xref: /spdk/lib/bdev/bdev.c (revision 56e12b00711b40d1e2ff45d4147193f45fdd9af0)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright (c) Intel Corporation.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "spdk/stdinc.h"
35 
36 #include "spdk/bdev.h"
37 #include "spdk/conf.h"
38 
39 #include "spdk/config.h"
40 #include "spdk/env.h"
41 #include "spdk/event.h"
42 #include "spdk/thread.h"
43 #include "spdk/likely.h"
44 #include "spdk/queue.h"
45 #include "spdk/nvme_spec.h"
46 #include "spdk/scsi_spec.h"
47 #include "spdk/util.h"
48 #include "spdk/trace.h"
49 
50 #include "spdk/bdev_module.h"
51 #include "spdk_internal/log.h"
52 #include "spdk/string.h"
53 
54 #ifdef SPDK_CONFIG_VTUNE
55 #include "ittnotify.h"
56 #include "ittnotify_types.h"
57 int __itt_init_ittlib(const char *, __itt_group_id);
58 #endif
59 
60 #define SPDK_BDEV_IO_POOL_SIZE			(64 * 1024)
61 #define SPDK_BDEV_IO_CACHE_SIZE			256
62 #define BUF_SMALL_POOL_SIZE			8192
63 #define BUF_LARGE_POOL_SIZE			1024
64 #define NOMEM_THRESHOLD_COUNT			8
65 #define ZERO_BUFFER_SIZE			0x100000
66 
67 #define OWNER_BDEV		0x2
68 
69 #define OBJECT_BDEV_IO		0x2
70 
71 #define TRACE_GROUP_BDEV	0x3
72 #define TRACE_BDEV_IO_START	SPDK_TPOINT_ID(TRACE_GROUP_BDEV, 0x0)
73 #define TRACE_BDEV_IO_DONE	SPDK_TPOINT_ID(TRACE_GROUP_BDEV, 0x1)
74 
75 #define SPDK_BDEV_QOS_TIMESLICE_IN_USEC		1000
76 #define SPDK_BDEV_QOS_MIN_IO_PER_TIMESLICE	1
77 #define SPDK_BDEV_QOS_MIN_BYTE_PER_TIMESLICE	512
78 #define SPDK_BDEV_QOS_MIN_IOS_PER_SEC		10000
79 #define SPDK_BDEV_QOS_MIN_BYTES_PER_SEC		(10 * 1024 * 1024)
80 #define SPDK_BDEV_QOS_LIMIT_NOT_DEFINED		UINT64_MAX
81 
82 #define SPDK_BDEV_POOL_ALIGNMENT 512
83 
84 static const char *qos_conf_type[] = {"Limit_IOPS",
85 				      "Limit_BPS", "Limit_Read_BPS", "Limit_Write_BPS"
86 				     };
87 static const char *qos_rpc_type[] = {"rw_ios_per_sec",
88 				     "rw_mbytes_per_sec", "r_mbytes_per_sec", "w_mbytes_per_sec"
89 				    };
90 
91 TAILQ_HEAD(spdk_bdev_list, spdk_bdev);
92 
93 struct spdk_bdev_mgr {
94 	struct spdk_mempool *bdev_io_pool;
95 
96 	struct spdk_mempool *buf_small_pool;
97 	struct spdk_mempool *buf_large_pool;
98 
99 	void *zero_buffer;
100 
101 	TAILQ_HEAD(bdev_module_list, spdk_bdev_module) bdev_modules;
102 
103 	struct spdk_bdev_list bdevs;
104 
105 	bool init_complete;
106 	bool module_init_complete;
107 
108 #ifdef SPDK_CONFIG_VTUNE
109 	__itt_domain	*domain;
110 #endif
111 };
112 
113 static struct spdk_bdev_mgr g_bdev_mgr = {
114 	.bdev_modules = TAILQ_HEAD_INITIALIZER(g_bdev_mgr.bdev_modules),
115 	.bdevs = TAILQ_HEAD_INITIALIZER(g_bdev_mgr.bdevs),
116 	.init_complete = false,
117 	.module_init_complete = false,
118 };
119 
120 static struct spdk_bdev_opts	g_bdev_opts = {
121 	.bdev_io_pool_size = SPDK_BDEV_IO_POOL_SIZE,
122 	.bdev_io_cache_size = SPDK_BDEV_IO_CACHE_SIZE,
123 };
124 
125 static spdk_bdev_init_cb	g_init_cb_fn = NULL;
126 static void			*g_init_cb_arg = NULL;
127 
128 static spdk_bdev_fini_cb	g_fini_cb_fn = NULL;
129 static void			*g_fini_cb_arg = NULL;
130 static struct spdk_thread	*g_fini_thread = NULL;
131 
132 struct spdk_bdev_qos_limit {
133 	/** IOs or bytes allowed per second (i.e., 1s). */
134 	uint64_t limit;
135 
136 	/** Remaining IOs or bytes allowed in current timeslice (e.g., 1ms).
137 	 *  For remaining bytes, allowed to run negative if an I/O is submitted when
138 	 *  some bytes are remaining, but the I/O is bigger than that amount. The
139 	 *  excess will be deducted from the next timeslice.
140 	 */
141 	int64_t remaining_this_timeslice;
142 
143 	/** Minimum allowed IOs or bytes to be issued in one timeslice (e.g., 1ms). */
144 	uint32_t min_per_timeslice;
145 
146 	/** Maximum allowed IOs or bytes to be issued in one timeslice (e.g., 1ms). */
147 	uint32_t max_per_timeslice;
148 
149 	/** Function to check whether to queue the IO. */
150 	bool (*queue_io)(const struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io);
151 
152 	/** Function to update for the submitted IO. */
153 	void (*update_quota)(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io);
154 };
155 
156 struct spdk_bdev_qos {
157 	/** Types of structure of rate limits. */
158 	struct spdk_bdev_qos_limit rate_limits[SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES];
159 
160 	/** The channel that all I/O are funneled through. */
161 	struct spdk_bdev_channel *ch;
162 
163 	/** The thread on which the poller is running. */
164 	struct spdk_thread *thread;
165 
166 	/** Queue of I/O waiting to be issued. */
167 	bdev_io_tailq_t queued;
168 
169 	/** Size of a timeslice in tsc ticks. */
170 	uint64_t timeslice_size;
171 
172 	/** Timestamp of start of last timeslice. */
173 	uint64_t last_timeslice;
174 
175 	/** Poller that processes queued I/O commands each time slice. */
176 	struct spdk_poller *poller;
177 };
178 
179 struct spdk_bdev_mgmt_channel {
180 	bdev_io_stailq_t need_buf_small;
181 	bdev_io_stailq_t need_buf_large;
182 
183 	/*
184 	 * Each thread keeps a cache of bdev_io - this allows
185 	 *  bdev threads which are *not* DPDK threads to still
186 	 *  benefit from a per-thread bdev_io cache.  Without
187 	 *  this, non-DPDK threads fetching from the mempool
188 	 *  incur a cmpxchg on get and put.
189 	 */
190 	bdev_io_stailq_t per_thread_cache;
191 	uint32_t	per_thread_cache_count;
192 	uint32_t	bdev_io_cache_size;
193 
194 	TAILQ_HEAD(, spdk_bdev_shared_resource)	shared_resources;
195 	TAILQ_HEAD(, spdk_bdev_io_wait_entry)	io_wait_queue;
196 };
197 
198 /*
199  * Per-module (or per-io_device) data. Multiple bdevs built on the same io_device
200  * will queue here their IO that awaits retry. It makes it possible to retry sending
201  * IO to one bdev after IO from other bdev completes.
202  */
203 struct spdk_bdev_shared_resource {
204 	/* The bdev management channel */
205 	struct spdk_bdev_mgmt_channel *mgmt_ch;
206 
207 	/*
208 	 * Count of I/O submitted to bdev module and waiting for completion.
209 	 * Incremented before submit_request() is called on an spdk_bdev_io.
210 	 */
211 	uint64_t		io_outstanding;
212 
213 	/*
214 	 * Queue of IO awaiting retry because of a previous NOMEM status returned
215 	 *  on this channel.
216 	 */
217 	bdev_io_tailq_t		nomem_io;
218 
219 	/*
220 	 * Threshold which io_outstanding must drop to before retrying nomem_io.
221 	 */
222 	uint64_t		nomem_threshold;
223 
224 	/* I/O channel allocated by a bdev module */
225 	struct spdk_io_channel	*shared_ch;
226 
227 	/* Refcount of bdev channels using this resource */
228 	uint32_t		ref;
229 
230 	TAILQ_ENTRY(spdk_bdev_shared_resource) link;
231 };
232 
233 #define BDEV_CH_RESET_IN_PROGRESS	(1 << 0)
234 #define BDEV_CH_QOS_ENABLED		(1 << 1)
235 
236 struct spdk_bdev_channel {
237 	struct spdk_bdev	*bdev;
238 
239 	/* The channel for the underlying device */
240 	struct spdk_io_channel	*channel;
241 
242 	/* Per io_device per thread data */
243 	struct spdk_bdev_shared_resource *shared_resource;
244 
245 	struct spdk_bdev_io_stat stat;
246 
247 	/*
248 	 * Count of I/O submitted through this channel and waiting for completion.
249 	 * Incremented before submit_request() is called on an spdk_bdev_io.
250 	 */
251 	uint64_t		io_outstanding;
252 
253 	bdev_io_tailq_t		queued_resets;
254 
255 	uint32_t		flags;
256 
257 	struct spdk_histogram_data *histogram;
258 
259 #ifdef SPDK_CONFIG_VTUNE
260 	uint64_t		start_tsc;
261 	uint64_t		interval_tsc;
262 	__itt_string_handle	*handle;
263 	struct spdk_bdev_io_stat prev_stat;
264 #endif
265 
266 };
267 
268 struct spdk_bdev_desc {
269 	struct spdk_bdev		*bdev;
270 	struct spdk_thread		*thread;
271 	spdk_bdev_remove_cb_t		remove_cb;
272 	void				*remove_ctx;
273 	bool				remove_scheduled;
274 	bool				closed;
275 	bool				write;
276 	TAILQ_ENTRY(spdk_bdev_desc)	link;
277 };
278 
279 struct spdk_bdev_iostat_ctx {
280 	struct spdk_bdev_io_stat *stat;
281 	spdk_bdev_get_device_stat_cb cb;
282 	void *cb_arg;
283 };
284 
285 #define __bdev_to_io_dev(bdev)		(((char *)bdev) + 1)
286 #define __bdev_from_io_dev(io_dev)	((struct spdk_bdev *)(((char *)io_dev) - 1))
287 
288 static void _spdk_bdev_write_zero_buffer_done(struct spdk_bdev_io *bdev_io, bool success,
289 		void *cb_arg);
290 static void _spdk_bdev_write_zero_buffer_next(void *_bdev_io);
291 
292 void
293 spdk_bdev_get_opts(struct spdk_bdev_opts *opts)
294 {
295 	*opts = g_bdev_opts;
296 }
297 
298 int
299 spdk_bdev_set_opts(struct spdk_bdev_opts *opts)
300 {
301 	uint32_t min_pool_size;
302 
303 	/*
304 	 * Add 1 to the thread count to account for the extra mgmt_ch that gets created during subsystem
305 	 *  initialization.  A second mgmt_ch will be created on the same thread when the application starts
306 	 *  but before the deferred put_io_channel event is executed for the first mgmt_ch.
307 	 */
308 	min_pool_size = opts->bdev_io_cache_size * (spdk_thread_get_count() + 1);
309 	if (opts->bdev_io_pool_size < min_pool_size) {
310 		SPDK_ERRLOG("bdev_io_pool_size %" PRIu32 " is not compatible with bdev_io_cache_size %" PRIu32
311 			    " and %" PRIu32 " threads\n", opts->bdev_io_pool_size, opts->bdev_io_cache_size,
312 			    spdk_thread_get_count());
313 		SPDK_ERRLOG("bdev_io_pool_size must be at least %" PRIu32 "\n", min_pool_size);
314 		return -1;
315 	}
316 
317 	g_bdev_opts = *opts;
318 	return 0;
319 }
320 
321 struct spdk_bdev *
322 spdk_bdev_first(void)
323 {
324 	struct spdk_bdev *bdev;
325 
326 	bdev = TAILQ_FIRST(&g_bdev_mgr.bdevs);
327 	if (bdev) {
328 		SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Starting bdev iteration at %s\n", bdev->name);
329 	}
330 
331 	return bdev;
332 }
333 
334 struct spdk_bdev *
335 spdk_bdev_next(struct spdk_bdev *prev)
336 {
337 	struct spdk_bdev *bdev;
338 
339 	bdev = TAILQ_NEXT(prev, internal.link);
340 	if (bdev) {
341 		SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Continuing bdev iteration at %s\n", bdev->name);
342 	}
343 
344 	return bdev;
345 }
346 
347 static struct spdk_bdev *
348 _bdev_next_leaf(struct spdk_bdev *bdev)
349 {
350 	while (bdev != NULL) {
351 		if (bdev->internal.claim_module == NULL) {
352 			return bdev;
353 		} else {
354 			bdev = TAILQ_NEXT(bdev, internal.link);
355 		}
356 	}
357 
358 	return bdev;
359 }
360 
361 struct spdk_bdev *
362 spdk_bdev_first_leaf(void)
363 {
364 	struct spdk_bdev *bdev;
365 
366 	bdev = _bdev_next_leaf(TAILQ_FIRST(&g_bdev_mgr.bdevs));
367 
368 	if (bdev) {
369 		SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Starting bdev iteration at %s\n", bdev->name);
370 	}
371 
372 	return bdev;
373 }
374 
375 struct spdk_bdev *
376 spdk_bdev_next_leaf(struct spdk_bdev *prev)
377 {
378 	struct spdk_bdev *bdev;
379 
380 	bdev = _bdev_next_leaf(TAILQ_NEXT(prev, internal.link));
381 
382 	if (bdev) {
383 		SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Continuing bdev iteration at %s\n", bdev->name);
384 	}
385 
386 	return bdev;
387 }
388 
389 struct spdk_bdev *
390 spdk_bdev_get_by_name(const char *bdev_name)
391 {
392 	struct spdk_bdev_alias *tmp;
393 	struct spdk_bdev *bdev = spdk_bdev_first();
394 
395 	while (bdev != NULL) {
396 		if (strcmp(bdev_name, bdev->name) == 0) {
397 			return bdev;
398 		}
399 
400 		TAILQ_FOREACH(tmp, &bdev->aliases, tailq) {
401 			if (strcmp(bdev_name, tmp->alias) == 0) {
402 				return bdev;
403 			}
404 		}
405 
406 		bdev = spdk_bdev_next(bdev);
407 	}
408 
409 	return NULL;
410 }
411 
412 void
413 spdk_bdev_io_set_buf(struct spdk_bdev_io *bdev_io, void *buf, size_t len)
414 {
415 	struct iovec *iovs;
416 
417 	iovs = bdev_io->u.bdev.iovs;
418 
419 	assert(iovs != NULL);
420 	assert(bdev_io->u.bdev.iovcnt >= 1);
421 
422 	iovs[0].iov_base = buf;
423 	iovs[0].iov_len = len;
424 }
425 
426 static bool
427 _is_buf_allocated(struct iovec *iovs)
428 {
429 	return iovs[0].iov_base != NULL;
430 }
431 
432 static bool
433 _are_iovs_aligned(struct iovec *iovs, int iovcnt, uint32_t alignment)
434 {
435 	int i;
436 	uintptr_t iov_base;
437 
438 	if (spdk_likely(alignment == 1)) {
439 		return true;
440 	}
441 
442 	for (i = 0; i < iovcnt; i++) {
443 		iov_base = (uintptr_t)iovs[i].iov_base;
444 		if ((iov_base & (alignment - 1)) != 0) {
445 			return false;
446 		}
447 	}
448 
449 	return true;
450 }
451 
452 static void
453 _copy_iovs_to_buf(void *buf, size_t buf_len, struct iovec *iovs, int iovcnt)
454 {
455 	int i;
456 	size_t len;
457 
458 	for (i = 0; i < iovcnt; i++) {
459 		len = spdk_min(iovs[i].iov_len, buf_len);
460 		memcpy(buf, iovs[i].iov_base, len);
461 		buf += len;
462 		buf_len -= len;
463 	}
464 }
465 
466 static void
467 _copy_buf_to_iovs(struct iovec *iovs, int iovcnt, void *buf, size_t buf_len)
468 {
469 	int i;
470 	size_t len;
471 
472 	for (i = 0; i < iovcnt; i++) {
473 		len = spdk_min(iovs[i].iov_len, buf_len);
474 		memcpy(iovs[i].iov_base, buf, len);
475 		buf += len;
476 		buf_len -= len;
477 	}
478 }
479 
480 static void
481 _bdev_io_set_bounce_buf(struct spdk_bdev_io *bdev_io, void *buf, size_t len)
482 {
483 	/* save original iovec */
484 	bdev_io->internal.orig_iovs = bdev_io->u.bdev.iovs;
485 	bdev_io->internal.orig_iovcnt = bdev_io->u.bdev.iovcnt;
486 	/* set bounce iov */
487 	bdev_io->u.bdev.iovs = &bdev_io->internal.bounce_iov;
488 	bdev_io->u.bdev.iovcnt = 1;
489 	/* set bounce buffer for this operation */
490 	bdev_io->u.bdev.iovs[0].iov_base = buf;
491 	bdev_io->u.bdev.iovs[0].iov_len = len;
492 	/* if this is write path, copy data from original buffer to bounce buffer */
493 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
494 		_copy_iovs_to_buf(buf, len, bdev_io->internal.orig_iovs, bdev_io->internal.orig_iovcnt);
495 	}
496 }
497 
498 static void
499 spdk_bdev_io_put_buf(struct spdk_bdev_io *bdev_io)
500 {
501 	struct spdk_mempool *pool;
502 	struct spdk_bdev_io *tmp;
503 	void *buf, *aligned_buf;
504 	bdev_io_stailq_t *stailq;
505 	struct spdk_bdev_mgmt_channel *ch;
506 	uint64_t buf_len;
507 	uint64_t alignment;
508 	bool buf_allocated;
509 
510 	buf = bdev_io->internal.buf;
511 	buf_len = bdev_io->internal.buf_len;
512 	alignment = spdk_bdev_get_buf_align(bdev_io->bdev);
513 	ch = bdev_io->internal.ch->shared_resource->mgmt_ch;
514 
515 	bdev_io->internal.buf = NULL;
516 
517 	if (buf_len + alignment <= SPDK_BDEV_SMALL_BUF_MAX_SIZE + SPDK_BDEV_POOL_ALIGNMENT) {
518 		pool = g_bdev_mgr.buf_small_pool;
519 		stailq = &ch->need_buf_small;
520 	} else {
521 		pool = g_bdev_mgr.buf_large_pool;
522 		stailq = &ch->need_buf_large;
523 	}
524 
525 	if (STAILQ_EMPTY(stailq)) {
526 		spdk_mempool_put(pool, buf);
527 	} else {
528 		tmp = STAILQ_FIRST(stailq);
529 
530 		alignment = spdk_bdev_get_buf_align(tmp->bdev);
531 		buf_allocated = _is_buf_allocated(tmp->u.bdev.iovs);
532 
533 		aligned_buf = (void *)(((uintptr_t)buf +
534 					(alignment - 1)) & ~(alignment - 1));
535 		if (buf_allocated) {
536 			_bdev_io_set_bounce_buf(tmp, aligned_buf, tmp->internal.buf_len);
537 		} else {
538 			spdk_bdev_io_set_buf(tmp, aligned_buf, tmp->internal.buf_len);
539 		}
540 
541 		STAILQ_REMOVE_HEAD(stailq, internal.buf_link);
542 		tmp->internal.buf = buf;
543 		tmp->internal.get_buf_cb(tmp->internal.ch->channel, tmp);
544 	}
545 }
546 
547 static void
548 _bdev_io_unset_bounce_buf(struct spdk_bdev_io *bdev_io)
549 {
550 	/* if this is read path, copy data from bounce buffer to original buffer */
551 	if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ &&
552 	    bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) {
553 		_copy_buf_to_iovs(bdev_io->internal.orig_iovs, bdev_io->internal.orig_iovcnt,
554 				  bdev_io->internal.bounce_iov.iov_base, bdev_io->internal.bounce_iov.iov_len);
555 	}
556 	/* set orignal buffer for this io */
557 	bdev_io->u.bdev.iovcnt = bdev_io->internal.orig_iovcnt;
558 	bdev_io->u.bdev.iovs = bdev_io->internal.orig_iovs;
559 	/* disable bouncing buffer for this io */
560 	bdev_io->internal.orig_iovcnt = 0;
561 	bdev_io->internal.orig_iovs = NULL;
562 	/* return bounce buffer to the pool */
563 	spdk_bdev_io_put_buf(bdev_io);
564 }
565 
566 void
567 spdk_bdev_io_get_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_buf_cb cb, uint64_t len)
568 {
569 	struct spdk_mempool *pool;
570 	bdev_io_stailq_t *stailq;
571 	void *buf, *aligned_buf;
572 	struct spdk_bdev_mgmt_channel *mgmt_ch;
573 	uint64_t alignment;
574 	bool buf_allocated;
575 
576 	assert(cb != NULL);
577 	assert(bdev_io->u.bdev.iovs != NULL);
578 
579 	alignment = spdk_bdev_get_buf_align(bdev_io->bdev);
580 	buf_allocated = _is_buf_allocated(bdev_io->u.bdev.iovs);
581 
582 	if (buf_allocated &&
583 	    _are_iovs_aligned(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, alignment)) {
584 		/* Buffer already present and aligned */
585 		cb(bdev_io->internal.ch->channel, bdev_io);
586 		return;
587 	}
588 
589 	assert(len + alignment <= SPDK_BDEV_LARGE_BUF_MAX_SIZE + SPDK_BDEV_POOL_ALIGNMENT);
590 	mgmt_ch = bdev_io->internal.ch->shared_resource->mgmt_ch;
591 
592 	bdev_io->internal.buf_len = len;
593 	bdev_io->internal.get_buf_cb = cb;
594 
595 	if (len + alignment <= SPDK_BDEV_SMALL_BUF_MAX_SIZE + SPDK_BDEV_POOL_ALIGNMENT) {
596 		pool = g_bdev_mgr.buf_small_pool;
597 		stailq = &mgmt_ch->need_buf_small;
598 	} else {
599 		pool = g_bdev_mgr.buf_large_pool;
600 		stailq = &mgmt_ch->need_buf_large;
601 	}
602 
603 	buf = spdk_mempool_get(pool);
604 
605 	if (!buf) {
606 		STAILQ_INSERT_TAIL(stailq, bdev_io, internal.buf_link);
607 	} else {
608 		aligned_buf = (void *)(((uintptr_t)buf + (alignment - 1)) & ~(alignment - 1));
609 
610 		if (buf_allocated) {
611 			_bdev_io_set_bounce_buf(bdev_io, aligned_buf, len);
612 		} else {
613 			spdk_bdev_io_set_buf(bdev_io, aligned_buf, len);
614 		}
615 		bdev_io->internal.buf = buf;
616 		bdev_io->internal.get_buf_cb(bdev_io->internal.ch->channel, bdev_io);
617 	}
618 }
619 
620 static int
621 spdk_bdev_module_get_max_ctx_size(void)
622 {
623 	struct spdk_bdev_module *bdev_module;
624 	int max_bdev_module_size = 0;
625 
626 	TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, internal.tailq) {
627 		if (bdev_module->get_ctx_size && bdev_module->get_ctx_size() > max_bdev_module_size) {
628 			max_bdev_module_size = bdev_module->get_ctx_size();
629 		}
630 	}
631 
632 	return max_bdev_module_size;
633 }
634 
635 void
636 spdk_bdev_config_text(FILE *fp)
637 {
638 	struct spdk_bdev_module *bdev_module;
639 
640 	TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, internal.tailq) {
641 		if (bdev_module->config_text) {
642 			bdev_module->config_text(fp);
643 		}
644 	}
645 }
646 
647 static void
648 spdk_bdev_qos_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
649 {
650 	int i;
651 	struct spdk_bdev_qos *qos = bdev->internal.qos;
652 	uint64_t limits[SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES];
653 
654 	if (!qos) {
655 		return;
656 	}
657 
658 	spdk_bdev_get_qos_rate_limits(bdev, limits);
659 
660 	spdk_json_write_object_begin(w);
661 	spdk_json_write_named_string(w, "method", "set_bdev_qos_limit");
662 
663 	spdk_json_write_named_object_begin(w, "params");
664 	spdk_json_write_named_string(w, "name", bdev->name);
665 	for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
666 		if (limits[i] > 0) {
667 			spdk_json_write_named_uint64(w, qos_rpc_type[i], limits[i]);
668 		}
669 	}
670 	spdk_json_write_object_end(w);
671 
672 	spdk_json_write_object_end(w);
673 }
674 
675 void
676 spdk_bdev_subsystem_config_json(struct spdk_json_write_ctx *w)
677 {
678 	struct spdk_bdev_module *bdev_module;
679 	struct spdk_bdev *bdev;
680 
681 	assert(w != NULL);
682 
683 	spdk_json_write_array_begin(w);
684 
685 	spdk_json_write_object_begin(w);
686 	spdk_json_write_named_string(w, "method", "set_bdev_options");
687 	spdk_json_write_named_object_begin(w, "params");
688 	spdk_json_write_named_uint32(w, "bdev_io_pool_size", g_bdev_opts.bdev_io_pool_size);
689 	spdk_json_write_named_uint32(w, "bdev_io_cache_size", g_bdev_opts.bdev_io_cache_size);
690 	spdk_json_write_object_end(w);
691 	spdk_json_write_object_end(w);
692 
693 	TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, internal.tailq) {
694 		if (bdev_module->config_json) {
695 			bdev_module->config_json(w);
696 		}
697 	}
698 
699 	TAILQ_FOREACH(bdev, &g_bdev_mgr.bdevs, internal.link) {
700 		spdk_bdev_qos_config_json(bdev, w);
701 
702 		if (bdev->fn_table->write_config_json) {
703 			bdev->fn_table->write_config_json(bdev, w);
704 		}
705 	}
706 
707 	spdk_json_write_array_end(w);
708 }
709 
710 static int
711 spdk_bdev_mgmt_channel_create(void *io_device, void *ctx_buf)
712 {
713 	struct spdk_bdev_mgmt_channel *ch = ctx_buf;
714 	struct spdk_bdev_io *bdev_io;
715 	uint32_t i;
716 
717 	STAILQ_INIT(&ch->need_buf_small);
718 	STAILQ_INIT(&ch->need_buf_large);
719 
720 	STAILQ_INIT(&ch->per_thread_cache);
721 	ch->bdev_io_cache_size = g_bdev_opts.bdev_io_cache_size;
722 
723 	/* Pre-populate bdev_io cache to ensure this thread cannot be starved. */
724 	ch->per_thread_cache_count = 0;
725 	for (i = 0; i < ch->bdev_io_cache_size; i++) {
726 		bdev_io = spdk_mempool_get(g_bdev_mgr.bdev_io_pool);
727 		assert(bdev_io != NULL);
728 		ch->per_thread_cache_count++;
729 		STAILQ_INSERT_HEAD(&ch->per_thread_cache, bdev_io, internal.buf_link);
730 	}
731 
732 	TAILQ_INIT(&ch->shared_resources);
733 	TAILQ_INIT(&ch->io_wait_queue);
734 
735 	return 0;
736 }
737 
738 static void
739 spdk_bdev_mgmt_channel_destroy(void *io_device, void *ctx_buf)
740 {
741 	struct spdk_bdev_mgmt_channel *ch = ctx_buf;
742 	struct spdk_bdev_io *bdev_io;
743 
744 	if (!STAILQ_EMPTY(&ch->need_buf_small) || !STAILQ_EMPTY(&ch->need_buf_large)) {
745 		SPDK_ERRLOG("Pending I/O list wasn't empty on mgmt channel free\n");
746 	}
747 
748 	if (!TAILQ_EMPTY(&ch->shared_resources)) {
749 		SPDK_ERRLOG("Module channel list wasn't empty on mgmt channel free\n");
750 	}
751 
752 	while (!STAILQ_EMPTY(&ch->per_thread_cache)) {
753 		bdev_io = STAILQ_FIRST(&ch->per_thread_cache);
754 		STAILQ_REMOVE_HEAD(&ch->per_thread_cache, internal.buf_link);
755 		ch->per_thread_cache_count--;
756 		spdk_mempool_put(g_bdev_mgr.bdev_io_pool, (void *)bdev_io);
757 	}
758 
759 	assert(ch->per_thread_cache_count == 0);
760 }
761 
762 static void
763 spdk_bdev_init_complete(int rc)
764 {
765 	spdk_bdev_init_cb cb_fn = g_init_cb_fn;
766 	void *cb_arg = g_init_cb_arg;
767 	struct spdk_bdev_module *m;
768 
769 	g_bdev_mgr.init_complete = true;
770 	g_init_cb_fn = NULL;
771 	g_init_cb_arg = NULL;
772 
773 	/*
774 	 * For modules that need to know when subsystem init is complete,
775 	 * inform them now.
