_io_get_io_channel(bdev_io), bdev_io); 1461 } 1462 1463 static void 1464 bdev_shared_ch_retry_io(struct spdk_bdev_shared_resource *shared_resource) 1465 { 1466 struct spdk_bdev_io *bdev_io; 1467 1468 if (shared_resource->io_outstanding > shared_resource->nomem_threshold) { 1469 /* 1470 * Allow some more I/O to complete before retrying the nomem_io queue. 1471 * Some drivers (such as nvme) cannot immediately take a new I/O in 1472 * the context of a completion, because the resources for the I/O are 1473 * not released until control returns to the bdev poller. Also, we 1474 * may require several small I/O to complete before a larger I/O 1475 * (that requires splitting) can be submitted. 1476 */ 1477 return; 1478 } 1479 1480 while (!TAILQ_EMPTY(&shared_resource->nomem_io)) { 1481 bdev_io = TAILQ_FIRST(&shared_resource->nomem_io); 1482 TAILQ_REMOVE(&shared_resource->nomem_io, bdev_io, internal.link); 1483 1484 switch (bdev_io->internal.retry_state) { 1485 case BDEV_IO_RETRY_STATE_SUBMIT: 1486 bdev_ch_resubmit_io(shared_resource, bdev_io); 1487 break; 1488 case BDEV_IO_RETRY_STATE_PULL: 1489 bdev_io_pull_data(bdev_io); 1490 break; 1491 case BDEV_IO_RETRY_STATE_PULL_MD: 1492 bdev_io_pull_md_buf(bdev_io); 1493 break; 1494 case BDEV_IO_RETRY_STATE_PUSH: 1495 bdev_io_push_bounce_data(bdev_io); 1496 break; 1497 case BDEV_IO_RETRY_STATE_PUSH_MD: 1498 bdev_io_push_bounce_md_buf(bdev_io); 1499 break; 1500 default: 1501 assert(0 && "invalid retry state"); 1502 break; 1503 } 1504 1505 if (bdev_io == TAILQ_FIRST(&shared_resource->nomem_io)) { 1506 /* This IO completed again with NOMEM status, so break the loop and 1507 * don't try anymore. Note that a bdev_io that fails with NOMEM 1508 * always gets requeued at the front of the list, to maintain 1509 * ordering. 1510 */ 1511 break; 1512 } 1513 } 1514 } 1515 1516 static void 1517 bdev_ch_retry_io(struct spdk_bdev_channel *bdev_ch) 1518 { 1519 bdev_shared_ch_retry_io(bdev_ch->shared_resource); 1520 } 1521 1522 static int 1523 bdev_no_mem_poller(void *ctx) 1524 { 1525 struct spdk_bdev_shared_resource *shared_resource = ctx; 1526 1527 spdk_poller_unregister(&shared_resource->nomem_poller); 1528 1529 if (!TAILQ_EMPTY(&shared_resource->nomem_io)) { 1530 bdev_shared_ch_retry_io(shared_resource); 1531 } 1532 /* the retry cb may re-register the poller so double check */ 1533 if (!TAILQ_EMPTY(&shared_resource->nomem_io) && 1534 shared_resource->io_outstanding == 0 && shared_resource->nomem_poller == NULL) { 1535 /* No IOs were submitted, try again */ 1536 shared_resource->nomem_poller = SPDK_POLLER_REGISTER(bdev_no_mem_poller, shared_resource, 1537 SPDK_BDEV_IO_POLL_INTERVAL_IN_MSEC * 10); 1538 } 1539 1540 return SPDK_POLLER_BUSY; 1541 } 1542 1543 static inline bool 1544 _bdev_io_handle_no_mem(struct spdk_bdev_io *bdev_io, enum bdev_io_retry_state state) 1545 { 1546 struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch; 1547 struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource; 1548 1549 if (spdk_unlikely(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_NOMEM)) { 1550 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_PENDING; 1551 bdev_queue_nomem_io_head(shared_resource, bdev_io, state); 1552 1553 if (shared_resource->io_outstanding == 0 && !shared_resource->nomem_poller) { 1554 /* Special case when we have nomem IOs and no outstanding IOs which completions 1555 * could trigger retry of queued IOs 1556 * Any IOs submitted may trigger retry of queued IOs. This poller handles a case when no 1557 * new IOs submitted, e.g. qd==1 */ 1558 shared_resource->nomem_poller = SPDK_POLLER_REGISTER(bdev_no_mem_poller, shared_resource, 1559 SPDK_BDEV_IO_POLL_INTERVAL_IN_MSEC * 10); 1560 } 1561 /* If bdev module completed an I/O that has an accel sequence with NOMEM status, the 1562 * ownership of that sequence is transferred back to the bdev layer, so we need to 1563 * restore internal.accel_sequence to make sure that the sequence is handled 1564 * correctly in case the I/O is later aborted. */ 1565 if ((bdev_io->type == SPDK_BDEV_IO_TYPE_READ || 1566 bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) && bdev_io->u.bdev.accel_sequence) { 1567 assert(bdev_io->internal.accel_sequence == NULL); 1568 bdev_io->internal.accel_sequence = bdev_io->u.bdev.accel_sequence; 1569 } 1570 1571 return true; 1572 } 1573 1574 if (spdk_unlikely(!TAILQ_EMPTY(&shared_resource->nomem_io))) { 1575 bdev_ch_retry_io(bdev_ch); 1576 } 1577 1578 return false; 1579 } 1580 1581 static void 1582 _bdev_io_complete_push_bounce_done(void *ctx, int rc) 1583 { 1584 struct spdk_bdev_io *bdev_io = ctx; 1585 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 1586 1587 if (rc) { 1588 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 1589 } 1590 /* We want to free the bounce buffer here since we know we're done with it (as opposed 1591 * to waiting for the conditional free of internal.buf in spdk_bdev_free_io()). 1592 */ 1593 bdev_io_put_buf(bdev_io); 1594 1595 if (spdk_unlikely(!TAILQ_EMPTY(&ch->shared_resource->nomem_io))) { 1596 bdev_ch_retry_io(ch); 1597 } 1598 1599 /* Continue with IO completion flow */ 1600 bdev_io_complete(bdev_io); 1601 } 1602 1603 static void 1604 bdev_io_push_bounce_md_buf_done(void *ctx, int rc) 1605 { 1606 struct spdk_bdev_io *bdev_io = ctx; 1607 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 1608 1609 TAILQ_REMOVE(&ch->io_memory_domain, bdev_io, internal.link); 1610 bdev_io_decrement_outstanding(ch, ch->shared_resource); 1611 1612 if (spdk_unlikely(!TAILQ_EMPTY(&ch->shared_resource->nomem_io))) { 1613 bdev_ch_retry_io(ch); 1614 } 1615 1616 bdev_io->internal.data_transfer_cpl(bdev_io, rc); 1617 } 1618 1619 static inline void 1620 bdev_io_push_bounce_md_buf(struct spdk_bdev_io *bdev_io) 1621 { 1622 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 1623 int rc = 0; 1624 1625 assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS); 1626 /* do the same for metadata buffer */ 1627 if (spdk_unlikely(bdev_io->internal.orig_md_iov.iov_base != NULL)) { 1628 assert(spdk_bdev_is_md_separate(bdev_io->bdev)); 1629 1630 if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ) { 1631 if (bdev_io_use_memory_domain(bdev_io)) { 1632 TAILQ_INSERT_TAIL(&ch->io_memory_domain, bdev_io, internal.link); 1633 bdev_io_increment_outstanding(ch, ch->shared_resource); 1634 /* If memory domain is used then we need to call async push function */ 1635 rc = spdk_memory_domain_push_data(bdev_io->internal.memory_domain, 1636 bdev_io->internal.memory_domain_ctx, 1637 &bdev_io->internal.orig_md_iov, 1638 (uint32_t)bdev_io->internal.orig_iovcnt, 1639 &bdev_io->internal.bounce_md_iov, 1, 1640 bdev_io_push_bounce_md_buf_done, 1641 bdev_io); 1642 if (rc == 0) { 1643 /* Continue IO completion in async callback */ 1644 return; 1645 } 1646 TAILQ_REMOVE(&ch->io_memory_domain, bdev_io, internal.link); 1647 bdev_io_decrement_outstanding(ch, ch->shared_resource); 1648 if (rc != -ENOMEM) { 1649 SPDK_ERRLOG("Failed to push md to memory domain %s\n", 1650 spdk_memory_domain_get_dma_device_id( 1651 bdev_io->internal.memory_domain)); 1652 } 1653 } else { 1654 memcpy(bdev_io->internal.orig_md_iov.iov_base, bdev_io->u.bdev.md_buf, 1655 bdev_io->internal.orig_md_iov.iov_len); 1656 } 1657 } 1658 } 1659 1660 if (spdk_unlikely(rc == -ENOMEM)) { 1661 bdev_queue_nomem_io_head(ch->shared_resource, bdev_io, BDEV_IO_RETRY_STATE_PUSH_MD); 1662 } else { 1663 assert(bdev_io->internal.data_transfer_cpl); 1664 bdev_io->internal.data_transfer_cpl(bdev_io, rc); 1665 } 1666 } 1667 1668 static inline void 1669 bdev_io_push_bounce_data_done(struct spdk_bdev_io *bdev_io, int rc) 1670 { 1671 assert(bdev_io->internal.data_transfer_cpl); 1672 if (rc) { 1673 bdev_io->internal.data_transfer_cpl(bdev_io, rc); 1674 return; 1675 } 1676 1677 /* set original buffer for this io */ 1678 bdev_io->u.bdev.iovcnt = bdev_io->internal.orig_iovcnt; 1679 bdev_io->u.bdev.iovs = bdev_io->internal.orig_iovs; 1680 /* disable bouncing buffer for this io */ 1681 bdev_io->internal.orig_iovcnt = 0; 1682 bdev_io->internal.orig_iovs = NULL; 1683 1684 bdev_io_push_bounce_md_buf(bdev_io); 1685 } 1686 1687 static void 1688 bdev_io_push_bounce_data_done_and_track(void *ctx, int status) 1689 { 1690 struct spdk_bdev_io *bdev_io = ctx; 1691 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 1692 1693 TAILQ_REMOVE(&ch->io_memory_domain, bdev_io, internal.link); 1694 bdev_io_decrement_outstanding(ch, ch->shared_resource); 1695 1696 if (spdk_unlikely(!TAILQ_EMPTY(&ch->shared_resource->nomem_io))) { 1697 bdev_ch_retry_io(ch); 1698 } 1699 1700 bdev_io_push_bounce_data_done(bdev_io, status); 1701 } 1702 1703 static inline void 1704 bdev_io_push_bounce_data(struct spdk_bdev_io *bdev_io) 1705 { 1706 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 1707 int rc = 0; 1708 1709 assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS); 1710 assert(!bdev_io_use_accel_sequence(bdev_io)); 1711 1712 /* if this is read path, copy data from bounce buffer to original buffer */ 1713 if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ) { 1714 if (bdev_io_use_memory_domain(bdev_io)) { 1715 TAILQ_INSERT_TAIL(&ch->io_memory_domain, bdev_io, internal.link); 1716 bdev_io_increment_outstanding(ch, ch->shared_resource); 1717 /* If memory domain is used then we need to call async push function */ 1718 rc = spdk_memory_domain_push_data(bdev_io->internal.memory_domain, 1719 bdev_io->internal.memory_domain_ctx, 1720 bdev_io->internal.orig_iovs, 1721 (uint32_t)bdev_io->internal.orig_iovcnt, 1722 &bdev_io->internal.bounce_iov, 1, 1723 bdev_io_push_bounce_data_done_and_track, 1724 bdev_io); 1725 if (rc == 0) { 1726 /* Continue IO completion in async callback */ 1727 return; 1728 } 1729 1730 TAILQ_REMOVE(&ch->io_memory_domain, bdev_io, internal.link); 1731 bdev_io_decrement_outstanding(ch, ch->shared_resource); 1732 if (rc != -ENOMEM) { 1733 SPDK_ERRLOG("Failed to push data to memory domain %s\n", 1734 spdk_memory_domain_get_dma_device_id( 1735 bdev_io->internal.memory_domain)); 1736 } 1737 } else { 1738 spdk_copy_buf_to_iovs(bdev_io->internal.orig_iovs, 1739 bdev_io->internal.orig_iovcnt, 1740 bdev_io->internal.bounce_iov.iov_base, 1741 bdev_io->internal.bounce_iov.iov_len); 1742 } 1743 } 1744 1745 if (spdk_unlikely(rc == -ENOMEM)) { 1746 bdev_queue_nomem_io_head(ch->shared_resource, bdev_io, BDEV_IO_RETRY_STATE_PUSH); 1747 } else { 1748 bdev_io_push_bounce_data_done(bdev_io, rc); 1749 } 1750 } 1751 1752 static inline void 1753 _bdev_io_push_bounce_data_buffer(struct spdk_bdev_io *bdev_io, bdev_copy_bounce_buffer_cpl cpl_cb) 1754 { 1755 bdev_io->internal.data_transfer_cpl = cpl_cb; 1756 bdev_io_push_bounce_data(bdev_io); 1757 } 1758 1759 static void 1760 bdev_io_get_iobuf_cb(struct spdk_iobuf_entry *iobuf, void *buf) 1761 { 1762 struct spdk_bdev_io *bdev_io; 1763 1764 bdev_io = SPDK_CONTAINEROF(iobuf, struct spdk_bdev_io, internal.iobuf); 1765 _bdev_io_set_buf(bdev_io, buf, bdev_io->internal.buf_len); 1766 } 1767 1768 static void 1769 bdev_io_get_buf(struct spdk_bdev_io *bdev_io, uint64_t len) 1770 { 1771 struct spdk_bdev_mgmt_channel *mgmt_ch; 1772 uint64_t max_len; 1773 void *buf; 1774 1775 assert(spdk_bdev_io_get_thread(bdev_io) == spdk_get_thread()); 1776 mgmt_ch = bdev_io->internal.ch->shared_resource->mgmt_ch; 1777 max_len = bdev_io_get_max_buf_len(bdev_io, len); 1778 1779 if (spdk_unlikely(max_len > mgmt_ch->iobuf.large.bufsize)) { 1780 SPDK_ERRLOG("Length %" PRIu64 " is larger than allowed\n", max_len); 1781 bdev_io_get_buf_complete(bdev_io, false); 1782 return; 1783 } 1784 1785 bdev_io->internal.buf_len = len; 1786 buf = spdk_iobuf_get(&mgmt_ch->iobuf, max_len, &bdev_io->internal.iobuf, 1787 bdev_io_get_iobuf_cb); 1788 if (buf != NULL) { 1789 _bdev_io_set_buf(bdev_io, buf, len); 1790 } 1791 } 1792 1793 void 1794 spdk_bdev_io_get_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_buf_cb cb, uint64_t len) 1795 { 1796 struct spdk_bdev *bdev = bdev_io->bdev; 1797 uint64_t alignment; 1798 1799 assert(cb != NULL); 1800 bdev_io->internal.get_buf_cb = cb; 1801 1802 alignment = spdk_bdev_get_buf_align(bdev); 1803 1804 if (_is_buf_allocated(bdev_io->u.bdev.iovs) && 1805 _are_iovs_aligned(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, alignment)) { 1806 /* Buffer already present and aligned */ 1807 cb(spdk_bdev_io_get_io_channel(bdev_io), bdev_io, true); 1808 return; 1809 } 1810 1811 bdev_io_get_buf(bdev_io, len); 1812 } 1813 1814 static void 1815 _bdev_memory_domain_get_io_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io, 1816 bool success) 1817 { 1818 if (!success) { 1819 SPDK_ERRLOG("Failed to get data buffer, completing IO\n"); 1820 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 1821 bdev_io_complete_unsubmitted(bdev_io); 1822 return; 1823 } 1824 1825 if (bdev_io_needs_sequence_exec(bdev_io->internal.desc, bdev_io)) { 1826 if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) { 1827 bdev_io_exec_sequence(bdev_io, bdev_io_submit_sequence_cb); 1828 return; 1829 } 1830 /* For reads we'll execute the sequence after the data is read, so, for now, only 1831 * clear out accel_sequence pointer and submit the IO */ 1832 assert(bdev_io->type == SPDK_BDEV_IO_TYPE_READ); 1833 bdev_io->u.bdev.accel_sequence = NULL; 1834 } 1835 1836 bdev_io_submit(bdev_io); 1837 } 1838 1839 static void 1840 _bdev_memory_domain_io_get_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_buf_cb cb, 1841 uint64_t len) 1842 { 1843 assert(cb != NULL); 1844 bdev_io->internal.get_buf_cb = cb; 1845 1846 bdev_io_get_buf(bdev_io, len); 1847 } 1848 1849 void 1850 spdk_bdev_io_get_aux_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_aux_buf_cb cb) 1851 { 1852 uint64_t len = bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen; 1853 1854 assert(cb != NULL); 1855 assert(bdev_io->internal.get_aux_buf_cb == NULL); 1856 bdev_io->internal.get_aux_buf_cb = cb; 1857 bdev_io_get_buf(bdev_io, len); 1858 } 1859 1860 static int 1861 bdev_module_get_max_ctx_size(void) 1862 { 1863 struct spdk_bdev_module *bdev_module; 1864 int max_bdev_module_size = 0; 1865 1866 TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, internal.tailq) { 1867 if (bdev_module->get_ctx_size && bdev_module->get_ctx_size() > max_bdev_module_size) { 1868 max_bdev_module_size = bdev_module->get_ctx_size(); 1869 } 1870 } 1871 1872 return max_bdev_module_size; 1873 } 1874 1875 static void 1876 bdev_enable_histogram_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w) 1877 { 1878 if (!bdev->internal.histogram_enabled) { 1879 return; 1880 } 1881 1882 spdk_json_write_object_begin(w); 1883 spdk_json_write_named_string(w, "method", "bdev_enable_histogram"); 1884 1885 spdk_json_write_named_object_begin(w, "params"); 1886 spdk_json_write_named_string(w, "name", bdev->name); 1887 1888 spdk_json_write_named_bool(w, "enable", bdev->internal.histogram_enabled); 1889 spdk_json_write_object_end(w); 1890 1891 spdk_json_write_object_end(w); 1892 } 1893 1894 static void 1895 bdev_qos_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w) 1896 { 1897 int i; 1898 struct spdk_bdev_qos *qos = bdev->internal.qos; 1899 uint64_t limits[SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES]; 1900 1901 if (!qos) { 1902 return; 1903 } 1904 1905 spdk_bdev_get_qos_rate_limits(bdev, limits); 1906 1907 spdk_json_write_object_begin(w); 1908 spdk_json_write_named_string(w, "method", "bdev_set_qos_limit"); 1909 1910 spdk_json_write_named_object_begin(w, "params"); 1911 spdk_json_write_named_string(w, "name", bdev->name); 1912 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 1913 if (limits[i] > 0) { 1914 spdk_json_write_named_uint64(w, qos_rpc_type[i], limits[i]); 1915 } 1916 } 1917 spdk_json_write_object_end(w); 1918 1919 spdk_json_write_object_end(w); 1920 } 1921 1922 void 1923 spdk_bdev_subsystem_config_json(struct spdk_json_write_ctx *w) 1924 { 1925 struct spdk_bdev_module *bdev_module; 1926 struct spdk_bdev *bdev; 1927 1928 assert(w != NULL); 1929 1930 spdk_json_write_array_begin(w); 1931 1932 spdk_json_write_object_begin(w); 1933 spdk_json_write_named_string(w, "method", "bdev_set_options"); 1934 spdk_json_write_named_object_begin(w, "params"); 1935 spdk_json_write_named_uint32(w, "bdev_io_pool_size", g_bdev_opts.bdev_io_pool_size); 1936 spdk_json_write_named_uint32(w, "bdev_io_cache_size", g_bdev_opts.bdev_io_cache_size); 1937 spdk_json_write_named_bool(w, "bdev_auto_examine", g_bdev_opts.bdev_auto_examine); 1938 spdk_json_write_named_uint32(w, "iobuf_small_cache_size", g_bdev_opts.iobuf_small_cache_size); 1939 spdk_json_write_named_uint32(w, "iobuf_large_cache_size", g_bdev_opts.iobuf_large_cache_size); 1940 spdk_json_write_object_end(w); 1941 spdk_json_write_object_end(w); 1942 1943 bdev_examine_allowlist_config_json(w); 1944 1945 TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, internal.tailq) { 1946 if (bdev_module->config_json) { 1947 bdev_module->config_json(w); 1948 } 1949 } 1950 1951 spdk_spin_lock(&g_bdev_mgr.spinlock); 1952 1953 TAILQ_FOREACH(bdev, &g_bdev_mgr.bdevs, internal.link) { 1954 if (bdev->fn_table->write_config_json) { 1955 bdev->fn_table->write_config_json(bdev, w); 1956 } 1957 1958 bdev_qos_config_json(bdev, w); 1959 bdev_enable_histogram_config_json(bdev, w); 1960 } 1961 1962 spdk_spin_unlock(&g_bdev_mgr.spinlock); 1963 1964 /* This has to be last RPC in array to make sure all bdevs finished examine */ 1965 spdk_json_write_object_begin(w); 1966 spdk_json_write_named_string(w, "method", "bdev_wait_for_examine"); 1967 spdk_json_write_object_end(w); 1968 1969 spdk_json_write_array_end(w); 1970 } 1971 1972 static void 1973 bdev_mgmt_channel_destroy(void *io_device, void *ctx_buf) 1974 { 1975 struct spdk_bdev_mgmt_channel *ch = ctx_buf; 1976 struct spdk_bdev_io *bdev_io; 1977 1978 spdk_iobuf_channel_fini(&ch->iobuf); 1979 1980 while (!STAILQ_EMPTY(&ch->per_thread_cache)) { 1981 bdev_io = STAILQ_FIRST(&ch->per_thread_cache); 1982 STAILQ_REMOVE_HEAD(&ch->per_thread_cache, internal.buf_link); 1983 ch->per_thread_cache_count--; 1984 spdk_mempool_put(g_bdev_mgr.bdev_io_pool, (void *)bdev_io); 1985 } 1986 1987 assert(ch->per_thread_cache_count == 0); 1988 } 1989 1990 static int 1991 bdev_mgmt_channel_create(void *io_device, void *ctx_buf) 1992 { 1993 struct spdk_bdev_mgmt_channel *ch = ctx_buf; 1994 struct spdk_bdev_io *bdev_io; 1995 uint32_t i; 1996 int rc; 1997 1998 rc = spdk_iobuf_channel_init(&ch->iobuf, "bdev", 1999 g_bdev_opts.iobuf_small_cache_size, 2000 g_bdev_opts.iobuf_large_cache_size); 2001 if (rc != 0) { 2002 SPDK_ERRLOG("Failed to create iobuf channel: %s\n", spdk_strerror(-rc)); 2003 return -1; 2004 } 2005 2006 STAILQ_INIT(&ch->per_thread_cache); 2007 ch->bdev_io_cache_size = g_bdev_opts.bdev_io_cache_size; 2008 2009 /* Pre-populate bdev_io cache to ensure this thread cannot be starved. */ 2010 ch->per_thread_cache_count = 0; 2011 for (i = 0; i < ch->bdev_io_cache_size; i++) { 2012 bdev_io = spdk_mempool_get(g_bdev_mgr.bdev_io_pool); 2013 if (bdev_io == NULL) { 2014 SPDK_ERRLOG("You need to increase bdev_io_pool_size using bdev_set_options RPC.\n"); 2015 assert(false); 2016 bdev_mgmt_channel_destroy(io_device, ctx_buf); 2017 return -1; 2018 } 2019 ch->per_thread_cache_count++; 2020 STAILQ_INSERT_HEAD(&ch->per_thread_cache, bdev_io, internal.buf_link); 2021 } 2022 2023 TAILQ_INIT(&ch->shared_resources); 2024 TAILQ_INIT(&ch->io_wait_queue); 2025 2026 return 0; 2027 } 2028 2029 static void 2030 bdev_init_complete(int rc) 2031 { 2032 spdk_bdev_init_cb cb_fn = g_init_cb_fn; 2033 void *cb_arg = g_init_cb_arg; 2034 struct spdk_bdev_module *m; 2035 2036 g_bdev_mgr.init_complete = true; 2037 g_init_cb_fn = NULL; 2038 g_init_cb_arg = NULL; 2039 2040 /* 2041 * For modules that need to know when subsystem init is complete, 2042 * inform them now. 2043 */ 2044 if (rc == 0) { 2045 TAILQ_FOREACH(m, &g_bdev_mgr.bdev_modules, internal.tailq) { 2046 if (m->init_complete) { 2047 m->init_complete(); 2048 } 2049 } 2050 } 2051 2052 cb_fn(cb_arg, rc); 2053 } 2054 2055 static bool 2056 bdev_module_all_actions_completed(void) 2057 { 2058 struct spdk_bdev_module *m; 2059 2060 TAILQ_FOREACH(m, &g_bdev_mgr.bdev_modules, internal.tailq) { 2061 if (m->internal.action_in_progress > 0) { 2062 return false; 2063 } 2064 } 2065 return true; 2066 } 2067 2068 static void 2069 bdev_module_action_complete(void) 2070 { 2071 /* 2072 * Don't finish bdev subsystem initialization if 2073 * module pre-initialization is still in progress, or 2074 * the subsystem been already initialized. 2075 */ 2076 if (!g_bdev_mgr.module_init_complete || g_bdev_mgr.init_complete) { 2077 return; 2078 } 2079 2080 /* 2081 * Check all bdev modules for inits/examinations in progress. If any 2082 * exist, return immediately since we cannot finish bdev subsystem 2083 * initialization until all are completed. 2084 */ 2085 if (!bdev_module_all_actions_completed()) { 2086 return; 2087 } 2088 2089 /* 2090 * Modules already finished initialization - now that all 2091 * the bdev modules have finished their asynchronous I/O 2092 * processing, the entire bdev layer can be marked as complete. 2093 */ 2094 bdev_init_complete(0); 2095 } 2096 2097 static void 2098 bdev_module_action_done(struct spdk_bdev_module *module) 2099 { 2100 spdk_spin_lock(&module->internal.spinlock); 2101 assert(module->internal.action_in_progress > 0); 2102 module->internal.action_in_progress--; 2103 spdk_spin_unlock(&module->internal.spinlock); 2104 bdev_module_action_complete(); 2105 } 2106 2107 void 2108 spdk_bdev_module_init_done(struct spdk_bdev_module *module) 2109 { 2110 assert(module->async_init); 2111 bdev_module_action_done(module); 2112 } 2113 2114 void 2115 spdk_bdev_module_examine_done(struct spdk_bdev_module *module) 2116 { 2117 bdev_module_action_done(module); 2118 } 2119 2120 /** The last initialized bdev module */ 2121 static struct spdk_bdev_module *g_resume_bdev_module = NULL; 2122 2123 static void 2124 bdev_init_failed(void *cb_arg) 2125 { 2126 struct spdk_bdev_module *module = cb_arg; 2127 2128 spdk_spin_lock(&module->internal.spinlock); 2129 assert(module->internal.action_in_progress > 0); 2130 module->internal.action_in_progress--; 2131 spdk_spin_unlock(&module->internal.spinlock); 2132 bdev_init_complete(-1); 2133 } 2134 2135 static int 2136 bdev_modules_init(void) 2137 { 2138 struct spdk_bdev_module *module; 2139 int rc = 0; 2140 2141 TAILQ_FOREACH(module, &g_bdev_mgr.bdev_modules, internal.tailq) { 2142 g_resume_bdev_module = module; 2143 if (module->async_init) { 2144 spdk_spin_lock(&module->internal.spinlock); 2145 module->internal.action_in_progress = 1; 2146 spdk_spin_unlock(&module->internal.spinlock); 2147 } 2148 rc = module->module_init(); 2149 if (rc != 0) { 2150 /* Bump action_in_progress to prevent other modules from completion of modules_init 2151 * Send message to defer application shutdown until resources are cleaned up */ 2152 spdk_spin_lock(&module->internal.spinlock); 2153 module->internal.action_in_progress = 1; 2154 spdk_spin_unlock(&module->internal.spinlock); 2155 spdk_thread_send_msg(spdk_get_thread(), bdev_init_failed, module); 2156 return rc; 2157 } 2158 } 2159 2160 g_resume_bdev_module = NULL; 2161 return 0; 2162 } 2163 2164 void 2165 spdk_bdev_initialize(spdk_bdev_init_cb cb_fn, void *cb_arg) 2166 { 2167 int rc = 0; 2168 char mempool_name[32]; 2169 2170 assert(cb_fn != NULL); 2171 2172 g_init_cb_fn = cb_fn; 2173 g_init_cb_arg = cb_arg; 2174 2175 spdk_notify_type_register("bdev_register"); 2176 spdk_notify_type_register("bdev_unregister"); 2177 2178 snprintf(mempool_name, sizeof(mempool_name), "bdev_io_%d", getpid()); 2179 2180 rc = spdk_iobuf_register_module("bdev"); 2181 if (rc != 0) { 2182 SPDK_ERRLOG("could not register bdev iobuf module: %s\n", spdk_strerror(-rc)); 2183 bdev_init_complete(-1); 2184 return; 2185 } 2186 2187 g_bdev_mgr.bdev_io_pool = spdk_mempool_create(mempool_name, 2188 g_bdev_opts.bdev_io_pool_size, 2189 sizeof(struct spdk_bdev_io) + 2190 bdev_module_get_max_ctx_size(), 2191 0, 2192 SPDK_ENV_SOCKET_ID_ANY); 2193 2194 if (g_bdev_mgr.bdev_io_pool == NULL) { 2195 SPDK_ERRLOG("could not allocate spdk_bdev_io pool\n"); 2196 bdev_init_complete(-1); 2197 return; 2198 } 2199 2200 g_bdev_mgr.zero_buffer = spdk_zmalloc(ZERO_BUFFER_SIZE, ZERO_BUFFER_SIZE, 2201 NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 2202 if (!g_bdev_mgr.zero_buffer) { 2203 SPDK_ERRLOG("create bdev zero buffer failed\n"); 2204 bdev_init_complete(-1); 2205 return; 2206 } 2207 2208 #ifdef SPDK_CONFIG_VTUNE 2209 g_bdev_mgr.domain = __itt_domain_create("spdk_bdev"); 2210 #endif 2211 2212 spdk_io_device_register(&g_bdev_mgr, bdev_mgmt_channel_create, 2213 bdev_mgmt_channel_destroy, 2214 sizeof(struct spdk_bdev_mgmt_channel), 2215 "bdev_mgr"); 2216 2217 rc = bdev_modules_init(); 2218 g_bdev_mgr.module_init_complete = true; 2219 if (rc != 0) { 2220 SPDK_ERRLOG("bdev modules init failed\n"); 2221 return; 2222 } 2223 2224 bdev_module_action_complete(); 2225 } 2226 2227 static void 2228 bdev_mgr_unregister_cb(void *io_device) 2229 { 2230 spdk_bdev_fini_cb cb_fn = g_fini_cb_fn; 2231 2232 if (g_bdev_mgr.bdev_io_pool) { 2233 if (spdk_mempool_count(g_bdev_mgr.bdev_io_pool) != g_bdev_opts.bdev_io_pool_size) { 2234 SPDK_ERRLOG("bdev IO pool count is %zu but should be %u\n", 2235 spdk_mempool_count(g_bdev_mgr.bdev_io_pool), 2236 g_bdev_opts.bdev_io_pool_size); 2237 } 2238 2239 spdk_mempool_free(g_bdev_mgr.bdev_io_pool); 2240 } 2241 2242 spdk_free(g_bdev_mgr.zero_buffer); 2243 2244 bdev_examine_allowlist_free(); 2245 2246 cb_fn(g_fini_cb_arg); 2247 g_fini_cb_fn = NULL; 2248 g_fini_cb_arg = NULL; 2249 g_bdev_mgr.init_complete = false; 2250 g_bdev_mgr.module_init_complete = false; 2251 } 2252 2253 static void 2254 bdev_module_fini_iter(void *arg) 2255 { 2256 struct spdk_bdev_module *bdev_module; 2257 2258 /* FIXME: Handling initialization failures is broken now, 2259 * so we won't even try cleaning up after successfully 2260 * initialized modules. if module_init_complete is false, 2261 * just call spdk_bdev_mgr_unregister_cb 2262 */ 2263 if (!g_bdev_mgr.module_init_complete) { 2264 bdev_mgr_unregister_cb(NULL); 2265 return; 2266 } 2267 2268 /* Start iterating from the last touched module */ 2269 if (!g_resume_bdev_module) { 2270 bdev_module = TAILQ_LAST(&g_bdev_mgr.bdev_modules, bdev_module_list); 2271 } else { 2272 bdev_module = TAILQ_PREV(g_resume_bdev_module, bdev_module_list, 2273 internal.tailq); 2274 } 2275 2276 while (bdev_module) { 2277 if (bdev_module->async_fini) { 2278 /* Save our place so we can resume later. We must 2279 * save the variable here, before calling module_fini() 2280 * below, because in some cases the module may immediately 2281 * call spdk_bdev_module_fini_done() and re-enter 2282 * this function to continue iterating. */ 2283 g_resume_bdev_module = bdev_module; 2284 } 2285 2286 if (bdev_module->module_fini) { 2287 bdev_module->module_fini(); 2288 } 2289 2290 if (bdev_module->async_fini) { 2291 return; 2292 } 2293 2294 bdev_module = TAILQ_PREV(bdev_module, bdev_module_list, 2295 internal.tailq); 2296 } 2297 2298 g_resume_bdev_module = NULL; 2299 spdk_io_device_unregister(&g_bdev_mgr, bdev_mgr_unregister_cb); 2300 } 2301 2302 void 2303 spdk_bdev_module_fini_done(void) 2304 { 2305 if (spdk_get_thread() != g_fini_thread) { 2306 spdk_thread_send_msg(g_fini_thread, bdev_module_fini_iter, NULL); 2307 } else { 2308 bdev_module_fini_iter(NULL); 2309 } 2310 } 2311 2312 static void 2313 bdev_finish_unregister_bdevs_iter(void *cb_arg, int bdeverrno) 2314 { 2315 struct spdk_bdev *bdev = cb_arg; 2316 2317 if (bdeverrno && bdev) { 2318 SPDK_WARNLOG("Unable to unregister bdev '%s' during spdk_bdev_finish()\n", 2319 bdev->name); 2320 2321 /* 2322 * Since the call to spdk_bdev_unregister() failed, we have no way to free this 2323 * bdev; try to continue by manually removing this bdev from the list and continue 2324 * with the next bdev in the list. 2325 */ 2326 TAILQ_REMOVE(&g_bdev_mgr.bdevs, bdev, internal.link); 2327 } 2328 2329 if (TAILQ_EMPTY(&g_bdev_mgr.bdevs)) { 2330 SPDK_DEBUGLOG(bdev, "Done unregistering bdevs\n"); 2331 /* 2332 * Bdev module finish need to be deferred as we might be in the middle of some context 2333 * (like bdev part free) that will use this bdev (or private bdev driver ctx data) 2334 * after returning. 2335 */ 2336 spdk_thread_send_msg(spdk_get_thread(), bdev_module_fini_iter, NULL); 2337 return; 2338 } 2339 2340 /* 2341 * Unregister last unclaimed bdev in the list, to ensure that bdev subsystem 2342 * shutdown proceeds top-down. The goal is to give virtual bdevs an opportunity 2343 * to detect clean shutdown as opposed to run-time hot removal of the underlying 2344 * base bdevs. 2345 * 2346 * Also, walk the list in the reverse order. 2347 */ 2348 for (bdev = TAILQ_LAST(&g_bdev_mgr.bdevs, spdk_bdev_list); 2349 bdev; bdev = TAILQ_PREV(bdev, spdk_bdev_list, internal.link)) { 2350 spdk_spin_lock(&bdev->internal.spinlock); 2351 if (bdev->internal.claim_type != SPDK_BDEV_CLAIM_NONE) { 2352 LOG_ALREADY_CLAIMED_DEBUG("claimed, skipping", bdev); 2353 spdk_spin_unlock(&bdev->internal.spinlock); 2354 continue; 2355 } 2356 spdk_spin_unlock(&bdev->internal.spinlock); 2357 2358 SPDK_DEBUGLOG(bdev, "Unregistering bdev '%s'\n", bdev->name); 2359 spdk_bdev_unregister(bdev, bdev_finish_unregister_bdevs_iter, bdev); 2360 return; 2361 } 2362 2363 /* 2364 * If any bdev fails to unclaim underlying bdev properly, we may face the 2365 * case of bdev list consisting of claimed bdevs only (if claims are managed 2366 * correctly, this would mean there's a loop in the claims graph which is 2367 * clearly impossible). Warn and unregister last bdev on the list then. 2368 */ 2369 for (bdev = TAILQ_LAST(&g_bdev_mgr.bdevs, spdk_bdev_list); 2370 bdev; bdev = TAILQ_PREV(bdev, spdk_bdev_list, internal.link)) { 2371 SPDK_WARNLOG("Unregistering claimed bdev '%s'!\n", bdev->name); 2372 spdk_bdev_unregister(bdev, bdev_finish_unregister_bdevs_iter, bdev); 2373 return; 2374 } 2375 } 2376 2377 static void 2378 bdev_module_fini_start_iter(void *arg) 2379 { 2380 struct spdk_bdev_module *bdev_module; 2381 2382 if (!g_resume_bdev_module) { 2383 bdev_module = TAILQ_LAST(&g_bdev_mgr.bdev_modules, bdev_module_list); 2384 } else { 2385 bdev_module = TAILQ_PREV(g_resume_bdev_module, bdev_module_list, internal.tailq); 2386 } 2387 2388 while (bdev_module) { 2389 if (bdev_module->async_fini_start) { 2390 /* Save our place so we can resume later. We must 2391 * save the variable here, before calling fini_start() 2392 * below, because in some cases the module may immediately 2393 * call spdk_bdev_module_fini_start_done() and re-enter 2394 * this function to continue iterating. */ 2395 g_resume_bdev_module = bdev_module; 2396 } 2397 2398 if (bdev_module->fini_start) { 2399 bdev_module->fini_start(); 2400 } 2401 2402 if (bdev_module->async_fini_start) { 2403 return; 2404 } 2405 2406 bdev_module = TAILQ_PREV(bdev_module, bdev_module_list, internal.tailq); 2407 } 2408 2409 g_resume_bdev_module = NULL; 2410 2411 bdev_finish_unregister_bdevs_iter(NULL, 0); 2412 } 2413 2414 void 2415 spdk_bdev_module_fini_start_done(void) 2416 { 2417 if (spdk_get_thread() != g_fini_thread) { 2418 spdk_thread_send_msg(g_fini_thread, bdev_module_fini_start_iter, NULL); 2419 } else { 2420 bdev_module_fini_start_iter(NULL); 2421 } 2422 } 2423 2424 static void 2425 bdev_finish_wait_for_examine_done(void *cb_arg) 2426 { 2427 bdev_module_fini_start_iter(NULL); 2428 } 2429 2430 static void bdev_open_async_fini(void); 2431 2432 void 2433 spdk_bdev_finish(spdk_bdev_fini_cb cb_fn, void *cb_arg) 2434 { 2435 int rc; 2436 2437 assert(cb_fn != NULL); 2438 2439 g_fini_thread = spdk_get_thread(); 2440 2441 g_fini_cb_fn = cb_fn; 2442 g_fini_cb_arg = cb_arg; 2443 2444 bdev_open_async_fini(); 2445 2446 rc = spdk_bdev_wait_for_examine(bdev_finish_wait_for_examine_done, NULL); 2447 if (rc != 0) { 2448 SPDK_ERRLOG("wait_for_examine failed: %s\n", spdk_strerror(-rc)); 2449 bdev_finish_wait_for_examine_done(NULL); 2450 } 2451 } 2452 2453 struct spdk_bdev_io * 2454 bdev_channel_get_io(struct spdk_bdev_channel *channel) 2455 { 2456 struct spdk_bdev_mgmt_channel *ch = channel->shared_resource->mgmt_ch; 2457 struct spdk_bdev_io *bdev_io; 2458 2459 if (ch->per_thread_cache_count > 0) { 2460 bdev_io = STAILQ_FIRST(&ch->per_thread_cache); 2461 STAILQ_REMOVE_HEAD(&ch->per_thread_cache, internal.buf_link); 2462 ch->per_thread_cache_count--; 2463 } else if (spdk_unlikely(!TAILQ_EMPTY(&ch->io_wait_queue))) { 2464 /* 2465 * Don't try to look for bdev_ios in the global pool if there are 2466 * waiters on bdev_ios - we don't want this caller to jump the line. 2467 */ 2468 bdev_io = NULL; 2469 } else { 2470 bdev_io = spdk_mempool_get(g_bdev_mgr.bdev_io_pool); 2471 } 2472 2473 return bdev_io; 2474 } 2475 2476 void 2477 spdk_bdev_free_io(struct spdk_bdev_io *bdev_io) 2478 { 2479 struct spdk_bdev_mgmt_channel *ch; 2480 2481 assert(bdev_io != NULL); 2482 assert(bdev_io->internal.status != SPDK_BDEV_IO_STATUS_PENDING); 2483 2484 ch = bdev_io->internal.ch->shared_resource->mgmt_ch; 2485 2486 if (bdev_io->internal.buf != NULL) { 2487 bdev_io_put_buf(bdev_io); 2488 } 2489 2490 if (ch->per_thread_cache_count < ch->bdev_io_cache_size) { 2491 ch->per_thread_cache_count++; 2492 STAILQ_INSERT_HEAD(&ch->per_thread_cache, bdev_io, internal.buf_link); 2493 while (ch->per_thread_cache_count > 0 && !TAILQ_EMPTY(&ch->io_wait_queue)) { 2494 struct spdk_bdev_io_wait_entry *entry; 2495 2496 entry = TAILQ_FIRST(&ch->io_wait_queue); 2497 TAILQ_REMOVE(&ch->io_wait_queue, entry, link); 2498 entry->cb_fn(entry->cb_arg); 2499 } 2500 } else { 2501 /* We should never have a full cache with entries on the io wait queue. */ 2502 assert(TAILQ_EMPTY(&ch->io_wait_queue)); 2503 spdk_mempool_put(g_bdev_mgr.bdev_io_pool, (void *)bdev_io); 2504 } 2505 } 2506 2507 static bool 2508 bdev_qos_is_iops_rate_limit(enum spdk_bdev_qos_rate_limit_type limit) 2509 { 2510 assert(limit != SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES); 2511 2512 switch (limit) { 2513 case SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT: 2514 return true; 2515 case SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT: 2516 case SPDK_BDEV_QOS_R_BPS_RATE_LIMIT: 2517 case SPDK_BDEV_QOS_W_BPS_RATE_LIMIT: 2518 return false; 2519 case SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES: 2520 default: 2521 return false; 2522 } 2523 } 2524 2525 static bool 2526 bdev_qos_io_to_limit(struct spdk_bdev_io *bdev_io) 2527 { 2528 switch (bdev_io->type) { 2529 case SPDK_BDEV_IO_TYPE_NVME_IO: 2530 case SPDK_BDEV_IO_TYPE_NVME_IO_MD: 2531 case SPDK_BDEV_IO_TYPE_READ: 2532 case SPDK_BDEV_IO_TYPE_WRITE: 2533 return true; 2534 case SPDK_BDEV_IO_TYPE_ZCOPY: 2535 if (bdev_io->u.bdev.zcopy.start) { 2536 return true; 2537 } else { 2538 return false; 2539 } 2540 default: 2541 return false; 2542 } 2543 } 2544 2545 static bool 2546 bdev_is_read_io(struct spdk_bdev_io *bdev_io) 2547 { 2548 switch (bdev_io->type) { 2549 case SPDK_BDEV_IO_TYPE_NVME_IO: 2550 case SPDK_BDEV_IO_TYPE_NVME_IO_MD: 2551 /* Bit 1 (0x2) set for read operation */ 2552 if (bdev_io->u.nvme_passthru.cmd.opc & SPDK_NVME_OPC_READ) { 2553 return true; 2554 } else { 2555 return false; 2556 } 2557 case SPDK_BDEV_IO_TYPE_READ: 2558 return true; 2559 case SPDK_BDEV_IO_TYPE_ZCOPY: 2560 /* Populate to read from disk */ 2561 if (bdev_io->u.bdev.zcopy.populate) { 2562 return true; 2563 } else { 2564 return false; 2565 } 2566 default: 2567 return false; 2568 } 2569 } 2570 2571 static uint64_t 2572 bdev_get_io_size_in_byte(struct spdk_bdev_io *bdev_io) 2573 { 2574 struct spdk_bdev *bdev = bdev_io->bdev; 2575 2576 switch (bdev_io->type) { 2577 case SPDK_BDEV_IO_TYPE_NVME_IO: 2578 case SPDK_BDEV_IO_TYPE_NVME_IO_MD: 2579 return bdev_io->u.nvme_passthru.nbytes; 2580 case SPDK_BDEV_IO_TYPE_READ: 2581 case SPDK_BDEV_IO_TYPE_WRITE: 2582 return bdev_io->u.bdev.num_blocks * bdev->blocklen; 2583 case SPDK_BDEV_IO_TYPE_ZCOPY: 2584 /* Track the data in the start phase only */ 2585 if (bdev_io->u.bdev.zcopy.start) { 2586 return bdev_io->u.bdev.num_blocks * bdev->blocklen; 2587 } else { 2588 return 0; 2589 } 2590 default: 2591 return 0; 2592 } 2593 } 2594 2595 static inline bool 2596 bdev_qos_rw_queue_io(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io, uint64_t delta) 2597 { 2598 int64_t remaining_this_timeslice; 2599 2600 if (!limit->max_per_timeslice) { 2601 /* The QoS is disabled */ 2602 return false; 2603 } 2604 2605 remaining_this_timeslice = __atomic_sub_fetch(&limit->remaining_this_timeslice, delta, 2606 __ATOMIC_RELAXED); 2607 if (remaining_this_timeslice + (int64_t)delta > 0) { 2608 /* There was still a quota for this delta -> the IO shouldn't be queued 2609 * 2610 * We allow a slight quota overrun here so an IO bigger than the per-timeslice 2611 * quota can be allowed once a while. Such overrun then taken into account in 2612 * the QoS poller, where the next timeslice quota is calculated. 