1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright (C) 2016 Intel Corporation. All rights reserved. 3 * Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved. 4 * Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 5 */ 6 7 #include "spdk/stdinc.h" 8 9 #include "spdk/bdev.h" 10 11 #include "spdk/accel.h" 12 #include "spdk/config.h" 13 #include "spdk/env.h" 14 #include "spdk/thread.h" 15 #include "spdk/likely.h" 16 #include "spdk/queue.h" 17 #include "spdk/nvme_spec.h" 18 #include "spdk/scsi_spec.h" 19 #include "spdk/notify.h" 20 #include "spdk/util.h" 21 #include "spdk/trace.h" 22 #include "spdk/dma.h" 23 24 #include "spdk/bdev_module.h" 25 #include "spdk/log.h" 26 #include "spdk/string.h" 27 28 #include "bdev_internal.h" 29 #include "spdk_internal/trace_defs.h" 30 #include "spdk_internal/assert.h" 31 32 #ifdef SPDK_CONFIG_VTUNE 33 #include "ittnotify.h" 34 #include "ittnotify_types.h" 35 int __itt_init_ittlib(const char *, __itt_group_id); 36 #endif 37 38 #define SPDK_BDEV_IO_POOL_SIZE (64 * 1024 - 1) 39 #define SPDK_BDEV_IO_CACHE_SIZE 256 40 #define SPDK_BDEV_AUTO_EXAMINE true 41 #define BUF_SMALL_CACHE_SIZE 128 42 #define BUF_LARGE_CACHE_SIZE 16 43 #define NOMEM_THRESHOLD_COUNT 8 44 45 #define SPDK_BDEV_QOS_TIMESLICE_IN_USEC 1000 46 #define SPDK_BDEV_QOS_MIN_IO_PER_TIMESLICE 1 47 #define SPDK_BDEV_QOS_MIN_BYTE_PER_TIMESLICE 512 48 #define SPDK_BDEV_QOS_MIN_IOS_PER_SEC 1000 49 #define SPDK_BDEV_QOS_MIN_BYTES_PER_SEC (1024 * 1024) 50 #define SPDK_BDEV_QOS_MAX_MBYTES_PER_SEC (UINT64_MAX / (1024 * 1024)) 51 #define SPDK_BDEV_QOS_LIMIT_NOT_DEFINED UINT64_MAX 52 #define SPDK_BDEV_IO_POLL_INTERVAL_IN_MSEC 1000 53 54 /* The maximum number of children requests for a UNMAP or WRITE ZEROES command 55 * when splitting into children requests at a time. 56 */ 57 #define SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS (8) 58 #define BDEV_RESET_CHECK_OUTSTANDING_IO_PERIOD 1000000 59 60 /* The maximum number of children requests for a COPY command 61 * when splitting into children requests at a time. 62 */ 63 #define SPDK_BDEV_MAX_CHILDREN_COPY_REQS (8) 64 65 #define LOG_ALREADY_CLAIMED_ERROR(detail, bdev) \ 66 log_already_claimed(SPDK_LOG_ERROR, __LINE__, __func__, detail, bdev) 67 #ifdef DEBUG 68 #define LOG_ALREADY_CLAIMED_DEBUG(detail, bdev) \ 69 log_already_claimed(SPDK_LOG_DEBUG, __LINE__, __func__, detail, bdev) 70 #else 71 #define LOG_ALREADY_CLAIMED_DEBUG(detail, bdev) do {} while(0) 72 #endif 73 74 static void log_already_claimed(enum spdk_log_level level, const int line, const char *func, 75 const char *detail, struct spdk_bdev *bdev); 76 77 static const char *qos_rpc_type[] = {"rw_ios_per_sec", 78 "rw_mbytes_per_sec", "r_mbytes_per_sec", "w_mbytes_per_sec" 79 }; 80 81 TAILQ_HEAD(spdk_bdev_list, spdk_bdev); 82 83 RB_HEAD(bdev_name_tree, spdk_bdev_name); 84 85 static int 86 bdev_name_cmp(struct spdk_bdev_name *name1, struct spdk_bdev_name *name2) 87 { 88 return strcmp(name1->name, name2->name); 89 } 90 91 RB_GENERATE_STATIC(bdev_name_tree, spdk_bdev_name, node, bdev_name_cmp); 92 93 struct spdk_bdev_mgr { 94 struct spdk_mempool *bdev_io_pool; 95 96 void *zero_buffer; 97 98 TAILQ_HEAD(bdev_module_list, spdk_bdev_module) bdev_modules; 99 100 struct spdk_bdev_list bdevs; 101 struct bdev_name_tree bdev_names; 102 103 bool init_complete; 104 bool module_init_complete; 105 106 struct spdk_spinlock spinlock; 107 108 TAILQ_HEAD(, spdk_bdev_open_async_ctx) async_bdev_opens; 109 110 #ifdef SPDK_CONFIG_VTUNE 111 __itt_domain *domain; 112 #endif 113 }; 114 115 static struct spdk_bdev_mgr g_bdev_mgr = { 116 .bdev_modules = TAILQ_HEAD_INITIALIZER(g_bdev_mgr.bdev_modules), 117 .bdevs = TAILQ_HEAD_INITIALIZER(g_bdev_mgr.bdevs), 118 .bdev_names = RB_INITIALIZER(g_bdev_mgr.bdev_names), 119 .init_complete = false, 120 .module_init_complete = false, 121 .async_bdev_opens = TAILQ_HEAD_INITIALIZER(g_bdev_mgr.async_bdev_opens), 122 }; 123 124 static void 125 __attribute__((constructor)) 126 _bdev_init(void) 127 { 128 spdk_spin_init(&g_bdev_mgr.spinlock); 129 } 130 131 typedef void (*lock_range_cb)(struct lba_range *range, void *ctx, int status); 132 133 typedef void (*bdev_copy_bounce_buffer_cpl)(void *ctx, int rc); 134 135 struct lba_range { 136 struct spdk_bdev *bdev; 137 uint64_t offset; 138 uint64_t length; 139 bool quiesce; 140 void *locked_ctx; 141 struct spdk_thread *owner_thread; 142 struct spdk_bdev_channel *owner_ch; 143 TAILQ_ENTRY(lba_range) tailq; 144 TAILQ_ENTRY(lba_range) tailq_module; 145 }; 146 147 static struct spdk_bdev_opts g_bdev_opts = { 148 .bdev_io_pool_size = SPDK_BDEV_IO_POOL_SIZE, 149 .bdev_io_cache_size = SPDK_BDEV_IO_CACHE_SIZE, 150 .bdev_auto_examine = SPDK_BDEV_AUTO_EXAMINE, 151 .iobuf_small_cache_size = BUF_SMALL_CACHE_SIZE, 152 .iobuf_large_cache_size = BUF_LARGE_CACHE_SIZE, 153 }; 154 155 static spdk_bdev_init_cb g_init_cb_fn = NULL; 156 static void *g_init_cb_arg = NULL; 157 158 static spdk_bdev_fini_cb g_fini_cb_fn = NULL; 159 static void *g_fini_cb_arg = NULL; 160 static struct spdk_thread *g_fini_thread = NULL; 161 162 struct spdk_bdev_qos_limit { 163 /** IOs or bytes allowed per second (i.e., 1s). */ 164 uint64_t limit; 165 166 /** Remaining IOs or bytes allowed in current timeslice (e.g., 1ms). 167 * For remaining bytes, allowed to run negative if an I/O is submitted when 168 * some bytes are remaining, but the I/O is bigger than that amount. The 169 * excess will be deducted from the next timeslice. 170 */ 171 int64_t remaining_this_timeslice; 172 173 /** Minimum allowed IOs or bytes to be issued in one timeslice (e.g., 1ms). */ 174 uint32_t min_per_timeslice; 175 176 /** Maximum allowed IOs or bytes to be issued in one timeslice (e.g., 1ms). */ 177 uint32_t max_per_timeslice; 178 179 /** Function to check whether to queue the IO. 180 * If The IO is allowed to pass, the quota will be reduced correspondingly. 181 */ 182 bool (*queue_io)(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io); 183 184 /** Function to rewind the quota once the IO was allowed to be sent by this 185 * limit but queued due to one of the further limits. 186 */ 187 void (*rewind_quota)(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io); 188 }; 189 190 struct spdk_bdev_qos { 191 /** Types of structure of rate limits. */ 192 struct spdk_bdev_qos_limit rate_limits[SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES]; 193 194 /** The channel that all I/O are funneled through. */ 195 struct spdk_bdev_channel *ch; 196 197 /** The thread on which the poller is running. */ 198 struct spdk_thread *thread; 199 200 /** Size of a timeslice in tsc ticks. */ 201 uint64_t timeslice_size; 202 203 /** Timestamp of start of last timeslice. */ 204 uint64_t last_timeslice; 205 206 /** Poller that processes queued I/O commands each time slice. */ 207 struct spdk_poller *poller; 208 }; 209 210 struct spdk_bdev_mgmt_channel { 211 /* 212 * Each thread keeps a cache of bdev_io - this allows 213 * bdev threads which are *not* DPDK threads to still 214 * benefit from a per-thread bdev_io cache. Without 215 * this, non-DPDK threads fetching from the mempool 216 * incur a cmpxchg on get and put. 217 */ 218 bdev_io_stailq_t per_thread_cache; 219 uint32_t per_thread_cache_count; 220 uint32_t bdev_io_cache_size; 221 222 struct spdk_iobuf_channel iobuf; 223 224 TAILQ_HEAD(, spdk_bdev_shared_resource) shared_resources; 225 TAILQ_HEAD(, spdk_bdev_io_wait_entry) io_wait_queue; 226 }; 227 228 /* 229 * Per-module (or per-io_device) data. Multiple bdevs built on the same io_device 230 * will queue here their IO that awaits retry. It makes it possible to retry sending 231 * IO to one bdev after IO from other bdev completes. 232 */ 233 struct spdk_bdev_shared_resource { 234 /* The bdev management channel */ 235 struct spdk_bdev_mgmt_channel *mgmt_ch; 236 237 /* 238 * Count of I/O submitted to bdev module and waiting for completion. 239 * Incremented before submit_request() is called on an spdk_bdev_io. 240 */ 241 uint64_t io_outstanding; 242 243 /* 244 * Queue of IO awaiting retry because of a previous NOMEM status returned 245 * on this channel. 246 */ 247 bdev_io_tailq_t nomem_io; 248 249 /* 250 * Threshold which io_outstanding must drop to before retrying nomem_io. 251 */ 252 uint64_t nomem_threshold; 253 254 /* I/O channel allocated by a bdev module */ 255 struct spdk_io_channel *shared_ch; 256 257 struct spdk_poller *nomem_poller; 258 259 /* Refcount of bdev channels using this resource */ 260 uint32_t ref; 261 262 TAILQ_ENTRY(spdk_bdev_shared_resource) link; 263 }; 264 265 #define BDEV_CH_RESET_IN_PROGRESS (1 << 0) 266 #define BDEV_CH_QOS_ENABLED (1 << 1) 267 268 struct spdk_bdev_channel { 269 struct spdk_bdev *bdev; 270 271 /* The channel for the underlying device */ 272 struct spdk_io_channel *channel; 273 274 /* Accel channel */ 275 struct spdk_io_channel *accel_channel; 276 277 /* Per io_device per thread data */ 278 struct spdk_bdev_shared_resource *shared_resource; 279 280 struct spdk_bdev_io_stat *stat; 281 282 /* 283 * Count of I/O submitted to the underlying dev module through this channel 284 * and waiting for completion. 285 */ 286 uint64_t io_outstanding; 287 288 /* 289 * List of all submitted I/Os including I/O that are generated via splitting. 290 */ 291 bdev_io_tailq_t io_submitted; 292 293 /* 294 * List of spdk_bdev_io that are currently queued because they write to a locked 295 * LBA range. 296 */ 297 bdev_io_tailq_t io_locked; 298 299 /* List of I/Os with accel sequence being currently executed */ 300 bdev_io_tailq_t io_accel_exec; 301 302 /* List of I/Os doing memory domain pull/push */ 303 bdev_io_tailq_t io_memory_domain; 304 305 uint32_t flags; 306 307 /* Counts number of bdev_io in the io_submitted TAILQ */ 308 uint16_t queue_depth; 309 310 uint16_t trace_id; 311 312 struct spdk_histogram_data *histogram; 313 314 #ifdef SPDK_CONFIG_VTUNE 315 uint64_t start_tsc; 316 uint64_t interval_tsc; 317 __itt_string_handle *handle; 318 struct spdk_bdev_io_stat *prev_stat; 319 #endif 320 321 bdev_io_tailq_t queued_resets; 322 323 lba_range_tailq_t locked_ranges; 324 325 /** List of I/Os queued by QoS. */ 326 bdev_io_tailq_t qos_queued_io; 327 }; 328 329 struct media_event_entry { 330 struct spdk_bdev_media_event event; 331 TAILQ_ENTRY(media_event_entry) tailq; 332 }; 333 334 #define MEDIA_EVENT_POOL_SIZE 64 335 336 struct spdk_bdev_desc { 337 struct spdk_bdev *bdev; 338 struct spdk_thread *thread; 339 struct { 340 spdk_bdev_event_cb_t event_fn; 341 void *ctx; 342 } callback; 343 bool closed; 344 bool write; 345 bool memory_domains_supported; 346 bool accel_sequence_supported[SPDK_BDEV_NUM_IO_TYPES]; 347 struct spdk_spinlock spinlock; 348 uint32_t refs; 349 TAILQ_HEAD(, media_event_entry) pending_media_events; 350 TAILQ_HEAD(, media_event_entry) free_media_events; 351 struct media_event_entry *media_events_buffer; 352 TAILQ_ENTRY(spdk_bdev_desc) link; 353 354 uint64_t timeout_in_sec; 355 spdk_bdev_io_timeout_cb cb_fn; 356 void *cb_arg; 357 struct spdk_poller *io_timeout_poller; 358 struct spdk_bdev_module_claim *claim; 359 }; 360 361 struct spdk_bdev_iostat_ctx { 362 struct spdk_bdev_io_stat *stat; 363 spdk_bdev_get_device_stat_cb cb; 364 void *cb_arg; 365 }; 366 367 struct set_qos_limit_ctx { 368 void (*cb_fn)(void *cb_arg, int status); 369 void *cb_arg; 370 struct spdk_bdev *bdev; 371 }; 372 373 struct spdk_bdev_channel_iter { 374 spdk_bdev_for_each_channel_msg fn; 375 spdk_bdev_for_each_channel_done cpl; 376 struct spdk_io_channel_iter *i; 377 void *ctx; 378 }; 379 380 struct spdk_bdev_io_error_stat { 381 uint32_t error_status[-SPDK_MIN_BDEV_IO_STATUS]; 382 }; 383 384 enum bdev_io_retry_state { 385 BDEV_IO_RETRY_STATE_INVALID, 386 BDEV_IO_RETRY_STATE_PULL, 387 BDEV_IO_RETRY_STATE_PULL_MD, 388 BDEV_IO_RETRY_STATE_SUBMIT, 389 BDEV_IO_RETRY_STATE_PUSH, 390 BDEV_IO_RETRY_STATE_PUSH_MD, 391 }; 392 393 #define __bdev_to_io_dev(bdev) (((char *)bdev) + 1) 394 #define __bdev_from_io_dev(io_dev) ((struct spdk_bdev *)(((char *)io_dev) - 1)) 395 #define __io_ch_to_bdev_ch(io_ch) ((struct spdk_bdev_channel *)spdk_io_channel_get_ctx(io_ch)) 396 #define __io_ch_to_bdev_mgmt_ch(io_ch) ((struct spdk_bdev_mgmt_channel *)spdk_io_channel_get_ctx(io_ch)) 397 398 static inline void bdev_io_complete(void *ctx); 399 static inline void bdev_io_complete_unsubmitted(struct spdk_bdev_io *bdev_io); 400 static void bdev_io_push_bounce_md_buf(struct spdk_bdev_io *bdev_io); 401 static void bdev_io_push_bounce_data(struct spdk_bdev_io *bdev_io); 402 403 static void bdev_write_zero_buffer_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg); 404 static int bdev_write_zero_buffer(struct spdk_bdev_io *bdev_io); 405 406 static void bdev_enable_qos_msg(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 407 struct spdk_io_channel *ch, void *_ctx); 408 static void bdev_enable_qos_done(struct spdk_bdev *bdev, void *_ctx, int status); 409 410 static int bdev_readv_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 411 struct iovec *iov, int iovcnt, void *md_buf, uint64_t offset_blocks, 412 uint64_t num_blocks, 413 struct spdk_memory_domain *domain, void *domain_ctx, 414 struct spdk_accel_sequence *seq, uint32_t dif_check_flags, 415 spdk_bdev_io_completion_cb cb, void *cb_arg); 416 static int bdev_writev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 417 struct iovec *iov, int iovcnt, void *md_buf, 418 uint64_t offset_blocks, uint64_t num_blocks, 419 struct spdk_memory_domain *domain, void *domain_ctx, 420 struct spdk_accel_sequence *seq, uint32_t dif_check_flags, 421 uint32_t nvme_cdw12_raw, uint32_t nvme_cdw13_raw, 422 spdk_bdev_io_completion_cb cb, void *cb_arg); 423 424 static int bdev_lock_lba_range(struct spdk_bdev_desc *desc, struct spdk_io_channel *_ch, 425 uint64_t offset, uint64_t length, 426 lock_range_cb cb_fn, void *cb_arg); 427 428 static int bdev_unlock_lba_range(struct spdk_bdev_desc *desc, struct spdk_io_channel *_ch, 429 uint64_t offset, uint64_t length, 430 lock_range_cb cb_fn, void *cb_arg); 431 432 static bool bdev_abort_queued_io(bdev_io_tailq_t *queue, struct spdk_bdev_io *bio_to_abort); 433 static bool bdev_abort_buf_io(struct spdk_bdev_mgmt_channel *ch, struct spdk_bdev_io *bio_to_abort); 434 435 static bool claim_type_is_v2(enum spdk_bdev_claim_type type); 436 static void bdev_desc_release_claims(struct spdk_bdev_desc *desc); 437 static void claim_reset(struct spdk_bdev *bdev); 438 439 static void bdev_ch_retry_io(struct spdk_bdev_channel *bdev_ch); 440 441 #define bdev_get_ext_io_opt(opts, field, defval) \ 442 ((opts) != NULL ? SPDK_GET_FIELD(opts, field, defval) : (defval)) 443 444 static inline void 445 bdev_ch_add_to_io_submitted(struct spdk_bdev_io *bdev_io) 446 { 447 TAILQ_INSERT_TAIL(&bdev_io->internal.ch->io_submitted, bdev_io, internal.ch_link); 448 bdev_io->internal.ch->queue_depth++; 449 } 450 451 static inline void 452 bdev_ch_remove_from_io_submitted(struct spdk_bdev_io *bdev_io) 453 { 454 TAILQ_REMOVE(&bdev_io->internal.ch->io_submitted, bdev_io, internal.ch_link); 455 bdev_io->internal.ch->queue_depth--; 456 } 457 458 void 459 spdk_bdev_get_opts(struct spdk_bdev_opts *opts, size_t opts_size) 460 { 461 if (!opts) { 462 SPDK_ERRLOG("opts should not be NULL\n"); 463 return; 464 } 465 466 if (!opts_size) { 467 SPDK_ERRLOG("opts_size should not be zero value\n"); 468 return; 469 } 470 471 opts->opts_size = opts_size; 472 473 #define SET_FIELD(field) \ 474 if (offsetof(struct spdk_bdev_opts, field) + sizeof(opts->field) <= opts_size) { \ 475 opts->field = g_bdev_opts.field; \ 476 } \ 477 478 SET_FIELD(bdev_io_pool_size); 479 SET_FIELD(bdev_io_cache_size); 480 SET_FIELD(bdev_auto_examine); 481 SET_FIELD(iobuf_small_cache_size); 482 SET_FIELD(iobuf_large_cache_size); 483 484 /* Do not remove this statement, you should always update this statement when you adding a new field, 485 * and do not forget to add the SET_FIELD statement for your added field. */ 486 SPDK_STATIC_ASSERT(sizeof(struct spdk_bdev_opts) == 32, "Incorrect size"); 487 488 #undef SET_FIELD 489 } 490 491 int 492 spdk_bdev_set_opts(struct spdk_bdev_opts *opts) 493 { 494 uint32_t min_pool_size; 495 496 if (!opts) { 497 SPDK_ERRLOG("opts cannot be NULL\n"); 498 return -1; 499 } 500 501 if (!opts->opts_size) { 502 SPDK_ERRLOG("opts_size inside opts cannot be zero value\n"); 503 return -1; 504 } 505 506 /* 507 * Add 1 to the thread count to account for the extra mgmt_ch that gets created during subsystem 508 * initialization. A second mgmt_ch will be created on the same thread when the application starts 509 * but before the deferred put_io_channel event is executed for the first mgmt_ch. 510 */ 511 min_pool_size = opts->bdev_io_cache_size * (spdk_thread_get_count() + 1); 512 if (opts->bdev_io_pool_size < min_pool_size) { 513 SPDK_ERRLOG("bdev_io_pool_size %" PRIu32 " is not compatible with bdev_io_cache_size %" PRIu32 514 " and %" PRIu32 " threads\n", opts->bdev_io_pool_size, opts->bdev_io_cache_size, 515 spdk_thread_get_count()); 516 SPDK_ERRLOG("bdev_io_pool_size must be at least %" PRIu32 "\n", min_pool_size); 517 return -1; 518 } 519 520 #define SET_FIELD(field) \ 521 if (offsetof(struct spdk_bdev_opts, field) + sizeof(opts->field) <= opts->opts_size) { \ 522 g_bdev_opts.field = opts->field; \ 523 } \ 524 525 SET_FIELD(bdev_io_pool_size); 526 SET_FIELD(bdev_io_cache_size); 527 SET_FIELD(bdev_auto_examine); 528 SET_FIELD(iobuf_small_cache_size); 529 SET_FIELD(iobuf_large_cache_size); 530 531 g_bdev_opts.opts_size = opts->opts_size; 532 533 #undef SET_FIELD 534 535 return 0; 536 } 537 538 static struct spdk_bdev * 539 bdev_get_by_name(const char *bdev_name) 540 { 541 struct spdk_bdev_name find; 542 struct spdk_bdev_name *res; 543 544 find.name = (char *)bdev_name; 545 res = RB_FIND(bdev_name_tree, &g_bdev_mgr.bdev_names, &find); 546 if (res != NULL) { 547 return res->bdev; 548 } 549 550 return NULL; 551 } 552 553 struct spdk_bdev * 554 spdk_bdev_get_by_name(const char *bdev_name) 555 { 556 struct spdk_bdev *bdev; 557 558 spdk_spin_lock(&g_bdev_mgr.spinlock); 559 bdev = bdev_get_by_name(bdev_name); 560 spdk_spin_unlock(&g_bdev_mgr.spinlock); 561 562 return bdev; 563 } 564 565 struct bdev_io_status_string { 566 enum