776 	 */
777 	if (rc == 0) {
778 		TAILQ_FOREACH(m, &g_bdev_mgr.bdev_modules, internal.tailq) {
779 			if (m->init_complete) {
780 				m->init_complete();
781 			}
782 		}
783 	}
784 
785 	cb_fn(cb_arg, rc);
786 }
787 
788 static void
789 spdk_bdev_module_action_complete(void)
790 {
791 	struct spdk_bdev_module *m;
792 
793 	/*
794 	 * Don't finish bdev subsystem initialization if
795 	 * module pre-initialization is still in progress, or
796 	 * the subsystem been already initialized.
797 	 */
798 	if (!g_bdev_mgr.module_init_complete || g_bdev_mgr.init_complete) {
799 		return;
800 	}
801 
802 	/*
803 	 * Check all bdev modules for inits/examinations in progress. If any
804 	 * exist, return immediately since we cannot finish bdev subsystem
805 	 * initialization until all are completed.
806 	 */
807 	TAILQ_FOREACH(m, &g_bdev_mgr.bdev_modules, internal.tailq) {
808 		if (m->internal.action_in_progress > 0) {
809 			return;
810 		}
811 	}
812 
813 	/*
814 	 * Modules already finished initialization - now that all
815 	 * the bdev modules have finished their asynchronous I/O
816 	 * processing, the entire bdev layer can be marked as complete.
817 	 */
818 	spdk_bdev_init_complete(0);
819 }
820 
821 static void
822 spdk_bdev_module_action_done(struct spdk_bdev_module *module)
823 {
824 	assert(module->internal.action_in_progress > 0);
825 	module->internal.action_in_progress--;
826 	spdk_bdev_module_action_complete();
827 }
828 
829 void
830 spdk_bdev_module_init_done(struct spdk_bdev_module *module)
831 {
832 	spdk_bdev_module_action_done(module);
833 }
834 
835 void
836 spdk_bdev_module_examine_done(struct spdk_bdev_module *module)
837 {
838 	spdk_bdev_module_action_done(module);
839 }
840 
841 /** The last initialized bdev module */
842 static struct spdk_bdev_module *g_resume_bdev_module = NULL;
843 
844 static int
845 spdk_bdev_modules_init(void)
846 {
847 	struct spdk_bdev_module *module;
848 	int rc = 0;
849 
850 	TAILQ_FOREACH(module, &g_bdev_mgr.bdev_modules, internal.tailq) {
851 		g_resume_bdev_module = module;
852 		rc = module->module_init();
853 		if (rc != 0) {
854 			return rc;
855 		}
856 	}
857 
858 	g_resume_bdev_module = NULL;
859 	return 0;
860 }
861 
862 
863 static void
864 spdk_bdev_init_failed_complete(void *cb_arg)
865 {
866 	spdk_bdev_init_complete(-1);
867 }
868 
869 static void
870 spdk_bdev_init_failed(void *cb_arg)
871 {
872 	spdk_bdev_finish(spdk_bdev_init_failed_complete, NULL);
873 }
874 
875 void
876 spdk_bdev_initialize(spdk_bdev_init_cb cb_fn, void *cb_arg)
877 {
878 	struct spdk_conf_section *sp;
879 	struct spdk_bdev_opts bdev_opts;
880 	int32_t bdev_io_pool_size, bdev_io_cache_size;
881 	int cache_size;
882 	int rc = 0;
883 	char mempool_name[32];
884 
885 	assert(cb_fn != NULL);
886 
887 	sp = spdk_conf_find_section(NULL, "Bdev");
888 	if (sp != NULL) {
889 		spdk_bdev_get_opts(&bdev_opts);
890 
891 		bdev_io_pool_size = spdk_conf_section_get_intval(sp, "BdevIoPoolSize");
892 		if (bdev_io_pool_size >= 0) {
893 			bdev_opts.bdev_io_pool_size = bdev_io_pool_size;
894 		}
895 
896 		bdev_io_cache_size = spdk_conf_section_get_intval(sp, "BdevIoCacheSize");
897 		if (bdev_io_cache_size >= 0) {
898 			bdev_opts.bdev_io_cache_size = bdev_io_cache_size;
899 		}
900 
901 		if (spdk_bdev_set_opts(&bdev_opts)) {
902 			spdk_bdev_init_complete(-1);
903 			return;
904 		}
905 
906 		assert(memcmp(&bdev_opts, &g_bdev_opts, sizeof(bdev_opts)) == 0);
907 	}
908 
909 	g_init_cb_fn = cb_fn;
910 	g_init_cb_arg = cb_arg;
911 
912 	snprintf(mempool_name, sizeof(mempool_name), "bdev_io_%d", getpid());
913 
914 	g_bdev_mgr.bdev_io_pool = spdk_mempool_create(mempool_name,
915 				  g_bdev_opts.bdev_io_pool_size,
916 				  sizeof(struct spdk_bdev_io) +
917 				  spdk_bdev_module_get_max_ctx_size(),
918 				  0,
919 				  SPDK_ENV_SOCKET_ID_ANY);
920 
921 	if (g_bdev_mgr.bdev_io_pool == NULL) {
922 		SPDK_ERRLOG("could not allocate spdk_bdev_io pool\n");
923 		spdk_bdev_init_complete(-1);
924 		return;
925 	}
926 
927 	/**
928 	 * Ensure no more than half of the total buffers end up local caches, by
929 	 *   using spdk_thread_get_count() to determine how many local caches we need
930 	 *   to account for.
931 	 */
932 	cache_size = BUF_SMALL_POOL_SIZE / (2 * spdk_thread_get_count());
933 	snprintf(mempool_name, sizeof(mempool_name), "buf_small_pool_%d", getpid());
934 
935 	g_bdev_mgr.buf_small_pool = spdk_mempool_create(mempool_name,
936 				    BUF_SMALL_POOL_SIZE,
937 				    SPDK_BDEV_SMALL_BUF_MAX_SIZE + SPDK_BDEV_POOL_ALIGNMENT,
938 				    cache_size,
939 				    SPDK_ENV_SOCKET_ID_ANY);
940 	if (!g_bdev_mgr.buf_small_pool) {
941 		SPDK_ERRLOG("create rbuf small pool failed\n");
942 		spdk_bdev_init_complete(-1);
943 		return;
944 	}
945 
946 	cache_size = BUF_LARGE_POOL_SIZE / (2 * spdk_thread_get_count());
947 	snprintf(mempool_name, sizeof(mempool_name), "buf_large_pool_%d", getpid());
948 
949 	g_bdev_mgr.buf_large_pool = spdk_mempool_create(mempool_name,
950 				    BUF_LARGE_POOL_SIZE,
951 				    SPDK_BDEV_LARGE_BUF_MAX_SIZE + SPDK_BDEV_POOL_ALIGNMENT,
952 				    cache_size,
953 				    SPDK_ENV_SOCKET_ID_ANY);
954 	if (!g_bdev_mgr.buf_large_pool) {
955 		SPDK_ERRLOG("create rbuf large pool failed\n");
956 		spdk_bdev_init_complete(-1);
957 		return;
958 	}
959 
960 	g_bdev_mgr.zero_buffer = spdk_dma_zmalloc(ZERO_BUFFER_SIZE, ZERO_BUFFER_SIZE,
961 				 NULL);
962 	if (!g_bdev_mgr.zero_buffer) {
963 		SPDK_ERRLOG("create bdev zero buffer failed\n");
964 		spdk_bdev_init_complete(-1);
965 		return;
966 	}
967 
968 #ifdef SPDK_CONFIG_VTUNE
969 	g_bdev_mgr.domain = __itt_domain_create("spdk_bdev");
970 #endif
971 
972 	spdk_io_device_register(&g_bdev_mgr, spdk_bdev_mgmt_channel_create,
973 				spdk_bdev_mgmt_channel_destroy,
974 				sizeof(struct spdk_bdev_mgmt_channel),
975 				"bdev_mgr");
976 
977 	rc = spdk_bdev_modules_init();
978 	g_bdev_mgr.module_init_complete = true;
979 	if (rc != 0) {
980 		SPDK_ERRLOG("bdev modules init failed\n");
981 		spdk_thread_send_msg(spdk_get_thread(), spdk_bdev_init_failed, NULL);
982 		return;
983 	}
984 
985 	spdk_bdev_module_action_complete();
986 }
987 
988 static void
989 spdk_bdev_mgr_unregister_cb(void *io_device)
990 {
991 	spdk_bdev_fini_cb cb_fn = g_fini_cb_fn;
992 
993 	if (spdk_mempool_count(g_bdev_mgr.bdev_io_pool) != g_bdev_opts.bdev_io_pool_size) {
994 		SPDK_ERRLOG("bdev IO pool count is %zu but should be %u\n",
995 			    spdk_mempool_count(g_bdev_mgr.bdev_io_pool),
996 			    g_bdev_opts.bdev_io_pool_size);
997 	}
998 
999 	if (spdk_mempool_count(g_bdev_mgr.buf_small_pool) != BUF_SMALL_POOL_SIZE) {
1000 		SPDK_ERRLOG("Small buffer pool count is %zu but should be %u\n",
1001 			    spdk_mempool_count(g_bdev_mgr.buf_small_pool),
1002 			    BUF_SMALL_POOL_SIZE);
1003 		assert(false);
1004 	}
1005 
1006 	if (spdk_mempool_count(g_bdev_mgr.buf_large_pool) != BUF_LARGE_POOL_SIZE) {
1007 		SPDK_ERRLOG("Large buffer pool count is %zu but should be %u\n",
1008 			    spdk_mempool_count(g_bdev_mgr.buf_large_pool),
1009 			    BUF_LARGE_POOL_SIZE);
1010 		assert(false);
1011 	}
1012 
1013 	spdk_mempool_free(g_bdev_mgr.bdev_io_pool);
1014 	spdk_mempool_free(g_bdev_mgr.buf_small_pool);
1015 	spdk_mempool_free(g_bdev_mgr.buf_large_pool);
1016 	spdk_dma_free(g_bdev_mgr.zero_buffer);
1017 
1018 	cb_fn(g_fini_cb_arg);
1019 	g_fini_cb_fn = NULL;
1020 	g_fini_cb_arg = NULL;
1021 	g_bdev_mgr.init_complete = false;
1022 	g_bdev_mgr.module_init_complete = false;
1023 }
1024 
1025 static void
1026 spdk_bdev_module_finish_iter(void *arg)
1027 {
1028 	struct spdk_bdev_module *bdev_module;
1029 
1030 	/* Start iterating from the last touched module */
1031 	if (!g_resume_bdev_module) {
1032 		bdev_module = TAILQ_LAST(&g_bdev_mgr.bdev_modules, bdev_module_list);
1033 	} else {
1034 		bdev_module = TAILQ_PREV(g_resume_bdev_module, bdev_module_list,
1035 					 internal.tailq);
1036 	}
1037 
1038 	while (bdev_module) {
1039 		if (bdev_module->async_fini) {
1040 			/* Save our place so we can resume later. We must
1041 			 * save the variable here, before calling module_fini()
1042 			 * below, because in some cases the module may immediately
1043 			 * call spdk_bdev_module_finish_done() and re-enter
1044 			 * this function to continue iterating. */
1045 			g_resume_bdev_module = bdev_module;
1046 		}
1047 
1048 		if (bdev_module->module_fini) {
1049 			bdev_module->module_fini();
1050 		}
1051 
1052 		if (bdev_module->async_fini) {
1053 			return;
1054 		}
1055 
1056 		bdev_module = TAILQ_PREV(bdev_module, bdev_module_list,
1057 					 internal.tailq);
1058 	}
1059 
1060 	g_resume_bdev_module = NULL;
1061 	spdk_io_device_unregister(&g_bdev_mgr, spdk_bdev_mgr_unregister_cb);
1062 }
1063 
1064 void
1065 spdk_bdev_module_finish_done(void)
1066 {
1067 	if (spdk_get_thread() != g_fini_thread) {
1068 		spdk_thread_send_msg(g_fini_thread, spdk_bdev_module_finish_iter, NULL);
1069 	} else {
1070 		spdk_bdev_module_finish_iter(NULL);
1071 	}
1072 }
1073 
1074 static void
1075 _spdk_bdev_finish_unregister_bdevs_iter(void *cb_arg, int bdeverrno)
1076 {
1077 	struct spdk_bdev *bdev = cb_arg;
1078 
1079 	if (bdeverrno && bdev) {
1080 		SPDK_WARNLOG("Unable to unregister bdev '%s' during spdk_bdev_finish()\n",
1081 			     bdev->name);
1082 
1083 		/*
1084 		 * Since the call to spdk_bdev_unregister() failed, we have no way to free this
1085 		 *  bdev; try to continue by manually removing this bdev from the list and continue
1086 		 *  with the next bdev in the list.
1087 		 */
1088 		TAILQ_REMOVE(&g_bdev_mgr.bdevs, bdev, internal.link);
1089 	}
1090 
1091 	if (TAILQ_EMPTY(&g_bdev_mgr.bdevs)) {
1092 		SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Done unregistering bdevs\n");
1093 		/*
1094 		 * Bdev module finish need to be deferred as we might be in the middle of some context
1095 		 * (like bdev part free) that will use this bdev (or private bdev driver ctx data)
1096 		 * after returning.
1097 		 */
1098 		spdk_thread_send_msg(spdk_get_thread(), spdk_bdev_module_finish_iter, NULL);
1099 		return;
1100 	}
1101 
1102 	/*
1103 	 * Unregister last unclaimed bdev in the list, to ensure that bdev subsystem
1104 	 * shutdown proceeds top-down. The goal is to give virtual bdevs an opportunity
1105 	 * to detect clean shutdown as opposed to run-time hot removal of the underlying
1106 	 * base bdevs.
1107 	 *
1108 	 * Also, walk the list in the reverse order.
1109 	 */
1110 	for (bdev = TAILQ_LAST(&g_bdev_mgr.bdevs, spdk_bdev_list);
1111 	     bdev; bdev = TAILQ_PREV(bdev, spdk_bdev_list, internal.link)) {
1112 		if (bdev->internal.claim_module != NULL) {
1113 			SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Skipping claimed bdev '%s'(<-'%s').\n",
1114 				      bdev->name, bdev->internal.claim_module->name);
1115 			continue;
1116 		}
1117 
1118 		SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Unregistering bdev '%s'\n", bdev->name);
1119 		spdk_bdev_unregister(bdev, _spdk_bdev_finish_unregister_bdevs_iter, bdev);
1120 		return;
1121 	}
1122 
1123 	/*
1124 	 * If any bdev fails to unclaim underlying bdev properly, we may face the
1125 	 * case of bdev list consisting of claimed bdevs only (if claims are managed
1126 	 * correctly, this would mean there's a loop in the claims graph which is
1127 	 * clearly impossible). Warn and unregister last bdev on the list then.
1128 	 */
1129 	for (bdev = TAILQ_LAST(&g_bdev_mgr.bdevs, spdk_bdev_list);
1130 	     bdev; bdev = TAILQ_PREV(bdev, spdk_bdev_list, internal.link)) {
1131 		SPDK_ERRLOG("Unregistering claimed bdev '%s'!\n", bdev->name);
1132 		spdk_bdev_unregister(bdev, _spdk_bdev_finish_unregister_bdevs_iter, bdev);
1133 		return;
1134 	}
1135 }
1136 
1137 void
1138 spdk_bdev_finish(spdk_bdev_fini_cb cb_fn, void *cb_arg)
1139 {
1140 	struct spdk_bdev_module *m;
1141 
1142 	assert(cb_fn != NULL);
1143 
1144 	g_fini_thread = spdk_get_thread();
1145 
1146 	g_fini_cb_fn = cb_fn;
1147 	g_fini_cb_arg = cb_arg;
1148 
1149 	TAILQ_FOREACH(m, &g_bdev_mgr.bdev_modules, internal.tailq) {
1150 		if (m->fini_start) {
1151 			m->fini_start();
1152 		}
1153 	}
1154 
1155 	_spdk_bdev_finish_unregister_bdevs_iter(NULL, 0);
1156 }
1157 
1158 static struct spdk_bdev_io *
1159 spdk_bdev_get_io(struct spdk_bdev_channel *channel)
1160 {
1161 	struct spdk_bdev_mgmt_channel *ch = channel->shared_resource->mgmt_ch;
1162 	struct spdk_bdev_io *bdev_io;
1163 
1164 	if (ch->per_thread_cache_count > 0) {
1165 		bdev_io = STAILQ_FIRST(&ch->per_thread_cache);
1166 		STAILQ_REMOVE_HEAD(&ch->per_thread_cache, internal.buf_link);
1167 		ch->per_thread_cache_count--;
1168 	} else if (spdk_unlikely(!TAILQ_EMPTY(&ch->io_wait_queue))) {
1169 		/*
1170 		 * Don't try to look for bdev_ios in the global pool if there are
1171 		 * waiters on bdev_ios - we don't want this caller to jump the line.