2613 */ 2614 return false; 2615 } 2616 2617 /* There was no quota for this delta -> the IO should be queued 2618 * The remaining_this_timeslice must be rewinded so it reflects the real 2619 * amount of IOs or bytes allowed. 2620 */ 2621 __atomic_add_fetch( 2622 &limit->remaining_this_timeslice, delta, __ATOMIC_RELAXED); 2623 return true; 2624 } 2625 2626 static inline void 2627 bdev_qos_rw_rewind_io(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io, uint64_t delta) 2628 { 2629 __atomic_add_fetch(&limit->remaining_this_timeslice, delta, __ATOMIC_RELAXED); 2630 } 2631 2632 static bool 2633 bdev_qos_rw_iops_queue(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 2634 { 2635 return bdev_qos_rw_queue_io(limit, io, 1); 2636 } 2637 2638 static void 2639 bdev_qos_rw_iops_rewind_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 2640 { 2641 bdev_qos_rw_rewind_io(limit, io, 1); 2642 } 2643 2644 static bool 2645 bdev_qos_rw_bps_queue(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 2646 { 2647 return bdev_qos_rw_queue_io(limit, io, bdev_get_io_size_in_byte(io)); 2648 } 2649 2650 static void 2651 bdev_qos_rw_bps_rewind_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 2652 { 2653 bdev_qos_rw_rewind_io(limit, io, bdev_get_io_size_in_byte(io)); 2654 } 2655 2656 static bool 2657 bdev_qos_r_bps_queue(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 2658 { 2659 if (bdev_is_read_io(io) == false) { 2660 return false; 2661 } 2662 2663 return bdev_qos_rw_bps_queue(limit, io); 2664 } 2665 2666 static void 2667 bdev_qos_r_bps_rewind_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 2668 { 2669 if (bdev_is_read_io(io) != false) { 2670 bdev_qos_rw_rewind_io(limit, io, bdev_get_io_size_in_byte(io)); 2671 } 2672 } 2673 2674 static bool 2675 bdev_qos_w_bps_queue(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 2676 { 2677 if (bdev_is_read_io(io) == true) { 2678 return false; 2679 } 2680 2681 return bdev_qos_rw_bps_queue(limit, io); 2682 } 2683 2684 static void 2685 bdev_qos_w_bps_rewind_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 2686 { 2687 if (bdev_is_read_io(io) != true) { 2688 bdev_qos_rw_rewind_io(limit, io, bdev_get_io_size_in_byte(io)); 2689 } 2690 } 2691 2692 static void 2693 bdev_qos_set_ops(struct spdk_bdev_qos *qos) 2694 { 2695 int i; 2696 2697 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 2698 if (qos->rate_limits[i].limit == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) { 2699 qos->rate_limits[i].queue_io = NULL; 2700 continue; 2701 } 2702 2703 switch (i) { 2704 case SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT: 2705 qos->rate_limits[i].queue_io = bdev_qos_rw_iops_queue; 2706 qos->rate_limits[i].rewind_quota = bdev_qos_rw_iops_rewind_quota; 2707 break; 2708 case SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT: 2709 qos->rate_limits[i].queue_io = bdev_qos_rw_bps_queue; 2710 qos->rate_limits[i].rewind_quota = bdev_qos_rw_bps_rewind_quota; 2711 break; 2712 case SPDK_BDEV_QOS_R_BPS_RATE_LIMIT: 2713 qos->rate_limits[i].queue_io = bdev_qos_r_bps_queue; 2714 qos->rate_limits[i].rewind_quota = bdev_qos_r_bps_rewind_quota; 2715 break; 2716 case SPDK_BDEV_QOS_W_BPS_RATE_LIMIT: 2717 qos->rate_limits[i].queue_io = bdev_qos_w_bps_queue; 2718 qos->rate_limits[i].rewind_quota = bdev_qos_w_bps_rewind_quota; 2719 break; 2720 default: 2721 break; 2722 } 2723 } 2724 } 2725 2726 static void 2727 _bdev_io_complete_in_submit(struct spdk_bdev_channel *bdev_ch, 2728 struct spdk_bdev_io *bdev_io, 2729 enum spdk_bdev_io_status status) 2730 { 2731 bdev_io->internal.in_submit_request = true; 2732 bdev_io_increment_outstanding(bdev_ch, bdev_ch->shared_resource); 2733 spdk_bdev_io_complete(bdev_io, status); 2734 bdev_io->internal.in_submit_request = false; 2735 } 2736 2737 static inline void 2738 bdev_io_do_submit(struct spdk_bdev_channel *bdev_ch, struct spdk_bdev_io *bdev_io) 2739 { 2740 struct spdk_bdev *bdev = bdev_io->bdev; 2741 struct spdk_io_channel *ch = bdev_ch->channel; 2742 struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource; 2743 2744 if (spdk_unlikely(bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT)) { 2745 struct spdk_bdev_mgmt_channel *mgmt_channel = shared_resource->mgmt_ch; 2746 struct spdk_bdev_io *bio_to_abort = bdev_io->u.abort.bio_to_abort; 2747 2748 if (bdev_abort_queued_io(&shared_resource->nomem_io, bio_to_abort) || 2749 bdev_abort_buf_io(mgmt_channel, bio_to_abort)) { 2750 _bdev_io_complete_in_submit(bdev_ch, bdev_io, 2751 SPDK_BDEV_IO_STATUS_SUCCESS); 2752 return; 2753 } 2754 } 2755 2756 if (spdk_unlikely(bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE && 2757 bdev_io->bdev->split_on_write_unit && 2758 bdev_io->u.bdev.num_blocks < bdev_io->bdev->write_unit_size)) { 2759 SPDK_ERRLOG("IO num_blocks %lu does not match the write_unit_size %u\n", 2760 bdev_io->u.bdev.num_blocks, bdev_io->bdev->write_unit_size); 2761 _bdev_io_complete_in_submit(bdev_ch, bdev_io, SPDK_BDEV_IO_STATUS_FAILED); 2762 return; 2763 } 2764 2765 if (spdk_likely(TAILQ_EMPTY(&shared_resource->nomem_io))) { 2766 bdev_io_increment_outstanding(bdev_ch, shared_resource); 2767 bdev_io->internal.in_submit_request = true; 2768 bdev_submit_request(bdev, ch, bdev_io); 2769 bdev_io->internal.in_submit_request = false; 2770 } else { 2771 bdev_queue_nomem_io_tail(shared_resource, bdev_io, BDEV_IO_RETRY_STATE_SUBMIT); 2772 if (shared_resource->nomem_threshold == 0 && shared_resource->io_outstanding == 0) { 2773 /* Special case when we have nomem IOs and no outstanding IOs which completions 2774 * could trigger retry of queued IOs */ 2775 bdev_shared_ch_retry_io(shared_resource); 2776 } 2777 } 2778 } 2779 2780 static bool 2781 bdev_qos_queue_io(struct spdk_bdev_qos *qos, struct spdk_bdev_io *bdev_io) 2782 { 2783 int i; 2784 2785 if (bdev_qos_io_to_limit(bdev_io) == true) { 2786 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 2787 if (!qos->rate_limits[i].queue_io) { 2788 continue; 2789 } 2790 2791 if (qos->rate_limits[i].queue_io(&qos->rate_limits[i], 2792 bdev_io) == true) { 2793 for (i -= 1; i >= 0 ; i--) { 2794 if (!qos->rate_limits[i].queue_io) { 2795 continue; 2796 } 2797 2798 qos->rate_limits[i].rewind_quota(&qos->rate_limits[i], bdev_io); 2799 } 2800 return true; 2801 } 2802 } 2803 } 2804 2805 return false; 2806 } 2807 2808 static int 2809 bdev_qos_io_submit(struct spdk_bdev_channel *ch, struct spdk_bdev_qos *qos) 2810 { 2811 struct spdk_bdev_io *bdev_io = NULL, *tmp = NULL; 2812 int submitted_ios = 0; 2813 2814 TAILQ_FOREACH_SAFE(bdev_io, &ch->qos_queued_io, internal.link, tmp) { 2815 if (!bdev_qos_queue_io(qos, bdev_io)) { 2816 TAILQ_REMOVE(&ch->qos_queued_io, bdev_io, internal.link); 2817 bdev_io_do_submit(ch, bdev_io); 2818 2819 submitted_ios++; 2820 } 2821 } 2822 2823 return submitted_ios; 2824 } 2825 2826 static void 2827 bdev_queue_io_wait_with_cb(struct spdk_bdev_io *bdev_io, spdk_bdev_io_wait_cb cb_fn) 2828 { 2829 int rc; 2830 2831 bdev_io->internal.waitq_entry.bdev = bdev_io->bdev; 2832 bdev_io->internal.waitq_entry.cb_fn = cb_fn; 2833 bdev_io->internal.waitq_entry.cb_arg = bdev_io; 2834 rc = spdk_bdev_queue_io_wait(bdev_io->bdev, spdk_io_channel_from_ctx(bdev_io->internal.ch), 2835 &bdev_io->internal.waitq_entry); 2836 if (rc != 0) { 2837 SPDK_ERRLOG("Queue IO failed, rc=%d\n", rc); 2838 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 2839 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 2840 } 2841 } 2842 2843 static bool 2844 bdev_rw_should_split(struct spdk_bdev_io *bdev_io) 2845 { 2846 uint32_t io_boundary; 2847 struct spdk_bdev *bdev = bdev_io->bdev; 2848 uint32_t max_segment_size = bdev->max_segment_size; 2849 uint32_t max_size = bdev->max_rw_size; 2850 int max_segs = bdev->max_num_segments; 2851 2852 if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE && bdev->split_on_write_unit) { 2853 io_boundary = bdev->write_unit_size; 2854 } else if (bdev->split_on_optimal_io_boundary) { 2855 io_boundary = bdev->optimal_io_boundary; 2856 } else { 2857 io_boundary = 0; 2858 } 2859 2860 if (spdk_likely(!io_boundary && !max_segs && !max_segment_size && !max_size)) { 2861 return false; 2862 } 2863 2864 if (io_boundary) { 2865 uint64_t start_stripe, end_stripe; 2866 2867 start_stripe = bdev_io->u.bdev.offset_blocks; 2868 end_stripe = start_stripe + bdev_io->u.bdev.num_blocks - 1; 2869 /* Avoid expensive div operations if possible. These spdk_u32 functions are very cheap. */ 2870 if (spdk_likely(spdk_u32_is_pow2(io_boundary))) { 2871 start_stripe >>= spdk_u32log2(io_boundary); 2872 end_stripe >>= spdk_u32log2(io_boundary); 2873 } else { 2874 start_stripe /= io_boundary; 2875 end_stripe /= io_boundary; 2876 } 2877 2878 if (start_stripe != end_stripe) { 2879 return true; 2880 } 2881 } 2882 2883 if (max_segs) { 2884 if (bdev_io->u.bdev.iovcnt > max_segs) { 2885 return true; 2886 } 2887 } 2888 2889 if (max_segment_size) { 2890 for (int i = 0; i < bdev_io->u.bdev.iovcnt; i++) { 2891 if (bdev_io->u.bdev.iovs[i].iov_len > max_segment_size) { 2892 return true; 2893 } 2894 } 2895 } 2896 2897 if (max_size) { 2898 if (bdev_io->u.bdev.num_blocks > max_size) { 2899 return true; 2900 } 2901 } 2902 2903 return false; 2904 } 2905 2906 static bool 2907 bdev_unmap_should_split(struct spdk_bdev_io *bdev_io) 2908 { 2909 uint32_t num_unmap_segments; 2910 2911 if (!bdev_io->bdev->max_unmap || !bdev_io->bdev->max_unmap_segments) { 2912 return false; 2913 } 2914 num_unmap_segments = spdk_divide_round_up(bdev_io->u.bdev.num_blocks, bdev_io->bdev->max_unmap); 2915 if (num_unmap_segments > bdev_io->bdev->max_unmap_segments) { 2916 return true; 2917 } 2918 2919 return false; 2920 } 2921 2922 static bool 2923 bdev_write_zeroes_should_split(struct spdk_bdev_io *bdev_io) 2924 { 2925 if (!bdev_io->bdev->max_write_zeroes) { 2926 return false; 2927 } 2928 2929 if (bdev_io->u.bdev.num_blocks > bdev_io->bdev->max_write_zeroes) { 2930 return true; 2931 } 2932 2933 return false; 2934 } 2935 2936 static bool 2937 bdev_copy_should_split(struct spdk_bdev_io *bdev_io) 2938 { 2939 if (bdev_io->bdev->max_copy != 0 && 2940 bdev_io->u.bdev.num_blocks > bdev_io->bdev->max_copy) { 2941 return true; 2942 } 2943 2944 return false; 2945 } 2946 2947 static bool 2948 bdev_io_should_split(struct spdk_bdev_io *bdev_io) 2949 { 2950 switch (bdev_io->type) { 2951 case SPDK_BDEV_IO_TYPE_READ: 2952 case SPDK_BDEV_IO_TYPE_WRITE: 2953 return bdev_rw_should_split(bdev_io); 2954 case SPDK_BDEV_IO_TYPE_UNMAP: 2955 return bdev_unmap_should_split(bdev_io); 2956 case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: 2957 return bdev_write_zeroes_should_split(bdev_io); 2958 case SPDK_BDEV_IO_TYPE_COPY: 2959 return bdev_copy_should_split(bdev_io); 2960 default: 2961 return false; 2962 } 2963 } 2964 2965 static uint32_t 2966 _to_next_boundary(uint64_t offset, uint32_t boundary) 2967 { 2968 return (boundary - (offset % boundary)); 2969 } 2970 2971 static void bdev_io_split_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg); 2972 2973 static void _bdev_rw_split(void *_bdev_io); 2974 2975 static void bdev_unmap_split(struct spdk_bdev_io *bdev_io); 2976 2977 static void 2978 _bdev_unmap_split(void *_bdev_io) 2979 { 2980 return bdev_unmap_split((struct spdk_bdev_io *)_bdev_io); 2981 } 2982 2983 static void bdev_write_zeroes_split(struct spdk_bdev_io *bdev_io); 2984 2985 static void 2986 _bdev_write_zeroes_split(void *_bdev_io) 2987 { 2988 return bdev_write_zeroes_split((struct spdk_bdev_io *)_bdev_io); 2989 } 2990 2991 static void bdev_copy_split(struct spdk_bdev_io *bdev_io); 2992 2993 static void 2994 _bdev_copy_split(void *_bdev_io) 2995 { 2996 return bdev_copy_split((struct spdk_bdev_io *)_bdev_io); 2997 } 2998 2999 static int 3000 bdev_io_split_submit(struct spdk_bdev_io *bdev_io, struct iovec *iov, int iovcnt, void *md_buf, 3001 uint64_t num_blocks, uint64_t *offset, uint64_t *remaining) 3002 { 3003 int rc; 3004 uint64_t current_offset, current_remaining, current_src_offset; 3005 spdk_bdev_io_wait_cb io_wait_fn; 3006 3007 current_offset = *offset; 3008 current_remaining = *remaining; 3009 3010 bdev_io->u.bdev.split_outstanding++; 3011 3012 io_wait_fn = _bdev_rw_split; 3013 switch (bdev_io->type) { 3014 case SPDK_BDEV_IO_TYPE_READ: 3015 assert(bdev_io->u.bdev.accel_sequence == NULL); 3016 rc = bdev_readv_blocks_with_md(bdev_io->internal.desc, 3017 spdk_io_channel_from_ctx(bdev_io->internal.ch), 3018 iov, iovcnt, md_buf, current_offset, 3019 num_blocks, bdev_io->internal.memory_domain, 3020 bdev_io->internal.memory_domain_ctx, NULL, 3021 bdev_io->u.bdev.dif_check_flags, 3022 bdev_io_split_done, bdev_io); 3023 break; 3024 case SPDK_BDEV_IO_TYPE_WRITE: 3025 assert(bdev_io->u.bdev.accel_sequence == NULL); 3026 rc = bdev_writev_blocks_with_md(bdev_io->internal.desc, 3027 spdk_io_channel_from_ctx(bdev_io->internal.ch), 3028 iov, iovcnt, md_buf, current_offset, 3029 num_blocks, bdev_io->internal.memory_domain, 3030 bdev_io->internal.memory_domain_ctx, NULL, 3031 bdev_io->u.bdev.dif_check_flags, 3032 bdev_io->u.bdev.nvme_cdw12.raw, 3033 bdev_io->u.bdev.nvme_cdw13.raw, 3034 bdev_io_split_done, bdev_io); 3035 break; 3036 case SPDK_BDEV_IO_TYPE_UNMAP: 3037 io_wait_fn = _bdev_unmap_split; 3038 rc = spdk_bdev_unmap_blocks(bdev_io->internal.desc, 3039 spdk_io_channel_from_ctx(bdev_io->internal.ch), 3040 current_offset, num_blocks, 3041 bdev_io_split_done, bdev_io); 3042 break; 3043 case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: 3044 io_wait_fn = _bdev_write_zeroes_split; 3045 rc = spdk_bdev_write_zeroes_blocks(bdev_io->internal.desc, 3046 spdk_io_channel_from_ctx(bdev_io->internal.ch), 3047 current_offset, num_blocks, 3048 bdev_io_split_done, bdev_io); 3049 break; 3050 case SPDK_BDEV_IO_TYPE_COPY: 3051 io_wait_fn = _bdev_copy_split; 3052 current_src_offset = bdev_io->u.bdev.copy.src_offset_blocks + 3053 (current_offset - bdev_io->u.bdev.offset_blocks); 3054 rc = spdk_bdev_copy_blocks(bdev_io->internal.desc, 3055 spdk_io_channel_from_ctx(bdev_io->internal.ch), 3056 current_offset, current_src_offset, num_blocks, 3057 bdev_io_split_done, bdev_io); 3058 break; 3059 default: 3060 assert(false); 3061 rc = -EINVAL; 3062 break; 3063 } 3064 3065 if (rc == 0) { 3066 current_offset += num_blocks; 3067 current_remaining -= num_blocks; 3068 bdev_io->u.bdev.split_current_offset_blocks = current_offset; 3069 bdev_io->u.bdev.split_remaining_num_blocks = current_remaining; 3070 *offset = current_offset; 3071 *remaining = current_remaining; 3072 } else { 3073 bdev_io->u.bdev.split_outstanding--; 3074 if (rc == -ENOMEM) { 3075 if (bdev_io->u.bdev.split_outstanding == 0) { 3076 /* No I/O is outstanding. Hence we should wait here. */ 3077 bdev_queue_io_wait_with_cb(bdev_io, io_wait_fn); 3078 } 3079 } else { 3080 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 3081 if (bdev_io->u.bdev.split_outstanding == 0) { 3082 bdev_ch_remove_from_io_submitted(bdev_io); 3083 spdk_trace_record(TRACE_BDEV_IO_DONE, bdev_io->internal.ch->trace_id, 3084 0, (uintptr_t)bdev_io, bdev_io->internal.caller_ctx, 3085 bdev_io->internal.ch->queue_depth); 3086 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 3087 } 3088 } 3089 } 3090 3091 return rc; 3092 } 3093 3094 static void 3095 _bdev_rw_split(void *_bdev_io) 3096 { 3097 struct iovec *parent_iov, *iov; 3098 struct spdk_bdev_io *bdev_io = _bdev_io; 3099 struct spdk_bdev *bdev = bdev_io->bdev; 3100 uint64_t parent_offset, current_offset, remaining; 3101 uint32_t parent_iov_offset, parent_iovcnt, parent_iovpos, child_iovcnt; 3102 uint32_t to_next_boundary, to_next_boundary_bytes, to_last_block_bytes; 3103 uint32_t iovcnt, iov_len, child_iovsize; 3104 uint32_t blocklen = bdev->blocklen; 3105 uint32_t io_boundary; 3106 uint32_t max_segment_size = bdev->max_segment_size; 3107 uint32_t max_child_iovcnt = bdev->max_num_segments; 3108 uint32_t max_size = bdev->max_rw_size; 3109 void *md_buf = NULL; 3110 int rc; 3111 3112 max_size = max_size ? max_size : UINT32_MAX; 3113 max_segment_size = max_segment_size ? max_segment_size : UINT32_MAX; 3114 max_child_iovcnt = max_child_iovcnt ? spdk_min(max_child_iovcnt, SPDK_BDEV_IO_NUM_CHILD_IOV) : 3115 SPDK_BDEV_IO_NUM_CHILD_IOV; 3116 3117 if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE && bdev->split_on_write_unit) { 3118 io_boundary = bdev->write_unit_size; 3119 } else if (bdev->split_on_optimal_io_boundary) { 3120 io_boundary = bdev->optimal_io_boundary; 3121 } else { 3122 io_boundary = UINT32_MAX; 3123 } 3124 3125 remaining = bdev_io->u.bdev.split_remaining_num_blocks; 3126 current_offset = bdev_io->u.bdev.split_current_offset_blocks; 3127 parent_offset = bdev_io->u.bdev.offset_blocks; 3128 parent_iov_offset = (current_offset - parent_offset) * blocklen; 3129 parent_iovcnt = bdev_io->u.bdev.iovcnt; 3130 3131 for (parent_iovpos = 0; parent_iovpos < parent_iovcnt; parent_iovpos++) { 3132 parent_iov = &bdev_io->u.bdev.iovs[parent_iovpos]; 3133 if (parent_iov_offset < parent_iov->iov_len) { 3134 break; 3135 } 3136 parent_iov_offset -= parent_iov->iov_len; 3137 } 3138 3139 child_iovcnt = 0; 3140 while (remaining > 0 && parent_iovpos < parent_iovcnt && 3141 child_iovcnt < SPDK_BDEV_IO_NUM_CHILD_IOV) { 3142 to_next_boundary = _to_next_boundary(current_offset, io_boundary); 3143 to_next_boundary = spdk_min(remaining, to_next_boundary); 3144 to_next_boundary = spdk_min(max_size, to_next_boundary); 3145 to_next_boundary_bytes = to_next_boundary * blocklen; 3146 3147 iov = &bdev_io->child_iov[child_iovcnt]; 3148 iovcnt = 0; 3149 3150 if (bdev_io->u.bdev.md_buf) { 3151 md_buf = (char *)bdev_io->u.bdev.md_buf + 3152 (current_offset - parent_offset) * spdk_bdev_get_md_size(bdev); 3153 } 3154 3155 child_iovsize = spdk_min(SPDK_BDEV_IO_NUM_CHILD_IOV - child_iovcnt, max_child_iovcnt); 3156 while (to_next_boundary_bytes > 0 && parent_iovpos < parent_iovcnt && 3157 iovcnt < child_iovsize) { 3158 parent_iov = &bdev_io->u.bdev.iovs[parent_iovpos]; 3159 iov_len = parent_iov->iov_len - parent_iov_offset; 3160 3161 iov_len = spdk_min(iov_len, max_segment_size); 3162 iov_len = spdk_min(iov_len, to_next_boundary_bytes); 3163 to_next_boundary_bytes -= iov_len; 3164 3165 bdev_io->child_iov[child_iovcnt].iov_base = parent_iov->iov_base + parent_iov_offset; 3166 bdev_io->child_iov[child_iovcnt].iov_len = iov_len; 3167 3168 if (iov_len < parent_iov->iov_len - parent_iov_offset) { 3169 parent_iov_offset += iov_len; 3170 } else { 3171 parent_iovpos++; 3172 parent_iov_offset = 0; 3173 } 3174 child_iovcnt++; 3175 iovcnt++; 3176 } 3177 3178 if (to_next_boundary_bytes > 0) { 3179 /* We had to stop this child I/O early because we ran out of 3180 * child_iov space or were limited by max_num_segments. 3181 * Ensure the iovs to be aligned with block size and 3182 * then adjust to_next_boundary before starting the 3183 * child I/O. 3184 */ 3185 assert(child_iovcnt == SPDK_BDEV_IO_NUM_CHILD_IOV || 3186 iovcnt == child_iovsize); 3187 to_last_block_bytes = to_next_boundary_bytes % blocklen; 3188 if (to_last_block_bytes != 0) { 3189 uint32_t child_iovpos = child_iovcnt - 1; 3190 /* don't decrease child_iovcnt when it equals to SPDK_BDEV_IO_NUM_CHILD_IOV 3191 * so the loop will naturally end 3192 */ 3193 3194 to_last_block_bytes = blocklen - to_last_block_bytes; 3195 to_next_boundary_bytes += to_last_block_bytes; 3196 while (to_last_block_bytes > 0 && iovcnt > 0) { 3197 iov_len = spdk_min(to_last_block_bytes, 3198 bdev_io->child_iov[child_iovpos].iov_len); 3199 bdev_io->child_iov[child_iovpos].iov_len -= iov_len; 3200 if (bdev_io->child_iov[child_iovpos].iov_len == 0) { 3201 child_iovpos--; 3202 if (--iovcnt == 0) { 3203 /* If the child IO is less than a block size just return. 3204 * If the first child IO of any split round is less than 3205 * a block size, an error exit. 3206 */ 3207 if (bdev_io->u.bdev.split_outstanding == 0) { 3208 SPDK_ERRLOG("The first child io was less than a block size\n"); 3209 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 3210 bdev_ch_remove_from_io_submitted(bdev_io); 3211 spdk_trace_record(TRACE_BDEV_IO_DONE, bdev_io->internal.ch->trace_id, 3212 0, (uintptr_t)bdev_io, bdev_io->internal.caller_ctx, 3213 bdev_io->internal.ch->queue_depth); 3214 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 3215 } 3216 3217 return; 3218 } 3219 } 3220 3221 to_last_block_bytes -= iov_len; 3222 3223 if (parent_iov_offset == 0) { 3224 parent_iovpos--; 3225 parent_iov_offset = bdev_io->u.bdev.iovs[parent_iovpos].iov_len; 3226 } 3227 parent_iov_offset -= iov_len; 3228 } 3229 3230 assert(to_last_block_bytes == 0); 3231 } 3232 to_next_boundary -= to_next_boundary_bytes / blocklen; 3233 } 3234 3235 rc = bdev_io_split_submit(bdev_io, iov, iovcnt, md_buf, to_next_boundary, 3236 ¤t_offset, &remaining); 3237 if (spdk_unlikely(rc)) { 3238 return; 3239 } 3240 } 3241 } 3242 3243 static void 3244 bdev_unmap_split(struct spdk_bdev_io *bdev_io) 3245 { 3246 uint64_t offset, unmap_blocks, remaining, max_unmap_blocks; 3247 uint32_t num_children_reqs = 0; 3248 int rc; 3249 3250 offset = bdev_io->u.bdev.split_current_offset_blocks; 3251 remaining = bdev_io->u.bdev.split_remaining_num_blocks; 3252 max_unmap_blocks = bdev_io->bdev->max_unmap * bdev_io->bdev->max_unmap_segments; 3253 3254 while (remaining && (num_children_reqs < SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS)) { 3255 unmap_blocks = spdk_min(remaining, max_unmap_blocks); 3256 3257 rc = bdev_io_split_submit(bdev_io, NULL, 0, NULL, unmap_blocks, 3258 &offset, &remaining); 3259 if (spdk_likely(rc == 0)) { 3260 num_children_reqs++; 3261 } else { 3262 return; 3263 } 3264 } 3265 } 3266 3267 static void 3268 bdev_write_zeroes_split(struct spdk_bdev_io *bdev_io) 3269 { 3270 uint64_t offset, write_zeroes_blocks, remaining; 3271 uint32_t num_children_reqs = 0; 3272 int rc; 3273 3274 offset = bdev_io->u.bdev.split_current_offset_blocks; 3275 remaining = bdev_io->u.bdev.split_remaining_num_blocks; 3276 3277 while (remaining && (num_children_reqs < SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS)) { 3278 write_zeroes_blocks = spdk_min(remaining, bdev_io->bdev->max_write_zeroes); 3279 3280 rc = bdev_io_split_submit(bdev_io, NULL, 0, NULL, write_zeroes_blocks, 3281 &offset, &remaining); 3282 if (spdk_likely(rc == 0)) { 3283 num_children_reqs++; 3284 } else { 3285 return; 3286 } 3287 } 3288 } 3289 3290 static void 3291 bdev_copy_split(struct spdk_bdev_io *bdev_io) 3292 { 3293 uint64_t offset, copy_blocks, remaining; 3294 uint32_t num_children_reqs = 0; 3295 int rc; 3296 3297 offset = bdev_io->u.bdev.split_current_offset_blocks; 3298 remaining = bdev_io->u.bdev.split_remaining_num_blocks; 3299 3300 assert(bdev_io->bdev->max_copy != 0); 3301 while (remaining && (num_children_reqs < SPDK_BDEV_MAX_CHILDREN_COPY_REQS)) { 3302 copy_blocks = spdk_min(remaining, bdev_io->bdev->max_copy); 3303 3304 rc = bdev_io_split_submit(bdev_io, NULL, 0, NULL, copy_blocks, 3305 &offset, &remaining); 3306 if (spdk_likely(rc == 0)) { 3307 num_children_reqs++; 3308 } else { 3309 return; 3310 } 3311 } 3312 } 3313 3314 static void 3315 parent_bdev_io_complete(void *ctx, int rc) 3316 { 3317 struct spdk_bdev_io *parent_io = ctx; 3318 3319 if (rc) { 3320 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 3321 } 3322 3323 parent_io->internal.cb(parent_io, parent_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS, 3324 parent_io->internal.caller_ctx); 3325 } 3326 3327 static void 3328 bdev_io_complete_parent_sequence_cb(void *ctx, int status) 3329 { 3330 struct spdk_bdev_io *bdev_io = ctx; 3331 3332 /* u.bdev.accel_sequence should have already been cleared at this point */ 3333 assert(bdev_io->u.bdev.accel_sequence == NULL); 3334 assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS); 3335 bdev_io->internal.accel_sequence = NULL; 3336 3337 if (spdk_unlikely(status != 0)) { 3338 SPDK_ERRLOG("Failed to execute accel sequence, status=%d\n", status); 3339 } 3340 3341 parent_bdev_io_complete(bdev_io, status); 3342 } 3343 3344 static void 3345 bdev_io_split_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 3346 { 3347 struct spdk_bdev_io *parent_io = cb_arg; 3348 3349 spdk_bdev_free_io(bdev_io); 3350 3351 if (!success) { 3352 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 3353 /* If any child I/O failed, stop further splitting process. */ 3354 parent_io->u.bdev.split_current_offset_blocks += parent_io->u.bdev.split_remaining_num_blocks; 3355 parent_io->u.bdev.split_remaining_num_blocks = 0; 3356 } 3357 parent_io->u.bdev.split_outstanding--; 3358 if (parent_io->u.bdev.split_outstanding != 0) { 3359 return; 3360 } 3361 3362 /* 3363 * Parent I/O finishes when all blocks are consumed. 3364 */ 3365 if (parent_io->u.bdev.split_remaining_num_blocks == 0) { 3366 assert(parent_io->internal.cb != bdev_io_split_done); 3367 bdev_ch_remove_from_io_submitted(parent_io); 3368 spdk_trace_record(TRACE_BDEV_IO_DONE, parent_io->internal.ch->trace_id, 3369 0, (uintptr_t)parent_io, bdev_io->internal.caller_ctx, 3370 parent_io->internal.ch->queue_depth); 3371 3372 if (spdk_likely(parent_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS)) { 3373 if (bdev_io_needs_sequence_exec(parent_io->internal.desc, parent_io)) { 3374 bdev_io_exec_sequence(parent_io, bdev_io_complete_parent_sequence_cb); 3375 return; 3376 } else if (parent_io->internal.orig_iovcnt != 0 && 3377 !bdev_io_use_accel_sequence(bdev_io)) { 3378 /* bdev IO will be completed in the callback */ 3379 _bdev_io_push_bounce_data_buffer(parent_io, parent_bdev_io_complete); 3380 return; 3381 } 3382 } 3383 3384 parent_bdev_io_complete(parent_io, 0); 3385 return; 3386 } 3387 3388 /* 3389 * Continue with the splitting process. This function will complete the parent I/O if the 3390 * splitting is done. 3391 */ 3392 switch (parent_io->type) { 3393 case SPDK_BDEV_IO_TYPE_READ: 3394 case SPDK_BDEV_IO_TYPE_WRITE: 3395 _bdev_rw_split(parent_io); 3396 break; 3397 case SPDK_BDEV_IO_TYPE_UNMAP: 3398 bdev_unmap_split(parent_io); 3399 break; 3400 case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: 3401 bdev_write_zeroes_split(parent_io); 3402 break; 3403 case SPDK_BDEV_IO_TYPE_COPY: 3404 bdev_copy_split(parent_io); 3405 break; 3406 default: 3407 assert(false); 3408 break; 3409 } 3410 } 3411 3412 static void bdev_rw_split_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io, 3413 bool success); 3414 3415 static void 3416 bdev_io_split(struct spdk_bdev_io *bdev_io) 3417 { 3418 assert(bdev_io_should_split(bdev_io)); 3419 3420 bdev_io->u.bdev.split_current_offset_blocks = bdev_io->u.bdev.offset_blocks; 3421 bdev_io->u.bdev.split_remaining_num_blocks = bdev_io->u.bdev.num_blocks; 3422 bdev_io->u.bdev.split_outstanding = 0; 3423 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; 3424 3425 switch (bdev_io->type) { 3426 case SPDK_BDEV_IO_TYPE_READ: 3427 case SPDK_BDEV_IO_TYPE_WRITE: 3428 if (_is_buf_allocated(bdev_io->u.bdev.iovs)) { 3429 _bdev_rw_split(bdev_io); 3430 } else { 3431 assert(bdev_io->type == SPDK_BDEV_IO_TYPE_READ); 3432 spdk_bdev_io_get_buf(bdev_io, bdev_rw_split_get_buf_cb, 3433 bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen); 3434 } 3435 break; 3436 case SPDK_BDEV_IO_TYPE_UNMAP: 3437 bdev_unmap_split(bdev_io); 3438 break; 3439 case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: 3440 bdev_write_zeroes_split(bdev_io); 3441 break; 3442 case SPDK_BDEV_IO_TYPE_COPY: 3443 bdev_copy_split(bdev_io); 3444 break; 3445 default: 3446 assert(false); 3447 break; 3448 } 3449 } 3450 3451 static void 3452 bdev_rw_split_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io, bool success) 3453 { 3454 if (!success) { 3455 spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED); 3456 return; 3457 } 3458 3459 _bdev_rw_split(bdev_io); 3460 } 3461 3462 /* Explicitly mark this inline, since it's used as a function pointer and otherwise won't 3463 * be inlined, at least on some compilers. 3464 */ 3465 static inline void 3466 _bdev_io_submit(void *ctx) 3467 { 3468 struct spdk_bdev_io *bdev_io = ctx; 3469 struct spdk_bdev *bdev = bdev_io->bdev; 3470 struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch; 3471 3472 if (spdk_likely(bdev_ch->flags == 0)) { 3473 bdev_io_do_submit(bdev_ch, bdev_io); 3474 return; 3475 } 3476 3477 if (bdev_ch->flags & BDEV_CH_RESET_IN_PROGRESS) { 3478 _bdev_io_complete_in_submit(bdev_ch, bdev_io, SPDK_BDEV_IO_STATUS_ABORTED); 3479 } else if (bdev_ch->flags & BDEV_CH_QOS_ENABLED) { 3480 if (spdk_unlikely(bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) && 3481 bdev_abort_queued_io(&bdev_ch->qos_queued_io, bdev_io->u.abort.bio_to_abort)) { 3482 _bdev_io_complete_in_submit(bdev_ch, bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS); 3483 } else { 3484 TAILQ_INSERT_TAIL(&bdev_ch->qos_queued_io, bdev_io, internal.link); 3485 bdev_qos_io_submit(bdev_ch, bdev->internal.qos); 3486 } 3487 } else { 3488 SPDK_ERRLOG("unknown bdev_ch flag %x found\n", bdev_ch->flags); 3489 _bdev_io_complete_in_submit(bdev_ch, bdev_io, SPDK_BDEV_IO_STATUS_FAILED); 3490 } 3491 } 3492 3493 bool bdev_lba_range_overlapped(struct lba_range *range1, struct lba_range *range2); 3494 3495 bool 3496 bdev_lba_range_overlapped(struct lba_range *range1, struct lba_range *range2) 3497 { 3498 if (range1->length == 0 || range2->length == 0) { 3499 return false; 3500 } 3501 3502 if (range1->offset + range1->length <= range2->offset) { 3503 return false; 3504 } 3505 3506 if (range2->offset + range2->length <= range1->offset) { 3507 return false; 3508 } 3509 3510 return true; 3511 } 3512 3513 static bool 3514 bdev_io_range_is_locked(struct spdk_bdev_io *bdev_io, struct lba_range *range) 3515 { 3516 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 3517 struct lba_range r; 3518 3519 switch (bdev_io->type) { 3520 case SPDK_BDEV_IO_TYPE_NVME_IO: 3521 case SPDK_BDEV_IO_TYPE_NVME_IO_MD: 3522 /* Don't try to decode the NVMe command - just assume worst-case and that 3523 * it overlaps a locked range. 3524 */ 3525 return true; 3526 case SPDK_BDEV_IO_TYPE_READ: 3527 if (!range->quiesce) { 3528 return false; 3529 } 3530 /* fallthrough */ 3531 case SPDK_BDEV_IO_TYPE_WRITE: 3532 case SPDK_BDEV_IO_TYPE_UNMAP: 3533 case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: 3534 case SPDK_BDEV_IO_TYPE_ZCOPY: 3535 case SPDK_BDEV_IO_TYPE_COPY: 3536 r.offset = bdev_io->u.bdev.offset_blocks; 3537 r.length = bdev_io->u.bdev.num_blocks; 3538 if (!bdev_lba_range_overlapped(range, &r)) { 3539 /* This I/O doesn't overlap the specified LBA range. */ 3540 return false; 3541 } else if (range->owner_ch == ch && range->locked_ctx == bdev_io->internal.caller_ctx) { 3542 /* This I/O overlaps, but the I/O is on the same channel that locked this 3543 * range, and the caller_ctx is the same as the locked_ctx. This means 3544 * that this I/O is associated with the lock, and is allowed to execute. 3545 */ 3546 return false; 3547 } else { 3548 return true; 3549 } 3550 default: 3551 return false; 3552 } 3553 } 3554 3555 void 3556 bdev_io_submit(struct spdk_bdev_io *bdev_io) 3557 { 3558 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 3559 3560 assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_PENDING); 3561 3562 if (!TAILQ_EMPTY(&ch->locked_ranges)) { 3563 struct lba_range *range; 3564 3565 TAILQ_FOREACH(range, &ch->locked_ranges, tailq) { 3566 if (bdev_io_range_is_locked(bdev_io, range)) { 3567 TAILQ_INSERT_TAIL(&ch->io_locked, bdev_io, internal.ch_link); 3568 return; 3569 } 3570 } 3571 } 3572 3573 bdev_ch_add_to_io_submitted(bdev_io); 3574 3575 bdev_io->internal.submit_tsc = spdk_get_ticks(); 3576 spdk_trace_record_tsc(bdev_io->internal.submit_tsc, TRACE_BDEV_IO_START, 3577 ch->trace_id, bdev_io->u.bdev.num_blocks, 3578 (uintptr_t)bdev_io, (uint64_t)bdev_io->type, bdev_io->internal.caller_ctx, 3579 bdev_io->u.bdev.offset_blocks, ch->queue_depth); 3580 3581 if (bdev_io->internal.split) { 3582 bdev_io_split(bdev_io); 3583 return; 3584 } 3585 3586 _bdev_io_submit(bdev_io); 3587 } 3588 3589 static inline void 3590 _bdev_io_ext_use_bounce_buffer(struct spdk_bdev_io *bdev_io) 3591 { 3592 /* bdev doesn't support memory domains, thereby buffers in this IO request can't 3593 * be accessed directly. It is needed to allocate buffers before issuing IO operation. 3594 * For write operation we need to pull buffers from memory domain before submitting IO. 3595 * Once read operation completes, we need to use memory_domain push functionality to 3596 * update data in original memory domain IO buffer 3597 * This IO request will go through a regular IO flow, so clear memory domains pointers */ 3598 bdev_io->u.bdev.memory_domain = NULL; 3599 bdev_io->u.bdev.memory_domain_ctx = NULL; 3600 _bdev_memory_domain_io_get_buf(bdev_io, _bdev_memory_domain_get_io_cb, 3601 bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen); 3602 } 3603 3604 static inline void 3605 _bdev_io_submit_ext(struct spdk_bdev_desc *desc, struct spdk_bdev_io *bdev_io) 3606 { 3607 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 3608 bool needs_exec = bdev_io_needs_sequence_exec(desc, bdev_io); 3609 3610 if (spdk_unlikely(ch->flags & BDEV_CH_RESET_IN_PROGRESS)) { 3611 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_ABORTED; 3612 bdev_io_complete_unsubmitted(bdev_io); 3613 return; 3614 } 3615 3616 /* We need to allocate bounce buffer if bdev doesn't support memory domains, or if it does 3617 * support them, but we need to execute an accel sequence and the data buffer is from accel 3618 * memory domain (to avoid doing a push/pull from that domain). 