spdk_bdev_io_status status; 567 const char *str; 568 }; 569 570 static const struct bdev_io_status_string bdev_io_status_strings[] = { 571 { SPDK_BDEV_IO_STATUS_AIO_ERROR, "aio_error" }, 572 { SPDK_BDEV_IO_STATUS_ABORTED, "aborted" }, 573 { SPDK_BDEV_IO_STATUS_FIRST_FUSED_FAILED, "first_fused_failed" }, 574 { SPDK_BDEV_IO_STATUS_MISCOMPARE, "miscompare" }, 575 { SPDK_BDEV_IO_STATUS_NOMEM, "nomem" }, 576 { SPDK_BDEV_IO_STATUS_SCSI_ERROR, "scsi_error" }, 577 { SPDK_BDEV_IO_STATUS_NVME_ERROR, "nvme_error" }, 578 { SPDK_BDEV_IO_STATUS_FAILED, "failed" }, 579 { SPDK_BDEV_IO_STATUS_PENDING, "pending" }, 580 { SPDK_BDEV_IO_STATUS_SUCCESS, "success" }, 581 }; 582 583 static const char * 584 bdev_io_status_get_string(enum spdk_bdev_io_status status) 585 { 586 uint32_t i; 587 588 for (i = 0; i < SPDK_COUNTOF(bdev_io_status_strings); i++) { 589 if (bdev_io_status_strings[i].status == status) { 590 return bdev_io_status_strings[i].str; 591 } 592 } 593 594 return "reserved"; 595 } 596 597 struct spdk_bdev_wait_for_examine_ctx { 598 struct spdk_poller *poller; 599 spdk_bdev_wait_for_examine_cb cb_fn; 600 void *cb_arg; 601 }; 602 603 static bool bdev_module_all_actions_completed(void); 604 605 static int 606 bdev_wait_for_examine_cb(void *arg) 607 { 608 struct spdk_bdev_wait_for_examine_ctx *ctx = arg; 609 610 if (!bdev_module_all_actions_completed()) { 611 return SPDK_POLLER_IDLE; 612 } 613 614 spdk_poller_unregister(&ctx->poller); 615 ctx->cb_fn(ctx->cb_arg); 616 free(ctx); 617 618 return SPDK_POLLER_BUSY; 619 } 620 621 int 622 spdk_bdev_wait_for_examine(spdk_bdev_wait_for_examine_cb cb_fn, void *cb_arg) 623 { 624 struct spdk_bdev_wait_for_examine_ctx *ctx; 625 626 ctx = calloc(1, sizeof(*ctx)); 627 if (ctx == NULL) { 628 return -ENOMEM; 629 } 630 ctx->cb_fn = cb_fn; 631 ctx->cb_arg = cb_arg; 632 ctx->poller = SPDK_POLLER_REGISTER(bdev_wait_for_examine_cb, ctx, 0); 633 634 return 0; 635 } 636 637 struct spdk_bdev_examine_item { 638 char *name; 639 TAILQ_ENTRY(spdk_bdev_examine_item) link; 640 }; 641 642 TAILQ_HEAD(spdk_bdev_examine_allowlist, spdk_bdev_examine_item); 643 644 struct spdk_bdev_examine_allowlist g_bdev_examine_allowlist = TAILQ_HEAD_INITIALIZER( 645 g_bdev_examine_allowlist); 646 647 static inline bool 648 bdev_examine_allowlist_check(const char *name) 649 { 650 struct spdk_bdev_examine_item *item; 651 TAILQ_FOREACH(item, &g_bdev_examine_allowlist, link) { 652 if (strcmp(name, item->name) == 0) { 653 return true; 654 } 655 } 656 return false; 657 } 658 659 static inline void 660 bdev_examine_allowlist_free(void) 661 { 662 struct spdk_bdev_examine_item *item; 663 while (!TAILQ_EMPTY(&g_bdev_examine_allowlist)) { 664 item = TAILQ_FIRST(&g_bdev_examine_allowlist); 665 TAILQ_REMOVE(&g_bdev_examine_allowlist, item, link); 666 free(item->name); 667 free(item); 668 } 669 } 670 671 static inline bool 672 bdev_in_examine_allowlist(struct spdk_bdev *bdev) 673 { 674 struct spdk_bdev_alias *tmp; 675 if (bdev_examine_allowlist_check(bdev->name)) { 676 return true; 677 } 678 TAILQ_FOREACH(tmp, &bdev->aliases, tailq) { 679 if (bdev_examine_allowlist_check(tmp->alias.name)) { 680 return true; 681 } 682 } 683 return false; 684 } 685 686 static inline bool 687 bdev_ok_to_examine(struct spdk_bdev *bdev) 688 { 689 if (g_bdev_opts.bdev_auto_examine) { 690 return true; 691 } else { 692 return bdev_in_examine_allowlist(bdev); 693 } 694 } 695 696 static void 697 bdev_examine(struct spdk_bdev *bdev) 698 { 699 struct spdk_bdev_module *module; 700 struct spdk_bdev_module_claim *claim, *tmpclaim; 701 uint32_t action; 702 703 if (!bdev_ok_to_examine(bdev)) { 704 return; 705 } 706 707 TAILQ_FOREACH(module, &g_bdev_mgr.bdev_modules, internal.tailq) { 708 if (module->examine_config) { 709 spdk_spin_lock(&module->internal.spinlock); 710 action = module->internal.action_in_progress; 711 module->internal.action_in_progress++; 712 spdk_spin_unlock(&module->internal.spinlock); 713 module->examine_config(bdev); 714 if (action != module->internal.action_in_progress) { 715 SPDK_ERRLOG("examine_config for module %s did not call " 716 "spdk_bdev_module_examine_done()\n", module->name); 717 } 718 } 719 } 720 721 spdk_spin_lock(&bdev->internal.spinlock); 722 723 switch (bdev->internal.claim_type) { 724 case SPDK_BDEV_CLAIM_NONE: 725 /* Examine by all bdev modules */ 726 TAILQ_FOREACH(module, &g_bdev_mgr.bdev_modules, internal.tailq) { 727 if (module->examine_disk) { 728 spdk_spin_lock(&module->internal.spinlock); 729 module->internal.action_in_progress++; 730 spdk_spin_unlock(&module->internal.spinlock); 731 spdk_spin_unlock(&bdev->internal.spinlock); 732 module->examine_disk(bdev); 733 spdk_spin_lock(&bdev->internal.spinlock); 734 } 735 } 736 break; 737 case SPDK_BDEV_CLAIM_EXCL_WRITE: 738 /* Examine by the one bdev module with a v1 claim */ 739 module = bdev->internal.claim.v1.module; 740 if (module->examine_disk) { 741 spdk_spin_lock(&module->internal.spinlock); 742 module->internal.action_in_progress++; 743 spdk_spin_unlock(&module->internal.spinlock); 744 spdk_spin_unlock(&bdev->internal.spinlock); 745 module->examine_disk(bdev); 746 return; 747 } 748 break; 749 default: 750 /* Examine by all bdev modules with a v2 claim */ 751 assert(claim_type_is_v2(bdev->internal.claim_type)); 752 /* 753 * Removal of tailq nodes while iterating can cause the iteration to jump out of the 754 * list, perhaps accessing freed memory. Without protection, this could happen 755 * while the lock is dropped during the examine callback. 756 */ 757 bdev->internal.examine_in_progress++; 758 759 TAILQ_FOREACH(claim, &bdev->internal.claim.v2.claims, link) { 760 module = claim->module; 761 762 if (module == NULL) { 763 /* This is a vestigial claim, held by examine_count */ 764 continue; 765 } 766 767 if (module->examine_disk == NULL) { 768 continue; 769 } 770 771 spdk_spin_lock(&module->internal.spinlock); 772 module->internal.action_in_progress++; 773 spdk_spin_unlock(&module->internal.spinlock); 774 775 /* Call examine_disk without holding internal.spinlock. */ 776 spdk_spin_unlock(&bdev->internal.spinlock); 777 module->examine_disk(bdev); 778 spdk_spin_lock(&bdev->internal.spinlock); 779 } 780 781 assert(bdev->internal.examine_in_progress > 0); 782 bdev->internal.examine_in_progress--; 783 if (bdev->internal.examine_in_progress == 0) { 784 /* Remove any claims that were released during examine_disk */ 785 TAILQ_FOREACH_SAFE(claim, &bdev->internal.claim.v2.claims, link, tmpclaim) { 786 if (claim->desc != NULL) { 787 continue; 788 } 789 790 TAILQ_REMOVE(&bdev->internal.claim.v2.claims, claim, link); 791 free(claim); 792 } 793 if (TAILQ_EMPTY(&bdev->internal.claim.v2.claims)) { 794 claim_reset(bdev); 795 } 796 } 797 } 798 799 spdk_spin_unlock(&bdev->internal.spinlock); 800 } 801 802 int 803 spdk_bdev_examine(const char *name) 804 { 805 struct spdk_bdev *bdev; 806 struct spdk_bdev_examine_item *item; 807 struct spdk_thread *thread = spdk_get_thread(); 808 809 if (spdk_unlikely(!spdk_thread_is_app_thread(thread))) { 810 SPDK_ERRLOG("Cannot examine bdev %s on thread %p (%s)\n", name, thread, 811 thread ? spdk_thread_get_name(thread) : "null"); 812 return -EINVAL; 813 } 814 815 if (g_bdev_opts.bdev_auto_examine) { 816 SPDK_ERRLOG("Manual examine is not allowed if auto examine is enabled\n"); 817 return -EINVAL; 818 } 819 820 if (bdev_examine_allowlist_check(name)) { 821 SPDK_ERRLOG("Duplicate bdev name for manual examine: %s\n", name); 822 return -EEXIST; 823 } 824 825 item = calloc(1, sizeof(*item)); 826 if (!item) { 827 return -ENOMEM; 828 } 829 item->name = strdup(name); 830 if (!item->name) { 831 free(item); 832 return -ENOMEM; 833 } 834 TAILQ_INSERT_TAIL(&g_bdev_examine_allowlist, item, link); 835 836 bdev = spdk_bdev_get_by_name(name); 837 if (bdev) { 838 bdev_examine(bdev); 839 } 840 return 0; 841 } 842 843 static inline void 844 bdev_examine_allowlist_config_json(struct spdk_json_write_ctx *w) 845 { 846 struct spdk_bdev_examine_item *item; 847 TAILQ_FOREACH(item, &g_bdev_examine_allowlist, link) { 848 spdk_json_write_object_begin(w); 849 spdk_json_write_named_string(w, "method", "bdev_examine"); 850 spdk_json_write_named_object_begin(w, "params"); 851 spdk_json_write_named_string(w, "name", item->name); 852 spdk_json_write_object_end(w); 853 spdk_json_write_object_end(w); 854 } 855 } 856 857 struct spdk_bdev * 858 spdk_bdev_first(void) 859 { 860 struct spdk_bdev *bdev; 861 862 bdev = TAILQ_FIRST(&g_bdev_mgr.bdevs); 863 if (bdev) { 864 SPDK_DEBUGLOG(bdev, "Starting bdev iteration at %s\n", bdev->name); 865 } 866 867 return bdev; 868 } 869 870 struct spdk_bdev * 871 spdk_bdev_next(struct spdk_bdev *prev) 872 { 873 struct spdk_bdev *bdev; 874 875 bdev = TAILQ_NEXT(prev, internal.link); 876 if (bdev) { 877 SPDK_DEBUGLOG(bdev, "Continuing bdev iteration at %s\n", bdev->name); 878 } 879 880 return bdev; 881 } 882 883 static struct spdk_bdev * 884 _bdev_next_leaf(struct spdk_bdev *bdev) 885 { 886 while (bdev != NULL) { 887 if (bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE) { 888 return bdev; 889 } else { 890 bdev = TAILQ_NEXT(bdev, internal.link); 891 } 892 } 893 894 return bdev; 895 } 896 897 struct spdk_bdev * 898 spdk_bdev_first_leaf(void) 899 { 900 struct spdk_bdev *bdev; 901 902 bdev = _bdev_next_leaf(TAILQ_FIRST(&g_bdev_mgr.bdevs)); 903 904 if (bdev) { 905 SPDK_DEBUGLOG(bdev, "Starting bdev iteration at %s\n", bdev->name); 906 } 907 908 return bdev; 909 } 910 911 struct spdk_bdev * 912 spdk_bdev_next_leaf(struct spdk_bdev *prev) 913 { 914 struct spdk_bdev *bdev; 915 916 bdev = _bdev_next_leaf(TAILQ_NEXT(prev, internal.link)); 917 918 if (bdev) { 919 SPDK_DEBUGLOG(bdev, "Continuing bdev iteration at %s\n", bdev->name); 920 } 921 922 return bdev; 923 } 924 925 static inline bool 926 bdev_io_use_memory_domain(struct spdk_bdev_io *bdev_io) 927 { 928 return bdev_io->internal.memory_domain; 929 } 930 931 static inline bool 932 bdev_io_use_accel_sequence(struct spdk_bdev_io *bdev_io) 933 { 934 return bdev_io->internal.has_accel_sequence; 935 } 936 937 static inline void 938 bdev_queue_nomem_io_head(struct spdk_bdev_shared_resource *shared_resource, 939 struct spdk_bdev_io *bdev_io, enum bdev_io_retry_state state) 940 { 941 /* Wait for some of the outstanding I/O to complete before we retry any of the nomem_io. 942 * Normally we will wait for NOMEM_THRESHOLD_COUNT I/O to complete but for low queue depth 943 * channels we will instead wait for half to complete. 944 */ 945 shared_resource->nomem_threshold = spdk_max((int64_t)shared_resource->io_outstanding / 2, 946 (int64_t)shared_resource->io_outstanding - NOMEM_THRESHOLD_COUNT); 947 948 assert(state != BDEV_IO_RETRY_STATE_INVALID); 949 bdev_io->internal.retry_state = state; 950 TAILQ_INSERT_HEAD(&shared_resource->nomem_io, bdev_io, internal.link); 951 } 952 953 static inline void 954 bdev_queue_nomem_io_tail(struct spdk_bdev_shared_resource *shared_resource, 955 struct spdk_bdev_io *bdev_io, enum bdev_io_retry_state state) 956 { 957 /* We only queue IOs at the end of the nomem_io queue if they're submitted by the user while 958 * the queue isn't empty, so we don't need to update the nomem_threshold here */ 959 assert(!TAILQ_EMPTY(&shared_resource->nomem_io)); 960 961 assert(state != BDEV_IO_RETRY_STATE_INVALID); 962 bdev_io->internal.retry_state = state; 963 TAILQ_INSERT_TAIL(&shared_resource->nomem_io, bdev_io, internal.link); 964 } 965 966 void 967 spdk_bdev_io_set_buf(struct spdk_bdev_io *bdev_io, void *buf, size_t len) 968 { 969 struct iovec *iovs; 970 971 if (bdev_io->u.bdev.iovs == NULL) { 972 bdev_io->u.bdev.iovs = &bdev_io->iov; 973 bdev_io->u.bdev.iovcnt = 1; 974 } 975 976 iovs = bdev_io->u.bdev.iovs; 977 978 assert(iovs != NULL); 979 assert(bdev_io->u.bdev.iovcnt >= 1); 980 981 iovs[0].iov_base = buf; 982 iovs[0].iov_len = len; 983 } 984 985 void 986 spdk_bdev_io_set_md_buf(struct spdk_bdev_io *bdev_io, void *md_buf, size_t len) 987 { 988 assert((len / spdk_bdev_get_md_size(bdev_io->bdev)) >= bdev_io->u.bdev.num_blocks); 989 bdev_io->u.bdev.md_buf = md_buf; 990 } 991 992 static bool 993 _is_buf_allocated(const struct iovec *iovs) 994 { 995 if (iovs == NULL) { 996 return false; 997 } 998 999 return iovs[0].iov_base != NULL; 1000 } 1001 1002 static bool 1003 _are_iovs_aligned(struct iovec *iovs, int iovcnt, uint32_t alignment) 1004 { 1005 int i; 1006 uintptr_t iov_base; 1007 1008 if (spdk_likely(alignment == 1)) { 1009 return true; 1010 } 1011 1012 for (i = 0; i < iovcnt; i++) { 1013 iov_base = (uintptr_t)iovs[i].iov_base; 1014 if ((iov_base & (alignment - 1)) != 0) { 1015 return false; 1016 } 1017 } 1018 1019 return true; 1020 } 1021 1022 static inline bool 1023 bdev_io_needs_sequence_exec(struct spdk_bdev_desc *desc, struct spdk_bdev_io *bdev_io) 1024 { 1025 if (!bdev_io->internal.accel_sequence) { 1026 return false; 1027 } 1028 1029 /* For now, we don't allow splitting IOs with an accel sequence and will treat them as if 1030 * bdev module didn't support accel sequences */ 1031 return !desc->accel_sequence_supported[bdev_io->type] || bdev_io->internal.split; 1032 } 1033 1034 static inline void 1035 bdev_io_increment_outstanding(struct spdk_bdev_channel *bdev_ch, 1036 struct spdk_bdev_shared_resource *shared_resource) 1037 { 1038 bdev_ch->io_outstanding++; 1039 shared_resource->io_outstanding++; 1040 } 1041 1042 static inline void 1043 bdev_io_decrement_outstanding(struct spdk_bdev_channel *bdev_ch, 1044 struct spdk_bdev_shared_resource *shared_resource) 1045 { 1046 assert(bdev_ch->io_outstanding > 0); 1047 assert(shared_resource->io_outstanding > 0); 1048 bdev_ch->io_outstanding--; 1049 shared_resource->io_outstanding--; 1050 } 1051 1052 static void 1053 bdev_io_submit_sequence_cb(void *ctx, int status) 1054 { 1055 struct spdk_bdev_io *bdev_io = ctx; 1056 1057 bdev_io->u.bdev.accel_sequence = NULL; 1058 bdev_io->internal.accel_sequence = NULL; 1059 1060 if (spdk_unlikely(status != 0)) { 1061 SPDK_ERRLOG("Failed to execute accel sequence, status=%d\n", status); 1062 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 1063 bdev_io_complete_unsubmitted(bdev_io); 1064 return; 1065 } 1066 1067 bdev_io_submit(bdev_io); 1068 } 1069 1070 static void 1071 bdev_io_exec_sequence_cb(void *ctx, int status) 1072 { 1073 struct spdk_bdev_io *bdev_io = ctx; 1074 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 1075 1076 TAILQ_REMOVE(&bdev_io->internal.ch->io_accel_exec, bdev_io, internal.link); 1077 bdev_io_decrement_outstanding(ch, ch->shared_resource); 1078 1079 if (spdk_unlikely(!TAILQ_EMPTY(&ch->shared_resource->nomem_io))) { 1080 bdev_ch_retry_io(ch); 1081 } 1082 1083 bdev_io->internal.data_transfer_cpl(bdev_io, status); 1084 } 1085 1086 static void 1087 bdev_io_exec_sequence(struct spdk_bdev_io *bdev_io, void (*cb_fn)(void *ctx, int status)) 1088 { 1089 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 1090 1091 assert(bdev_io_needs_sequence_exec(bdev_io->internal.desc, bdev_io)); 1092 assert(bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE || bdev_io->type == SPDK_BDEV_IO_TYPE_READ); 1093 1094 /* Since the operations are appended during submission, they're in the opposite order than 1095 * how we want to execute them for reads (i.e. we need to execute the most recently added 1096 * operation first), so reverse the sequence before executing it. 1097 */ 1098 if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ) { 1099 spdk_accel_sequence_reverse(bdev_io->internal.accel_sequence); 1100 } 1101 1102 TAILQ_INSERT_TAIL(&bdev_io->internal.ch->io_accel_exec, bdev_io, internal.link); 1103 bdev_io_increment_outstanding(ch, ch->shared_resource); 1104 bdev_io->internal.data_transfer_cpl = cb_fn; 1105 1106 spdk_accel_sequence_finish(bdev_io->internal.accel_sequence, 1107 bdev_io_exec_sequence_cb, bdev_io); 1108 } 1109 1110 static void 1111 bdev_io_get_buf_complete(struct spdk_bdev_io *bdev_io, bool status) 1112 { 1113 struct spdk_io_channel *ch = spdk_bdev_io_get_io_channel(bdev_io); 1114 void *buf; 1115 1116 if (spdk_unlikely(bdev_io->internal.get_aux_buf_cb != NULL)) { 1117 buf = bdev_io->internal.buf; 1118 bdev_io->internal.buf = NULL; 1119 bdev_io->internal.get_aux_buf_cb(ch, bdev_io, buf); 1120 bdev_io->internal.get_aux_buf_cb = NULL; 1121 } else { 1122 assert(bdev_io->internal.get_buf_cb != NULL); 1123 bdev_io->internal.get_buf_cb(ch, bdev_io, status); 1124 bdev_io->internal.get_buf_cb = NULL; 1125 } 1126 } 1127 1128 static void 1129 _bdev_io_pull_buffer_cpl(void *ctx, int rc) 1130 { 1131 struct spdk_bdev_io *bdev_io = ctx; 1132 1133 if (rc) { 1134 SPDK_ERRLOG("Set bounce buffer failed with rc %d\n", rc); 1135 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 1136 } 1137 bdev_io_get_buf_complete(bdev_io, !rc); 1138 } 1139 1140 static void 1141 bdev_io_pull_md_buf_done(void *ctx, int status) 1142 { 1143 struct spdk_bdev_io *bdev_io = ctx; 1144 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 1145 1146 TAILQ_REMOVE(&ch->io_memory_domain, bdev_io, internal.link); 1147 bdev_io_decrement_outstanding(ch, ch->shared_resource); 1148 1149 if (spdk_unlikely(!TAILQ_EMPTY(&ch->shared_resource->nomem_io))) { 1150 bdev_ch_retry_io(ch); 1151 } 1152 1153 assert(bdev_io->internal.data_transfer_cpl); 1154 bdev_io->internal.data_transfer_cpl(bdev_io, status); 1155 } 1156 1157 static void 1158 bdev_io_pull_md_buf(struct spdk_bdev_io *bdev_io) 1159 { 1160 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 1161 int rc = 0; 1162 1163 if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) { 1164 if (bdev_io_use_memory_domain(bdev_io)) { 1165 TAILQ_INSERT_TAIL(&ch->io_memory_domain, bdev_io, internal.link); 1166 bdev_io_increment_outstanding(ch, ch->shared_resource); 1167 rc = spdk_memory_domain_pull_data(bdev_io->internal.memory_domain, 1168 bdev_io->internal.memory_domain_ctx, 1169 &bdev_io->internal.orig_md_iov, 1, 1170 &bdev_io->internal.bounce_md_iov, 1, 1171 bdev_io_pull_md_buf_done, bdev_io); 1172 if (rc == 0) { 1173 /* Continue to submit IO in completion callback */ 1174 return; 1175 } 1176 bdev_io_decrement_outstanding(ch, ch->shared_resource); 1177 TAILQ_REMOVE(&ch->io_memory_domain, bdev_io, internal.link); 1178 if (rc != -ENOMEM) { 1179 SPDK_ERRLOG("Failed to pull data from memory domain %s, rc %d\n", 1180 spdk_memory_domain_get_dma_device_id( 1181 bdev_io->internal.memory_domain), rc); 1182 } 1183 } else { 1184 memcpy(bdev_io->internal.bounce_md_iov.iov_base, 1185 bdev_io->internal.orig_md_iov.iov_base, 1186 bdev_io->internal.orig_md_iov.iov_len); 1187 } 1188 } 1189 1190 if (spdk_unlikely(rc == -ENOMEM)) { 1191 bdev_queue_nomem_io_head(ch->shared_resource, bdev_io, BDEV_IO_RETRY_STATE_PULL_MD); 1192 } else { 1193 assert(bdev_io->internal.data_transfer_cpl); 1194 bdev_io->internal.data_transfer_cpl(bdev_io, rc); 1195 } 1196 } 1197 1198 static void 1199 _bdev_io_pull_bounce_md_buf(struct spdk_bdev_io *bdev_io, void *md_buf, size_t len) 1200 { 1201 /* save original md_buf */ 1202 bdev_io->internal.orig_md_iov.iov_base = bdev_io->u.bdev.md_buf; 1203 bdev_io->internal.orig_md_iov.iov_len = len; 1204 bdev_io->internal.bounce_md_iov.iov_base = md_buf; 1205 bdev_io->internal.bounce_md_iov.iov_len = len; 1206 /* set bounce md_buf */ 1207 bdev_io->u.bdev.md_buf = md_buf; 1208 1209 bdev_io_pull_md_buf(bdev_io); 1210 } 1211 1212 static void 1213 _bdev_io_set_md_buf(struct spdk_bdev_io *bdev_io) 1214 { 1215 struct spdk_bdev *bdev = bdev_io->bdev; 1216 uint64_t md_len; 1217 void *buf; 1218 1219 if (spdk_bdev_is_md_separate(bdev)) { 1220 assert(!bdev_io_use_accel_sequence(bdev_io)); 1221 1222 buf = (char *)bdev_io->u.bdev.iovs[0].iov_base + bdev_io->u.bdev.iovs[0].iov_len; 1223 md_len = bdev_io->u.bdev.num_blocks * bdev->md_len; 1224 1225 assert(((uintptr_t)buf & (spdk_bdev_get_buf_align(bdev) - 1)) == 0); 1226 1227 if (bdev_io->u.bdev.md_buf != NULL) { 1228 _bdev_io_pull_bounce_md_buf(bdev_io, buf, md_len); 1229 return; 1230 } else { 1231 spdk_bdev_io_set_md_buf(bdev_io, buf, md_len); 1232 } 1233 } 1234 1235 bdev_io_get_buf_complete(bdev_io, true); 1236 } 1237 1238 static inline void 1239 bdev_io_pull_data_done(struct spdk_bdev_io *bdev_io, int rc) 1240 { 1241 if (rc) { 1242 SPDK_ERRLOG("Failed to get data buffer\n"); 1243 assert(bdev_io->internal.data_transfer_cpl); 1244 bdev_io->internal.data_transfer_cpl(bdev_io, rc); 1245 return; 1246 } 1247 1248 _bdev_io_set_md_buf(bdev_io); 1249 } 1250 1251 static void 1252 bdev_io_pull_data_done_and_track(void *ctx, int status) 1253 { 1254 struct spdk_bdev_io *bdev_io = ctx; 1255 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 1256 1257 TAILQ_REMOVE(&ch->io_memory_domain, bdev_io, internal.link); 1258 bdev_io_decrement_outstanding(ch, ch->shared_resource); 1259 1260 if (spdk_unlikely(!TAILQ_EMPTY(&ch->shared_resource->nomem_io))) { 1261 bdev_ch_retry_io(ch); 1262 } 1263 1264 bdev_io_pull_data_done(bdev_io, status); 1265 } 1266 1267 static void 1268 bdev_io_pull_data(struct spdk_bdev_io *bdev_io) 1269 { 1270 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 1271 int rc = 0; 1272 1273 /* If we need to exec an accel sequence or the IO uses a memory domain buffer and has a 1274 * sequence, append a copy operation making accel change the src/dst buffers of the previous 1275 * operation */ 1276 if (bdev_io_needs_sequence_exec(bdev_io->internal.desc, bdev_io) || 1277 (bdev_io_use_accel_sequence(bdev_io) && bdev_io_use_memory_domain(bdev_io))) { 1278 if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) { 1279 rc = spdk_accel_append_copy(&bdev_io->internal.accel_sequence, ch->accel_channel, 1280 bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, 1281 NULL, NULL, 1282 bdev_io->internal.orig_iovs, 1283 bdev_io->internal.orig_iovcnt, 1284 bdev_io->internal.memory_domain, 1285 bdev_io->internal.memory_domain_ctx, 1286 NULL, NULL); 1287 } else { 1288 /* We need to reverse the src/dst for reads */ 1289 assert(bdev_io->type == SPDK_BDEV_IO_TYPE_READ); 1290 rc = spdk_accel_append_copy(&bdev_io->internal.accel_sequence, ch->accel_channel, 1291 bdev_io->internal.orig_iovs, 1292 bdev_io->internal.orig_iovcnt, 1293 bdev_io->internal.memory_domain, 1294 bdev_io->internal.memory_domain_ctx, 1295 bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, 1296 NULL, NULL, NULL, NULL); 1297 } 1298 1299 if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) { 1300 SPDK_ERRLOG("Failed to append copy to accel sequence: %p\n", 1301 bdev_io->internal.accel_sequence); 1302 } 1303 } else if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) { 1304 /* if this is write path, copy data from original buffer to bounce buffer */ 1305 if (bdev_io_use_memory_domain(bdev_io)) { 1306 TAILQ_INSERT_TAIL(&ch->io_memory_domain, bdev_io, internal.link); 1307 bdev_io_increment_outstanding(ch, ch->shared_resource); 1308 rc = spdk_memory_domain_pull_data(bdev_io->internal.memory_domain, 1309 bdev_io->internal.memory_domain_ctx, 1310 bdev_io->internal.orig_iovs, 1311 (uint32_t) bdev_io->internal.orig_iovcnt, 1312 bdev_io->u.bdev.iovs, 1, 1313 bdev_io_pull_data_done_and_track, 1314 bdev_io); 1315 if (rc == 0) { 1316 /* Continue to submit IO in completion callback */ 1317 return; 1318 } 1319 TAILQ_REMOVE(&ch->io_memory_domain, bdev_io, internal.link); 1320 bdev_io_decrement_outstanding(ch, ch->shared_resource); 1321 if (rc != -ENOMEM) { 1322 SPDK_ERRLOG("Failed to pull data from memory domain %s\n", 1323 spdk_memory_domain_get_dma_device_id( 1324 bdev_io->internal.memory_domain)); 1325 } 1326 } else { 1327 assert(bdev_io->u.bdev.iovcnt == 1); 1328 spdk_copy_iovs_to_buf(bdev_io->u.bdev.iovs[0].iov_base, 1329 bdev_io->u.bdev.iovs[0].iov_len, 1330 bdev_io->internal.orig_iovs, 1331 bdev_io->internal.orig_iovcnt); 1332 } 1333 } 1334 1335 if (spdk_unlikely(rc == -ENOMEM)) { 1336 bdev_queue_nomem_io_head(ch->shared_resource, bdev_io, BDEV_IO_RETRY_STATE_PULL); 1337 } else { 1338 bdev_io_pull_data_done(bdev_io, rc); 1339 } 1340 } 1341 1342 static void 1343 _bdev_io_pull_bounce_data_buf(struct spdk_bdev_io *bdev_io, void *buf, size_t len, 1344 bdev_copy_bounce_buffer_cpl cpl_cb) 1345 { 1346 struct spdk_bdev_shared_resource *shared_resource = bdev_io->internal.ch->shared_resource; 1347 1348 bdev_io->internal.data_transfer_cpl = cpl_cb; 1349 /* save original iovec */ 1350 bdev_io->internal.orig_iovs = bdev_io->u.bdev.iovs; 1351 bdev_io->internal.orig_iovcnt = bdev_io->u.bdev.iovcnt; 1352 /* set bounce iov */ 1353 bdev_io->u.bdev.iovs = &bdev_io->internal.bounce_iov; 1354 bdev_io->u.bdev.iovcnt = 1; 1355 /* set bounce buffer for this operation */ 1356 bdev_io->u.bdev.iovs[0].iov_base = buf; 1357 bdev_io->u.bdev.iovs[0].iov_len = len; 1358 1359 if (spdk_unlikely(!TAILQ_EMPTY(&shared_resource->nomem_io))) { 1360 bdev_queue_nomem_io_tail(shared_resource, bdev_io, BDEV_IO_RETRY_STATE_PULL); 1361 } else { 1362 bdev_io_pull_data(bdev_io); 1363 } 1364 } 1365 1366 static void 1367 _bdev_io_set_buf(struct spdk_bdev_io *bdev_io, void *buf, uint64_t len) 1368 { 1369 struct spdk_bdev *bdev = bdev_io->bdev; 1370 bool buf_allocated; 1371 uint64_t alignment; 1372 void *aligned_buf; 1373 1374 bdev_io->internal.buf = buf; 1375 1376 if (spdk_unlikely(bdev_io->internal.get_aux_buf_cb != NULL)) { 1377 bdev_io_get_buf_complete(bdev_io, true); 1378 return; 1379 } 1380 1381 alignment = spdk_bdev_get_buf_align(bdev); 1382 buf_allocated = _is_buf_allocated(bdev_io->u.bdev.iovs); 1383 aligned_buf = (void *)(((uintptr_t)buf + (alignment - 1)) & ~(alignment - 1)); 1384 1385 if (buf_allocated) { 1386 _bdev_io_pull_bounce_data_buf(bdev_io, aligned_buf, len, _bdev_io_pull_buffer_cpl); 1387 /* Continue in completion callback */ 1388 return; 1389 } else { 1390 spdk_bdev_io_set_buf(bdev_io, aligned_buf, len); 1391 } 1392 1393 _bdev_io_set_md_buf(bdev_io); 1394 } 1395 1396 static inline uint64_t 1397 bdev_io_get_max_buf_len(struct spdk_bdev_io *bdev_io, uint64_t len) 1398 { 1399 struct spdk_bdev *bdev = bdev_io->bdev; 1400 uint64_t md_len, alignment; 1401 1402 md_len = spdk_bdev_is_md_separate(bdev) ? bdev_io->u.bdev.num_blocks * bdev->md_len : 0; 1403 1404 /* 1 byte alignment needs 0 byte of extra space, 64 bytes alignment needs 63 bytes of extra space, etc. */ 1405 alignment = spdk_bdev_get_buf_align(bdev) - 1; 1406 1407 return len + alignment + md_len; 1408 } 1409 1410 static void 1411 _bdev_io_put_buf(struct spdk_bdev_io *bdev_io, void *buf, uint64_t buf_len) 1412 { 1413 struct spdk_bdev_mgmt_channel *ch; 1414 1415 ch = bdev_io->internal.ch->shared_resource->mgmt_ch; 1416 spdk_iobuf_put(&ch->iobuf, buf, bdev_io_get_max_buf_len(bdev_io, buf_len)); 1417 } 1418 1419 static void 1420 bdev_io_put_buf(struct spdk_bdev_io *bdev_io) 1421 { 1422 assert(bdev_io->internal.buf != NULL); 1423 _bdev_io_put_buf(bdev_io, bdev_io->internal.buf, bdev_io->internal.buf_len); 1424 bdev_io->internal.buf = NULL; 1425 } 1426 1427 void 1428 spdk_bdev_io_put_aux_buf(struct spdk_bdev_io *bdev_io, void *buf) 1429 { 1430 uint64_t len = bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen; 1431 1432 assert(buf != NULL); 1433 _bdev_io_put_buf(bdev_io, buf, len); 1434 } 1435 1436 static inline void 1437 bdev_submit_request(struct spdk_bdev *bdev, struct spdk_io_channel *ioch, 1438 struct spdk_bdev_io *bdev_io) 1439 { 1440 /* After a request is submitted to a bdev module, the ownership of an accel sequence 1441 * associated with that bdev_io is transferred to the bdev module. So, clear the internal 1442 * sequence pointer to make sure we won't touch it anymore. */ 1443 if ((bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE || 1444 bdev_io->type == SPDK_BDEV_IO_TYPE_READ) && bdev_io->u.bdev.accel_sequence != NULL) { 1445 assert(!bdev_io_needs_sequence_exec(bdev_io->internal.desc, bdev_io)); 1446 bdev_io->internal.accel_sequence = NULL; 1447 } 1448 1449 bdev->fn_table->submit_request(ioch, bdev_io); 1450 } 1451 1452 static inline void 1453 bdev_ch_resubmit_io(struct spdk_bdev_shared_resource *shared_resource, struct spdk_bdev_io *bdev_io) 1454 { 1455 struct spdk_bdev *bdev = bdev_io->bdev; 1456 1457 bdev_io_increment_outstanding(bdev_io->internal.ch, shared_resource); 1458 bdev_io->internal.error.nvme.cdw0 = 0; 1459 bdev_io->num_retries++; 1460 bdev_submit_request(bdev, spdk_bdev_io_get_io_channel(bdev_io), bdev_io); 1461 } 1462 1463 static void 1464 bdev_shared_ch_retry_io(struct spdk_bdev_shared_resource *shared_resource) 1465 { 1466 struct spdk_bdev_io *bdev_io; 1467 1468 if (shared_resource->io_outstanding > shared_resource->nomem_threshold) { 1469 /* 1470 * Allow some more I/O to complete before retrying the nomem_io queue. 1471 * Some drivers (such as nvme) cannot immediately take a new I/O in 1472 * the context of a completion, because the resources for the I/O are 1473 * not released until control returns to the bdev poller. Also, we 1474 * may require several small I/O to complete before a larger I/O 1475 * (that requires splitting) can be submitted. 1476 */ 1477 return; 1478 } 1479 1480 while (!TAILQ_EMPTY(&shared_resource->nomem_io)) { 1481 bdev_io = TAILQ_FIRST(&shared_resource->nomem_io); 1482 TAILQ_REMOVE(&shared_resource->nomem_io, bdev_io, internal.link); 1483 1484 switch (bdev_io->internal.retry_state) { 1485 case BDEV_IO_RETRY_STATE_SUBMIT: 1486 bdev_ch_resubmit_io(shared_resource, bdev_io); 1487 break; 1488 case BDEV_IO_RETRY_STATE_PULL: 1489 bdev_io_pull_data(bdev_io); 1490 break; 1491 case BDEV_IO_RETRY_STATE_PULL_MD: 1492 bdev_io_pull_md_buf(bdev_io); 1493 break; 1494 case BDEV_IO_RETRY_STATE_PUSH: 1495 bdev_io_push_bounce_data(bdev_io); 1496 break; 1497 case BDEV_IO_RETRY_STATE_PUSH_MD: 1498 bdev_io_push_bounce_md_buf(bdev_io); 1499 break; 1500 default: 1501 assert(0 && "invalid retry state"); 1502 break; 1503 } 1504 1505 if (bdev_io == TAILQ_FIRST(&shared_resource->nomem_io)) { 1506 /* This IO completed again with NOMEM status, so break the loop and 1507 * don't try anymore. Note that a bdev_io that fails with NOMEM 1508 * always gets requeued at the front of the list, to maintain 1509 * ordering. 1510 */ 1511 break; 1512 } 1513 } 1514 } 1515 1516 static void 1517 bdev_ch_retry_io(struct spdk_bdev_channel *bdev_ch) 1518 { 1519 bdev_shared_ch_retry_io(bdev_ch->shared_resource); 1520 } 1521 1522 static int 1523 bdev_no_mem_poller(void *ctx) 1524 { 1525 struct spdk_bdev_shared_resource *shared_resource = ctx; 1526 1527 spdk_poller_unregister(&shared_resource->nomem_poller); 1528 1529 if (!TAILQ_EMPTY(&shared_resource->nomem_io)) { 1530 bdev_shared_ch_retry_io(shared_resource); 1531 } 1532 /* the retry cb may re-register the poller so double check */ 1533 if (!TAILQ_EMPTY(&shared_resource->nomem_io) && 1534 shared_resource->io_outstanding == 0 && shared_resource->nomem_poller == NULL) { 1535 /* No IOs were submitted, try again */ 1536 shared_resource->nomem_poller = SPDK_POLLER_REGISTER(bdev_no_mem_poller, shared_resource, 1537 SPDK_BDEV_IO_POLL_INTERVAL_IN_MSEC * 10); 1538 } 1539 1540 return SPDK_POLLER_BUSY; 1541 } 1542 1543 static inline bool 1544 _bdev_io_handle_no_mem(struct spdk_bdev_io *bdev_io, enum bdev_io_retry_state state) 1545 { 1546 struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch; 1547 struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource; 1548 1549 if (spdk_unlikely(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_NOMEM)) { 1550 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_PENDING; 1551 bdev_queue_nomem_io_head(shared_resource, bdev_io, state); 1552 1553 if (shared_resource->io_outstanding == 0 && !shared_resource->nomem_poller) { 1554 /* Special case when we have nomem IOs and no outstanding IOs which completions 1555 * could trigger retry of queued IOs 1556 * Any IOs submitted may trigger retry of queued IOs. This poller handles a case when no 1557 * new IOs submitted, e.g. qd==1 */ 1558 shared_resource->nomem_poller = SPDK_POLLER_REGISTER(bdev_no_mem_poller, shared_resource, 1559 SPDK_BDEV_IO_POLL_INTERVAL_IN_MSEC * 10); 1560 } 1561 /* If bdev module completed an I/O that has an accel sequence with NOMEM status, the 1562 * ownership of that sequence is transferred back to the bdev layer, so we need to 1563 * restore internal.accel_sequence to make sure that the sequence is handled 1564 * correctly in case the I/O is later aborted. */ 1565 if ((bdev_io->type == SPDK_BDEV_IO_TYPE_READ || 1566 bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) && bdev_io->u.bdev.accel_sequence) { 1567 assert(bdev_io->internal.accel_sequence == NULL); 1568 bdev_io->internal.accel_sequence = bdev_io->u.bdev.accel_sequence; 1569 } 1570 1571 return true; 1572 } 1573 1574 if (spdk_unlikely(!TAILQ_EMPTY(&shared_resource->nomem_io))) { 1575 bdev_ch_retry_io(bdev_ch); 1576 } 1577 1578 return false; 1579 } 1580 1581 static void 1582 _bdev_io_complete_push_bounce_done(void *ctx, int rc) 1583 { 1584 struct spdk_bdev_io *bdev_io = ctx; 1585 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 1586 1587 if (rc) { 1588 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 1589 } 1590 /* We want to free the bounce buffer here since we know we're done with it (as opposed 1591 * to waiting for the conditional free of internal.buf in spdk_bdev_free_io()). 1592 */ 1593 bdev_io_put_buf(bdev_io); 1594 1595 if (spdk_unlikely(!TAILQ_EMPTY(&ch->shared_resource->nomem_io))) { 1596 bdev_ch_retry_io(ch); 1597 } 1598 1599 /* Continue with IO completion flow */ 1600 bdev_io_complete(bdev_io); 1601 } 1602 1603 static void 1604 bdev_io_push_bounce_md_buf_done(void *ctx, int rc) 1605 { 1606 struct spdk_bdev_io *bdev_io = ctx; 1607 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 1608 1609 TAILQ_REMOVE(&ch->io_memory_domain, bdev_io, internal.link); 1610 bdev_io_decrement_outstanding(ch, ch->shared_resource); 1611 1612 if (spdk_unlikely(!TAILQ_EMPTY(&ch->shared_resource->nomem_io))) { 1613 bdev_ch_retry_io(ch); 1614 } 1615 1616 bdev_io->internal.data_transfer_cpl(bdev_io, rc); 1617 } 1618 1619 static inline void 1620 bdev_io_push_bounce_md_buf(struct spdk_bdev_io *bdev_io) 1621 { 1622 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 1623 int rc = 0; 1624 1625 assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS); 1626 /* do the same for metadata buffer */ 1627 if (spdk_unlikely(bdev_io->internal.orig_md_iov.iov_base != NULL)) { 1628 assert(spdk_bdev_is_md_separate(bdev_io->bdev)); 1629 1630 if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ) { 1631 if (bdev_io_use_memory_domain(bdev_io)) { 1632 TAILQ_INSERT_TAIL(&ch->io_memory_domain, bdev_io, internal.link); 1633 bdev_io_increment_outstanding(ch, ch->shared_resource); 1634 /* If memory domain is used then we need to call async push function */ 1635 rc = spdk_memory_domain_push_data(bdev_io->internal.memory_domain, 1636 bdev_io->internal.memory_domain_ctx, 1637 &bdev_io->internal.orig_md_iov, 1638 (uint32_t)bdev_io->internal.orig_iovcnt, 1639 &bdev_io->internal.bounce_md_iov, 1, 1640 bdev_io_push_bounce_md_buf_done, 1641 bdev_io); 1642 if (rc == 0) { 1643 /* Continue IO completion in async callback */ 1644 return; 1645 } 1646 TAILQ_REMOVE(&ch->io_memory_domain, bdev_io, internal.link); 1647 bdev_io_decrement_outstanding(ch, ch->shared_resource); 1648 if (rc != -ENOMEM) { 1649 SPDK_ERRLOG("Failed to push md to memory domain %s\n", 1650 spdk_memory_domain_get_dma_device_id( 1651 bdev_io->internal.memory_domain)); 1652 } 1653 } else { 1654 memcpy(bdev_io->internal.orig_md_iov.iov_base, bdev_io->u.bdev.md_buf, 1655 bdev_io->internal.orig_md_iov.iov_len); 1656 } 1657 } 1658 } 1659 1660 if (spdk_unlikely(rc == -ENOMEM)) { 1661 bdev_queue_nomem_io_head(ch->shared_resource, bdev_io, BDEV_IO_RETRY_STATE_PUSH_MD); 1662 } else { 1663 assert(bdev_io->internal.data_transfer_cpl); 1664 bdev_io->internal.data_transfer_cpl(bdev_io, rc); 1665 } 1666 } 1667 1668 static inline void 1669 bdev_io_push_bounce_data_done(struct spdk_bdev_io *bdev_io, int rc) 1670 { 1671 assert(bdev_io->internal.data_transfer_cpl); 1672 if (rc) { 1673 bdev_io->internal.data_transfer_cpl(bdev_io, rc); 1674 return; 1675 } 1676 1677 /* set original buffer for this io */ 1678 bdev_io->u.bdev.iovcnt = bdev_io->internal.orig_iovcnt; 1679 bdev_io->u.bdev.iovs = bdev_io->internal.orig_iovs; 1680 /* disable bouncing buffer for this io */ 1681 bdev_io->internal.orig_iovcnt = 0; 1682 bdev_io->internal.orig_iovs = NULL; 1683 1684 bdev_io_push_bounce_md_buf(bdev_io); 1685 } 1686 1687 static void 1688 bdev_io_push_bounce_data_done_and_track(void *ctx, int status) 1689 { 1690 struct spdk_bdev_io *bdev_io = ctx; 1691 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 1692 1693 TAILQ_REMOVE(&ch->io_memory_domain, bdev_io, internal.link); 1694 bdev_io_decrement_outstanding(ch, ch->shared_resource); 1695 1696 if (spdk_unlikely(!TAILQ_EMPTY(&ch->shared_resource->nomem_io))) { 1697 bdev_ch_retry_io(ch); 1698 } 1699 1700 bdev_io_push_bounce_data_done(bdev_io, status); 1701 } 1702 1703 static inline void 1704 bdev_io_push_bounce_data(struct spdk_bdev_io *bdev_io) 1705 { 1706 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 1707 int rc = 0; 1708 1709 assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS); 1710 assert(!bdev_io_use_accel_sequence(bdev_io)); 1711 1712 /* if this is read path, copy data from bounce buffer to original buffer */ 1713 if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ) { 1714 if (bdev_io_use_memory_domain(bdev_io)) { 1715 TAILQ_INSERT_TAIL(&ch->io_memory_domain, bdev_io, internal.link); 1716 bdev_io_increment_outstanding(ch, ch->shared_resource); 1717 /* If memory domain is used then we need to call async push function */ 1718 rc = spdk_memory_domain_push_data(bdev_io->internal.memory_domain, 1719 bdev_io->internal.memory_domain_ctx, 1720 bdev_io->internal.orig_iovs, 1721 (uint32_t)bdev_io->internal.orig_iovcnt, 1722 &bdev_io->internal.bounce_iov, 1, 1723 bdev_io_push_bounce_data_done_and_track, 1724 bdev_io); 1725 if (rc == 0) { 1726 /* Continue IO completion in async callback */ 1727 return; 1728 } 1729 1730 TAILQ_REMOVE(&ch->io_memory_domain, bdev_io, internal.link); 1731 bdev_io_decrement_outstanding(ch, ch->shared_resource); 1732 if (rc != -ENOMEM) { 1733 SPDK_ERRLOG("Failed to push data to memory domain %s\n", 1734 spdk_memory_domain_get_dma_device_id( 1735 bdev_io->internal.memory_domain)); 1736 } 1737 } else { 1738 spdk_copy_buf_to_iovs(bdev_io->internal.orig_iovs, 1739 bdev_io->internal.orig_iovcnt, 1740 bdev_io->internal.bounce_iov.iov_base, 1741 bdev_io->internal.bounce_iov.iov_len); 1742 } 1743 } 1744 1745 if (spdk_unlikely(rc == -ENOMEM)) { 1746 bdev_queue_nomem_io_head(ch->shared_resource, bdev_io, BDEV_IO_RETRY_STATE_PUSH); 1747 } else { 1748 bdev_io_push_bounce_data_done(bdev_io, rc); 1749 } 1750 } 1751 1752 static inline void 1753 _bdev_io_push_bounce_data_buffer(struct spdk_bdev_io *bdev_io, bdev_copy_bounce_buffer_cpl cpl_cb) 1754 { 1755 bdev_io->internal.data_transfer_cpl = cpl_cb; 1756 bdev_io_push_bounce_data(bdev_io); 1757 } 1758 1759 static void 1760 bdev_io_get_iobuf_cb(struct spdk_iobuf_entry *iobuf, void *buf) 1761 { 1762 struct spdk_bdev_io *bdev_io; 1763 1764 bdev_io = SPDK_CONTAINEROF(iobuf, struct spdk_bdev_io, internal.iobuf); 1765 _bdev_io_set_buf(bdev_io, buf, bdev_io->internal.buf_len); 1766 } 1767 1768 static void 1769 bdev_io_get_buf(struct spdk_bdev_io *bdev_io, uint64_t len) 1770 { 1771 struct spdk_bdev_mgmt_channel *mgmt_ch; 1772 uint64_t max_len; 1773 void *buf; 1774 1775 assert(spdk_bdev_io_get_thread(bdev_io) == spdk_get_thread()); 1776 mgmt_ch = bdev_io->internal.ch->shared_resource->mgmt_ch; 1777 max_len = bdev_io_get_max_buf_len(bdev_io, len); 1778 1779 if (spdk_unlikely(max_len > mgmt_ch->iobuf.large.bufsize)) { 1780 SPDK_ERRLOG("Length %" PRIu64 " is larger than allowed\n", max_len); 1781 bdev_io_get_buf_complete(bdev_io, false); 1782 return; 1783 } 1784 1785 bdev_io->internal.buf_len = len; 1786 buf = spdk_iobuf_get(&mgmt_ch->iobuf, max_len, &bdev_io->internal.iobuf, 1787 bdev_io_get_iobuf_cb); 1788 if (buf != NULL) { 1789 _bdev_io_set_buf(bdev_io, buf, len); 1790 } 1791 } 1792 1793 void 1794 spdk_bdev_io_get_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_buf_cb cb, uint64_t len) 1795 { 1796 struct spdk_bdev *bdev = bdev_io->bdev; 1797 uint64_t alignment; 1798 1799 assert(cb != NULL); 1800 bdev_io->internal.get_buf_cb = cb; 1801 1802 alignment = spdk_bdev_get_buf_align(bdev); 1803 1804 if (_is_buf_allocated(bdev_io->u.bdev.iovs) && 1805 _are_iovs_aligned(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, alignment)) { 1806 /* Buffer already present and aligned */ 1807 cb(spdk_bdev_io_get_io_channel(bdev_io), bdev_io, true); 1808 return; 1809 } 1810 1811 bdev_io_get_buf(bdev_io, len); 1812 } 1813 1814 static void 1815 _bdev_memory_domain_get_io_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io, 1816 bool success) 1817 { 1818 if (!success) { 1819 SPDK_ERRLOG("Failed to get data buffer, completing IO\n"); 1820 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 1821 bdev_io_complete_unsubmitted(bdev_io); 1822 return; 1823 } 1824 1825 if (bdev_io_needs_sequence_exec(bdev_io->internal.desc, bdev_io)) { 1826 if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) { 1827 bdev_io_exec_sequence(bdev_io, bdev_io_submit_sequence_cb); 1828 return; 1829 } 1830 /* For reads we'll execute the sequence after the data is read, so, for now, only 1831 * clear out accel_sequence pointer and submit the IO */ 1832 assert(bdev_io->type == SPDK_BDEV_IO_TYPE_READ); 1833 bdev_io->u.bdev.accel_sequence = NULL; 1834 } 1835 1836 bdev_io_submit(bdev_io); 1837 } 1838 1839 static void 1840 _bdev_memory_domain_io_get_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_buf_cb cb, 1841 uint64_t len) 1842 { 1843 assert(cb != NULL); 1844 bdev_io->internal.get_buf_cb = cb; 1845 1846 bdev_io_get_buf(bdev_io, len); 1847 } 1848 1849 void 1850 spdk_bdev_io_get_aux_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_aux_buf_cb cb) 1851 { 1852 uint64_t len = bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen; 1853 1854 assert(cb != NULL); 1855 assert(bdev_io->internal.get_aux_buf_cb == NULL); 1856 bdev_io->internal.get_aux_buf_cb = cb; 1857 bdev_io_get_buf(bdev_io, len); 1858 } 1859 1860 static int 1861 bdev_module_get_max_ctx_size(void) 1862 { 1863 struct spdk_bdev_module *bdev_module; 1864 int max_bdev_module_size = 0; 1865 1866 TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, internal.tailq) { 1867 if (bdev_module->get_ctx_size && bdev_module->get_ctx_size() > max_bdev_module_size) { 1868 max_bdev_module_size = bdev_module->get_ctx_size(); 1869 } 1870 } 1871 1872 return max_bdev_module_size; 1873 } 1874 1875 static void 1876 bdev_enable_histogram_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w) 1877 { 1878 if (!bdev->internal.histogram_enabled) { 1879 return; 1880 } 1881 1882 spdk_json_write_object_begin(w); 1883 spdk_json_write_named_string(w, "method", "bdev_enable_histogram"); 1884 1885 spdk_json_write_named_object_begin(w, "params"); 1886 spdk_json_write_named_string(w, "name", bdev->name); 1887 1888 spdk_json_write_named_bool(w, "enable", bdev->internal.histogram_enabled); 1889 spdk_json_write_object_end(w); 1890 1891 spdk_json_write_object_end(w); 1892 } 1893 1894 static void 1895 bdev_qos_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w) 1896 { 1897 int i; 1898 struct spdk_bdev_qos *qos = bdev->internal.qos; 1899 uint64_t limits[SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES]; 1900 1901 if (!qos) { 1902 return; 1903 } 1904 1905 spdk_bdev_get_qos_rate_limits(bdev, limits); 1906 1907 spdk_json_write_object_begin(w); 1908 spdk_json_write_named_string(w, "method", "bdev_set_qos_limit"); 1909 1910 spdk_json_write_named_object_begin(w, "params"); 1911 spdk_json_write_named_string(w, "name", bdev->name); 1912 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 1913 if (limits[i] > 0) { 1914 spdk_json_write_named_uint64(w, qos_rpc_type[i], limits[i]); 1915 } 1916 } 1917 spdk_json_write_object_end(w); 1918 1919 spdk_json_write_object_end(w); 1920 } 1921 1922 void 1923 spdk_bdev_subsystem_config_json(struct spdk_json_write_ctx *w) 1924 { 1925 struct spdk_bdev_module *bdev_module; 1926 struct spdk_bdev *bdev; 1927 1928 assert(w != NULL); 1929 1930 spdk_json_write_array_begin(w); 1931 1932 spdk_json_write_object_begin(w); 1933 spdk_json_write_named_string(w, "method", "bdev_set_options"); 1934 spdk_json_write_named_object_begin(w, "params"); 1935 spdk_json_write_named_uint32(w, "bdev_io_pool_size", g_bdev_opts.bdev_io_pool_size); 1936 spdk_json_write_named_uint32(w, "bdev_io_cache_size", g_bdev_opts.bdev_io_cache_size); 1937 spdk_json_write_named_bool(w, "bdev_auto_examine", g_bdev_opts.bdev_auto_examine); 1938 spdk_json_write_named_uint32(w, "iobuf_small_cache_size", g_bdev_opts.iobuf_small_cache_size); 1939 spdk_json_write_named_uint32(w, "iobuf_large_cache_size", g_bdev_opts.iobuf_large_cache_size); 1940 spdk_json_write_object_end(w); 1941 spdk_json_write_object_end(w); 1942 1943 bdev_examine_allowlist_config_json(w); 1944 1945 TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, internal.tailq) { 1946 if (bdev_module->config_json) { 1947 bdev_module->config_json(w); 1948 } 1949 } 1950 1951 spdk_spin_lock(&g_bdev_mgr.spinlock); 1952 1953 TAILQ_FOREACH(bdev, &g_bdev_mgr.bdevs, internal.link) { 1954 if (bdev->fn_table->write_config_json) { 1955 bdev->fn_table->write_config_json(bdev, w); 1956 } 1957 1958 bdev_qos_config_json(bdev, w); 1959 bdev_enable_histogram_config_json(bdev, w); 1960 } 1961 1962 spdk_spin_unlock(&g_bdev_mgr.spinlock); 1963 1964 /* This has to be last RPC in array to make sure all bdevs finished examine */ 1965 spdk_json_write_object_begin(w); 1966 spdk_json_write_named_string(w, "method", "bdev_wait_for_examine"); 1967 spdk_json_write_object_end(w); 1968 1969 spdk_json_write_array_end(w); 1970 } 1971 1972 static void 1973 bdev_mgmt_channel_destroy(void *io_device, void *ctx_buf) 1974 { 1975 struct spdk_bdev_mgmt_channel *ch = ctx_buf; 1976 struct spdk_bdev_io *bdev_io; 1977 1978 spdk_iobuf_channel_fini(&ch->iobuf); 1979 1980 while (!STAILQ_EMPTY(&ch->per_thread_cache)) { 1981 bdev_io = STAILQ_FIRST(&ch->per_thread_cache); 1982 STAILQ_REMOVE_HEAD(&ch->per_thread_cache, internal.buf_link); 1983 ch->per_thread_cache_count--; 1984 spdk_mempool_put(g_bdev_mgr.bdev_io_pool, (void *)bdev_io); 1985 } 1986 1987 assert(ch->per_thread_cache_count == 0); 1988 } 1989 1990 static int 1991 bdev_mgmt_channel_create(void *io_device, void *ctx_buf) 1992 { 1993 struct spdk_bdev_mgmt_channel *ch = ctx_buf; 1994 struct spdk_bdev_io *bdev_io; 1995 uint32_t i; 1996 int rc; 1997 1998 rc = spdk_iobuf_channel_init(&ch->iobuf, "bdev", 1999 g_bdev_opts.iobuf_small_cache_size, 2000 g_bdev_opts.iobuf_large_cache_size); 2001 if (rc != 0) { 2002 SPDK_ERRLOG("Failed to create iobuf channel: %s\n", spdk_strerror(-rc)); 2003 return -1; 2004 } 2005 2006 STAILQ_INIT(&ch->per_thread_cache); 2007 ch->bdev_io_cache_size = g_bdev_opts.bdev_io_cache_size; 2008 2009 /* Pre-populate bdev_io cache to ensure this thread cannot be starved. */ 2010 ch->per_thread_cache_count = 0; 2011 for (i = 0; i < ch->bdev_io_cache_size; i++) { 2012 bdev_io = spdk_mempool_get(g_bdev_mgr.bdev_io_pool); 2013 if (bdev_io == NULL) { 2014 SPDK_ERRLOG("You need to increase bdev_io_pool_size using bdev_set_options RPC.\n"); 2015 assert(false); 2016 bdev_mgmt_channel_destroy(io_device, ctx_buf); 2017 return -1; 2018 } 2019 ch->per_thread_cache_count++; 2020 STAILQ_INSERT_HEAD(&ch->per_thread_cache, bdev_io, internal.buf_link); 2021 } 2022 2023 TAILQ_INIT(&ch->shared_resources); 2024 TAILQ_INIT(&ch->io_wait_queue); 2025 2026 return 0; 2027 } 2028 2029 static void 2030 bdev_init_complete(int rc) 2031 { 2032 spdk_bdev_init_cb cb_fn = g_init_cb_fn; 2033 void *cb_arg = g_init_cb_arg; 2034 struct spdk_bdev_module *m; 2035 2036 g_bdev_mgr.init_complete = true; 2037 g_init_cb_fn = NULL; 2038 g_init_cb_arg = NULL; 2039 2040 /* 2041 * For modules that need to know when subsystem init is complete, 2042 * inform them now. 2043 */ 2044 if (rc == 0) { 2045 TAILQ_FOREACH(m, &g_bdev_mgr.bdev_modules, internal.tailq) { 2046 if (m->init_complete) { 2047 m->init_complete(); 2048 } 2049 } 2050 } 2051 2052 cb_fn(cb_arg, rc); 2053 } 2054 2055 static bool 2056 bdev_module_all_actions_completed(void) 2057 { 2058 struct spdk_bdev_module *m; 2059 2060 TAILQ_FOREACH(m, &g_bdev_mgr.bdev_modules, internal.tailq) { 2061 if (m->internal.action_in_progress > 0) { 2062 return false; 2063 } 2064 } 2065 return true; 2066 } 2067 2068 static void 2069 bdev_module_action_complete(void) 2070 { 2071 /* 2072 * Don't finish bdev subsystem initialization if 2073 * module pre-initialization is still in progress, or 2074 * the subsystem been already initialized. 2075 */ 2076 if (!g_bdev_mgr.module_init_complete || g_bdev_mgr.init_complete) { 2077 return; 2078 } 2079 2080 /* 2081 * Check all bdev modules for inits/examinations in progress. If any 2082 * exist, return immediately since we cannot finish bdev subsystem 2083 * initialization until all are completed. 2084 */ 2085 if (!bdev_module_all_actions_completed()) { 2086 return; 2087 } 2088 2089 /* 2090 * Modules already finished initialization - now that all 2091 * the bdev modules have finished their asynchronous I/O 2092 * processing, the entire bdev layer can be marked as complete. 2093 */ 2094 bdev_init_complete(0); 2095 } 2096 2097 static void 2098 bdev_module_action_done(struct spdk_bdev_module *module) 2099 { 2100 spdk_spin_lock(&module->internal.spinlock); 2101 assert(module->internal.action_in_progress > 0); 2102 module->internal.action_in_progress--; 2103 spdk_spin_unlock(&module->internal.spinlock); 2104 bdev_module_action_complete(); 2105 } 2106 2107 void 2108 spdk_bdev_module_init_done(struct spdk_bdev_module *module) 2109 { 2110 assert(module->async_init); 2111 bdev_module_action_done(module); 2112 } 2113 2114 void 2115 spdk_bdev_module_examine_done(struct spdk_bdev_module *module) 2116 { 2117 bdev_module_action_done(module); 2118 } 2119 2120 /** The last initialized bdev module */ 2121 static struct spdk_bdev_module *g_resume_bdev_module = NULL; 2122 2123 static void 2124 bdev_init_failed(void *cb_arg) 2125 { 2126 struct spdk_bdev_module *module = cb_arg; 2127 2128 spdk_spin_lock(&module->internal.spinlock); 2129 assert(module->internal.action_in_progress > 0); 2130 module->internal.action_in_progress--; 2131 spdk_spin_unlock(&module->internal.spinlock); 2132 bdev_init_complete(-1); 2133 } 2134 2135 static int 2136 bdev_modules_init(void) 2137 { 2138 struct spdk_bdev_module *module; 2139 int rc = 0; 2140 2141 TAILQ_FOREACH(module, &g_bdev_mgr.bdev_modules, internal.tailq) { 2142 g_resume_bdev_module = module; 2143 if (module->async_init) { 2144 spdk_spin_lock(&module->internal.spinlock); 2145 module->internal.action_in_progress = 1; 2146 spdk_spin_unlock(&module->internal.spinlock); 2147 } 2148 rc = module->module_init(); 2149 if (rc != 0) { 2150 /* Bump action_in_progress to prevent other modules from completion of modules_init 2151 * Send message to defer application shutdown until resources are cleaned up */ 2152 spdk_spin_lock(&module->internal.spinlock); 2153 module->internal.action_in_progress = 1; 2154 spdk_spin_unlock(&module->internal.spinlock); 2155 spdk_thread_send_msg(spdk_get_thread(), bdev_init_failed, module); 2156 return rc; 2157 } 2158 } 2159 2160 g_resume_bdev_module = NULL; 2161 return 0; 2162 } 2163 2164 void 2165 spdk_bdev_initialize(spdk_bdev_init_cb cb_fn, void *cb_arg) 2166 { 2167 int rc = 0; 2168 char mempool_name[32]; 2169 2170 assert(cb_fn != NULL); 2171 2172 g_init_cb_fn = cb_fn; 2173 g_init_cb_arg = cb_arg; 2174 2175 spdk_notify_type_register("bdev_register"); 2176 spdk_notify_type_register("bdev_unregister"); 2177 2178 snprintf(mempool_name, sizeof(mempool_name), "bdev_io_%d", getpid()); 2179 2180 rc = spdk_iobuf_register_module("bdev"); 2181 if (rc != 0) { 2182 SPDK_ERRLOG("could not register bdev iobuf module: %s\n", spdk_strerror(-rc)); 2183 bdev_init_complete(-1); 2184 return; 2185 } 2186 2187 g_bdev_mgr.bdev_io_pool = spdk_mempool_create(mempool_name, 2188 g_bdev_opts.bdev_io_pool_size, 2189 sizeof(struct spdk_bdev_io) + 2190 bdev_module_get_max_ctx_size(), 2191 0, 2192 SPDK_ENV_SOCKET_ID_ANY); 2193 2194 if (g_bdev_mgr.bdev_io_pool == NULL) { 2195 SPDK_ERRLOG("could not allocate spdk_bdev_io pool\n"); 2196 bdev_init_complete(-1); 2197 return; 2198 } 2199 2200 g_bdev_mgr.zero_buffer = spdk_zmalloc(ZERO_BUFFER_SIZE, ZERO_BUFFER_SIZE, 2201 NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 2202 if (!g_bdev_mgr.zero_buffer) { 2203 SPDK_ERRLOG("create bdev zero buffer failed\n"); 2204 bdev_init_complete(-1); 2205 return; 2206 } 2207 2208 #ifdef SPDK_CONFIG_VTUNE 2209 g_bdev_mgr.domain = __itt_domain_create("spdk_bdev"); 2210 #endif 2211 2212 spdk_io_device_register(&g_bdev_mgr, bdev_mgmt_channel_create, 2213 bdev_mgmt_channel_destroy, 2214 sizeof(struct spdk_bdev_mgmt_channel), 2215 "bdev_mgr"); 2216 2217 rc = bdev_modules_init(); 2218 g_bdev_mgr.module_init_complete = true; 2219 if (rc != 0) { 2220 SPDK_ERRLOG("bdev modules init failed\n"); 2221 return; 2222 } 2223 2224 bdev_module_action_complete(); 2225 } 2226 2227 static void 2228 bdev_mgr_unregister_cb(void *io_device) 2229 { 2230 spdk_bdev_fini_cb cb_fn = g_fini_cb_fn; 2231 2232 if (g_bdev_mgr.bdev_io_pool) { 2233 if (spdk_mempool_count(g_bdev_mgr.bdev_io_pool) != g_bdev_opts.bdev_io_pool_size) { 2234 SPDK_ERRLOG("bdev IO pool count is %zu but should be %u\n", 2235 spdk_mempool_count(g_bdev_mgr.bdev_io_pool), 2236 g_bdev_opts.bdev_io_pool_size); 2237 } 2238 2239 spdk_mempool_free(g_bdev_mgr.bdev_io_pool); 2240 } 2241 2242 spdk_free(g_bdev_mgr.zero_buffer); 2243 2244 bdev_examine_allowlist_free(); 2245 2246 cb_fn(g_fini_cb_arg); 2247 g_fini_cb_fn = NULL; 2248 g_fini_cb_arg = NULL; 2249 g_bdev_mgr.init_complete = false; 2250 g_bdev_mgr.module_init_complete = false; 2251 } 2252 2253 static void 2254 bdev_module_fini_iter(void *arg) 2255 { 2256 struct spdk_bdev_module *bdev_module; 2257 2258 /* FIXME: Handling initialization failures is broken now, 2259 * so we won't even try cleaning up after successfully 2260 * initialized modules. if module_init_complete is false, 2261 * just call spdk_bdev_mgr_unregister_cb 2262 */ 2263 if (!g_bdev_mgr.module_init_complete) { 2264 bdev_mgr_unregister_cb(NULL); 2265 return; 2266 } 2267 2268 /* Start iterating from the last touched module */ 2269 if (!g_resume_bdev_module) { 2270 bdev_module = TAILQ_LAST(&g_bdev_mgr.bdev_modules, bdev_module_list); 2271 } else { 2272 bdev_module = TAILQ_PREV(g_resume_bdev_module, bdev_module_list, 2273 internal.tailq); 2274 } 2275 2276 while (bdev_module) { 2277 if (bdev_module->async_fini) { 2278 /* Save our place so we can resume later. We must 2279 * save the variable here, before calling module_fini() 2280 * below, because in some cases the module may immediately 2281 * call spdk_bdev_module_fini_done() and re-enter 2282 * this function to continue iterating. */ 2283 g_resume_bdev_module = bdev_module; 2284 } 2285 2286 if (bdev_module->module_fini) { 2287 bdev_module->module_fini(); 2288 } 2289 2290 if (bdev_module->async_fini) { 2291 return; 2292 } 2293 2294 bdev_module = TAILQ_PREV(bdev_module, bdev_module_list, 2295 internal.tailq); 2296 } 2297 2298 g_resume_bdev_module = NULL; 2299 spdk_io_device_unregister(&g_bdev_mgr, bdev_mgr_unregister_cb); 2300 } 2301 2302 void 2303 spdk_bdev_module_fini_done(void) 2304 { 2305 if (spdk_get_thread() != g_fini_thread) { 2306 spdk_thread_send_msg(g_fini_thread, bdev_module_fini_iter, NULL); 2307 } else { 2308 bdev_module_fini_iter(NULL); 2309 } 2310 } 2311 2312 static void 2313 bdev_finish_unregister_bdevs_iter(void *cb_arg, int bdeverrno) 2314 { 2315 struct spdk_bdev *bdev = cb_arg; 2316 2317 if (bdeverrno && bdev) { 2318 SPDK_WARNLOG("Unable to unregister bdev '%s' during spdk_bdev_finish()\n", 2319 bdev->name); 2320 2321 /* 2322 * Since the call to spdk_bdev_unregister() failed, we have no way to free this 2323 * bdev; try to continue by manually removing this bdev from the list and continue 2324 * with the next bdev in the list. 2325 */ 2326 TAILQ_REMOVE(&g_bdev_mgr.bdevs, bdev, internal.link); 2327 } 2328 2329 if (TAILQ_EMPTY(&g_bdev_mgr.bdevs)) { 2330 SPDK_DEBUGLOG(bdev, "Done unregistering bdevs\n"); 2331 /* 2332 * Bdev module finish need to be deferred as we might be in the middle of some context 2333 * (like bdev part free) that will use this bdev (or private bdev driver ctx data) 2334 * after returning. 