1172 		 */
1173 		bdev_io = NULL;
1174 	} else {
1175 		bdev_io = spdk_mempool_get(g_bdev_mgr.bdev_io_pool);
1176 	}
1177 
1178 	return bdev_io;
1179 }
1180 
1181 void
1182 spdk_bdev_free_io(struct spdk_bdev_io *bdev_io)
1183 {
1184 	struct spdk_bdev_mgmt_channel *ch = bdev_io->internal.ch->shared_resource->mgmt_ch;
1185 
1186 	assert(bdev_io != NULL);
1187 	assert(bdev_io->internal.status != SPDK_BDEV_IO_STATUS_PENDING);
1188 
1189 	if (bdev_io->internal.buf != NULL) {
1190 		spdk_bdev_io_put_buf(bdev_io);
1191 	}
1192 
1193 	if (ch->per_thread_cache_count < ch->bdev_io_cache_size) {
1194 		ch->per_thread_cache_count++;
1195 		STAILQ_INSERT_HEAD(&ch->per_thread_cache, bdev_io, internal.buf_link);
1196 		while (ch->per_thread_cache_count > 0 && !TAILQ_EMPTY(&ch->io_wait_queue)) {
1197 			struct spdk_bdev_io_wait_entry *entry;
1198 
1199 			entry = TAILQ_FIRST(&ch->io_wait_queue);
1200 			TAILQ_REMOVE(&ch->io_wait_queue, entry, link);
1201 			entry->cb_fn(entry->cb_arg);
1202 		}
1203 	} else {
1204 		/* We should never have a full cache with entries on the io wait queue. */
1205 		assert(TAILQ_EMPTY(&ch->io_wait_queue));
1206 		spdk_mempool_put(g_bdev_mgr.bdev_io_pool, (void *)bdev_io);
1207 	}
1208 }
1209 
1210 static bool
1211 _spdk_bdev_qos_is_iops_rate_limit(enum spdk_bdev_qos_rate_limit_type limit)
1212 {
1213 	assert(limit != SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES);
1214 
1215 	switch (limit) {
1216 	case SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT:
1217 		return true;
1218 	case SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT:
1219 	case SPDK_BDEV_QOS_R_BPS_RATE_LIMIT:
1220 	case SPDK_BDEV_QOS_W_BPS_RATE_LIMIT:
1221 		return false;
1222 	case SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES:
1223 	default:
1224 		return false;
1225 	}
1226 }
1227 
1228 static bool
1229 _spdk_bdev_qos_io_to_limit(struct spdk_bdev_io *bdev_io)
1230 {
1231 	switch (bdev_io->type) {
1232 	case SPDK_BDEV_IO_TYPE_NVME_IO:
1233 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
1234 	case SPDK_BDEV_IO_TYPE_READ:
1235 	case SPDK_BDEV_IO_TYPE_WRITE:
1236 		return true;
1237 	default:
1238 		return false;
1239 	}
1240 }
1241 
1242 static bool
1243 _spdk_bdev_is_read_io(struct spdk_bdev_io *bdev_io)
1244 {
1245 	switch (bdev_io->type) {
1246 	case SPDK_BDEV_IO_TYPE_NVME_IO:
1247 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
1248 		/* Bit 1 (0x2) set for read operation */
1249 		if (bdev_io->u.nvme_passthru.cmd.opc & SPDK_NVME_OPC_READ) {
1250 			return true;
1251 		} else {
1252 			return false;
1253 		}
1254 	case SPDK_BDEV_IO_TYPE_READ:
1255 		return true;
1256 	default:
1257 		return false;
1258 	}
1259 }
1260 
1261 static uint64_t
1262 _spdk_bdev_get_io_size_in_byte(struct spdk_bdev_io *bdev_io)
1263 {
1264 	struct spdk_bdev	*bdev = bdev_io->bdev;
1265 
1266 	switch (bdev_io->type) {
1267 	case SPDK_BDEV_IO_TYPE_NVME_IO:
1268 	case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
1269 		return bdev_io->u.nvme_passthru.nbytes;
1270 	case SPDK_BDEV_IO_TYPE_READ:
1271 	case SPDK_BDEV_IO_TYPE_WRITE:
1272 		return bdev_io->u.bdev.num_blocks * bdev->blocklen;
1273 	default:
1274 		return 0;
1275 	}
1276 }
1277 
1278 static bool
1279 _spdk_bdev_qos_rw_queue_io(const struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io)
1280 {
1281 	if (limit->max_per_timeslice > 0 && limit->remaining_this_timeslice <= 0) {
1282 		return true;
1283 	} else {
1284 		return false;
1285 	}
1286 }
1287 
1288 static bool
1289 _spdk_bdev_qos_r_queue_io(const struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io)
1290 {
1291 	if (_spdk_bdev_is_read_io(io) == false) {
1292 		return false;
1293 	}
1294 
1295 	return _spdk_bdev_qos_rw_queue_io(limit, io);
1296 }
1297 
1298 static bool
1299 _spdk_bdev_qos_w_queue_io(const struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io)
1300 {
1301 	if (_spdk_bdev_is_read_io(io) == true) {
1302 		return false;
1303 	}
1304 
1305 	return _spdk_bdev_qos_rw_queue_io(limit, io);
1306 }
1307 
1308 static void
1309 _spdk_bdev_qos_rw_iops_update_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io)
1310 {
1311 	limit->remaining_this_timeslice--;
1312 }
1313 
1314 static void
1315 _spdk_bdev_qos_rw_bps_update_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io)
1316 {
1317 	limit->remaining_this_timeslice -= _spdk_bdev_get_io_size_in_byte(io);
1318 }
1319 
1320 static void
1321 _spdk_bdev_qos_r_bps_update_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io)
1322 {
1323 	if (_spdk_bdev_is_read_io(io) == false) {
1324 		return;
1325 	}
1326 
1327 	return _spdk_bdev_qos_rw_bps_update_quota(limit, io);
1328 }
1329 
1330 static void
1331 _spdk_bdev_qos_w_bps_update_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io)
1332 {
1333 	if (_spdk_bdev_is_read_io(io) == true) {
1334 		return;
1335 	}
1336 
1337 	return _spdk_bdev_qos_rw_bps_update_quota(limit, io);
1338 }
1339 
1340 static void
1341 _spdk_bdev_qos_set_ops(struct spdk_bdev_qos *qos)
1342 {
1343 	int i;
1344 
1345 	for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
1346 		if (qos->rate_limits[i].limit == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) {
1347 			qos->rate_limits[i].queue_io = NULL;
1348 			qos->rate_limits[i].update_quota = NULL;
1349 			continue;
1350 		}
1351 
1352 		switch (i) {
1353 		case SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT:
1354 			qos->rate_limits[i].queue_io = _spdk_bdev_qos_rw_queue_io;
1355 			qos->rate_limits[i].update_quota = _spdk_bdev_qos_rw_iops_update_quota;
1356 			break;
1357 		case SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT:
1358 			qos->rate_limits[i].queue_io = _spdk_bdev_qos_rw_queue_io;
1359 			qos->rate_limits[i].update_quota = _spdk_bdev_qos_rw_bps_update_quota;
1360 			break;
1361 		case SPDK_BDEV_QOS_R_BPS_RATE_LIMIT:
1362 			qos->rate_limits[i].queue_io = _spdk_bdev_qos_r_queue_io;
1363 			qos->rate_limits[i].update_quota = _spdk_bdev_qos_r_bps_update_quota;
1364 			break;
1365 		case SPDK_BDEV_QOS_W_BPS_RATE_LIMIT:
1366 			qos->rate_limits[i].queue_io = _spdk_bdev_qos_w_queue_io;
1367 			qos->rate_limits[i].update_quota = _spdk_bdev_qos_w_bps_update_quota;
1368 			break;
1369 		default:
1370 			break;
1371 		}
1372 	}
1373 }
1374 
1375 static int
1376 _spdk_bdev_qos_io_submit(struct spdk_bdev_channel *ch, struct spdk_bdev_qos *qos)
1377 {
1378 	struct spdk_bdev_io		*bdev_io = NULL, *tmp = NULL;
1379 	struct spdk_bdev		*bdev = ch->bdev;
1380 	struct spdk_bdev_shared_resource *shared_resource = ch->shared_resource;
1381 	int				i, submitted_ios = 0;
1382 
1383 	TAILQ_FOREACH_SAFE(bdev_io, &qos->queued, internal.link, tmp) {
1384 		if (_spdk_bdev_qos_io_to_limit(bdev_io) == true) {
1385 			for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
1386 				if (!qos->rate_limits[i].queue_io) {
1387 					continue;
1388 				}
1389 
1390 				if (qos->rate_limits[i].queue_io(&qos->rate_limits[i],
1391 								 bdev_io) == true) {
1392 					return submitted_ios;
1393 				}
1394 			}
1395 			for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
1396 				if (!qos->rate_limits[i].update_quota) {
1397 					continue;
1398 				}
1399 
1400 				qos->rate_limits[i].update_quota(&qos->rate_limits[i], bdev_io);
1401 			}
1402 		}
1403 
1404 		TAILQ_REMOVE(&qos->queued, bdev_io, internal.link);
1405 		ch->io_outstanding++;
1406 		shared_resource->io_outstanding++;
1407 		bdev_io->internal.in_submit_request = true;
1408 		bdev->fn_table->submit_request(ch->channel, bdev_io);
1409 		bdev_io->internal.in_submit_request = false;
1410 		submitted_ios++;
1411 	}
1412 
1413 	return submitted_ios;
1414 }
1415 
1416 static void
1417 _spdk_bdev_queue_io_wait_with_cb(struct spdk_bdev_io *bdev_io, spdk_bdev_io_wait_cb cb_fn)
1418 {
1419 	int rc;
1420 
1421 	bdev_io->internal.waitq_entry.bdev = bdev_io->bdev;
1422 	bdev_io->internal.waitq_entry.cb_fn = cb_fn;
1423 	bdev_io->internal.waitq_entry.cb_arg = bdev_io;
1424 	rc = spdk_bdev_queue_io_wait(bdev_io->bdev, spdk_io_channel_from_ctx(bdev_io->internal.ch),
1425 				     &bdev_io->internal.waitq_entry);
1426 	if (rc != 0) {
1427 		SPDK_ERRLOG("Queue IO failed, rc=%d\n", rc);
1428 		bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
1429 		bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx);
1430 	}
1431 }
1432 
1433 static bool
1434 _spdk_bdev_io_type_can_split(uint8_t type)
1435 {
1436 	assert(type != SPDK_BDEV_IO_TYPE_INVALID);
1437 	assert(type < SPDK_BDEV_NUM_IO_TYPES);
1438 
1439 	/* Only split READ and WRITE I/O.  Theoretically other types of I/O like
1440 	 * UNMAP could be split, but these types of I/O are typically much larger
1441 	 * in size (sometimes the size of the entire block device), and the bdev
1442 	 * module can more efficiently split these types of I/O.  Plus those types
1443 	 * of I/O do not have a payload, which makes the splitting process simpler.
1444 	 */
1445 	if (type == SPDK_BDEV_IO_TYPE_READ || type == SPDK_BDEV_IO_TYPE_WRITE) {
1446 		return true;
1447 	} else {
1448 		return false;
1449 	}
1450 }
1451 
1452 static bool
1453 _spdk_bdev_io_should_split(struct spdk_bdev_io *bdev_io)
1454 {
1455 	uint64_t start_stripe, end_stripe;
1456 	uint32_t io_boundary = bdev_io->bdev->optimal_io_boundary;
1457 
1458 	if (io_boundary == 0) {
1459 		return false;
1460 	}
1461 
1462 	if (!_spdk_bdev_io_type_can_split(bdev_io->type)) {
1463 		return false;
1464 	}
1465 
1466 	start_stripe = bdev_io->u.bdev.offset_blocks;
1467 	end_stripe = start_stripe + bdev_io->u.bdev.num_blocks - 1;
1468 	/* Avoid expensive div operations if possible.  These spdk_u32 functions are very cheap. */
1469 	if (spdk_likely(spdk_u32_is_pow2(io_boundary))) {
1470 		start_stripe >>= spdk_u32log2(io_boundary);
1471 		end_stripe >>= spdk_u32log2(io_boundary);
1472 	} else {
1473 		start_stripe /= io_boundary;
1474 		end_stripe /= io_boundary;
1475 	}
1476 	return (start_stripe != end_stripe);
1477 }
1478 
1479 static uint32_t
1480 _to_next_boundary(uint64_t offset, uint32_t boundary)
1481 {
1482 	return (boundary - (offset % boundary));
1483 }
1484 
1485 static void
1486 _spdk_bdev_io_split_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
1487 
1488 static void
1489 _spdk_bdev_io_split_with_payload(void *_bdev_io)
1490 {
1491 	struct spdk_bdev_io *bdev_io = _bdev_io;
1492 	uint64_t current_offset, remaining;
1493 	uint32_t blocklen, to_next_boundary, to_next_boundary_bytes;
1494 	struct iovec *parent_iov, *iov;
1495 	uint64_t parent_iov_offset, iov_len;
1496 	uint32_t parent_iovpos, parent_iovcnt, child_iovcnt, iovcnt;
1497 	int rc;
1498 
1499 	remaining = bdev_io->u.bdev.split_remaining_num_blocks;
1500 	current_offset = bdev_io->u.bdev.split_current_offset_blocks;
1501 	blocklen = bdev_io->bdev->blocklen;
1502 	parent_iov_offset = (current_offset - bdev_io->u.bdev.offset_blocks) * blocklen;
1503 	parent_iovcnt = bdev_io->u.bdev.iovcnt;
1504 
1505 	for (parent_iovpos = 0; parent_iovpos < parent_iovcnt; parent_iovpos++) {
1506 		parent_iov = &bdev_io->u.bdev.iovs[parent_iovpos];
1507 		if (parent_iov_offset < parent_iov->iov_len) {
1508 			break;
1509 		}
1510 		parent_iov_offset -= parent_iov->iov_len;
1511 	}
1512 
1513 	child_iovcnt = 0;
1514 	while (remaining > 0 && parent_iovpos < parent_iovcnt && child_iovcnt < BDEV_IO_NUM_CHILD_IOV) {
1515 		to_next_boundary = _to_next_boundary(current_offset, bdev_io->bdev->optimal_io_boundary);
1516 		to_next_boundary = spdk_min(remaining, to_next_boundary);
1517 		to_next_boundary_bytes = to_next_boundary * blocklen;
1518 		iov = &bdev_io->child_iov[child_iovcnt];
1519 		iovcnt = 0;
1520 		while (to_next_boundary_bytes > 0 && parent_iovpos < parent_iovcnt &&
1521 		       child_iovcnt < BDEV_IO_NUM_CHILD_IOV) {
1522 			parent_iov = &bdev_io->u.bdev.iovs[parent_iovpos];
1523 			iov_len = spdk_min(to_next_boundary_bytes, parent_iov->iov_len - parent_iov_offset);
1524 			to_next_boundary_bytes -= iov_len;
1525 
1526 			bdev_io->child_iov[child_iovcnt].iov_base = parent_iov->iov_base + parent_iov_offset;
1527 			bdev_io->child_iov[child_iovcnt].iov_len = iov_len;
1528 
1529 			if (iov_len < parent_iov->iov_len - parent_iov_offset) {
1530 				parent_iov_offset += iov_len;
1531 			} else {
1532 				parent_iovpos++;
1533 				parent_iov_offset = 0;
1534 			}
1535 			child_iovcnt++;
1536 			iovcnt++;
1537 		}
1538 
1539 		if (to_next_boundary_bytes > 0) {
1540 			/* We had to stop this child I/O early because we ran out of
1541 			 *  child_iov space.  Make sure the iovs collected are valid and
1542 			 *  then adjust to_next_boundary before starting the child I/O.
1543 			 */
1544 			if ((to_next_boundary_bytes % blocklen) != 0) {
1545 				SPDK_ERRLOG("Remaining %" PRIu32 " is not multiple of block size %" PRIu32 "\n",
1546 					    to_next_boundary_bytes, blocklen);
1547 				bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
1548 				if (bdev_io->u.bdev.split_outstanding == 0) {
1549 					bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx);
1550 				}
1551 				return;
1552 			}
1553 			to_next_boundary -= to_next_boundary_bytes / blocklen;
1554 		}
1555 
1556 		bdev_io->u.bdev.split_outstanding++;
1557 
1558 		if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
1559 			rc = spdk_bdev_readv_blocks(bdev_io->internal.desc,
1560 						    spdk_io_channel_from_ctx(bdev_io->internal.ch),
1561 						    iov, iovcnt, current_offset, to_next_boundary,
1562 						    _spdk_bdev_io_split_done, bdev_io);
1563 		} else {
1564 			rc = spdk_bdev_writev_blocks(bdev_io->internal.desc,
1565 						     spdk_io_channel_from_ctx(bdev_io->internal.ch),
1566 						     iov, iovcnt, current_offset, to_next_boundary,
1567 						     _spdk_bdev_io_split_done, bdev_io);
1568 		}
1569 
1570 		if (rc == 0) {
1571 			current_offset += to_next_boundary;
1572 			remaining -= to_next_boundary;
1573 			bdev_io->u.bdev.split_current_offset_blocks = current_offset;
1574 			bdev_io->u.bdev.split_remaining_num_blocks = remaining;
1575 		} else {
1576 			bdev_io->u.bdev.split_outstanding--;
1577 			if (rc == -ENOMEM) {
1578 				if (bdev_io->u.bdev.split_outstanding == 0) {
1579 					/* No I/O is outstanding. Hence we should wait here. */
1580 					_spdk_bdev_queue_io_wait_with_cb(bdev_io,
1581 									 _spdk_bdev_io_split_with_payload);
1582 				}
1583 			} else {
1584 				bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
1585 				if (bdev_io->u.bdev.split_outstanding == 0) {
1586 					bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx);
1587 				}
1588 			}
1589 
1590 			return;
1591 		}
1592 	}
1593 }
1594 
1595 static void
1596 _spdk_bdev_io_split_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
1597 {
1598 	struct spdk_bdev_io *parent_io = cb_arg;
1599 
1600 	spdk_bdev_free_io(bdev_io);
1601 
1602 	if (!success) {
1603 		parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
1604 	}
1605 	parent_io->u.bdev.split_outstanding--;
1606 	if (parent_io->u.bdev.split_outstanding != 0) {
1607 		return;
1608 	}
1609 
1610 	/*
1611 	 * Parent I/O finishes when all blocks are consumed or there is any failure of
1612 	 * child I/O and no outstanding child I/O.
1613 	 */
1614 	if (parent_io->u.bdev.split_remaining_num_blocks == 0 ||
1615 	    parent_io->internal.status != SPDK_BDEV_IO_STATUS_SUCCESS) {
1616 		parent_io->internal.cb(parent_io, parent_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS,
1617 				       parent_io->internal.caller_ctx);
1618 		return;
1619 	}
1620 
1621 	/*
1622 	 * Continue with the splitting process.  This function will complete the parent I/O if the
1623 	 * splitting is done.
1624 	 */
1625 	_spdk_bdev_io_split_with_payload(parent_io);
1626 }
1627 
1628 static void
1629 _spdk_bdev_io_split(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
1630 {
1631 	assert(_spdk_bdev_io_type_can_split(bdev_io->type));
1632 
1633 	bdev_io->u.bdev.split_current_offset_blocks = bdev_io->u.bdev.offset_blocks;
1634 	bdev_io->u.bdev.split_remaining_num_blocks = bdev_io->u.bdev.num_blocks;
1635 	bdev_io->u.bdev.split_outstanding = 0;
1636 	bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS;
1637 
1638 	_spdk_bdev_io_split_with_payload(bdev_io);
1639 }
1640 
1641 /* Explicitly mark this inline, since it's used as a function pointer and otherwise won't
1642  *  be inlined, at least on some compilers.