3619 */ 3620 if ((bdev_io->internal.memory_domain && !desc->memory_domains_supported) || 3621 (needs_exec && bdev_io->internal.memory_domain == spdk_accel_get_memory_domain())) { 3622 _bdev_io_ext_use_bounce_buffer(bdev_io); 3623 return; 3624 } 3625 3626 if (needs_exec) { 3627 if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) { 3628 bdev_io_exec_sequence(bdev_io, bdev_io_submit_sequence_cb); 3629 return; 3630 } 3631 /* For reads we'll execute the sequence after the data is read, so, for now, only 3632 * clear out accel_sequence pointer and submit the IO */ 3633 assert(bdev_io->type == SPDK_BDEV_IO_TYPE_READ); 3634 bdev_io->u.bdev.accel_sequence = NULL; 3635 } 3636 3637 bdev_io_submit(bdev_io); 3638 } 3639 3640 static void 3641 bdev_io_submit_reset(struct spdk_bdev_io *bdev_io) 3642 { 3643 struct spdk_bdev *bdev = bdev_io->bdev; 3644 struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch; 3645 struct spdk_io_channel *ch = bdev_ch->channel; 3646 3647 assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_PENDING); 3648 3649 bdev_io->internal.in_submit_request = true; 3650 bdev_submit_request(bdev, ch, bdev_io); 3651 bdev_io->internal.in_submit_request = false; 3652 } 3653 3654 void 3655 bdev_io_init(struct spdk_bdev_io *bdev_io, 3656 struct spdk_bdev *bdev, void *cb_arg, 3657 spdk_bdev_io_completion_cb cb) 3658 { 3659 bdev_io->bdev = bdev; 3660 bdev_io->internal.caller_ctx = cb_arg; 3661 bdev_io->internal.cb = cb; 3662 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_PENDING; 3663 bdev_io->internal.in_submit_request = false; 3664 bdev_io->internal.buf = NULL; 3665 bdev_io->internal.orig_iovs = NULL; 3666 bdev_io->internal.orig_iovcnt = 0; 3667 bdev_io->internal.orig_md_iov.iov_base = NULL; 3668 bdev_io->internal.error.nvme.cdw0 = 0; 3669 bdev_io->num_retries = 0; 3670 bdev_io->internal.get_buf_cb = NULL; 3671 bdev_io->internal.get_aux_buf_cb = NULL; 3672 bdev_io->internal.memory_domain = NULL; 3673 bdev_io->internal.memory_domain_ctx = NULL; 3674 bdev_io->internal.data_transfer_cpl = NULL; 3675 bdev_io->internal.split = bdev_io_should_split(bdev_io); 3676 bdev_io->internal.accel_sequence = NULL; 3677 bdev_io->internal.has_accel_sequence = false; 3678 } 3679 3680 static bool 3681 bdev_io_type_supported(struct spdk_bdev *bdev, enum spdk_bdev_io_type io_type) 3682 { 3683 return bdev->fn_table->io_type_supported(bdev->ctxt, io_type); 3684 } 3685 3686 bool 3687 spdk_bdev_io_type_supported(struct spdk_bdev *bdev, enum spdk_bdev_io_type io_type) 3688 { 3689 bool supported; 3690 3691 supported = bdev_io_type_supported(bdev, io_type); 3692 3693 if (!supported) { 3694 switch (io_type) { 3695 case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: 3696 /* The bdev layer will emulate write zeroes as long as write is supported. */ 3697 supported = bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE); 3698 break; 3699 default: 3700 break; 3701 } 3702 } 3703 3704 return supported; 3705 } 3706 3707 uint64_t 3708 spdk_bdev_io_get_submit_tsc(struct spdk_bdev_io *bdev_io) 3709 { 3710 return bdev_io->internal.submit_tsc; 3711 } 3712 3713 int 3714 spdk_bdev_dump_info_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w) 3715 { 3716 if (bdev->fn_table->dump_info_json) { 3717 return bdev->fn_table->dump_info_json(bdev->ctxt, w); 3718 } 3719 3720 return 0; 3721 } 3722 3723 static void 3724 bdev_qos_update_max_quota_per_timeslice(struct spdk_bdev_qos *qos) 3725 { 3726 uint32_t max_per_timeslice = 0; 3727 int i; 3728 3729 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 3730 if (qos->rate_limits[i].limit == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) { 3731 qos->rate_limits[i].max_per_timeslice = 0; 3732 continue; 3733 } 3734 3735 max_per_timeslice = qos->rate_limits[i].limit * 3736 SPDK_BDEV_QOS_TIMESLICE_IN_USEC / SPDK_SEC_TO_USEC; 3737 3738 qos->rate_limits[i].max_per_timeslice = spdk_max(max_per_timeslice, 3739 qos->rate_limits[i].min_per_timeslice); 3740 3741 __atomic_store_n(&qos->rate_limits[i].remaining_this_timeslice, 3742 qos->rate_limits[i].max_per_timeslice, __ATOMIC_RELEASE); 3743 } 3744 3745 bdev_qos_set_ops(qos); 3746 } 3747 3748 static void 3749 bdev_channel_submit_qos_io(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 3750 struct spdk_io_channel *io_ch, void *ctx) 3751 { 3752 struct spdk_bdev_channel *bdev_ch = __io_ch_to_bdev_ch(io_ch); 3753 int status; 3754 3755 bdev_qos_io_submit(bdev_ch, bdev->internal.qos); 3756 3757 /* if all IOs were sent then continue the iteration, otherwise - stop it */ 3758 /* TODO: channels round robing */ 3759 status = TAILQ_EMPTY(&bdev_ch->qos_queued_io) ? 0 : 1; 3760 3761 spdk_bdev_for_each_channel_continue(i, status); 3762 } 3763 3764 3765 static void 3766 bdev_channel_submit_qos_io_done(struct spdk_bdev *bdev, void *ctx, int status) 3767 { 3768 3769 } 3770 3771 static int 3772 bdev_channel_poll_qos(void *arg) 3773 { 3774 struct spdk_bdev *bdev = arg; 3775 struct spdk_bdev_qos *qos = bdev->internal.qos; 3776 uint64_t now = spdk_get_ticks(); 3777 int i; 3778 int64_t remaining_last_timeslice; 3779 3780 if (now < (qos->last_timeslice + qos->timeslice_size)) { 3781 /* We received our callback earlier than expected - return 3782 * immediately and wait to do accounting until at least one 3783 * timeslice has actually expired. This should never happen 3784 * with a well-behaved timer implementation. 3785 */ 3786 return SPDK_POLLER_IDLE; 3787 } 3788 3789 /* Reset for next round of rate limiting */ 3790 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 3791 /* We may have allowed the IOs or bytes to slightly overrun in the last 3792 * timeslice. remaining_this_timeslice is signed, so if it's negative 3793 * here, we'll account for the overrun so that the next timeslice will 3794 * be appropriately reduced. 3795 */ 3796 remaining_last_timeslice = __atomic_exchange_n(&qos->rate_limits[i].remaining_this_timeslice, 3797 0, __ATOMIC_RELAXED); 3798 if (remaining_last_timeslice < 0) { 3799 /* There could be a race condition here as both bdev_qos_rw_queue_io() and bdev_channel_poll_qos() 3800 * potentially use 2 atomic ops each, so they can intertwine. 3801 * This race can potentialy cause the limits to be a little fuzzy but won't cause any real damage. 3802 */ 3803 __atomic_store_n(&qos->rate_limits[i].remaining_this_timeslice, 3804 remaining_last_timeslice, __ATOMIC_RELAXED); 3805 } 3806 } 3807 3808 while (now >= (qos->last_timeslice + qos->timeslice_size)) { 3809 qos->last_timeslice += qos->timeslice_size; 3810 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 3811 __atomic_add_fetch(&qos->rate_limits[i].remaining_this_timeslice, 3812 qos->rate_limits[i].max_per_timeslice, __ATOMIC_RELAXED); 3813 } 3814 } 3815 3816 spdk_bdev_for_each_channel(bdev, bdev_channel_submit_qos_io, qos, 3817 bdev_channel_submit_qos_io_done); 3818 3819 return SPDK_POLLER_BUSY; 3820 } 3821 3822 static void 3823 bdev_channel_destroy_resource(struct spdk_bdev_channel *ch) 3824 { 3825 struct spdk_bdev_shared_resource *shared_resource; 3826 struct lba_range *range; 3827 3828 bdev_free_io_stat(ch->stat); 3829 #ifdef SPDK_CONFIG_VTUNE 3830 bdev_free_io_stat(ch->prev_stat); 3831 #endif 3832 3833 while (!TAILQ_EMPTY(&ch->locked_ranges)) { 3834 range = TAILQ_FIRST(&ch->locked_ranges); 3835 TAILQ_REMOVE(&ch->locked_ranges, range, tailq); 3836 free(range); 3837 } 3838 3839 spdk_put_io_channel(ch->channel); 3840 spdk_put_io_channel(ch->accel_channel); 3841 3842 shared_resource = ch->shared_resource; 3843 3844 assert(TAILQ_EMPTY(&ch->io_locked)); 3845 assert(TAILQ_EMPTY(&ch->io_submitted)); 3846 assert(TAILQ_EMPTY(&ch->io_accel_exec)); 3847 assert(TAILQ_EMPTY(&ch->io_memory_domain)); 3848 assert(ch->io_outstanding == 0); 3849 assert(shared_resource->ref > 0); 3850 shared_resource->ref--; 3851 if (shared_resource->ref == 0) { 3852 assert(shared_resource->io_outstanding == 0); 3853 TAILQ_REMOVE(&shared_resource->mgmt_ch->shared_resources, shared_resource, link); 3854 spdk_put_io_channel(spdk_io_channel_from_ctx(shared_resource->mgmt_ch)); 3855 spdk_poller_unregister(&shared_resource->nomem_poller); 3856 free(shared_resource); 3857 } 3858 } 3859 3860 static void 3861 bdev_enable_qos(struct spdk_bdev *bdev, struct spdk_bdev_channel *ch) 3862 { 3863 struct spdk_bdev_qos *qos = bdev->internal.qos; 3864 int i; 3865 3866 assert(spdk_spin_held(&bdev->internal.spinlock)); 3867 3868 /* Rate limiting on this bdev enabled */ 3869 if (qos) { 3870 if (qos->ch == NULL) { 3871 struct spdk_io_channel *io_ch; 3872 3873 SPDK_DEBUGLOG(bdev, "Selecting channel %p as QoS channel for bdev %s on thread %p\n", ch, 3874 bdev->name, spdk_get_thread()); 3875 3876 /* No qos channel has been selected, so set one up */ 3877 3878 /* Take another reference to ch */ 3879 io_ch = spdk_get_io_channel(__bdev_to_io_dev(bdev)); 3880 assert(io_ch != NULL); 3881 qos->ch = ch; 3882 3883 qos->thread = spdk_io_channel_get_thread(io_ch); 3884 3885 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 3886 if (bdev_qos_is_iops_rate_limit(i) == true) { 3887 qos->rate_limits[i].min_per_timeslice = 3888 SPDK_BDEV_QOS_MIN_IO_PER_TIMESLICE; 3889 } else { 3890 qos->rate_limits[i].min_per_timeslice = 3891 SPDK_BDEV_QOS_MIN_BYTE_PER_TIMESLICE; 3892 } 3893 3894 if (qos->rate_limits[i].limit == 0) { 3895 qos->rate_limits[i].limit = SPDK_BDEV_QOS_LIMIT_NOT_DEFINED; 3896 } 3897 } 3898 bdev_qos_update_max_quota_per_timeslice(qos); 3899 qos->timeslice_size = 3900 SPDK_BDEV_QOS_TIMESLICE_IN_USEC * spdk_get_ticks_hz() / SPDK_SEC_TO_USEC; 3901 qos->last_timeslice = spdk_get_ticks(); 3902 qos->poller = SPDK_POLLER_REGISTER(bdev_channel_poll_qos, 3903 bdev, 3904 SPDK_BDEV_QOS_TIMESLICE_IN_USEC); 3905 } 3906 3907 ch->flags |= BDEV_CH_QOS_ENABLED; 3908 } 3909 } 3910 3911 struct poll_timeout_ctx { 3912 struct spdk_bdev_desc *desc; 3913 uint64_t timeout_in_sec; 3914 spdk_bdev_io_timeout_cb cb_fn; 3915 void *cb_arg; 3916 }; 3917 3918 static void 3919 bdev_desc_free(struct spdk_bdev_desc *desc) 3920 { 3921 spdk_spin_destroy(&desc->spinlock); 3922 free(desc->media_events_buffer); 3923 free(desc); 3924 } 3925 3926 static void 3927 bdev_channel_poll_timeout_io_done(struct spdk_bdev *bdev, void *_ctx, int status) 3928 { 3929 struct poll_timeout_ctx *ctx = _ctx; 3930 struct spdk_bdev_desc *desc = ctx->desc; 3931 3932 free(ctx); 3933 3934 spdk_spin_lock(&desc->spinlock); 3935 desc->refs--; 3936 if (desc->closed == true && desc->refs == 0) { 3937 spdk_spin_unlock(&desc->spinlock); 3938 bdev_desc_free(desc); 3939 return; 3940 } 3941 spdk_spin_unlock(&desc->spinlock); 3942 } 3943 3944 static void 3945 bdev_channel_poll_timeout_io(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 3946 struct spdk_io_channel *io_ch, void *_ctx) 3947 { 3948 struct poll_timeout_ctx *ctx = _ctx; 3949 struct spdk_bdev_channel *bdev_ch = __io_ch_to_bdev_ch(io_ch); 3950 struct spdk_bdev_desc *desc = ctx->desc; 3951 struct spdk_bdev_io *bdev_io; 3952 uint64_t now; 3953 3954 spdk_spin_lock(&desc->spinlock); 3955 if (desc->closed == true) { 3956 spdk_spin_unlock(&desc->spinlock); 3957 spdk_bdev_for_each_channel_continue(i, -1); 3958 return; 3959 } 3960 spdk_spin_unlock(&desc->spinlock); 3961 3962 now = spdk_get_ticks(); 3963 TAILQ_FOREACH(bdev_io, &bdev_ch->io_submitted, internal.ch_link) { 3964 /* Exclude any I/O that are generated via splitting. */ 3965 if (bdev_io->internal.cb == bdev_io_split_done) { 3966 continue; 3967 } 3968 3969 /* Once we find an I/O that has not timed out, we can immediately 3970 * exit the loop. 3971 */ 3972 if (now < (bdev_io->internal.submit_tsc + 3973 ctx->timeout_in_sec * spdk_get_ticks_hz())) { 3974 goto end; 3975 } 3976 3977 if (bdev_io->internal.desc == desc) { 3978 ctx->cb_fn(ctx->cb_arg, bdev_io); 3979 } 3980 } 3981 3982 end: 3983 spdk_bdev_for_each_channel_continue(i, 0); 3984 } 3985 3986 static int 3987 bdev_poll_timeout_io(void *arg) 3988 { 3989 struct spdk_bdev_desc *desc = arg; 3990 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 3991 struct poll_timeout_ctx *ctx; 3992 3993 ctx = calloc(1, sizeof(struct poll_timeout_ctx)); 3994 if (!ctx) { 3995 SPDK_ERRLOG("failed to allocate memory\n"); 3996 return SPDK_POLLER_BUSY; 3997 } 3998 ctx->desc = desc; 3999 ctx->cb_arg = desc->cb_arg; 4000 ctx->cb_fn = desc->cb_fn; 4001 ctx->timeout_in_sec = desc->timeout_in_sec; 4002 4003 /* Take a ref on the descriptor in case it gets closed while we are checking 4004 * all of the channels. 4005 */ 4006 spdk_spin_lock(&desc->spinlock); 4007 desc->refs++; 4008 spdk_spin_unlock(&desc->spinlock); 4009 4010 spdk_bdev_for_each_channel(bdev, bdev_channel_poll_timeout_io, ctx, 4011 bdev_channel_poll_timeout_io_done); 4012 4013 return SPDK_POLLER_BUSY; 4014 } 4015 4016 int 4017 spdk_bdev_set_timeout(struct spdk_bdev_desc *desc, uint64_t timeout_in_sec, 4018 spdk_bdev_io_timeout_cb cb_fn, void *cb_arg) 4019 { 4020 assert(desc->thread == spdk_get_thread()); 4021 4022 spdk_poller_unregister(&desc->io_timeout_poller); 4023 4024 if (timeout_in_sec) { 4025 assert(cb_fn != NULL); 4026 desc->io_timeout_poller = SPDK_POLLER_REGISTER(bdev_poll_timeout_io, 4027 desc, 4028 SPDK_BDEV_IO_POLL_INTERVAL_IN_MSEC * SPDK_SEC_TO_USEC / 4029 1000); 4030 if (desc->io_timeout_poller == NULL) { 4031 SPDK_ERRLOG("can not register the desc timeout IO poller\n"); 4032 return -1; 4033 } 4034 } 4035 4036 desc->cb_fn = cb_fn; 4037 desc->cb_arg = cb_arg; 4038 desc->timeout_in_sec = timeout_in_sec; 4039 4040 return 0; 4041 } 4042 4043 static int 4044 bdev_channel_create(void *io_device, void *ctx_buf) 4045 { 4046 struct spdk_bdev *bdev = __bdev_from_io_dev(io_device); 4047 struct spdk_bdev_channel *ch = ctx_buf; 4048 struct spdk_io_channel *mgmt_io_ch; 4049 struct spdk_bdev_mgmt_channel *mgmt_ch; 4050 struct spdk_bdev_shared_resource *shared_resource; 4051 struct lba_range *range; 4052 4053 ch->bdev = bdev; 4054 ch->channel = bdev->fn_table->get_io_channel(bdev->ctxt); 4055 if (!ch->channel) { 4056 return -1; 4057 } 4058 4059 ch->accel_channel = spdk_accel_get_io_channel(); 4060 if (!ch->accel_channel) { 4061 spdk_put_io_channel(ch->channel); 4062 return -1; 4063 } 4064 4065 spdk_trace_record(TRACE_BDEV_IOCH_CREATE, bdev->internal.trace_id, 0, 0, 4066 spdk_thread_get_id(spdk_io_channel_get_thread(ch->channel))); 4067 4068 assert(ch->histogram == NULL); 4069 if (bdev->internal.histogram_enabled) { 4070 ch->histogram = spdk_histogram_data_alloc(); 4071 if (ch->histogram == NULL) { 4072 SPDK_ERRLOG("Could not allocate histogram\n"); 4073 } 4074 } 4075 4076 mgmt_io_ch = spdk_get_io_channel(&g_bdev_mgr); 4077 if (!mgmt_io_ch) { 4078 spdk_put_io_channel(ch->channel); 4079 spdk_put_io_channel(ch->accel_channel); 4080 return -1; 4081 } 4082 4083 mgmt_ch = __io_ch_to_bdev_mgmt_ch(mgmt_io_ch); 4084 TAILQ_FOREACH(shared_resource, &mgmt_ch->shared_resources, link) { 4085 if (shared_resource->shared_ch == ch->channel) { 4086 spdk_put_io_channel(mgmt_io_ch); 4087 shared_resource->ref++; 4088 break; 4089 } 4090 } 4091 4092 if (shared_resource == NULL) { 4093 shared_resource = calloc(1, sizeof(*shared_resource)); 4094 if (shared_resource == NULL) { 4095 spdk_put_io_channel(ch->channel); 4096 spdk_put_io_channel(ch->accel_channel); 4097 spdk_put_io_channel(mgmt_io_ch); 4098 return -1; 4099 } 4100 4101 shared_resource->mgmt_ch = mgmt_ch; 4102 shared_resource->io_outstanding = 0; 4103 TAILQ_INIT(&shared_resource->nomem_io); 4104 shared_resource->nomem_threshold = 0; 4105 shared_resource->shared_ch = ch->channel; 4106 shared_resource->ref = 1; 4107 TAILQ_INSERT_TAIL(&mgmt_ch->shared_resources, shared_resource, link); 4108 } 4109 4110 ch->io_outstanding = 0; 4111 TAILQ_INIT(&ch->queued_resets); 4112 TAILQ_INIT(&ch->locked_ranges); 4113 TAILQ_INIT(&ch->qos_queued_io); 4114 ch->flags = 0; 4115 ch->trace_id = bdev->internal.trace_id; 4116 ch->shared_resource = shared_resource; 4117 4118 TAILQ_INIT(&ch->io_submitted); 4119 TAILQ_INIT(&ch->io_locked); 4120 TAILQ_INIT(&ch->io_accel_exec); 4121 TAILQ_INIT(&ch->io_memory_domain); 4122 4123 ch->stat = bdev_alloc_io_stat(false); 4124 if (ch->stat == NULL) { 4125 bdev_channel_destroy_resource(ch); 4126 return -1; 4127 } 4128 4129 ch->stat->ticks_rate = spdk_get_ticks_hz(); 4130 4131 #ifdef SPDK_CONFIG_VTUNE 4132 { 4133 char *name; 4134 __itt_init_ittlib(NULL, 0); 4135 name = spdk_sprintf_alloc("spdk_bdev_%s_%p", ch->bdev->name, ch); 4136 if (!name) { 4137 bdev_channel_destroy_resource(ch); 4138 return -1; 4139 } 4140 ch->handle = __itt_string_handle_create(name); 4141 free(name); 4142 ch->start_tsc = spdk_get_ticks(); 4143 ch->interval_tsc = spdk_get_ticks_hz() / 100; 4144 ch->prev_stat = bdev_alloc_io_stat(false); 4145 if (ch->prev_stat == NULL) { 4146 bdev_channel_destroy_resource(ch); 4147 return -1; 4148 } 4149 } 4150 #endif 4151 4152 spdk_spin_lock(&bdev->internal.spinlock); 4153 bdev_enable_qos(bdev, ch); 4154 4155 TAILQ_FOREACH(range, &bdev->internal.locked_ranges, tailq) { 4156 struct lba_range *new_range; 4157 4158 new_range = calloc(1, sizeof(*new_range)); 4159 if (new_range == NULL) { 4160 spdk_spin_unlock(&bdev->internal.spinlock); 4161 bdev_channel_destroy_resource(ch); 4162 return -1; 4163 } 4164 new_range->length = range->length; 4165 new_range->offset = range->offset; 4166 new_range->locked_ctx = range->locked_ctx; 4167 TAILQ_INSERT_TAIL(&ch->locked_ranges, new_range, tailq); 4168 } 4169 4170 spdk_spin_unlock(&bdev->internal.spinlock); 4171 4172 return 0; 4173 } 4174 4175 static int 4176 bdev_abort_all_buf_io_cb(struct spdk_iobuf_channel *ch, struct spdk_iobuf_entry *entry, 4177 void *cb_ctx) 4178 { 4179 struct spdk_bdev_channel *bdev_ch = cb_ctx; 4180 struct spdk_bdev_io *bdev_io; 4181 uint64_t buf_len; 4182 4183 bdev_io = SPDK_CONTAINEROF(entry, struct spdk_bdev_io, internal.iobuf); 4184 if (bdev_io->internal.ch == bdev_ch) { 4185 buf_len = bdev_io_get_max_buf_len(bdev_io, bdev_io->internal.buf_len); 4186 spdk_iobuf_entry_abort(ch, entry, buf_len); 4187 spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED); 4188 } 4189 4190 return 0; 4191 } 4192 4193 /* 4194 * Abort I/O that are waiting on a data buffer. 4195 */ 4196 static void 4197 bdev_abort_all_buf_io(struct spdk_bdev_mgmt_channel *mgmt_ch, struct spdk_bdev_channel *ch) 4198 { 4199 spdk_iobuf_for_each_entry(&mgmt_ch->iobuf, &mgmt_ch->iobuf.small, 4200 bdev_abort_all_buf_io_cb, ch); 4201 spdk_iobuf_for_each_entry(&mgmt_ch->iobuf, &mgmt_ch->iobuf.large, 4202 bdev_abort_all_buf_io_cb, ch); 4203 } 4204 4205 /* 4206 * Abort I/O that are queued waiting for submission. These types of I/O are 4207 * linked using the spdk_bdev_io link TAILQ_ENTRY. 4208 */ 4209 static void 4210 bdev_abort_all_queued_io(bdev_io_tailq_t *queue, struct spdk_bdev_channel *ch) 4211 { 4212 struct spdk_bdev_io *bdev_io, *tmp; 4213 4214 TAILQ_FOREACH_SAFE(bdev_io, queue, internal.link, tmp) { 4215 if (bdev_io->internal.ch == ch) { 4216 TAILQ_REMOVE(queue, bdev_io, internal.link); 4217 /* 4218 * spdk_bdev_io_complete() assumes that the completed I/O had 4219 * been submitted to the bdev module. Since in this case it 4220 * hadn't, bump io_outstanding to account for the decrement 4221 * that spdk_bdev_io_complete() will do. 4222 */ 4223 if (bdev_io->type != SPDK_BDEV_IO_TYPE_RESET) { 4224 bdev_io_increment_outstanding(ch, ch->shared_resource); 4225 } 4226 spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED); 4227 } 4228 } 4229 } 4230 4231 static bool 4232 bdev_abort_queued_io(bdev_io_tailq_t *queue, struct spdk_bdev_io *bio_to_abort) 4233 { 4234 struct spdk_bdev_io *bdev_io; 4235 4236 TAILQ_FOREACH(bdev_io, queue, internal.link) { 4237 if (bdev_io == bio_to_abort) { 4238 TAILQ_REMOVE(queue, bio_to_abort, internal.link); 4239 spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_ABORTED); 4240 return true; 4241 } 4242 } 4243 4244 return false; 4245 } 4246 4247 static int 4248 bdev_abort_buf_io_cb(struct spdk_iobuf_channel *ch, struct spdk_iobuf_entry *entry, void *cb_ctx) 4249 { 4250 struct spdk_bdev_io *bdev_io, *bio_to_abort = cb_ctx; 4251 uint64_t buf_len; 4252 4253 bdev_io = SPDK_CONTAINEROF(entry, struct spdk_bdev_io, internal.iobuf); 4254 if (bdev_io == bio_to_abort) { 4255 buf_len = bdev_io_get_max_buf_len(bdev_io, bdev_io->internal.buf_len); 4256 spdk_iobuf_entry_abort(ch, entry, buf_len); 4257 spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_ABORTED); 4258 return 1; 4259 } 4260 4261 return 0; 4262 } 4263 4264 static bool 4265 bdev_abort_buf_io(struct spdk_bdev_mgmt_channel *mgmt_ch, struct spdk_bdev_io *bio_to_abort) 4266 { 4267 int rc; 4268 4269 rc = spdk_iobuf_for_each_entry(&mgmt_ch->iobuf, &mgmt_ch->iobuf.small, 4270 bdev_abort_buf_io_cb, bio_to_abort); 4271 if (rc == 1) { 4272 return true; 4273 } 4274 4275 rc = spdk_iobuf_for_each_entry(&mgmt_ch->iobuf, &mgmt_ch->iobuf.large, 4276 bdev_abort_buf_io_cb, bio_to_abort); 4277 return rc == 1; 4278 } 4279 4280 static void 4281 bdev_qos_channel_destroy(void *cb_arg) 4282 { 4283 struct spdk_bdev_qos *qos = cb_arg; 4284 4285 spdk_put_io_channel(spdk_io_channel_from_ctx(qos->ch)); 4286 spdk_poller_unregister(&qos->poller); 4287 4288 SPDK_DEBUGLOG(bdev, "Free QoS %p.\n", qos); 4289 4290 free(qos); 4291 } 4292 4293 static int 4294 bdev_qos_destroy(struct spdk_bdev *bdev) 4295 { 4296 int i; 4297 4298 /* 4299 * Cleanly shutting down the QoS poller is tricky, because 4300 * during the asynchronous operation the user could open 4301 * a new descriptor and create a new channel, spawning 4302 * a new QoS poller. 4303 * 4304 * The strategy is to create a new QoS structure here and swap it 4305 * in. The shutdown path then continues to refer to the old one 4306 * until it completes and then releases it. 4307 */ 4308 struct spdk_bdev_qos *new_qos, *old_qos; 4309 4310 old_qos = bdev->internal.qos; 4311 4312 new_qos = calloc(1, sizeof(*new_qos)); 4313 if (!new_qos) { 4314 SPDK_ERRLOG("Unable to allocate memory to shut down QoS.\n"); 4315 return -ENOMEM; 4316 } 4317 4318 /* Copy the old QoS data into the newly allocated structure */ 4319 memcpy(new_qos, old_qos, sizeof(*new_qos)); 4320 4321 /* Zero out the key parts of the QoS structure */ 4322 new_qos->ch = NULL; 4323 new_qos->thread = NULL; 4324 new_qos->poller = NULL; 4325 /* 4326 * The limit member of spdk_bdev_qos_limit structure is not zeroed. 4327 * It will be used later for the new QoS structure. 4328 */ 4329 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 4330 new_qos->rate_limits[i].remaining_this_timeslice = 0; 4331 new_qos->rate_limits[i].min_per_timeslice = 0; 4332 new_qos->rate_limits[i].max_per_timeslice = 0; 4333 } 4334 4335 bdev->internal.qos = new_qos; 4336 4337 if (old_qos->thread == NULL) { 4338 free(old_qos); 4339 } else { 4340 spdk_thread_send_msg(old_qos->thread, bdev_qos_channel_destroy, old_qos); 4341 } 4342 4343 /* It is safe to continue with destroying the bdev even though the QoS channel hasn't 4344 * been destroyed yet. The destruction path will end up waiting for the final 4345 * channel to be put before it releases resources. */ 4346 4347 return 0; 4348 } 4349 4350 void 4351 spdk_bdev_add_io_stat(struct spdk_bdev_io_stat *total, struct spdk_bdev_io_stat *add) 4352 { 4353 total->bytes_read += add->bytes_read; 4354 total->num_read_ops += add->num_read_ops; 4355 total->bytes_written += add->bytes_written; 4356 total->num_write_ops += add->num_write_ops; 4357 total->bytes_unmapped += add->bytes_unmapped; 4358 total->num_unmap_ops += add->num_unmap_ops; 4359 total->bytes_copied += add->bytes_copied; 4360 total->num_copy_ops += add->num_copy_ops; 4361 total->read_latency_ticks += add->read_latency_ticks; 4362 total->write_latency_ticks += add->write_latency_ticks; 4363 total->unmap_latency_ticks += add->unmap_latency_ticks; 4364 total->copy_latency_ticks += add->copy_latency_ticks; 4365 if (total->max_read_latency_ticks < add->max_read_latency_ticks) { 4366 total->max_read_latency_ticks = add->max_read_latency_ticks; 4367 } 4368 if (total->min_read_latency_ticks > add->min_read_latency_ticks) { 4369 total->min_read_latency_ticks = add->min_read_latency_ticks; 4370 } 4371 if (total->max_write_latency_ticks < add->max_write_latency_ticks) { 4372 total->max_write_latency_ticks = add->max_write_latency_ticks; 4373 } 4374 if (total->min_write_latency_ticks > add->min_write_latency_ticks) { 4375 total->min_write_latency_ticks = add->min_write_latency_ticks; 4376 } 4377 if (total->max_unmap_latency_ticks < add->max_unmap_latency_ticks) { 4378 total->max_unmap_latency_ticks = add->max_unmap_latency_ticks; 4379 } 4380 if (total->min_unmap_latency_ticks > add->min_unmap_latency_ticks) { 4381 total->min_unmap_latency_ticks = add->min_unmap_latency_ticks; 4382 } 4383 if (total->max_copy_latency_ticks < add->max_copy_latency_ticks) { 4384 total->max_copy_latency_ticks = add->max_copy_latency_ticks; 4385 } 4386 if (total->min_copy_latency_ticks > add->min_copy_latency_ticks) { 4387 total->min_copy_latency_ticks = add->min_copy_latency_ticks; 4388 } 4389 } 4390 4391 static void 4392 bdev_get_io_stat(struct spdk_bdev_io_stat *to_stat, struct spdk_bdev_io_stat *from_stat) 4393 { 4394 memcpy(to_stat, from_stat, offsetof(struct spdk_bdev_io_stat, io_error)); 4395 4396 if (to_stat->io_error != NULL && from_stat->io_error != NULL) { 4397 memcpy(to_stat->io_error, from_stat->io_error, 4398 sizeof(struct spdk_bdev_io_error_stat)); 4399 } 4400 } 4401 4402 void 4403 spdk_bdev_reset_io_stat(struct spdk_bdev_io_stat *stat, enum spdk_bdev_reset_stat_mode mode) 4404 { 4405 stat->max_read_latency_ticks = 0; 4406 stat->min_read_latency_ticks = UINT64_MAX; 4407 stat->max_write_latency_ticks = 0; 4408 stat->min_write_latency_ticks = UINT64_MAX; 4409 stat->max_unmap_latency_ticks = 0; 4410 stat->min_unmap_latency_ticks = UINT64_MAX; 4411 stat->max_copy_latency_ticks = 0; 4412 stat->min_copy_latency_ticks = UINT64_MAX; 4413 4414 if (mode != SPDK_BDEV_RESET_STAT_ALL) { 4415 return; 4416 } 4417 4418 stat->bytes_read = 0; 4419 stat->num_read_ops = 0; 4420 stat->bytes_written = 0; 4421 stat->num_write_ops = 0; 4422 stat->bytes_unmapped = 0; 4423 stat->num_unmap_ops = 0; 4424 stat->bytes_copied = 0; 4425 stat->num_copy_ops = 0; 4426 stat->read_latency_ticks = 0; 4427 stat->write_latency_ticks = 0; 4428 stat->unmap_latency_ticks = 0; 4429 stat->copy_latency_ticks = 0; 4430 4431 if (stat->io_error != NULL) { 4432 memset(stat->io_error, 0, sizeof(struct spdk_bdev_io_error_stat)); 4433 } 4434 } 4435 4436 struct spdk_bdev_io_stat * 4437 bdev_alloc_io_stat(bool io_error_stat) 4438 { 4439 struct spdk_bdev_io_stat *stat; 4440 4441 stat = malloc(sizeof(struct spdk_bdev_io_stat)); 4442 if (stat == NULL) { 4443 return NULL; 4444 } 4445 4446 if (io_error_stat) { 4447 stat->io_error = malloc(sizeof(struct spdk_bdev_io_error_stat)); 4448 if (stat->io_error == NULL) { 4449 free(stat); 4450 return NULL; 4451 } 4452 } else { 4453 stat->io_error = NULL; 4454 } 4455 4456 spdk_bdev_reset_io_stat(stat, SPDK_BDEV_RESET_STAT_ALL); 4457 4458 return stat; 4459 } 4460 4461 void 4462 bdev_free_io_stat(struct spdk_bdev_io_stat *stat) 4463 { 4464 if (stat != NULL) { 4465 free(stat->io_error); 4466 free(stat); 4467 } 4468 } 4469 4470 void 4471 spdk_bdev_dump_io_stat_json(struct spdk_bdev_io_stat *stat, struct spdk_json_write_ctx *w) 4472 { 4473 int i; 4474 4475 spdk_json_write_named_uint64(w, "bytes_read", stat->bytes_read); 4476 spdk_json_write_named_uint64(w, "num_read_ops", stat->num_read_ops); 4477 spdk_json_write_named_uint64(w, "bytes_written", stat->bytes_written); 4478 spdk_json_write_named_uint64(w, "num_write_ops", stat->num_write_ops); 4479 spdk_json_write_named_uint64(w, "bytes_unmapped", stat->bytes_unmapped); 4480 spdk_json_write_named_uint64(w, "num_unmap_ops", stat->num_unmap_ops); 4481 spdk_json_write_named_uint64(w, "bytes_copied", stat->bytes_copied); 4482 spdk_json_write_named_uint64(w, "num_copy_ops", stat->num_copy_ops); 4483 spdk_json_write_named_uint64(w, "read_latency_ticks", stat->read_latency_ticks); 4484 spdk_json_write_named_uint64(w, "max_read_latency_ticks", stat->max_read_latency_ticks); 4485 spdk_json_write_named_uint64(w, "min_read_latency_ticks", 4486 stat->min_read_latency_ticks != UINT64_MAX ? 4487 stat->min_read_latency_ticks : 0); 4488 spdk_json_write_named_uint64(w, "write_latency_ticks", stat->write_latency_ticks); 4489 spdk_json_write_named_uint64(w, "max_write_latency_ticks", stat->max_write_latency_ticks); 4490 spdk_json_write_named_uint64(w, "min_write_latency_ticks", 4491 stat->min_write_latency_ticks != UINT64_MAX ? 4492 stat->min_write_latency_ticks : 0); 4493 spdk_json_write_named_uint64(w, "unmap_latency_ticks", stat->unmap_latency_ticks); 4494 spdk_json_write_named_uint64(w, "max_unmap_latency_ticks", stat->max_unmap_latency_ticks); 4495 spdk_json_write_named_uint64(w, "min_unmap_latency_ticks", 4496 stat->min_unmap_latency_ticks != UINT64_MAX ? 4497 stat->min_unmap_latency_ticks : 0); 4498 spdk_json_write_named_uint64(w, "copy_latency_ticks", stat->copy_latency_ticks); 4499 spdk_json_write_named_uint64(w, "max_copy_latency_ticks", stat->max_copy_latency_ticks); 4500 spdk_json_write_named_uint64(w, "min_copy_latency_ticks", 4501 stat->min_copy_latency_ticks != UINT64_MAX ? 4502 stat->min_copy_latency_ticks : 0); 4503 4504 if (stat->io_error != NULL) { 4505 spdk_json_write_named_object_begin(w, "io_error"); 4506 for (i = 0; i < -SPDK_MIN_BDEV_IO_STATUS; i++) { 4507 if (stat->io_error->error_status[i] != 0) { 4508 spdk_json_write_named_uint32(w, bdev_io_status_get_string(-(i + 1)), 4509 stat->io_error->error_status[i]); 4510 } 4511 } 4512 spdk_json_write_object_end(w); 4513 } 4514 } 4515 4516 static void 4517 bdev_channel_abort_queued_ios(struct spdk_bdev_channel *ch) 4518 { 4519 struct spdk_bdev_shared_resource *shared_resource = ch->shared_resource; 4520 struct spdk_bdev_mgmt_channel *mgmt_ch = shared_resource->mgmt_ch; 4521 4522 bdev_abort_all_queued_io(&shared_resource->nomem_io, ch); 4523 bdev_abort_all_buf_io(mgmt_ch, ch); 4524 } 4525 4526 static void 4527 bdev_channel_destroy(void *io_device, void *ctx_buf) 4528 { 4529 struct spdk_bdev_channel *ch = ctx_buf; 4530 4531 SPDK_DEBUGLOG(bdev, "Destroying channel %p for bdev %s on thread %p\n", ch, ch->bdev->name, 4532 spdk_get_thread()); 4533 4534 spdk_trace_record(TRACE_BDEV_IOCH_DESTROY, ch->bdev->internal.trace_id, 0, 0, 4535 spdk_thread_get_id(spdk_io_channel_get_thread(ch->channel))); 4536 4537 /* This channel is going away, so add its statistics into the bdev so that they don't get lost. */ 4538 spdk_spin_lock(&ch->bdev->internal.spinlock); 4539 spdk_bdev_add_io_stat(ch->bdev->internal.stat, ch->stat); 4540 spdk_spin_unlock(&ch->bdev->internal.spinlock); 4541 4542 bdev_abort_all_queued_io(&ch->queued_resets, ch); 4543 4544 bdev_channel_abort_queued_ios(ch); 4545 4546 if (ch->histogram) { 4547 spdk_histogram_data_free(ch->histogram); 4548 } 4549 4550 bdev_channel_destroy_resource(ch); 4551 } 4552 4553 /* 4554 * If the name already exists in the global bdev name tree, RB_INSERT() returns a pointer 4555 * to it. Hence we do not have to call bdev_get_by_name() when using this function. 