2335 */ 2336 spdk_thread_send_msg(spdk_get_thread(), bdev_module_fini_iter, NULL); 2337 return; 2338 } 2339 2340 /* 2341 * Unregister last unclaimed bdev in the list, to ensure that bdev subsystem 2342 * shutdown proceeds top-down. The goal is to give virtual bdevs an opportunity 2343 * to detect clean shutdown as opposed to run-time hot removal of the underlying 2344 * base bdevs. 2345 * 2346 * Also, walk the list in the reverse order. 2347 */ 2348 for (bdev = TAILQ_LAST(&g_bdev_mgr.bdevs, spdk_bdev_list); 2349 bdev; bdev = TAILQ_PREV(bdev, spdk_bdev_list, internal.link)) { 2350 spdk_spin_lock(&bdev->internal.spinlock); 2351 if (bdev->internal.claim_type != SPDK_BDEV_CLAIM_NONE) { 2352 LOG_ALREADY_CLAIMED_DEBUG("claimed, skipping", bdev); 2353 spdk_spin_unlock(&bdev->internal.spinlock); 2354 continue; 2355 } 2356 spdk_spin_unlock(&bdev->internal.spinlock); 2357 2358 SPDK_DEBUGLOG(bdev, "Unregistering bdev '%s'\n", bdev->name); 2359 spdk_bdev_unregister(bdev, bdev_finish_unregister_bdevs_iter, bdev); 2360 return; 2361 } 2362 2363 /* 2364 * If any bdev fails to unclaim underlying bdev properly, we may face the 2365 * case of bdev list consisting of claimed bdevs only (if claims are managed 2366 * correctly, this would mean there's a loop in the claims graph which is 2367 * clearly impossible). Warn and unregister last bdev on the list then. 2368 */ 2369 for (bdev = TAILQ_LAST(&g_bdev_mgr.bdevs, spdk_bdev_list); 2370 bdev; bdev = TAILQ_PREV(bdev, spdk_bdev_list, internal.link)) { 2371 SPDK_WARNLOG("Unregistering claimed bdev '%s'!\n", bdev->name); 2372 spdk_bdev_unregister(bdev, bdev_finish_unregister_bdevs_iter, bdev); 2373 return; 2374 } 2375 } 2376 2377 static void 2378 bdev_module_fini_start_iter(void *arg) 2379 { 2380 struct spdk_bdev_module *bdev_module; 2381 2382 if (!g_resume_bdev_module) { 2383 bdev_module = TAILQ_LAST(&g_bdev_mgr.bdev_modules, bdev_module_list); 2384 } else { 2385 bdev_module = TAILQ_PREV(g_resume_bdev_module, bdev_module_list, internal.tailq); 2386 } 2387 2388 while (bdev_module) { 2389 if (bdev_module->async_fini_start) { 2390 /* Save our place so we can resume later. We must 2391 * save the variable here, before calling fini_start() 2392 * below, because in some cases the module may immediately 2393 * call spdk_bdev_module_fini_start_done() and re-enter 2394 * this function to continue iterating. */ 2395 g_resume_bdev_module = bdev_module; 2396 } 2397 2398 if (bdev_module->fini_start) { 2399 bdev_module->fini_start(); 2400 } 2401 2402 if (bdev_module->async_fini_start) { 2403 return; 2404 } 2405 2406 bdev_module = TAILQ_PREV(bdev_module, bdev_module_list, internal.tailq); 2407 } 2408 2409 g_resume_bdev_module = NULL; 2410 2411 bdev_finish_unregister_bdevs_iter(NULL, 0); 2412 } 2413 2414 void 2415 spdk_bdev_module_fini_start_done(void) 2416 { 2417 if (spdk_get_thread() != g_fini_thread) { 2418 spdk_thread_send_msg(g_fini_thread, bdev_module_fini_start_iter, NULL); 2419 } else { 2420 bdev_module_fini_start_iter(NULL); 2421 } 2422 } 2423 2424 static void 2425 bdev_finish_wait_for_examine_done(void *cb_arg) 2426 { 2427 bdev_module_fini_start_iter(NULL); 2428 } 2429 2430 static void bdev_open_async_fini(void); 2431 2432 void 2433 spdk_bdev_finish(spdk_bdev_fini_cb cb_fn, void *cb_arg) 2434 { 2435 int rc; 2436 2437 assert(cb_fn != NULL); 2438 2439 g_fini_thread = spdk_get_thread(); 2440 2441 g_fini_cb_fn = cb_fn; 2442 g_fini_cb_arg = cb_arg; 2443 2444 bdev_open_async_fini(); 2445 2446 rc = spdk_bdev_wait_for_examine(bdev_finish_wait_for_examine_done, NULL); 2447 if (rc != 0) { 2448 SPDK_ERRLOG("wait_for_examine failed: %s\n", spdk_strerror(-rc)); 2449 bdev_finish_wait_for_examine_done(NULL); 2450 } 2451 } 2452 2453 struct spdk_bdev_io * 2454 bdev_channel_get_io(struct spdk_bdev_channel *channel) 2455 { 2456 struct spdk_bdev_mgmt_channel *ch = channel->shared_resource->mgmt_ch; 2457 struct spdk_bdev_io *bdev_io; 2458 2459 if (ch->per_thread_cache_count > 0) { 2460 bdev_io = STAILQ_FIRST(&ch->per_thread_cache); 2461 STAILQ_REMOVE_HEAD(&ch->per_thread_cache, internal.buf_link); 2462 ch->per_thread_cache_count--; 2463 } else if (spdk_unlikely(!TAILQ_EMPTY(&ch->io_wait_queue))) { 2464 /* 2465 * Don't try to look for bdev_ios in the global pool if there are 2466 * waiters on bdev_ios - we don't want this caller to jump the line. 2467 */ 2468 bdev_io = NULL; 2469 } else { 2470 bdev_io = spdk_mempool_get(g_bdev_mgr.bdev_io_pool); 2471 } 2472 2473 return bdev_io; 2474 } 2475 2476 void 2477 spdk_bdev_free_io(struct spdk_bdev_io *bdev_io) 2478 { 2479 struct spdk_bdev_mgmt_channel *ch; 2480 2481 assert(bdev_io != NULL); 2482 assert(bdev_io->internal.status != SPDK_BDEV_IO_STATUS_PENDING); 2483 2484 ch = bdev_io->internal.ch->shared_resource->mgmt_ch; 2485 2486 if (bdev_io->internal.buf != NULL) { 2487 bdev_io_put_buf(bdev_io); 2488 } 2489 2490 if (ch->per_thread_cache_count < ch->bdev_io_cache_size) { 2491 ch->per_thread_cache_count++; 2492 STAILQ_INSERT_HEAD(&ch->per_thread_cache, bdev_io, internal.buf_link); 2493 while (ch->per_thread_cache_count > 0 && !TAILQ_EMPTY(&ch->io_wait_queue)) { 2494 struct spdk_bdev_io_wait_entry *entry; 2495 2496 entry = TAILQ_FIRST(&ch->io_wait_queue); 2497 TAILQ_REMOVE(&ch->io_wait_queue, entry, link); 2498 entry->cb_fn(entry->cb_arg); 2499 } 2500 } else { 2501 /* We should never have a full cache with entries on the io wait queue. */ 2502 assert(TAILQ_EMPTY(&ch->io_wait_queue)); 2503 spdk_mempool_put(g_bdev_mgr.bdev_io_pool, (void *)bdev_io); 2504 } 2505 } 2506 2507 static bool 2508 bdev_qos_is_iops_rate_limit(enum spdk_bdev_qos_rate_limit_type limit) 2509 { 2510 assert(limit != SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES); 2511 2512 switch (limit) { 2513 case SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT: 2514 return true; 2515 case SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT: 2516 case SPDK_BDEV_QOS_R_BPS_RATE_LIMIT: 2517 case SPDK_BDEV_QOS_W_BPS_RATE_LIMIT: 2518 return false; 2519 case SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES: 2520 default: 2521 return false; 2522 } 2523 } 2524 2525 static bool 2526 bdev_qos_io_to_limit(struct spdk_bdev_io *bdev_io) 2527 { 2528 switch (bdev_io->type) { 2529 case SPDK_BDEV_IO_TYPE_NVME_IO: 2530 case SPDK_BDEV_IO_TYPE_NVME_IO_MD: 2531 case SPDK_BDEV_IO_TYPE_READ: 2532 case SPDK_BDEV_IO_TYPE_WRITE: 2533 return true; 2534 case SPDK_BDEV_IO_TYPE_ZCOPY: 2535 if (bdev_io->u.bdev.zcopy.start) { 2536 return true; 2537 } else { 2538 return false; 2539 } 2540 default: 2541 return false; 2542 } 2543 } 2544 2545 static bool 2546 bdev_is_read_io(struct spdk_bdev_io *bdev_io) 2547 { 2548 switch (bdev_io->type) { 2549 case SPDK_BDEV_IO_TYPE_NVME_IO: 2550 case SPDK_BDEV_IO_TYPE_NVME_IO_MD: 2551 /* Bit 1 (0x2) set for read operation */ 2552 if (bdev_io->u.nvme_passthru.cmd.opc & SPDK_NVME_OPC_READ) { 2553 return true; 2554 } else { 2555 return false; 2556 } 2557 case SPDK_BDEV_IO_TYPE_READ: 2558 return true; 2559 case SPDK_BDEV_IO_TYPE_ZCOPY: 2560 /* Populate to read from disk */ 2561 if (bdev_io->u.bdev.zcopy.populate) { 2562 return true; 2563 } else { 2564 return false; 2565 } 2566 default: 2567 return false; 2568 } 2569 } 2570 2571 static uint64_t 2572 bdev_get_io_size_in_byte(struct spdk_bdev_io *bdev_io) 2573 { 2574 struct spdk_bdev *bdev = bdev_io->bdev; 2575 2576 switch (bdev_io->type) { 2577 case SPDK_BDEV_IO_TYPE_NVME_IO: 2578 case SPDK_BDEV_IO_TYPE_NVME_IO_MD: 2579 return bdev_io->u.nvme_passthru.nbytes; 2580 case SPDK_BDEV_IO_TYPE_READ: 2581 case SPDK_BDEV_IO_TYPE_WRITE: 2582 return bdev_io->u.bdev.num_blocks * bdev->blocklen; 2583 case SPDK_BDEV_IO_TYPE_ZCOPY: 2584 /* Track the data in the start phase only */ 2585 if (bdev_io->u.bdev.zcopy.start) { 2586 return bdev_io->u.bdev.num_blocks * bdev->blocklen; 2587 } else { 2588 return 0; 2589 } 2590 default: 2591 return 0; 2592 } 2593 } 2594 2595 static inline bool 2596 bdev_qos_rw_queue_io(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io, uint64_t delta) 2597 { 2598 int64_t remaining_this_timeslice; 2599 2600 if (!limit->max_per_timeslice) { 2601 /* The QoS is disabled */ 2602 return false; 2603 } 2604 2605 remaining_this_timeslice = __atomic_sub_fetch(&limit->remaining_this_timeslice, delta, 2606 __ATOMIC_RELAXED); 2607 if (remaining_this_timeslice + (int64_t)delta > 0) { 2608 /* There was still a quota for this delta -> the IO shouldn't be queued 2609 * 2610 * We allow a slight quota overrun here so an IO bigger than the per-timeslice 2611 * quota can be allowed once a while. Such overrun then taken into account in 2612 * the QoS poller, where the next timeslice quota is calculated. 2613 */ 2614 return false; 2615 } 2616 2617 /* There was no quota for this delta -> the IO should be queued 2618 * The remaining_this_timeslice must be rewinded so it reflects the real 2619 * amount of IOs or bytes allowed. 2620 */ 2621 __atomic_add_fetch( 2622 &limit->remaining_this_timeslice, delta, __ATOMIC_RELAXED); 2623 return true; 2624 } 2625 2626 static inline void 2627 bdev_qos_rw_rewind_io(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io, uint64_t delta) 2628 { 2629 __atomic_add_fetch(&limit->remaining_this_timeslice, delta, __ATOMIC_RELAXED); 2630 } 2631 2632 static bool 2633 bdev_qos_rw_iops_queue(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 2634 { 2635 return bdev_qos_rw_queue_io(limit, io, 1); 2636 } 2637 2638 static void 2639 bdev_qos_rw_iops_rewind_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 2640 { 2641 bdev_qos_rw_rewind_io(limit, io, 1); 2642 } 2643 2644 static bool 2645 bdev_qos_rw_bps_queue(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 2646 { 2647 return bdev_qos_rw_queue_io(limit, io, bdev_get_io_size_in_byte(io)); 2648 } 2649 2650 static void 2651 bdev_qos_rw_bps_rewind_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 2652 { 2653 bdev_qos_rw_rewind_io(limit, io, bdev_get_io_size_in_byte(io)); 2654 } 2655 2656 static bool 2657 bdev_qos_r_bps_queue(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 2658 { 2659 if (bdev_is_read_io(io) == false) { 2660 return false; 2661 } 2662 2663 return bdev_qos_rw_bps_queue(limit, io); 2664 } 2665 2666 static void 2667 bdev_qos_r_bps_rewind_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 2668 { 2669 if (bdev_is_read_io(io) != false) { 2670 bdev_qos_rw_rewind_io(limit, io, bdev_get_io_size_in_byte(io)); 2671 } 2672 } 2673 2674 static bool 2675 bdev_qos_w_bps_queue(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 2676 { 2677 if (bdev_is_read_io(io) == true) { 2678 return false; 2679 } 2680 2681 return bdev_qos_rw_bps_queue(limit, io); 2682 } 2683 2684 static void 2685 bdev_qos_w_bps_rewind_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 2686 { 2687 if (bdev_is_read_io(io) != true) { 2688 bdev_qos_rw_rewind_io(limit, io, bdev_get_io_size_in_byte(io)); 2689 } 2690 } 2691 2692 static void 2693 bdev_qos_set_ops(struct spdk_bdev_qos *qos) 2694 { 2695 int i; 2696 2697 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 2698 if (qos->rate_limits[i].limit == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) { 2699 qos->rate_limits[i].queue_io = NULL; 2700 continue; 2701 } 2702 2703 switch (i) { 2704 case SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT: 2705 qos->rate_limits[i].queue_io = bdev_qos_rw_iops_queue; 2706 qos->rate_limits[i].rewind_quota = bdev_qos_rw_iops_rewind_quota; 2707 break; 2708 case SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT: 2709 qos->rate_limits[i].queue_io = bdev_qos_rw_bps_queue; 2710 qos->rate_limits[i].rewind_quota = bdev_qos_rw_bps_rewind_quota; 2711 break; 2712 case SPDK_BDEV_QOS_R_BPS_RATE_LIMIT: 2713 qos->rate_limits[i].queue_io = bdev_qos_r_bps_queue; 2714 qos->rate_limits[i].rewind_quota = bdev_qos_r_bps_rewind_quota; 2715 break; 2716 case SPDK_BDEV_QOS_W_BPS_RATE_LIMIT: 2717 qos->rate_limits[i].queue_io = bdev_qos_w_bps_queue; 2718 qos->rate_limits[i].rewind_quota = bdev_qos_w_bps_rewind_quota; 2719 break; 2720 default: 2721 break; 2722 } 2723 } 2724 } 2725 2726 static void 2727 _bdev_io_complete_in_submit(struct spdk_bdev_channel *bdev_ch, 2728 struct spdk_bdev_io *bdev_io, 2729 enum spdk_bdev_io_status status) 2730 { 2731 bdev_io->internal.in_submit_request = true; 2732 bdev_io_increment_outstanding(bdev_ch, bdev_ch->shared_resource); 2733 spdk_bdev_io_complete(bdev_io, status); 2734 bdev_io->internal.in_submit_request = false; 2735 } 2736 2737 static inline void 2738 bdev_io_do_submit(struct spdk_bdev_channel *bdev_ch, struct spdk_bdev_io *bdev_io) 2739 { 2740 struct spdk_bdev *bdev = bdev_io->bdev; 2741 struct spdk_io_channel *ch = bdev_ch->channel; 2742 struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource; 2743 2744 if (spdk_unlikely(bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT)) { 2745 struct spdk_bdev_mgmt_channel *mgmt_channel = shared_resource->mgmt_ch; 2746 struct spdk_bdev_io *bio_to_abort = bdev_io->u.abort.bio_to_abort; 2747 2748 if (bdev_abort_queued_io(&shared_resource->nomem_io, bio_to_abort) || 2749 bdev_abort_buf_io(mgmt_channel, bio_to_abort)) { 2750 _bdev_io_complete_in_submit(bdev_ch, bdev_io, 2751 SPDK_BDEV_IO_STATUS_SUCCESS); 2752 return; 2753 } 2754 } 2755 2756 if (spdk_unlikely(bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE && 2757 bdev_io->bdev->split_on_write_unit && 2758 bdev_io->u.bdev.num_blocks < bdev_io->bdev->write_unit_size)) { 2759 SPDK_ERRLOG("IO num_blocks %lu does not match the write_unit_size %u\n", 2760 bdev_io->u.bdev.num_blocks, bdev_io->bdev->write_unit_size); 2761 _bdev_io_complete_in_submit(bdev_ch, bdev_io, SPDK_BDEV_IO_STATUS_FAILED); 2762 return; 2763 } 2764 2765 if (spdk_likely(TAILQ_EMPTY(&shared_resource->nomem_io))) { 2766 bdev_io_increment_outstanding(bdev_ch, shared_resource); 2767 bdev_io->internal.in_submit_request = true; 2768 bdev_submit_request(bdev, ch, bdev_io); 2769 bdev_io->internal.in_submit_request = false; 2770 } else { 2771 bdev_queue_nomem_io_tail(shared_resource, bdev_io, BDEV_IO_RETRY_STATE_SUBMIT); 2772 if (shared_resource->nomem_threshold == 0 && shared_resource->io_outstanding == 0) { 2773 /* Special case when we have nomem IOs and no outstanding IOs which completions 2774 * could trigger retry of queued IOs */ 2775 bdev_shared_ch_retry_io(shared_resource); 2776 } 2777 } 2778 } 2779 2780 static bool 2781 bdev_qos_queue_io(struct spdk_bdev_qos *qos, struct spdk_bdev_io *bdev_io) 2782 { 2783 int i; 2784 2785 if (bdev_qos_io_to_limit(bdev_io) == true) { 2786 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 2787 if (!qos->rate_limits[i].queue_io) { 2788 continue; 2789 } 2790 2791 if (qos->rate_limits[i].queue_io(&qos->rate_limits[i], 2792 bdev_io) == true) { 2793 for (i -= 1; i >= 0 ; i--) { 2794 if (!qos->rate_limits[i].queue_io) { 2795 continue; 2796 } 2797 2798 qos->rate_limits[i].rewind_quota(&qos->rate_limits[i], bdev_io); 2799 } 2800 return true; 2801 } 2802 } 2803 } 2804 2805 return false; 2806 } 2807 2808 static int 2809 bdev_qos_io_submit(struct spdk_bdev_channel *ch, struct spdk_bdev_qos *qos) 2810 { 2811 struct spdk_bdev_io *bdev_io = NULL, *tmp = NULL; 2812 int submitted_ios = 0; 2813 2814 TAILQ_FOREACH_SAFE(bdev_io, &ch->qos_queued_io, internal.link, tmp) { 2815 if (!bdev_qos_queue_io(qos, bdev_io)) { 2816 TAILQ_REMOVE(&ch->qos_queued_io, bdev_io, internal.link); 2817 bdev_io_do_submit(ch, bdev_io); 2818 2819 submitted_ios++; 2820 } 2821 } 2822 2823 return submitted_ios; 2824 } 2825 2826 static void 2827 bdev_queue_io_wait_with_cb(struct spdk_bdev_io *bdev_io, spdk_bdev_io_wait_cb cb_fn) 2828 { 2829 int rc; 2830 2831 bdev_io->internal.waitq_entry.bdev = bdev_io->bdev; 2832 bdev_io->internal.waitq_entry.cb_fn = cb_fn; 2833 bdev_io->internal.waitq_entry.cb_arg = bdev_io; 2834 rc = spdk_bdev_queue_io_wait(bdev_io->bdev, spdk_io_channel_from_ctx(bdev_io->internal.ch), 2835 &bdev_io->internal.waitq_entry); 2836 if (rc != 0) { 2837 SPDK_ERRLOG("Queue IO failed, rc=%d\n", rc); 2838 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 2839 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 2840 } 2841 } 2842 2843 static bool 2844 bdev_rw_should_split(struct spdk_bdev_io *bdev_io) 2845 { 2846 uint32_t io_boundary; 2847 struct spdk_bdev *bdev = bdev_io->bdev; 2848 uint32_t max_segment_size = bdev->max_segment_size; 2849 uint32_t max_size = bdev->max_rw_size; 