1643  */
1644 static inline void
1645 _spdk_bdev_io_submit(void *ctx)
1646 {
1647 	struct spdk_bdev_io *bdev_io = ctx;
1648 	struct spdk_bdev *bdev = bdev_io->bdev;
1649 	struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch;
1650 	struct spdk_io_channel *ch = bdev_ch->channel;
1651 	struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource;
1652 	uint64_t tsc;
1653 
1654 	tsc = spdk_get_ticks();
1655 	bdev_io->internal.submit_tsc = tsc;
1656 	spdk_trace_record_tsc(tsc, TRACE_BDEV_IO_START, 0, 0, (uintptr_t)bdev_io, bdev_io->type);
1657 	bdev_ch->io_outstanding++;
1658 	shared_resource->io_outstanding++;
1659 	bdev_io->internal.in_submit_request = true;
1660 	if (spdk_likely(bdev_ch->flags == 0)) {
1661 		if (spdk_likely(TAILQ_EMPTY(&shared_resource->nomem_io))) {
1662 			bdev->fn_table->submit_request(ch, bdev_io);
1663 		} else {
1664 			bdev_ch->io_outstanding--;
1665 			shared_resource->io_outstanding--;
1666 			TAILQ_INSERT_TAIL(&shared_resource->nomem_io, bdev_io, internal.link);
1667 		}
1668 	} else if (bdev_ch->flags & BDEV_CH_RESET_IN_PROGRESS) {
1669 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1670 	} else if (bdev_ch->flags & BDEV_CH_QOS_ENABLED) {
1671 		bdev_ch->io_outstanding--;
1672 		shared_resource->io_outstanding--;
1673 		TAILQ_INSERT_TAIL(&bdev->internal.qos->queued, bdev_io, internal.link);
1674 		_spdk_bdev_qos_io_submit(bdev_ch, bdev->internal.qos);
1675 	} else {
1676 		SPDK_ERRLOG("unknown bdev_ch flag %x found\n", bdev_ch->flags);
1677 		spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
1678 	}
1679 	bdev_io->internal.in_submit_request = false;
1680 }
1681 
1682 static void
1683 spdk_bdev_io_submit(struct spdk_bdev_io *bdev_io)
1684 {
1685 	struct spdk_bdev *bdev = bdev_io->bdev;
1686 	struct spdk_thread *thread = spdk_io_channel_get_thread(bdev_io->internal.ch->channel);
1687 
1688 	assert(thread != NULL);
1689 	assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_PENDING);
1690 
1691 	if (bdev->split_on_optimal_io_boundary && _spdk_bdev_io_should_split(bdev_io)) {
1692 		if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
1693 			spdk_bdev_io_get_buf(bdev_io, _spdk_bdev_io_split,
1694 					     bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
1695 		} else {
1696 			_spdk_bdev_io_split(NULL, bdev_io);
1697 		}
1698 		return;
1699 	}
1700 
1701 	if (bdev_io->internal.ch->flags & BDEV_CH_QOS_ENABLED) {
1702 		if ((thread == bdev->internal.qos->thread) || !bdev->internal.qos->thread) {
1703 			_spdk_bdev_io_submit(bdev_io);
1704 		} else {
1705 			bdev_io->internal.io_submit_ch = bdev_io->internal.ch;
1706 			bdev_io->internal.ch = bdev->internal.qos->ch;
1707 			spdk_thread_send_msg(bdev->internal.qos->thread, _spdk_bdev_io_submit, bdev_io);
1708 		}
1709 	} else {
1710 		_spdk_bdev_io_submit(bdev_io);
1711 	}
1712 }
1713 
1714 static void
1715 spdk_bdev_io_submit_reset(struct spdk_bdev_io *bdev_io)
1716 {
1717 	struct spdk_bdev *bdev = bdev_io->bdev;
1718 	struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch;
1719 	struct spdk_io_channel *ch = bdev_ch->channel;
1720 
1721 	assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_PENDING);
1722 
1723 	bdev_io->internal.in_submit_request = true;
1724 	bdev->fn_table->submit_request(ch, bdev_io);
1725 	bdev_io->internal.in_submit_request = false;
1726 }
1727 
1728 static void
1729 spdk_bdev_io_init(struct spdk_bdev_io *bdev_io,
1730 		  struct spdk_bdev *bdev, void *cb_arg,
1731 		  spdk_bdev_io_completion_cb cb)
1732 {
1733 	bdev_io->bdev = bdev;
1734 	bdev_io->internal.caller_ctx = cb_arg;
1735 	bdev_io->internal.cb = cb;
1736 	bdev_io->internal.status = SPDK_BDEV_IO_STATUS_PENDING;
1737 	bdev_io->internal.in_submit_request = false;
1738 	bdev_io->internal.buf = NULL;
1739 	bdev_io->internal.io_submit_ch = NULL;
1740 	bdev_io->internal.orig_iovs = NULL;
1741 	bdev_io->internal.orig_iovcnt = 0;
1742 }
1743 
1744 static bool
1745 _spdk_bdev_io_type_supported(struct spdk_bdev *bdev, enum spdk_bdev_io_type io_type)
1746 {
1747 	return bdev->fn_table->io_type_supported(bdev->ctxt, io_type);
1748 }
1749 
1750 bool
1751 spdk_bdev_io_type_supported(struct spdk_bdev *bdev, enum spdk_bdev_io_type io_type)
1752 {
1753 	bool supported;
1754 
1755 	supported = _spdk_bdev_io_type_supported(bdev, io_type);
1756 
1757 	if (!supported) {
1758 		switch (io_type) {
1759 		case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
1760 			/* The bdev layer will emulate write zeroes as long as write is supported. */
1761 			supported = _spdk_bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE);
1762 			break;
1763 		default:
1764 			break;
1765 		}
1766 	}
1767 
1768 	return supported;
1769 }
1770 
1771 int
1772 spdk_bdev_dump_info_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
1773 {
1774 	if (bdev->fn_table->dump_info_json) {
1775 		return bdev->fn_table->dump_info_json(bdev->ctxt, w);
1776 	}
1777 
1778 	return 0;
1779 }
1780 
1781 static void
1782 spdk_bdev_qos_update_max_quota_per_timeslice(struct spdk_bdev_qos *qos)
1783 {
1784 	uint32_t max_per_timeslice = 0;
1785 	int i;
1786 
1787 	for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
1788 		if (qos->rate_limits[i].limit == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) {
1789 			qos->rate_limits[i].max_per_timeslice = 0;
1790 			continue;
1791 		}
1792 
1793 		max_per_timeslice = qos->rate_limits[i].limit *
1794 				    SPDK_BDEV_QOS_TIMESLICE_IN_USEC / SPDK_SEC_TO_USEC;
1795 
1796 		qos->rate_limits[i].max_per_timeslice = spdk_max(max_per_timeslice,
1797 							qos->rate_limits[i].min_per_timeslice);
1798 
1799 		qos->rate_limits[i].remaining_this_timeslice = qos->rate_limits[i].max_per_timeslice;
1800 	}
1801 
1802 	_spdk_bdev_qos_set_ops(qos);
1803 }
1804 
1805 static int
1806 spdk_bdev_channel_poll_qos(void *arg)
1807 {
1808 	struct spdk_bdev_qos *qos = arg;
1809 	uint64_t now = spdk_get_ticks();
1810 	int i;
1811 
1812 	if (now < (qos->last_timeslice + qos->timeslice_size)) {
1813 		/* We received our callback earlier than expected - return
1814 		 *  immediately and wait to do accounting until at least one
1815 		 *  timeslice has actually expired.  This should never happen
1816 		 *  with a well-behaved timer implementation.
1817 		 */
1818 		return 0;
1819 	}
1820 
1821 	/* Reset for next round of rate limiting */
1822 	for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
1823 		/* We may have allowed the IOs or bytes to slightly overrun in the last
1824 		 * timeslice. remaining_this_timeslice is signed, so if it's negative
1825 		 * here, we'll account for the overrun so that the next timeslice will
1826 		 * be appropriately reduced.
1827 		 */
1828 		if (qos->rate_limits[i].remaining_this_timeslice > 0) {
1829 			qos->rate_limits[i].remaining_this_timeslice = 0;
1830 		}
1831 	}
1832 
1833 	while (now >= (qos->last_timeslice + qos->timeslice_size)) {
1834 		qos->last_timeslice += qos->timeslice_size;
1835 		for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
1836 			qos->rate_limits[i].remaining_this_timeslice +=
1837 				qos->rate_limits[i].max_per_timeslice;
1838 		}
1839 	}
1840 
1841 	return _spdk_bdev_qos_io_submit(qos->ch, qos);
1842 }
1843 
1844 static void
1845 _spdk_bdev_channel_destroy_resource(struct spdk_bdev_channel *ch)
1846 {
1847 	struct spdk_bdev_shared_resource *shared_resource;
1848 
1849 	spdk_put_io_channel(ch->channel);
1850 
1851 	shared_resource = ch->shared_resource;
1852 
1853 	assert(ch->io_outstanding == 0);
1854 	assert(shared_resource->ref > 0);
1855 	shared_resource->ref--;
1856 	if (shared_resource->ref == 0) {
1857 		assert(shared_resource->io_outstanding == 0);
1858 		TAILQ_REMOVE(&shared_resource->mgmt_ch->shared_resources, shared_resource, link);
1859 		spdk_put_io_channel(spdk_io_channel_from_ctx(shared_resource->mgmt_ch));
1860 		free(shared_resource);
1861 	}
1862 }
1863 
1864 /* Caller must hold bdev->internal.mutex. */
1865 static void
1866 _spdk_bdev_enable_qos(struct spdk_bdev *bdev, struct spdk_bdev_channel *ch)
1867 {
1868 	struct spdk_bdev_qos	*qos = bdev->internal.qos;
1869 	int			i;
1870 
1871 	/* Rate limiting on this bdev enabled */
1872 	if (qos) {
1873 		if (qos->ch == NULL) {
1874 			struct spdk_io_channel *io_ch;
1875 
1876 			SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Selecting channel %p as QoS channel for bdev %s on thread %p\n", ch,
1877 				      bdev->name, spdk_get_thread());
1878 
1879 			/* No qos channel has been selected, so set one up */
1880 
1881 			/* Take another reference to ch */
1882 			io_ch = spdk_get_io_channel(__bdev_to_io_dev(bdev));
1883 			assert(io_ch != NULL);
1884 			qos->ch = ch;
1885 
1886 			qos->thread = spdk_io_channel_get_thread(io_ch);
1887 
1888 			TAILQ_INIT(&qos->queued);
1889 
1890 			for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
1891 				if (_spdk_bdev_qos_is_iops_rate_limit(i) == true) {
1892 					qos->rate_limits[i].min_per_timeslice =
1893 						SPDK_BDEV_QOS_MIN_IO_PER_TIMESLICE;
1894 				} else {
1895 					qos->rate_limits[i].min_per_timeslice =
1896 						SPDK_BDEV_QOS_MIN_BYTE_PER_TIMESLICE;
1897 				}
1898 
1899 				if (qos->rate_limits[i].limit == 0) {
1900 					qos->rate_limits[i].limit = SPDK_BDEV_QOS_LIMIT_NOT_DEFINED;
1901 				}
1902 			}
1903 			spdk_bdev_qos_update_max_quota_per_timeslice(qos);
1904 			qos->timeslice_size =
1905 				SPDK_BDEV_QOS_TIMESLICE_IN_USEC * spdk_get_ticks_hz() / SPDK_SEC_TO_USEC;
1906 			qos->last_timeslice = spdk_get_ticks();
1907 			qos->poller = spdk_poller_register(spdk_bdev_channel_poll_qos,
1908 							   qos,
1909 							   SPDK_BDEV_QOS_TIMESLICE_IN_USEC);
1910 		}
1911 
1912 		ch->flags |= BDEV_CH_QOS_ENABLED;
1913 	}
1914 }
1915 
1916 static int
1917 spdk_bdev_channel_create(void *io_device, void *ctx_buf)
1918 {
1919 	struct spdk_bdev		*bdev = __bdev_from_io_dev(io_device);
1920 	struct spdk_bdev_channel	*ch = ctx_buf;
1921 	struct spdk_io_channel		*mgmt_io_ch;
1922 	struct spdk_bdev_mgmt_channel	*mgmt_ch;
1923 	struct spdk_bdev_shared_resource *shared_resource;
1924 
1925 	ch->bdev = bdev;
1926 	ch->channel = bdev->fn_table->get_io_channel(bdev->ctxt);
1927 	if (!ch->channel) {
1928 		return -1;
1929 	}
1930 
1931 	assert(ch->histogram == NULL);
1932 	if (bdev->internal.histogram_enabled) {
1933 		ch->histogram = spdk_histogram_data_alloc();
1934 		if (ch->histogram == NULL) {
1935 			SPDK_ERRLOG("Could not allocate histogram\n");
1936 		}
1937 	}
1938 
1939 	mgmt_io_ch = spdk_get_io_channel(&g_bdev_mgr);
1940 	if (!mgmt_io_ch) {
1941 		spdk_put_io_channel(ch->channel);
1942 		return -1;
1943 	}
1944 
1945 	mgmt_ch = spdk_io_channel_get_ctx(mgmt_io_ch);
1946 	TAILQ_FOREACH(shared_resource, &mgmt_ch->shared_resources, link) {
1947 		if (shared_resource->shared_ch == ch->channel) {
1948 			spdk_put_io_channel(mgmt_io_ch);
1949 			shared_resource->ref++;
1950 			break;
1951 		}
1952 	}
1953 
1954 	if (shared_resource == NULL) {
1955 		shared_resource = calloc(1, sizeof(*shared_resource));
1956 		if (shared_resource == NULL) {
1957 			spdk_put_io_channel(ch->channel);
1958 			spdk_put_io_channel(mgmt_io_ch);
1959 			return -1;
1960 		}
1961 
1962 		shared_resource->mgmt_ch = mgmt_ch;
1963 		shared_resource->io_outstanding = 0;
1964 		TAILQ_INIT(&shared_resource->nomem_io);
1965 		shared_resource->nomem_threshold = 0;
1966 		shared_resource->shared_ch = ch->channel;
1967 		shared_resource->ref = 1;
1968 		TAILQ_INSERT_TAIL(&mgmt_ch->shared_resources, shared_resource, link);
1969 	}
1970 
1971 	memset(&ch->stat, 0, sizeof(ch->stat));
1972 	ch->stat.ticks_rate = spdk_get_ticks_hz();
1973 	ch->io_outstanding = 0;
1974 	TAILQ_INIT(&ch->queued_resets);
1975 	ch->flags = 0;
1976 	ch->shared_resource = shared_resource;
1977 
1978 #ifdef SPDK_CONFIG_VTUNE
1979 	{
1980 		char *name;
1981 		__itt_init_ittlib(NULL, 0);
1982 		name = spdk_sprintf_alloc("spdk_bdev_%s_%p", ch->bdev->name, ch);
1983 		if (!name) {
1984 			_spdk_bdev_channel_destroy_resource(ch);
1985 			return -1;
1986 		}
1987 		ch->handle = __itt_string_handle_create(name);
1988 		free(name);
1989 		ch->start_tsc = spdk_get_ticks();
1990 		ch->interval_tsc = spdk_get_ticks_hz() / 100;
1991 		memset(&ch->prev_stat, 0, sizeof(ch->prev_stat));
1992 	}
1993 #endif
1994 
1995 	pthread_mutex_lock(&bdev->internal.mutex);
1996 	_spdk_bdev_enable_qos(bdev, ch);
1997 	pthread_mutex_unlock(&bdev->internal.mutex);
1998 
1999 	return 0;
2000 }
2001 
2002 /*
2003  * Abort I/O that are waiting on a data buffer.  These types of I/O are
2004  *  linked using the spdk_bdev_io internal.buf_link TAILQ_ENTRY.
2005  */
2006 static void
2007 _spdk_bdev_abort_buf_io(bdev_io_stailq_t *queue, struct spdk_bdev_channel *ch)
2008 {
2009 	bdev_io_stailq_t tmp;
2010 	struct spdk_bdev_io *bdev_io;
2011 
2012 	STAILQ_INIT(&tmp);
2013 
2014 	while (!STAILQ_EMPTY(queue)) {
2015 		bdev_io = STAILQ_FIRST(queue);
2016 		STAILQ_REMOVE_HEAD(queue, internal.buf_link);
2017 		if (bdev_io->internal.ch == ch) {
2018 			spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
2019 		} else {
2020 			STAILQ_INSERT_TAIL(&tmp, bdev_io, internal.buf_link);
2021 		}
2022 	}
2023 
2024 	STAILQ_SWAP(&tmp, queue, spdk_bdev_io);
2025 }
2026 
2027 /*
2028  * Abort I/O that are queued waiting for submission.  These types of I/O are
2029  *  linked using the spdk_bdev_io link TAILQ_ENTRY.
2030  */
2031 static void
2032 _spdk_bdev_abort_queued_io(bdev_io_tailq_t *queue, struct spdk_bdev_channel *ch)
2033 {
2034 	struct spdk_bdev_io *bdev_io, *tmp;
2035 
2036 	TAILQ_FOREACH_SAFE(bdev_io, queue, internal.link, tmp) {
2037 		if (bdev_io->internal.ch == ch) {
2038 			TAILQ_REMOVE(queue, bdev_io, internal.link);
2039 			/*
2040 			 * spdk_bdev_io_complete() assumes that the completed I/O had
2041 			 *  been submitted to the bdev module.  Since in this case it
2042 			 *  hadn't, bump io_outstanding to account for the decrement
2043 			 *  that spdk_bdev_io_complete() will do.
2044 			 */
2045 			if (bdev_io->type != SPDK_BDEV_IO_TYPE_RESET) {
2046 				ch->io_outstanding++;
2047 				ch->shared_resource->io_outstanding++;
2048 			}
2049 			spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
2050 		}
2051 	}
2052 }
2053 
2054 static void
2055 spdk_bdev_qos_channel_destroy(void *cb_arg)
2056 {
2057 	struct spdk_bdev_qos *qos = cb_arg;
2058 
2059 	spdk_put_io_channel(spdk_io_channel_from_ctx(qos->ch));
2060 	spdk_poller_unregister(&qos->poller);
2061 
2062 	SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Free QoS %p.\n", qos);
2063 
2064 	free(qos);
2065 }
2066 
2067 static int
2068 spdk_bdev_qos_destroy(struct spdk_bdev *bdev)
2069 {
2070 	int i;
2071 
2072 	/*
2073 	 * Cleanly shutting down the QoS poller is tricky, because
2074 	 * during the asynchronous operation the user could open
2075 	 * a new descriptor and create a new channel, spawning
2076 	 * a new QoS poller.
2077 	 *
2078 	 * The strategy is to create a new QoS structure here and swap it
2079 	 * in. The shutdown path then continues to refer to the old one
2080 	 * until it completes and then releases it.
2081 	 */
2082 	struct spdk_bdev_qos *new_qos, *old_qos;
2083 
2084 	old_qos = bdev->internal.qos;
2085 
2086 	new_qos = calloc(1, sizeof(*new_qos));
2087 	if (!new_qos) {
2088 		SPDK_ERRLOG("Unable to allocate memory to shut down QoS.\n");
2089 		return -ENOMEM;
2090 	}
2091 
2092 	/* Copy the old QoS data into the newly allocated structure */
2093 	memcpy(new_qos, old_qos, sizeof(*new_qos));
2094 
2095 	/* Zero out the key parts of the QoS structure */
2096 	new_qos->ch = NULL;
2097 	new_qos->thread = NULL;
2098 	new_qos->poller = NULL;
2099 	TAILQ_INIT(&new_qos->queued);
2100 	/*
2101 	 * The limit member of spdk_bdev_qos_limit structure is not zeroed.
2102 	 * It will be used later for the new QoS structure.