4556 */ 4557 static int 4558 bdev_name_add(struct spdk_bdev_name *bdev_name, struct spdk_bdev *bdev, const char *name) 4559 { 4560 struct spdk_bdev_name *tmp; 4561 4562 bdev_name->name = strdup(name); 4563 if (bdev_name->name == NULL) { 4564 SPDK_ERRLOG("Unable to allocate bdev name\n"); 4565 return -ENOMEM; 4566 } 4567 4568 bdev_name->bdev = bdev; 4569 4570 spdk_spin_lock(&g_bdev_mgr.spinlock); 4571 tmp = RB_INSERT(bdev_name_tree, &g_bdev_mgr.bdev_names, bdev_name); 4572 spdk_spin_unlock(&g_bdev_mgr.spinlock); 4573 4574 if (tmp != NULL) { 4575 SPDK_ERRLOG("Bdev name %s already exists\n", name); 4576 free(bdev_name->name); 4577 return -EEXIST; 4578 } 4579 4580 return 0; 4581 } 4582 4583 static void 4584 bdev_name_del_unsafe(struct spdk_bdev_name *bdev_name) 4585 { 4586 RB_REMOVE(bdev_name_tree, &g_bdev_mgr.bdev_names, bdev_name); 4587 free(bdev_name->name); 4588 } 4589 4590 static void 4591 bdev_name_del(struct spdk_bdev_name *bdev_name) 4592 { 4593 spdk_spin_lock(&g_bdev_mgr.spinlock); 4594 bdev_name_del_unsafe(bdev_name); 4595 spdk_spin_unlock(&g_bdev_mgr.spinlock); 4596 } 4597 4598 int 4599 spdk_bdev_alias_add(struct spdk_bdev *bdev, const char *alias) 4600 { 4601 struct spdk_bdev_alias *tmp; 4602 int ret; 4603 4604 if (alias == NULL) { 4605 SPDK_ERRLOG("Empty alias passed\n"); 4606 return -EINVAL; 4607 } 4608 4609 tmp = calloc(1, sizeof(*tmp)); 4610 if (tmp == NULL) { 4611 SPDK_ERRLOG("Unable to allocate alias\n"); 4612 return -ENOMEM; 4613 } 4614 4615 ret = bdev_name_add(&tmp->alias, bdev, alias); 4616 if (ret != 0) { 4617 free(tmp); 4618 return ret; 4619 } 4620 4621 TAILQ_INSERT_TAIL(&bdev->aliases, tmp, tailq); 4622 4623 return 0; 4624 } 4625 4626 static int 4627 bdev_alias_del(struct spdk_bdev *bdev, const char *alias, 4628 void (*alias_del_fn)(struct spdk_bdev_name *n)) 4629 { 4630 struct spdk_bdev_alias *tmp; 4631 4632 TAILQ_FOREACH(tmp, &bdev->aliases, tailq) { 4633 if (strcmp(alias, tmp->alias.name) == 0) { 4634 TAILQ_REMOVE(&bdev->aliases, tmp, tailq); 4635 alias_del_fn(&tmp->alias); 4636 free(tmp); 4637 return 0; 4638 } 4639 } 4640 4641 return -ENOENT; 4642 } 4643 4644 int 4645 spdk_bdev_alias_del(struct spdk_bdev *bdev, const char *alias) 4646 { 4647 int rc; 4648 4649 rc = bdev_alias_del(bdev, alias, bdev_name_del); 4650 if (rc == -ENOENT) { 4651 SPDK_INFOLOG(bdev, "Alias %s does not exist\n", alias); 4652 } 4653 4654 return rc; 4655 } 4656 4657 void 4658 spdk_bdev_alias_del_all(struct spdk_bdev *bdev) 4659 { 4660 struct spdk_bdev_alias *p, *tmp; 4661 4662 TAILQ_FOREACH_SAFE(p, &bdev->aliases, tailq, tmp) { 4663 TAILQ_REMOVE(&bdev->aliases, p, tailq); 4664 bdev_name_del(&p->alias); 4665 free(p); 4666 } 4667 } 4668 4669 struct spdk_io_channel * 4670 spdk_bdev_get_io_channel(struct spdk_bdev_desc *desc) 4671 { 4672 return spdk_get_io_channel(__bdev_to_io_dev(spdk_bdev_desc_get_bdev(desc))); 4673 } 4674 4675 void * 4676 spdk_bdev_get_module_ctx(struct spdk_bdev_desc *desc) 4677 { 4678 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 4679 void *ctx = NULL; 4680 4681 if (bdev->fn_table->get_module_ctx) { 4682 ctx = bdev->fn_table->get_module_ctx(bdev->ctxt); 4683 } 4684 4685 return ctx; 4686 } 4687 4688 const char * 4689 spdk_bdev_get_module_name(const struct spdk_bdev *bdev) 4690 { 4691 return bdev->module->name; 4692 } 4693 4694 const char * 4695 spdk_bdev_get_name(const struct spdk_bdev *bdev) 4696 { 4697 return bdev->name; 4698 } 4699 4700 const char * 4701 spdk_bdev_get_product_name(const struct spdk_bdev *bdev) 4702 { 4703 return bdev->product_name; 4704 } 4705 4706 const struct spdk_bdev_aliases_list * 4707 spdk_bdev_get_aliases(const struct spdk_bdev *bdev) 4708 { 4709 return &bdev->aliases; 4710 } 4711 4712 uint32_t 4713 spdk_bdev_get_block_size(const struct spdk_bdev *bdev) 4714 { 4715 return bdev->blocklen; 4716 } 4717 4718 uint32_t 4719 spdk_bdev_get_write_unit_size(const struct spdk_bdev *bdev) 4720 { 4721 return bdev->write_unit_size; 4722 } 4723 4724 uint64_t 4725 spdk_bdev_get_num_blocks(const struct spdk_bdev *bdev) 4726 { 4727 return bdev->blockcnt; 4728 } 4729 4730 const char * 4731 spdk_bdev_get_qos_rpc_type(enum spdk_bdev_qos_rate_limit_type type) 4732 { 4733 return qos_rpc_type[type]; 4734 } 4735 4736 void 4737 spdk_bdev_get_qos_rate_limits(struct spdk_bdev *bdev, uint64_t *limits) 4738 { 4739 int i; 4740 4741 memset(limits, 0, sizeof(*limits) * SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES); 4742 4743 spdk_spin_lock(&bdev->internal.spinlock); 4744 if (bdev->internal.qos) { 4745 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 4746 if (bdev->internal.qos->rate_limits[i].limit != 4747 SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) { 4748 limits[i] = bdev->internal.qos->rate_limits[i].limit; 4749 if (bdev_qos_is_iops_rate_limit(i) == false) { 4750 /* Change from Byte to Megabyte which is user visible. */ 4751 limits[i] = limits[i] / 1024 / 1024; 4752 } 4753 } 4754 } 4755 } 4756 spdk_spin_unlock(&bdev->internal.spinlock); 4757 } 4758 4759 size_t 4760 spdk_bdev_get_buf_align(const struct spdk_bdev *bdev) 4761 { 4762 return 1 << bdev->required_alignment; 4763 } 4764 4765 uint32_t 4766 spdk_bdev_get_optimal_io_boundary(const struct spdk_bdev *bdev) 4767 { 4768 return bdev->optimal_io_boundary; 4769 } 4770 4771 bool 4772 spdk_bdev_has_write_cache(const struct spdk_bdev *bdev) 4773 { 4774 return bdev->write_cache; 4775 } 4776 4777 const struct spdk_uuid * 4778 spdk_bdev_get_uuid(const struct spdk_bdev *bdev) 4779 { 4780 return &bdev->uuid; 4781 } 4782 4783 uint16_t 4784 spdk_bdev_get_acwu(const struct spdk_bdev *bdev) 4785 { 4786 return bdev->acwu; 4787 } 4788 4789 uint32_t 4790 spdk_bdev_get_md_size(const struct spdk_bdev *bdev) 4791 { 4792 return bdev->md_len; 4793 } 4794 4795 bool 4796 spdk_bdev_is_md_interleaved(const struct spdk_bdev *bdev) 4797 { 4798 return (bdev->md_len != 0) && bdev->md_interleave; 4799 } 4800 4801 bool 4802 spdk_bdev_is_md_separate(const struct spdk_bdev *bdev) 4803 { 4804 return (bdev->md_len != 0) && !bdev->md_interleave; 4805 } 4806 4807 bool 4808 spdk_bdev_is_zoned(const struct spdk_bdev *bdev) 4809 { 4810 return bdev->zoned; 4811 } 4812 4813 uint32_t 4814 spdk_bdev_get_data_block_size(const struct spdk_bdev *bdev) 4815 { 4816 if (spdk_bdev_is_md_interleaved(bdev)) { 4817 return bdev->blocklen - bdev->md_len; 4818 } else { 4819 return bdev->blocklen; 4820 } 4821 } 4822 4823 uint32_t 4824 spdk_bdev_get_physical_block_size(const struct spdk_bdev *bdev) 4825 { 4826 return bdev->phys_blocklen; 4827 } 4828 4829 static uint32_t 4830 _bdev_get_block_size_with_md(const struct spdk_bdev *bdev) 4831 { 4832 if (!spdk_bdev_is_md_interleaved(bdev)) { 4833 return bdev->blocklen + bdev->md_len; 4834 } else { 4835 return bdev->blocklen; 4836 } 4837 } 4838 4839 /* We have to use the typedef in the function declaration to appease astyle. */ 4840 typedef enum spdk_dif_type spdk_dif_type_t; 4841 4842 spdk_dif_type_t 4843 spdk_bdev_get_dif_type(const struct spdk_bdev *bdev) 4844 { 4845 if (bdev->md_len != 0) { 4846 return bdev->dif_type; 4847 } else { 4848 return SPDK_DIF_DISABLE; 4849 } 4850 } 4851 4852 bool 4853 spdk_bdev_is_dif_head_of_md(const struct spdk_bdev *bdev) 4854 { 4855 if (spdk_bdev_get_dif_type(bdev) != SPDK_DIF_DISABLE) { 4856 return bdev->dif_is_head_of_md; 4857 } else { 4858 return false; 4859 } 4860 } 4861 4862 bool 4863 spdk_bdev_is_dif_check_enabled(const struct spdk_bdev *bdev, 4864 enum spdk_dif_check_type check_type) 4865 { 4866 if (spdk_bdev_get_dif_type(bdev) == SPDK_DIF_DISABLE) { 4867 return false; 4868 } 4869 4870 switch (check_type) { 4871 case SPDK_DIF_CHECK_TYPE_REFTAG: 4872 return (bdev->dif_check_flags & SPDK_DIF_FLAGS_REFTAG_CHECK) != 0; 4873 case SPDK_DIF_CHECK_TYPE_APPTAG: 4874 return (bdev->dif_check_flags & SPDK_DIF_FLAGS_APPTAG_CHECK) != 0; 4875 case SPDK_DIF_CHECK_TYPE_GUARD: 4876 return (bdev->dif_check_flags & SPDK_DIF_FLAGS_GUARD_CHECK) != 0; 4877 default: 4878 return false; 4879 } 4880 } 4881 4882 static uint32_t 4883 bdev_get_max_write(const struct spdk_bdev *bdev, uint64_t num_bytes) 4884 { 4885 uint64_t aligned_length, max_write_blocks; 4886 4887 aligned_length = num_bytes - (spdk_bdev_get_buf_align(bdev) - 1); 4888 max_write_blocks = aligned_length / _bdev_get_block_size_with_md(bdev); 4889 max_write_blocks -= max_write_blocks % bdev->write_unit_size; 4890 4891 return max_write_blocks; 4892 } 4893 4894 uint32_t 4895 spdk_bdev_get_max_copy(const struct spdk_bdev *bdev) 4896 { 4897 return bdev->max_copy; 4898 } 4899 4900 uint64_t 4901 spdk_bdev_get_qd(const struct spdk_bdev *bdev) 4902 { 4903 return bdev->internal.measured_queue_depth; 4904 } 4905 4906 uint64_t 4907 spdk_bdev_get_qd_sampling_period(const struct spdk_bdev *bdev) 4908 { 4909 return bdev->internal.period; 4910 } 4911 4912 uint64_t 4913 spdk_bdev_get_weighted_io_time(const struct spdk_bdev *bdev) 4914 { 4915 return bdev->internal.weighted_io_time; 4916 } 4917 4918 uint64_t 4919 spdk_bdev_get_io_time(const struct spdk_bdev *bdev) 4920 { 4921 return bdev->internal.io_time; 4922 } 4923 4924 union spdk_bdev_nvme_ctratt spdk_bdev_get_nvme_ctratt(struct spdk_bdev *bdev) 4925 { 4926 return bdev->ctratt; 4927 } 4928 4929 static void bdev_update_qd_sampling_period(void *ctx); 4930 4931 static void 4932 _calculate_measured_qd_cpl(struct spdk_bdev *bdev, void *_ctx, int status) 4933 { 4934 bdev->internal.measured_queue_depth = bdev->internal.temporary_queue_depth; 4935 4936 if (bdev->internal.measured_queue_depth) { 4937 bdev->internal.io_time += bdev->internal.period; 4938 bdev->internal.weighted_io_time += bdev->internal.period * bdev->internal.measured_queue_depth; 4939 } 4940 4941 bdev->internal.qd_poll_in_progress = false; 4942 4943 bdev_update_qd_sampling_period(bdev); 4944 } 4945 4946 static void 4947 _calculate_measured_qd(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 4948 struct spdk_io_channel *io_ch, void *_ctx) 4949 { 4950 struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(io_ch); 4951 4952 bdev->internal.temporary_queue_depth += ch->io_outstanding; 4953 spdk_bdev_for_each_channel_continue(i, 0); 4954 } 4955 4956 static int 4957 bdev_calculate_measured_queue_depth(void *ctx) 4958 { 4959 struct spdk_bdev *bdev = ctx; 4960 4961 bdev->internal.qd_poll_in_progress = true; 4962 bdev->internal.temporary_queue_depth = 0; 4963 spdk_bdev_for_each_channel(bdev, _calculate_measured_qd, bdev, _calculate_measured_qd_cpl); 4964 return SPDK_POLLER_BUSY; 4965 } 4966 4967 static void 4968 bdev_update_qd_sampling_period(void *ctx) 4969 { 4970 struct spdk_bdev *bdev = ctx; 4971 4972 if (bdev->internal.period == bdev->internal.new_period) { 4973 return; 4974 } 4975 4976 if (bdev->internal.qd_poll_in_progress) { 4977 return; 4978 } 4979 4980 bdev->internal.period = bdev->internal.new_period; 4981 4982 spdk_poller_unregister(&bdev->internal.qd_poller); 4983 if (bdev->internal.period != 0) { 4984 bdev->internal.qd_poller = SPDK_POLLER_REGISTER(bdev_calculate_measured_queue_depth, 4985 bdev, bdev->internal.period); 4986 } else { 4987 spdk_bdev_close(bdev->internal.qd_desc); 4988 bdev->internal.qd_desc = NULL; 4989 } 4990 } 4991 4992 static void 4993 _tmp_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx) 4994 { 4995 SPDK_NOTICELOG("Unexpected event type: %d\n", type); 4996 } 4997 4998 void 4999 spdk_bdev_set_qd_sampling_period(struct spdk_bdev *bdev, uint64_t period) 5000 { 5001 int rc; 5002 5003 if (bdev->internal.new_period == period) { 5004 return; 5005 } 5006 5007 bdev->internal.new_period = period; 5008 5009 if (bdev->internal.qd_desc != NULL) { 5010 assert(bdev->internal.period != 0); 5011 5012 spdk_thread_send_msg(bdev->internal.qd_desc->thread, 5013 bdev_update_qd_sampling_period, bdev); 5014 return; 5015 } 5016 5017 assert(bdev->internal.period == 0); 5018 5019 rc = spdk_bdev_open_ext(spdk_bdev_get_name(bdev), false, _tmp_bdev_event_cb, 5020 NULL, &bdev->internal.qd_desc); 5021 if (rc != 0) { 5022 return; 5023 } 5024 5025 bdev->internal.period = period; 5026 bdev->internal.qd_poller = SPDK_POLLER_REGISTER(bdev_calculate_measured_queue_depth, 5027 bdev, period); 5028 } 5029 5030 struct bdev_get_current_qd_ctx { 5031 uint64_t current_qd; 5032 spdk_bdev_get_current_qd_cb cb_fn; 5033 void *cb_arg; 5034 }; 5035 5036 static void 5037 bdev_get_current_qd_done(struct spdk_bdev *bdev, void *_ctx, int status) 5038 { 5039 struct bdev_get_current_qd_ctx *ctx = _ctx; 5040 5041 ctx->cb_fn(bdev, ctx->current_qd, ctx->cb_arg, 0); 5042 5043 free(ctx); 5044 } 5045 5046 static void 5047 bdev_get_current_qd(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 5048 struct spdk_io_channel *io_ch, void *_ctx) 5049 { 5050 struct bdev_get_current_qd_ctx *ctx = _ctx; 5051 struct spdk_bdev_channel *bdev_ch = __io_ch_to_bdev_ch(io_ch); 5052 5053 ctx->current_qd += bdev_ch->io_outstanding; 5054 5055 spdk_bdev_for_each_channel_continue(i, 0); 5056 } 5057 5058 void 5059 spdk_bdev_get_current_qd(struct spdk_bdev *bdev, spdk_bdev_get_current_qd_cb cb_fn, 5060 void *cb_arg) 5061 { 5062 struct bdev_get_current_qd_ctx *ctx; 5063 5064 assert(cb_fn != NULL); 5065 5066 ctx = calloc(1, sizeof(*ctx)); 5067 if (ctx == NULL) { 5068 cb_fn(bdev, 0, cb_arg, -ENOMEM); 5069 return; 5070 } 5071 5072 ctx->cb_fn = cb_fn; 5073 ctx->cb_arg = cb_arg; 5074 5075 spdk_bdev_for_each_channel(bdev, bdev_get_current_qd, ctx, bdev_get_current_qd_done); 5076 } 5077 5078 static void 5079 _event_notify(struct spdk_bdev_desc *desc, enum spdk_bdev_event_type type) 5080 { 5081 assert(desc->thread == spdk_get_thread()); 5082 5083 spdk_spin_lock(&desc->spinlock); 5084 desc->refs--; 5085 if (!desc->closed) { 5086 spdk_spin_unlock(&desc->spinlock); 5087 desc->callback.event_fn(type, 5088 desc->bdev, 5089 desc->callback.ctx); 5090 return; 5091 } else if (desc->refs == 0) { 5092 /* This descriptor was closed after this event_notify message was sent. 5093 * spdk_bdev_close() could not free the descriptor since this message was 5094 * in flight, so we free it now using bdev_desc_free(). 5095 */ 5096 spdk_spin_unlock(&desc->spinlock); 5097 bdev_desc_free(desc); 5098 return; 5099 } 5100 spdk_spin_unlock(&desc->spinlock); 5101 } 5102 5103 static void 5104 event_notify(struct spdk_bdev_desc *desc, spdk_msg_fn event_notify_fn) 5105 { 5106 spdk_spin_lock(&desc->spinlock); 5107 desc->refs++; 5108 spdk_thread_send_msg(desc->thread, event_notify_fn, desc); 5109 spdk_spin_unlock(&desc->spinlock); 5110 } 5111 5112 static void 5113 _resize_notify(void *ctx) 5114 { 5115 struct spdk_bdev_desc *desc = ctx; 5116 5117 _event_notify(desc, SPDK_BDEV_EVENT_RESIZE); 5118 } 5119 5120 int 5121 spdk_bdev_notify_blockcnt_change(struct spdk_bdev *bdev, uint64_t size) 5122 { 5123 struct spdk_bdev_desc *desc; 5124 int ret; 5125 5126 if (size == bdev->blockcnt) { 5127 return 0; 5128 } 5129 5130 spdk_spin_lock(&bdev->internal.spinlock); 5131 5132 /* bdev has open descriptors */ 5133 if (!TAILQ_EMPTY(&bdev->internal.open_descs) && 5134 bdev->blockcnt > size) { 5135 ret = -EBUSY; 5136 } else { 5137 bdev->blockcnt = size; 5138 TAILQ_FOREACH(desc, &bdev->internal.open_descs, link) { 5139 event_notify(desc, _resize_notify); 5140 } 5141 ret = 0; 5142 } 5143 5144 spdk_spin_unlock(&bdev->internal.spinlock); 5145 5146 return ret; 5147 } 5148 5149 /* 5150 * Convert I/O offset and length from bytes to blocks. 5151 * 5152 * Returns zero on success or non-zero if the byte parameters aren't divisible by the block size. 5153 */ 5154 static uint64_t 5155 bdev_bytes_to_blocks(struct spdk_bdev *bdev, uint64_t offset_bytes, uint64_t *offset_blocks, 5156 uint64_t num_bytes, uint64_t *num_blocks) 5157 { 5158 uint32_t block_size = bdev->blocklen; 5159 uint8_t shift_cnt; 5160 5161 /* Avoid expensive div operations if possible. These spdk_u32 functions are very cheap. */ 5162 if (spdk_likely(spdk_u32_is_pow2(block_size))) { 5163 shift_cnt = spdk_u32log2(block_size); 5164 *offset_blocks = offset_bytes >> shift_cnt; 5165 *num_blocks = num_bytes >> shift_cnt; 5166 return (offset_bytes - (*offset_blocks << shift_cnt)) | 5167 (num_bytes - (*num_blocks << shift_cnt)); 5168 } else { 5169 *offset_blocks = offset_bytes / block_size; 5170 *num_blocks = num_bytes / block_size; 5171 return (offset_bytes % block_size) | (num_bytes % block_size); 5172 } 5173 } 5174 5175 static bool 5176 bdev_io_valid_blocks(struct spdk_bdev *bdev, uint64_t offset_blocks, uint64_t num_blocks) 5177 { 5178 /* Return failure if offset_blocks + num_blocks is less than offset_blocks; indicates there 5179 * has been an overflow and hence the offset has been wrapped around */ 5180 if (offset_blocks + num_blocks < offset_blocks) { 5181 return false; 5182 } 5183 5184 /* Return failure if offset_blocks + num_blocks exceeds the size of the bdev */ 5185 if (offset_blocks + num_blocks > bdev->blockcnt) { 5186 return false; 5187 } 5188 5189 return true; 5190 } 5191 5192 static void 5193 bdev_seek_complete_cb(void *ctx) 5194 { 5195 struct spdk_bdev_io *bdev_io = ctx; 5196 5197 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; 5198 bdev_io->internal.cb(bdev_io, true, bdev_io->internal.caller_ctx); 5199 } 5200 5201 static int 5202 bdev_seek(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5203 uint64_t offset_blocks, enum spdk_bdev_io_type io_type, 5204 spdk_bdev_io_completion_cb cb, void *cb_arg) 5205 { 5206 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5207 struct spdk_bdev_io *bdev_io; 5208 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 5209 5210 assert(io_type == SPDK_BDEV_IO_TYPE_SEEK_DATA || io_type == SPDK_BDEV_IO_TYPE_SEEK_HOLE); 5211 5212 /* Check if offset_blocks is valid looking at the validity of one block */ 5213 if (!bdev_io_valid_blocks(bdev, offset_blocks, 1)) { 5214 return -EINVAL; 5215 } 5216 5217 bdev_io = bdev_channel_get_io(channel); 5218 if (!bdev_io) { 5219 return -ENOMEM; 5220 } 5221 5222 bdev_io->internal.ch = channel; 5223 bdev_io->internal.desc = desc; 5224 bdev_io->type = io_type; 5225 bdev_io->u.bdev.offset_blocks = offset_blocks; 5226 bdev_io->u.bdev.memory_domain = NULL; 5227 bdev_io->u.bdev.memory_domain_ctx = NULL; 5228 bdev_io->u.bdev.accel_sequence = NULL; 5229 bdev_io_init(bdev_io, bdev, cb_arg, cb); 5230 5231 if (!spdk_bdev_io_type_supported(bdev, io_type)) { 5232 /* In case bdev doesn't support seek to next data/hole offset, 5233 * it is assumed that only data and no holes are present */ 5234 if (io_type == SPDK_BDEV_IO_TYPE_SEEK_DATA) { 5235 bdev_io->u.bdev.seek.offset = offset_blocks; 5236 } else { 5237 bdev_io->u.bdev.seek.offset = UINT64_MAX; 5238 } 5239 5240 spdk_thread_send_msg(spdk_get_thread(), bdev_seek_complete_cb, bdev_io); 5241 return 0; 5242 } 5243 5244 bdev_io_submit(bdev_io); 5245 return 0; 5246 } 5247 5248 int 5249 spdk_bdev_seek_data(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5250 uint64_t offset_blocks, 5251 spdk_bdev_io_completion_cb cb, void *cb_arg) 5252 { 5253 return bdev_seek(desc, ch, offset_blocks, SPDK_BDEV_IO_TYPE_SEEK_DATA, cb, cb_arg); 5254 } 5255 5256 int 5257 spdk_bdev_seek_hole(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5258 uint64_t offset_blocks, 5259 spdk_bdev_io_completion_cb cb, void *cb_arg) 5260 { 5261 return bdev_seek(desc, ch, offset_blocks, SPDK_BDEV_IO_TYPE_SEEK_HOLE, cb, cb_arg); 5262 } 5263 5264 uint64_t 5265 spdk_bdev_io_get_seek_offset(const struct spdk_bdev_io *bdev_io) 5266 { 5267 return bdev_io->u.bdev.seek.offset; 5268 } 5269 5270 static int 5271 bdev_read_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, void *buf, 5272 void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, 5273 spdk_bdev_io_completion_cb cb, void *cb_arg) 5274 { 5275 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5276 struct spdk_bdev_io *bdev_io; 5277 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 5278 5279 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 5280 return -EINVAL; 5281 } 5282 5283 bdev_io = bdev_channel_get_io(channel); 5284 if (!bdev_io) { 5285 return -ENOMEM; 5286 } 5287 5288 bdev_io->internal.ch = channel; 5289 bdev_io->internal.desc = desc; 5290 bdev_io->type = SPDK_BDEV_IO_TYPE_READ; 5291 bdev_io->u.bdev.iovs = &bdev_io->iov; 5292 bdev_io->u.bdev.iovs[0].iov_base = buf; 5293 bdev_io->u.bdev.iovs[0].iov_len = num_blocks * bdev->blocklen; 5294 bdev_io->u.bdev.iovcnt = 1; 5295 bdev_io->u.bdev.md_buf = md_buf; 5296 bdev_io->u.bdev.num_blocks = num_blocks; 5297 bdev_io->u.bdev.offset_blocks = offset_blocks; 5298 bdev_io->u.bdev.memory_domain = NULL; 5299 bdev_io->u.bdev.memory_domain_ctx = NULL; 5300 bdev_io->u.bdev.accel_sequence = NULL; 5301 bdev_io->u.bdev.dif_check_flags = bdev->dif_check_flags; 5302 bdev_io_init(bdev_io, bdev, cb_arg, cb); 5303 5304 bdev_io_submit(bdev_io); 5305 return 0; 5306 } 5307 5308 int 5309 spdk_bdev_read(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5310 void *buf, uint64_t offset, uint64_t nbytes, 5311 spdk_bdev_io_completion_cb cb, void *cb_arg) 5312 { 5313 uint64_t offset_blocks, num_blocks; 5314 5315 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 5316 nbytes, &num_blocks) != 0) { 5317 return -EINVAL; 5318 } 5319 5320 return spdk_bdev_read_blocks(desc, ch, buf, offset_blocks, num_blocks, cb, cb_arg); 5321 } 5322 5323 int 5324 spdk_bdev_read_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5325 void *buf, uint64_t offset_blocks, uint64_t num_blocks, 5326 spdk_bdev_io_completion_cb cb, void *cb_arg) 5327 { 5328 return bdev_read_blocks_with_md(desc, ch, buf, NULL, offset_blocks, num_blocks, cb, cb_arg); 5329 } 5330 5331 int 5332 spdk_bdev_read_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5333 void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, 5334 spdk_bdev_io_completion_cb cb, void *cb_arg) 5335 { 5336 struct iovec iov = { 5337 .iov_base = buf, 5338 }; 5339 5340 if (md_buf && !spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) { 5341 return -EINVAL; 5342 } 5343 5344 if (md_buf && !_is_buf_allocated(&iov)) { 5345 return -EINVAL; 5346 } 5347 5348 return bdev_read_blocks_with_md(desc, ch, buf, md_buf, offset_blocks, num_blocks, 5349 cb, cb_arg); 5350 } 5351 5352 int 5353 spdk_bdev_readv(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5354 struct iovec *iov, int iovcnt, 5355 uint64_t offset, uint64_t nbytes, 5356 spdk_bdev_io_completion_cb cb, void *cb_arg) 5357 { 5358 uint64_t offset_blocks, num_blocks; 5359 5360 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 5361 nbytes, &num_blocks) != 0) { 5362 return -EINVAL; 5363 } 5364 5365 return spdk_bdev_readv_blocks(desc, ch, iov, iovcnt, offset_blocks, num_blocks, cb, cb_arg); 5366 } 5367 5368 static int 5369 bdev_readv_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5370 struct iovec *iov, int iovcnt, void *md_buf, uint64_t offset_blocks, 5371 uint64_t num_blocks, struct spdk_memory_domain *domain, void *domain_ctx, 5372 struct spdk_accel_sequence *seq, uint32_t dif_check_flags, 5373 spdk_bdev_io_completion_cb cb, void *cb_arg) 5374 { 5375 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5376 struct spdk_bdev_io *bdev_io; 5377 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 5378 5379 if (spdk_unlikely(!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks))) { 5380 return -EINVAL; 5381 } 5382 5383 bdev_io = bdev_channel_get_io(channel); 5384 if (spdk_unlikely(!bdev_io)) { 5385 return -ENOMEM; 5386 } 5387 5388 bdev_io->internal.ch = channel; 5389 bdev_io->internal.desc = desc; 5390 bdev_io->type = SPDK_BDEV_IO_TYPE_READ; 5391 bdev_io->u.bdev.iovs = iov; 5392 bdev_io->u.bdev.iovcnt = iovcnt; 5393 bdev_io->u.bdev.md_buf = md_buf; 5394 bdev_io->u.bdev.num_blocks = num_blocks; 5395 bdev_io->u.bdev.offset_blocks = offset_blocks; 5396 bdev_io_init(bdev_io, bdev, cb_arg, cb); 5397 bdev_io->internal.memory_domain = domain; 5398 bdev_io->internal.memory_domain_ctx = domain_ctx; 5399 bdev_io->internal.accel_sequence = seq; 5400 bdev_io->internal.has_accel_sequence = seq != NULL; 5401 bdev_io->u.bdev.memory_domain = domain; 5402 bdev_io->u.bdev.memory_domain_ctx = domain_ctx; 5403 bdev_io->u.bdev.accel_sequence = seq; 5404 bdev_io->u.bdev.dif_check_flags = dif_check_flags; 5405 5406 _bdev_io_submit_ext(desc, bdev_io); 5407 5408 return 0; 5409 } 5410 5411 int 5412 spdk_bdev_readv_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5413 struct iovec *iov, int iovcnt, 5414 uint64_t offset_blocks, uint64_t num_blocks, 5415 spdk_bdev_io_completion_cb cb, void *cb_arg) 5416 { 5417 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5418 5419 return bdev_readv_blocks_with_md(desc, ch, iov, iovcnt, NULL, offset_blocks, 5420 num_blocks, NULL, NULL, NULL, bdev->dif_check_flags, cb, cb_arg); 5421 } 5422 5423 int 5424 spdk_bdev_readv_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5425 struct iovec *iov, int iovcnt, void *md_buf, 5426 uint64_t offset_blocks, uint64_t num_blocks, 5427 spdk_bdev_io_completion_cb cb, void *cb_arg) 5428 { 5429 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5430 5431 if (md_buf && !spdk_bdev_is_md_separate(bdev)) { 5432 return -EINVAL; 5433 } 5434 5435 if (md_buf && !_is_buf_allocated(iov)) { 5436 return -EINVAL; 5437 } 5438 5439 return bdev_readv_blocks_with_md(desc, ch, iov, iovcnt, md_buf, offset_blocks, 5440 num_blocks, NULL, NULL, NULL, bdev->dif_check_flags, cb, cb_arg); 5441 } 5442 5443 static inline bool 5444 _bdev_io_check_opts(struct spdk_bdev_ext_io_opts *opts, struct iovec *iov) 5445 { 5446 /* 5447 * We check if opts size is at least of size when we first introduced 5448 * spdk_bdev_ext_io_opts (ac6f2bdd8d) since access to those members 5449 * are not checked internal. 5450 */ 5451 return opts->size >= offsetof(struct spdk_bdev_ext_io_opts, metadata) + 5452 sizeof(opts->metadata) && 5453 opts->size <= sizeof(*opts) && 5454 /* When memory domain is used, the user must provide data buffers */ 5455 (!opts->memory_domain || (iov && iov[0].iov_base)); 5456 } 5457 5458 int 5459 spdk_bdev_readv_blocks_ext(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5460 struct iovec *iov, int iovcnt, 5461 uint64_t offset_blocks, uint64_t num_blocks, 5462 spdk_bdev_io_completion_cb cb, void *cb_arg, 5463 struct spdk_bdev_ext_io_opts *opts) 5464 { 5465 struct spdk_memory_domain *domain = NULL; 5466 struct spdk_accel_sequence *seq = NULL; 5467 void *domain_ctx = NULL, *md = NULL; 5468 uint32_t dif_check_flags = 0; 5469 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5470 5471 if (opts) { 5472 if (spdk_unlikely(!_bdev_io_check_opts(opts, iov))) { 5473 return -EINVAL; 5474 } 5475 5476 md = opts->metadata; 5477 domain = bdev_get_ext_io_opt(opts, memory_domain, NULL); 5478 domain_ctx = bdev_get_ext_io_opt(opts, memory_domain_ctx, NULL); 5479 seq = bdev_get_ext_io_opt(opts, accel_sequence, NULL); 5480 if (md) { 5481 if (spdk_unlikely(!spdk_bdev_is_md_separate(bdev))) { 5482 return -EINVAL; 5483 } 5484 5485 if (spdk_unlikely(!_is_buf_allocated(iov))) { 5486 return -EINVAL; 5487 } 5488 5489 if (spdk_unlikely(seq != NULL)) { 5490 return -EINVAL; 5491 } 5492 } 5493 } 5494 5495 dif_check_flags = bdev->dif_check_flags & 5496 ~(bdev_get_ext_io_opt(opts, dif_check_flags_exclude_mask, 0)); 5497 5498 return bdev_readv_blocks_with_md(desc, ch, iov, iovcnt, md, offset_blocks, 5499 num_blocks, domain, domain_ctx, seq, dif_check_flags, cb, cb_arg); 5500 } 5501 5502 static int 5503 bdev_write_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5504 void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, 5505 spdk_bdev_io_completion_cb cb, void *cb_arg) 5506 { 5507 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5508 struct spdk_bdev_io *bdev_io; 5509 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 5510 5511 if (!desc->write) { 5512 return -EBADF; 5513 } 5514 5515 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 5516 return -EINVAL; 5517 } 5518 5519 bdev_io = bdev_channel_get_io(channel); 5520 if (!bdev_io) { 5521 return -ENOMEM; 5522 } 5523 5524 bdev_io->internal.ch = channel; 5525 bdev_io->internal.desc = desc; 5526 bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE; 5527 bdev_io->u.bdev.iovs = &bdev_io->iov; 5528 bdev_io->u.bdev.iovs[0].iov_base = buf; 5529 bdev_io->u.bdev.iovs[0].iov_len = num_blocks * bdev->blocklen; 5530 bdev_io->u.bdev.iovcnt = 1; 5531 bdev_io->u.bdev.md_buf = md_buf; 5532 bdev_io->u.bdev.num_blocks = num_blocks; 5533 bdev_io->u.bdev.offset_blocks = offset_blocks; 5534 bdev_io->u.bdev.memory_domain = NULL; 5535 bdev_io->u.bdev.memory_domain_ctx = NULL; 5536 bdev_io->u.bdev.accel_sequence = NULL; 5537 bdev_io->u.bdev.dif_check_flags = bdev->dif_check_flags; 5538 bdev_io_init(bdev_io, bdev, cb_arg, cb); 5539 5540 bdev_io_submit(bdev_io); 5541 return 0; 5542 } 5543 5544 int 5545 spdk_bdev_write(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5546 void *buf, uint64_t offset, uint64_t nbytes, 5547 spdk_bdev_io_completion_cb cb, void *cb_arg) 5548 { 5549 uint64_t offset_blocks, num_blocks; 5550 5551 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 5552 nbytes, &num_blocks) != 0) { 5553 return -EINVAL; 5554 } 5555 5556 return spdk_bdev_write_blocks(desc, ch, buf, offset_blocks, num_blocks, cb, cb_arg); 5557 } 5558 5559 int 5560 spdk_bdev_write_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5561 void *buf, uint64_t offset_blocks, uint64_t num_blocks, 5562 spdk_bdev_io_completion_cb cb, void *cb_arg) 5563 { 5564 return bdev_write_blocks_with_md(desc, ch, buf, NULL, offset_blocks, num_blocks, 5565 cb, cb_arg); 5566 } 5567 5568 int 5569 spdk_bdev_write_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5570 void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, 5571 spdk_bdev_io_completion_cb cb, void *cb_arg) 5572 { 5573 struct iovec iov = { 5574 .iov_base = buf, 5575 }; 5576 5577 if (md_buf && !spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) { 5578 return -EINVAL; 5579 } 5580 5581 if (md_buf && !_is_buf_allocated(&iov)) { 5582 return -EINVAL; 5583 } 5584 5585 return bdev_write_blocks_with_md(desc, ch, buf, md_buf, offset_blocks, num_blocks, 5586 cb, cb_arg); 5587 } 5588 5589 static int 5590 bdev_writev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5591 struct iovec *iov, int iovcnt, void *md_buf, 5592 uint64_t offset_blocks, uint64_t num_blocks, 5593 struct spdk_memory_domain *domain, void *domain_ctx, 5594 struct spdk_accel_sequence *seq, uint32_t dif_check_flags, 5595 uint32_t nvme_cdw12_raw, uint32_t nvme_cdw13_raw, 5596 spdk_bdev_io_completion_cb cb, void *cb_arg) 5597 { 5598 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5599 struct spdk_bdev_io *bdev_io; 5600 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 5601 5602 if (spdk_unlikely(!desc->write)) { 5603 return -EBADF; 5604 } 5605 5606 if (spdk_unlikely(!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks))) { 5607 return -EINVAL; 5608 } 5609 5610 bdev_io = bdev_channel_get_io(channel); 5611 if (spdk_unlikely(!bdev_io)) { 5612 return -ENOMEM; 5613 } 5614 5615 bdev_io->internal.ch = channel; 5616 bdev_io->internal.desc = desc; 5617 bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE; 5618 bdev_io->u.bdev.iovs = iov; 5619 bdev_io->u.bdev.iovcnt = iovcnt; 5620 bdev_io->u.bdev.md_buf = md_buf; 5621 bdev_io->u.bdev.num_blocks = num_blocks; 5622 bdev_io->u.bdev.offset_blocks = offset_blocks; 5623 bdev_io_init(bdev_io, bdev, cb_arg, cb); 5624 bdev_io->internal.memory_domain = domain; 5625 bdev_io->internal.memory_domain_ctx = domain_ctx; 5626 bdev_io->internal.accel_sequence = seq; 5627 bdev_io->internal.has_accel_sequence = seq != NULL; 5628 bdev_io->u.bdev.memory_domain = domain; 5629 bdev_io->u.bdev.memory_domain_ctx = domain_ctx; 5630 bdev_io->u.bdev.accel_sequence = seq; 5631 bdev_io->u.bdev.dif_check_flags = dif_check_flags; 5632 bdev_io->u.bdev.nvme_cdw12.raw = nvme_cdw12_raw; 5633 bdev_io->u.bdev.nvme_cdw13.raw = nvme_cdw13_raw; 5634 5635 _bdev_io_submit_ext(desc, bdev_io); 5636 5637 return 0; 5638 } 5639 5640 int 5641 spdk_bdev_writev(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5642 struct iovec *iov, int iovcnt, 5643 uint64_t offset, uint64_t len, 5644 spdk_bdev_io_completion_cb cb, void *cb_arg) 5645 { 5646 uint64_t offset_blocks, num_blocks; 5647 5648 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 5649 len, &num_blocks) != 0) { 5650 return -EINVAL; 5651 } 5652 5653 return spdk_bdev_writev_blocks(desc, ch, iov, iovcnt, offset_blocks, num_blocks, cb, cb_arg); 5654 } 5655 5656 int 5657 spdk_bdev_writev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5658 struct iovec *iov, int iovcnt, 5659 uint64_t offset_blocks, uint64_t num_blocks, 5660 spdk_bdev_io_completion_cb cb, void *cb_arg) 5661 { 5662 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5663 5664 return bdev_writev_blocks_with_md(desc, ch, iov, iovcnt, NULL, offset_blocks, 5665 num_blocks, NULL, NULL, NULL, bdev->dif_check_flags, 0, 0, 5666 cb, cb_arg); 5667 } 5668 5669 int 5670 spdk_bdev_writev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5671 struct iovec *iov, int iovcnt, void *md_buf, 5672 uint64_t offset_blocks, uint64_t num_blocks, 5673 spdk_bdev_io_completion_cb cb, void *cb_arg) 5674 { 5675 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5676 5677 if (md_buf && !spdk_bdev_is_md_separate(bdev)) { 5678 return -EINVAL; 5679 } 5680 5681 if (md_buf && !_is_buf_allocated(iov)) { 5682 return -EINVAL; 5683 } 5684 5685 return bdev_writev_blocks_with_md(desc, ch, iov, iovcnt, md_buf, offset_blocks, 5686 num_blocks, NULL, NULL, NULL, bdev->dif_check_flags, 0, 0, 5687 cb, cb_arg); 5688 } 5689 5690 int 5691 spdk_bdev_writev_blocks_ext(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5692 struct iovec *iov, int iovcnt, 5693 uint64_t offset_blocks, uint64_t num_blocks, 5694 spdk_bdev_io_completion_cb cb, void *cb_arg, 5695 struct spdk_bdev_ext_io_opts *opts) 5696 { 5697 struct spdk_memory_domain *domain = NULL; 5698 struct spdk_accel_sequence *seq = NULL; 5699 void *domain_ctx = NULL, *md = NULL; 5700 uint32_t dif_check_flags = 0; 5701 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5702 uint32_t nvme_cdw12_raw = 0; 5703 uint32_t nvme_cdw13_raw = 0; 5704 5705 if (opts) { 5706 if (spdk_unlikely(!_bdev_io_check_opts(opts, iov))) { 5707 return -EINVAL; 5708 } 5709 md = opts->metadata; 5710 domain = bdev_get_ext_io_opt(opts, memory_domain, NULL); 5711 domain_ctx = bdev_get_ext_io_opt(opts, memory_domain_ctx, NULL); 5712 seq = bdev_get_ext_io_opt(opts, accel_sequence, NULL); 5713 nvme_cdw12_raw = bdev_get_ext_io_opt(opts, nvme_cdw12.raw, 0); 5714 nvme_cdw13_raw = bdev_get_ext_io_opt(opts, nvme_cdw13.raw, 0); 5715 if (md) { 5716 if (spdk_unlikely(!spdk_bdev_is_md_separate(bdev))) { 5717 return -EINVAL; 5718 } 5719 5720 if (spdk_unlikely(!_is_buf_allocated(iov))) { 5721 return -EINVAL; 5722 } 5723 5724 if (spdk_unlikely(seq != NULL)) { 5725 return -EINVAL; 5726 } 5727 } 5728 } 5729 5730 dif_check_flags = bdev->dif_check_flags & 5731 ~(bdev_get_ext_io_opt(opts, dif_check_flags_exclude_mask, 0)); 5732 5733 return bdev_writev_blocks_with_md(desc, ch, iov, iovcnt, md, offset_blocks, num_blocks, 5734 domain, domain_ctx, seq, dif_check_flags, 5735 nvme_cdw12_raw, nvme_cdw13_raw, cb, cb_arg); 5736 } 5737 5738 static void 5739 bdev_compare_do_read_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 5740 { 5741 struct spdk_bdev_io *parent_io = cb_arg; 5742 struct spdk_bdev *bdev = parent_io->bdev; 5743 uint8_t *read_buf = bdev_io->u.bdev.iovs[0].iov_base; 5744 int i, rc = 0; 5745 5746 if (!success) { 5747 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 5748 parent_io->internal.cb(parent_io, false, parent_io->internal.caller_ctx); 5749 spdk_bdev_free_io(bdev_io); 5750 return; 5751 } 5752 5753 for (i = 0; i < parent_io->u.bdev.iovcnt; i++) { 5754 rc = memcmp(read_buf, 5755 parent_io->u.bdev.iovs[i].iov_base, 5756 parent_io->u.bdev.iovs[i].iov_len); 5757 if (rc) { 5758 break; 5759 } 5760 read_buf += parent_io->u.bdev.iovs[i].iov_len; 5761 } 5762 5763 if (rc == 0 && parent_io->u.bdev.md_buf && spdk_bdev_is_md_separate(bdev)) { 5764 rc = memcmp(bdev_io->u.bdev.md_buf, 5765 parent_io->u.bdev.md_buf, 5766 spdk_bdev_get_md_size(bdev)); 5767 } 5768 5769 spdk_bdev_free_io(bdev_io); 5770 5771 if (rc == 0) { 5772 parent_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; 5773 parent_io->internal.cb(parent_io, true, parent_io->internal.caller_ctx); 5774 } else { 5775 parent_io->internal.status = SPDK_BDEV_IO_STATUS_MISCOMPARE; 5776 parent_io->internal.cb(parent_io, false, parent_io->internal.caller_ctx); 5777 } 5778 } 5779 5780 static void 5781 bdev_compare_do_read(void *_bdev_io) 5782 { 5783 struct spdk_bdev_io *bdev_io = _bdev_io; 5784 int rc; 5785 5786 rc = spdk_bdev_read_blocks(bdev_io->internal.desc, 5787 spdk_io_channel_from_ctx(bdev_io->internal.ch), NULL, 5788 bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, 5789 bdev_compare_do_read_done, bdev_io); 5790 5791 if (rc == -ENOMEM) { 5792 bdev_queue_io_wait_with_cb(bdev_io, bdev_compare_do_read); 5793 } else if (rc != 0) { 5794 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 5795 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 5796 } 5797 } 5798 5799 static int 5800 bdev_comparev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5801 struct iovec *iov, int iovcnt, void *md_buf, 5802 uint64_t offset_blocks, uint64_t num_blocks, 5803 spdk_bdev_io_completion_cb cb, void *cb_arg) 5804 { 5805 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5806 struct spdk_bdev_io *bdev_io; 5807 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 5808 5809 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 5810 return -EINVAL; 5811 } 5812 5813 bdev_io = bdev_channel_get_io(channel); 5814 if (!bdev_io) { 5815 return -ENOMEM; 5816 } 5817 5818 bdev_io->internal.ch = channel; 5819 bdev_io->internal.desc = desc; 5820 bdev_io->type = SPDK_BDEV_IO_TYPE_COMPARE; 5821 bdev_io->u.bdev.iovs = iov; 5822 bdev_io->u.bdev.iovcnt = iovcnt; 5823 bdev_io->u.bdev.md_buf = md_buf; 5824 bdev_io->u.bdev.num_blocks = num_blocks; 5825 bdev_io->u.bdev.offset_blocks = offset_blocks; 5826 bdev_io_init(bdev_io, bdev, cb_arg, cb); 5827 bdev_io->u.bdev.memory_domain = NULL; 5828 bdev_io->u.bdev.memory_domain_ctx = NULL; 5829 bdev_io->u.bdev.accel_sequence = NULL; 5830 5831 if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_COMPARE)) { 5832 bdev_io_submit(bdev_io); 5833 return 0; 5834 } 5835 5836 bdev_compare_do_read(bdev_io); 5837 5838 return 0; 5839 } 5840 5841 int 5842 spdk_bdev_comparev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5843 struct iovec *iov, int iovcnt, 5844 uint64_t offset_blocks, uint64_t num_blocks, 5845 spdk_bdev_io_completion_cb cb, void *cb_arg) 5846 { 5847 return bdev_comparev_blocks_with_md(desc, ch, iov, iovcnt, NULL, offset_blocks, 5848 num_blocks, cb, cb_arg); 5849 } 5850 5851 int 5852 spdk_bdev_comparev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5853 struct iovec *iov, int iovcnt, void *md_buf, 5854 uint64_t offset_blocks, uint64_t num_blocks, 5855 spdk_bdev_io_completion_cb cb, void *cb_arg) 5856 { 5857 if (md_buf && !spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) { 5858 return -EINVAL; 5859 } 5860 5861 if (md_buf && !_is_buf_allocated(iov)) { 5862 return -EINVAL; 5863 } 5864 5865 return bdev_comparev_blocks_with_md(desc, ch, iov, iovcnt, md_buf, offset_blocks, 5866 num_blocks, cb, cb_arg); 5867 } 5868 5869 static int 5870 bdev_compare_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5871 void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, 5872 spdk_bdev_io_completion_cb cb, void *cb_arg) 5873 { 5874 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5875 struct spdk_bdev_io *bdev_io; 5876 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 5877 5878 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 5879 return -EINVAL; 5880 } 5881 5882 bdev_io = bdev_channel_get_io(channel); 5883 if (!bdev_io) { 5884 return -ENOMEM; 5885 } 5886 5887 bdev_io->internal.ch = channel; 5888 bdev_io->internal.desc = desc; 5889 bdev_io->type = SPDK_BDEV_IO_TYPE_COMPARE; 5890 bdev_io->u.bdev.iovs = &bdev_io->iov; 5891 bdev_io->u.bdev.iovs[0].iov_base = buf; 5892 bdev_io->u.bdev.iovs[0].iov_len = num_blocks * bdev->blocklen; 5893 bdev_io->u.bdev.iovcnt = 1; 5894 bdev_io->u.bdev.md_buf = md_buf; 5895 bdev_io->u.bdev.num_blocks = num_blocks; 5896 bdev_io->u.bdev.offset_blocks = offset_blocks; 5897 bdev_io_init(bdev_io, bdev, cb_arg, cb); 5898 bdev_io->u.bdev.memory_domain = NULL; 5899 bdev_io->u.bdev.memory_domain_ctx = NULL; 5900 bdev_io->u.bdev.accel_sequence = NULL; 5901 5902 if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_COMPARE)) { 5903 bdev_io_submit(bdev_io); 5904 return 0; 5905 } 5906 5907 bdev_compare_do_read(bdev_io); 5908 5909 return 0; 5910 } 5911 5912 int 5913 spdk_bdev_compare_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5914 void *buf, uint64_t offset_blocks, uint64_t num_blocks, 5915 spdk_bdev_io_completion_cb cb, void *cb_arg) 5916 { 5917 return bdev_compare_blocks_with_md(desc, ch, buf, NULL, offset_blocks, num_blocks, 5918 cb, cb_arg); 5919 } 5920 5921 int 5922 spdk_bdev_compare_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5923 void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, 5924 spdk_bdev_io_completion_cb cb, void *cb_arg) 5925 { 5926 struct iovec iov = { 5927 .iov_base = buf, 5928 }; 5929 5930 if (md_buf && !spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) { 5931 return -EINVAL; 5932 } 5933 5934 if (md_buf && !