2850 int max_segs = bdev->max_num_segments; 2851 2852 if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE && bdev->split_on_write_unit) { 2853 io_boundary = bdev->write_unit_size; 2854 } else if (bdev->split_on_optimal_io_boundary) { 2855 io_boundary = bdev->optimal_io_boundary; 2856 } else { 2857 io_boundary = 0; 2858 } 2859 2860 if (spdk_likely(!io_boundary && !max_segs && !max_segment_size && !max_size)) { 2861 return false; 2862 } 2863 2864 if (io_boundary) { 2865 uint64_t start_stripe, end_stripe; 2866 2867 start_stripe = bdev_io->u.bdev.offset_blocks; 2868 end_stripe = start_stripe + bdev_io->u.bdev.num_blocks - 1; 2869 /* Avoid expensive div operations if possible. These spdk_u32 functions are very cheap. */ 2870 if (spdk_likely(spdk_u32_is_pow2(io_boundary))) { 2871 start_stripe >>= spdk_u32log2(io_boundary); 2872 end_stripe >>= spdk_u32log2(io_boundary); 2873 } else { 2874 start_stripe /= io_boundary; 2875 end_stripe /= io_boundary; 2876 } 2877 2878 if (start_stripe != end_stripe) { 2879 return true; 2880 } 2881 } 2882 2883 if (max_segs) { 2884 if (bdev_io->u.bdev.iovcnt > max_segs) { 2885 return true; 2886 } 2887 } 2888 2889 if (max_segment_size) { 2890 for (int i = 0; i < bdev_io->u.bdev.iovcnt; i++) { 2891 if (bdev_io->u.bdev.iovs[i].iov_len > max_segment_size) { 2892 return true; 2893 } 2894 } 2895 } 2896 2897 if (max_size) { 2898 if (bdev_io->u.bdev.num_blocks > max_size) { 2899 return true; 2900 } 2901 } 2902 2903 return false; 2904 } 2905 2906 static bool 2907 bdev_unmap_should_split(struct spdk_bdev_io *bdev_io) 2908 { 2909 uint32_t num_unmap_segments; 2910 2911 if (!bdev_io->bdev->max_unmap || !bdev_io->bdev->max_unmap_segments) { 2912 return false; 2913 } 2914 num_unmap_segments = spdk_divide_round_up(bdev_io->u.bdev.num_blocks, bdev_io->bdev->max_unmap); 2915 if (num_unmap_segments > bdev_io->bdev->max_unmap_segments) { 2916 return true; 2917 } 2918 2919 return false; 2920 } 2921 2922 static bool 2923 bdev_write_zeroes_should_split(struct spdk_bdev_io *bdev_io) 2924 { 2925 if (!bdev_io->bdev->max_write_zeroes) { 2926 return false; 2927 } 2928 2929 if (bdev_io->u.bdev.num_blocks > bdev_io->bdev->max_write_zeroes) { 2930 return true; 2931 } 2932 2933 return false; 2934 } 2935 2936 static bool 2937 bdev_copy_should_split(struct spdk_bdev_io *bdev_io) 2938 { 2939 if (bdev_io->bdev->max_copy != 0 && 2940 bdev_io->u.bdev.num_blocks > bdev_io->bdev->max_copy) { 2941 return true; 2942 } 2943 2944 return false; 2945 } 2946 2947 static bool 2948 bdev_io_should_split(struct spdk_bdev_io *bdev_io) 2949 { 2950 switch (bdev_io->type) { 2951 case SPDK_BDEV_IO_TYPE_READ: 2952 case SPDK_BDEV_IO_TYPE_WRITE: 2953 return bdev_rw_should_split(bdev_io); 2954 case SPDK_BDEV_IO_TYPE_UNMAP: 2955 return bdev_unmap_should_split(bdev_io); 2956 case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: 2957 return bdev_write_zeroes_should_split(bdev_io); 2958 case SPDK_BDEV_IO_TYPE_COPY: 2959 return bdev_copy_should_split(bdev_io); 2960 default: 2961 return false; 2962 } 2963 } 2964 2965 static uint32_t 2966 _to_next_boundary(uint64_t offset, uint32_t boundary) 2967 { 2968 return (boundary - (offset % boundary)); 2969 } 2970 2971 static void bdev_io_split_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg); 2972 2973 static void _bdev_rw_split(void *_bdev_io); 2974 2975 static void bdev_unmap_split(struct spdk_bdev_io *bdev_io); 2976 2977 static void 2978 _bdev_unmap_split(void *_bdev_io) 2979 { 2980 return bdev_unmap_split((struct spdk_bdev_io *)_bdev_io); 2981 } 2982 2983 static void bdev_write_zeroes_split(struct spdk_bdev_io *bdev_io); 2984 2985 static void 2986 _bdev_write_zeroes_split(void *_bdev_io) 2987 { 2988 return bdev_write_zeroes_split((struct spdk_bdev_io *)_bdev_io); 2989 } 2990 2991 static void bdev_copy_split(struct spdk_bdev_io *bdev_io); 2992 2993 static void 2994 _bdev_copy_split(void *_bdev_io) 2995 { 2996 return bdev_copy_split((struct spdk_bdev_io *)_bdev_io); 2997 } 2998 2999 static int 3000 bdev_io_split_submit(struct spdk_bdev_io *bdev_io, struct iovec *iov, int iovcnt, void *md_buf, 3001 uint64_t num_blocks, uint64_t *offset, uint64_t *remaining) 3002 { 3003 int rc; 3004 uint64_t current_offset, current_remaining, current_src_offset; 3005 spdk_bdev_io_wait_cb io_wait_fn; 3006 3007 current_offset = *offset; 3008 current_remaining = *remaining; 3009 3010 bdev_io->u.bdev.split_outstanding++; 3011 3012 io_wait_fn = _bdev_rw_split; 3013 switch (bdev_io->type) { 3014 case SPDK_BDEV_IO_TYPE_READ: 3015 assert(bdev_io->u.bdev.accel_sequence == NULL); 3016 rc = bdev_readv_blocks_with_md(bdev_io->internal.desc, 3017 spdk_io_channel_from_ctx(bdev_io->internal.ch), 3018 iov, iovcnt, md_buf, current_offset, 3019 num_blocks, bdev_io->internal.memory_domain, 3020 bdev_io->internal.memory_domain_ctx, NULL, 3021 bdev_io->u.bdev.dif_check_flags, 3022 bdev_io_split_done, bdev_io); 3023 break; 3024 case SPDK_BDEV_IO_TYPE_WRITE: 3025 assert(bdev_io->u.bdev.accel_sequence == NULL); 3026 rc = bdev_writev_blocks_with_md(bdev_io->internal.desc, 3027 spdk_io_channel_from_ctx(bdev_io->internal.ch), 3028 iov, iovcnt, md_buf, current_offset, 3029 num_blocks, bdev_io->internal.memory_domain, 3030 bdev_io->internal.memory_domain_ctx, NULL, 3031 bdev_io->u.bdev.dif_check_flags, 3032 bdev_io->u.bdev.nvme_cdw12.raw, 3033 bdev_io->u.bdev.nvme_cdw13.raw, 3034 bdev_io_split_done, bdev_io); 3035 break; 3036 case SPDK_BDEV_IO_TYPE_UNMAP: 3037 io_wait_fn = _bdev_unmap_split; 3038 rc = spdk_bdev_unmap_blocks(bdev_io->internal.desc, 3039 spdk_io_channel_from_ctx(bdev_io->internal.ch), 3040 current_offset, num_blocks, 3041 bdev_io_split_done, bdev_io); 3042 break; 3043 case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: 3044 io_wait_fn = _bdev_write_zeroes_split; 3045 rc = spdk_bdev_write_zeroes_blocks(bdev_io->internal.desc, 3046 spdk_io_channel_from_ctx(bdev_io->internal.ch), 3047 current_offset, num_blocks, 3048 bdev_io_split_done, bdev_io); 3049 break; 3050 case SPDK_BDEV_IO_TYPE_COPY: 3051 io_wait_fn = _bdev_copy_split; 3052 current_src_offset = bdev_io->u.bdev.copy.src_offset_blocks + 3053 (current_offset - bdev_io->u.bdev.offset_blocks); 3054 rc = spdk_bdev_copy_blocks(bdev_io->internal.desc, 3055 spdk_io_channel_from_ctx(bdev_io->internal.ch), 3056 current_offset, current_src_offset, num_blocks, 3057 bdev_io_split_done, bdev_io); 3058 break; 3059 default: 3060 assert(false); 3061 rc = -EINVAL; 3062 break; 3063 } 3064 3065 if (rc == 0) { 3066 current_offset += num_blocks; 3067 current_remaining -= num_blocks; 3068 bdev_io->u.bdev.split_current_offset_blocks = current_offset; 3069 bdev_io->u.bdev.split_remaining_num_blocks = current_remaining; 3070 *offset = current_offset; 3071 *remaining = current_remaining; 3072 } else { 3073 bdev_io->u.bdev.split_outstanding--; 3074 if (rc == -ENOMEM) { 3075 if (bdev_io->u.bdev.split_outstanding == 0) { 3076 /* No I/O is outstanding. Hence we should wait here. */ 3077 bdev_queue_io_wait_with_cb(bdev_io, io_wait_fn); 3078 } 3079 } else { 3080 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 3081 if (bdev_io->u.bdev.split_outstanding == 0) { 3082 bdev_ch_remove_from_io_submitted(bdev_io); 3083 spdk_trace_record(TRACE_BDEV_IO_DONE, bdev_io->internal.ch->trace_id, 3084 0, (uintptr_t)bdev_io, bdev_io->internal.caller_ctx, 3085 bdev_io->internal.ch->queue_depth); 3086 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 3087 } 3088 } 3089 } 3090 3091 return rc; 3092 } 3093 3094 static void 3095 _bdev_rw_split(void *_bdev_io) 3096 { 3097 struct iovec *parent_iov, *iov; 3098 struct spdk_bdev_io *bdev_io = _bdev_io; 3099 struct spdk_bdev *bdev = bdev_io->bdev; 3100 uint64_t parent_offset, current_offset, remaining; 3101 uint32_t parent_iov_offset, parent_iovcnt, parent_iovpos, child_iovcnt; 3102 uint32_t to_next_boundary, to_next_boundary_bytes, to_last_block_bytes; 3103 uint32_t iovcnt, iov_len, child_iovsize; 3104 uint32_t blocklen = bdev->blocklen; 3105 uint32_t io_boundary; 3106 uint32_t max_segment_size = bdev->max_segment_size; 3107 uint32_t max_child_iovcnt = bdev->max_num_segments; 3108 uint32_t max_size = bdev->max_rw_size; 3109 void *md_buf = NULL; 3110 int rc; 3111 3112 max_size = max_size ? max_size : UINT32_MAX; 3113 max_segment_size = max_segment_size ? max_segment_size : UINT32_MAX; 3114 max_child_iovcnt = max_child_iovcnt ? spdk_min(max_child_iovcnt, SPDK_BDEV_IO_NUM_CHILD_IOV) : 3115 SPDK_BDEV_IO_NUM_CHILD_IOV; 3116 3117 if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE && bdev->split_on_write_unit) { 3118 io_boundary = bdev->write_unit_size; 3119 } else if (bdev->split_on_optimal_io_boundary) { 3120 io_boundary = bdev->optimal_io_boundary; 3121 } else { 3122 io_boundary = UINT32_MAX; 3123 } 3124 3125 remaining = bdev_io->u.bdev.split_remaining_num_blocks; 3126 current_offset = bdev_io->u.bdev.split_current_offset_blocks; 3127 parent_offset = bdev_io->u.bdev.offset_blocks; 3128 parent_iov_offset = (current_offset - parent_offset) * blocklen; 3129 parent_iovcnt = bdev_io->u.bdev.iovcnt; 3130 3131 for (parent_iovpos = 0; parent_iovpos < parent_iovcnt; parent_iovpos++) { 3132 parent_iov = &bdev_io->u.bdev.iovs[parent_iovpos]; 3133 if (parent_iov_offset < parent_iov->iov_len) { 3134 break; 3135 } 3136 parent_iov_offset -= parent_iov->iov_len; 3137 } 3138 3139 child_iovcnt = 0; 3140 while (remaining > 0 && parent_iovpos < parent_iovcnt && 3141 child_iovcnt < SPDK_BDEV_IO_NUM_CHILD_IOV) { 3142 to_next_boundary = _to_next_boundary(current_offset, io_boundary); 3143 to_next_boundary = spdk_min(remaining, to_next_boundary); 3144 to_next_boundary = spdk_min(max_size, to_next_boundary); 3145 to_next_boundary_bytes = to_next_boundary * blocklen; 3146 3147 iov = &bdev_io->child_iov[child_iovcnt]; 3148 iovcnt = 0; 3149 3150 if (bdev_io->u.bdev.md_buf) { 3151 md_buf = (char *)bdev_io->u.bdev.md_buf + 3152 (current_offset - parent_offset) * spdk_bdev_get_md_size(bdev); 3153 } 3154 3155 child_iovsize = spdk_min(SPDK_BDEV_IO_NUM_CHILD_IOV - child_iovcnt, max_child_iovcnt); 3156 while (to_next_boundary_bytes > 0 && parent_iovpos < parent_iovcnt && 3157 iovcnt < child_iovsize) { 3158 parent_iov = &bdev_io->u.bdev.iovs[parent_iovpos]; 3159 iov_len = parent_iov->iov_len - parent_iov_offset; 3160 3161 iov_len = spdk_min(iov_len, max_segment_size); 3162 iov_len = spdk_min(iov_len, to_next_boundary_bytes); 3163 to_next_boundary_bytes -= iov_len; 3164 3165 bdev_io->child_iov[child_iovcnt].iov_base = parent_iov->iov_base + parent_iov_offset; 3166 bdev_io->child_iov[child_iovcnt].iov_len = iov_len; 3167 3168 if (iov_len < parent_iov->iov_len - parent_iov_offset) { 3169 parent_iov_offset += iov_len; 3170 } else { 3171 parent_iovpos++; 3172 parent_iov_offset = 0; 3173 } 3174 child_iovcnt++; 3175 iovcnt++; 3176 } 3177 3178 if (to_next_boundary_bytes > 0) { 3179 /* We had to stop this child I/O early because we ran out of 3180 * child_iov space or were limited by max_num_segments. 3181 * Ensure the iovs to be aligned with block size and 3182 * then adjust to_next_boundary before starting the 3183 * child I/O. 3184 */ 3185 assert(child_iovcnt == SPDK_BDEV_IO_NUM_CHILD_IOV || 3186 iovcnt == child_iovsize); 3187 to_last_block_bytes = to_next_boundary_bytes % blocklen; 3188 if (to_last_block_bytes != 0) { 3189 uint32_t child_iovpos = child_iovcnt - 1; 3190 /* don't decrease child_iovcnt when it equals to SPDK_BDEV_IO_NUM_CHILD_IOV 3191 * so the loop will naturally end 3192 */ 3193 3194 to_last_block_bytes = blocklen - to_last_block_bytes; 3195 to_next_boundary_bytes += to_last_block_bytes; 3196 while (to_last_block_bytes > 0 && iovcnt > 0) { 3197 iov_len = spdk_min(to_last_block_bytes, 3198 bdev_io->child_iov[child_iovpos].iov_len); 3199 bdev_io->child_iov[child_iovpos].iov_len -= iov_len; 3200 if (bdev_io->child_iov[child_iovpos].iov_len == 0) { 3201 child_iovpos--; 3202 if (--iovcnt == 0) { 3203 /* If the child IO is less than a block size just return. 3204 * If the first child IO of any split round is less than 3205 * a block size, an error exit. 3206 */ 3207 if (bdev_io->u.bdev.split_outstanding == 0) { 3208 SPDK_ERRLOG("The first child io was less than a block size\n"); 3209 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 3210 bdev_ch_remove_from_io_submitted(bdev_io); 3211 spdk_trace_record(TRACE_BDEV_IO_DONE, bdev_io->internal.ch->trace_id, 3212 0, (uintptr_t)bdev_io, bdev_io->internal.caller_ctx, 3213 bdev_io->internal.ch->queue_depth); 3214 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 3215 } 3216 3217 return; 3218 } 3219 } 3220 3221 to_last_block_bytes -= iov_len; 3222 3223 if (parent_iov_offset == 0) { 3224 parent_iovpos--; 3225 parent_iov_offset = bdev_io->u.bdev.iovs[parent_iovpos].iov_len; 3226 } 3227 parent_iov_offset -= iov_len; 3228 } 3229 3230 assert(to_last_block_bytes == 0); 3231 } 3232 to_next_boundary -= to_next_boundary_bytes / blocklen; 3233 } 3234 3235 rc = bdev_io_split_submit(bdev_io, iov, iovcnt, md_buf, to_next_boundary, 3236 ¤t_offset, &remaining); 3237 if (spdk_unlikely(rc)) { 3238 return; 3239 } 3240 } 3241 } 3242 3243 static void 3244 bdev_unmap_split(struct spdk_bdev_io *bdev_io) 3245 { 3246 uint64_t offset, unmap_blocks, remaining, max_unmap_blocks; 3247 uint32_t num_children_reqs = 0; 3248 int rc; 3249 3250 offset = bdev_io->u.bdev.split_current_offset_blocks; 3251 remaining = bdev_io->u.bdev.split_remaining_num_blocks; 3252 max_unmap_blocks = bdev_io->bdev->max_unmap * bdev_io->bdev->max_unmap_segments; 3253 3254 while (remaining && (num_children_reqs < SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS)) { 3255 unmap_blocks = spdk_min(remaining, max_unmap_blocks); 3256 3257 rc = bdev_io_split_submit(bdev_io, NULL, 0, NULL, unmap_blocks, 3258 &offset, &remaining); 3259 if (spdk_likely(rc == 0)) { 3260 num_children_reqs++; 3261 } else { 3262 return; 3263 } 3264 } 3265 } 3266 3267 static void 3268 bdev_write_zeroes_split(struct spdk_bdev_io *bdev_io) 3269 { 3270 uint64_t offset, write_zeroes_blocks, remaining; 3271 uint32_t num_children_reqs = 0; 3272 int rc; 3273 3274 offset = bdev_io->u.bdev.split_current_offset_blocks; 3275 remaining = bdev_io->u.bdev.split_remaining_num_blocks; 3276 3277 while (remaining && (num_children_reqs < SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS)) { 3278 write_zeroes_blocks = spdk_min(remaining, bdev_io->bdev->max_write_zeroes); 3279 3280 rc = bdev_io_split_submit(bdev_io, NULL, 0, NULL, write_zeroes_blocks, 3281 &offset, &remaining); 3282 if (spdk_likely(rc == 0)) { 3283 num_children_reqs++; 3284 } else { 3285 return; 3286 } 3287 } 3288 } 3289 3290 static void 3291 bdev_copy_split(struct spdk_bdev_io *bdev_io) 3292 { 3293 uint64_t offset, copy_blocks, remaining; 3294 uint32_t num_children_reqs = 0; 3295 int rc; 3296 3297 offset = bdev_io->u.bdev.split_current_offset_blocks; 3298 remaining = bdev_io->u.bdev.split_remaining_num_blocks; 3299 3300 assert(bdev_io->bdev->max_copy != 0); 3301 while (remaining && (num_children_reqs < SPDK_BDEV_MAX_CHILDREN_COPY_REQS)) { 3302 copy_blocks = spdk_min(remaining, bdev_io->bdev->max_copy); 3303 3304 rc = bdev_io_split_submit(bdev_io, NULL, 0, NULL, copy_blocks, 3305 &offset, &remaining); 3306 if (spdk_likely(rc == 0)) { 3307 num_children_reqs++; 3308 } else { 3309 return; 3310 } 3311 } 3312 } 3313 3314 static void 3315 parent_bdev_io_complete(void *ctx, int rc) 3316 { 3317 struct spdk_bdev_io *parent_io = ctx; 3318 3319 if (rc) { 3320 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 3321 } 3322 3323 parent_io->internal.cb(parent_io, parent_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS, 3324 parent_io->internal.caller_ctx); 3325 } 3326 3327 static void 3328 bdev_io_complete_parent_sequence_cb(void *ctx, int status) 3329 { 3330 struct spdk_bdev_io *bdev_io = ctx; 3331 3332 /* u.bdev.accel_sequence should have already been cleared at this point */ 3333 assert(bdev_io->u.bdev.accel_sequence == NULL); 3334 assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS); 3335 bdev_io->internal.accel_sequence = NULL; 3336 3337 if (spdk_unlikely(status != 0)) { 3338 SPDK_ERRLOG("Failed to execute accel sequence, status=%d\n", status); 3339 } 3340 3341 parent_bdev_io_complete(bdev_io, status); 3342 } 3343 3344 static void 3345 bdev_io_split_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 3346 { 3347 struct spdk_bdev_io *parent_io = cb_arg; 3348 3349 spdk_bdev_free_io(bdev_io); 3350 3351 if (!success) { 3352 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 3353 /* If any child I/O failed, stop further splitting process. */ 3354 parent_io->u.bdev.split_current_offset_blocks += parent_io->u.bdev.split_remaining_num_blocks; 3355 parent_io->u.bdev.split_remaining_num_blocks = 0; 3356 } 3357 parent_io->u.bdev.split_outstanding--; 3358 if (parent_io->u.bdev.split_outstanding != 0) { 3359 return; 3360 } 3361 3362 /* 3363 * Parent I/O finishes when all blocks are consumed. 