2103 	 */
2104 	for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
2105 		new_qos->rate_limits[i].remaining_this_timeslice = 0;
2106 		new_qos->rate_limits[i].min_per_timeslice = 0;
2107 		new_qos->rate_limits[i].max_per_timeslice = 0;
2108 	}
2109 
2110 	bdev->internal.qos = new_qos;
2111 
2112 	if (old_qos->thread == NULL) {
2113 		free(old_qos);
2114 	} else {
2115 		spdk_thread_send_msg(old_qos->thread, spdk_bdev_qos_channel_destroy,
2116 				     old_qos);
2117 	}
2118 
2119 	/* It is safe to continue with destroying the bdev even though the QoS channel hasn't
2120 	 * been destroyed yet. The destruction path will end up waiting for the final
2121 	 * channel to be put before it releases resources. */
2122 
2123 	return 0;
2124 }
2125 
2126 static void
2127 _spdk_bdev_io_stat_add(struct spdk_bdev_io_stat *total, struct spdk_bdev_io_stat *add)
2128 {
2129 	total->bytes_read += add->bytes_read;
2130 	total->num_read_ops += add->num_read_ops;
2131 	total->bytes_written += add->bytes_written;
2132 	total->num_write_ops += add->num_write_ops;
2133 	total->bytes_unmapped += add->bytes_unmapped;
2134 	total->num_unmap_ops += add->num_unmap_ops;
2135 	total->read_latency_ticks += add->read_latency_ticks;
2136 	total->write_latency_ticks += add->write_latency_ticks;
2137 	total->unmap_latency_ticks += add->unmap_latency_ticks;
2138 }
2139 
2140 static void
2141 spdk_bdev_channel_destroy(void *io_device, void *ctx_buf)
2142 {
2143 	struct spdk_bdev_channel	*ch = ctx_buf;
2144 	struct spdk_bdev_mgmt_channel	*mgmt_ch;
2145 	struct spdk_bdev_shared_resource *shared_resource = ch->shared_resource;
2146 
2147 	SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Destroying channel %p for bdev %s on thread %p\n", ch, ch->bdev->name,
2148 		      spdk_get_thread());
2149 
2150 	/* This channel is going away, so add its statistics into the bdev so that they don't get lost. */
2151 	pthread_mutex_lock(&ch->bdev->internal.mutex);
2152 	_spdk_bdev_io_stat_add(&ch->bdev->internal.stat, &ch->stat);
2153 	pthread_mutex_unlock(&ch->bdev->internal.mutex);
2154 
2155 	mgmt_ch = shared_resource->mgmt_ch;
2156 
2157 	_spdk_bdev_abort_queued_io(&ch->queued_resets, ch);
2158 	_spdk_bdev_abort_queued_io(&shared_resource->nomem_io, ch);
2159 	_spdk_bdev_abort_buf_io(&mgmt_ch->need_buf_small, ch);
2160 	_spdk_bdev_abort_buf_io(&mgmt_ch->need_buf_large, ch);
2161 
2162 	if (ch->histogram) {
2163 		spdk_histogram_data_free(ch->histogram);
2164 	}
2165 
2166 	_spdk_bdev_channel_destroy_resource(ch);
2167 }
2168 
2169 int
2170 spdk_bdev_alias_add(struct spdk_bdev *bdev, const char *alias)
2171 {
2172 	struct spdk_bdev_alias *tmp;
2173 
2174 	if (alias == NULL) {
2175 		SPDK_ERRLOG("Empty alias passed\n");
2176 		return -EINVAL;
2177 	}
2178 
2179 	if (spdk_bdev_get_by_name(alias)) {
2180 		SPDK_ERRLOG("Bdev name/alias: %s already exists\n", alias);
2181 		return -EEXIST;
2182 	}
2183 
2184 	tmp = calloc(1, sizeof(*tmp));
2185 	if (tmp == NULL) {
2186 		SPDK_ERRLOG("Unable to allocate alias\n");
2187 		return -ENOMEM;
2188 	}
2189 
2190 	tmp->alias = strdup(alias);
2191 	if (tmp->alias == NULL) {
2192 		free(tmp);
2193 		SPDK_ERRLOG("Unable to allocate alias\n");
2194 		return -ENOMEM;
2195 	}
2196 
2197 	TAILQ_INSERT_TAIL(&bdev->aliases, tmp, tailq);
2198 
2199 	return 0;
2200 }
2201 
2202 int
2203 spdk_bdev_alias_del(struct spdk_bdev *bdev, const char *alias)
2204 {
2205 	struct spdk_bdev_alias *tmp;
2206 
2207 	TAILQ_FOREACH(tmp, &bdev->aliases, tailq) {
2208 		if (strcmp(alias, tmp->alias) == 0) {
2209 			TAILQ_REMOVE(&bdev->aliases, tmp, tailq);
2210 			free(tmp->alias);
2211 			free(tmp);
2212 			return 0;
2213 		}
2214 	}
2215 
2216 	SPDK_INFOLOG(SPDK_LOG_BDEV, "Alias %s does not exists\n", alias);
2217 
2218 	return -ENOENT;
2219 }
2220 
2221 void
2222 spdk_bdev_alias_del_all(struct spdk_bdev *bdev)
2223 {
2224 	struct spdk_bdev_alias *p, *tmp;
2225 
2226 	TAILQ_FOREACH_SAFE(p, &bdev->aliases, tailq, tmp) {
2227 		TAILQ_REMOVE(&bdev->aliases, p, tailq);
2228 		free(p->alias);
2229 		free(p);
2230 	}
2231 }
2232 
2233 struct spdk_io_channel *
2234 spdk_bdev_get_io_channel(struct spdk_bdev_desc *desc)
2235 {
2236 	return spdk_get_io_channel(__bdev_to_io_dev(desc->bdev));
2237 }
2238 
2239 const char *
2240 spdk_bdev_get_name(const struct spdk_bdev *bdev)
2241 {
2242 	return bdev->name;
2243 }
2244 
2245 const char *
2246 spdk_bdev_get_product_name(const struct spdk_bdev *bdev)
2247 {
2248 	return bdev->product_name;
2249 }
2250 
2251 const struct spdk_bdev_aliases_list *
2252 spdk_bdev_get_aliases(const struct spdk_bdev *bdev)
2253 {
2254 	return &bdev->aliases;
2255 }
2256 
2257 uint32_t
2258 spdk_bdev_get_block_size(const struct spdk_bdev *bdev)
2259 {
2260 	return bdev->blocklen;
2261 }
2262 
2263 uint64_t
2264 spdk_bdev_get_num_blocks(const struct spdk_bdev *bdev)
2265 {
2266 	return bdev->blockcnt;
2267 }
2268 
2269 const char *
2270 spdk_bdev_get_qos_rpc_type(enum spdk_bdev_qos_rate_limit_type type)
2271 {
2272 	return qos_rpc_type[type];
2273 }
2274 
2275 void
2276 spdk_bdev_get_qos_rate_limits(struct spdk_bdev *bdev, uint64_t *limits)
2277 {
2278 	int i;
2279 
2280 	memset(limits, 0, sizeof(*limits) * SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES);
2281 
2282 	pthread_mutex_lock(&bdev->internal.mutex);
2283 	if (bdev->internal.qos) {
2284 		for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
2285 			if (bdev->internal.qos->rate_limits[i].limit !=
2286 			    SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) {
2287 				limits[i] = bdev->internal.qos->rate_limits[i].limit;
2288 				if (_spdk_bdev_qos_is_iops_rate_limit(i) == false) {
2289 					/* Change from Byte to Megabyte which is user visible. */
2290 					limits[i] = limits[i] / 1024 / 1024;
2291 				}
2292 			}
2293 		}
2294 	}
2295 	pthread_mutex_unlock(&bdev->internal.mutex);
2296 }
2297 
2298 size_t
2299 spdk_bdev_get_buf_align(const struct spdk_bdev *bdev)
2300 {
2301 	return 1 << bdev->required_alignment;
2302 }
2303 
2304 uint32_t
2305 spdk_bdev_get_optimal_io_boundary(const struct spdk_bdev *bdev)
2306 {
2307 	return bdev->optimal_io_boundary;
2308 }
2309 
2310 bool
2311 spdk_bdev_has_write_cache(const struct spdk_bdev *bdev)
2312 {
2313 	return bdev->write_cache;
2314 }
2315 
2316 const struct spdk_uuid *
2317 spdk_bdev_get_uuid(const struct spdk_bdev *bdev)
2318 {
2319 	return &bdev->uuid;
2320 }
2321 
2322 uint32_t
2323 spdk_bdev_get_md_size(const struct spdk_bdev *bdev)
2324 {
2325 	return bdev->md_len;
2326 }
2327 
2328 bool
2329 spdk_bdev_is_md_interleaved(const struct spdk_bdev *bdev)
2330 {
2331 	return (bdev->md_len != 0) && bdev->md_interleave;
2332 }
2333 
2334 enum spdk_dif_type spdk_bdev_get_dif_type(const struct spdk_bdev *bdev)
2335 {
2336 	if (bdev->md_len != 0) {
2337 		return bdev->dif_type;
2338 	} else {
2339 		return SPDK_DIF_DISABLE;
2340 	}
2341 }
2342 
2343 bool
2344 spdk_bdev_is_dif_head_of_md(const struct spdk_bdev *bdev)
2345 {
2346 	if (spdk_bdev_get_dif_type(bdev) != SPDK_DIF_DISABLE) {
2347 		return bdev->dif_is_head_of_md;
2348 	} else {
2349 		return false;
2350 	}
2351 }
2352 
2353 bool
2354 spdk_bdev_is_dif_check_enabled(const struct spdk_bdev *bdev,
2355 			       enum spdk_dif_check_type check_type)
2356 {
2357 	if (spdk_bdev_get_dif_type(bdev) == SPDK_DIF_DISABLE) {
2358 		return false;
2359 	}
2360 
2361 	switch (check_type) {
2362 	case SPDK_DIF_CHECK_TYPE_REFTAG:
2363 		return (bdev->dif_check_flags & SPDK_DIF_FLAGS_REFTAG_CHECK) != 0;
2364 	case SPDK_DIF_CHECK_TYPE_APPTAG:
2365 		return (bdev->dif_check_flags & SPDK_DIF_FLAGS_APPTAG_CHECK) != 0;
2366 	case SPDK_DIF_CHECK_TYPE_GUARD:
2367 		return (bdev->dif_check_flags & SPDK_DIF_FLAGS_GUARD_CHECK) != 0;
2368 	default:
2369 		return false;
2370 	}
2371 }
2372 
2373 uint64_t
2374 spdk_bdev_get_qd(const struct spdk_bdev *bdev)
2375 {
2376 	return bdev->internal.measured_queue_depth;
2377 }
2378 
2379 uint64_t
2380 spdk_bdev_get_qd_sampling_period(const struct spdk_bdev *bdev)
2381 {
2382 	return bdev->internal.period;
2383 }
2384 
2385 uint64_t
2386 spdk_bdev_get_weighted_io_time(const struct spdk_bdev *bdev)
2387 {
2388 	return bdev->internal.weighted_io_time;
2389 }
2390 
2391 uint64_t
2392 spdk_bdev_get_io_time(const struct spdk_bdev *bdev)
2393 {
2394 	return bdev->internal.io_time;
2395 }
2396 
2397 static void
2398 _calculate_measured_qd_cpl(struct spdk_io_channel_iter *i, int status)
2399 {
2400 	struct spdk_bdev *bdev = spdk_io_channel_iter_get_ctx(i);
2401 
2402 	bdev->internal.measured_queue_depth = bdev->internal.temporary_queue_depth;
2403 
2404 	if (bdev->internal.measured_queue_depth) {
2405 		bdev->internal.io_time += bdev->internal.period;
2406 		bdev->internal.weighted_io_time += bdev->internal.period * bdev->internal.measured_queue_depth;
2407 	}
2408 }
2409 
2410 static void
2411 _calculate_measured_qd(struct spdk_io_channel_iter *i)
2412 {
2413 	struct spdk_bdev *bdev = spdk_io_channel_iter_get_ctx(i);
2414 	struct spdk_io_channel *io_ch = spdk_io_channel_iter_get_channel(i);
2415 	struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(io_ch);
2416 
2417 	bdev->internal.temporary_queue_depth += ch->io_outstanding;
2418 	spdk_for_each_channel_continue(i, 0);
2419 }
2420 
2421 static int
2422 spdk_bdev_calculate_measured_queue_depth(void *ctx)
2423 {
2424 	struct spdk_bdev *bdev = ctx;
2425 	bdev->internal.temporary_queue_depth = 0;
2426 	spdk_for_each_channel(__bdev_to_io_dev(bdev), _calculate_measured_qd, bdev,
2427 			      _calculate_measured_qd_cpl);
2428 	return 0;
2429 }
2430 
2431 void
2432 spdk_bdev_set_qd_sampling_period(struct spdk_bdev *bdev, uint64_t period)
2433 {
2434 	bdev->internal.period = period;
2435 
2436 	if (bdev->internal.qd_poller != NULL) {
2437 		spdk_poller_unregister(&bdev->internal.qd_poller);
2438 		bdev->internal.measured_queue_depth = UINT64_MAX;
2439 	}
2440 
2441 	if (period != 0) {
2442 		bdev->internal.qd_poller = spdk_poller_register(spdk_bdev_calculate_measured_queue_depth, bdev,
2443 					   period);
2444 	}
2445 }
2446 
2447 int
2448 spdk_bdev_notify_blockcnt_change(struct spdk_bdev *bdev, uint64_t size)
2449 {
2450 	int ret;
2451 
2452 	pthread_mutex_lock(&bdev->internal.mutex);
2453 
2454 	/* bdev has open descriptors */
2455 	if (!TAILQ_EMPTY(&bdev->internal.open_descs) &&
2456 	    bdev->blockcnt > size) {
2457 		ret = -EBUSY;
2458 	} else {
2459 		bdev->blockcnt = size;
2460 		ret = 0;
2461 	}
2462 
2463 	pthread_mutex_unlock(&bdev->internal.mutex);
2464 
2465 	return ret;
2466 }
2467 
2468 /*
2469  * Convert I/O offset and length from bytes to blocks.
2470  *
2471  * Returns zero on success or non-zero if the byte parameters aren't divisible by the block size.
2472  */
2473 static uint64_t
2474 spdk_bdev_bytes_to_blocks(struct spdk_bdev *bdev, uint64_t offset_bytes, uint64_t *offset_blocks,
2475 			  uint64_t num_bytes, uint64_t *num_blocks)
2476 {
2477 	uint32_t block_size = bdev->blocklen;
2478 	uint8_t shift_cnt;
2479 
2480 	/* Avoid expensive div operations if possible. These spdk_u32 functions are very cheap. */
2481 	if (spdk_likely(spdk_u32_is_pow2(block_size))) {
2482 		shift_cnt = spdk_u32log2(block_size);
2483 		*offset_blocks = offset_bytes >> shift_cnt;
2484 		*num_blocks = num_bytes >> shift_cnt;
2485 		return (offset_bytes - (*offset_blocks << shift_cnt)) |
2486 		       (num_bytes - (*num_blocks << shift_cnt));
2487 	} else {
2488 		*offset_blocks = offset_bytes / block_size;
2489 		*num_blocks = num_bytes / block_size;
2490 		return (offset_bytes % block_size) | (num_bytes % block_size);
2491 	}
2492 }
2493 
2494 static bool
2495 spdk_bdev_io_valid_blocks(struct spdk_bdev *bdev, uint64_t offset_blocks, uint64_t num_blocks)
2496 {
2497 	/* Return failure if offset_blocks + num_blocks is less than offset_blocks; indicates there
2498 	 * has been an overflow and hence the offset has been wrapped around */
2499 	if (offset_blocks + num_blocks < offset_blocks) {
2500 		return false;
2501 	}
2502 
2503 	/* Return failure if offset_blocks + num_blocks exceeds the size of the bdev */
2504 	if (offset_blocks + num_blocks > bdev->blockcnt) {
2505 		return false;
2506 	}
2507 
2508 	return true;
2509 }
2510 
2511 int
2512 spdk_bdev_read(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
2513 	       void *buf, uint64_t offset, uint64_t nbytes,
2514 	       spdk_bdev_io_completion_cb cb, void *cb_arg)
2515 {
2516 	uint64_t offset_blocks, num_blocks;
2517 
2518 	if (spdk_bdev_bytes_to_blocks(desc->bdev, offset, &offset_blocks, nbytes, &num_blocks) != 0) {
2519 		return -EINVAL;
2520 	}
2521 
2522 	return spdk_bdev_read_blocks(desc, ch, buf, offset_blocks, num_blocks, cb, cb_arg);
2523 }
2524 
2525 int
2526 spdk_bdev_read_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
2527 		      void *buf, uint64_t offset_blocks, uint64_t num_blocks,
2528 		      spdk_bdev_io_completion_cb cb, void *cb_arg)
2529 {
2530 	struct spdk_bdev *bdev = desc->bdev;
2531 	struct spdk_bdev_io *bdev_io;
2532 	struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
2533 
2534 	if (!spdk_bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
2535 		return -EINVAL;
2536 	}
2537 
2538 	bdev_io = spdk_bdev_get_io(channel);
2539 	if (!bdev_io) {
2540 		return -ENOMEM;
2541 	}
2542 
2543 	bdev_io->internal.ch = channel;
2544 	bdev_io->internal.desc = desc;
2545 	bdev_io->type = SPDK_BDEV_IO_TYPE_READ;
2546 	bdev_io->u.bdev.iovs = &bdev_io->iov;
2547 	bdev_io->u.bdev.iovs[0].iov_base = buf;
2548 	bdev_io->u.bdev.iovs[0].iov_len = num_blocks * bdev->blocklen;
2549 	bdev_io->u.bdev.iovcnt = 1;
2550 	bdev_io->u.bdev.num_blocks = num_blocks;
2551 	bdev_io->u.bdev.offset_blocks = offset_blocks;
2552 	spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
2553 
2554 	spdk_bdev_io_submit(bdev_io);
2555 	return 0;
2556 }
2557 
2558 int
2559 spdk_bdev_readv(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
2560 		struct iovec *iov, int iovcnt,
2561 		uint64_t offset, uint64_t nbytes,
2562 		spdk_bdev_io_completion_cb cb, void *cb_arg)
2563 {
2564 	uint64_t offset_blocks, num_blocks;
2565 
2566 	if (spdk_bdev_bytes_to_blocks(desc->bdev, offset, &offset_blocks, nbytes, &num_blocks) != 0) {
2567 		return -EINVAL;
2568 	}
2569 
2570 	return spdk_bdev_readv_blocks(desc, ch, iov, iovcnt, offset_blocks, num_blocks, cb, cb_arg);
2571 }
2572 
2573 int spdk_bdev_readv_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
2574 			   struct iovec *iov, int iovcnt,
2575 			   uint64_t offset_blocks, uint64_t num_blocks,
2576 			   spdk_bdev_io_completion_cb cb, void *cb_arg)
2577 {
2578 	struct spdk_bdev *bdev = desc->bdev;
2579 	struct spdk_bdev_io *bdev_io;
2580 	struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
2581 
2582 	if (!spdk_bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
2583 		return -EINVAL;
2584 	}
2585 
2586 	bdev_io = spdk_bdev_get_io(channel);
2587 	if (!bdev_io) {
2588 		return -ENOMEM;
2589 	}
2590 
2591 	bdev_io->internal.ch = channel;
2592 	bdev_io->internal.desc = desc;
2593 	bdev_io->type = SPDK_BDEV_IO_TYPE_READ;
2594 	bdev_io->u.bdev.iovs = iov;
2595 	bdev_io->u.bdev.iovcnt = iovcnt;
2596 	bdev_io->u.bdev.num_blocks = num_blocks;
2597 	bdev_io->u.bdev.offset_blocks = offset_blocks;
2598 	spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
2599 
2600 	spdk_bdev_io_submit(bdev_io);
2601 	return 0;
2602 }
2603 
2604 int
2605 spdk_bdev_write(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
2606 		void *buf, uint64_t offset, uint64_t nbytes,
2607 		spdk_bdev_io_completion_cb cb, void *cb_arg)
2608 {
2609 	uint64_t offset_blocks, num_blocks;
2610 
2611 	if (spdk_bdev_bytes_to_blocks(desc->bdev, offset, &offset_blocks, nbytes, &num_blocks) != 0) {
2612 		return -EINVAL;
2613 	}
2614 
2615 	return spdk_bdev_write_blocks(desc, ch, buf, offset_blocks, num_blocks, cb, cb_arg);
2616 }
2617 
2618 int
2619 spdk_bdev_write_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
2620 		       void *buf, uint64_t offset_blocks, uint64_t num_blocks,
2621 		       spdk_bdev_io_completion_cb cb, void *cb_arg)
2622 {
2623 	struct spdk_bdev *bdev = desc->bdev;
2624 	struct spdk_bdev_io *bdev_io;
2625 	struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
2626 
2627 	if (!desc->write) {
2628 		return -EBADF;
2629 	}
2630 
2631 	if (!spdk_bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
2632 		return -EINVAL;
2633 	}
2634 
2635 	bdev_io = spdk_bdev_get_io(channel);
2636 	if (!bdev_io) {
2637 		return -ENOMEM;
2638 	}
2639 
2640 	bdev_io->internal.ch = channel;
2641 	bdev_io->internal.desc = desc;
2642 	bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE;
2643 	bdev_io->u.bdev.iovs = &bdev_io->iov;
2644 	bdev_io->u.bdev.iovs[0].iov_base = buf;
2645 	bdev_io->u.bdev.iovs[0].iov_len = num_blocks * bdev->blocklen;
2646 	bdev_io->u.bdev.iovcnt = 1;
2647 	bdev_io->u.bdev.num_blocks = num_blocks;
2648 	bdev_io->u.bdev.offset_blocks = offset_blocks;
2649 	spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
2650 
2651 	spdk_bdev_io_submit(bdev_io);
2652 	return 0;
2653 }
2654 
2655 int
2656 spdk_bdev_writev(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
2657 		 struct iovec *iov, int iovcnt,
2658 		 uint64_t offset, uint64_t len,
2659 		 spdk_bdev_io_completion_cb cb, void *cb_arg)
2660 {
2661 	uint64_t offset_blocks, num_blocks;
2662 
2663 	if (spdk_bdev_bytes_to_blocks(desc->bdev, offset, &offset_blocks, len, &num_blocks) != 0) {
2664 		return -EINVAL;
2665 	}
2666 
2667 	return spdk_bdev_writev_blocks(desc, ch, iov, iovcnt, offset_blocks, num_blocks, cb, cb_arg);
2668 }
2669 
2670 int
2671 spdk_bdev_writev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
2672 			struct iovec *iov, int iovcnt,
2673 			uint64_t offset_blocks, uint64_t num_blocks,
2674 			spdk_bdev_io_completion_cb cb, void *cb_arg)
2675 {
2676 	struct spdk_bdev *bdev = desc->bdev;
2677 	struct spdk_bdev_io *bdev_io;
2678 	struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
2679 
2680 	if (!desc->write) {
2681 		return -EBADF;
2682 	}
2683 
2684 	if (!spdk_bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
2685 		return -EINVAL;
2686 	}
2687 
2688 	bdev_io = spdk_bdev_get_io(channel);
2689 	if (!bdev_io) {
2690 		return -ENOMEM;
2691 	}
2692 
2693 	bdev_io->internal.ch = channel;
2694 	bdev_io->internal.desc = desc;
2695 	bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE;
2696 	bdev_io->u.bdev.iovs = iov;
2697 	bdev_io->u.bdev.iovcnt = iovcnt;
2698 	bdev_io->u.bdev.num_blocks = num_blocks;
2699 	bdev_io->u.bdev.offset_blocks = offset_blocks;
2700 	spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
2701 
2702 	spdk_bdev_io_submit(bdev_io);
2703 	return 0;
2704 }
2705 
2706 int
2707 spdk_bdev_write_zeroes(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
2708 		       uint64_t offset, uint64_t len,
2709 		       spdk_bdev_io_completion_cb cb, void *cb_arg)
2710 {
2711 	uint64_t offset_blocks, num_blocks;
2712 
2713 	if (spdk_bdev_bytes_to_blocks(desc->bdev, offset, &offset_blocks, len, &num_blocks) != 0) {
2714 		return -EINVAL;
2715 	}
2716 
2717 	return spdk_bdev_write_zeroes_blocks(desc, ch, offset_blocks, num_blocks, cb, cb_arg);
2718 }
2719 
2720 int
2721 spdk_bdev_write_zeroes_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
2722 			      uint64_t offset_blocks, uint64_t num_blocks,
2723 			      spdk_bdev_io_completion_cb cb, void *cb_arg)
2724 {
2725 	struct spdk_bdev *bdev = desc->bdev;
2726 	struct spdk_bdev_io *bdev_io;
2727 	struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
2728 
2729 	if (!desc->write) {
2730 		return -EBADF;
2731 	}
2732 
2733 	if (!spdk_bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
2734 		return -EINVAL;
2735 	}
2736 
2737 	bdev_io = spdk_bdev_get_io(channel);
2738 
2739 	if (!bdev_io) {
2740 		return -ENOMEM;
2741 	}
2742 
2743 	bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE_ZEROES;
2744 	bdev_io->internal.ch = channel;
2745 	bdev_io->internal.desc = desc;
2746 	bdev_io->u.bdev.offset_blocks = offset_blocks;
2747 	bdev_io->u.bdev.num_blocks = num_blocks;
2748 	spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
2749 
2750 	if (_spdk_bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE_ZEROES)) {
2751 		spdk_bdev_io_submit(bdev_io);
2752 		return 0;
2753 	} else if (_spdk_bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE)) {
2754 		assert(spdk_bdev_get_block_size(bdev) <= ZERO_BUFFER_SIZE);
2755 		bdev_io->u.bdev.split_remaining_num_blocks = num_blocks;
2756 		bdev_io->u.bdev.split_current_offset_blocks = offset_blocks;
2757 		_spdk_bdev_write_zero_buffer_next(bdev_io);
2758 		return 0;
2759 	} else {
2760 		spdk_bdev_free_io(bdev_io);
2761 		return -ENOTSUP;
2762 	}
2763 }
2764 
2765 int
2766 spdk_bdev_unmap(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
2767 		uint64_t offset, uint64_t nbytes,
2768 		spdk_bdev_io_completion_cb cb, void *cb_arg)
2769 {
2770 	uint64_t offset_blocks, num_blocks;
2771 
2772 	if (spdk_bdev_bytes_to_blocks(desc->bdev, offset, &offset_blocks, nbytes, &num_blocks) != 0) {
2773 		return -EINVAL;
2774 	}
2775 
2776 	return spdk_bdev_unmap_blocks(desc, ch, offset_blocks, num_blocks, cb, cb_arg);
2777 }
2778 
2779 int
2780 spdk_bdev_unmap_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
2781 		       uint64_t offset_blocks, uint64_t num_blocks,
2782 		       spdk_bdev_io_completion_cb cb, void *cb_arg)
2783 {
2784 	struct spdk_bdev *bdev = desc->bdev;
2785 	struct spdk_bdev_io *bdev_io;
2786 	struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
2787 
2788 	if (!desc->write) {
2789 		return -EBADF;
2790 	}
2791 
2792 	if (!spdk_bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
2793 		return -EINVAL;
2794 	}
2795 
2796 	if (num_blocks == 0) {
2797 		SPDK_ERRLOG("Can't unmap 0 bytes\n");
2798 		return -EINVAL;
2799 	}
2800 
2801 	bdev_io = spdk_bdev_get_io(channel);
2802 	if (!bdev_io) {
2803 		return -ENOMEM;
2804 	}
2805 
2806 	bdev_io->internal.ch = channel;
2807 	bdev_io->internal.desc = desc;
2808 	bdev_io->type = SPDK_BDEV_IO_TYPE_UNMAP;
2809 
2810 	bdev_io->u.bdev.iovs = &bdev_io->iov;
2811 	bdev_io->u.bdev.iovs[0].iov_base = NULL;
2812 	bdev_io->u.bdev.iovs[0].iov_len = 0;
2813 	bdev_io->u.bdev.iovcnt = 1;
2814 
2815 	bdev_io->u.bdev.offset_blocks = offset_blocks;
2816 	bdev_io->u.bdev.num_blocks = num_blocks;
2817 	spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
2818 
2819 	spdk_bdev_io_submit(bdev_io);
2820 	return 0;
2821 }
2822 
2823 int
2824 spdk_bdev_flush(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
2825 		uint64_t offset, uint64_t length,
2826 		spdk_bdev_io_completion_cb cb, void *cb_arg)
2827 {
2828 	uint64_t offset_blocks, num_blocks;
2829 
2830 	if (spdk_bdev_bytes_to_blocks(desc->bdev, offset, &offset_blocks, length, &num_blocks) != 0) {
2831 		return -EINVAL;
2832 	}
2833 
2834 	return spdk_bdev_flush_blocks(desc, ch, offset_blocks, num_blocks, cb, cb_arg);
2835 }
2836 
2837 int
2838 spdk_bdev_flush_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
2839 		       uint64_t offset_blocks, uint64_t num_blocks,
2840 		       spdk_bdev_io_completion_cb cb, void *cb_arg)
2841 {
2842 	struct spdk_bdev *bdev = desc->bdev;
2843 	struct spdk_bdev_io *bdev_io;
2844 	struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
2845 
2846 	if (!desc->write) {
2847 		return -EBADF;
2848 	}
2849 
2850 	if (!spdk_bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
2851 		return -EINVAL;
2852 	}
2853 
2854 	bdev_io = spdk_bdev_get_io(channel);
2855 	if (!bdev_io) {
2856 		return -ENOMEM;
2857 	}
2858 
2859 	bdev_io->internal.ch = channel;
2860 	bdev_io->internal.desc = desc;
2861 	bdev_io->type = SPDK_BDEV_IO_TYPE_FLUSH;
2862 	bdev_io->u.bdev.iovs = NULL;
2863 	bdev_io->u.bdev.iovcnt = 0;
2864 	bdev_io->u.bdev.offset_blocks = offset_blocks;
2865 	bdev_io->u.bdev.num_blocks = num_blocks;
2866 	spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
2867 
2868 	spdk_bdev_io_submit(bdev_io);
2869 	return 0;
2870 }
2871 
2872 static void
2873 _spdk_bdev_reset_dev(struct spdk_io_channel_iter *i, int status)
2874 {
2875 	struct spdk_bdev_channel *ch = spdk_io_channel_iter_get_ctx(i);
2876 	struct spdk_bdev_io *bdev_io;
2877 
2878 	bdev_io = TAILQ_FIRST(&ch->queued_resets);
2879 	TAILQ_REMOVE(&ch->queued_resets, bdev_io, internal.link);
2880 	spdk_bdev_io_submit_reset(bdev_io);
2881 }
2882 
2883 static void
2884 _spdk_bdev_reset_freeze_channel(struct spdk_io_channel_iter *i)
2885 {
2886 	struct spdk_io_channel		*ch;
2887 	struct spdk_bdev_channel	*channel;
2888 	struct spdk_bdev_mgmt_channel	*mgmt_channel;
2889 	struct spdk_bdev_shared_resource *shared_resource;
2890 	bdev_io_tailq_t			tmp_queued;
2891 
2892 	TAILQ_INIT(&tmp_queued);
2893 
2894 	ch = spdk_io_channel_iter_get_channel(i);
2895 	channel = spdk_io_channel_get_ctx(ch);
2896 	shared_resource = channel->shared_resource;
2897 	mgmt_channel = shared_resource->mgmt_ch;
2898 
2899 	channel->flags |= BDEV_CH_RESET_IN_PROGRESS;
2900 
2901 	if ((channel->flags & BDEV_CH_QOS_ENABLED) != 0) {
2902 		/* The QoS object is always valid and readable while
2903 		 * the channel flag is set, so the lock here should not
2904 		 * be necessary. We're not in the fast path though, so
2905 		 * just take it anyway. */
2906 		pthread_mutex_lock(&channel->bdev->internal.mutex);
2907 		if (channel->bdev->internal.qos->ch == channel) {
2908 			TAILQ_SWAP(&channel->bdev->internal.qos->queued, &tmp_queued, spdk_bdev_io, internal.link);
2909 		}
2910 		pthread_mutex_unlock(&channel->bdev->internal.mutex);
2911 	}
2912 
2913 	_spdk_bdev_abort_queued_io(&shared_resource->nomem_io, channel);
2914 	_spdk_bdev_abort_buf_io(&mgmt_channel->need_buf_small, channel);
2915 	_spdk_bdev_abort_buf_io(&mgmt_channel->need_buf_large, channel);
2916 	_spdk_bdev_abort_queued_io(&tmp_queued, channel);
2917 
2918 	spdk_for_each_channel_continue(i, 0);
2919 }
2920 
2921 static void
2922 _spdk_bdev_start_reset(void *ctx)
2923 {
2924 	struct spdk_bdev_channel *ch = ctx;
2925 
2926 	spdk_for_each_channel(__bdev_to_io_dev(ch->bdev), _spdk_bdev_reset_freeze_channel,
2927 			      ch, _spdk_bdev_reset_dev);
2928 }
2929 
2930 static void
2931 _spdk_bdev_channel_start_reset(struct spdk_bdev_channel *ch)
2932 {
2933 	struct spdk_bdev *bdev = ch->bdev;
2934 
2935 	assert(!TAILQ_EMPTY(&ch->queued_resets));
2936 
2937 	pthread_mutex_lock(&bdev->internal.mutex);
2938 	if (bdev->internal.reset_in_progress == NULL) {
2939 		bdev->internal.reset_in_progress = TAILQ_FIRST(&ch->queued_resets);
2940 		/*
2941 		 * Take a channel reference for the target bdev for the life of this
2942 		 *  reset.  This guards against the channel getting destroyed while
2943 		 *  spdk_for_each_channel() calls related to this reset IO are in
2944 		 *  progress.  We will release the reference when this reset is
2945 		 *  completed.