_is_buf_allocated(&iov)) { 5935 return -EINVAL; 5936 } 5937 5938 return bdev_compare_blocks_with_md(desc, ch, buf, md_buf, offset_blocks, num_blocks, 5939 cb, cb_arg); 5940 } 5941 5942 static void 5943 bdev_comparev_and_writev_blocks_unlocked(struct lba_range *range, void *ctx, int unlock_status) 5944 { 5945 struct spdk_bdev_io *bdev_io = ctx; 5946 5947 if (unlock_status) { 5948 SPDK_ERRLOG("LBA range unlock failed\n"); 5949 } 5950 5951 bdev_io->internal.cb(bdev_io, bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS ? true : 5952 false, bdev_io->internal.caller_ctx); 5953 } 5954 5955 static void 5956 bdev_comparev_and_writev_blocks_unlock(struct spdk_bdev_io *bdev_io, int status) 5957 { 5958 bdev_io->internal.status = status; 5959 5960 bdev_unlock_lba_range(bdev_io->internal.desc, spdk_io_channel_from_ctx(bdev_io->internal.ch), 5961 bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, 5962 bdev_comparev_and_writev_blocks_unlocked, bdev_io); 5963 } 5964 5965 static void 5966 bdev_compare_and_write_do_write_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 5967 { 5968 struct spdk_bdev_io *parent_io = cb_arg; 5969 5970 if (!success) { 5971 SPDK_ERRLOG("Compare and write operation failed\n"); 5972 } 5973 5974 spdk_bdev_free_io(bdev_io); 5975 5976 bdev_comparev_and_writev_blocks_unlock(parent_io, 5977 success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED); 5978 } 5979 5980 static void 5981 bdev_compare_and_write_do_write(void *_bdev_io) 5982 { 5983 struct spdk_bdev_io *bdev_io = _bdev_io; 5984 int rc; 5985 5986 rc = spdk_bdev_writev_blocks(bdev_io->internal.desc, 5987 spdk_io_channel_from_ctx(bdev_io->internal.ch), 5988 bdev_io->u.bdev.fused_iovs, bdev_io->u.bdev.fused_iovcnt, 5989 bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, 5990 bdev_compare_and_write_do_write_done, bdev_io); 5991 5992 5993 if (rc == -ENOMEM) { 5994 bdev_queue_io_wait_with_cb(bdev_io, bdev_compare_and_write_do_write); 5995 } else if (rc != 0) { 5996 bdev_comparev_and_writev_blocks_unlock(bdev_io, SPDK_BDEV_IO_STATUS_FAILED); 5997 } 5998 } 5999 6000 static void 6001 bdev_compare_and_write_do_compare_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 6002 { 6003 struct spdk_bdev_io *parent_io = cb_arg; 6004 6005 spdk_bdev_free_io(bdev_io); 6006 6007 if (!success) { 6008 bdev_comparev_and_writev_blocks_unlock(parent_io, SPDK_BDEV_IO_STATUS_MISCOMPARE); 6009 return; 6010 } 6011 6012 bdev_compare_and_write_do_write(parent_io); 6013 } 6014 6015 static void 6016 bdev_compare_and_write_do_compare(void *_bdev_io) 6017 { 6018 struct spdk_bdev_io *bdev_io = _bdev_io; 6019 int rc; 6020 6021 rc = spdk_bdev_comparev_blocks(bdev_io->internal.desc, 6022 spdk_io_channel_from_ctx(bdev_io->internal.ch), bdev_io->u.bdev.iovs, 6023 bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, 6024 bdev_compare_and_write_do_compare_done, bdev_io); 6025 6026 if (rc == -ENOMEM) { 6027 bdev_queue_io_wait_with_cb(bdev_io, bdev_compare_and_write_do_compare); 6028 } else if (rc != 0) { 6029 bdev_comparev_and_writev_blocks_unlock(bdev_io, SPDK_BDEV_IO_STATUS_FIRST_FUSED_FAILED); 6030 } 6031 } 6032 6033 static void 6034 bdev_comparev_and_writev_blocks_locked(struct lba_range *range, void *ctx, int status) 6035 { 6036 struct spdk_bdev_io *bdev_io = ctx; 6037 6038 if (status) { 6039 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FIRST_FUSED_FAILED; 6040 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 6041 return; 6042 } 6043 6044 bdev_compare_and_write_do_compare(bdev_io); 6045 } 6046 6047 int 6048 spdk_bdev_comparev_and_writev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 6049 struct iovec *compare_iov, int compare_iovcnt, 6050 struct iovec *write_iov, int write_iovcnt, 6051 uint64_t offset_blocks, uint64_t num_blocks, 6052 spdk_bdev_io_completion_cb cb, void *cb_arg) 6053 { 6054 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 6055 struct spdk_bdev_io *bdev_io; 6056 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 6057 6058 if (!desc->write) { 6059 return -EBADF; 6060 } 6061 6062 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 6063 return -EINVAL; 6064 } 6065 6066 if (num_blocks > bdev->acwu) { 6067 return -EINVAL; 6068 } 6069 6070 bdev_io = bdev_channel_get_io(channel); 6071 if (!bdev_io) { 6072 return -ENOMEM; 6073 } 6074 6075 bdev_io->internal.ch = channel; 6076 bdev_io->internal.desc = desc; 6077 bdev_io->type = SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE; 6078 bdev_io->u.bdev.iovs = compare_iov; 6079 bdev_io->u.bdev.iovcnt = compare_iovcnt; 6080 bdev_io->u.bdev.fused_iovs = write_iov; 6081 bdev_io->u.bdev.fused_iovcnt = write_iovcnt; 6082 bdev_io->u.bdev.md_buf = NULL; 6083 bdev_io->u.bdev.num_blocks = num_blocks; 6084 bdev_io->u.bdev.offset_blocks = offset_blocks; 6085 bdev_io_init(bdev_io, bdev, cb_arg, cb); 6086 bdev_io->u.bdev.memory_domain = NULL; 6087 bdev_io->u.bdev.memory_domain_ctx = NULL; 6088 bdev_io->u.bdev.accel_sequence = NULL; 6089 6090 if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE)) { 6091 bdev_io_submit(bdev_io); 6092 return 0; 6093 } 6094 6095 return bdev_lock_lba_range(desc, ch, offset_blocks, num_blocks, 6096 bdev_comparev_and_writev_blocks_locked, bdev_io); 6097 } 6098 6099 int 6100 spdk_bdev_zcopy_start(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 6101 struct iovec *iov, int iovcnt, 6102 uint64_t offset_blocks, uint64_t num_blocks, 6103 bool populate, 6104 spdk_bdev_io_completion_cb cb, void *cb_arg) 6105 { 6106 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 6107 struct spdk_bdev_io *bdev_io; 6108 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 6109 6110 if (!desc->write) { 6111 return -EBADF; 6112 } 6113 6114 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 6115 return -EINVAL; 6116 } 6117 6118 if (!spdk_bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_ZCOPY)) { 6119 return -ENOTSUP; 6120 } 6121 6122 bdev_io = bdev_channel_get_io(channel); 6123 if (!bdev_io) { 6124 return -ENOMEM; 6125 } 6126 6127 bdev_io->internal.ch = channel; 6128 bdev_io->internal.desc = desc; 6129 bdev_io->type = SPDK_BDEV_IO_TYPE_ZCOPY; 6130 bdev_io->u.bdev.num_blocks = num_blocks; 6131 bdev_io->u.bdev.offset_blocks = offset_blocks; 6132 bdev_io->u.bdev.iovs = iov; 6133 bdev_io->u.bdev.iovcnt = iovcnt; 6134 bdev_io->u.bdev.md_buf = NULL; 6135 bdev_io->u.bdev.zcopy.populate = populate ? 1 : 0; 6136 bdev_io->u.bdev.zcopy.commit = 0; 6137 bdev_io->u.bdev.zcopy.start = 1; 6138 bdev_io_init(bdev_io, bdev, cb_arg, cb); 6139 bdev_io->u.bdev.memory_domain = NULL; 6140 bdev_io->u.bdev.memory_domain_ctx = NULL; 6141 bdev_io->u.bdev.accel_sequence = NULL; 6142 6143 bdev_io_submit(bdev_io); 6144 6145 return 0; 6146 } 6147 6148 int 6149 spdk_bdev_zcopy_end(struct spdk_bdev_io *bdev_io, bool commit, 6150 spdk_bdev_io_completion_cb cb, void *cb_arg) 6151 { 6152 if (bdev_io->type != SPDK_BDEV_IO_TYPE_ZCOPY) { 6153 return -EINVAL; 6154 } 6155 6156 bdev_io->u.bdev.zcopy.commit = commit ? 1 : 0; 6157 bdev_io->u.bdev.zcopy.start = 0; 6158 bdev_io->internal.caller_ctx = cb_arg; 6159 bdev_io->internal.cb = cb; 6160 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_PENDING; 6161 6162 bdev_io_submit(bdev_io); 6163 6164 return 0; 6165 } 6166 6167 int 6168 spdk_bdev_write_zeroes(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 6169 uint64_t offset, uint64_t len, 6170 spdk_bdev_io_completion_cb cb, void *cb_arg) 6171 { 6172 uint64_t offset_blocks, num_blocks; 6173 6174 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 6175 len, &num_blocks) != 0) { 6176 return -EINVAL; 6177 } 6178 6179 return spdk_bdev_write_zeroes_blocks(desc, ch, offset_blocks, num_blocks, cb, cb_arg); 6180 } 6181 6182 int 6183 spdk_bdev_write_zeroes_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 6184 uint64_t offset_blocks, uint64_t num_blocks, 6185 spdk_bdev_io_completion_cb cb, void *cb_arg) 6186 { 6187 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 6188 struct spdk_bdev_io *bdev_io; 6189 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 6190 6191 if (!desc->write) { 6192 return -EBADF; 6193 } 6194 6195 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 6196 return -EINVAL; 6197 } 6198 6199 if (!bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE_ZEROES) && 6200 !bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE)) { 6201 return -ENOTSUP; 6202 } 6203 6204 bdev_io = bdev_channel_get_io(channel); 6205 6206 if (!bdev_io) { 6207 return -ENOMEM; 6208 } 6209 6210 bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE_ZEROES; 6211 bdev_io->internal.ch = channel; 6212 bdev_io->internal.desc = desc; 6213 bdev_io->u.bdev.offset_blocks = offset_blocks; 6214 bdev_io->u.bdev.num_blocks = num_blocks; 6215 bdev_io_init(bdev_io, bdev, cb_arg, cb); 6216 bdev_io->u.bdev.memory_domain = NULL; 6217 bdev_io->u.bdev.memory_domain_ctx = NULL; 6218 bdev_io->u.bdev.accel_sequence = NULL; 6219 6220 /* If the write_zeroes size is large and should be split, use the generic split 6221 * logic regardless of whether SPDK_BDEV_IO_TYPE_WRITE_ZEREOS is supported or not. 6222 * 6223 * Then, send the write_zeroes request if SPDK_BDEV_IO_TYPE_WRITE_ZEROES is supported 6224 * or emulate it using regular write request otherwise. 6225 */ 6226 if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE_ZEROES) || 6227 bdev_io->internal.split) { 6228 bdev_io_submit(bdev_io); 6229 return 0; 6230 } 6231 6232 assert(_bdev_get_block_size_with_md(bdev) <= ZERO_BUFFER_SIZE); 6233 6234 return bdev_write_zero_buffer(bdev_io); 6235 } 6236 6237 int 6238 spdk_bdev_unmap(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 6239 uint64_t offset, uint64_t nbytes, 6240 spdk_bdev_io_completion_cb cb, void *cb_arg) 6241 { 6242 uint64_t offset_blocks, num_blocks; 6243 6244 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 6245 nbytes, &num_blocks) != 0) { 6246 return -EINVAL; 6247 } 6248 6249 return spdk_bdev_unmap_blocks(desc, ch, offset_blocks, num_blocks, cb, cb_arg); 6250 } 6251 6252 static void 6253 bdev_io_complete_cb(void *ctx) 6254 { 6255 struct spdk_bdev_io *bdev_io = ctx; 6256 6257 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; 6258 bdev_io->internal.cb(bdev_io, true, bdev_io->internal.caller_ctx); 6259 } 6260 6261 int 6262 spdk_bdev_unmap_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 6263 uint64_t offset_blocks, uint64_t num_blocks, 6264 spdk_bdev_io_completion_cb cb, void *cb_arg) 6265 { 6266 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 6267 struct spdk_bdev_io *bdev_io; 6268 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 6269 6270 if (!desc->write) { 6271 return -EBADF; 6272 } 6273 6274 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 6275 return -EINVAL; 6276 } 6277 6278 bdev_io = bdev_channel_get_io(channel); 6279 if (!bdev_io) { 6280 return -ENOMEM; 6281 } 6282 6283 bdev_io->internal.ch = channel; 6284 bdev_io->internal.desc = desc; 6285 bdev_io->type = SPDK_BDEV_IO_TYPE_UNMAP; 6286 6287 bdev_io->u.bdev.iovs = &bdev_io->iov; 6288 bdev_io->u.bdev.iovs[0].iov_base = NULL; 6289 bdev_io->u.bdev.iovs[0].iov_len = 0; 6290 bdev_io->u.bdev.iovcnt = 1; 6291 6292 bdev_io->u.bdev.offset_blocks = offset_blocks; 6293 bdev_io->u.bdev.num_blocks = num_blocks; 6294 bdev_io_init(bdev_io, bdev, cb_arg, cb); 6295 bdev_io->u.bdev.memory_domain = NULL; 6296 bdev_io->u.bdev.memory_domain_ctx = NULL; 6297 bdev_io->u.bdev.accel_sequence = NULL; 6298 6299 if (num_blocks == 0) { 6300 spdk_thread_send_msg(spdk_get_thread(), bdev_io_complete_cb, bdev_io); 6301 return 0; 6302 } 6303 6304 bdev_io_submit(bdev_io); 6305 return 0; 6306 } 6307 6308 int 6309 spdk_bdev_flush(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 6310 uint64_t offset, uint64_t length, 6311 spdk_bdev_io_completion_cb cb, void *cb_arg) 6312 { 6313 uint64_t offset_blocks, num_blocks; 6314 6315 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 6316 length, &num_blocks) != 0) { 6317 return -EINVAL; 6318 } 6319 6320 return spdk_bdev_flush_blocks(desc, ch, offset_blocks, num_blocks, cb, cb_arg); 6321 } 6322 6323 int 6324 spdk_bdev_flush_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 6325 uint64_t offset_blocks, uint64_t num_blocks, 6326 spdk_bdev_io_completion_cb cb, void *cb_arg) 6327 { 6328 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 6329 struct spdk_bdev_io *bdev_io; 6330 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 6331 6332 if (!desc->write) { 6333 return -EBADF; 6334 } 6335 6336 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 6337 return -EINVAL; 6338 } 6339 6340 bdev_io = bdev_channel_get_io(channel); 6341 if (!bdev_io) { 6342 return -ENOMEM; 6343 } 6344 6345 bdev_io->internal.ch = channel; 6346 bdev_io->internal.desc = desc; 6347 bdev_io->type = SPDK_BDEV_IO_TYPE_FLUSH; 6348 bdev_io->u.bdev.iovs = NULL; 6349 bdev_io->u.bdev.iovcnt = 0; 6350 bdev_io->u.bdev.offset_blocks = offset_blocks; 6351 bdev_io->u.bdev.num_blocks = num_blocks; 6352 bdev_io->u.bdev.memory_domain = NULL; 6353 bdev_io->u.bdev.memory_domain_ctx = NULL; 6354 bdev_io->u.bdev.accel_sequence = NULL; 6355 bdev_io_init(bdev_io, bdev, cb_arg, cb); 6356 6357 bdev_io_submit(bdev_io); 6358 return 0; 6359 } 6360 6361 static int bdev_reset_poll_for_outstanding_io(void *ctx); 6362 6363 static void 6364 bdev_reset_check_outstanding_io_done(struct spdk_bdev *bdev, void *_ctx, int status) 6365 { 6366 struct spdk_bdev_channel *ch = _ctx; 6367 struct spdk_bdev_io *bdev_io; 6368 6369 bdev_io = TAILQ_FIRST(&ch->queued_resets); 6370 6371 if (status == -EBUSY) { 6372 if (spdk_get_ticks() < bdev_io->u.reset.wait_poller.stop_time_tsc) { 6373 bdev_io->u.reset.wait_poller.poller = SPDK_POLLER_REGISTER(bdev_reset_poll_for_outstanding_io, 6374 ch, BDEV_RESET_CHECK_OUTSTANDING_IO_PERIOD); 6375 } else { 6376 TAILQ_REMOVE(&ch->queued_resets, bdev_io, internal.link); 6377 6378 if (TAILQ_EMPTY(&ch->io_memory_domain) && TAILQ_EMPTY(&ch->io_accel_exec)) { 6379 /* If outstanding IOs are still present and reset_io_drain_timeout 6380 * seconds passed, start the reset. */ 6381 bdev_io_submit_reset(bdev_io); 6382 } else { 6383 /* We still have in progress memory domain pull/push or we're 6384 * executing accel sequence. Since we cannot abort either of those 6385 * operaions, fail the reset request. */ 6386 spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED); 6387 } 6388 } 6389 } else { 6390 TAILQ_REMOVE(&ch->queued_resets, bdev_io, internal.link); 6391 SPDK_DEBUGLOG(bdev, 6392 "Skipping reset for underlying device of bdev: %s - no outstanding I/O.\n", 6393 ch->bdev->name); 6394 /* Mark the completion status as a SUCCESS and complete the reset. */ 6395 spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS); 6396 } 6397 } 6398 6399 static void 6400 bdev_reset_check_outstanding_io(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 6401 struct spdk_io_channel *io_ch, void *_ctx) 6402 { 6403 struct spdk_bdev_channel *cur_ch = __io_ch_to_bdev_ch(io_ch); 6404 int status = 0; 6405 6406 if (cur_ch->io_outstanding > 0 || 6407 !TAILQ_EMPTY(&cur_ch->io_memory_domain) || 6408 !TAILQ_EMPTY(&cur_ch->io_accel_exec)) { 6409 /* If a channel has outstanding IO, set status to -EBUSY code. This will stop 6410 * further iteration over the rest of the channels and pass non-zero status 6411 * to the callback function. */ 6412 status = -EBUSY; 6413 } 6414 spdk_bdev_for_each_channel_continue(i, status); 6415 } 6416 6417 static int 6418 bdev_reset_poll_for_outstanding_io(void *ctx) 6419 { 6420 struct spdk_bdev_channel *ch = ctx; 6421 struct spdk_bdev_io *bdev_io; 6422 6423 bdev_io = TAILQ_FIRST(&ch->queued_resets); 6424 6425 spdk_poller_unregister(&bdev_io->u.reset.wait_poller.poller); 6426 spdk_bdev_for_each_channel(ch->bdev, bdev_reset_check_outstanding_io, ch, 6427 bdev_reset_check_outstanding_io_done); 6428 6429 return SPDK_POLLER_BUSY; 6430 } 6431 6432 static void 6433 bdev_reset_freeze_channel_done(struct spdk_bdev *bdev, void *_ctx, int status) 6434 { 6435 struct spdk_bdev_channel *ch = _ctx; 6436 struct spdk_bdev_io *bdev_io; 6437 6438 bdev_io = TAILQ_FIRST(&ch->queued_resets); 6439 6440 if (bdev->reset_io_drain_timeout == 0) { 6441 TAILQ_REMOVE(&ch->queued_resets, bdev_io, internal.link); 6442 6443 bdev_io_submit_reset(bdev_io); 6444 return; 6445 } 6446 6447 bdev_io->u.reset.wait_poller.stop_time_tsc = spdk_get_ticks() + 6448 (ch->bdev->reset_io_drain_timeout * spdk_get_ticks_hz()); 6449 6450 /* In case bdev->reset_io_drain_timeout is not equal to zero, 6451 * submit the reset to the underlying module only if outstanding I/O 6452 * remain after reset_io_drain_timeout seconds have passed. */ 6453 spdk_bdev_for_each_channel(ch->bdev, bdev_reset_check_outstanding_io, ch, 6454 bdev_reset_check_outstanding_io_done); 6455 } 6456 6457 static void 6458 bdev_reset_freeze_channel(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 6459 struct spdk_io_channel *ch, void *_ctx) 6460 { 6461 struct spdk_bdev_channel *channel; 6462 struct spdk_bdev_mgmt_channel *mgmt_channel; 6463 struct spdk_bdev_shared_resource *shared_resource; 6464 bdev_io_tailq_t tmp_queued; 6465 6466 TAILQ_INIT(&tmp_queued); 6467 6468 channel = __io_ch_to_bdev_ch(ch); 6469 shared_resource = channel->shared_resource; 6470 mgmt_channel = shared_resource->mgmt_ch; 6471 6472 channel->flags |= BDEV_CH_RESET_IN_PROGRESS; 6473 6474 if ((channel->flags & BDEV_CH_QOS_ENABLED) != 0) { 6475 TAILQ_SWAP(&channel->qos_queued_io, &tmp_queued, spdk_bdev_io, internal.link); 6476 } 6477 6478 bdev_abort_all_queued_io(&shared_resource->nomem_io, channel); 6479 bdev_abort_all_buf_io(mgmt_channel, channel); 6480 bdev_abort_all_queued_io(&tmp_queued, channel); 6481 6482 spdk_bdev_for_each_channel_continue(i, 0); 6483 } 6484 6485 static void 6486 bdev_start_reset(void *ctx) 6487 { 6488 struct spdk_bdev_channel *ch = ctx; 6489 6490 spdk_bdev_for_each_channel(ch->bdev, bdev_reset_freeze_channel, ch, 6491 bdev_reset_freeze_channel_done); 6492 } 6493 6494 static void 6495 bdev_channel_start_reset(struct spdk_bdev_channel *ch) 6496 { 6497 struct spdk_bdev *bdev = ch->bdev; 6498 6499 assert(!TAILQ_EMPTY(&ch->queued_resets)); 6500 6501 spdk_spin_lock(&bdev->internal.spinlock); 6502 if (bdev->internal.reset_in_progress == NULL) { 6503 bdev->internal.reset_in_progress = TAILQ_FIRST(&ch->queued_resets); 6504 /* 6505 * Take a channel reference for the target bdev for the life of this 6506 * reset. This guards against the channel getting destroyed while 6507 * spdk_bdev_for_each_channel() calls related to this reset IO are in 6508 * progress. We will release the reference when this reset is 6509 * completed. 6510 */ 6511 bdev->internal.reset_in_progress->u.reset.ch_ref = spdk_get_io_channel(__bdev_to_io_dev(bdev)); 6512 bdev_start_reset(ch); 6513 } 6514 spdk_spin_unlock(&bdev->internal.spinlock); 6515 } 6516 6517 int 6518 spdk_bdev_reset(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 6519 spdk_bdev_io_completion_cb cb, void *cb_arg) 6520 { 6521 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 6522 struct spdk_bdev_io *bdev_io; 6523 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 6524 6525 bdev_io = bdev_channel_get_io(channel); 6526 if (!bdev_io) { 6527 return -ENOMEM; 6528 } 6529 6530 bdev_io->internal.ch = channel; 6531 bdev_io->internal.desc = desc; 6532 bdev_io->internal.submit_tsc = spdk_get_ticks(); 6533 bdev_io->type = SPDK_BDEV_IO_TYPE_RESET; 6534 bdev_io->u.reset.ch_ref = NULL; 6535 bdev_io_init(bdev_io, bdev, cb_arg, cb); 6536 6537 spdk_spin_lock(&bdev->internal.spinlock); 6538 TAILQ_INSERT_TAIL(&channel->queued_resets, bdev_io, internal.link); 6539 spdk_spin_unlock(&bdev->internal.spinlock); 6540 6541 bdev_ch_add_to_io_submitted(bdev_io); 6542 6543 bdev_channel_start_reset(channel); 6544 6545 return 0; 6546 } 6547 6548 void 6549 spdk_bdev_get_io_stat(struct spdk_bdev *bdev, struct spdk_io_channel *ch, 6550 struct spdk_bdev_io_stat *stat) 6551 { 6552 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 6553 6554 bdev_get_io_stat(stat, channel->stat); 6555 } 6556 6557 static void 6558 bdev_get_device_stat_done(struct spdk_bdev *bdev, void *_ctx, int status) 6559 { 6560 struct spdk_bdev_iostat_ctx *bdev_iostat_ctx = _ctx; 6561 6562 bdev_iostat_ctx->cb(bdev, bdev_iostat_ctx->stat, 6563 bdev_iostat_ctx->cb_arg, 0); 6564 free(bdev_iostat_ctx); 6565 } 6566 6567 static void 6568 bdev_get_each_channel_stat(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 6569 struct spdk_io_channel *ch, void *_ctx) 6570 { 6571 struct spdk_bdev_iostat_ctx *bdev_iostat_ctx = _ctx; 6572 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 6573 6574 spdk_bdev_add_io_stat(bdev_iostat_ctx->stat, channel->stat); 6575 spdk_bdev_for_each_channel_continue(i, 0); 6576 } 6577 6578 void 6579 spdk_bdev_get_device_stat(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, 6580 spdk_bdev_get_device_stat_cb cb, void *cb_arg) 6581 { 6582 struct spdk_bdev_iostat_ctx *bdev_iostat_ctx; 6583 6584 assert(bdev != NULL); 6585 assert(stat != NULL); 6586 assert(cb != NULL); 6587 6588 bdev_iostat_ctx = calloc(1, sizeof(struct spdk_bdev_iostat_ctx)); 6589 if (bdev_iostat_ctx == NULL) { 6590 SPDK_ERRLOG("Unable to allocate memory for spdk_bdev_iostat_ctx\n"); 6591 cb(bdev, stat, cb_arg, -ENOMEM); 6592 return; 6593 } 6594 6595 bdev_iostat_ctx->stat = stat; 6596 bdev_iostat_ctx->cb = cb; 6597 bdev_iostat_ctx->cb_arg = cb_arg; 6598 6599 /* Start with the statistics from previously deleted channels. */ 6600 spdk_spin_lock(&bdev->internal.spinlock); 6601 bdev_get_io_stat(bdev_iostat_ctx->stat, bdev->internal.stat); 6602 spdk_spin_unlock(&bdev->internal.spinlock); 6603 6604 /* Then iterate and add the statistics from each existing channel. */ 6605 spdk_bdev_for_each_channel(bdev, bdev_get_each_channel_stat, bdev_iostat_ctx, 6606 bdev_get_device_stat_done); 6607 } 6608 6609 struct bdev_iostat_reset_ctx { 6610 enum spdk_bdev_reset_stat_mode mode; 6611 bdev_reset_device_stat_cb cb; 6612 void *cb_arg; 6613 }; 6614 6615 static void 6616 bdev_reset_device_stat_done(struct spdk_bdev *bdev, void *_ctx, int status) 6617 { 6618 struct bdev_iostat_reset_ctx *ctx = _ctx; 6619 6620 ctx->cb(bdev, ctx->cb_arg, 0); 6621 6622 free(ctx); 6623 } 6624 6625 static void 6626 bdev_reset_each_channel_stat(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 6627 struct spdk_io_channel *ch, void *_ctx) 6628 { 6629 struct bdev_iostat_reset_ctx *ctx = _ctx; 6630 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 6631 6632 spdk_bdev_reset_io_stat(channel->stat, ctx->mode); 6633 6634 spdk_bdev_for_each_channel_continue(i, 0); 6635 } 6636 6637 void 6638 bdev_reset_device_stat(struct spdk_bdev *bdev, enum spdk_bdev_reset_stat_mode mode, 6639 bdev_reset_device_stat_cb cb, void *cb_arg) 6640 { 6641 struct bdev_iostat_reset_ctx *ctx; 6642 6643 assert(bdev != NULL); 6644 assert(cb != NULL); 6645 6646 ctx = calloc(1, sizeof(*ctx)); 6647 if (ctx == NULL) { 6648 SPDK_ERRLOG("Unable to allocate bdev_iostat_reset_ctx.\n"); 6649 cb(bdev, cb_arg, -ENOMEM); 6650 return; 6651 } 6652 6653 ctx->mode = mode; 6654 ctx->cb = cb; 6655 ctx->cb_arg = cb_arg; 6656 6657 spdk_spin_lock(&bdev->internal.spinlock); 6658 spdk_bdev_reset_io_stat(bdev->internal.stat, mode); 6659 spdk_spin_unlock(&bdev->internal.spinlock); 6660 6661 spdk_bdev_for_each_channel(bdev, 6662 bdev_reset_each_channel_stat, 6663 ctx, 6664 bdev_reset_device_stat_done); 6665 } 6666 6667 int 6668 spdk_bdev_nvme_admin_passthru(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 6669 const struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, 6670 spdk_bdev_io_completion_cb cb, void *cb_arg) 6671 { 6672 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 6673 struct spdk_bdev_io *bdev_io; 6674 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 6675 6676 if (!desc->write) { 6677 return -EBADF; 6678 } 6679 6680 if (spdk_unlikely(!bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_NVME_ADMIN))) { 6681 return -ENOTSUP; 6682 } 6683 6684 bdev_io = bdev_channel_get_io(channel); 6685 if (!bdev_io) { 6686 return -ENOMEM; 6687 } 6688 6689 bdev_io->internal.ch = channel; 6690 bdev_io->internal.desc = desc; 6691 bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_ADMIN; 6692 bdev_io->u.nvme_passthru.cmd = *cmd; 6693 bdev_io->u.nvme_passthru.buf = buf; 6694 bdev_io->u.nvme_passthru.nbytes = nbytes; 6695 bdev_io->u.nvme_passthru.md_buf = NULL; 6696 bdev_io->u.nvme_passthru.md_len = 0; 6697 6698 bdev_io_init(bdev_io, bdev, cb_arg, cb); 6699 6700 bdev_io_submit(bdev_io); 6701 return 0; 6702 } 6703 6704 int 6705 spdk_bdev_nvme_io_passthru(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 6706 const struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, 6707 spdk_bdev_io_completion_cb cb, void *cb_arg) 6708 { 6709 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 6710 struct spdk_bdev_io *bdev_io; 6711 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 6712 6713 if (!desc->write) { 6714 /* 6715 * Do not try to parse the NVMe command - we could maybe use bits in the opcode 6716 * to easily determine if the command is a read or write, but for now just 6717 * do not allow io_passthru with a read-only descriptor. 6718 */ 6719 return -EBADF; 6720 } 6721 6722 if (spdk_unlikely(!bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_NVME_IO))) { 6723 return -ENOTSUP; 6724 } 6725 6726 bdev_io = bdev_channel_get_io(channel); 6727 if (!bdev_io) { 6728 return -ENOMEM; 6729 } 6730 6731 bdev_io->internal.ch = channel; 6732 bdev_io->internal.desc = desc; 6733 bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_IO; 6734 bdev_io->u.nvme_passthru.cmd = *cmd; 6735 bdev_io->u.nvme_passthru.buf = buf; 6736 bdev_io->u.nvme_passthru.nbytes = nbytes; 6737 bdev_io->u.nvme_passthru.md_buf = NULL; 6738 bdev_io->u.nvme_passthru.md_len = 0; 6739 6740 bdev_io_init(bdev_io, bdev, cb_arg, cb); 6741 6742 bdev_io_submit(bdev_io); 6743 return 0; 6744 } 6745 6746 int 6747 spdk_bdev_nvme_io_passthru_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 6748 const struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, void *md_buf, size_t md_len, 6749 spdk_bdev_io_completion_cb cb, void *cb_arg) 6750 { 6751 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 6752 struct spdk_bdev_io *bdev_io; 6753 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 6754 6755 if (!desc->write) { 6756 /* 6757 * Do not try to parse the NVMe command - we could maybe use bits in the opcode 6758 * to easily determine if the command is a read or write, but for now just 6759 * do not allow io_passthru with a read-only descriptor. 6760 */ 6761 return -EBADF; 6762 } 6763 6764 if (spdk_unlikely(!bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_NVME_IO_MD))) { 6765 return -ENOTSUP; 6766 } 6767 6768 bdev_io = bdev_channel_get_io(channel); 6769 if (!bdev_io) { 6770 return -ENOMEM; 6771 } 6772 6773 bdev_io->internal.ch = channel; 6774 bdev_io->internal.desc = desc; 6775 bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_IO_MD; 6776 bdev_io->u.nvme_passthru.cmd = *cmd; 6777 bdev_io->u.nvme_passthru.buf = buf; 6778 bdev_io->u.nvme_passthru.nbytes = nbytes; 6779 bdev_io->u.nvme_passthru.md_buf = md_buf; 6780 bdev_io->u.nvme_passthru.md_len = md_len; 6781 6782 bdev_io_init(bdev_io, bdev, cb_arg, cb); 6783 6784 bdev_io_submit(bdev_io); 6785 return 0; 6786 } 6787 6788 int 6789 spdk_bdev_nvme_iov_passthru_md(struct spdk_bdev_desc *desc, 6790 struct spdk_io_channel *ch, 6791 const struct spdk_nvme_cmd *cmd, 6792 struct iovec *iov, int iovcnt, size_t nbytes, 6793 void *md_buf, size_t md_len, 6794 spdk_bdev_io_completion_cb cb, void *cb_arg) 6795 { 6796 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 6797 struct spdk_bdev_io *bdev_io; 6798 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 6799 6800 if (!desc->write) { 6801 /* 6802 * Do not try to parse the NVMe command - we could maybe use bits in the opcode 6803 * to easily determine if the command is a read or write, but for now just 6804 * do not allow io_passthru with a read-only descriptor. 6805 */ 6806 return -EBADF; 6807 } 6808 6809 if (md_buf && spdk_unlikely(!bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_NVME_IO_MD))) { 6810 return -ENOTSUP; 6811 } else if (spdk_unlikely(!bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_NVME_IO))) { 6812 return -ENOTSUP; 6813 } 6814 6815 bdev_io = bdev_channel_get_io(channel); 6816 if (!bdev_io) { 6817 return -ENOMEM; 6818 } 6819 6820 bdev_io->internal.ch = channel; 6821 bdev_io->internal.desc = desc; 6822 bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_IOV_MD; 6823 bdev_io->u.nvme_passthru.cmd = *cmd; 6824 bdev_io->u.nvme_passthru.iovs = iov; 6825 bdev_io->u.nvme_passthru.iovcnt = iovcnt; 6826 bdev_io->u.nvme_passthru.nbytes = nbytes; 6827 bdev_io->u.nvme_passthru.md_buf = md_buf; 6828 bdev_io->u.nvme_passthru.md_len = md_len; 6829 6830 bdev_io_init(bdev_io, bdev, cb_arg, cb); 6831 6832 bdev_io_submit(bdev_io); 6833 return 0; 6834 } 6835 6836 static void bdev_abort_retry(void *ctx); 6837 static void bdev_abort(struct spdk_bdev_io *parent_io); 6838 6839 static void 6840 bdev_abort_io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 6841 { 6842 struct spdk_bdev_channel *channel = bdev_io->internal.ch; 6843 struct spdk_bdev_io *parent_io = cb_arg; 6844 struct spdk_bdev_io *bio_to_abort, *tmp_io; 6845 6846 bio_to_abort = bdev_io->u.abort.bio_to_abort; 6847 6848 spdk_bdev_free_io(bdev_io); 6849 6850 if (!success) { 6851 /* Check if the target I/O completed in the meantime. */ 6852 TAILQ_FOREACH(tmp_io, &channel->io_submitted, internal.ch_link) { 6853 if (tmp_io == bio_to_abort) { 6854 break; 6855 } 6856 } 6857 6858 /* If the target I/O still exists, set the parent to failed. */ 6859 if (tmp_io != NULL) { 6860 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 6861 } 6862 } 6863 6864 parent_io->u.bdev.split_outstanding--; 6865 if (parent_io->u.bdev.split_outstanding == 0) { 6866 if (parent_io->internal.status == SPDK_BDEV_IO_STATUS_NOMEM) { 6867 bdev_abort_retry(parent_io); 6868 } else { 6869 bdev_io_complete(parent_io); 6870 } 6871 } 6872 } 6873 6874 static int 6875 bdev_abort_io(struct spdk_bdev_desc *desc, struct spdk_bdev_channel *channel, 6876 struct spdk_bdev_io *bio_to_abort, 6877 spdk_bdev_io_completion_cb cb, void *cb_arg) 6878 { 6879 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 6880 struct spdk_bdev_io *bdev_io; 6881 6882 if (bio_to_abort->type == SPDK_BDEV_IO_TYPE_ABORT || 6883 bio_to_abort->type == SPDK_BDEV_IO_TYPE_RESET) { 6884 /* TODO: Abort reset or abort request. */ 6885 return -ENOTSUP; 6886 } 6887 6888 bdev_io = bdev_channel_get_io(channel); 6889 if (bdev_io == NULL) { 6890 return -ENOMEM; 6891 } 6892 6893 bdev_io->internal.ch = channel; 6894 bdev_io->internal.desc = desc; 6895 bdev_io->type = SPDK_BDEV_IO_TYPE_ABORT; 6896 bdev_io_init(bdev_io, bdev, cb_arg, cb); 6897 6898 if (bdev->split_on_optimal_io_boundary && bio_to_abort->internal.split) { 6899 assert(bdev_io_should_split(bio_to_abort)); 6900 bdev_io->u.bdev.abort.bio_cb_arg = bio_to_abort; 6901 6902 /* Parent abort request is not submitted directly, but to manage its 6903 * execution add it to the submitted list here. 6904 */ 6905 bdev_io->internal.submit_tsc = spdk_get_ticks(); 6906 bdev_ch_add_to_io_submitted(bdev_io); 6907 6908 bdev_abort(bdev_io); 6909 6910 return 0; 6911 } 6912 6913 bdev_io->u.abort.bio_to_abort = bio_to_abort; 6914 6915 /* Submit the abort request to the underlying bdev module. */ 6916 bdev_io_submit(bdev_io); 6917 6918 return 0; 6919 } 6920 6921 static bool 6922 bdev_io_on_tailq(struct spdk_bdev_io *bdev_io, bdev_io_tailq_t *tailq) 6923 { 6924 struct spdk_bdev_io *iter; 6925 6926 TAILQ_FOREACH(iter, tailq, internal.link) { 6927 if (iter == bdev_io) { 6928 return true; 6929 } 6930 } 6931 6932 return false; 6933 } 6934 6935 static uint32_t 6936 _bdev_abort(struct spdk_bdev_io *parent_io) 6937 { 6938 struct spdk_bdev_desc *desc = parent_io->internal.desc; 6939 struct spdk_bdev_channel *channel = parent_io->internal.ch; 6940 void *bio_cb_arg; 6941 struct spdk_bdev_io *bio_to_abort; 6942 uint32_t matched_ios; 6943 int rc; 6944 6945 bio_cb_arg = parent_io->u.bdev.abort.bio_cb_arg; 6946 6947 /* matched_ios is returned and will be kept by the caller. 6948 * 6949 * This function will be used for two cases, 1) the same cb_arg is used for 6950 * multiple I/Os, 2) a single large I/O is split into smaller ones. 6951 * Incrementing split_outstanding directly here may confuse readers especially 6952 * for the 1st case. 6953 * 6954 * Completion of I/O abort is processed after stack unwinding. Hence this trick 6955 * works as expected. 6956 */ 6957 matched_ios = 0; 6958 parent_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; 6959 6960 TAILQ_FOREACH(bio_to_abort, &channel->io_submitted, internal.ch_link) { 6961 if (bio_to_abort->internal.caller_ctx != bio_cb_arg) { 6962 continue; 6963 } 6964 6965 if (bio_to_abort->internal.submit_tsc > parent_io->internal.submit_tsc) { 6966 /* Any I/O which was submitted after this abort command should be excluded. */ 6967 continue; 6968 } 6969 6970 /* We can't abort a request that's being pushed/pulled or executed by accel */ 6971 if (bdev_io_on_tailq(bio_to_abort, &channel->io_accel_exec) || 6972 bdev_io_on_tailq(bio_to_abort, &channel->io_memory_domain)) { 6973 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 6974 break; 6975 } 6976 6977 rc = bdev_abort_io(desc, channel, bio_to_abort, bdev_abort_io_done, parent_io); 6978 if (rc != 0) { 6979 if (rc == -ENOMEM) { 6980 parent_io->internal.status = SPDK_BDEV_IO_STATUS_NOMEM; 6981 } else { 6982 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 6983 } 6984 break; 6985 } 6986 matched_ios++; 6987 } 6988 6989 return matched_ios; 6990 } 6991 6992 static void 6993 bdev_abort_retry(void *ctx) 6994 { 6995 struct spdk_bdev_io *parent_io = ctx; 6996 uint32_t matched_ios; 6997 6998 matched_ios = _bdev_abort(parent_io); 6999 7000 if (matched_ios == 0) { 7001 if (parent_io->internal.status == SPDK_BDEV_IO_STATUS_NOMEM) { 7002 bdev_queue_io_wait_with_cb(parent_io, bdev_abort_retry); 7003 } else { 7004 /* For retry, the case that no target I/O was found is success 7005 * because it means target I/Os completed in the meantime. 