2946 		 */
2947 		bdev->internal.reset_in_progress->u.reset.ch_ref = spdk_get_io_channel(__bdev_to_io_dev(bdev));
2948 		_spdk_bdev_start_reset(ch);
2949 	}
2950 	pthread_mutex_unlock(&bdev->internal.mutex);
2951 }
2952 
2953 int
2954 spdk_bdev_reset(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
2955 		spdk_bdev_io_completion_cb cb, void *cb_arg)
2956 {
2957 	struct spdk_bdev *bdev = desc->bdev;
2958 	struct spdk_bdev_io *bdev_io;
2959 	struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
2960 
2961 	bdev_io = spdk_bdev_get_io(channel);
2962 	if (!bdev_io) {
2963 		return -ENOMEM;
2964 	}
2965 
2966 	bdev_io->internal.ch = channel;
2967 	bdev_io->internal.desc = desc;
2968 	bdev_io->type = SPDK_BDEV_IO_TYPE_RESET;
2969 	bdev_io->u.reset.ch_ref = NULL;
2970 	spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
2971 
2972 	pthread_mutex_lock(&bdev->internal.mutex);
2973 	TAILQ_INSERT_TAIL(&channel->queued_resets, bdev_io, internal.link);
2974 	pthread_mutex_unlock(&bdev->internal.mutex);
2975 
2976 	_spdk_bdev_channel_start_reset(channel);
2977 
2978 	return 0;
2979 }
2980 
2981 void
2982 spdk_bdev_get_io_stat(struct spdk_bdev *bdev, struct spdk_io_channel *ch,
2983 		      struct spdk_bdev_io_stat *stat)
2984 {
2985 	struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
2986 
2987 	*stat = channel->stat;
2988 }
2989 
2990 static void
2991 _spdk_bdev_get_device_stat_done(struct spdk_io_channel_iter *i, int status)
2992 {
2993 	void *io_device = spdk_io_channel_iter_get_io_device(i);
2994 	struct spdk_bdev_iostat_ctx *bdev_iostat_ctx = spdk_io_channel_iter_get_ctx(i);
2995 
2996 	bdev_iostat_ctx->cb(__bdev_from_io_dev(io_device), bdev_iostat_ctx->stat,
2997 			    bdev_iostat_ctx->cb_arg, 0);
2998 	free(bdev_iostat_ctx);
2999 }
3000 
3001 static void
3002 _spdk_bdev_get_each_channel_stat(struct spdk_io_channel_iter *i)
3003 {
3004 	struct spdk_bdev_iostat_ctx *bdev_iostat_ctx = spdk_io_channel_iter_get_ctx(i);
3005 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
3006 	struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
3007 
3008 	_spdk_bdev_io_stat_add(bdev_iostat_ctx->stat, &channel->stat);
3009 	spdk_for_each_channel_continue(i, 0);
3010 }
3011 
3012 void
3013 spdk_bdev_get_device_stat(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat,
3014 			  spdk_bdev_get_device_stat_cb cb, void *cb_arg)
3015 {
3016 	struct spdk_bdev_iostat_ctx *bdev_iostat_ctx;
3017 
3018 	assert(bdev != NULL);
3019 	assert(stat != NULL);
3020 	assert(cb != NULL);
3021 
3022 	bdev_iostat_ctx = calloc(1, sizeof(struct spdk_bdev_iostat_ctx));
3023 	if (bdev_iostat_ctx == NULL) {
3024 		SPDK_ERRLOG("Unable to allocate memory for spdk_bdev_iostat_ctx\n");
3025 		cb(bdev, stat, cb_arg, -ENOMEM);
3026 		return;
3027 	}
3028 
3029 	bdev_iostat_ctx->stat = stat;
3030 	bdev_iostat_ctx->cb = cb;
3031 	bdev_iostat_ctx->cb_arg = cb_arg;
3032 
3033 	/* Start with the statistics from previously deleted channels. */
3034 	pthread_mutex_lock(&bdev->internal.mutex);
3035 	_spdk_bdev_io_stat_add(bdev_iostat_ctx->stat, &bdev->internal.stat);
3036 	pthread_mutex_unlock(&bdev->internal.mutex);
3037 
3038 	/* Then iterate and add the statistics from each existing channel. */
3039 	spdk_for_each_channel(__bdev_to_io_dev(bdev),
3040 			      _spdk_bdev_get_each_channel_stat,
3041 			      bdev_iostat_ctx,
3042 			      _spdk_bdev_get_device_stat_done);
3043 }
3044 
3045 int
3046 spdk_bdev_nvme_admin_passthru(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
3047 			      const struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes,
3048 			      spdk_bdev_io_completion_cb cb, void *cb_arg)
3049 {
3050 	struct spdk_bdev *bdev = desc->bdev;
3051 	struct spdk_bdev_io *bdev_io;
3052 	struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
3053 
3054 	if (!desc->write) {
3055 		return -EBADF;
3056 	}
3057 
3058 	bdev_io = spdk_bdev_get_io(channel);
3059 	if (!bdev_io) {
3060 		return -ENOMEM;
3061 	}
3062 
3063 	bdev_io->internal.ch = channel;
3064 	bdev_io->internal.desc = desc;
3065 	bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_ADMIN;
3066 	bdev_io->u.nvme_passthru.cmd = *cmd;
3067 	bdev_io->u.nvme_passthru.buf = buf;
3068 	bdev_io->u.nvme_passthru.nbytes = nbytes;
3069 	bdev_io->u.nvme_passthru.md_buf = NULL;
3070 	bdev_io->u.nvme_passthru.md_len = 0;
3071 
3072 	spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
3073 
3074 	spdk_bdev_io_submit(bdev_io);
3075 	return 0;
3076 }
3077 
3078 int
3079 spdk_bdev_nvme_io_passthru(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
3080 			   const struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes,
3081 			   spdk_bdev_io_completion_cb cb, void *cb_arg)
3082 {
3083 	struct spdk_bdev *bdev = desc->bdev;
3084 	struct spdk_bdev_io *bdev_io;
3085 	struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
3086 
3087 	if (!desc->write) {
3088 		/*
3089 		 * Do not try to parse the NVMe command - we could maybe use bits in the opcode
3090 		 *  to easily determine if the command is a read or write, but for now just
3091 		 *  do not allow io_passthru with a read-only descriptor.
3092 		 */
3093 		return -EBADF;
3094 	}
3095 
3096 	bdev_io = spdk_bdev_get_io(channel);
3097 	if (!bdev_io) {
3098 		return -ENOMEM;
3099 	}
3100 
3101 	bdev_io->internal.ch = channel;
3102 	bdev_io->internal.desc = desc;
3103 	bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_IO;
3104 	bdev_io->u.nvme_passthru.cmd = *cmd;
3105 	bdev_io->u.nvme_passthru.buf = buf;
3106 	bdev_io->u.nvme_passthru.nbytes = nbytes;
3107 	bdev_io->u.nvme_passthru.md_buf = NULL;
3108 	bdev_io->u.nvme_passthru.md_len = 0;
3109 
3110 	spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
3111 
3112 	spdk_bdev_io_submit(bdev_io);
3113 	return 0;
3114 }
3115 
3116 int
3117 spdk_bdev_nvme_io_passthru_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
3118 			      const struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, void *md_buf, size_t md_len,
3119 			      spdk_bdev_io_completion_cb cb, void *cb_arg)
3120 {
3121 	struct spdk_bdev *bdev = desc->bdev;
3122 	struct spdk_bdev_io *bdev_io;
3123 	struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
3124 
3125 	if (!desc->write) {
3126 		/*
3127 		 * Do not try to parse the NVMe command - we could maybe use bits in the opcode
3128 		 *  to easily determine if the command is a read or write, but for now just
3129 		 *  do not allow io_passthru with a read-only descriptor.
3130 		 */
3131 		return -EBADF;
3132 	}
3133 
3134 	bdev_io = spdk_bdev_get_io(channel);
3135 	if (!bdev_io) {
3136 		return -ENOMEM;
3137 	}
3138 
3139 	bdev_io->internal.ch = channel;
3140 	bdev_io->internal.desc = desc;
3141 	bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_IO_MD;
3142 	bdev_io->u.nvme_passthru.cmd = *cmd;
3143 	bdev_io->u.nvme_passthru.buf = buf;
3144 	bdev_io->u.nvme_passthru.nbytes = nbytes;
3145 	bdev_io->u.nvme_passthru.md_buf = md_buf;
3146 	bdev_io->u.nvme_passthru.md_len = md_len;
3147 
3148 	spdk_bdev_io_init(bdev_io, bdev, cb_arg, cb);
3149 
3150 	spdk_bdev_io_submit(bdev_io);
3151 	return 0;
3152 }
3153 
3154 int
3155 spdk_bdev_queue_io_wait(struct spdk_bdev *bdev, struct spdk_io_channel *ch,
3156 			struct spdk_bdev_io_wait_entry *entry)
3157 {
3158 	struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
3159 	struct spdk_bdev_mgmt_channel *mgmt_ch = channel->shared_resource->mgmt_ch;
3160 
3161 	if (bdev != entry->bdev) {
3162 		SPDK_ERRLOG("bdevs do not match\n");
3163 		return -EINVAL;
3164 	}
3165 
3166 	if (mgmt_ch->per_thread_cache_count > 0) {
3167 		SPDK_ERRLOG("Cannot queue io_wait if spdk_bdev_io available in per-thread cache\n");
3168 		return -EINVAL;
3169 	}
3170 
3171 	TAILQ_INSERT_TAIL(&mgmt_ch->io_wait_queue, entry, link);
3172 	return 0;
3173 }
3174 
3175 static void
3176 _spdk_bdev_ch_retry_io(struct spdk_bdev_channel *bdev_ch)
3177 {
3178 	struct spdk_bdev *bdev = bdev_ch->bdev;
3179 	struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource;
3180 	struct spdk_bdev_io *bdev_io;
3181 
3182 	if (shared_resource->io_outstanding > shared_resource->nomem_threshold) {
3183 		/*
3184 		 * Allow some more I/O to complete before retrying the nomem_io queue.
3185 		 *  Some drivers (such as nvme) cannot immediately take a new I/O in
3186 		 *  the context of a completion, because the resources for the I/O are
3187 		 *  not released until control returns to the bdev poller.  Also, we
3188 		 *  may require several small I/O to complete before a larger I/O
3189 		 *  (that requires splitting) can be submitted.
3190 		 */
3191 		return;
3192 	}
3193 
3194 	while (!TAILQ_EMPTY(&shared_resource->nomem_io)) {
3195 		bdev_io = TAILQ_FIRST(&shared_resource->nomem_io);
3196 		TAILQ_REMOVE(&shared_resource->nomem_io, bdev_io, internal.link);
3197 		bdev_io->internal.ch->io_outstanding++;
3198 		shared_resource->io_outstanding++;
3199 		bdev_io->internal.status = SPDK_BDEV_IO_STATUS_PENDING;
3200 		bdev->fn_table->submit_request(bdev_io->internal.ch->channel, bdev_io);
3201 		if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_NOMEM) {
3202 			break;
3203 		}
3204 	}
3205 }
3206 
3207 static inline void
3208 _spdk_bdev_io_complete(void *ctx)
3209 {
3210 	struct spdk_bdev_io *bdev_io = ctx;
3211 	uint64_t tsc, tsc_diff;
3212 
3213 	if (spdk_unlikely(bdev_io->internal.in_submit_request || bdev_io->internal.io_submit_ch)) {
3214 		/*
3215 		 * Send the completion to the thread that originally submitted the I/O,
3216 		 * which may not be the current thread in the case of QoS.
3217 		 */
3218 		if (bdev_io->internal.io_submit_ch) {
3219 			bdev_io->internal.ch = bdev_io->internal.io_submit_ch;
3220 			bdev_io->internal.io_submit_ch = NULL;
3221 		}
3222 
3223 		/*
3224 		 * Defer completion to avoid potential infinite recursion if the
3225 		 * user's completion callback issues a new I/O.
3226 		 */
3227 		spdk_thread_send_msg(spdk_io_channel_get_thread(bdev_io->internal.ch->channel),
3228 				     _spdk_bdev_io_complete, bdev_io);
3229 		return;
3230 	}
3231 
3232 	tsc = spdk_get_ticks();
3233 	tsc_diff = tsc - bdev_io->internal.submit_tsc;
3234 	spdk_trace_record_tsc(tsc, TRACE_BDEV_IO_DONE, 0, 0, (uintptr_t)bdev_io, 0);
3235 
3236 	if (bdev_io->internal.ch->histogram) {
3237 		spdk_histogram_data_tally(bdev_io->internal.ch->histogram, tsc_diff);
3238 	}
3239 
3240 	if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) {
3241 		switch (bdev_io->type) {
3242 		case SPDK_BDEV_IO_TYPE_READ:
3243 			bdev_io->internal.ch->stat.bytes_read += bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen;
3244 			bdev_io->internal.ch->stat.num_read_ops++;
3245 			bdev_io->internal.ch->stat.read_latency_ticks += tsc_diff;
3246 			break;
3247 		case SPDK_BDEV_IO_TYPE_WRITE:
3248 			bdev_io->internal.ch->stat.bytes_written += bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen;
3249 			bdev_io->internal.ch->stat.num_write_ops++;
3250 			bdev_io->internal.ch->stat.write_latency_ticks += tsc_diff;
3251 			break;
3252 		case SPDK_BDEV_IO_TYPE_UNMAP:
3253 			bdev_io->internal.ch->stat.bytes_unmapped += bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen;
3254 			bdev_io->internal.ch->stat.num_unmap_ops++;
3255 			bdev_io->internal.ch->stat.unmap_latency_ticks += tsc_diff;
3256 		default:
3257 			break;
3258 		}
3259 	}
3260 
3261 #ifdef SPDK_CONFIG_VTUNE
3262 	uint64_t now_tsc = spdk_get_ticks();
3263 	if (now_tsc > (bdev_io->internal.ch->start_tsc + bdev_io->internal.ch->interval_tsc)) {
3264 		uint64_t data[5];
3265 
3266 		data[0] = bdev_io->internal.ch->stat.num_read_ops - bdev_io->internal.ch->prev_stat.num_read_ops;
3267 		data[1] = bdev_io->internal.ch->stat.bytes_read - bdev_io->internal.ch->prev_stat.bytes_read;
3268 		data[2] = bdev_io->internal.ch->stat.num_write_ops - bdev_io->internal.ch->prev_stat.num_write_ops;
3269 		data[3] = bdev_io->internal.ch->stat.bytes_written - bdev_io->internal.ch->prev_stat.bytes_written;
3270 		data[4] = bdev_io->bdev->fn_table->get_spin_time ?
3271 			  bdev_io->bdev->fn_table->get_spin_time(bdev_io->internal.ch->channel) : 0;
3272 
3273 		__itt_metadata_add(g_bdev_mgr.domain, __itt_null, bdev_io->internal.ch->handle,
3274 				   __itt_metadata_u64, 5, data);
3275 
3276 		bdev_io->internal.ch->prev_stat = bdev_io->internal.ch->stat;
3277 		bdev_io->internal.ch->start_tsc = now_tsc;
3278 	}
3279 #endif
3280 
3281 	assert(bdev_io->internal.cb != NULL);
3282 	assert(spdk_get_thread() == spdk_io_channel_get_thread(bdev_io->internal.ch->channel));
3283 
3284 	bdev_io->internal.cb(bdev_io, bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS,
3285 			     bdev_io->internal.caller_ctx);
3286 }
3287 
3288 static void
3289 _spdk_bdev_reset_complete(struct spdk_io_channel_iter *i, int status)
3290 {
3291 	struct spdk_bdev_io *bdev_io = spdk_io_channel_iter_get_ctx(i);
3292 
3293 	if (bdev_io->u.reset.ch_ref != NULL) {
3294 		spdk_put_io_channel(bdev_io->u.reset.ch_ref);
3295 		bdev_io->u.reset.ch_ref = NULL;
3296 	}
3297 
3298 	_spdk_bdev_io_complete(bdev_io);
3299 }
3300 
3301 static void
3302 _spdk_bdev_unfreeze_channel(struct spdk_io_channel_iter *i)
3303 {
3304 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
3305 	struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch);
3306 
3307 	ch->flags &= ~BDEV_CH_RESET_IN_PROGRESS;
3308 	if (!TAILQ_EMPTY(&ch->queued_resets)) {
3309 		_spdk_bdev_channel_start_reset(ch);
3310 	}
3311 
3312 	spdk_for_each_channel_continue(i, 0);
3313 }
3314 
3315 void
3316 spdk_bdev_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status)
3317 {
3318 	struct spdk_bdev *bdev = bdev_io->bdev;
3319 	struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch;
3320 	struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource;
3321 
3322 	bdev_io->internal.status = status;
3323 
3324 	if (spdk_unlikely(bdev_io->type == SPDK_BDEV_IO_TYPE_RESET)) {
3325 		bool unlock_channels = false;
3326 
3327 		if (status == SPDK_BDEV_IO_STATUS_NOMEM) {
3328 			SPDK_ERRLOG("NOMEM returned for reset\n");
3329 		}
3330 		pthread_mutex_lock(&bdev->internal.mutex);
3331 		if (bdev_io == bdev->internal.reset_in_progress) {
3332 			bdev->internal.reset_in_progress = NULL;
3333 			unlock_channels = true;
3334 		}
3335 		pthread_mutex_unlock(&bdev->internal.mutex);
3336 
3337 		if (unlock_channels) {
3338 			spdk_for_each_channel(__bdev_to_io_dev(bdev), _spdk_bdev_unfreeze_channel,
3339 					      bdev_io, _spdk_bdev_reset_complete);
3340 			return;
3341 		}
3342 	} else {
3343 		if (spdk_unlikely(bdev_io->internal.orig_iovcnt > 0)) {
3344 			_bdev_io_unset_bounce_buf(bdev_io);
3345 		}
3346 
3347 		assert(bdev_ch->io_outstanding > 0);
3348 		assert(shared_resource->io_outstanding > 0);
3349 		bdev_ch->io_outstanding--;
3350 		shared_resource->io_outstanding--;
3351 
3352 		if (spdk_unlikely(status == SPDK_BDEV_IO_STATUS_NOMEM)) {
3353 			TAILQ_INSERT_HEAD(&shared_resource->nomem_io, bdev_io, internal.link);
3354 			/*
3355 			 * Wait for some of the outstanding I/O to complete before we
3356 			 *  retry any of the nomem_io.  Normally we will wait for
3357 			 *  NOMEM_THRESHOLD_COUNT I/O to complete but for low queue
3358 			 *  depth channels we will instead wait for half to complete.