7006 */ 7007 bdev_io_complete(parent_io); 7008 } 7009 return; 7010 } 7011 7012 /* Use split_outstanding to manage the progress of aborting I/Os. */ 7013 parent_io->u.bdev.split_outstanding = matched_ios; 7014 } 7015 7016 static void 7017 bdev_abort(struct spdk_bdev_io *parent_io) 7018 { 7019 uint32_t matched_ios; 7020 7021 matched_ios = _bdev_abort(parent_io); 7022 7023 if (matched_ios == 0) { 7024 if (parent_io->internal.status == SPDK_BDEV_IO_STATUS_NOMEM) { 7025 bdev_queue_io_wait_with_cb(parent_io, bdev_abort_retry); 7026 } else { 7027 /* The case the no target I/O was found is failure. */ 7028 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 7029 bdev_io_complete(parent_io); 7030 } 7031 return; 7032 } 7033 7034 /* Use split_outstanding to manage the progress of aborting I/Os. */ 7035 parent_io->u.bdev.split_outstanding = matched_ios; 7036 } 7037 7038 int 7039 spdk_bdev_abort(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 7040 void *bio_cb_arg, 7041 spdk_bdev_io_completion_cb cb, void *cb_arg) 7042 { 7043 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 7044 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 7045 struct spdk_bdev_io *bdev_io; 7046 7047 if (bio_cb_arg == NULL) { 7048 return -EINVAL; 7049 } 7050 7051 if (!spdk_bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_ABORT)) { 7052 return -ENOTSUP; 7053 } 7054 7055 bdev_io = bdev_channel_get_io(channel); 7056 if (bdev_io == NULL) { 7057 return -ENOMEM; 7058 } 7059 7060 bdev_io->internal.ch = channel; 7061 bdev_io->internal.desc = desc; 7062 bdev_io->internal.submit_tsc = spdk_get_ticks(); 7063 bdev_io->type = SPDK_BDEV_IO_TYPE_ABORT; 7064 bdev_io_init(bdev_io, bdev, cb_arg, cb); 7065 7066 bdev_io->u.bdev.abort.bio_cb_arg = bio_cb_arg; 7067 7068 /* Parent abort request is not submitted directly, but to manage its execution, 7069 * add it to the submitted list here. 7070 */ 7071 bdev_ch_add_to_io_submitted(bdev_io); 7072 7073 bdev_abort(bdev_io); 7074 7075 return 0; 7076 } 7077 7078 int 7079 spdk_bdev_queue_io_wait(struct spdk_bdev *bdev, struct spdk_io_channel *ch, 7080 struct spdk_bdev_io_wait_entry *entry) 7081 { 7082 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 7083 struct spdk_bdev_mgmt_channel *mgmt_ch = channel->shared_resource->mgmt_ch; 7084 7085 if (bdev != entry->bdev) { 7086 SPDK_ERRLOG("bdevs do not match\n"); 7087 return -EINVAL; 7088 } 7089 7090 if (mgmt_ch->per_thread_cache_count > 0) { 7091 SPDK_ERRLOG("Cannot queue io_wait if spdk_bdev_io available in per-thread cache\n"); 7092 return -EINVAL; 7093 } 7094 7095 TAILQ_INSERT_TAIL(&mgmt_ch->io_wait_queue, entry, link); 7096 return 0; 7097 } 7098 7099 static inline void 7100 bdev_io_update_io_stat(struct spdk_bdev_io *bdev_io, uint64_t tsc_diff) 7101 { 7102 enum spdk_bdev_io_status io_status = bdev_io->internal.status; 7103 struct spdk_bdev_io_stat *io_stat = bdev_io->internal.ch->stat; 7104 uint64_t num_blocks = bdev_io->u.bdev.num_blocks; 7105 uint32_t blocklen = bdev_io->bdev->blocklen; 7106 7107 if (spdk_likely(io_status == SPDK_BDEV_IO_STATUS_SUCCESS)) { 7108 switch (bdev_io->type) { 7109 case SPDK_BDEV_IO_TYPE_READ: 7110 io_stat->bytes_read += num_blocks * blocklen; 7111 io_stat->num_read_ops++; 7112 io_stat->read_latency_ticks += tsc_diff; 7113 if (io_stat->max_read_latency_ticks < tsc_diff) { 7114 io_stat->max_read_latency_ticks = tsc_diff; 7115 } 7116 if (io_stat->min_read_latency_ticks > tsc_diff) { 7117 io_stat->min_read_latency_ticks = tsc_diff; 7118 } 7119 break; 7120 case SPDK_BDEV_IO_TYPE_WRITE: 7121 io_stat->bytes_written += num_blocks * blocklen; 7122 io_stat->num_write_ops++; 7123 io_stat->write_latency_ticks += tsc_diff; 7124 if (io_stat->max_write_latency_ticks < tsc_diff) { 7125 io_stat->max_write_latency_ticks = tsc_diff; 7126 } 7127 if (io_stat->min_write_latency_ticks > tsc_diff) { 7128 io_stat->min_write_latency_ticks = tsc_diff; 7129 } 7130 break; 7131 case SPDK_BDEV_IO_TYPE_UNMAP: 7132 io_stat->bytes_unmapped += num_blocks * blocklen; 7133 io_stat->num_unmap_ops++; 7134 io_stat->unmap_latency_ticks += tsc_diff; 7135 if (io_stat->max_unmap_latency_ticks < tsc_diff) { 7136 io_stat->max_unmap_latency_ticks = tsc_diff; 7137 } 7138 if (io_stat->min_unmap_latency_ticks > tsc_diff) { 7139 io_stat->min_unmap_latency_ticks = tsc_diff; 7140 } 7141 break; 7142 case SPDK_BDEV_IO_TYPE_ZCOPY: 7143 /* Track the data in the start phase only */ 7144 if (bdev_io->u.bdev.zcopy.start) { 7145 if (bdev_io->u.bdev.zcopy.populate) { 7146 io_stat->bytes_read += num_blocks * blocklen; 7147 io_stat->num_read_ops++; 7148 io_stat->read_latency_ticks += tsc_diff; 7149 if (io_stat->max_read_latency_ticks < tsc_diff) { 7150 io_stat->max_read_latency_ticks = tsc_diff; 7151 } 7152 if (io_stat->min_read_latency_ticks > tsc_diff) { 7153 io_stat->min_read_latency_ticks = tsc_diff; 7154 } 7155 } else { 7156 io_stat->bytes_written += num_blocks * blocklen; 7157 io_stat->num_write_ops++; 7158 io_stat->write_latency_ticks += tsc_diff; 7159 if (io_stat->max_write_latency_ticks < tsc_diff) { 7160 io_stat->max_write_latency_ticks = tsc_diff; 7161 } 7162 if (io_stat->min_write_latency_ticks > tsc_diff) { 7163 io_stat->min_write_latency_ticks = tsc_diff; 7164 } 7165 } 7166 } 7167 break; 7168 case SPDK_BDEV_IO_TYPE_COPY: 7169 io_stat->bytes_copied += num_blocks * blocklen; 7170 io_stat->num_copy_ops++; 7171 bdev_io->internal.ch->stat->copy_latency_ticks += tsc_diff; 7172 if (io_stat->max_copy_latency_ticks < tsc_diff) { 7173 io_stat->max_copy_latency_ticks = tsc_diff; 7174 } 7175 if (io_stat->min_copy_latency_ticks > tsc_diff) { 7176 io_stat->min_copy_latency_ticks = tsc_diff; 7177 } 7178 break; 7179 default: 7180 break; 7181 } 7182 } else if (io_status <= SPDK_BDEV_IO_STATUS_FAILED && io_status >= SPDK_MIN_BDEV_IO_STATUS) { 7183 io_stat = bdev_io->bdev->internal.stat; 7184 assert(io_stat->io_error != NULL); 7185 7186 spdk_spin_lock(&bdev_io->bdev->internal.spinlock); 7187 io_stat->io_error->error_status[-io_status - 1]++; 7188 spdk_spin_unlock(&bdev_io->bdev->internal.spinlock); 7189 } 7190 7191 #ifdef SPDK_CONFIG_VTUNE 7192 uint64_t now_tsc = spdk_get_ticks(); 7193 if (now_tsc > (bdev_io->internal.ch->start_tsc + bdev_io->internal.ch->interval_tsc)) { 7194 uint64_t data[5]; 7195 struct spdk_bdev_io_stat *prev_stat = bdev_io->internal.ch->prev_stat; 7196 7197 data[0] = io_stat->num_read_ops - prev_stat->num_read_ops; 7198 data[1] = io_stat->bytes_read - prev_stat->bytes_read; 7199 data[2] = io_stat->num_write_ops - prev_stat->num_write_ops; 7200 data[3] = io_stat->bytes_written - prev_stat->bytes_written; 7201 data[4] = bdev_io->bdev->fn_table->get_spin_time ? 7202 bdev_io->bdev->fn_table->get_spin_time(spdk_bdev_io_get_io_channel(bdev_io)) : 0; 7203 7204 __itt_metadata_add(g_bdev_mgr.domain, __itt_null, bdev_io->internal.ch->handle, 7205 __itt_metadata_u64, 5, data); 7206 7207 memcpy(prev_stat, io_stat, sizeof(struct spdk_bdev_io_stat)); 7208 bdev_io->internal.ch->start_tsc = now_tsc; 7209 } 7210 #endif 7211 } 7212 7213 static inline void 7214 _bdev_io_complete(void *ctx) 7215 { 7216 struct spdk_bdev_io *bdev_io = ctx; 7217 7218 if (spdk_unlikely(bdev_io->internal.accel_sequence != NULL)) { 7219 assert(bdev_io->internal.status != SPDK_BDEV_IO_STATUS_SUCCESS); 7220 spdk_accel_sequence_abort(bdev_io->internal.accel_sequence); 7221 } 7222 7223 assert(bdev_io->internal.cb != NULL); 7224 assert(spdk_get_thread() == spdk_bdev_io_get_thread(bdev_io)); 7225 7226 bdev_io->internal.cb(bdev_io, bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS, 7227 bdev_io->internal.caller_ctx); 7228 } 7229 7230 static inline void 7231 bdev_io_complete(void *ctx) 7232 { 7233 struct spdk_bdev_io *bdev_io = ctx; 7234 struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch; 7235 uint64_t tsc, tsc_diff; 7236 7237 if (spdk_unlikely(bdev_io->internal.in_submit_request)) { 7238 /* 7239 * Defer completion to avoid potential infinite recursion if the 7240 * user's completion callback issues a new I/O. 7241 */ 7242 spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), 7243 bdev_io_complete, bdev_io); 7244 return; 7245 } 7246 7247 tsc = spdk_get_ticks(); 7248 tsc_diff = tsc - bdev_io->internal.submit_tsc; 7249 7250 bdev_ch_remove_from_io_submitted(bdev_io); 7251 spdk_trace_record_tsc(tsc, TRACE_BDEV_IO_DONE, bdev_ch->trace_id, 0, (uintptr_t)bdev_io, 7252 bdev_io->internal.caller_ctx, bdev_ch->queue_depth); 7253 7254 if (bdev_ch->histogram) { 7255 spdk_histogram_data_tally(bdev_ch->histogram, tsc_diff); 7256 } 7257 7258 bdev_io_update_io_stat(bdev_io, tsc_diff); 7259 _bdev_io_complete(bdev_io); 7260 } 7261 7262 /* The difference between this function and bdev_io_complete() is that this should be called to 7263 * complete IOs that haven't been submitted via bdev_io_submit(), as they weren't added onto the 7264 * io_submitted list and don't have submit_tsc updated. 7265 */ 7266 static inline void 7267 bdev_io_complete_unsubmitted(struct spdk_bdev_io *bdev_io) 7268 { 7269 /* Since the IO hasn't been submitted it's bound to be failed */ 7270 assert(bdev_io->internal.status != SPDK_BDEV_IO_STATUS_SUCCESS); 7271 7272 /* At this point we don't know if the IO is completed from submission context or not, but, 7273 * since this is an error path, we can always do an spdk_thread_send_msg(). */ 7274 spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), 7275 _bdev_io_complete, bdev_io); 7276 } 7277 7278 static void bdev_destroy_cb(void *io_device); 7279 7280 static void 7281 bdev_reset_complete(struct spdk_bdev *bdev, void *_ctx, int status) 7282 { 7283 struct spdk_bdev_io *bdev_io = _ctx; 7284 7285 if (bdev_io->u.reset.ch_ref != NULL) { 7286 spdk_put_io_channel(bdev_io->u.reset.ch_ref); 7287 bdev_io->u.reset.ch_ref = NULL; 7288 } 7289 7290 bdev_io_complete(bdev_io); 7291 7292 if (bdev->internal.status == SPDK_BDEV_STATUS_REMOVING && 7293 TAILQ_EMPTY(&bdev->internal.open_descs)) { 7294 spdk_io_device_unregister(__bdev_to_io_dev(bdev), bdev_destroy_cb); 7295 } 7296 } 7297 7298 static void 7299 bdev_unfreeze_channel(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 7300 struct spdk_io_channel *_ch, void *_ctx) 7301 { 7302 struct spdk_bdev_io *bdev_io = _ctx; 7303 struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(_ch); 7304 struct spdk_bdev_io *queued_reset; 7305 7306 ch->flags &= ~BDEV_CH_RESET_IN_PROGRESS; 7307 while (!TAILQ_EMPTY(&ch->queued_resets)) { 7308 queued_reset = TAILQ_FIRST(&ch->queued_resets); 7309 TAILQ_REMOVE(&ch->queued_resets, queued_reset, internal.link); 7310 spdk_bdev_io_complete(queued_reset, bdev_io->internal.status); 7311 } 7312 7313 spdk_bdev_for_each_channel_continue(i, 0); 7314 } 7315 7316 static void 7317 bdev_io_complete_sequence_cb(void *ctx, int status) 7318 { 7319 struct spdk_bdev_io *bdev_io = ctx; 7320 7321 /* u.bdev.accel_sequence should have already been cleared at this point */ 7322 assert(bdev_io->u.bdev.accel_sequence == NULL); 7323 assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS); 7324 bdev_io->internal.accel_sequence = NULL; 7325 7326 if (spdk_unlikely(status != 0)) { 7327 SPDK_ERRLOG("Failed to execute accel sequence, status=%d\n", status); 7328 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 7329 } 7330 7331 bdev_io_complete(bdev_io); 7332 } 7333 7334 void 7335 spdk_bdev_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status) 7336 { 7337 struct spdk_bdev *bdev = bdev_io->bdev; 7338 struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch; 7339 struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource; 7340 7341 if (spdk_unlikely(bdev_io->internal.status != SPDK_BDEV_IO_STATUS_PENDING)) { 7342 SPDK_ERRLOG("Unexpected completion on IO from %s module, status was %s\n", 7343 spdk_bdev_get_module_name(bdev), 7344 bdev_io_status_get_string(bdev_io->internal.status)); 7345 assert(false); 7346 } 7347 bdev_io->internal.status = status; 7348 7349 if (spdk_unlikely(bdev_io->type == SPDK_BDEV_IO_TYPE_RESET)) { 7350 bool unlock_channels = false; 7351 7352 if (status == SPDK_BDEV_IO_STATUS_NOMEM) { 7353 SPDK_ERRLOG("NOMEM returned for reset\n"); 7354 } 7355 spdk_spin_lock(&bdev->internal.spinlock); 7356 if (bdev_io == bdev->internal.reset_in_progress) { 7357 bdev->internal.reset_in_progress = NULL; 7358 unlock_channels = true; 7359 } 7360 spdk_spin_unlock(&bdev->internal.spinlock); 7361 7362 if (unlock_channels) { 7363 spdk_bdev_for_each_channel(bdev, bdev_unfreeze_channel, bdev_io, 7364 bdev_reset_complete); 7365 return; 7366 } 7367 } else { 7368 bdev_io_decrement_outstanding(bdev_ch, shared_resource); 7369 if (spdk_likely(status == SPDK_BDEV_IO_STATUS_SUCCESS)) { 7370 if (bdev_io_needs_sequence_exec(bdev_io->internal.desc, bdev_io)) { 7371 bdev_io_exec_sequence(bdev_io, bdev_io_complete_sequence_cb); 7372 return; 7373 } else if (spdk_unlikely(bdev_io->internal.orig_iovcnt != 0 && 7374 !bdev_io_use_accel_sequence(bdev_io))) { 7375 _bdev_io_push_bounce_data_buffer(bdev_io, 7376 _bdev_io_complete_push_bounce_done); 7377 /* bdev IO will be completed in the callback */ 7378 return; 7379 } 7380 } 7381 7382 if (spdk_unlikely(_bdev_io_handle_no_mem(bdev_io, BDEV_IO_RETRY_STATE_SUBMIT))) { 7383 return; 7384 } 7385 } 7386 7387 bdev_io_complete(bdev_io); 7388 } 7389 7390 void 7391 spdk_bdev_io_complete_scsi_status(struct spdk_bdev_io *bdev_io, enum spdk_scsi_status sc, 7392 enum spdk_scsi_sense sk, uint8_t asc, uint8_t ascq) 7393 { 7394 enum spdk_bdev_io_status status; 7395 7396 if (sc == SPDK_SCSI_STATUS_GOOD) { 7397 status = SPDK_BDEV_IO_STATUS_SUCCESS; 7398 } else { 7399 status = SPDK_BDEV_IO_STATUS_SCSI_ERROR; 7400 bdev_io->internal.error.scsi.sc = sc; 7401 bdev_io->internal.error.scsi.sk = sk; 7402 bdev_io->internal.error.scsi.asc = asc; 7403 bdev_io->internal.error.scsi.ascq = ascq; 7404 } 7405 7406 spdk_bdev_io_complete(bdev_io, status); 7407 } 7408 7409 void 7410 spdk_bdev_io_get_scsi_status(const struct spdk_bdev_io *bdev_io, 7411 int *sc, int *sk, int *asc, int *ascq) 7412 { 7413 assert(sc != NULL); 7414 assert(sk != NULL); 7415 assert(asc != NULL); 7416 assert(ascq != NULL); 7417 7418 switch (bdev_io->internal.status) { 7419 case SPDK_BDEV_IO_STATUS_SUCCESS: 7420 *sc = SPDK_SCSI_STATUS_GOOD; 7421 *sk = SPDK_SCSI_SENSE_NO_SENSE; 7422 *asc = SPDK_SCSI_ASC_NO_ADDITIONAL_SENSE; 7423 *ascq = SPDK_SCSI_ASCQ_CAUSE_NOT_REPORTABLE; 7424 break; 7425 case SPDK_BDEV_IO_STATUS_NVME_ERROR: 7426 spdk_scsi_nvme_translate(bdev_io, sc, sk, asc, ascq); 7427 break; 7428 case SPDK_BDEV_IO_STATUS_MISCOMPARE: 7429 *sc = SPDK_SCSI_STATUS_CHECK_CONDITION; 7430 *sk = SPDK_SCSI_SENSE_MISCOMPARE; 7431 *asc = SPDK_SCSI_ASC_MISCOMPARE_DURING_VERIFY_OPERATION; 7432 *ascq = bdev_io->internal.error.scsi.ascq; 7433 break; 7434 case SPDK_BDEV_IO_STATUS_SCSI_ERROR: 7435 *sc = bdev_io->internal.error.scsi.sc; 7436 *sk = bdev_io->internal.error.scsi.sk; 7437 *asc = bdev_io->internal.error.scsi.asc; 7438 *ascq = bdev_io->internal.error.scsi.ascq; 7439 break; 7440 default: 7441 *sc = SPDK_SCSI_STATUS_CHECK_CONDITION; 7442 *sk = SPDK_SCSI_SENSE_ABORTED_COMMAND; 7443 *asc = SPDK_SCSI_ASC_NO_ADDITIONAL_SENSE; 7444 *ascq = SPDK_SCSI_ASCQ_CAUSE_NOT_REPORTABLE; 7445 break; 7446 } 7447 } 7448 7449 void 7450 spdk_bdev_io_complete_aio_status(struct spdk_bdev_io *bdev_io, int aio_result) 7451 { 7452 enum spdk_bdev_io_status status; 7453 7454 if (aio_result == 0) { 7455 status = SPDK_BDEV_IO_STATUS_SUCCESS; 7456 } else { 7457 status = SPDK_BDEV_IO_STATUS_AIO_ERROR; 7458 } 7459 7460 bdev_io->internal.error.aio_result = aio_result; 7461 7462 spdk_bdev_io_complete(bdev_io, status); 7463 } 7464 7465 void 7466 spdk_bdev_io_get_aio_status(const struct spdk_bdev_io *bdev_io, int *aio_result) 7467 { 7468 assert(aio_result != NULL); 7469 7470 if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_AIO_ERROR) { 7471 *aio_result = bdev_io->internal.error.aio_result; 7472 } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) { 7473 *aio_result = 0; 7474 } else { 7475 *aio_result = -EIO; 7476 } 7477 } 7478 7479 void 7480 spdk_bdev_io_complete_nvme_status(struct spdk_bdev_io *bdev_io, uint32_t cdw0, int sct, int sc) 7481 { 7482 enum spdk_bdev_io_status status; 7483 7484 if (spdk_likely(sct == SPDK_NVME_SCT_GENERIC && sc == SPDK_NVME_SC_SUCCESS)) { 7485 status = SPDK_BDEV_IO_STATUS_SUCCESS; 7486 } else if (sct == SPDK_NVME_SCT_GENERIC && sc == SPDK_NVME_SC_ABORTED_BY_REQUEST) { 7487 status = SPDK_BDEV_IO_STATUS_ABORTED; 7488 } else { 7489 status = SPDK_BDEV_IO_STATUS_NVME_ERROR; 7490 } 7491 7492 bdev_io->internal.error.nvme.cdw0 = cdw0; 7493 bdev_io->internal.error.nvme.sct = sct; 7494 bdev_io->internal.error.nvme.sc = sc; 7495 7496 spdk_bdev_io_complete(bdev_io, status); 7497 } 7498 7499 void 7500 spdk_bdev_io_get_nvme_status(const struct spdk_bdev_io *bdev_io, uint32_t *cdw0, int *sct, int *sc) 7501 { 7502 assert(sct != NULL); 7503 assert(sc != NULL); 7504 assert(cdw0 != NULL); 7505 7506 if (spdk_unlikely(bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT)) { 7507 *sct = SPDK_NVME_SCT_GENERIC; 7508 *sc = SPDK_NVME_SC_SUCCESS; 7509 if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) { 7510 *cdw0 = 0; 7511 } else { 7512 *cdw0 = 1U; 7513 } 7514 return; 7515 } 7516 7517 if (spdk_likely(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS)) { 7518 *sct = SPDK_NVME_SCT_GENERIC; 7519 *sc = SPDK_NVME_SC_SUCCESS; 7520 } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_NVME_ERROR) { 7521 *sct = bdev_io->internal.error.nvme.sct; 7522 *sc = bdev_io->internal.error.nvme.sc; 7523 } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_ABORTED) { 7524 *sct = SPDK_NVME_SCT_GENERIC; 7525 *sc = SPDK_NVME_SC_ABORTED_BY_REQUEST; 7526 } else { 7527 *sct = SPDK_NVME_SCT_GENERIC; 7528 *sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 7529 } 7530 7531 *cdw0 = bdev_io->internal.error.nvme.cdw0; 7532 } 7533 7534 void 7535 spdk_bdev_io_get_nvme_fused_status(const struct spdk_bdev_io *bdev_io, uint32_t *cdw0, 7536 int *first_sct, int *first_sc, int *second_sct, int *second_sc) 7537 { 7538 assert(first_sct != NULL); 7539 assert(first_sc != NULL); 7540 assert(second_sct != NULL); 7541 assert(second_sc != NULL); 7542 assert(cdw0 != NULL); 7543 7544 if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_NVME_ERROR) { 7545 if (bdev_io->internal.error.nvme.sct == SPDK_NVME_SCT_MEDIA_ERROR && 7546 bdev_io->internal.error.nvme.sc == SPDK_NVME_SC_COMPARE_FAILURE) { 7547 *first_sct = bdev_io->internal.error.nvme.sct; 7548 *first_sc = bdev_io->internal.error.nvme.sc; 7549 *second_sct = SPDK_NVME_SCT_GENERIC; 7550 *second_sc = SPDK_NVME_SC_ABORTED_FAILED_FUSED; 7551 } else { 7552 *first_sct = SPDK_NVME_SCT_GENERIC; 7553 *first_sc = SPDK_NVME_SC_SUCCESS; 7554 *second_sct = bdev_io->internal.error.nvme.sct; 7555 *second_sc = bdev_io->internal.error.nvme.sc; 7556 } 7557 } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_ABORTED) { 7558 *first_sct = SPDK_NVME_SCT_GENERIC; 7559 *first_sc = SPDK_NVME_SC_ABORTED_BY_REQUEST; 7560 *second_sct = SPDK_NVME_SCT_GENERIC; 7561 *second_sc = SPDK_NVME_SC_ABORTED_BY_REQUEST; 7562 } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) { 7563 *first_sct = SPDK_NVME_SCT_GENERIC; 7564 *first_sc = SPDK_NVME_SC_SUCCESS; 7565 *second_sct = SPDK_NVME_SCT_GENERIC; 7566 *second_sc = SPDK_NVME_SC_SUCCESS; 7567 } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_FIRST_FUSED_FAILED) { 7568 *first_sct = SPDK_NVME_SCT_GENERIC; 7569 *first_sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 7570 *second_sct = SPDK_NVME_SCT_GENERIC; 7571 *second_sc = SPDK_NVME_SC_ABORTED_FAILED_FUSED; 7572 } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_MISCOMPARE) { 7573 *first_sct = SPDK_NVME_SCT_MEDIA_ERROR; 7574 *first_sc = SPDK_NVME_SC_COMPARE_FAILURE; 7575 *second_sct = SPDK_NVME_SCT_GENERIC; 7576 *second_sc = SPDK_NVME_SC_ABORTED_FAILED_FUSED; 7577 } else { 7578 *first_sct = SPDK_NVME_SCT_GENERIC; 7579 *first_sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 7580 *second_sct = SPDK_NVME_SCT_GENERIC; 7581 *second_sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 7582 } 7583 7584 *cdw0 = bdev_io->internal.error.nvme.cdw0; 7585 } 7586 7587 void 7588 spdk_bdev_io_complete_base_io_status(struct spdk_bdev_io *bdev_io, 7589 const struct spdk_bdev_io *base_io) 7590 { 7591 switch (base_io->internal.status) { 7592 case SPDK_BDEV_IO_STATUS_NVME_ERROR: 7593 spdk_bdev_io_complete_nvme_status(bdev_io, 7594 base_io->internal.error.nvme.cdw0, 7595 base_io->internal.error.nvme.sct, 7596 base_io->internal.error.nvme.sc); 7597 break; 7598 case SPDK_BDEV_IO_STATUS_SCSI_ERROR: 7599 spdk_bdev_io_complete_scsi_status(bdev_io, 7600 base_io->internal.error.scsi.sc, 7601 base_io->internal.error.scsi.sk, 7602 base_io->internal.error.scsi.asc, 7603 base_io->internal.error.scsi.ascq); 7604 break; 7605 case SPDK_BDEV_IO_STATUS_AIO_ERROR: 7606 spdk_bdev_io_complete_aio_status(bdev_io, base_io->internal.error.aio_result); 7607 break; 7608 default: 7609 spdk_bdev_io_complete(bdev_io, base_io->internal.status); 7610 break; 7611 } 7612 } 7613 7614 struct spdk_thread * 7615 spdk_bdev_io_get_thread(struct spdk_bdev_io *bdev_io) 7616 { 7617 return spdk_io_channel_get_thread(bdev_io->internal.ch->channel); 7618 } 7619 7620 struct spdk_io_channel * 7621 spdk_bdev_io_get_io_channel(struct spdk_bdev_io *bdev_io) 7622 { 7623 return bdev_io->internal.ch->channel; 7624 } 7625 7626 static int 7627 bdev_register(struct spdk_bdev *bdev) 7628 { 7629 char *bdev_name; 7630 char uuid[SPDK_UUID_STRING_LEN]; 7631 struct spdk_iobuf_opts iobuf_opts; 7632 int ret; 7633 7634 assert(bdev->module != NULL); 7635 7636 if (!bdev->name) { 7637 SPDK_ERRLOG("Bdev name is NULL\n"); 7638 return -EINVAL; 7639 } 7640 7641 if (!strlen(bdev->name)) { 7642 SPDK_ERRLOG("Bdev name must not be an empty string\n"); 7643 return -EINVAL; 7644 } 7645 7646 /* Users often register their own I/O devices using the bdev name. In 7647 * order to avoid conflicts, prepend bdev_. */ 7648 bdev_name = spdk_sprintf_alloc("bdev_%s", bdev->name); 7649 if (!bdev_name) { 7650 SPDK_ERRLOG("Unable to allocate memory for internal bdev name.\n"); 7651 return -ENOMEM; 7652 } 7653 7654 bdev->internal.stat = bdev_alloc_io_stat(true); 7655 if (!bdev->internal.stat) { 7656 SPDK_ERRLOG("Unable to allocate I/O statistics structure.\n"); 7657 free(bdev_name); 7658 return -ENOMEM; 7659 } 7660 7661 bdev->internal.status = SPDK_BDEV_STATUS_READY; 7662 bdev->internal.measured_queue_depth = UINT64_MAX; 7663 bdev->internal.claim_type = SPDK_BDEV_CLAIM_NONE; 7664 memset(&bdev->internal.claim, 0, sizeof(bdev->internal.claim)); 7665 bdev->internal.qd_poller = NULL; 7666 bdev->internal.qos = NULL; 7667 7668 TAILQ_INIT(&bdev->internal.open_descs); 7669 TAILQ_INIT(&bdev->internal.locked_ranges); 7670 TAILQ_INIT(&bdev->internal.pending_locked_ranges); 7671 TAILQ_INIT(&bdev->aliases); 7672 7673 ret = bdev_name_add(&bdev->internal.bdev_name, bdev, bdev->name); 7674 if (ret != 0) { 7675 bdev_free_io_stat(bdev->internal.stat); 7676 free(bdev_name); 7677 return ret; 7678 } 7679 7680 /* UUID may be specified by the user or defined by bdev itself. 7681 * Otherwise it will be generated here, so this field will never be empty. */ 7682 if (spdk_uuid_is_null(&bdev->uuid)) { 7683 spdk_uuid_generate(&bdev->uuid); 7684 } 7685 7686 /* Add the UUID alias only if it's different than the name */ 7687 spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid); 7688 if (strcmp(bdev->name, uuid) != 0) { 7689 ret = spdk_bdev_alias_add(bdev, uuid); 7690 if (ret != 0) { 7691 SPDK_ERRLOG("Unable to add uuid:%s alias for bdev %s\n", uuid, bdev->name); 7692 bdev_name_del(&bdev->internal.bdev_name); 7693 bdev_free_io_stat(bdev->internal.stat); 7694 free(bdev_name); 7695 return ret; 7696 } 7697 } 7698 7699 spdk_iobuf_get_opts(&iobuf_opts, sizeof(iobuf_opts)); 7700 if (spdk_bdev_get_buf_align(bdev) > 1) { 7701 bdev->max_rw_size = spdk_min(bdev->max_rw_size ? bdev->max_rw_size : UINT32_MAX, 7702 iobuf_opts.large_bufsize / bdev->blocklen); 7703 } 7704 7705 /* If the user didn't specify a write unit size, set it to one. */ 7706 if (bdev->write_unit_size == 0) { 7707 bdev->write_unit_size = 1; 7708 } 7709 7710 /* Set ACWU value to the write unit size if bdev module did not set it (does not support it natively) */ 7711 if (bdev->acwu == 0) { 7712 bdev->acwu = bdev->write_unit_size; 7713 } 7714 7715 if (bdev->phys_blocklen == 0) { 7716 bdev->phys_blocklen = spdk_bdev_get_data_block_size(bdev); 7717 } 7718 7719 if (!bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_COPY)) { 7720 bdev->max_copy = bdev_get_max_write(bdev, iobuf_opts.large_bufsize); 7721 } 7722 7723 if (!bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE_ZEROES)) { 7724 bdev->max_write_zeroes = bdev_get_max_write(bdev, ZERO_BUFFER_SIZE); 7725 } 7726 7727 bdev->internal.reset_in_progress = NULL; 7728 bdev->internal.qd_poll_in_progress = false; 7729 bdev->internal.period = 0; 7730 bdev->internal.new_period = 0; 7731 bdev->internal.trace_id = spdk_trace_register_owner(OWNER_TYPE_BDEV, bdev_name); 7732 7733 spdk_io_device_register(__bdev_to_io_dev(bdev), 7734 bdev_channel_create, bdev_channel_destroy, 7735 sizeof(struct spdk_bdev_channel), 7736 bdev_name); 7737 7738 free(bdev_name); 7739 7740 spdk_spin_init(&bdev->internal.spinlock); 7741 7742 SPDK_DEBUGLOG(bdev, "Inserting bdev %s into list\n", bdev->name); 7743 TAILQ_INSERT_TAIL(&g_bdev_mgr.bdevs, bdev, internal.link); 7744 7745 return 0; 7746 } 7747 7748 static void 7749 bdev_destroy_cb(void *io_device) 7750 { 7751 int rc; 7752 struct spdk_bdev *bdev; 7753 spdk_bdev_unregister_cb cb_fn; 7754 void *cb_arg; 7755 7756 bdev = __bdev_from_io_dev(io_device); 7757 7758 if (bdev->internal.unregister_td != spdk_get_thread()) { 7759 spdk_thread_send_msg(bdev->internal.unregister_td, bdev_destroy_cb, io_device); 7760 return; 7761 } 7762 7763 cb_fn = bdev->internal.unregister_cb; 7764 cb_arg = bdev->internal.unregister_ctx; 7765 7766 spdk_spin_destroy(&bdev->internal.spinlock); 7767 free(bdev->internal.qos); 7768 bdev_free_io_stat(bdev->internal.stat); 7769 spdk_trace_unregister_owner(bdev->internal.trace_id); 7770 7771 rc = bdev->fn_table->destruct(bdev->ctxt); 7772 if (rc < 0) { 7773 SPDK_ERRLOG("destruct failed\n"); 7774 } 7775 if (rc <= 0 && cb_fn != NULL) { 7776 cb_fn(cb_arg, rc); 7777 } 7778 } 7779 7780 void 7781 spdk_bdev_destruct_done(struct spdk_bdev *bdev, int bdeverrno) 7782 { 7783 if (bdev->internal.unregister_cb != NULL) { 7784 bdev->internal.unregister_cb(bdev->internal.unregister_ctx, bdeverrno); 7785 } 7786 } 7787 7788 static void 7789 _remove_notify(void *arg) 7790 { 7791 struct spdk_bdev_desc *desc = arg; 7792 7793 _event_notify(desc, SPDK_BDEV_EVENT_REMOVE); 7794 } 7795 7796 /* returns: 0 - bdev removed and ready to be destructed. 7797 * -EBUSY - bdev can't be destructed yet. */ 7798 static int 7799 bdev_unregister_unsafe(struct spdk_bdev *bdev) 7800 { 7801 struct spdk_bdev_desc *desc, *tmp; 7802 int rc = 0; 7803 char uuid[SPDK_UUID_STRING_LEN]; 7804 7805 assert(spdk_spin_held(&g_bdev_mgr.spinlock)); 7806 assert(spdk_spin_held(&bdev->internal.spinlock)); 7807 7808 /* Notify each descriptor about hotremoval */ 7809 TAILQ_FOREACH_SAFE(desc, &bdev->internal.open_descs, link, tmp) { 7810 rc = -EBUSY; 7811 /* 7812 * Defer invocation of the event_cb to a separate message that will 7813 * run later on its thread. This ensures this context unwinds and 7814 * we don't recursively unregister this bdev again if the event_cb 7815 * immediately closes its descriptor. 7816 */ 7817 event_notify(desc, _remove_notify); 7818 } 7819 7820 /* If there are no descriptors, proceed removing the bdev */ 7821 if (rc == 0) { 7822 TAILQ_REMOVE(&g_bdev_mgr.bdevs, bdev, internal.link); 7823 SPDK_DEBUGLOG(bdev, "Removing bdev %s from list done\n", bdev->name); 7824 7825 /* Delete the name and the UUID alias */ 7826 spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid); 7827 bdev_name_del_unsafe(&bdev->internal.bdev_name); 7828 bdev_alias_del(bdev, uuid, bdev_name_del_unsafe); 7829 7830 spdk_notify_send("bdev_unregister", spdk_bdev_get_name(bdev)); 7831 7832 if (bdev->internal.reset_in_progress != NULL) { 7833 /* If reset is in progress, let the completion callback for reset 7834 * unregister the bdev. 7835 */ 7836 rc = -EBUSY; 7837 } 7838 } 7839 7840 return rc; 7841 } 7842 7843 static void 7844 bdev_unregister_abort_channel(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 7845 struct spdk_io_channel *io_ch, void *_ctx) 7846 { 7847 struct spdk_bdev_channel *bdev_ch = __io_ch_to_bdev_ch(io_ch); 7848 7849 bdev_channel_abort_queued_ios(bdev_ch); 7850 spdk_bdev_for_each_channel_continue(i, 0); 7851 } 7852 7853 static void 7854 bdev_unregister(struct spdk_bdev *bdev, void *_ctx, int status) 7855 { 7856 int rc; 7857 7858 spdk_spin_lock(&g_bdev_mgr.spinlock); 7859 spdk_spin_lock(&bdev->internal.spinlock); 7860 /* 7861 * Set the status to REMOVING after completing to abort channels. Otherwise, 7862 * the last spdk_bdev_close() may call spdk_io_device_unregister() while 7863 * spdk_bdev_for_each_channel() is executed and spdk_io_device_unregister() 7864 * may fail. 7865 */ 7866 bdev->internal.status = SPDK_BDEV_STATUS_REMOVING; 7867 rc = bdev_unregister_unsafe(bdev); 7868 spdk_spin_unlock(&bdev->internal.spinlock); 7869 spdk_spin_unlock(&g_bdev_mgr.spinlock); 7870 7871 if (rc == 0) { 7872 spdk_io_device_unregister(__bdev_to_io_dev(bdev), bdev_destroy_cb); 7873 } 7874 } 7875 7876 void 7877 spdk_bdev_unregister(struct spdk_bdev *bdev, spdk_bdev_unregister_cb cb_fn, void *cb_arg) 7878 { 7879 struct spdk_thread *thread; 7880 7881 SPDK_DEBUGLOG(bdev, "Removing bdev %s from list\n", bdev->name); 7882 7883 thread = spdk_get_thread(); 7884 if (!thread) { 7885 /* The user called this from a non-SPDK thread. */ 7886 if (cb_fn != NULL) { 7887 cb_fn(cb_arg, -ENOTSUP); 7888 } 7889 return; 7890 } 7891 7892 spdk_spin_lock(&g_bdev_mgr.spinlock); 7893 if (bdev->internal.status == SPDK_BDEV_STATUS_UNREGISTERING || 7894 bdev->internal.status == SPDK_BDEV_STATUS_REMOVING) { 7895 spdk_spin_unlock(&g_bdev_mgr.spinlock); 7896 if (cb_fn) { 7897 cb_fn(cb_arg, -EBUSY); 7898 } 7899 return; 7900 } 7901 7902 spdk_spin_lock(&bdev->internal.spinlock); 7903 bdev->internal.status = SPDK_BDEV_STATUS_UNREGISTERING; 7904 bdev->internal.unregister_cb = cb_fn; 7905 bdev->internal.unregister_ctx = cb_arg; 7906 bdev->internal.unregister_td = thread; 7907 spdk_spin_unlock(&bdev->internal.spinlock); 7908 spdk_spin_unlock(&g_bdev_mgr.spinlock); 7909 7910 spdk_bdev_set_qd_sampling_period(bdev, 0); 7911 7912 spdk_bdev_for_each_channel(bdev, bdev_unregister_abort_channel, bdev, 7913 bdev_unregister); 7914 } 7915 7916 int 7917 spdk_bdev_unregister_by_name(const char *bdev_name, struct spdk_bdev_module *module, 7918 spdk_bdev_unregister_cb cb_fn, void *cb_arg) 7919 { 7920 struct spdk_bdev_desc *desc; 7921 struct spdk_bdev *bdev; 7922 int rc; 7923 7924 rc = spdk_bdev_open_ext(bdev_name, false, _tmp_bdev_event_cb, NULL, &desc); 7925 if (rc != 0) { 7926 SPDK_ERRLOG("Failed to open bdev with name: %s\n", bdev_name); 7927 return rc; 7928 } 7929 7930 bdev = spdk_bdev_desc_get_bdev(desc); 7931 7932 if (bdev->module != module) { 7933 spdk_bdev_close(desc); 7934 SPDK_ERRLOG("Bdev %s was not registered by the specified module.\n", 7935 bdev_name); 7936 return -ENODEV; 7937 } 7938 7939 spdk_bdev_unregister(bdev, cb_fn, cb_arg); 7940 7941 spdk_bdev_close(desc); 7942 7943 return 0; 7944 } 7945 7946 static int 7947 bdev_start_qos(struct spdk_bdev *bdev) 7948 { 7949 struct set_qos_limit_ctx *ctx; 7950 7951 /* Enable QoS */ 7952 if (bdev->internal.qos && bdev->internal.qos->thread == NULL) { 7953 ctx = calloc(1, sizeof(*ctx)); 7954 if (ctx == NULL) { 7955 SPDK_ERRLOG("Failed to allocate memory for QoS context\n"); 7956 return -ENOMEM; 7957 } 7958 ctx->bdev = bdev; 7959 spdk_bdev_for_each_channel(bdev, bdev_enable_qos_msg, ctx, bdev_enable_qos_done); 7960 } 7961 7962 return 0; 7963 } 7964 7965 static void 7966 log_already_claimed(enum spdk_log_level level, const int line, const char *func, const char *detail, 7967 struct spdk_bdev *bdev) 7968 { 7969 enum spdk_bdev_claim_type type; 7970 const char *typename, *modname; 7971 extern struct spdk_log_flag SPDK_LOG_bdev; 7972 7973 assert(spdk_spin_held(&bdev->internal.spinlock)); 7974 7975 if (level >= SPDK_LOG_INFO && !SPDK_LOG_bdev.enabled) { 7976 return; 7977 } 7978 7979 type = bdev->internal.claim_type; 7980 typename = spdk_bdev_claim_get_name(type); 7981 7982 if (type == SPDK_BDEV_CLAIM_EXCL_WRITE) { 7983 modname = bdev->internal.claim.v1.module->name; 7984 spdk_log(level, __FILE__, line, func, "bdev %s %s: type %s by module %s\n", 7985 bdev->name, detail, typename, modname); 7986 return; 7987 } 7988 7989 if (claim_type_is_v2(type)) { 7990 struct spdk_bdev_module_claim *claim; 7991 7992 TAILQ_FOREACH(claim, &bdev->internal.claim.v2.claims, link) { 7993 modname = claim->module->name; 7994 spdk_log(level, __FILE__, line, func, "bdev %s %s: type %s by module %s\n", 7995 bdev->name, detail, typename, modname); 7996 } 7997 return; 7998 } 7999 8000 assert(false); 8001 } 8002 8003 static int 8004 bdev_open(struct spdk_bdev *bdev, bool write, struct spdk_bdev_desc *desc) 8005 { 8006 struct spdk_thread *thread; 8007 int rc = 0; 8008 8009 thread = spdk_get_thread(); 8010 if (!thread) { 8011 SPDK_ERRLOG("Cannot open bdev from non-SPDK thread.\n"); 8012 return -ENOTSUP; 8013 } 8014 8015 SPDK_DEBUGLOG(bdev, "Opening descriptor %p for bdev %s on thread %p\n", desc, bdev->name, 8016 spdk_get_thread()); 8017 8018 desc->bdev = bdev; 8019 desc->thread = thread; 8020 desc->write = write; 8021 8022 spdk_spin_lock(&bdev->internal.spinlock); 8023 if (bdev->internal.status == SPDK_BDEV_STATUS_UNREGISTERING || 8024 bdev->internal.status == SPDK_BDEV_STATUS_REMOVING) { 8025 spdk_spin_unlock(&bdev->internal.spinlock); 8026 return -ENODEV; 8027 } 8028 8029 if (write && bdev->internal.claim_type != SPDK_BDEV_CLAIM_NONE) { 8030 LOG_ALREADY_CLAIMED_ERROR("already claimed", bdev); 8031 spdk_spin_unlock(&bdev->internal.spinlock); 8032 return -EPERM; 8033 } 8034 8035 rc = bdev_start_qos(bdev); 8036 if (rc != 0) { 8037 SPDK_ERRLOG("Failed to start QoS on bdev %s\n", bdev->name); 8038 spdk_spin_unlock(&bdev->internal.spinlock); 8039 return rc; 8040 } 8041 8042 TAILQ_INSERT_TAIL(&bdev->internal.open_descs, desc, link); 8043 8044 spdk_spin_unlock(&bdev->internal.spinlock); 8045 8046 return 0; 8047 } 8048 8049 static int 8050 bdev_desc_alloc(struct spdk_bdev *bdev, spdk_bdev_event_cb_t event_cb, void *event_ctx, 8051 struct spdk_bdev_desc **_desc) 8052 { 8053 struct spdk_bdev_desc *desc; 8054 unsigned int i; 8055 8056 desc = calloc(1, sizeof(*desc)); 8057 if (desc == NULL) { 8058 SPDK_ERRLOG("Failed to allocate memory for bdev descriptor\n"); 8059 return -ENOMEM; 8060 } 8061 8062 TAILQ_INIT(&desc->pending_media_events); 8063 TAILQ_INIT(&desc->free_media_events); 8064 8065 desc->memory_domains_supported = spdk_bdev_get_memory_domains(bdev, NULL, 0) > 0; 8066 desc->callback.event_fn = event_cb; 8067 desc->callback.ctx = event_ctx; 8068 spdk_spin_init(&desc->spinlock); 8069 8070 if (bdev->media_events) { 8071 desc->media_events_buffer = calloc(MEDIA_EVENT_POOL_SIZE, 8072 sizeof(*desc->media_events_buffer)); 8073 if (desc->media_events_buffer == NULL) { 8074 SPDK_ERRLOG("Failed to initialize media event pool\n"); 8075 bdev_desc_free(desc); 8076 return -ENOMEM; 8077 } 8078 8079 for (i = 0; i < MEDIA_EVENT_POOL_SIZE; ++i) { 8080 TAILQ_INSERT_TAIL(&desc->free_media_events, 8081 &desc->media_events_buffer[i], tailq); 8082 } 8083 } 8084 8085 if (bdev->fn_table->accel_sequence_supported != NULL) { 8086 for (i = 0; i < SPDK_BDEV_NUM_IO_TYPES; ++i) { 8087 desc->accel_sequence_supported[i] = 8088 bdev->fn_table->accel_sequence_supported(bdev->ctxt, 8089 (enum spdk_bdev_io_type)i); 8090 } 8091 } 8092 8093 *_desc = desc; 8094 8095 return 0; 8096 } 8097 8098 static int 8099 bdev_open_ext(const char *bdev_name, bool write, spdk_bdev_event_cb_t event_cb, 8100 void *event_ctx, struct spdk_bdev_desc **_desc) 8101 { 8102 struct spdk_bdev_desc *desc; 8103 struct spdk_bdev *bdev; 8104 int rc; 8105 8106 bdev = bdev_get_by_name(bdev_name); 8107 8108 if (bdev == NULL) { 8109 SPDK_NOTICELOG("Currently unable to find bdev with name: %s\n", bdev_name); 8110 return -ENODEV; 8111 } 8112 8113 rc = bdev_desc_alloc(bdev, event_cb, event_ctx, &desc); 8114 if (rc != 0) { 8115 return rc; 8116 } 8117 8118 rc = bdev_open(bdev, write, desc); 8119 if (rc != 0) { 8120 bdev_desc_free(desc); 8121 desc = NULL; 8122 } 8123 8124 *_desc = desc; 8125 8126 return rc; 8127 } 8128 8129 int 8130 spdk_bdev_open_ext(const char *bdev_name, bool write, spdk_bdev_event_cb_t event_cb, 8131 void *event_ctx, struct spdk_bdev_desc **_desc) 8132 { 8133 int rc; 8134 8135 if (event_cb == NULL) { 8136 SPDK_ERRLOG("Missing event callback function\n"); 8137 return -EINVAL; 8138 } 8139 8140 spdk_spin_lock(&g_bdev_mgr.spinlock); 8141 rc = bdev_open_ext(bdev_name, write, event_cb, event_ctx, _desc); 8142 spdk_spin_unlock(&g_bdev_mgr.spinlock); 8143 8144 return rc; 8145 } 8146 8147 struct spdk_bdev_open_async_ctx { 8148 char *bdev_name; 8149 spdk_bdev_event_cb_t event_cb; 8150 void *event_ctx; 8151 bool write; 8152 int rc; 8153 spdk_bdev_open_async_cb_t cb_fn; 8154 void *cb_arg; 8155 struct spdk_bdev_desc *desc; 8156 struct spdk_bdev_open_async_opts opts; 8157 uint64_t start_ticks; 8158 struct spdk_thread *orig_thread; 8159 struct spdk_poller *poller; 8160 TAILQ_ENTRY(spdk_bdev_open_async_ctx) tailq; 8161 }; 8162 8163 static void 8164 bdev_open_async_done(void *arg) 8165 { 8166 struct spdk_bdev_open_async_ctx *ctx = arg; 8167 8168 ctx->cb_fn(ctx->desc, ctx->rc, ctx->cb_arg); 8169 8170 free(ctx->bdev_name); 8171 free(ctx); 8172 } 8173 8174 static void 8175 bdev_open_async_cancel(void *arg) 8176 { 8177 struct spdk_bdev_open_async_ctx *ctx = arg; 8178 8179 assert(ctx->rc == -ESHUTDOWN); 8180 8181 spdk_poller_unregister(&ctx->poller); 8182 8183 bdev_open_async_done(ctx); 8184 } 8185 8186 /* This is called when the bdev library finishes at shutdown. */ 8187 static void 8188 bdev_open_async_fini(void) 8189 { 8190 struct spdk_bdev_open_async_ctx *ctx, *tmp_ctx; 8191 8192 spdk_spin_lock(&g_bdev_mgr.spinlock); 8193 TAILQ_FOREACH_SAFE(ctx, &g_bdev_mgr.async_bdev_opens, tailq, tmp_ctx) { 8194 TAILQ_REMOVE(&g_bdev_mgr.async_bdev_opens, ctx, tailq); 8195 /* 8196 * We have to move to ctx->orig_thread to unregister ctx->poller. 8197 * However, there is a chance that ctx->poller is executed before 8198 * message is executed, which could result in bdev_open_async_done() 8199 * being called twice. To avoid such race condition, set ctx->rc to 8200 * -ESHUTDOWN. 8201 */ 8202 ctx->rc = -ESHUTDOWN; 8203 spdk_thread_send_msg(ctx->orig_thread, bdev_open_async_cancel, ctx); 8204 } 8205 spdk_spin_unlock(&g_bdev_mgr.spinlock); 8206 } 8207 8208 static int bdev_open_async(void *arg); 8209 8210 static void 8211 _bdev_open_async(struct spdk_bdev_open_async_ctx *ctx) 8212 { 8213 uint64_t timeout_ticks; 8214 8215 if (ctx->rc == -ESHUTDOWN) { 8216 /* This context is being canceled. Do nothing. */ 8217 return; 8218 } 8219 8220 ctx->rc = bdev_open_ext(ctx->bdev_name, ctx->write, ctx->event_cb, ctx->event_ctx, 8221 &ctx->desc); 8222 if (ctx->rc == 0 || ctx->opts.timeout_ms == 0) { 8223 goto exit; 8224 } 8225 8226 timeout_ticks = ctx->start_ticks + ctx->opts.timeout_ms * spdk_get_ticks_hz() / 1000ull; 8227 if (spdk_get_ticks() >= timeout_ticks) { 8228 SPDK_ERRLOG("Timed out while waiting for bdev '%s' to appear\n", ctx->bdev_name); 8229 ctx->rc = -ETIMEDOUT; 8230 goto exit; 8231 } 8232 8233 return; 8234 8235 exit: 8236 spdk_poller_unregister(&ctx->poller); 8237 TAILQ_REMOVE(&g_bdev_mgr.async_bdev_opens, ctx, tailq); 8238 8239 /* Completion callback is processed after stack unwinding. */ 8240 spdk_thread_send_msg(ctx->orig_thread, bdev_open_async_done, ctx); 8241 } 8242 8243 static int 8244 bdev_open_async(void *arg) 8245 { 8246 struct spdk_bdev_open_async_ctx *ctx = arg; 8247 8248 spdk_spin_lock(&g_bdev_mgr.spinlock); 8249 8250 _bdev_open_async(ctx); 8251 8252 spdk_spin_unlock(&g_bdev_mgr.spinlock); 8253 8254 return SPDK_POLLER_BUSY; 8255 } 8256 8257 static void 8258 bdev_open_async_opts_copy(struct spdk_bdev_open_async_opts *opts, 8259 struct spdk_bdev_open_async_opts *opts_src, 8260 size_t size) 8261 { 8262 assert(opts); 8263 assert(opts_src); 8264 8265 opts->size = size; 8266 8267 #define SET_FIELD(field) \ 8268 if (offsetof(struct spdk_bdev_open_async_opts, field) + sizeof(opts->field) <= size) { \ 8269 opts->field = opts_src->field; \ 8270 } \ 8271 8272 SET_FIELD(timeout_ms); 8273 8274 /* Do not remove this statement, you should always update this statement when you adding a new field, 8275 * and do not forget to add the SET_FIELD statement for your added field. */ 8276 SPDK_STATIC_ASSERT(sizeof(struct spdk_bdev_open_async_opts) == 16, "Incorrect size"); 8277 8278 #undef SET_FIELD 8279 } 8280 8281 static void 8282 bdev_open_async_opts_get_default(struct spdk_bdev_open_async_opts *opts, size_t size) 8283 { 8284 assert(opts); 8285 8286 opts->size = size; 8287 8288 #define SET_FIELD(field, value) \ 8289 if (offsetof(struct spdk_bdev_open_async_opts, field) + sizeof(opts->field) <= size) { \ 8290 opts->field = value; \ 8291 } \ 8292 8293 SET_FIELD(timeout_ms, 0); 8294 8295 #undef SET_FIELD 8296 } 8297 8298 int 8299 spdk_bdev_open_async(const char *bdev_name, bool write, spdk_bdev_event_cb_t event_cb, 8300 void *event_ctx, struct spdk_bdev_open_async_opts *opts, 8301 spdk_bdev_open_async_cb_t open_cb, void *open_cb_arg) 8302 { 8303 struct spdk_bdev_open_async_ctx *ctx; 8304 8305 if (event_cb == NULL) { 8306 SPDK_ERRLOG("Missing event callback function\n"); 8307 return -EINVAL; 8308 } 8309 8310 if (open_cb == NULL) { 8311 SPDK_ERRLOG("Missing open callback function\n"); 8312 return -EINVAL; 8313 } 8314 8315 if (opts != NULL && opts->size == 0) { 8316 SPDK_ERRLOG("size in the options structure should not be zero\n"); 8317 return -EINVAL; 8318 } 8319 8320 ctx = calloc(1, sizeof(*ctx)); 8321 if (ctx == NULL) { 8322 SPDK_ERRLOG("Failed to allocate open context\n"); 8323 return -ENOMEM; 8324 } 8325 8326 ctx->bdev_name = strdup(bdev_name); 8327 if (ctx->bdev_name == NULL) { 8328 SPDK_ERRLOG("Failed to duplicate bdev_name\n"); 8329 free(ctx); 8330 return -ENOMEM; 8331 } 8332 8333 ctx->poller = SPDK_POLLER_REGISTER(bdev_open_async, ctx, 100 * 1000); 8334 if (ctx->poller == NULL) { 8335 SPDK_ERRLOG("Failed to register bdev_open_async poller\n"); 8336 free(ctx->bdev_name); 8337 free(ctx); 8338 return -ENOMEM; 8339 } 8340 8341 ctx->cb_fn = open_cb; 8342 ctx->cb_arg = open_cb_arg; 8343 ctx->write = write; 8344 ctx->event_cb = event_cb; 8345 ctx->event_ctx = event_ctx; 8346 ctx->orig_thread = spdk_get_thread(); 8347 ctx->start_ticks = spdk_get_ticks(); 8348 8349 bdev_open_async_opts_get_default(&ctx->opts, sizeof(ctx->opts)); 8350 if (opts != NULL) { 8351 bdev_open_async_opts_copy(&ctx->opts, opts, opts->size); 8352 } 8353 8354 spdk_spin_lock(&g_bdev_mgr.spinlock); 8355 8356 TAILQ_INSERT_TAIL(&g_bdev_mgr.async_bdev_opens, ctx, tailq); 8357 _bdev_open_async(ctx); 8358 8359 spdk_spin_unlock(&g_bdev_mgr.spinlock); 8360 8361 return 0; 8362 } 8363 8364 static void 8365 bdev_close(struct spdk_bdev *bdev, struct spdk_bdev_desc *desc) 8366 { 8367 int rc; 8368 8369 spdk_spin_lock(&bdev->internal.spinlock); 8370 spdk_spin_lock(&desc->spinlock); 8371 8372 TAILQ_REMOVE(&bdev->internal.open_descs, desc, link); 8373 8374 desc->closed = true; 8375 8376 if (desc->claim != NULL) { 8377 bdev_desc_release_claims(desc); 8378 } 8379 8380 if (0 == desc->refs) { 8381 spdk_spin_unlock(&desc->spinlock); 8382 bdev_desc_free(desc); 8383 } else { 8384 spdk_spin_unlock(&desc->spinlock); 8385 } 8386 8387 /* If no more descriptors, kill QoS channel */ 8388 if (bdev->internal.qos && TAILQ_EMPTY(&bdev->internal.open_descs)) { 8389 SPDK_DEBUGLOG(bdev, "Closed last descriptor for bdev %s on thread %p. Stopping QoS.\n", 8390 bdev->name, spdk_get_thread()); 8391 8392 if (bdev_qos_destroy(bdev)) { 8393 /* There isn't anything we can do to recover here. Just let the 8394 * old QoS poller keep running. The QoS handling won't change 8395 * cores when the user allocates a new channel, but it won't break. */ 8396 SPDK_ERRLOG("Unable to shut down QoS poller. It will continue running on the current thread.\n"); 8397 } 8398 } 8399 8400 if (bdev->internal.status == SPDK_BDEV_STATUS_REMOVING && TAILQ_EMPTY(&bdev->internal.open_descs)) { 8401 rc = bdev_unregister_unsafe(bdev); 8402 spdk_spin_unlock(&bdev->internal.spinlock); 8403 8404 if (rc == 0) { 8405 spdk_io_device_unregister(__bdev_to_io_dev(bdev), bdev_destroy_cb); 8406 } 8407 } else { 8408 spdk_spin_unlock(&bdev->internal.spinlock); 8409 } 8410 } 8411 8412 void 8413 spdk_bdev_close(struct spdk_bdev_desc *desc) 8414 { 8415 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 8416 8417 SPDK_DEBUGLOG(bdev, "Closing descriptor %p for bdev %s on thread %p\n", desc, bdev->name, 8418 spdk_get_thread()); 8419 8420 assert(desc->thread == spdk_get_thread()); 8421 8422 spdk_poller_unregister(&desc->io_timeout_poller); 8423 8424 spdk_spin_lock(&g_bdev_mgr.spinlock); 8425 8426 bdev_close(bdev, desc); 8427 8428 spdk_spin_unlock(&g_bdev_mgr.spinlock); 8429 } 8430 8431 static void 8432 bdev_register_finished(void *arg) 8433 { 8434 struct spdk_bdev_desc *desc = arg; 8435 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 8436 8437 spdk_notify_send("bdev_register", spdk_bdev_get_name(bdev)); 8438 8439 spdk_spin_lock(&g_bdev_mgr.spinlock); 8440 8441 bdev_close(bdev, desc); 8442 8443 spdk_spin_unlock(&g_bdev_mgr.spinlock); 8444 } 8445 8446 int 8447 spdk_bdev_register(struct spdk_bdev *bdev) 8448 { 8449 struct spdk_bdev_desc *desc; 8450 struct spdk_thread *thread = spdk_get_thread(); 8451 int rc; 8452 8453 if (spdk_unlikely(!spdk_thread_is_app_thread(NULL))) { 8454 SPDK_ERRLOG("Cannot register bdev %s on thread %p (%s)\n", bdev->name, thread, 8455 thread ? spdk_thread_get_name(thread) : "null"); 8456 return -EINVAL; 8457 } 8458 8459 rc = bdev_register(bdev); 8460 if (rc != 0) { 8461 return rc; 8462 } 8463 8464 /* A descriptor is opened to prevent bdev deletion during examination */ 8465 rc = bdev_desc_alloc(bdev, _tmp_bdev_event_cb, NULL, &desc); 8466 if (rc != 0) { 8467 spdk_bdev_unregister(bdev, NULL, NULL); 8468 return rc; 8469 } 8470 8471 rc = bdev_open(bdev, false, desc); 8472 if (rc != 0) { 8473 bdev_desc_free(desc); 8474 spdk_bdev_unregister(bdev, NULL, NULL); 8475 return rc; 8476 } 8477 8478 /* Examine configuration before initializing I/O */ 8479 bdev_examine(bdev); 8480 8481 rc = spdk_bdev_wait_for_examine(bdev_register_finished, desc); 8482 if (rc != 0) { 8483 bdev_close(bdev, desc); 8484 spdk_bdev_unregister(bdev, NULL, NULL); 8485 } 8486 8487 return rc; 8488 } 8489 8490 int 8491 spdk_bdev_module_claim_bdev(struct spdk_bdev *bdev, struct spdk_bdev_desc *desc, 8492 struct spdk_bdev_module *module) 8493 { 8494 spdk_spin_lock(&bdev->internal.spinlock); 8495 8496 if (bdev->internal.claim_type != SPDK_BDEV_CLAIM_NONE) { 8497 LOG_ALREADY_CLAIMED_ERROR("already claimed", bdev); 8498 spdk_spin_unlock(&bdev->internal.spinlock); 8499 return -EPERM; 8500 } 8501 8502 if (desc && !desc->write) { 8503 desc->write = true; 8504 } 8505 8506 bdev->internal.claim_type = SPDK_BDEV_CLAIM_EXCL_WRITE; 8507 bdev->internal.claim.v1.module = module; 8508 8509 spdk_spin_unlock(&bdev->internal.spinlock); 8510 return 0; 8511 } 8512 8513 void 8514 spdk_bdev_module_release_bdev(struct spdk_bdev *bdev) 8515 { 8516 spdk_spin_lock(&bdev->internal.spinlock); 8517 8518 assert(bdev->internal.claim.v1.module != NULL); 8519 assert(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE); 8520 bdev->internal.claim_type = SPDK_BDEV_CLAIM_NONE; 8521 bdev->internal.claim.v1.module = NULL; 8522 8523 spdk_spin_unlock(&bdev->internal.spinlock); 8524 } 8525 8526 /* 8527 * Start claims v2 8528 */ 8529 8530 const char * 8531 spdk_bdev_claim_get_name(enum spdk_bdev_claim_type type) 8532 { 8533 switch (type) { 8534 case SPDK_BDEV_CLAIM_NONE: 8535 return "not_claimed"; 8536 case SPDK_BDEV_CLAIM_EXCL_WRITE: 8537 return "exclusive_write"; 8538 case SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE: 8539 return "read_many_write_one"; 8540 case SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE: 8541 return "read_many_write_none"; 8542 case SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED: 8543 return "read_many_write_many"; 8544 default: 8545 break; 8546 } 8547 return "invalid_claim"; 8548 } 8549 8550 static bool 8551 claim_type_is_v2(enum spdk_bdev_claim_type type) 8552 { 8553 switch (type) { 8554 case SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE: 8555 case SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE: 8556 case SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED: 8557 return true; 8558 default: 8559 break; 8560 } 8561 return false; 8562 } 8563 8564 /* Returns true if taking a claim with desc->write == false should make the descriptor writable. */ 8565 static bool 8566 claim_type_promotes_to_write(enum spdk_bdev_claim_type type) 8567 { 8568 switch (type) { 8569 case SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE: 8570 case SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED: 8571 return true; 8572 default: 8573 break; 8574 } 8575 return false; 8576 } 8577 8578 void 8579 spdk_bdev_claim_opts_init(struct spdk_bdev_claim_opts *opts, size_t size) 8580 { 8581 if (opts == NULL) { 8582 SPDK_ERRLOG("opts should not be NULL\n"); 8583 assert(opts != NULL); 8584 return; 8585 } 8586 if (size == 0) { 8587 SPDK_ERRLOG("size should not be zero\n"); 8588 assert(size != 0); 8589 return; 8590 } 8591 8592 memset(opts, 0, size); 8593 opts->opts_size = size; 8594 8595 #define FIELD_OK(field) \ 8596 offsetof(struct spdk_bdev_claim_opts, field) + sizeof(opts->field) <= size 8597 8598 #define SET_FIELD(field, value) \ 8599 if (FIELD_OK(field)) { \ 8600 opts->field = value; \ 8601 } \ 8602 8603 SET_FIELD(shared_claim_key, 0); 8604 8605 #undef FIELD_OK 8606 #undef SET_FIELD 8607 } 8608 8609 static int 8610 claim_opts_copy(struct spdk_bdev_claim_opts *src, struct spdk_bdev_claim_opts *dst) 8611 { 8612 if (src->opts_size == 0) { 8613 SPDK_ERRLOG("size should not be zero\n"); 8614 return -1; 8615 } 8616 8617 memset(dst, 0, sizeof(*dst)); 8618 dst->opts_size = src->opts_size; 8619 8620 #define FIELD_OK(field) \ 8621 offsetof(struct spdk_bdev_claim_opts, field) + sizeof(src->field) <= src->opts_size 8622 8623 #define SET_FIELD(field) \ 8624 if (FIELD_OK(field)) { \ 8625 dst->field = src->field; \ 8626 } \ 8627 8628 if (FIELD_OK(name)) { 8629 snprintf(dst->name, sizeof(dst->name), "%s", src->name); 8630 } 8631 8632 SET_FIELD(shared_claim_key); 8633 8634 /* You should not remove this statement, but need to update the assert statement 8635 * if you add a new field, and also add a corresponding SET_FIELD statement */ 8636 SPDK_STATIC_ASSERT(sizeof(struct spdk_bdev_claim_opts) == 48, "Incorrect size"); 8637 8638 #undef FIELD_OK 8639 #undef SET_FIELD 8640 return 0; 8641 } 8642 8643 /* Returns 0 if a read-write-once claim can be taken. */ 8644 static int 8645 claim_verify_rwo(struct spdk_bdev_desc *desc, enum spdk_bdev_claim_type type, 8646 struct spdk_bdev_claim_opts *opts, struct spdk_bdev_module *module) 8647 { 8648 struct spdk_bdev *bdev = desc->bdev; 8649 struct spdk_bdev_desc *open_desc; 8650 8651 assert(spdk_spin_held(&bdev->internal.spinlock)); 8652 assert(type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE); 8653 8654 if (opts->shared_claim_key != 0) { 8655 SPDK_ERRLOG("%s: key option not supported with read-write-once claims\n", 8656 bdev->name); 8657 return -EINVAL; 8658 } 8659 if (bdev->internal.claim_type != SPDK_BDEV_CLAIM_NONE) { 8660 LOG_ALREADY_CLAIMED_ERROR("already claimed", bdev); 8661 return -EPERM; 8662 } 8663 if (desc->claim != NULL) { 8664 SPDK_NOTICELOG("%s: descriptor already claimed bdev with module %s\n", 8665 bdev->name, desc->claim->module->name); 8666 return -EPERM; 8667 } 8668 TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) { 8669 if (desc != open_desc && open_desc->write) { 8670 SPDK_NOTICELOG("%s: Cannot obtain read-write-once claim while " 8671 "another descriptor is open for writing\n", 8672 bdev->name); 8673 return -EPERM; 8674 } 8675 } 8676 8677 return 0; 8678 } 8679 8680 /* Returns 0 if a read-only-many claim can be taken. */ 8681 static int 8682 claim_verify_rom(struct spdk_bdev_desc *desc, enum spdk_bdev_claim_type type, 8683 struct spdk_bdev_claim_opts *opts, struct spdk_bdev_module *module) 8684 { 8685 struct spdk_bdev *bdev = desc->bdev; 8686 struct spdk_bdev_desc *open_desc; 8687 8688 assert(spdk_spin_held(&bdev->internal.spinlock)); 8689 assert(type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE); 8690 assert(desc->claim == NULL); 8691 8692 if (desc->write) { 8693 SPDK_ERRLOG("%s: Cannot obtain read-only-many claim with writable descriptor\n", 8694 bdev->name); 8695 return -EINVAL; 8696 } 8697 if (opts->shared_claim_key != 0) { 8698 SPDK_ERRLOG("%s: key option not supported with read-only-may claims\n", bdev->name); 8699 return -EINVAL; 8700 } 8701 if (bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE) { 8702 TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) { 8703 if (open_desc->write) { 8704 SPDK_NOTICELOG("%s: Cannot obtain read-only-many claim while " 8705 "another descriptor is open for writing\n", 8706 bdev->name); 8707 return -EPERM; 8708 } 8709 } 8710 } 8711 8712 return 0; 8713 } 8714 8715 /* Returns 0 if a read-write-many claim can be taken. */ 8716 static int 8717 claim_verify_rwm(struct spdk_bdev_desc *desc, enum spdk_bdev_claim_type type, 8718 struct spdk_bdev_claim_opts *opts, struct spdk_bdev_module *module) 8719 { 8720 struct spdk_bdev *bdev = desc->bdev; 8721 struct spdk_bdev_desc *open_desc; 8722 8723 assert(spdk_spin_held(&bdev->internal.spinlock)); 8724 assert(type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED); 8725 assert(desc->claim == NULL); 8726 8727 if (opts->shared_claim_key == 0) { 8728 SPDK_ERRLOG("%s: shared_claim_key option required with read-write-may claims\n", 8729 bdev->name); 8730 return -EINVAL; 8731 } 8732 switch (bdev->internal.claim_type) { 8733 case SPDK_BDEV_CLAIM_NONE: 8734 TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) { 8735 if (open_desc == desc) { 8736 continue; 8737 } 8738 if (open_desc->write) { 8739 SPDK_NOTICELOG("%s: Cannot obtain read-write-many claim while " 8740 "another descriptor is open for writing without a " 8741 "claim\n", bdev->name); 8742 return -EPERM; 8743 } 8744 } 8745 break; 8746 case SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED: 8747 if (opts->shared_claim_key != bdev->internal.claim.v2.key) { 8748 LOG_ALREADY_CLAIMED_ERROR("already claimed with another key", bdev); 8749 return -EPERM; 8750 } 8751 break; 8752 default: 8753 LOG_ALREADY_CLAIMED_ERROR("already claimed", bdev); 8754 return -EBUSY; 8755 } 8756 8757 return 0; 8758 } 8759 8760 /* Updates desc and its bdev with a v2 claim. */ 8761 static int 8762 claim_bdev(struct spdk_bdev_desc *desc, enum spdk_bdev_claim_type type, 8763 struct spdk_bdev_claim_opts *opts, struct spdk_bdev_module *module) 8764 { 8765 struct spdk_bdev *bdev = desc->bdev; 8766 struct spdk_bdev_module_claim *claim; 8767 8768 assert(spdk_spin_held(&bdev->internal.spinlock)); 8769 assert(claim_type_is_v2(type)); 8770 assert(desc->claim == NULL); 8771 8772 claim = calloc(1, sizeof(*desc->claim)); 8773 if (claim == NULL) { 8774 SPDK_ERRLOG("%s: out of memory while allocating claim\n", bdev->name); 8775 return -ENOMEM; 8776 } 8777 claim->module = module; 8778 claim->desc = desc; 8779 SPDK_STATIC_ASSERT(sizeof(claim->name) == sizeof(opts->name), "sizes must match"); 8780 memcpy(claim->name, opts->name, sizeof(claim->name)); 8781 desc->claim = claim; 8782 8783 if (bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE) { 8784 bdev->internal.claim_type = type; 8785 TAILQ_INIT(&bdev->internal.claim.v2.claims); 8786 bdev->internal.claim.v2.key = opts->shared_claim_key; 8787 } 8788 assert(type == bdev->internal.claim_type); 8789 8790 TAILQ_INSERT_TAIL(&bdev->internal.claim.v2.claims, claim, link); 8791 8792 if (!desc->write && claim_type_promotes_to_write(type)) { 8793 desc->write = true; 8794 } 8795 8796 return 0; 8797 } 8798 8799 int 8800 spdk_bdev_module_claim_bdev_desc(struct spdk_bdev_desc *desc, enum spdk_bdev_claim_type type, 8801 struct spdk_bdev_claim_opts *_opts, 8802 struct spdk_bdev_module *module) 8803 { 8804 struct spdk_bdev *bdev; 8805 struct spdk_bdev_claim_opts opts; 8806 int rc = 0; 8807 8808 if (desc == NULL) { 8809 SPDK_ERRLOG("descriptor must not be NULL\n"); 8810 return -EINVAL; 8811 } 8812 8813 bdev = desc->bdev; 8814 8815 if (_opts == NULL) { 8816 spdk_bdev_claim_opts_init(&opts, sizeof(opts)); 8817 } else if (claim_opts_copy(_opts, &opts) != 0) { 8818 return -EINVAL; 8819 } 8820 8821 spdk_spin_lock(&bdev->internal.spinlock); 8822 8823 if (bdev->internal.claim_type != SPDK_BDEV_CLAIM_NONE && 8824 bdev->internal.claim_type != type) { 8825 LOG_ALREADY_CLAIMED_ERROR("already claimed", bdev); 8826 spdk_spin_unlock(&bdev->internal.spinlock); 8827 return -EPERM; 8828 } 8829 8830 if (claim_type_is_v2(type) && desc->claim != NULL) { 8831 SPDK_ERRLOG("%s: descriptor already has %s claim with name '%s'\n", 8832 bdev->name, spdk_bdev_claim_get_name(type), desc->claim->name); 8833 spdk_spin_unlock(&bdev->internal.spinlock); 8834 return -EPERM; 8835 } 8836 8837 switch (type) { 8838 case SPDK_BDEV_CLAIM_EXCL_WRITE: 8839 spdk_spin_unlock(&bdev->internal.spinlock); 8840 return spdk_bdev_module_claim_bdev(bdev, desc, module); 8841 case SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE: 8842 rc = claim_verify_rwo(desc, type, &opts, module); 8843 break; 8844 case SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE: 8845 rc = claim_verify_rom(desc, type, &opts, module); 8846 break; 8847 case SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED: 8848 rc = claim_verify_rwm(desc, type, &opts, module); 8849 break; 8850 default: 8851 SPDK_ERRLOG("%s: claim type %d not supported\n", bdev->name, type); 8852 rc = -ENOTSUP; 8853 } 8854 8855 if (rc == 0) { 8856 rc = claim_bdev(desc, type, &opts, module); 8857 } 8858 8859 spdk_spin_unlock(&bdev->internal.spinlock); 8860 return rc; 8861 } 8862 8863 static void 8864 claim_reset(struct spdk_bdev *bdev) 8865 { 8866 assert(spdk_spin_held(&bdev->internal.spinlock)); 8867 assert(claim_type_is_v2(bdev->internal.claim_type)); 8868 assert(TAILQ_EMPTY(&bdev->internal.claim.v2.claims)); 8869 8870 memset(&bdev->internal.claim, 0, sizeof(bdev->internal.claim)); 8871 bdev->internal.claim_type = SPDK_BDEV_CLAIM_NONE; 8872 } 8873 8874 static void 8875 bdev_desc_release_claims(struct spdk_bdev_desc *desc) 8876 { 8877 struct spdk_bdev *bdev = desc->bdev; 8878 8879 assert(spdk_spin_held(&bdev->internal.spinlock)); 8880 assert(claim_type_is_v2(bdev->internal.claim_type)); 8881 8882 if (bdev->internal.examine_in_progress == 0) { 8883 TAILQ_REMOVE(&bdev->internal.claim.v2.claims, desc->claim, link); 8884 free(desc->claim); 8885 if (TAILQ_EMPTY(&bdev->internal.claim.v2.claims)) { 8886 claim_reset(bdev); 8887 } 8888 } else { 8889 /* This is a dead claim that will be cleaned up when bdev_examine() is done. */ 8890 desc->claim->module = NULL; 8891 desc->claim->desc = NULL; 8892 } 8893 desc->claim = NULL; 8894 } 8895 8896 /* 8897 * End claims v2 8898 */ 8899 8900 struct spdk_bdev * 8901 spdk_bdev_desc_get_bdev(struct spdk_bdev_desc *desc) 8902 { 8903 assert(desc != NULL); 8904 return desc->bdev; 8905 } 8906 8907 int 8908 spdk_for_each_bdev(void *ctx, spdk_for_each_bdev_fn fn) 8909 { 8910 struct spdk_bdev *bdev, *tmp; 8911 struct spdk_bdev_desc *desc; 8912 int rc = 0; 8913 8914 assert(fn != NULL); 8915 8916 spdk_spin_lock(&g_bdev_mgr.spinlock); 8917 bdev = spdk_bdev_first(); 8918 while (bdev != NULL) { 8919 rc = bdev_desc_alloc(bdev, _tmp_bdev_event_cb, NULL, &desc); 8920 if (rc != 0) { 8921 break; 8922 } 8923 rc = bdev_open(bdev, false, desc); 8924 if (rc != 0) { 8925 bdev_desc_free(desc); 8926 if (rc == -ENODEV) { 8927 /* Ignore the error and move to the next bdev. */ 8928 rc = 0; 8929 bdev = spdk_bdev_next(bdev); 8930 continue; 8931 } 8932 break; 8933 } 8934 spdk_spin_unlock(&g_bdev_mgr.spinlock); 8935 8936 rc = fn(ctx, bdev); 8937 8938 spdk_spin_lock(&g_bdev_mgr.spinlock); 8939 tmp = spdk_bdev_next(bdev); 8940 bdev_close(bdev, desc); 8941 if (rc != 0) { 8942 break; 8943 } 8944 bdev = tmp; 8945 } 8946 spdk_spin_unlock(&g_bdev_mgr.spinlock); 8947 8948 return rc; 8949 } 8950 8951 int 8952 spdk_for_each_bdev_leaf(void *ctx, spdk_for_each_bdev_fn fn) 8953 { 8954 struct spdk_bdev *bdev, *tmp; 8955 struct spdk_bdev_desc *desc; 8956 int rc = 0; 8957 8958 assert(fn != NULL); 8959 8960 spdk_spin_lock(&g_bdev_mgr.spinlock); 8961 bdev = spdk_bdev_first_leaf(); 8962 while (bdev != NULL) { 8963 rc = bdev_desc_alloc(bdev, _tmp_bdev_event_cb, NULL, &desc); 8964 if (rc != 0) { 8965 break; 8966 } 8967 rc = bdev_open(bdev, false, desc); 8968 if (rc != 0) { 8969 bdev_desc_free(desc); 8970 if (rc == -ENODEV) { 8971 /* Ignore the error and move to the next bdev. */ 8972 rc = 0; 8973 bdev = spdk_bdev_next_leaf(bdev); 8974 continue; 8975 } 8976 break; 8977 } 8978 spdk_spin_unlock(&g_bdev_mgr.spinlock); 8979 8980 rc = fn(ctx, bdev); 8981 8982 spdk_spin_lock(&g_bdev_mgr.spinlock); 8983 tmp = spdk_bdev_next_leaf(bdev); 8984 bdev_close(bdev, desc); 8985 if (rc != 0) { 8986 break; 8987 } 8988 bdev = tmp; 8989 } 8990 spdk_spin_unlock(&g_bdev_mgr.spinlock); 8991 8992 return rc; 8993 } 8994 8995 void 8996 spdk_bdev_io_get_iovec(struct spdk_bdev_io *bdev_io, struct iovec **iovp, int *iovcntp) 8997 { 8998 struct iovec *iovs; 8999 int iovcnt; 9000 9001 if (bdev_io == NULL) { 9002 return; 9003 } 9004 9005 switch (bdev_io->type) { 9006 case SPDK_BDEV_IO_TYPE_READ: 9007 case SPDK_BDEV_IO_TYPE_WRITE: 9008 case SPDK_BDEV_IO_TYPE_ZCOPY: 9009 iovs = bdev_io->u.bdev.iovs; 9010 iovcnt = bdev_io->u.bdev.iovcnt; 9011 break; 9012 default: 9013 iovs = NULL; 9014 iovcnt = 0; 9015 break; 9016 } 9017 9018 if (iovp) { 9019 *iovp = iovs; 9020 } 9021 if (iovcntp) { 9022 *iovcntp = iovcnt; 9023 } 9024 } 9025 9026 void * 9027 spdk_bdev_io_get_md_buf(struct spdk_bdev_io *bdev_io) 9028 { 9029 if (bdev_io == NULL) { 9030 return NULL; 9031 } 9032 9033 if (!spdk_bdev_is_md_separate(bdev_io->bdev)) { 9034 return NULL; 9035 } 9036 9037 if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ || 9038 bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) { 9039 return bdev_io->u.bdev.md_buf; 9040 } 9041 9042 return NULL; 9043 } 9044 9045 void * 9046 spdk_bdev_io_get_cb_arg(struct spdk_bdev_io *bdev_io) 9047 { 9048 if (bdev_io == NULL) { 9049 assert(false); 9050 return NULL; 9051 } 9052 9053 return bdev_io->internal.caller_ctx; 9054 } 9055 9056 void 9057 spdk_bdev_module_list_add(struct spdk_bdev_module *bdev_module) 9058 { 9059 9060 if (spdk_bdev_module_list_find(bdev_module->name)) { 9061 SPDK_ERRLOG("ERROR: module '%s' already registered.\n", bdev_module->name); 9062 assert(false); 9063 } 9064 9065 spdk_spin_init(&bdev_module->internal.spinlock); 9066 TAILQ_INIT(&bdev_module->internal.quiesced_ranges); 9067 9068 /* 9069 * Modules with examine callbacks must be initialized first, so they are 9070 * ready to handle examine callbacks from later modules that will 9071 * register physical bdevs. 9072 */ 9073 if (bdev_module->examine_config != NULL || bdev_module->examine_disk != NULL) { 9074 TAILQ_INSERT_HEAD(&g_bdev_mgr.bdev_modules, bdev_module, internal.tailq); 9075 } else { 9076 TAILQ_INSERT_TAIL(&g_bdev_mgr.bdev_modules, bdev_module, internal.tailq); 9077 } 9078 } 9079 9080 struct spdk_bdev_module * 9081 spdk_bdev_module_list_find(const char *name) 9082 { 9083 struct spdk_bdev_module *bdev_module; 9084 9085 TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, internal.tailq) { 9086 if (strcmp(name, bdev_module->name) == 0) { 9087 break; 9088 } 9089 } 9090 9091 return bdev_module; 9092 } 9093 9094 static int 9095 bdev_write_zero_buffer(struct spdk_bdev_io *bdev_io) 9096 { 9097 uint64_t num_blocks; 9098 void *md_buf = NULL; 9099 9100 num_blocks = bdev_io->u.bdev.num_blocks; 9101 9102 if (spdk_bdev_is_md_separate(bdev_io->bdev)) { 9103 md_buf = (char *)g_bdev_mgr.zero_buffer + 9104 spdk_bdev_get_block_size(bdev_io->bdev) * num_blocks; 9105 } 9106 9107 return bdev_write_blocks_with_md(bdev_io->internal.desc, 9108 spdk_io_channel_from_ctx(bdev_io->internal.ch), 9109 g_bdev_mgr.zero_buffer, md_buf, 9110 bdev_io->u.bdev.offset_blocks, num_blocks, 9111 bdev_write_zero_buffer_done, bdev_io); 9112 } 9113 9114 static void 9115 bdev_write_zero_buffer_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 9116 { 9117 struct spdk_bdev_io *parent_io = cb_arg; 9118 9119 spdk_bdev_free_io(bdev_io); 9120 9121 parent_io->internal.status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED; 9122 parent_io->internal.cb(parent_io, success, parent_io->internal.caller_ctx); 9123 } 9124 9125 static void 9126 bdev_set_qos_limit_done(struct set_qos_limit_ctx *ctx, int status) 9127 { 9128 spdk_spin_lock(&ctx->bdev->internal.spinlock); 9129 ctx->bdev->internal.qos_mod_in_progress = false; 9130 spdk_spin_unlock(&ctx->bdev->internal.spinlock); 9131 9132 if (ctx->cb_fn) { 9133 ctx->cb_fn(ctx->cb_arg, status); 9134 } 9135 free(ctx); 9136 } 9137 9138 static void 9139 bdev_disable_qos_done(void *cb_arg) 9140 { 9141 struct set_qos_limit_ctx *ctx = cb_arg; 9142 struct spdk_bdev *bdev = ctx->bdev; 9143 struct spdk_bdev_qos *qos; 9144 9145 spdk_spin_lock(&bdev->internal.spinlock); 9146 qos = bdev->internal.qos; 9147 bdev->internal.qos = NULL; 9148 spdk_spin_unlock(&bdev->internal.spinlock); 9149 9150 if (qos->thread != NULL) { 9151 spdk_put_io_channel(spdk_io_channel_from_ctx(qos->ch)); 9152 spdk_poller_unregister(&qos->poller); 9153 } 9154 9155 free(qos); 9156 9157 bdev_set_qos_limit_done(ctx, 0); 9158 } 9159 9160 static void 9161 bdev_disable_qos_msg_done(struct spdk_bdev *bdev, void *_ctx, int status) 9162 { 9163 struct set_qos_limit_ctx *ctx = _ctx; 9164 struct spdk_thread *thread; 9165 9166 spdk_spin_lock(&bdev->internal.spinlock); 9167 thread = bdev->internal.qos->thread; 9168 spdk_spin_unlock(&bdev->internal.spinlock); 9169 9170 if (thread != NULL) { 9171 spdk_thread_send_msg(thread, bdev_disable_qos_done, ctx); 9172 } else { 9173 bdev_disable_qos_done(ctx); 9174 } 9175 } 9176 9177 static void 9178 bdev_disable_qos_msg(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 9179 struct spdk_io_channel *ch, void *_ctx) 9180 { 9181 struct spdk_bdev_channel *bdev_ch = __io_ch_to_bdev_ch(ch); 9182 struct spdk_bdev_io *bdev_io; 9183 9184 bdev_ch->flags &= ~BDEV_CH_QOS_ENABLED; 9185 9186 while (!TAILQ_EMPTY(&bdev_ch->qos_queued_io)) { 9187 /* Re-submit the queued I/O. */ 9188 bdev_io = TAILQ_FIRST(&bdev_ch->qos_queued_io); 9189 TAILQ_REMOVE(&bdev_ch->qos_queued_io, bdev_io, internal.link); 9190 _bdev_io_submit(bdev_io); 9191 } 9192 9193 spdk_bdev_for_each_channel_continue(i, 0); 9194 } 9195 9196 static void 9197 bdev_update_qos_rate_limit_msg(void *cb_arg) 9198 { 9199 struct set_qos_limit_ctx *ctx = cb_arg; 9200 struct spdk_bdev *bdev = ctx->bdev; 9201 9202 spdk_spin_lock(&bdev->internal.spinlock); 9203 bdev_qos_update_max_quota_per_timeslice(bdev->internal.qos); 9204 spdk_spin_unlock(&bdev->internal.spinlock); 9205 9206 bdev_set_qos_limit_done(ctx, 0); 9207 } 9208 9209 static void 9210 bdev_enable_qos_msg(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 9211 struct spdk_io_channel *ch, void *_ctx) 9212 { 9213 struct spdk_bdev_channel *bdev_ch = __io_ch_to_bdev_ch(ch); 9214 9215 spdk_spin_lock(&bdev->internal.spinlock); 9216 bdev_enable_qos(bdev, bdev_ch); 9217 spdk_spin_unlock(&bdev->internal.spinlock); 9218 spdk_bdev_for_each_channel_continue(i, 0); 9219 } 9220 9221 static void 9222 bdev_enable_qos_done(struct spdk_bdev *bdev, void *_ctx, int status) 9223 { 9224 struct set_qos_limit_ctx *ctx = _ctx; 9225 9226 bdev_set_qos_limit_done(ctx, status); 9227 } 9228 9229 static void 9230 bdev_set_qos_rate_limits(struct spdk_bdev *bdev, uint64_t *limits) 9231 { 9232 int i; 9233 9234 assert(bdev->internal.qos != NULL); 9235 9236 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 9237 if (limits[i] != SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) { 9238 bdev->internal.qos->rate_limits[i].limit = limits[i]; 9239 9240 if (limits[i] == 0) { 9241 bdev->internal.qos->rate_limits[i].limit = 9242 SPDK_BDEV_QOS_LIMIT_NOT_DEFINED; 9243 } 9244 } 9245 } 9246 } 9247 9248 void 9249 spdk_bdev_set_qos_rate_limits(struct spdk_bdev *bdev, uint64_t *limits, 9250 void (*cb_fn)(void *cb_arg, int status), void *cb_arg) 9251 { 9252 struct set_qos_limit_ctx *ctx; 9253 uint32_t limit_set_complement; 9254 uint64_t min_limit_per_sec; 9255 int i; 9256 bool disable_rate_limit = true; 9257 9258 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 9259 if (limits[i] == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) { 9260 continue; 9261 } 9262 9263 if (limits[i] > 0) { 9264 disable_rate_limit = false; 9265 } 9266 9267 if (bdev_qos_is_iops_rate_limit(i) == true) { 9268 min_limit_per_sec = SPDK_BDEV_QOS_MIN_IOS_PER_SEC; 9269 } else { 9270 if (limits[i] > SPDK_BDEV_QOS_MAX_MBYTES_PER_SEC) { 9271 SPDK_WARNLOG("Requested rate limit %" PRIu64 " will result in uint64_t overflow, " 9272 "reset to %" PRIu64 "\n", limits[i], SPDK_BDEV_QOS_MAX_MBYTES_PER_SEC); 9273 limits[i] = SPDK_BDEV_QOS_MAX_MBYTES_PER_SEC; 9274 } 9275 /* Change from megabyte to byte rate limit */ 9276 limits[i] = limits[i] * 1024 * 1024; 9277 min_limit_per_sec = SPDK_BDEV_QOS_MIN_BYTES_PER_SEC; 9278 } 9279 9280 limit_set_complement = limits[i] % min_limit_per_sec; 9281 if (limit_set_complement) { 9282 SPDK_ERRLOG("Requested rate limit %" PRIu64 " is not a multiple of %" PRIu64 "\n", 9283 limits[i], min_limit_per_sec); 9284 limits[i] += min_limit_per_sec - limit_set_complement; 9285 SPDK_ERRLOG("Round up the rate limit to %" PRIu64 "\n", limits[i]); 9286 } 9287 } 9288 9289 ctx = calloc(1, sizeof(*ctx)); 9290 if (ctx == NULL) { 9291 cb_fn(cb_arg, -ENOMEM); 9292 return; 9293 } 9294 9295 ctx->cb_fn = cb_fn; 9296 ctx->cb_arg = cb_arg; 9297 ctx->bdev = bdev; 9298 9299 spdk_spin_lock(&bdev->internal.spinlock); 9300 if (bdev->internal.qos_mod_in_progress) { 9301 spdk_spin_unlock(&bdev->internal.spinlock); 9302 free(ctx); 9303 cb_fn(cb_arg, -EAGAIN); 9304 return; 9305 } 9306 bdev->internal.qos_mod_in_progress = true; 9307 9308 if (disable_rate_limit == true && bdev->internal.qos) { 9309 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 9310 if (limits[i] == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED && 9311 (bdev->internal.qos->rate_limits[i].limit > 0 && 9312 bdev->internal.qos->rate_limits[i].limit != 9313 SPDK_BDEV_QOS_LIMIT_NOT_DEFINED)) { 9314 disable_rate_limit = false; 9315 break; 9316 } 9317 } 9318 } 9319 9320 if (disable_rate_limit == false) { 9321 if (bdev->internal.qos == NULL) { 9322 bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos)); 9323 if (!bdev->internal.qos) { 