3359 			 */
3360 			shared_resource->nomem_threshold = spdk_max((int64_t)shared_resource->io_outstanding / 2,
3361 							   (int64_t)shared_resource->io_outstanding - NOMEM_THRESHOLD_COUNT);
3362 			return;
3363 		}
3364 
3365 		if (spdk_unlikely(!TAILQ_EMPTY(&shared_resource->nomem_io))) {
3366 			_spdk_bdev_ch_retry_io(bdev_ch);
3367 		}
3368 	}
3369 
3370 	_spdk_bdev_io_complete(bdev_io);
3371 }
3372 
3373 void
3374 spdk_bdev_io_complete_scsi_status(struct spdk_bdev_io *bdev_io, enum spdk_scsi_status sc,
3375 				  enum spdk_scsi_sense sk, uint8_t asc, uint8_t ascq)
3376 {
3377 	if (sc == SPDK_SCSI_STATUS_GOOD) {
3378 		bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS;
3379 	} else {
3380 		bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SCSI_ERROR;
3381 		bdev_io->internal.error.scsi.sc = sc;
3382 		bdev_io->internal.error.scsi.sk = sk;
3383 		bdev_io->internal.error.scsi.asc = asc;
3384 		bdev_io->internal.error.scsi.ascq = ascq;
3385 	}
3386 
3387 	spdk_bdev_io_complete(bdev_io, bdev_io->internal.status);
3388 }
3389 
3390 void
3391 spdk_bdev_io_get_scsi_status(const struct spdk_bdev_io *bdev_io,
3392 			     int *sc, int *sk, int *asc, int *ascq)
3393 {
3394 	assert(sc != NULL);
3395 	assert(sk != NULL);
3396 	assert(asc != NULL);
3397 	assert(ascq != NULL);
3398 
3399 	switch (bdev_io->internal.status) {
3400 	case SPDK_BDEV_IO_STATUS_SUCCESS:
3401 		*sc = SPDK_SCSI_STATUS_GOOD;
3402 		*sk = SPDK_SCSI_SENSE_NO_SENSE;
3403 		*asc = SPDK_SCSI_ASC_NO_ADDITIONAL_SENSE;
3404 		*ascq = SPDK_SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
3405 		break;
3406 	case SPDK_BDEV_IO_STATUS_NVME_ERROR:
3407 		spdk_scsi_nvme_translate(bdev_io, sc, sk, asc, ascq);
3408 		break;
3409 	case SPDK_BDEV_IO_STATUS_SCSI_ERROR:
3410 		*sc = bdev_io->internal.error.scsi.sc;
3411 		*sk = bdev_io->internal.error.scsi.sk;
3412 		*asc = bdev_io->internal.error.scsi.asc;
3413 		*ascq = bdev_io->internal.error.scsi.ascq;
3414 		break;
3415 	default:
3416 		*sc = SPDK_SCSI_STATUS_CHECK_CONDITION;
3417 		*sk = SPDK_SCSI_SENSE_ABORTED_COMMAND;
3418 		*asc = SPDK_SCSI_ASC_NO_ADDITIONAL_SENSE;
3419 		*ascq = SPDK_SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
3420 		break;
3421 	}
3422 }
3423 
3424 void
3425 spdk_bdev_io_complete_nvme_status(struct spdk_bdev_io *bdev_io, int sct, int sc)
3426 {
3427 	if (sct == SPDK_NVME_SCT_GENERIC && sc == SPDK_NVME_SC_SUCCESS) {
3428 		bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS;
3429 	} else {
3430 		bdev_io->internal.error.nvme.sct = sct;
3431 		bdev_io->internal.error.nvme.sc = sc;
3432 		bdev_io->internal.status = SPDK_BDEV_IO_STATUS_NVME_ERROR;
3433 	}
3434 
3435 	spdk_bdev_io_complete(bdev_io, bdev_io->internal.status);
3436 }
3437 
3438 void
3439 spdk_bdev_io_get_nvme_status(const struct spdk_bdev_io *bdev_io, int *sct, int *sc)
3440 {
3441 	assert(sct != NULL);
3442 	assert(sc != NULL);
3443 
3444 	if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_NVME_ERROR) {
3445 		*sct = bdev_io->internal.error.nvme.sct;
3446 		*sc = bdev_io->internal.error.nvme.sc;
3447 	} else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) {
3448 		*sct = SPDK_NVME_SCT_GENERIC;
3449 		*sc = SPDK_NVME_SC_SUCCESS;
3450 	} else {
3451 		*sct = SPDK_NVME_SCT_GENERIC;
3452 		*sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
3453 	}
3454 }
3455 
3456 struct spdk_thread *
3457 spdk_bdev_io_get_thread(struct spdk_bdev_io *bdev_io)
3458 {
3459 	return spdk_io_channel_get_thread(bdev_io->internal.ch->channel);
3460 }
3461 
3462 struct spdk_io_channel *
3463 spdk_bdev_io_get_io_channel(struct spdk_bdev_io *bdev_io)
3464 {
3465 	return bdev_io->internal.ch->channel;
3466 }
3467 
3468 static void
3469 _spdk_bdev_qos_config_limit(struct spdk_bdev *bdev, uint64_t *limits)
3470 {
3471 	uint64_t	min_qos_set;
3472 	int		i;
3473 
3474 	for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
3475 		if (limits[i] != SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) {
3476 			break;
3477 		}
3478 	}
3479 
3480 	if (i == SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES) {
3481 		SPDK_ERRLOG("Invalid rate limits set.\n");
3482 		return;
3483 	}
3484 
3485 	for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
3486 		if (limits[i] == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) {
3487 			continue;
3488 		}
3489 
3490 		if (_spdk_bdev_qos_is_iops_rate_limit(i) == true) {
3491 			min_qos_set = SPDK_BDEV_QOS_MIN_IOS_PER_SEC;
3492 		} else {
3493 			min_qos_set = SPDK_BDEV_QOS_MIN_BYTES_PER_SEC;
3494 		}
3495 
3496 		if (limits[i] == 0 || limits[i] % min_qos_set) {
3497 			SPDK_ERRLOG("Assigned limit %" PRIu64 " on bdev %s is not multiple of %" PRIu64 "\n",
3498 				    limits[i], bdev->name, min_qos_set);
3499 			SPDK_ERRLOG("Failed to enable QoS on this bdev %s\n", bdev->name);
3500 			return;
3501 		}
3502 	}
3503 
3504 	if (!bdev->internal.qos) {
3505 		bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos));
3506 		if (!bdev->internal.qos) {
3507 			SPDK_ERRLOG("Unable to allocate memory for QoS tracking\n");
3508 			return;
3509 		}
3510 	}
3511 
3512 	for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
3513 		bdev->internal.qos->rate_limits[i].limit = limits[i];
3514 		SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Bdev:%s QoS type:%d set:%lu\n",
3515 			      bdev->name, i, limits[i]);
3516 	}
3517 
3518 	return;
3519 }
3520 
3521 static void
3522 _spdk_bdev_qos_config(struct spdk_bdev *bdev)
3523 {
3524 	struct spdk_conf_section	*sp = NULL;
3525 	const char			*val = NULL;
3526 	int				i = 0, j = 0;
3527 	uint64_t			limits[SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES] = {};
3528 	bool				config_qos = false;
3529 
3530 	sp = spdk_conf_find_section(NULL, "QoS");
3531 	if (!sp) {
3532 		return;
3533 	}
3534 
3535 	while (j < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES) {
3536 		limits[j] = SPDK_BDEV_QOS_LIMIT_NOT_DEFINED;
3537 
3538 		i = 0;
3539 		while (true) {
3540 			val = spdk_conf_section_get_nmval(sp, qos_conf_type[j], i, 0);
3541 			if (!val) {
3542 				break;
3543 			}
3544 
3545 			if (strcmp(bdev->name, val) != 0) {
3546 				i++;
3547 				continue;
3548 			}
3549 
3550 			val = spdk_conf_section_get_nmval(sp, qos_conf_type[j], i, 1);
3551 			if (val) {
3552 				if (_spdk_bdev_qos_is_iops_rate_limit(j) == true) {
3553 					limits[j] = strtoull(val, NULL, 10);
3554 				} else {
3555 					limits[j] = strtoull(val, NULL, 10) * 1024 * 1024;
3556 				}
3557 				config_qos = true;
3558 			}
3559 
3560 			break;
3561 		}
3562 
3563 		j++;
3564 	}
3565 
3566 	if (config_qos == true) {
3567 		_spdk_bdev_qos_config_limit(bdev, limits);
3568 	}
3569 
3570 	return;
3571 }
3572 
3573 static int
3574 spdk_bdev_init(struct spdk_bdev *bdev)
3575 {
3576 	char *bdev_name;
3577 
3578 	assert(bdev->module != NULL);
3579 
3580 	if (!bdev->name) {
3581 		SPDK_ERRLOG("Bdev name is NULL\n");
3582 		return -EINVAL;
3583 	}
3584 
3585 	if (spdk_bdev_get_by_name(bdev->name)) {
3586 		SPDK_ERRLOG("Bdev name:%s already exists\n", bdev->name);
3587 		return -EEXIST;
3588 	}
3589 
3590 	/* Users often register their own I/O devices using the bdev name. In
3591 	 * order to avoid conflicts, prepend bdev_. */
3592 	bdev_name = spdk_sprintf_alloc("bdev_%s", bdev->name);
3593 	if (!bdev_name) {
3594 		SPDK_ERRLOG("Unable to allocate memory for internal bdev name.\n");
3595 		return -ENOMEM;
3596 	}
3597 
3598 	bdev->internal.status = SPDK_BDEV_STATUS_READY;
3599 	bdev->internal.measured_queue_depth = UINT64_MAX;
3600 	bdev->internal.claim_module = NULL;
3601 	bdev->internal.qd_poller = NULL;
3602 	bdev->internal.qos = NULL;
3603 
3604 	if (spdk_bdev_get_buf_align(bdev) > 1) {
3605 		if (bdev->split_on_optimal_io_boundary) {
3606 			bdev->optimal_io_boundary = spdk_min(bdev->optimal_io_boundary,
3607 							     SPDK_BDEV_LARGE_BUF_MAX_SIZE / bdev->blocklen);
3608 		} else {
3609 			bdev->split_on_optimal_io_boundary = true;
3610 			bdev->optimal_io_boundary = SPDK_BDEV_LARGE_BUF_MAX_SIZE / bdev->blocklen;
3611 		}
3612 	}
3613 
3614 	TAILQ_INIT(&bdev->internal.open_descs);
3615 
3616 	TAILQ_INIT(&bdev->aliases);
3617 
3618 	bdev->internal.reset_in_progress = NULL;
3619 
3620 	_spdk_bdev_qos_config(bdev);
3621 
3622 	spdk_io_device_register(__bdev_to_io_dev(bdev),
3623 				spdk_bdev_channel_create, spdk_bdev_channel_destroy,
3624 				sizeof(struct spdk_bdev_channel),
3625 				bdev_name);
3626 
3627 	free(bdev_name);
3628 
3629 	pthread_mutex_init(&bdev->internal.mutex, NULL);
3630 	return 0;
3631 }
3632 
3633 static void
3634 spdk_bdev_destroy_cb(void *io_device)
3635 {
3636 	int			rc;
3637 	struct spdk_bdev	*bdev;
3638 	spdk_bdev_unregister_cb	cb_fn;
3639 	void			*cb_arg;
3640 
3641 	bdev = __bdev_from_io_dev(io_device);
3642 	cb_fn = bdev->internal.unregister_cb;
3643 	cb_arg = bdev->internal.unregister_ctx;
3644 
3645 	rc = bdev->fn_table->destruct(bdev->ctxt);
3646 	if (rc < 0) {
3647 		SPDK_ERRLOG("destruct failed\n");
3648 	}
3649 	if (rc <= 0 && cb_fn != NULL) {
3650 		cb_fn(cb_arg, rc);
3651 	}
3652 }
3653 
3654 
3655 static void
3656 spdk_bdev_fini(struct spdk_bdev *bdev)
3657 {
3658 	pthread_mutex_destroy(&bdev->internal.mutex);
3659 
3660 	free(bdev->internal.qos);
3661 
3662 	spdk_io_device_unregister(__bdev_to_io_dev(bdev), spdk_bdev_destroy_cb);
3663 }
3664 
3665 static void
3666 spdk_bdev_start(struct spdk_bdev *bdev)
3667 {
3668 	struct spdk_bdev_module *module;
3669 	uint32_t action;
3670 
3671 	SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Inserting bdev %s into list\n", bdev->name);
3672 	TAILQ_INSERT_TAIL(&g_bdev_mgr.bdevs, bdev, internal.link);
3673 
3674 	/* Examine configuration before initializing I/O */
3675 	TAILQ_FOREACH(module, &g_bdev_mgr.bdev_modules, internal.tailq) {
3676 		if (module->examine_config) {
3677 			action = module->internal.action_in_progress;
3678 			module->internal.action_in_progress++;
3679 			module->examine_config(bdev);
3680 			if (action != module->internal.action_in_progress) {
3681 				SPDK_ERRLOG("examine_config for module %s did not call spdk_bdev_module_examine_done()\n",
3682 					    module->name);
3683 			}
3684 		}
3685 	}
3686 
3687 	if (bdev->internal.claim_module) {
3688 		return;
3689 	}
3690 
3691 	TAILQ_FOREACH(module, &g_bdev_mgr.bdev_modules, internal.tailq) {
3692 		if (module->examine_disk) {
3693 			module->internal.action_in_progress++;
3694 			module->examine_disk(bdev);
3695 		}
3696 	}
3697 }
3698 
3699 int
3700 spdk_bdev_register(struct spdk_bdev *bdev)
3701 {
3702 	int rc = spdk_bdev_init(bdev);
3703 
3704 	if (rc == 0) {
3705 		spdk_bdev_start(bdev);
3706 	}
3707 
3708 	return rc;
3709 }
3710 
3711 int
3712 spdk_vbdev_register(struct spdk_bdev *vbdev, struct spdk_bdev **base_bdevs, int base_bdev_count)
3713 {
3714 	int rc;
3715 
3716 	rc = spdk_bdev_init(vbdev);
3717 	if (rc) {
3718 		return rc;
3719 	}
3720 
3721 	spdk_bdev_start(vbdev);
3722 	return 0;
3723 }
3724 
3725 void
3726 spdk_bdev_destruct_done(struct spdk_bdev *bdev, int bdeverrno)
3727 {
3728 	if (bdev->internal.unregister_cb != NULL) {
3729 		bdev->internal.unregister_cb(bdev->internal.unregister_ctx, bdeverrno);
3730 	}
3731 }
3732 
3733 static void
3734 _remove_notify(void *arg)
3735 {
3736 	struct spdk_bdev_desc *desc = arg;
3737 
3738 	desc->remove_scheduled = false;
3739 
3740 	if (desc->closed) {
3741 		free(desc);
3742 	} else {
3743 		desc->remove_cb(desc->remove_ctx);
3744 	}
3745 }
3746 
3747 void
3748 spdk_bdev_unregister(struct spdk_bdev *bdev, spdk_bdev_unregister_cb cb_fn, void *cb_arg)
3749 {
3750 	struct spdk_bdev_desc	*desc, *tmp;
3751 	bool			do_destruct = true;
3752 	struct spdk_thread	*thread;
3753 
3754 	SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Removing bdev %s from list\n", bdev->name);
3755 
3756 	thread = spdk_get_thread();
3757 	if (!thread) {
3758 		/* The user called this from a non-SPDK thread. */
3759 		if (cb_fn != NULL) {
3760 			cb_fn(cb_arg, -ENOTSUP);
3761 		}
3762 		return;
3763 	}
3764 
3765 	pthread_mutex_lock(&bdev->internal.mutex);
3766 
3767 	bdev->internal.status = SPDK_BDEV_STATUS_REMOVING;
3768 	bdev->internal.unregister_cb = cb_fn;
3769 	bdev->internal.unregister_ctx = cb_arg;
3770 
3771 	TAILQ_FOREACH_SAFE(desc, &bdev->internal.open_descs, link, tmp) {
3772 		if (desc->remove_cb) {
3773 			do_destruct = false;
3774 			/*
3775 			 * Defer invocation of the remove_cb to a separate message that will
3776 			 *  run later on its thread.  This ensures this context unwinds and
3777 			 *  we don't recursively unregister this bdev again if the remove_cb
3778 			 *  immediately closes its descriptor.
3779 			 */
3780 			if (!desc->remove_scheduled) {
3781 				/* Avoid scheduling removal of the same descriptor multiple times. */
3782 				desc->remove_scheduled = true;
3783 				spdk_thread_send_msg(desc->thread, _remove_notify, desc);
3784 			}
3785 		}
3786 	}
3787 
3788 	if (!do_destruct) {
3789 		pthread_mutex_unlock(&bdev->internal.mutex);
3790 		return;
3791 	}
3792 
3793 	TAILQ_REMOVE(&g_bdev_mgr.bdevs, bdev, internal.link);
3794 	pthread_mutex_unlock(&bdev->internal.mutex);
3795 
3796 	spdk_bdev_fini(bdev);
3797 }
3798 
3799 int
3800 spdk_bdev_open(struct spdk_bdev *bdev, bool write, spdk_bdev_remove_cb_t remove_cb,
3801 	       void *remove_ctx, struct spdk_bdev_desc **_desc)
3802 {
3803 	struct spdk_bdev_desc *desc;
3804 	struct spdk_thread *thread;
3805 
3806 	thread = spdk_get_thread();
3807 	if (!thread) {
3808 		SPDK_ERRLOG("Cannot open bdev from non-SPDK thread.\n");
3809 		return -ENOTSUP;
3810 	}
3811 
3812 	desc = calloc(1, sizeof(*desc));
3813 	if (desc == NULL) {
3814 		SPDK_ERRLOG("Failed to allocate memory for bdev descriptor\n");
3815 		return -ENOMEM;
3816 	}
3817 
3818 	SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Opening descriptor %p for bdev %s on thread %p\n", desc, bdev->name,
3819 		      spdk_get_thread());
3820 
3821 	desc->bdev = bdev;
3822 	desc->thread = thread;
3823 	desc->remove_cb = remove_cb;
3824 	desc->remove_ctx = remove_ctx;
3825 	desc->write = write;
3826 	*_desc = desc;
3827 
3828 	pthread_mutex_lock(&bdev->internal.mutex);
3829 
3830 	if (write && bdev->internal.claim_module) {
3831 		SPDK_ERRLOG("Could not open %s - %s module already claimed it\n",
3832 			    bdev->name, bdev->internal.claim_module->name);
3833 		pthread_mutex_unlock(&bdev->internal.mutex);
3834 		free(desc);
3835 		*_desc = NULL;
3836 		return -EPERM;
3837 	}
3838 
3839 	TAILQ_INSERT_TAIL(&bdev->internal.open_descs, desc, link);
3840 
3841 	pthread_mutex_unlock(&bdev->internal.mutex);
3842 
3843 	return 0;
3844 }
3845 
3846 void
3847 spdk_bdev_close(struct spdk_bdev_desc *desc)
3848 {
3849 	struct spdk_bdev *bdev = desc->bdev;
3850 	bool do_unregister = false;
3851 
3852 	SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Closing descriptor %p for bdev %s on thread %p\n", desc, bdev->name,
3853 		      spdk_get_thread());
3854 
3855 	assert(desc->thread == spdk_get_thread());
3856 
3857 	pthread_mutex_lock(&bdev->internal.mutex);
3858 
3859 	TAILQ_REMOVE(&bdev->internal.open_descs, desc, link);
3860 
3861 	desc->closed = true;
3862 
3863 	if (!desc->remove_scheduled) {
3864 		free(desc);
3865 	}
3866 
3867 	/* If no more descriptors, kill QoS channel */
3868 	if (bdev->internal.qos && TAILQ_EMPTY(&bdev->internal.open_descs)) {
3869 		SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Closed last descriptor for bdev %s on thread %p. Stopping QoS.\n",
3870 			      bdev->name, spdk_get_thread());
3871 
3872 		if (spdk_bdev_qos_destroy(bdev)) {
3873 			/* There isn't anything we can do to recover here. Just let the
3874 			 * old QoS poller keep running. The QoS handling won't change
3875 			 * cores when the user allocates a new channel, but it won't break. */
3876 			SPDK_ERRLOG("Unable to shut down QoS poller. It will continue running on the current thread.\n");
3877 		}
3878 	}
3879 
3880 	spdk_bdev_set_qd_sampling_period(bdev, 0);
3881 
3882 	if (bdev->internal.status == SPDK_BDEV_STATUS_REMOVING && TAILQ_EMPTY(&bdev->internal.open_descs)) {
3883 		do_unregister = true;
3884 	}
3885 	pthread_mutex_unlock(&bdev->internal.mutex);
3886 
3887 	if (do_unregister == true) {
3888 		spdk_bdev_unregister(bdev, bdev->internal.unregister_cb, bdev->internal.unregister_ctx);
3889 	}
3890 }
3891 
3892 int
3893 spdk_bdev_module_claim_bdev(struct spdk_bdev *bdev, struct spdk_bdev_desc *desc,
3894 			    struct spdk_bdev_module *module)
3895 {
3896 	if (bdev->internal.claim_module != NULL) {
3897 		SPDK_ERRLOG("bdev %s already claimed by module %s\n", bdev->name,
3898 			    bdev->internal.claim_module->name);
3899 		return -EPERM;
3900 	}
3901 
3902 	if (desc && !desc->write) {
3903 		desc->write = true;
3904 	}
3905 
3906 	bdev->internal.claim_module = module;
3907 	return 0;
3908 }
3909 
3910 void
3911 spdk_bdev_module_release_bdev(struct spdk_bdev *bdev)
3912 {
3913 	assert(bdev->internal.claim_module != NULL);
3914 	bdev->internal.claim_module = NULL;
3915 }
3916 
3917 struct spdk_bdev *
3918 spdk_bdev_desc_get_bdev(struct spdk_bdev_desc *desc)
3919 {
3920 	return desc->bdev;
3921 }
3922 
3923 void
3924 spdk_bdev_io_get_iovec(struct spdk_bdev_io *bdev_io, struct iovec **iovp, int *iovcntp)
3925 {
3926 	struct iovec *iovs;
3927 	int iovcnt;
3928 
3929 	if (bdev_io == NULL) {
3930 		return;
3931 	}
3932 
3933 	switch (bdev_io->type) {
3934 	case SPDK_BDEV_IO_TYPE_READ:
3935 		iovs = bdev_io->u.bdev.iovs;
3936 		iovcnt = bdev_io->u.bdev.iovcnt;
3937 		break;
3938 	case SPDK_BDEV_IO_TYPE_WRITE:
3939 		iovs = bdev_io->u.bdev.iovs;
3940 		iovcnt = bdev_io->u.bdev.iovcnt;
3941 		break;
3942 	default:
3943 		iovs = NULL;
3944 		iovcnt = 0;
3945 		break;
3946 	}
3947 
3948 	if (iovp) {
3949 		*iovp = iovs;
3950 	}
3951 	if (iovcntp) {
3952 		*iovcntp = iovcnt;
3953 	}
3954 }
3955 
3956 void
3957 spdk_bdev_module_list_add(struct spdk_bdev_module *bdev_module)
3958 {
3959 
3960 	if (spdk_bdev_module_list_find(bdev_module->name)) {
3961 		SPDK_ERRLOG("ERROR: module '%s' already registered.\n", bdev_module->name);
3962 		assert(false);
3963 	}
3964 
3965 	if (bdev_module->async_init) {
3966 		bdev_module->internal.action_in_progress = 1;
3967 	}
3968 
3969 	/*
3970 	 * Modules with examine callbacks must be initialized first, so they are
3971 	 *  ready to handle examine callbacks from later modules that will
3972 	 *  register physical bdevs.
3973 	 */
3974 	if (bdev_module->examine_config != NULL || bdev_module->examine_disk != NULL) {
3975 		TAILQ_INSERT_HEAD(&g_bdev_mgr.bdev_modules, bdev_module, internal.tailq);
3976 	} else {
3977 		TAILQ_INSERT_TAIL(&g_bdev_mgr.bdev_modules, bdev_module, internal.tailq);
3978 	}
3979 }
3980 
3981 struct spdk_bdev_module *
3982 spdk_bdev_module_list_find(const char *name)
3983 {
3984 	struct spdk_bdev_module *bdev_module;
3985 
3986 	TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, internal.tailq) {
3987 		if (strcmp(name, bdev_module->name) == 0) {
3988 			break;
3989 		}
3990 	}
3991 
3992 	return bdev_module;
3993 }
3994 
3995 static void
3996 _spdk_bdev_write_zero_buffer_next(void *_bdev_io)
3997 {
3998 	struct spdk_bdev_io *bdev_io = _bdev_io;
3999 	uint64_t num_bytes, num_blocks;
4000 	int rc;
4001 
4002 	num_bytes = spdk_min(spdk_bdev_get_block_size(bdev_io->bdev) *
4003 			     bdev_io->u.bdev.split_remaining_num_blocks,
4004 			     ZERO_BUFFER_SIZE);
4005 	num_blocks = num_bytes / spdk_bdev_get_block_size(bdev_io->bdev);
4006 
4007 	rc = spdk_bdev_write_blocks(bdev_io->internal.desc,
4008 				    spdk_io_channel_from_ctx(bdev_io->internal.ch),
4009 				    g_bdev_mgr.zero_buffer,
4010 				    bdev_io->u.bdev.split_current_offset_blocks, num_blocks,
4011 				    _spdk_bdev_write_zero_buffer_done, bdev_io);
4012 	if (rc == 0) {
4013 		bdev_io->u.bdev.split_remaining_num_blocks -= num_blocks;
4014 		bdev_io->u.bdev.split_current_offset_blocks += num_blocks;
4015 	} else if (rc == -ENOMEM) {
4016 		_spdk_bdev_queue_io_wait_with_cb(bdev_io, _spdk_bdev_write_zero_buffer_next);
4017 	} else {
4018 		bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
4019 		bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx);
4020 	}
4021 }
4022 
4023 static void
4024 _spdk_bdev_write_zero_buffer_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
4025 {
4026 	struct spdk_bdev_io *parent_io = cb_arg;
4027 
4028 	spdk_bdev_free_io(bdev_io);
4029 
4030 	if (!success) {
4031 		parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
4032 		parent_io->internal.cb(parent_io, false, parent_io->internal.caller_ctx);
4033 		return;
4034 	}
4035 
4036 	if (parent_io->u.bdev.split_remaining_num_blocks == 0) {
4037 		parent_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS;
4038 		parent_io->internal.cb(parent_io, true, parent_io->internal.caller_ctx);
4039 		return;
4040 	}
4041 
4042 	_spdk_bdev_write_zero_buffer_next(parent_io);
4043 }
4044 
4045 struct set_qos_limit_ctx {
4046 	void (*cb_fn)(void *cb_arg, int status);
4047 	void *cb_arg;
4048 	struct spdk_bdev *bdev;
4049 };
4050 
4051 static void
4052 _spdk_bdev_set_qos_limit_done(struct set_qos_limit_ctx *ctx, int status)
4053 {
4054 	pthread_mutex_lock(&ctx->bdev->internal.mutex);
4055 	ctx->bdev->internal.qos_mod_in_progress = false;
4056 	pthread_mutex_unlock(&ctx->bdev->internal.mutex);
4057 
4058 	ctx->cb_fn(ctx->cb_arg, status);
4059 	free(ctx);
4060 }
4061 
4062 static void
4063 _spdk_bdev_disable_qos_done(void *cb_arg)
4064 {
4065 	struct set_qos_limit_ctx *ctx = cb_arg;
4066 	struct spdk_bdev *bdev = ctx->bdev;
4067 	struct spdk_bdev_io *bdev_io;
4068 	struct spdk_bdev_qos *qos;
4069 
4070 	pthread_mutex_lock(&bdev->internal.mutex);
4071 	qos = bdev->internal.qos;
4072 	bdev->internal.qos = NULL;
4073 	pthread_mutex_unlock(&bdev->internal.mutex);
4074 
4075 	while (!TAILQ_EMPTY(&qos->queued)) {
4076 		/* Send queued I/O back to their original thread for resubmission. */
4077 		bdev_io = TAILQ_FIRST(&qos->queued);
4078 		TAILQ_REMOVE(&qos->queued, bdev_io, internal.link);
4079 
4080 		if (bdev_io->internal.io_submit_ch) {
4081 			/*
4082 			 * Channel was changed when sending it to the QoS thread - change it back
4083 			 *  before sending it back to the original thread.
4084 			 */
4085 			bdev_io->internal.ch = bdev_io->internal.io_submit_ch;
4086 			bdev_io->internal.io_submit_ch = NULL;
4087 		}
4088 
4089 		spdk_thread_send_msg(spdk_io_channel_get_thread(bdev_io->internal.ch->channel),
4090 				     _spdk_bdev_io_submit, bdev_io);
4091 	}
4092 
4093 	if (qos->thread != NULL) {
4094 		spdk_put_io_channel(spdk_io_channel_from_ctx(qos->ch));
4095 		spdk_poller_unregister(&qos->poller);
4096 	}
4097 
4098 	free(qos);
4099 
4100 	_spdk_bdev_set_qos_limit_done(ctx, 0);
4101 }
4102 
4103 static void
4104 _spdk_bdev_disable_qos_msg_done(struct spdk_io_channel_iter *i, int status)
4105 {
4106 	void *io_device = spdk_io_channel_iter_get_io_device(i);
4107 	struct spdk_bdev *bdev = __bdev_from_io_dev(io_device);
4108 	struct set_qos_limit_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4109 	struct spdk_thread *thread;
4110 
4111 	pthread_mutex_lock(&bdev->internal.mutex);
4112 	thread = bdev->internal.qos->thread;
4113 	pthread_mutex_unlock(&bdev->internal.mutex);
4114 
4115 	if (thread != NULL) {
4116 		spdk_thread_send_msg(thread, _spdk_bdev_disable_qos_done, ctx);
4117 	} else {
4118 		_spdk_bdev_disable_qos_done(ctx);
4119 	}
4120 }
4121 
4122 static void
4123 _spdk_bdev_disable_qos_msg(struct spdk_io_channel_iter *i)
4124 {
4125 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
4126 	struct spdk_bdev_channel *bdev_ch = spdk_io_channel_get_ctx(ch);
4127 
4128 	bdev_ch->flags &= ~BDEV_CH_QOS_ENABLED;
4129 
4130 	spdk_for_each_channel_continue(i, 0);
4131 }
4132 
4133 static void
4134 _spdk_bdev_update_qos_rate_limit_msg(void *cb_arg)
4135 {
4136 	struct set_qos_limit_ctx *ctx = cb_arg;
4137 	struct spdk_bdev *bdev = ctx->bdev;
4138 
4139 	pthread_mutex_lock(&bdev->internal.mutex);
4140 	spdk_bdev_qos_update_max_quota_per_timeslice(bdev->internal.qos);
4141 	pthread_mutex_unlock(&bdev->internal.mutex);
4142 
4143 	_spdk_bdev_set_qos_limit_done(ctx, 0);
4144 }
4145 
4146 static void
4147 _spdk_bdev_enable_qos_msg(struct spdk_io_channel_iter *i)
4148 {
4149 	void *io_device = spdk_io_channel_iter_get_io_device(i);
4150 	struct spdk_bdev *bdev = __bdev_from_io_dev(io_device);
4151 	struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
4152 	struct spdk_bdev_channel *bdev_ch = spdk_io_channel_get_ctx(ch);
4153 
4154 	pthread_mutex_lock(&bdev->internal.mutex);
4155 	_spdk_bdev_enable_qos(bdev, bdev_ch);
4156 	pthread_mutex_unlock(&bdev->internal.mutex);
4157 	spdk_for_each_channel_continue(i, 0);
4158 }
4159 
4160 static void
4161 _spdk_bdev_enable_qos_done(struct spdk_io_channel_iter *i, int status)
4162 {
4163 	struct set_qos_limit_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4164 
4165 	_spdk_bdev_set_qos_limit_done(ctx, status);
4166 }
4167 
4168 static void
4169 _spdk_bdev_set_qos_rate_limits(struct spdk_bdev *bdev, uint64_t *limits)
4170 {
4171 	int i;
4172 
4173 	assert(bdev->internal.qos != NULL);
4174 
4175 	for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
4176 		if (limits[i] != SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) {
4177 			bdev->internal.qos->rate_limits[i].limit = limits[i];
4178 
4179 			if (limits[i] == 0) {
4180 				bdev->internal.qos->rate_limits[i].limit =
4181 					SPDK_BDEV_QOS_LIMIT_NOT_DEFINED;
4182 			}
4183 		}
4184 	}
4185 }
4186 
4187 void
4188 spdk_bdev_set_qos_rate_limits(struct spdk_bdev *bdev, uint64_t *limits,
4189 			      void (*cb_fn)(void *cb_arg, int status), void *cb_arg)
4190 {
4191 	struct set_qos_limit_ctx	*ctx;
4192 	uint32_t			limit_set_complement;
4193 	uint64_t			min_limit_per_sec;
4194 	int				i;
4195 	bool				disable_rate_limit = true;
4196 
4197 	for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
4198 		if (limits[i] == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) {
4199 			continue;
4200 		}
4201 
4202 		if (limits[i] > 0) {
4203 			disable_rate_limit = false;
4204 		}
4205 
4206 		if (_spdk_bdev_qos_is_iops_rate_limit(i) == true) {
4207 			min_limit_per_sec = SPDK_BDEV_QOS_MIN_IOS_PER_SEC;
4208 		} else {
4209 			/* Change from megabyte to byte rate limit */
4210 			limits[i] = limits[i] * 1024 * 1024;
4211 			min_limit_per_sec = SPDK_BDEV_QOS_MIN_BYTES_PER_SEC;
4212 		}
4213 
4214 		limit_set_complement = limits[i] % min_limit_per_sec;
4215 		if (limit_set_complement) {
4216 			SPDK_ERRLOG("Requested rate limit %" PRIu64 " is not a multiple of %" PRIu64 "\n",
4217 				    limits[i], min_limit_per_sec);
4218 			limits[i] += min_limit_per_sec - limit_set_complement;
4219 			SPDK_ERRLOG("Round up the rate limit to %" PRIu64 "\n", limits[i]);
4220 		}
4221 	}
4222 
4223 	ctx = calloc(1, sizeof(*ctx));
4224 	if (ctx == NULL) {
4225 		cb_fn(cb_arg, -ENOMEM);
4226 		return;
4227 	}
4228 
4229 	ctx->cb_fn = cb_fn;
4230 	ctx->cb_arg = cb_arg;
4231 	ctx->bdev = bdev;
4232 
4233 	pthread_mutex_lock(&bdev->internal.mutex);
4234 	if (bdev->internal.qos_mod_in_progress) {
4235 		pthread_mutex_unlock(&bdev->internal.mutex);
4236 		free(ctx);
4237 		cb_fn(cb_arg, -EAGAIN);
4238 		return;
4239 	}
4240 	bdev->internal.qos_mod_in_progress = true;
4241 
4242 	if (disable_rate_limit == true && bdev->internal.qos) {
4243 		for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
4244 			if (limits[i] == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED &&
4245 			    (bdev->internal.qos->rate_limits[i].limit > 0 &&
4246 			     bdev->internal.qos->rate_limits[i].limit !=
4247 			     SPDK_BDEV_QOS_LIMIT_NOT_DEFINED)) {
4248 				disable_rate_limit = false;
4249 				break;
4250 			}
4251 		}
4252 	}
4253 
4254 	if (disable_rate_limit == false) {
4255 		if (bdev->internal.qos == NULL) {
4256 			bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos));
4257 			if (!bdev->internal.qos) {
4258 				pthread_mutex_unlock(&bdev->internal.mutex);
4259 				SPDK_ERRLOG("Unable to allocate memory for QoS tracking\n");
4260 				free(ctx);
4261 				cb_fn(cb_arg, -ENOMEM);
4262 				return;
4263 			}
4264 		}
4265 
4266 		if (bdev->internal.qos->thread == NULL) {
4267 			/* Enabling */
4268 			_spdk_bdev_set_qos_rate_limits(bdev, limits);
4269 
4270 			spdk_for_each_channel(__bdev_to_io_dev(bdev),
4271 					      _spdk_bdev_enable_qos_msg, ctx,
4272 					      _spdk_bdev_enable_qos_done);
4273 		} else {
4274 			/* Updating */
4275 			_spdk_bdev_set_qos_rate_limits(bdev, limits);
4276 
4277 			spdk_thread_send_msg(bdev->internal.qos->thread,
4278 					     _spdk_bdev_update_qos_rate_limit_msg, ctx);
4279 		}
4280 	} else {
4281 		if (bdev->internal.qos != NULL) {
4282 			_spdk_bdev_set_qos_rate_limits(bdev, limits);
4283 
4284 			/* Disabling */
4285 			spdk_for_each_channel(__bdev_to_io_dev(bdev),
4286 					      _spdk_bdev_disable_qos_msg, ctx,
4287 					      _spdk_bdev_disable_qos_msg_done);
4288 		} else {
4289 			pthread_mutex_unlock(&bdev->internal.mutex);
4290 			_spdk_bdev_set_qos_limit_done(ctx, 0);
4291 			return;
4292 		}
4293 	}
4294 
4295 	pthread_mutex_unlock(&bdev->internal.mutex);
4296 }
4297 
4298 struct spdk_bdev_histogram_ctx {
4299 	spdk_bdev_histogram_status_cb cb_fn;
4300 	void *cb_arg;
4301 	struct spdk_bdev *bdev;
4302 	int status;
4303 };
4304 
4305 static void
4306 _spdk_bdev_histogram_disable_channel_cb(struct spdk_io_channel_iter *i, int status)
4307 {
4308 	struct spdk_bdev_histogram_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4309 
4310 	pthread_mutex_lock(&ctx->bdev->internal.mutex);
4311 	ctx->bdev->internal.histogram_in_progress = false;
4312 	pthread_mutex_unlock(&ctx->bdev->internal.mutex);
4313 	ctx->cb_fn(ctx->cb_arg, ctx->status);
4314 	free(ctx);
4315 }
4316 
4317 static void
4318 _spdk_bdev_histogram_disable_channel(struct spdk_io_channel_iter *i)
4319 {
4320 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4321 	struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch);
4322 
4323 	if (ch->histogram != NULL) {
4324 		spdk_histogram_data_free(ch->histogram);
4325 		ch->histogram = NULL;
4326 	}
4327 	spdk_for_each_channel_continue(i, 0);
4328 }
4329 
4330 static void
4331 _spdk_bdev_histogram_enable_channel_cb(struct spdk_io_channel_iter *i, int status)
4332 {
4333 	struct spdk_bdev_histogram_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4334 
4335 	if (status != 0) {
4336 		ctx->status = status;
4337 		ctx->bdev->internal.histogram_enabled = false;
4338 		spdk_for_each_channel(__bdev_to_io_dev(ctx->bdev), _spdk_bdev_histogram_disable_channel, ctx,
4339 				      _spdk_bdev_histogram_disable_channel_cb);
4340 	} else {
4341 		pthread_mutex_lock(&ctx->bdev->internal.mutex);
4342 		ctx->bdev->internal.histogram_in_progress = false;
4343 		pthread_mutex_unlock(&ctx->bdev->internal.mutex);
4344 		ctx->cb_fn(ctx->cb_arg, ctx->status);
4345 		free(ctx);
4346 	}
4347 }
4348 
4349 static void
4350 _spdk_bdev_histogram_enable_channel(struct spdk_io_channel_iter *i)
4351 {
4352 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4353 	struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch);
4354 	int status = 0;
4355 
4356 	if (ch->histogram == NULL) {
4357 		ch->histogram = spdk_histogram_data_alloc();
4358 		if (ch->histogram == NULL) {
4359 			status = -ENOMEM;
4360 		}
4361 	}
4362 
4363 	spdk_for_each_channel_continue(i, status);
4364 }
4365 
4366 void
4367 spdk_bdev_histogram_enable(struct spdk_bdev *bdev, spdk_bdev_histogram_status_cb cb_fn,
4368 			   void *cb_arg, bool enable)
4369 {
4370 	struct spdk_bdev_histogram_ctx *ctx;
4371 
4372 	ctx = calloc(1, sizeof(struct spdk_bdev_histogram_ctx));
4373 	if (ctx == NULL) {
4374 		cb_fn(cb_arg, -ENOMEM);
4375 		return;
4376 	}
4377 
4378 	ctx->bdev = bdev;
4379 	ctx->status = 0;
4380 	ctx->cb_fn = cb_fn;
4381 	ctx->cb_arg = cb_arg;
4382 
4383 	pthread_mutex_lock(&bdev->internal.mutex);
4384 	if (bdev->internal.histogram_in_progress) {
4385 		pthread_mutex_unlock(&bdev->internal.mutex);
4386 		free(ctx);
4387 		cb_fn(cb_arg, -EAGAIN);
4388 		return;
4389 	}
4390 
4391 	bdev->internal.histogram_in_progress = true;
4392 	pthread_mutex_unlock(&bdev->internal.mutex);
4393 
4394 	bdev->internal.histogram_enabled = enable;
4395 
4396 	if (enable) {
4397 		/* Allocate histogram for each channel */
4398 		spdk_for_each_channel(__bdev_to_io_dev(bdev), _spdk_bdev_histogram_enable_channel, ctx,
4399 				      _spdk_bdev_histogram_enable_channel_cb);
4400 	} else {
4401 		spdk_for_each_channel(__bdev_to_io_dev(bdev), _spdk_bdev_histogram_disable_channel, ctx,
4402 				      _spdk_bdev_histogram_disable_channel_cb);
4403 	}
4404 }
4405 
4406 struct spdk_bdev_histogram_data_ctx {
4407 	spdk_bdev_histogram_data_cb cb_fn;
4408 	void *cb_arg;
4409 	struct spdk_bdev *bdev;
4410 	/** merged histogram data from all channels */
4411 	struct spdk_histogram_data	*histogram;
4412 };
4413 
4414 static void
4415 _spdk_bdev_histogram_get_channel_cb(struct spdk_io_channel_iter *i, int status)
4416 {
4417 	struct spdk_bdev_histogram_data_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4418 
4419 	ctx->cb_fn(ctx->cb_arg, status, ctx->histogram);
4420 	free(ctx);
4421 }
4422 
4423 static void
4424 _spdk_bdev_histogram_get_channel(struct spdk_io_channel_iter *i)
4425 {
4426 	struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
4427 	struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch);
4428 	struct spdk_bdev_histogram_data_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
4429 	int status = 0;
4430 
4431 	if (ch->histogram == NULL) {
4432 		status = -EFAULT;
4433 	} else {
4434 		spdk_histogram_data_merge(ctx->histogram, ch->histogram);
4435 	}
4436 
4437 	spdk_for_each_channel_continue(i, status);
4438 }
4439 
4440 void
4441 spdk_bdev_histogram_get(struct spdk_bdev *bdev, struct spdk_histogram_data *histogram,
4442 			spdk_bdev_histogram_data_cb cb_fn,
4443 			void *cb_arg)
4444 {
4445 	struct spdk_bdev_histogram_data_ctx *ctx;
4446 
4447 	ctx = calloc(1, sizeof(struct spdk_bdev_histogram_data_ctx));
4448 	if (ctx == NULL) {
4449 		cb_fn(cb_arg, -ENOMEM, NULL);
4450 		return;
4451 	}
4452 
4453 	ctx->bdev = bdev;
4454 	ctx->cb_fn = cb_fn;
4455 	ctx->cb_arg = cb_arg;
4456 
4457 	ctx->histogram = histogram;
4458 
4459 	spdk_for_each_channel(__bdev_to_io_dev(bdev), _spdk_bdev_histogram_get_channel, ctx,
4460 			      _spdk_bdev_histogram_get_channel_cb);
4461 }
4462 
4463 SPDK_LOG_REGISTER_COMPONENT("bdev", SPDK_LOG_BDEV)
4464 
4465 SPDK_TRACE_REGISTER_FN(bdev_trace, "bdev", TRACE_GROUP_BDEV)
4466 {
4467 	spdk_trace_register_owner(OWNER_BDEV, 'b');
4468 	spdk_trace_register_object(OBJECT_BDEV_IO, 'i');
4469 	spdk_trace_register_description("BDEV_IO_START", "", TRACE_BDEV_IO_START, OWNER_BDEV,
4470 					OBJECT_BDEV_IO, 1, 0, "type:   ");
4471 	spdk_trace_register_description("BDEV_IO_DONE", "", TRACE_BDEV_IO_DONE, OWNER_BDEV,
4472 					OBJECT_BDEV_IO, 0, 0, "");
4473 }
4474