9324 spdk_spin_unlock(&bdev->internal.spinlock); 9325 SPDK_ERRLOG("Unable to allocate memory for QoS tracking\n"); 9326 bdev_set_qos_limit_done(ctx, -ENOMEM); 9327 return; 9328 } 9329 } 9330 9331 if (bdev->internal.qos->thread == NULL) { 9332 /* Enabling */ 9333 bdev_set_qos_rate_limits(bdev, limits); 9334 9335 spdk_bdev_for_each_channel(bdev, bdev_enable_qos_msg, ctx, 9336 bdev_enable_qos_done); 9337 } else { 9338 /* Updating */ 9339 bdev_set_qos_rate_limits(bdev, limits); 9340 9341 spdk_thread_send_msg(bdev->internal.qos->thread, 9342 bdev_update_qos_rate_limit_msg, ctx); 9343 } 9344 } else { 9345 if (bdev->internal.qos != NULL) { 9346 bdev_set_qos_rate_limits(bdev, limits); 9347 9348 /* Disabling */ 9349 spdk_bdev_for_each_channel(bdev, bdev_disable_qos_msg, ctx, 9350 bdev_disable_qos_msg_done); 9351 } else { 9352 spdk_spin_unlock(&bdev->internal.spinlock); 9353 bdev_set_qos_limit_done(ctx, 0); 9354 return; 9355 } 9356 } 9357 9358 spdk_spin_unlock(&bdev->internal.spinlock); 9359 } 9360 9361 struct spdk_bdev_histogram_ctx { 9362 spdk_bdev_histogram_status_cb cb_fn; 9363 void *cb_arg; 9364 struct spdk_bdev *bdev; 9365 int status; 9366 }; 9367 9368 static void 9369 bdev_histogram_disable_channel_cb(struct spdk_bdev *bdev, void *_ctx, int status) 9370 { 9371 struct spdk_bdev_histogram_ctx *ctx = _ctx; 9372 9373 spdk_spin_lock(&ctx->bdev->internal.spinlock); 9374 ctx->bdev->internal.histogram_in_progress = false; 9375 spdk_spin_unlock(&ctx->bdev->internal.spinlock); 9376 ctx->cb_fn(ctx->cb_arg, ctx->status); 9377 free(ctx); 9378 } 9379 9380 static void 9381 bdev_histogram_disable_channel(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 9382 struct spdk_io_channel *_ch, void *_ctx) 9383 { 9384 struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(_ch); 9385 9386 if (ch->histogram != NULL) { 9387 spdk_histogram_data_free(ch->histogram); 9388 ch->histogram = NULL; 9389 } 9390 spdk_bdev_for_each_channel_continue(i, 0); 9391 } 9392 9393 static void 9394 bdev_histogram_enable_channel_cb(struct spdk_bdev *bdev, void *_ctx, int status) 9395 { 9396 struct spdk_bdev_histogram_ctx *ctx = _ctx; 9397 9398 if (status != 0) { 9399 ctx->status = status; 9400 ctx->bdev->internal.histogram_enabled = false; 9401 spdk_bdev_for_each_channel(ctx->bdev, bdev_histogram_disable_channel, ctx, 9402 bdev_histogram_disable_channel_cb); 9403 } else { 9404 spdk_spin_lock(&ctx->bdev->internal.spinlock); 9405 ctx->bdev->internal.histogram_in_progress = false; 9406 spdk_spin_unlock(&ctx->bdev->internal.spinlock); 9407 ctx->cb_fn(ctx->cb_arg, ctx->status); 9408 free(ctx); 9409 } 9410 } 9411 9412 static void 9413 bdev_histogram_enable_channel(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 9414 struct spdk_io_channel *_ch, void *_ctx) 9415 { 9416 struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(_ch); 9417 int status = 0; 9418 9419 if (ch->histogram == NULL) { 9420 ch->histogram = spdk_histogram_data_alloc(); 9421 if (ch->histogram == NULL) { 9422 status = -ENOMEM; 9423 } 9424 } 9425 9426 spdk_bdev_for_each_channel_continue(i, status); 9427 } 9428 9429 void 9430 spdk_bdev_histogram_enable(struct spdk_bdev *bdev, spdk_bdev_histogram_status_cb cb_fn, 9431 void *cb_arg, bool enable) 9432 { 9433 struct spdk_bdev_histogram_ctx *ctx; 9434 9435 ctx = calloc(1, sizeof(struct spdk_bdev_histogram_ctx)); 9436 if (ctx == NULL) { 9437 cb_fn(cb_arg, -ENOMEM); 9438 return; 9439 } 9440 9441 ctx->bdev = bdev; 9442 ctx->status = 0; 9443 ctx->cb_fn = cb_fn; 9444 ctx->cb_arg = cb_arg; 9445 9446 spdk_spin_lock(&bdev->internal.spinlock); 9447 if (bdev->internal.histogram_in_progress) { 9448 spdk_spin_unlock(&bdev->internal.spinlock); 9449 free(ctx); 9450 cb_fn(cb_arg, -EAGAIN); 9451 return; 9452 } 9453 9454 bdev->internal.histogram_in_progress = true; 9455 spdk_spin_unlock(&bdev->internal.spinlock); 9456 9457 bdev->internal.histogram_enabled = enable; 9458 9459 if (enable) { 9460 /* Allocate histogram for each channel */ 9461 spdk_bdev_for_each_channel(bdev, bdev_histogram_enable_channel, ctx, 9462 bdev_histogram_enable_channel_cb); 9463 } else { 9464 spdk_bdev_for_each_channel(bdev, bdev_histogram_disable_channel, ctx, 9465 bdev_histogram_disable_channel_cb); 9466 } 9467 } 9468 9469 struct spdk_bdev_histogram_data_ctx { 9470 spdk_bdev_histogram_data_cb cb_fn; 9471 void *cb_arg; 9472 struct spdk_bdev *bdev; 9473 /** merged histogram data from all channels */ 9474 struct spdk_histogram_data *histogram; 9475 }; 9476 9477 static void 9478 bdev_histogram_get_channel_cb(struct spdk_bdev *bdev, void *_ctx, int status) 9479 { 9480 struct spdk_bdev_histogram_data_ctx *ctx = _ctx; 9481 9482 ctx->cb_fn(ctx->cb_arg, status, ctx->histogram); 9483 free(ctx); 9484 } 9485 9486 static void 9487 bdev_histogram_get_channel(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 9488 struct spdk_io_channel *_ch, void *_ctx) 9489 { 9490 struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(_ch); 9491 struct spdk_bdev_histogram_data_ctx *ctx = _ctx; 9492 int status = 0; 9493 9494 if (ch->histogram == NULL) { 9495 status = -EFAULT; 9496 } else { 9497 spdk_histogram_data_merge(ctx->histogram, ch->histogram); 9498 } 9499 9500 spdk_bdev_for_each_channel_continue(i, status); 9501 } 9502 9503 void 9504 spdk_bdev_histogram_get(struct spdk_bdev *bdev, struct spdk_histogram_data *histogram, 9505 spdk_bdev_histogram_data_cb cb_fn, 9506 void *cb_arg) 9507 { 9508 struct spdk_bdev_histogram_data_ctx *ctx; 9509 9510 ctx = calloc(1, sizeof(struct spdk_bdev_histogram_data_ctx)); 9511 if (ctx == NULL) { 9512 cb_fn(cb_arg, -ENOMEM, NULL); 9513 return; 9514 } 9515 9516 ctx->bdev = bdev; 9517 ctx->cb_fn = cb_fn; 9518 ctx->cb_arg = cb_arg; 9519 9520 ctx->histogram = histogram; 9521 9522 spdk_bdev_for_each_channel(bdev, bdev_histogram_get_channel, ctx, 9523 bdev_histogram_get_channel_cb); 9524 } 9525 9526 void 9527 spdk_bdev_channel_get_histogram(struct spdk_io_channel *ch, spdk_bdev_histogram_data_cb cb_fn, 9528 void *cb_arg) 9529 { 9530 struct spdk_bdev_channel *bdev_ch = __io_ch_to_bdev_ch(ch); 9531 int status = 0; 9532 9533 assert(cb_fn != NULL); 9534 9535 if (bdev_ch->histogram == NULL) { 9536 status = -EFAULT; 9537 } 9538 cb_fn(cb_arg, status, bdev_ch->histogram); 9539 } 9540 9541 size_t 9542 spdk_bdev_get_media_events(struct spdk_bdev_desc *desc, struct spdk_bdev_media_event *events, 9543 size_t max_events) 9544 { 9545 struct media_event_entry *entry; 9546 size_t num_events = 0; 9547 9548 for (; num_events < max_events; ++num_events) { 9549 entry = TAILQ_FIRST(&desc->pending_media_events); 9550 if (entry == NULL) { 9551 break; 9552 } 9553 9554 events[num_events] = entry->event; 9555 TAILQ_REMOVE(&desc->pending_media_events, entry, tailq); 9556 TAILQ_INSERT_TAIL(&desc->free_media_events, entry, tailq); 9557 } 9558 9559 return num_events; 9560 } 9561 9562 int 9563 spdk_bdev_push_media_events(struct spdk_bdev *bdev, const struct spdk_bdev_media_event *events, 9564 size_t num_events) 9565 { 9566 struct spdk_bdev_desc *desc; 9567 struct media_event_entry *entry; 9568 size_t event_id; 9569 int rc = 0; 9570 9571 assert(bdev->media_events); 9572 9573 spdk_spin_lock(&bdev->internal.spinlock); 9574 TAILQ_FOREACH(desc, &bdev->internal.open_descs, link) { 9575 if (desc->write) { 9576 break; 9577 } 9578 } 9579 9580 if (desc == NULL || desc->media_events_buffer == NULL) { 9581 rc = -ENODEV; 9582 goto out; 9583 } 9584 9585 for (event_id = 0; event_id < num_events; ++event_id) { 9586 entry = TAILQ_FIRST(&desc->free_media_events); 9587 if (entry == NULL) { 9588 break; 9589 } 9590 9591 TAILQ_REMOVE(&desc->free_media_events, entry, tailq); 9592 TAILQ_INSERT_TAIL(&desc->pending_media_events, entry, tailq); 9593 entry->event = events[event_id]; 9594 } 9595 9596 rc = event_id; 9597 out: 9598 spdk_spin_unlock(&bdev->internal.spinlock); 9599 return rc; 9600 } 9601 9602 static void 9603 _media_management_notify(void *arg) 9604 { 9605 struct spdk_bdev_desc *desc = arg; 9606 9607 _event_notify(desc, SPDK_BDEV_EVENT_MEDIA_MANAGEMENT); 9608 } 9609 9610 void 9611 spdk_bdev_notify_media_management(struct spdk_bdev *bdev) 9612 { 9613 struct spdk_bdev_desc *desc; 9614 9615 spdk_spin_lock(&bdev->internal.spinlock); 9616 TAILQ_FOREACH(desc, &bdev->internal.open_descs, link) { 9617 if (!TAILQ_EMPTY(&desc->pending_media_events)) { 9618 event_notify(desc, _media_management_notify); 9619 } 9620 } 9621 spdk_spin_unlock(&bdev->internal.spinlock); 9622 } 9623 9624 struct locked_lba_range_ctx { 9625 struct lba_range range; 9626 struct lba_range *current_range; 9627 struct lba_range *owner_range; 9628 struct spdk_poller *poller; 9629 lock_range_cb cb_fn; 9630 void *cb_arg; 9631 }; 9632 9633 static void 9634 bdev_lock_error_cleanup_cb(struct spdk_bdev *bdev, void *_ctx, int status) 9635 { 9636 struct locked_lba_range_ctx *ctx = _ctx; 9637 9638 ctx->cb_fn(&ctx->range, ctx->cb_arg, -ENOMEM); 9639 free(ctx); 9640 } 9641 9642 static void bdev_unlock_lba_range_get_channel(struct spdk_bdev_channel_iter *i, 9643 struct spdk_bdev *bdev, struct spdk_io_channel *ch, void *_ctx); 9644 9645 static void 9646 bdev_lock_lba_range_cb(struct spdk_bdev *bdev, void *_ctx, int status) 9647 { 9648 struct locked_lba_range_ctx *ctx = _ctx; 9649 9650 if (status == -ENOMEM) { 9651 /* One of the channels could not allocate a range object. 9652 * So we have to go back and clean up any ranges that were 9653 * allocated successfully before we return error status to 9654 * the caller. We can reuse the unlock function to do that 9655 * clean up. 9656 */ 9657 spdk_bdev_for_each_channel(bdev, bdev_unlock_lba_range_get_channel, ctx, 9658 bdev_lock_error_cleanup_cb); 9659 return; 9660 } 9661 9662 /* All channels have locked this range and no I/O overlapping the range 9663 * are outstanding! Set the owner_ch for the range object for the 9664 * locking channel, so that this channel will know that it is allowed 9665 * to write to this range. 9666 */ 9667 if (ctx->owner_range != NULL) { 9668 ctx->owner_range->owner_ch = ctx->range.owner_ch; 9669 } 9670 9671 ctx->cb_fn(&ctx->range, ctx->cb_arg, status); 9672 9673 /* Don't free the ctx here. Its range is in the bdev's global list of 9674 * locked ranges still, and will be removed and freed when this range 9675 * is later unlocked. 9676 */ 9677 } 9678 9679 static int 9680 bdev_lock_lba_range_check_io(void *_i) 9681 { 9682 struct spdk_bdev_channel_iter *i = _i; 9683 struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i->i); 9684 struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(_ch); 9685 struct locked_lba_range_ctx *ctx = i->ctx; 9686 struct lba_range *range = ctx->current_range; 9687 struct spdk_bdev_io *bdev_io; 9688 9689 spdk_poller_unregister(&ctx->poller); 9690 9691 /* The range is now in the locked_ranges, so no new IO can be submitted to this 9692 * range. But we need to wait until any outstanding IO overlapping with this range 9693 * are completed. 9694 */ 9695 TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) { 9696 if (bdev_io_range_is_locked(bdev_io, range)) { 9697 ctx->poller = SPDK_POLLER_REGISTER(bdev_lock_lba_range_check_io, i, 100); 9698 return SPDK_POLLER_BUSY; 9699 } 9700 } 9701 9702 spdk_bdev_for_each_channel_continue(i, 0); 9703 return SPDK_POLLER_BUSY; 9704 } 9705 9706 static void 9707 bdev_lock_lba_range_get_channel(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 9708 struct spdk_io_channel *_ch, void *_ctx) 9709 { 9710 struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(_ch); 9711 struct locked_lba_range_ctx *ctx = _ctx; 9712 struct lba_range *range; 9713 9714 TAILQ_FOREACH(range, &ch->locked_ranges, tailq) { 9715 if (range->length == ctx->range.length && 9716 range->offset == ctx->range.offset && 9717 range->locked_ctx == ctx->range.locked_ctx) { 9718 /* This range already exists on this channel, so don't add 9719 * it again. This can happen when a new channel is created 9720 * while the for_each_channel operation is in progress. 9721 * Do not check for outstanding I/O in that case, since the 9722 * range was locked before any I/O could be submitted to the 9723 * new channel. 9724 */ 9725 spdk_bdev_for_each_channel_continue(i, 0); 9726 return; 9727 } 9728 } 9729 9730 range = calloc(1, sizeof(*range)); 9731 if (range == NULL) { 9732 spdk_bdev_for_each_channel_continue(i, -ENOMEM); 9733 return; 9734 } 9735 9736 range->length = ctx->range.length; 9737 range->offset = ctx->range.offset; 9738 range->locked_ctx = ctx->range.locked_ctx; 9739 range->quiesce = ctx->range.quiesce; 9740 ctx->current_range = range; 9741 if (ctx->range.owner_ch == ch) { 9742 /* This is the range object for the channel that will hold 9743 * the lock. Store it in the ctx object so that we can easily 9744 * set its owner_ch after the lock is finally acquired. 9745 */ 9746 ctx->owner_range = range; 9747 } 9748 TAILQ_INSERT_TAIL(&ch->locked_ranges, range, tailq); 9749 bdev_lock_lba_range_check_io(i); 9750 } 9751 9752 static void 9753 bdev_lock_lba_range_ctx(struct spdk_bdev *bdev, struct locked_lba_range_ctx *ctx) 9754 { 9755 assert(spdk_get_thread() == ctx->range.owner_thread); 9756 assert(ctx->range.owner_ch == NULL || 9757 spdk_io_channel_get_thread(ctx->range.owner_ch->channel) == ctx->range.owner_thread); 9758 9759 /* We will add a copy of this range to each channel now. */ 9760 spdk_bdev_for_each_channel(bdev, bdev_lock_lba_range_get_channel, ctx, 9761 bdev_lock_lba_range_cb); 9762 } 9763 9764 static bool 9765 bdev_lba_range_overlaps_tailq(struct lba_range *range, lba_range_tailq_t *tailq) 9766 { 9767 struct lba_range *r; 9768 9769 TAILQ_FOREACH(r, tailq, tailq) { 9770 if (bdev_lba_range_overlapped(range, r)) { 9771 return true; 9772 } 9773 } 9774 return false; 9775 } 9776 9777 static void bdev_quiesce_range_locked(struct lba_range *range, void *ctx, int status); 9778 9779 static int 9780 _bdev_lock_lba_range(struct spdk_bdev *bdev, struct spdk_bdev_channel *ch, 9781 uint64_t offset, uint64_t length, 9782 lock_range_cb cb_fn, void *cb_arg) 9783 { 9784 struct locked_lba_range_ctx *ctx; 9785 9786 ctx = calloc(1, sizeof(*ctx)); 9787 if (ctx == NULL) { 9788 return -ENOMEM; 9789 } 9790 9791 ctx->range.offset = offset; 9792 ctx->range.length = length; 9793 ctx->range.owner_thread = spdk_get_thread(); 9794 ctx->range.owner_ch = ch; 9795 ctx->range.locked_ctx = cb_arg; 9796 ctx->range.bdev = bdev; 9797 ctx->range.quiesce = (cb_fn == bdev_quiesce_range_locked); 9798 ctx->cb_fn = cb_fn; 9799 ctx->cb_arg = cb_arg; 9800 9801 spdk_spin_lock(&bdev->internal.spinlock); 9802 if (bdev_lba_range_overlaps_tailq(&ctx->range, &bdev->internal.locked_ranges)) { 9803 /* There is an active lock overlapping with this range. 9804 * Put it on the pending list until this range no 9805 * longer overlaps with another. 9806 */ 9807 TAILQ_INSERT_TAIL(&bdev->internal.pending_locked_ranges, &ctx->range, tailq); 9808 } else { 9809 TAILQ_INSERT_TAIL(&bdev->internal.locked_ranges, &ctx->range, tailq); 9810 bdev_lock_lba_range_ctx(bdev, ctx); 9811 } 9812 spdk_spin_unlock(&bdev->internal.spinlock); 9813 return 0; 9814 } 9815 9816 static int 9817 bdev_lock_lba_range(struct spdk_bdev_desc *desc, struct spdk_io_channel *_ch, 9818 uint64_t offset, uint64_t length, 9819 lock_range_cb cb_fn, void *cb_arg) 9820 { 9821 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 9822 struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(_ch); 9823 9824 if (cb_arg == NULL) { 9825 SPDK_ERRLOG("cb_arg must not be NULL\n"); 9826 return -EINVAL; 9827 } 9828 9829 return _bdev_lock_lba_range(bdev, ch, offset, length, cb_fn, cb_arg); 9830 } 9831 9832 static void 9833 bdev_lock_lba_range_ctx_msg(void *_ctx) 9834 { 9835 struct locked_lba_range_ctx *ctx = _ctx; 9836 9837 bdev_lock_lba_range_ctx(ctx->range.bdev, ctx); 9838 } 9839 9840 static void 9841 bdev_unlock_lba_range_cb(struct spdk_bdev *bdev, void *_ctx, int status) 9842 { 9843 struct locked_lba_range_ctx *ctx = _ctx; 9844 struct locked_lba_range_ctx *pending_ctx; 9845 struct lba_range *range, *tmp; 9846 9847 spdk_spin_lock(&bdev->internal.spinlock); 9848 /* Check if there are any pending locked ranges that overlap with this range 9849 * that was just unlocked. If there are, check that it doesn't overlap with any 9850 * other locked ranges before calling bdev_lock_lba_range_ctx which will start 9851 * the lock process. 9852 */ 9853 TAILQ_FOREACH_SAFE(range, &bdev->internal.pending_locked_ranges, tailq, tmp) { 9854 if (bdev_lba_range_overlapped(range, &ctx->range) && 9855 !bdev_lba_range_overlaps_tailq(range, &bdev->internal.locked_ranges)) { 9856 TAILQ_REMOVE(&bdev->internal.pending_locked_ranges, range, tailq); 9857 pending_ctx = SPDK_CONTAINEROF(range, struct locked_lba_range_ctx, range); 9858 TAILQ_INSERT_TAIL(&bdev->internal.locked_ranges, range, tailq); 9859 spdk_thread_send_msg(pending_ctx->range.owner_thread, 9860 bdev_lock_lba_range_ctx_msg, pending_ctx); 9861 } 9862 } 9863 spdk_spin_unlock(&bdev->internal.spinlock); 9864 9865 ctx->cb_fn(&ctx->range, ctx->cb_arg, status); 9866 free(ctx); 9867 } 9868 9869 static void 9870 bdev_unlock_lba_range_get_channel(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 9871 struct spdk_io_channel *_ch, void *_ctx) 9872 { 9873 struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(_ch); 9874 struct locked_lba_range_ctx *ctx = _ctx; 9875 TAILQ_HEAD(, spdk_bdev_io) io_locked; 9876 struct spdk_bdev_io *bdev_io; 9877 struct lba_range *range; 9878 9879 TAILQ_FOREACH(range, &ch->locked_ranges, tailq) { 9880 if (ctx->range.offset == range->offset && 9881 ctx->range.length == range->length && 9882 ctx->range.locked_ctx == range->locked_ctx) { 9883 TAILQ_REMOVE(&ch->locked_ranges, range, tailq); 9884 free(range); 9885 break; 9886 } 9887 } 9888 9889 /* Note: we should almost always be able to assert that the range specified 9890 * was found. But there are some very rare corner cases where a new channel 9891 * gets created simultaneously with a range unlock, where this function 9892 * would execute on that new channel and wouldn't have the range. 9893 * We also use this to clean up range allocations when a later allocation 9894 * fails in the locking path. 9895 * So we can't actually assert() here. 9896 */ 9897 9898 /* Swap the locked IO into a temporary list, and then try to submit them again. 9899 * We could hyper-optimize this to only resubmit locked I/O that overlap 9900 * with the range that was just unlocked, but this isn't a performance path so 9901 * we go for simplicity here. 9902 */ 9903 TAILQ_INIT(&io_locked); 9904 TAILQ_SWAP(&ch->io_locked, &io_locked, spdk_bdev_io, internal.ch_link); 9905 while (!TAILQ_EMPTY(&io_locked)) { 9906 bdev_io = TAILQ_FIRST(&io_locked); 9907 TAILQ_REMOVE(&io_locked, bdev_io, internal.ch_link); 9908 bdev_io_submit(bdev_io); 9909 } 9910 9911 spdk_bdev_for_each_channel_continue(i, 0); 9912 } 9913 9914 static int 9915 _bdev_unlock_lba_range(struct spdk_bdev *bdev, uint64_t offset, uint64_t length, 9916 lock_range_cb cb_fn, void *cb_arg) 9917 { 9918 struct locked_lba_range_ctx *ctx; 9919 struct lba_range *range; 9920 9921 spdk_spin_lock(&bdev->internal.spinlock); 9922 /* To start the unlock the process, we find the range in the bdev's locked_ranges 9923 * and remove it. This ensures new channels don't inherit the locked range. 9924 * Then we will send a message to each channel to remove the range from its 9925 * per-channel list. 9926 */ 9927 TAILQ_FOREACH(range, &bdev->internal.locked_ranges, tailq) { 9928 if (range->offset == offset && range->length == length && 9929 (range->owner_ch == NULL || range->locked_ctx == cb_arg)) { 9930 break; 9931 } 9932 } 9933 if (range == NULL) { 9934 assert(false); 9935 spdk_spin_unlock(&bdev->internal.spinlock); 9936 return -EINVAL; 9937 } 9938 TAILQ_REMOVE(&bdev->internal.locked_ranges, range, tailq); 9939 ctx = SPDK_CONTAINEROF(range, struct locked_lba_range_ctx, range); 9940 spdk_spin_unlock(&bdev->internal.spinlock); 9941 9942 ctx->cb_fn = cb_fn; 9943 ctx->cb_arg = cb_arg; 9944 9945 spdk_bdev_for_each_channel(bdev, bdev_unlock_lba_range_get_channel, ctx, 9946 bdev_unlock_lba_range_cb); 9947 return 0; 9948 } 9949 9950 static int 9951 bdev_unlock_lba_range(struct spdk_bdev_desc *desc, struct spdk_io_channel *_ch, 9952 uint64_t offset, uint64_t length, 9953 lock_range_cb cb_fn, void *cb_arg) 9954 { 9955 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 9956 struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(_ch); 9957 struct lba_range *range; 9958 bool range_found = false; 9959 9960 /* Let's make sure the specified channel actually has a lock on 9961 * the specified range. Note that the range must match exactly. 9962 */ 9963 TAILQ_FOREACH(range, &ch->locked_ranges, tailq) { 9964 if (range->offset == offset && range->length == length && 9965 range->owner_ch == ch && range->locked_ctx == cb_arg) { 9966 range_found = true; 9967 break; 9968 } 9969 } 9970 9971 if (!range_found) { 9972 return -EINVAL; 9973 } 9974 9975 return _bdev_unlock_lba_range(bdev, offset, length, cb_fn, cb_arg); 9976 } 9977 9978 struct bdev_quiesce_ctx { 9979 spdk_bdev_quiesce_cb cb_fn; 9980 void *cb_arg; 9981 }; 9982 9983 static void 9984 bdev_unquiesce_range_unlocked(struct lba_range *range, void *ctx, int status) 9985 { 9986 struct bdev_quiesce_ctx *quiesce_ctx = ctx; 9987 9988 if (quiesce_ctx->cb_fn != NULL) { 9989 quiesce_ctx->cb_fn(quiesce_ctx->cb_arg, status); 9990 } 9991 9992 free(quiesce_ctx); 9993 } 9994 9995 static void 9996 bdev_quiesce_range_locked(struct lba_range *range, void *ctx, int status) 9997 { 9998 struct bdev_quiesce_ctx *quiesce_ctx = ctx; 9999 struct spdk_bdev_module *module = range->bdev->module; 10000 10001 if (status != 0) { 10002 if (quiesce_ctx->cb_fn != NULL) { 10003 quiesce_ctx->cb_fn(quiesce_ctx->cb_arg, status); 10004 } 10005 free(quiesce_ctx); 10006 return; 10007 } 10008 10009 spdk_spin_lock(&module->internal.spinlock); 10010 TAILQ_INSERT_TAIL(&module->internal.quiesced_ranges, range, tailq_module); 10011 spdk_spin_unlock(&module->internal.spinlock); 10012 10013 if (quiesce_ctx->cb_fn != NULL) { 10014 /* copy the context in case the range is unlocked by the callback */ 10015 struct bdev_quiesce_ctx tmp = *quiesce_ctx; 10016 10017 quiesce_ctx->cb_fn = NULL; 10018 quiesce_ctx->cb_arg = NULL; 10019 10020 tmp.cb_fn(tmp.cb_arg, status); 10021 } 10022 /* quiesce_ctx will be freed on unquiesce */ 10023 } 10024 10025 static int 10026 _spdk_bdev_quiesce(struct spdk_bdev *bdev, struct spdk_bdev_module *module, 10027 uint64_t offset, uint64_t length, 10028 spdk_bdev_quiesce_cb cb_fn, void *cb_arg, 10029 bool unquiesce) 10030 { 10031 struct bdev_quiesce_ctx *quiesce_ctx; 10032 int rc; 10033 10034 if (module != bdev->module) { 10035 SPDK_ERRLOG("Bdev does not belong to specified module.\n"); 10036 return -EINVAL; 10037 } 10038 10039 if (!bdev_io_valid_blocks(bdev, offset, length)) { 10040 return -EINVAL; 10041 } 10042 10043 if (unquiesce) { 10044 struct lba_range *range; 10045 10046 /* Make sure the specified range is actually quiesced in the specified module and 10047 * then remove it from the list. Note that the range must match exactly. 10048 */ 10049 spdk_spin_lock(&module->internal.spinlock); 10050 TAILQ_FOREACH(range, &module->internal.quiesced_ranges, tailq_module) { 10051 if (range->bdev == bdev && range->offset == offset && range->length == length) { 10052 TAILQ_REMOVE(&module->internal.quiesced_ranges, range, tailq_module); 10053 break; 10054 } 10055 } 10056 spdk_spin_unlock(&module->internal.spinlock); 10057 10058 if (range == NULL) { 10059 SPDK_ERRLOG("The range to unquiesce was not found.\n"); 10060 return -EINVAL; 10061 } 10062 10063 quiesce_ctx = range->locked_ctx; 10064 quiesce_ctx->cb_fn = cb_fn; 10065 quiesce_ctx->cb_arg = cb_arg; 10066 10067 rc = _bdev_unlock_lba_range(bdev, offset, length, bdev_unquiesce_range_unlocked, quiesce_ctx); 10068 } else { 10069 quiesce_ctx = malloc(sizeof(*quiesce_ctx)); 10070 if (quiesce_ctx == NULL) { 10071 return -ENOMEM; 10072 } 10073 10074 quiesce_ctx->cb_fn = cb_fn; 10075 quiesce_ctx->cb_arg = cb_arg; 10076 10077 rc = _bdev_lock_lba_range(bdev, NULL, offset, length, bdev_quiesce_range_locked, quiesce_ctx); 10078 if (rc != 0) { 10079 free(quiesce_ctx); 10080 } 10081 } 10082 10083 return rc; 10084 } 10085 10086 int 10087 spdk_bdev_quiesce(struct spdk_bdev *bdev, struct spdk_bdev_module *module, 10088 spdk_bdev_quiesce_cb cb_fn, void *cb_arg) 10089 { 10090 return _spdk_bdev_quiesce(bdev, module, 0, bdev->blockcnt, cb_fn, cb_arg, false); 10091 } 10092 10093 int 10094 spdk_bdev_unquiesce(struct spdk_bdev *bdev, struct spdk_bdev_module *module, 10095 spdk_bdev_quiesce_cb cb_fn, void *cb_arg) 10096 { 10097 return _spdk_bdev_quiesce(bdev, module, 0, bdev->blockcnt, cb_fn, cb_arg, true); 10098 } 10099 10100 int 10101 spdk_bdev_quiesce_range(struct spdk_bdev *bdev, struct spdk_bdev_module *module, 10102 uint64_t offset, uint64_t length, 10103 spdk_bdev_quiesce_cb cb_fn, void *cb_arg) 10104 { 10105 return _spdk_bdev_quiesce(bdev, module, offset, length, cb_fn, cb_arg, false); 10106 } 10107 10108 int 10109 spdk_bdev_unquiesce_range(struct spdk_bdev *bdev, struct spdk_bdev_module *module, 10110 uint64_t offset, uint64_t length, 10111 spdk_bdev_quiesce_cb cb_fn, void *cb_arg) 10112 { 10113 return _spdk_bdev_quiesce(bdev, module, offset, length, cb_fn, cb_arg, true); 10114 } 10115 10116 int 10117 spdk_bdev_get_memory_domains(struct spdk_bdev *bdev, struct spdk_memory_domain **domains, 10118 int array_size) 10119 { 10120 if (!bdev) { 10121 return -EINVAL; 10122 } 10123 10124 if (bdev->fn_table->get_memory_domains) { 10125 return bdev->fn_table->get_memory_domains(bdev->ctxt, domains, array_size); 10126 } 10127 10128 return 0; 10129 } 10130 10131 struct spdk_bdev_for_each_io_ctx { 10132 void *ctx; 10133 spdk_bdev_io_fn fn; 10134 spdk_bdev_for_each_io_cb cb; 10135 }; 10136 10137 static void 10138 bdev_channel_for_each_io(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 10139 struct spdk_io_channel *io_ch, void *_ctx) 10140 { 10141 struct spdk_bdev_for_each_io_ctx *ctx = _ctx; 10142 struct spdk_bdev_channel *bdev_ch = __io_ch_to_bdev_ch(io_ch); 10143 struct spdk_bdev_io *bdev_io; 10144 int rc = 0; 10145 10146 TAILQ_FOREACH(bdev_io, &bdev_ch->io_submitted, internal.ch_link) { 10147 rc = ctx->fn(ctx->ctx, bdev_io); 10148 if (rc != 0) { 10149 break; 10150 } 10151 } 10152 10153 spdk_bdev_for_each_channel_continue(i, rc); 10154 } 10155 10156 static void 10157 bdev_for_each_io_done(struct spdk_bdev *bdev, void *_ctx, int status) 10158 { 10159 struct spdk_bdev_for_each_io_ctx *ctx = _ctx; 10160 10161 ctx->cb(ctx->ctx, status); 10162 10163 free(ctx); 10164 } 10165 10166 void 10167 spdk_bdev_for_each_bdev_io(struct spdk_bdev *bdev, void *_ctx, spdk_bdev_io_fn fn, 10168 spdk_bdev_for_each_io_cb cb) 10169 { 10170 struct spdk_bdev_for_each_io_ctx *ctx; 10171 10172 assert(fn != NULL && cb != NULL); 10173 10174 ctx = calloc(1, sizeof(*ctx)); 10175 if (ctx == NULL) { 10176 SPDK_ERRLOG("Failed to allocate context.\n"); 10177 cb(_ctx, -ENOMEM); 10178 return; 10179 } 10180 10181 ctx->ctx = _ctx; 10182 ctx->fn = fn; 10183 ctx->cb = cb; 10184 10185 spdk_bdev_for_each_channel(bdev, bdev_channel_for_each_io, ctx, 10186 bdev_for_each_io_done); 10187 } 10188 10189 void 10190 spdk_bdev_for_each_channel_continue(struct spdk_bdev_channel_iter *iter, int status) 10191 { 10192 spdk_for_each_channel_continue(iter->i, status); 10193 } 10194 10195 static struct spdk_bdev * 10196 io_channel_iter_get_bdev(struct spdk_io_channel_iter *i) 10197 { 10198 void *io_device = spdk_io_channel_iter_get_io_device(i); 10199 10200 return __bdev_from_io_dev(io_device); 10201 } 10202 10203 static void 10204 bdev_each_channel_msg(struct spdk_io_channel_iter *i) 10205 { 10206 struct spdk_bdev_channel_iter *iter = spdk_io_channel_iter_get_ctx(i); 10207 struct spdk_bdev *bdev = io_channel_iter_get_bdev(i); 10208 struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i); 10209 10210 iter->i = i; 10211 iter->fn(iter, bdev, ch, iter->ctx); 10212 } 10213 10214 static void 10215 bdev_each_channel_cpl(struct spdk_io_channel_iter *i, int status) 10216 { 10217 struct spdk_bdev_channel_iter *iter = spdk_io_channel_iter_get_ctx(i); 10218 struct spdk_bdev *bdev = io_channel_iter_get_bdev(i); 10219 10220 iter->i = i; 10221 iter->cpl(bdev, iter->ctx, status); 10222 10223 free(iter); 10224 } 10225 10226 void 10227 spdk_bdev_for_each_channel(struct spdk_bdev *bdev, spdk_bdev_for_each_channel_msg fn, 10228 void *ctx, spdk_bdev_for_each_channel_done cpl) 10229 { 10230 struct spdk_bdev_channel_iter *iter; 10231 10232 assert(bdev != NULL && fn != NULL && ctx != NULL); 10233 10234 iter = calloc(1, sizeof(struct spdk_bdev_channel_iter)); 10235 if (iter == NULL) { 10236 SPDK_ERRLOG("Unable to allocate iterator\n"); 10237 assert(false); 10238 return; 10239 } 10240 10241 iter->fn = fn; 10242 iter->cpl = cpl; 10243 iter->ctx = ctx; 10244 10245 spdk_for_each_channel(__bdev_to_io_dev(bdev), bdev_each_channel_msg, 10246 iter, bdev_each_channel_cpl); 10247 } 10248 10249 static void 10250 bdev_copy_do_write_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 10251 { 10252 struct spdk_bdev_io *parent_io = cb_arg; 10253 10254 spdk_bdev_free_io(bdev_io); 10255 10256 /* Check return status of write */ 10257 parent_io->internal.status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED; 10258 parent_io->internal.cb(parent_io, success, parent_io->internal.caller_ctx); 10259 } 10260 10261 static void 10262 bdev_copy_do_write(void *_bdev_io) 10263 { 10264 struct spdk_bdev_io *bdev_io = _bdev_io; 10265 int rc; 10266 10267 /* Write blocks */ 10268 rc = spdk_bdev_write_blocks_with_md(bdev_io->internal.desc, 10269 spdk_io_channel_from_ctx(bdev_io->internal.ch), 10270 bdev_io->u.bdev.iovs[0].iov_base, 10271 bdev_io->u.bdev.md_buf, bdev_io->u.bdev.offset_blocks, 10272 bdev_io->u.bdev.num_blocks, bdev_copy_do_write_done, bdev_io); 10273 10274 if (rc == -ENOMEM) { 10275 bdev_queue_io_wait_with_cb(bdev_io, bdev_copy_do_write); 10276 } else if (rc != 0) { 10277 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 10278 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 10279 } 10280 } 10281 10282 static void 10283 bdev_copy_do_read_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 10284 { 10285 struct spdk_bdev_io *parent_io = cb_arg; 10286 10287 spdk_bdev_free_io(bdev_io); 10288 10289 /* Check return status of read */ 10290 if (!success) { 10291 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 10292 parent_io->internal.cb(parent_io, false, parent_io->internal.caller_ctx); 10293 return; 10294 } 10295 10296 /* Do write */ 10297 bdev_copy_do_write(parent_io); 10298 } 10299 10300 static void 10301 bdev_copy_do_read(void *_bdev_io) 10302 { 10303 struct spdk_bdev_io *bdev_io = _bdev_io; 10304 int rc; 10305 10306 /* Read blocks */ 10307 rc = spdk_bdev_read_blocks_with_md(bdev_io->internal.desc, 10308 spdk_io_channel_from_ctx(bdev_io->internal.ch), 10309 bdev_io->u.bdev.iovs[0].iov_base, 10310 bdev_io->u.bdev.md_buf, bdev_io->u.bdev.copy.src_offset_blocks, 10311 bdev_io->u.bdev.num_blocks, bdev_copy_do_read_done, bdev_io); 10312 10313 if (rc == -ENOMEM) { 10314 bdev_queue_io_wait_with_cb(bdev_io, bdev_copy_do_read); 10315 } else if (rc != 0) { 10316 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 10317 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 10318 } 10319 } 10320 10321 static void 10322 bdev_copy_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io, bool success) 10323 { 10324 if (!success) { 10325 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 10326 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 10327 return; 10328 } 10329 10330 bdev_copy_do_read(bdev_io); 10331 } 10332 10333 int 10334 spdk_bdev_copy_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 10335 uint64_t dst_offset_blocks, uint64_t src_offset_blocks, uint64_t num_blocks, 10336 spdk_bdev_io_completion_cb cb, void *cb_arg) 10337 { 10338 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 10339 struct spdk_bdev_io *bdev_io; 10340 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 10341 10342 if (!desc->write) { 10343 return -EBADF; 10344 } 10345 10346 if (!bdev_io_valid_blocks(bdev, dst_offset_blocks, num_blocks) || 10347 !bdev_io_valid_blocks(bdev, src_offset_blocks, num_blocks)) { 10348 SPDK_DEBUGLOG(bdev, 10349 "Invalid offset or number of blocks: dst %lu, src %lu, count %lu\n", 10350 dst_offset_blocks, src_offset_blocks, num_blocks); 10351 return -EINVAL; 10352 } 10353 10354 bdev_io = bdev_channel_get_io(channel); 10355 if (!bdev_io) { 10356 return -ENOMEM; 10357 } 10358 10359 bdev_io->internal.ch = channel; 10360 bdev_io->internal.desc = desc; 10361 bdev_io->type = SPDK_BDEV_IO_TYPE_COPY; 10362 10363 bdev_io->u.bdev.offset_blocks = dst_offset_blocks; 10364 bdev_io->u.bdev.copy.src_offset_blocks = src_offset_blocks; 10365 bdev_io->u.bdev.num_blocks = num_blocks; 10366 bdev_io->u.bdev.memory_domain = NULL; 10367 bdev_io->u.bdev.memory_domain_ctx = NULL; 10368 bdev_io->u.bdev.iovs = NULL; 10369 bdev_io->u.bdev.iovcnt = 0; 10370 bdev_io->u.bdev.md_buf = NULL; 10371 bdev_io->u.bdev.accel_sequence = NULL; 10372 bdev_io_init(bdev_io, bdev, cb_arg, cb); 10373 10374 if (dst_offset_blocks == src_offset_blocks || num_blocks == 0) { 10375 spdk_thread_send_msg(spdk_get_thread(), bdev_io_complete_cb, bdev_io); 10376 return 0; 10377 } 10378 10379 10380 /* If the copy size is large and should be split, use the generic split logic 10381 * regardless of whether SPDK_BDEV_IO_TYPE_COPY is supported or not. 10382 * 10383 * Then, send the copy request if SPDK_BDEV_IO_TYPE_COPY is supported or 10384 * emulate it using regular read and write requests otherwise. 10385 */ 10386 if (spdk_bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_COPY) || 10387 bdev_io->internal.split) { 10388 bdev_io_submit(bdev_io); 10389 return 0; 10390 } 10391 10392 spdk_bdev_io_get_buf(bdev_io, bdev_copy_get_buf_cb, num_blocks * spdk_bdev_get_block_size(bdev)); 10393 10394 return 0; 10395 } 10396 10397 SPDK_LOG_REGISTER_COMPONENT(bdev) 10398 10399 SPDK_TRACE_REGISTER_FN(bdev_trace, "bdev", TRACE_GROUP_BDEV) 10400 { 10401 struct spdk_trace_tpoint_opts opts[] = { 10402 { 10403 "BDEV_IO_START", TRACE_BDEV_IO_START, 10404 OWNER_TYPE_BDEV, OBJECT_BDEV_IO, 1, 10405 { 10406 { "type", SPDK_TRACE_ARG_TYPE_INT, 8 }, 10407 { "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }, 10408 { "offset", SPDK_TRACE_ARG_TYPE_INT, 8 }, 10409 { "qd", SPDK_TRACE_ARG_TYPE_INT, 4 } 10410 } 10411 }, 10412 { 10413 "BDEV_IO_DONE", TRACE_BDEV_IO_DONE, 10414 OWNER_TYPE_BDEV, OBJECT_BDEV_IO, 0, 10415 { 10416 { "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }, 10417 { "qd", SPDK_TRACE_ARG_TYPE_INT, 4 } 10418 } 10419 }, 10420 { 10421 "BDEV_IOCH_CREATE", TRACE_BDEV_IOCH_CREATE, 10422 OWNER_TYPE_BDEV, OBJECT_NONE, 0, 10423 { 10424 { "tid", SPDK_TRACE_ARG_TYPE_INT, 8 } 10425 } 10426 }, 10427 { 10428 "BDEV_IOCH_DESTROY", TRACE_BDEV_IOCH_DESTROY, 10429 OWNER_TYPE_BDEV, OBJECT_NONE, 0, 10430 { 10431 { "tid", SPDK_TRACE_ARG_TYPE_INT, 8 } 10432 } 10433 }, 10434 }; 10435 10436 10437 spdk_trace_register_owner_type(OWNER_TYPE_BDEV, 'b'); 10438 spdk_trace_register_object(OBJECT_BDEV_IO, 'i'); 10439 spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts)); 10440 spdk_trace_tpoint_register_relation(TRACE_BDEV_NVME_IO_START, OBJECT_BDEV_IO, 0); 10441 spdk_trace_tpoint_register_relation(TRACE_BDEV_NVME_IO_DONE, OBJECT_BDEV_IO, 0); 10442 } 10443