3364 */ 3365 if (parent_io->u.bdev.split_remaining_num_blocks == 0) { 3366 assert(parent_io->internal.cb != bdev_io_split_done); 3367 bdev_ch_remove_from_io_submitted(parent_io); 3368 spdk_trace_record(TRACE_BDEV_IO_DONE, parent_io->internal.ch->trace_id, 3369 0, (uintptr_t)parent_io, bdev_io->internal.caller_ctx, 3370 parent_io->internal.ch->queue_depth); 3371 3372 if (spdk_likely(parent_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS)) { 3373 if (bdev_io_needs_sequence_exec(parent_io->internal.desc, parent_io)) { 3374 bdev_io_exec_sequence(parent_io, bdev_io_complete_parent_sequence_cb); 3375 return; 3376 } else if (parent_io->internal.orig_iovcnt != 0 && 3377 !bdev_io_use_accel_sequence(bdev_io)) { 3378 /* bdev IO will be completed in the callback */ 3379 _bdev_io_push_bounce_data_buffer(parent_io, parent_bdev_io_complete); 3380 return; 3381 } 3382 } 3383 3384 parent_bdev_io_complete(parent_io, 0); 3385 return; 3386 } 3387 3388 /* 3389 * Continue with the splitting process. This function will complete the parent I/O if the 3390 * splitting is done. 3391 */ 3392 switch (parent_io->type) { 3393 case SPDK_BDEV_IO_TYPE_READ: 3394 case SPDK_BDEV_IO_TYPE_WRITE: 3395 _bdev_rw_split(parent_io); 3396 break; 3397 case SPDK_BDEV_IO_TYPE_UNMAP: 3398 bdev_unmap_split(parent_io); 3399 break; 3400 case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: 3401 bdev_write_zeroes_split(parent_io); 3402 break; 3403 case SPDK_BDEV_IO_TYPE_COPY: 3404 bdev_copy_split(parent_io); 3405 break; 3406 default: 3407 assert(false); 3408 break; 3409 } 3410 } 3411 3412 static void bdev_rw_split_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io, 3413 bool success); 3414 3415 static void 3416 bdev_io_split(struct spdk_bdev_io *bdev_io) 3417 { 3418 assert(bdev_io_should_split(bdev_io)); 3419 3420 bdev_io->u.bdev.split_current_offset_blocks = bdev_io->u.bdev.offset_blocks; 3421 bdev_io->u.bdev.split_remaining_num_blocks = bdev_io->u.bdev.num_blocks; 3422 bdev_io->u.bdev.split_outstanding = 0; 3423 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; 3424 3425 switch (bdev_io->type) { 3426 case SPDK_BDEV_IO_TYPE_READ: 3427 case SPDK_BDEV_IO_TYPE_WRITE: 3428 if (_is_buf_allocated(bdev_io->u.bdev.iovs)) { 3429 _bdev_rw_split(bdev_io); 3430 } else { 3431 assert(bdev_io->type == SPDK_BDEV_IO_TYPE_READ); 3432 spdk_bdev_io_get_buf(bdev_io, bdev_rw_split_get_buf_cb, 3433 bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen); 3434 } 3435 break; 3436 case SPDK_BDEV_IO_TYPE_UNMAP: 3437 bdev_unmap_split(bdev_io); 3438 break; 3439 case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: 3440 bdev_write_zeroes_split(bdev_io); 3441 break; 3442 case SPDK_BDEV_IO_TYPE_COPY: 3443 bdev_copy_split(bdev_io); 3444 break; 3445 default: 3446 assert(false); 3447 break; 3448 } 3449 } 3450 3451 static void 3452 bdev_rw_split_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io, bool success) 3453 { 3454 if (!success) { 3455 spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED); 3456 return; 3457 } 3458 3459 _bdev_rw_split(bdev_io); 3460 } 3461 3462 /* Explicitly mark this inline, since it's used as a function pointer and otherwise won't 3463 * be inlined, at least on some compilers. 3464 */ 3465 static inline void 3466 _bdev_io_submit(void *ctx) 3467 { 3468 struct spdk_bdev_io *bdev_io = ctx; 3469 struct spdk_bdev *bdev = bdev_io->bdev; 3470 struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch; 3471 3472 if (spdk_likely(bdev_ch->flags == 0)) { 3473 bdev_io_do_submit(bdev_ch, bdev_io); 3474 return; 3475 } 3476 3477 if (bdev_ch->flags & BDEV_CH_RESET_IN_PROGRESS) { 3478 _bdev_io_complete_in_submit(bdev_ch, bdev_io, SPDK_BDEV_IO_STATUS_ABORTED); 3479 } else if (bdev_ch->flags & BDEV_CH_QOS_ENABLED) { 3480 if (spdk_unlikely(bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) && 3481 bdev_abort_queued_io(&bdev_ch->qos_queued_io, bdev_io->u.abort.bio_to_abort)) { 3482 _bdev_io_complete_in_submit(bdev_ch, bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS); 3483 } else { 3484 TAILQ_INSERT_TAIL(&bdev_ch->qos_queued_io, bdev_io, internal.link); 3485 bdev_qos_io_submit(bdev_ch, bdev->internal.qos); 3486 } 3487 } else { 3488 SPDK_ERRLOG("unknown bdev_ch flag %x found\n", bdev_ch->flags); 3489 _bdev_io_complete_in_submit(bdev_ch, bdev_io, SPDK_BDEV_IO_STATUS_FAILED); 3490 } 3491 } 3492 3493 bool bdev_lba_range_overlapped(struct lba_range *range1, struct lba_range *range2); 3494 3495 bool 3496 bdev_lba_range_overlapped(struct lba_range *range1, struct lba_range *range2) 3497 { 3498 if (range1->length == 0 || range2->length == 0) { 3499 return false; 3500 } 3501 3502 if (range1->offset + range1->length <= range2->offset) { 3503 return false; 3504 } 3505 3506 if (range2->offset + range2->length <= range1->offset) { 3507 return false; 3508 } 3509 3510 return true; 3511 } 3512 3513 static bool 3514 bdev_io_range_is_locked(struct spdk_bdev_io *bdev_io, struct lba_range *range) 3515 { 3516 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 3517 struct lba_range r; 3518 3519 switch (bdev_io->type) { 3520 case SPDK_BDEV_IO_TYPE_NVME_IO: 3521 case SPDK_BDEV_IO_TYPE_NVME_IO_MD: 3522 /* Don't try to decode the NVMe command - just assume worst-case and that 3523 * it overlaps a locked range. 3524 */ 3525 return true; 3526 case SPDK_BDEV_IO_TYPE_READ: 3527 if (!range->quiesce) { 3528 return false; 3529 } 3530 /* fallthrough */ 3531 case SPDK_BDEV_IO_TYPE_WRITE: 3532 case SPDK_BDEV_IO_TYPE_UNMAP: 3533 case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: 3534 case SPDK_BDEV_IO_TYPE_ZCOPY: 3535 case SPDK_BDEV_IO_TYPE_COPY: 3536 r.offset = bdev_io->u.bdev.offset_blocks; 3537 r.length = bdev_io->u.bdev.num_blocks; 3538 if (!bdev_lba_range_overlapped(range, &r)) { 3539 /* This I/O doesn't overlap the specified LBA range. */ 3540 return false; 3541 } else if (range->owner_ch == ch && range->locked_ctx == bdev_io->internal.caller_ctx) { 3542 /* This I/O overlaps, but the I/O is on the same channel that locked this 3543 * range, and the caller_ctx is the same as the locked_ctx. This means 3544 * that this I/O is associated with the lock, and is allowed to execute. 3545 */ 3546 return false; 3547 } else { 3548 return true; 3549 } 3550 default: 3551 return false; 3552 } 3553 } 3554 3555 void 3556 bdev_io_submit(struct spdk_bdev_io *bdev_io) 3557 { 3558 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 3559 3560 assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_PENDING); 3561 3562 if (!TAILQ_EMPTY(&ch->locked_ranges)) { 3563 struct lba_range *range; 3564 3565 TAILQ_FOREACH(range, &ch->locked_ranges, tailq) { 3566 if (bdev_io_range_is_locked(bdev_io, range)) { 3567 TAILQ_INSERT_TAIL(&ch->io_locked, bdev_io, internal.ch_link); 3568 return; 3569 } 3570 } 3571 } 3572 3573 bdev_ch_add_to_io_submitted(bdev_io); 3574 3575 bdev_io->internal.submit_tsc = spdk_get_ticks(); 3576 spdk_trace_record_tsc(bdev_io->internal.submit_tsc, TRACE_BDEV_IO_START, 3577 ch->trace_id, bdev_io->u.bdev.num_blocks, 3578 (uintptr_t)bdev_io, (uint64_t)bdev_io->type, bdev_io->internal.caller_ctx, 3579 bdev_io->u.bdev.offset_blocks, ch->queue_depth); 3580 3581 if (bdev_io->internal.split) { 3582 bdev_io_split(bdev_io); 3583 return; 3584 } 3585 3586 _bdev_io_submit(bdev_io); 3587 } 3588 3589 static inline void 3590 _bdev_io_ext_use_bounce_buffer(struct spdk_bdev_io *bdev_io) 3591 { 3592 /* bdev doesn't support memory domains, thereby buffers in this IO request can't 3593 * be accessed directly. It is needed to allocate buffers before issuing IO operation. 3594 * For write operation we need to pull buffers from memory domain before submitting IO. 3595 * Once read operation completes, we need to use memory_domain push functionality to 3596 * update data in original memory domain IO buffer 3597 * This IO request will go through a regular IO flow, so clear memory domains pointers */ 3598 bdev_io->u.bdev.memory_domain = NULL; 3599 bdev_io->u.bdev.memory_domain_ctx = NULL; 3600 _bdev_memory_domain_io_get_buf(bdev_io, _bdev_memory_domain_get_io_cb, 3601 bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen); 3602 } 3603 3604 static inline void 3605 _bdev_io_submit_ext(struct spdk_bdev_desc *desc, struct spdk_bdev_io *bdev_io) 3606 { 3607 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 3608 bool needs_exec = bdev_io_needs_sequence_exec(desc, bdev_io); 3609 3610 if (spdk_unlikely(ch->flags & BDEV_CH_RESET_IN_PROGRESS)) { 3611 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_ABORTED; 3612 bdev_io_complete_unsubmitted(bdev_io); 3613 return; 3614 } 3615 3616 /* We need to allocate bounce buffer if bdev doesn't support memory domains, or if it does 3617 * support them, but we need to execute an accel sequence and the data buffer is from accel 3618 * memory domain (to avoid doing a push/pull from that domain). 3619 */ 3620 if ((bdev_io->internal.memory_domain && !desc->memory_domains_supported) || 3621 (needs_exec && bdev_io->internal.memory_domain == spdk_accel_get_memory_domain())) { 3622 _bdev_io_ext_use_bounce_buffer(bdev_io); 3623 return; 3624 } 3625 3626 if (needs_exec) { 3627 if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) { 3628 bdev_io_exec_sequence(bdev_io, bdev_io_submit_sequence_cb); 3629 return; 3630 } 3631 /* For reads we'll execute the sequence after the data is read, so, for now, only 3632 * clear out accel_sequence pointer and submit the IO */ 3633 assert(bdev_io->type == SPDK_BDEV_IO_TYPE_READ); 3634 bdev_io->u.bdev.accel_sequence = NULL; 3635 } 3636 3637 bdev_io_submit(bdev_io); 3638 } 3639 3640 static void 3641 bdev_io_submit_reset(struct spdk_bdev_io *bdev_io) 3642 { 3643 struct spdk_bdev *bdev = bdev_io->bdev; 3644 struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch; 3645 struct spdk_io_channel *ch = bdev_ch->channel; 3646 3647 assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_PENDING); 3648 3649 bdev_io->internal.in_submit_request = true; 3650 bdev_submit_request(bdev, ch, bdev_io); 3651 bdev_io->internal.in_submit_request = false; 3652 } 3653 3654 void 3655 bdev_io_init(struct spdk_bdev_io *bdev_io, 3656 struct spdk_bdev *bdev, void *cb_arg, 3657 spdk_bdev_io_completion_cb cb) 3658 { 3659 bdev_io->bdev = bdev; 3660 bdev_io->internal.caller_ctx = cb_arg; 3661 bdev_io->internal.cb = cb; 3662 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_PENDING; 3663 bdev_io->internal.in_submit_request = false; 3664 bdev_io->internal.buf = NULL; 3665 bdev_io->internal.orig_iovs = NULL; 3666 bdev_io->internal.orig_iovcnt = 0; 3667 bdev_io->internal.orig_md_iov.iov_base = NULL; 3668 bdev_io->internal.error.nvme.cdw0 = 0; 3669 bdev_io->num_retries = 0; 3670 bdev_io->internal.get_buf_cb = NULL; 3671 bdev_io->internal.get_aux_buf_cb = NULL; 3672 bdev_io->internal.memory_domain = NULL; 3673 bdev_io->internal.memory_domain_ctx = NULL; 3674 bdev_io->internal.data_transfer_cpl = NULL; 3675 bdev_io->internal.split = bdev_io_should_split(bdev_io); 3676 bdev_io->internal.accel_sequence = NULL; 3677 bdev_io->internal.has_accel_sequence = false; 3678 } 3679 3680 static bool 3681 bdev_io_type_supported(struct spdk_bdev *bdev, enum spdk_bdev_io_type io_type) 3682 { 3683 return bdev->fn_table->io_type_supported(bdev->ctxt, io_type); 3684 } 3685 3686 bool 3687 spdk_bdev_io_type_supported(struct spdk_bdev *bdev, enum spdk_bdev_io_type io_type) 3688 { 3689 bool supported; 3690 3691 supported = bdev_io_type_supported(bdev, io_type); 3692 3693 if (!supported) { 3694 switch (io_type) { 3695 case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: 3696 /* The bdev layer will emulate write zeroes as long as write is supported. */ 3697 supported = bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE); 3698 break; 3699 default: 3700 break; 3701 } 3702 } 3703 3704 return supported; 3705 } 3706 3707 static const char *g_io_type_strings[] = { 3708 [SPDK_BDEV_IO_TYPE_READ] = "read", 3709 [SPDK_BDEV_IO_TYPE_WRITE] = "write", 3710 [SPDK_BDEV_IO_TYPE_UNMAP] = "unmap", 3711 [SPDK_BDEV_IO_TYPE_FLUSH] = "flush", 3712 [SPDK_BDEV_IO_TYPE_RESET] = "reset", 3713 [SPDK_BDEV_IO_TYPE_NVME_ADMIN] = "nvme_admin", 3714 [SPDK_BDEV_IO_TYPE_NVME_IO] = "nvme_io", 3715 [SPDK_BDEV_IO_TYPE_NVME_IO_MD] = "nvme_io_md", 3716 [SPDK_BDEV_IO_TYPE_WRITE_ZEROES] = "write_zeroes", 3717 [SPDK_BDEV_IO_TYPE_ZCOPY] = "zcopy", 3718 [SPDK_BDEV_IO_TYPE_GET_ZONE_INFO] = "get_zone_info", 3719 [SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT] = "zone_management", 3720 [SPDK_BDEV_IO_TYPE_ZONE_APPEND] = "zone_append", 3721 [SPDK_BDEV_IO_TYPE_COMPARE] = "compare", 3722 [SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE] = "compare_and_write", 3723 [SPDK_BDEV_IO_TYPE_ABORT] = "abort", 3724 [SPDK_BDEV_IO_TYPE_SEEK_HOLE] = "seek_hole", 3725 [SPDK_BDEV_IO_TYPE_SEEK_DATA] = "seek_data", 3726 [SPDK_BDEV_IO_TYPE_COPY] = "copy", 3727 [SPDK_BDEV_IO_TYPE_NVME_IOV_MD] = "nvme_iov_md", 3728 }; 3729 3730 const char * 3731 spdk_bdev_get_io_type_name(enum spdk_bdev_io_type io_type) 3732 { 3733 if (io_type <= SPDK_BDEV_IO_TYPE_INVALID || io_type >= SPDK_BDEV_NUM_IO_TYPES) { 3734 return NULL; 3735 } 3736 3737 return g_io_type_strings[io_type]; 3738 } 3739 3740 uint64_t 3741 spdk_bdev_io_get_submit_tsc(struct spdk_bdev_io *bdev_io) 3742 { 3743 return bdev_io->internal.submit_tsc; 3744 } 3745 3746 int 3747 spdk_bdev_dump_info_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w) 3748 { 3749 if (bdev->fn_table->dump_info_json) { 3750 return bdev->fn_table->dump_info_json(bdev->ctxt, w); 3751 } 3752 3753 return 0; 3754 } 3755 3756 static void 3757 bdev_qos_update_max_quota_per_timeslice(struct spdk_bdev_qos *qos) 3758 { 3759 uint32_t max_per_timeslice = 0; 3760 int i; 3761 3762 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 3763 if (qos->rate_limits[i].limit == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) { 3764 qos->rate_limits[i].max_per_timeslice = 0; 3765 continue; 3766 } 3767 3768 max_per_timeslice = qos->rate_limits[i].limit * 3769 SPDK_BDEV_QOS_TIMESLICE_IN_USEC / SPDK_SEC_TO_USEC; 3770 3771 qos->rate_limits[i].max_per_timeslice = spdk_max(max_per_timeslice, 3772 qos->rate_limits[i].min_per_timeslice); 3773 3774 __atomic_store_n(&qos->rate_limits[i].remaining_this_timeslice, 3775 qos->rate_limits[i].max_per_timeslice, __ATOMIC_RELEASE); 3776 } 3777 3778 bdev_qos_set_ops(qos); 3779 } 3780 3781 static void 3782 bdev_channel_submit_qos_io(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 3783 struct spdk_io_channel *io_ch, void *ctx) 3784 { 3785 struct spdk_bdev_channel *bdev_ch = __io_ch_to_bdev_ch(io_ch); 3786 int status; 3787 3788 bdev_qos_io_submit(bdev_ch, bdev->internal.qos); 3789 3790 /* if all IOs were sent then continue the iteration, otherwise - stop it */ 3791 /* TODO: channels round robing */ 3792 status = TAILQ_EMPTY(&bdev_ch->qos_queued_io) ? 0 : 1; 3793 3794 spdk_bdev_for_each_channel_continue(i, status); 3795 } 3796 3797 3798 static void 3799 bdev_channel_submit_qos_io_done(struct spdk_bdev *bdev, void *ctx, int status) 3800 { 3801 3802 } 3803 3804 static int 3805 bdev_channel_poll_qos(void *arg) 3806 { 3807 struct spdk_bdev *bdev = arg; 3808 struct spdk_bdev_qos *qos = bdev->internal.qos; 3809 uint64_t now = spdk_get_ticks(); 3810 int i; 3811 int64_t remaining_last_timeslice; 3812 3813 if (spdk_unlikely(qos->thread == NULL)) { 3814 /* Old QoS was unbound to remove and new QoS is not enabled yet. */ 3815 return SPDK_POLLER_IDLE; 3816 } 3817 3818 if (now < (qos->last_timeslice + qos->timeslice_size)) { 3819 /* We received our callback earlier than expected - return 3820 * immediately and wait to do accounting until at least one 3821 * timeslice has actually expired. This should never happen 3822 * with a well-behaved timer implementation. 3823 */ 3824 return SPDK_POLLER_IDLE; 3825 } 3826 3827 /* Reset for next round of rate limiting */ 3828 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 3829 /* We may have allowed the IOs or bytes to slightly overrun in the last 3830 * timeslice. remaining_this_timeslice is signed, so if it's negative 3831 * here, we'll account for the overrun so that the next timeslice will 3832 * be appropriately reduced. 3833 */ 3834 remaining_last_timeslice = __atomic_exchange_n(&qos->rate_limits[i].remaining_this_timeslice, 3835 0, __ATOMIC_RELAXED); 3836 if (remaining_last_timeslice < 0) { 3837 /* There could be a race condition here as both bdev_qos_rw_queue_io() and bdev_channel_poll_qos() 3838 * potentially use 2 atomic ops each, so they can intertwine. 3839 * This race can potentialy cause the limits to be a little fuzzy but won't cause any real damage. 3840 */ 3841 __atomic_store_n(&qos->rate_limits[i].remaining_this_timeslice, 3842 remaining_last_timeslice, __ATOMIC_RELAXED); 3843 } 3844 } 3845 3846 while (now >= (qos->last_timeslice + qos->timeslice_size)) { 3847 qos->last_timeslice += qos->timeslice_size; 3848 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 3849 __atomic_add_fetch(&qos->rate_limits[i].remaining_this_timeslice, 3850 qos->rate_limits[i].max_per_timeslice, __ATOMIC_RELAXED); 3851 } 3852 } 3853 3854 spdk_bdev_for_each_channel(bdev, bdev_channel_submit_qos_io, qos, 3855 bdev_channel_submit_qos_io_done); 3856 3857 return SPDK_POLLER_BUSY; 3858 } 3859 3860 static void 3861 bdev_channel_destroy_resource(struct spdk_bdev_channel *ch) 3862 { 3863 struct spdk_bdev_shared_resource *shared_resource; 3864 struct lba_range *range; 3865 3866 bdev_free_io_stat(ch->stat); 3867 #ifdef SPDK_CONFIG_VTUNE 3868 bdev_free_io_stat(ch->prev_stat); 3869 #endif 3870 3871 while (!TAILQ_EMPTY(&ch->locked_ranges)) { 3872 range = TAILQ_FIRST(&ch->locked_ranges); 3873 TAILQ_REMOVE(&ch->locked_ranges, range, tailq); 3874 free(range); 3875 } 3876 3877 spdk_put_io_channel(ch->channel); 3878 spdk_put_io_channel(ch->accel_channel); 3879 3880 shared_resource = ch->shared_resource; 3881 3882 assert(TAILQ_EMPTY(&ch->io_locked)); 3883 assert(TAILQ_EMPTY(&ch->io_submitted)); 3884 assert(TAILQ_EMPTY(&ch->io_accel_exec)); 3885 assert(TAILQ_EMPTY(&ch->io_memory_domain)); 3886 assert(ch->io_outstanding == 0); 3887 assert(shared_resource->ref > 0); 3888 shared_resource->ref--; 3889 if (shared_resource->ref == 0) { 3890 assert(shared_resource->io_outstanding == 0); 3891 TAILQ_REMOVE(&shared_resource->mgmt_ch->shared_resources, shared_resource, link); 3892 spdk_put_io_channel(spdk_io_channel_from_ctx(shared_resource->mgmt_ch)); 3893 spdk_poller_unregister(&shared_resource->nomem_poller); 3894 free(shared_resource); 3895 } 3896 } 3897 3898 static void 3899 bdev_enable_qos(struct spdk_bdev *bdev, struct spdk_bdev_channel *ch) 3900 { 3901 struct spdk_bdev_qos *qos = bdev->internal.qos; 3902 int i; 3903 3904 assert(spdk_spin_held(&bdev->internal.spinlock)); 3905 3906 /* Rate limiting on this bdev enabled */ 3907 if (qos) { 3908 if (qos->ch == NULL) { 3909 struct spdk_io_channel *io_ch; 3910 3911 SPDK_DEBUGLOG(bdev, "Selecting channel %p as QoS channel for bdev %s on thread %p\n", ch, 3912 bdev->name, spdk_get_thread()); 3913 3914 /* No qos channel has been selected, so set one up */ 3915 3916 /* Take another reference to ch */ 3917 io_ch = spdk_get_io_channel(__bdev_to_io_dev(bdev)); 3918 assert(io_ch != NULL); 3919 qos->ch = ch; 3920 3921 qos->thread = spdk_io_channel_get_thread(io_ch); 3922 3923 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 3924 if (bdev_qos_is_iops_rate_limit(i) == true) { 3925 qos->rate_limits[i].min_per_timeslice = 3926 SPDK_BDEV_QOS_MIN_IO_PER_TIMESLICE; 3927 } else { 3928 qos->rate_limits[i].min_per_timeslice = 3929 SPDK_BDEV_QOS_MIN_BYTE_PER_TIMESLICE; 3930 } 3931 3932 if (qos->rate_limits[i].limit == 0) { 3933 qos->rate_limits[i].limit = SPDK_BDEV_QOS_LIMIT_NOT_DEFINED; 3934 } 3935 } 3936 bdev_qos_update_max_quota_per_timeslice(qos); 3937 qos->timeslice_size = 3938 SPDK_BDEV_QOS_TIMESLICE_IN_USEC * spdk_get_ticks_hz() / SPDK_SEC_TO_USEC; 3939 qos->last_timeslice = spdk_get_ticks(); 3940 qos->poller = SPDK_POLLER_REGISTER(bdev_channel_poll_qos, 3941 bdev, 3942 SPDK_BDEV_QOS_TIMESLICE_IN_USEC); 3943 } 3944 3945 ch->flags |= BDEV_CH_QOS_ENABLED; 3946 } 3947 } 3948 3949 struct poll_timeout_ctx { 3950 struct spdk_bdev_desc *desc; 3951 uint64_t timeout_in_sec; 3952 spdk_bdev_io_timeout_cb cb_fn; 3953 void *cb_arg; 3954 }; 3955 3956 static void 3957 bdev_desc_free(struct spdk_bdev_desc *desc) 3958 { 3959 spdk_spin_destroy(&desc->spinlock); 3960 free(desc->media_events_buffer); 3961 free(desc); 3962 } 3963 3964 static void 3965 bdev_channel_poll_timeout_io_done(struct spdk_bdev *bdev, void *_ctx, int status) 3966 { 3967 struct poll_timeout_ctx *ctx = _ctx; 3968 struct spdk_bdev_desc *desc = ctx->desc; 3969 3970 free(ctx); 3971 3972 spdk_spin_lock(&desc->spinlock); 3973 desc->refs--; 3974 if (desc->closed == true && desc->refs == 0) { 3975 spdk_spin_unlock(&desc->spinlock); 3976 bdev_desc_free(desc); 3977 return; 3978 } 3979 spdk_spin_unlock(&desc->spinlock); 3980 } 3981 3982 static void 3983 bdev_channel_poll_timeout_io(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 3984 struct spdk_io_channel *io_ch, void *_ctx) 3985 { 3986 struct poll_timeout_ctx *ctx = _ctx; 3987 struct spdk_bdev_channel *bdev_ch = __io_ch_to_bdev_ch(io_ch); 3988 struct spdk_bdev_desc *desc = ctx->desc; 3989 struct spdk_bdev_io *bdev_io; 3990 uint64_t now; 3991 3992 spdk_spin_lock(&desc->spinlock); 3993 if (desc->closed == true) { 3994 spdk_spin_unlock(&desc->spinlock); 3995 spdk_bdev_for_each_channel_continue(i, -1); 3996 return; 3997 } 3998 spdk_spin_unlock(&desc->spinlock); 3999 4000 now = spdk_get_ticks(); 4001 TAILQ_FOREACH(bdev_io, &bdev_ch->io_submitted, internal.ch_link) { 4002 /* Exclude any I/O that are generated via splitting. */ 4003 if (bdev_io->internal.cb == bdev_io_split_done) { 4004 continue; 4005 } 4006 4007 /* Once we find an I/O that has not timed out, we can immediately 4008 * exit the loop. 4009 */ 4010 if (now < (bdev_io->internal.submit_tsc + 4011 ctx->timeout_in_sec * spdk_get_ticks_hz())) { 4012 goto end; 4013 } 4014 4015 if (bdev_io->internal.desc == desc) { 4016 ctx->cb_fn(ctx->cb_arg, bdev_io); 4017 } 4018 } 4019 4020 end: 4021 spdk_bdev_for_each_channel_continue(i, 0); 4022 } 4023 4024 static int 4025 bdev_poll_timeout_io(void *arg) 4026 { 4027 struct spdk_bdev_desc *desc = arg; 4028 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 4029 struct poll_timeout_ctx *ctx; 4030 4031 ctx = calloc(1, sizeof(struct poll_timeout_ctx)); 4032 if (!ctx) { 4033 SPDK_ERRLOG("failed to allocate memory\n"); 4034 return SPDK_POLLER_BUSY; 4035 } 4036 ctx->desc = desc; 4037 ctx->cb_arg = desc->cb_arg; 4038 ctx->cb_fn = desc->cb_fn; 4039 ctx->timeout_in_sec = desc->timeout_in_sec; 4040 4041 /* Take a ref on the descriptor in case it gets closed while we are checking 4042 * all of the channels. 4043 */ 4044 spdk_spin_lock(&desc->spinlock); 4045 desc->refs++; 4046 spdk_spin_unlock(&desc->spinlock); 4047 4048 spdk_bdev_for_each_channel(bdev, bdev_channel_poll_timeout_io, ctx, 4049 bdev_channel_poll_timeout_io_done); 4050 4051 return SPDK_POLLER_BUSY; 4052 } 4053 4054 int 4055 spdk_bdev_set_timeout(struct spdk_bdev_desc *desc, uint64_t timeout_in_sec, 4056 spdk_bdev_io_timeout_cb cb_fn, void *cb_arg) 4057 { 4058 assert(desc->thread == spdk_get_thread()); 4059 4060 spdk_poller_unregister(&desc->io_timeout_poller); 4061 4062 if (timeout_in_sec) { 4063 assert(cb_fn != NULL); 4064 desc->io_timeout_poller = SPDK_POLLER_REGISTER(bdev_poll_timeout_io, 4065 desc, 4066 SPDK_BDEV_IO_POLL_INTERVAL_IN_MSEC * SPDK_SEC_TO_USEC / 4067 1000); 4068 if (desc->io_timeout_poller == NULL) { 4069 SPDK_ERRLOG("can not register the desc timeout IO poller\n"); 4070 return -1; 4071 } 4072 } 4073 4074 desc->cb_fn = cb_fn; 4075 desc->cb_arg = cb_arg; 4076 desc->timeout_in_sec = timeout_in_sec; 4077 4078 return 0; 4079 } 4080 4081 static int 4082 bdev_channel_create(void *io_device, void *ctx_buf) 4083 { 4084 struct spdk_bdev *bdev = __bdev_from_io_dev(io_device); 4085 struct spdk_bdev_channel *ch = ctx_buf; 4086 struct spdk_io_channel *mgmt_io_ch; 4087 struct spdk_bdev_mgmt_channel *mgmt_ch; 4088 struct spdk_bdev_shared_resource *shared_resource; 4089 struct lba_range *range; 4090 4091 ch->bdev = bdev; 4092 ch->channel = bdev->fn_table->get_io_channel(bdev->ctxt); 4093 if (!ch->channel) { 4094 return -1; 4095 } 4096 4097 ch->accel_channel = spdk_accel_get_io_channel(); 4098 if (!ch->accel_channel) { 4099 spdk_put_io_channel(ch->channel); 4100 return -1; 4101 } 4102 4103 spdk_trace_record(TRACE_BDEV_IOCH_CREATE, bdev->internal.trace_id, 0, 0, 4104 spdk_thread_get_id(spdk_io_channel_get_thread(ch->channel))); 4105 4106 assert(ch->histogram == NULL); 4107 if (bdev->internal.histogram_enabled) { 4108 ch->histogram = spdk_histogram_data_alloc(); 4109 if (ch->histogram == NULL) { 4110 SPDK_ERRLOG("Could not allocate histogram\n"); 4111 } 4112 } 4113 4114 mgmt_io_ch = spdk_get_io_channel(&g_bdev_mgr); 4115 if (!mgmt_io_ch) { 4116 spdk_put_io_channel(ch->channel); 4117 spdk_put_io_channel(ch->accel_channel); 4118 return -1; 4119 } 4120 4121 mgmt_ch = __io_ch_to_bdev_mgmt_ch(mgmt_io_ch); 4122 TAILQ_FOREACH(shared_resource, &mgmt_ch->shared_resources, link) { 4123 if (shared_resource->shared_ch == ch->channel) { 4124 spdk_put_io_channel(mgmt_io_ch); 4125 shared_resource->ref++; 4126 break; 4127 } 4128 } 4129 4130 if (shared_resource == NULL) { 4131 shared_resource = calloc(1, sizeof(*shared_resource)); 4132 if (shared_resource == NULL) { 4133 spdk_put_io_channel(ch->channel); 4134 spdk_put_io_channel(ch->accel_channel); 4135 spdk_put_io_channel(mgmt_io_ch); 4136 return -1; 4137 } 4138 4139 shared_resource->mgmt_ch = mgmt_ch; 4140 shared_resource->io_outstanding = 0; 4141 TAILQ_INIT(&shared_resource->nomem_io); 4142 shared_resource->nomem_threshold = 0; 4143 shared_resource->shared_ch = ch->channel; 4144 shared_resource->ref = 1; 4145 TAILQ_INSERT_TAIL(&mgmt_ch->shared_resources, shared_resource, link); 4146 } 4147 4148 ch->io_outstanding = 0; 4149 TAILQ_INIT(&ch->queued_resets); 4150 TAILQ_INIT(&ch->locked_ranges); 4151 TAILQ_INIT(&ch->qos_queued_io); 4152 ch->flags = 0; 4153 ch->trace_id = bdev->internal.trace_id; 4154 ch->shared_resource = shared_resource; 4155 4156 TAILQ_INIT(&ch->io_submitted); 4157 TAILQ_INIT(&ch->io_locked); 4158 TAILQ_INIT(&ch->io_accel_exec); 4159 TAILQ_INIT(&ch->io_memory_domain); 4160 4161 ch->stat = bdev_alloc_io_stat(false); 4162 if (ch->stat == NULL) { 4163 bdev_channel_destroy_resource(ch); 4164 return -1; 4165 } 4166 4167 ch->stat->ticks_rate = spdk_get_ticks_hz(); 4168 4169 #ifdef SPDK_CONFIG_VTUNE 4170 { 4171 char *name; 4172 __itt_init_ittlib(NULL, 0); 4173 name = spdk_sprintf_alloc("spdk_bdev_%s_%p", ch->bdev->name, ch); 4174 if (!name) { 4175 bdev_channel_destroy_resource(ch); 4176 return -1; 4177 } 4178 ch->handle = __itt_string_handle_create(name); 4179 free(name); 4180 ch->start_tsc = spdk_get_ticks(); 4181 ch->interval_tsc = spdk_get_ticks_hz() / 100; 4182 ch->prev_stat = bdev_alloc_io_stat(false); 4183 if (ch->prev_stat == NULL) { 4184 bdev_channel_destroy_resource(ch); 4185 return -1; 4186 } 4187 } 4188 #endif 4189 4190 spdk_spin_lock(&bdev->internal.spinlock); 4191 bdev_enable_qos(bdev, ch); 4192 4193 TAILQ_FOREACH(range, &bdev->internal.locked_ranges, tailq) { 4194 struct lba_range *new_range; 4195 4196 new_range = calloc(1, sizeof(*new_range)); 4197 if (new_range == NULL) { 4198 spdk_spin_unlock(&bdev->internal.spinlock); 4199 bdev_channel_destroy_resource(ch); 4200 return -1; 4201 } 4202 new_range->length = range->length; 4203 new_range->offset = range->offset; 4204 new_range->locked_ctx = range->locked_ctx; 4205 TAILQ_INSERT_TAIL(&ch->locked_ranges, new_range, tailq); 4206 } 4207 4208 spdk_spin_unlock(&bdev->internal.spinlock); 4209 4210 return 0; 4211 } 4212 4213 static int 4214 bdev_abort_all_buf_io_cb(struct spdk_iobuf_channel *ch, struct spdk_iobuf_entry *entry, 4215 void *cb_ctx) 4216 { 4217 struct spdk_bdev_channel *bdev_ch = cb_ctx; 4218 struct spdk_bdev_io *bdev_io; 4219 uint64_t buf_len; 4220 4221 bdev_io = SPDK_CONTAINEROF(entry, struct spdk_bdev_io, internal.iobuf); 4222 if (bdev_io->internal.ch == bdev_ch) { 4223 buf_len = bdev_io_get_max_buf_len(bdev_io, bdev_io->internal.buf_len); 4224 spdk_iobuf_entry_abort(ch, entry, buf_len); 4225 spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED); 4226 } 4227 4228 return 0; 4229 } 4230 4231 /* 4232 * Abort I/O that are waiting on a data buffer. 4233 */ 4234 static void 4235 bdev_abort_all_buf_io(struct spdk_bdev_mgmt_channel *mgmt_ch, struct spdk_bdev_channel *ch) 4236 { 4237 spdk_iobuf_for_each_entry(&mgmt_ch->iobuf, &mgmt_ch->iobuf.small, 4238 bdev_abort_all_buf_io_cb, ch); 4239 spdk_iobuf_for_each_entry(&mgmt_ch->iobuf, &mgmt_ch->iobuf.large, 4240 bdev_abort_all_buf_io_cb, ch); 4241 } 4242 4243 /* 4244 * Abort I/O that are queued waiting for submission. These types of I/O are 4245 * linked using the spdk_bdev_io link TAILQ_ENTRY. 4246 */ 4247 static void 4248 bdev_abort_all_queued_io(bdev_io_tailq_t *queue, struct spdk_bdev_channel *ch) 4249 { 4250 struct spdk_bdev_io *bdev_io, *tmp; 4251 4252 TAILQ_FOREACH_SAFE(bdev_io, queue, internal.link, tmp) { 4253 if (bdev_io->internal.ch == ch) { 4254 TAILQ_REMOVE(queue, bdev_io, internal.link); 4255 /* 4256 * spdk_bdev_io_complete() assumes that the completed I/O had 4257 * been submitted to the bdev module. Since in this case it 4258 * hadn't, bump io_outstanding to account for the decrement 4259 * that spdk_bdev_io_complete() will do. 4260 */ 4261 if (bdev_io->type != SPDK_BDEV_IO_TYPE_RESET) { 4262 bdev_io_increment_outstanding(ch, ch->shared_resource); 4263 } 4264 spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED); 4265 } 4266 } 4267 } 4268 4269 static bool 4270 bdev_abort_queued_io(bdev_io_tailq_t *queue, struct spdk_bdev_io *bio_to_abort) 4271 { 4272 struct spdk_bdev_io *bdev_io; 4273 4274 TAILQ_FOREACH(bdev_io, queue, internal.link) { 4275 if (bdev_io == bio_to_abort) { 4276 TAILQ_REMOVE(queue, bio_to_abort, internal.link); 4277 spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_ABORTED); 4278 return true; 4279 } 4280 } 4281 4282 return false; 4283 } 4284 4285 static int 4286 bdev_abort_buf_io_cb(struct spdk_iobuf_channel *ch, struct spdk_iobuf_entry *entry, void *cb_ctx) 4287 { 4288 struct spdk_bdev_io *bdev_io, *bio_to_abort = cb_ctx; 4289 uint64_t buf_len; 4290 4291 bdev_io = SPDK_CONTAINEROF(entry, struct spdk_bdev_io, internal.iobuf); 4292 if (bdev_io == bio_to_abort) { 4293 buf_len = bdev_io_get_max_buf_len(bdev_io, bdev_io->internal.buf_len); 4294 spdk_iobuf_entry_abort(ch, entry, buf_len); 4295 spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_ABORTED); 4296 return 1; 4297 } 4298 4299 return 0; 4300 } 4301 4302 static bool 4303 bdev_abort_buf_io(struct spdk_bdev_mgmt_channel *mgmt_ch, struct spdk_bdev_io *bio_to_abort) 4304 { 4305 int rc; 4306 4307 rc = spdk_iobuf_for_each_entry(&mgmt_ch->iobuf, &mgmt_ch->iobuf.small, 4308 bdev_abort_buf_io_cb, bio_to_abort); 4309 if (rc == 1) { 4310 return true; 4311 } 4312 4313 rc = spdk_iobuf_for_each_entry(&mgmt_ch->iobuf, &mgmt_ch->iobuf.large, 4314 bdev_abort_buf_io_cb, bio_to_abort); 4315 return rc == 1; 4316 } 4317 4318 static void 4319 bdev_qos_channel_destroy(void *cb_arg) 4320 { 4321 struct spdk_bdev_qos *qos = cb_arg; 4322 4323 spdk_put_io_channel(spdk_io_channel_from_ctx(qos->ch)); 4324 spdk_poller_unregister(&qos->poller); 4325 4326 SPDK_DEBUGLOG(bdev, "Free QoS %p.\n", qos); 4327 4328 free(qos); 4329 } 4330 4331 static int 4332 bdev_qos_destroy(struct spdk_bdev *bdev) 4333 { 4334 int i; 4335 4336 /* 4337 * Cleanly shutting down the QoS poller is tricky, because 4338 * during the asynchronous operation the user could open 4339 * a new descriptor and create a new channel, spawning 4340 * a new QoS poller. 4341 * 4342 * The strategy is to create a new QoS structure here and swap it 4343 * in. The shutdown path then continues to refer to the old one 4344 * until it completes and then releases it. 4345 */ 4346 struct spdk_bdev_qos *new_qos, *old_qos; 4347 4348 old_qos = bdev->internal.qos; 4349 4350 new_qos = calloc(1, sizeof(*new_qos)); 4351 if (!new_qos) { 4352 SPDK_ERRLOG("Unable to allocate memory to shut down QoS.\n"); 4353 return -ENOMEM; 4354 } 4355 4356 /* Copy the old QoS data into the newly allocated structure */ 4357 memcpy(new_qos, old_qos, sizeof(*new_qos)); 4358 4359 /* Zero out the key parts of the QoS structure */ 4360 new_qos->ch = NULL; 4361 new_qos->thread = NULL; 4362 new_qos->poller = NULL; 4363 /* 4364 * The limit member of spdk_bdev_qos_limit structure is not zeroed. 4365 * It will be used later for the new QoS structure. 4366 */ 4367 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 4368 new_qos->rate_limits[i].remaining_this_timeslice = 0; 4369 new_qos->rate_limits[i].min_per_timeslice = 0; 4370 new_qos->rate_limits[i].max_per_timeslice = 0; 4371 } 4372 4373 bdev->internal.qos = new_qos; 4374 4375 if (old_qos->thread == NULL) { 4376 free(old_qos); 4377 } else { 4378 spdk_thread_send_msg(old_qos->thread, bdev_qos_channel_destroy, old_qos); 4379 } 4380 4381 /* It is safe to continue with destroying the bdev even though the QoS channel hasn't 4382 * been destroyed yet. The destruction path will end up waiting for the final 4383 * channel to be put before it releases resources. */ 4384 4385 return 0; 4386 } 4387 4388 void 4389 spdk_bdev_add_io_stat(struct spdk_bdev_io_stat *total, struct spdk_bdev_io_stat *add) 4390 { 4391 total->bytes_read += add->bytes_read; 4392 total->num_read_ops += add->num_read_ops; 4393 total->bytes_written += add->bytes_written; 4394 total->num_write_ops += add->num_write_ops; 4395 total->bytes_unmapped += add->bytes_unmapped; 4396 total->num_unmap_ops += add->num_unmap_ops; 4397 total->bytes_copied += add->bytes_copied; 4398 total->num_copy_ops += add->num_copy_ops; 4399 total->read_latency_ticks += add->read_latency_ticks; 4400 total->write_latency_ticks += add->write_latency_ticks; 4401 total->unmap_latency_ticks += add->unmap_latency_ticks; 4402 total->copy_latency_ticks += add->copy_latency_ticks; 4403 if (total->max_read_latency_ticks < add->max_read_latency_ticks) { 4404 total->max_read_latency_ticks = add->max_read_latency_ticks; 4405 } 4406 if (total->min_read_latency_ticks > add->min_read_latency_ticks) { 4407 total->min_read_latency_ticks = add->min_read_latency_ticks; 4408 } 4409 if (total->max_write_latency_ticks < add->max_write_latency_ticks) { 4410 total->max_write_latency_ticks = add->max_write_latency_ticks; 4411 } 4412 if (total->min_write_latency_ticks > add->min_write_latency_ticks) { 4413 total->min_write_latency_ticks = add->min_write_latency_ticks; 4414 } 4415 if (total->max_unmap_latency_ticks < add->max_unmap_latency_ticks) { 4416 total->max_unmap_latency_ticks = add->max_unmap_latency_ticks; 4417 } 4418 if (total->min_unmap_latency_ticks > add->min_unmap_latency_ticks) { 4419 total->min_unmap_latency_ticks = add->min_unmap_latency_ticks; 4420 } 4421 if (total->max_copy_latency_ticks < add->max_copy_latency_ticks) { 4422 total->max_copy_latency_ticks = add->max_copy_latency_ticks; 4423 } 4424 if (total->min_copy_latency_ticks > add->min_copy_latency_ticks) { 4425 total->min_copy_latency_ticks = add->min_copy_latency_ticks; 4426 } 4427 } 4428 4429 static void 4430 bdev_get_io_stat(struct spdk_bdev_io_stat *to_stat, struct spdk_bdev_io_stat *from_stat) 4431 { 4432 memcpy(to_stat, from_stat, offsetof(struct spdk_bdev_io_stat, io_error)); 4433 4434 if (to_stat->io_error != NULL && from_stat->io_error != NULL) { 4435 memcpy(to_stat->io_error, from_stat->io_error, 4436 sizeof(struct spdk_bdev_io_error_stat)); 4437 } 4438 } 4439 4440 void 4441 spdk_bdev_reset_io_stat(struct spdk_bdev_io_stat *stat, enum spdk_bdev_reset_stat_mode mode) 4442 { 4443 stat->max_read_latency_ticks = 0; 4444 stat->min_read_latency_ticks = UINT64_MAX; 4445 stat->max_write_latency_ticks = 0; 4446 stat->min_write_latency_ticks = UINT64_MAX; 4447 stat->max_unmap_latency_ticks = 0; 4448 stat->min_unmap_latency_ticks = UINT64_MAX; 4449 stat->max_copy_latency_ticks = 0; 4450 stat->min_copy_latency_ticks = UINT64_MAX; 4451 4452 if (mode != SPDK_BDEV_RESET_STAT_ALL) { 4453 return; 4454 } 4455 4456 stat->bytes_read = 0; 4457 stat->num_read_ops = 0; 4458 stat->bytes_written = 0; 4459 stat->num_write_ops = 0; 4460 stat->bytes_unmapped = 0; 4461 stat->num_unmap_ops = 0; 4462 stat->bytes_copied = 0; 4463 stat->num_copy_ops = 0; 4464 stat->read_latency_ticks = 0; 4465 stat->write_latency_ticks = 0; 4466 stat->unmap_latency_ticks = 0; 4467 stat->copy_latency_ticks = 0; 4468 4469 if (stat->io_error != NULL) { 4470 memset(stat->io_error, 0, sizeof(struct spdk_bdev_io_error_stat)); 4471 } 4472 } 4473 4474 struct spdk_bdev_io_stat * 4475 bdev_alloc_io_stat(bool io_error_stat) 4476 { 4477 struct spdk_bdev_io_stat *stat; 4478 4479 stat = malloc(sizeof(struct spdk_bdev_io_stat)); 4480 if (stat == NULL) { 4481 return NULL; 4482 } 4483 4484 if (io_error_stat) { 4485 stat->io_error = malloc(sizeof(struct spdk_bdev_io_error_stat)); 4486 if (stat->io_error == NULL) { 4487 free(stat); 4488 return NULL; 4489 } 4490 } else { 4491 stat->io_error = NULL; 4492 } 4493 4494 spdk_bdev_reset_io_stat(stat, SPDK_BDEV_RESET_STAT_ALL); 4495 4496 return stat; 4497 } 4498 4499 void 4500 bdev_free_io_stat(struct spdk_bdev_io_stat *stat) 4501 { 4502 if (stat != NULL) { 4503 free(stat->io_error); 4504 free(stat); 4505 } 4506 } 4507 4508 void 4509 spdk_bdev_dump_io_stat_json(struct spdk_bdev_io_stat *stat, struct spdk_json_write_ctx *w) 4510 { 4511 int i; 4512 4513 spdk_json_write_named_uint64(w, "bytes_read", stat->bytes_read); 4514 spdk_json_write_named_uint64(w, "num_read_ops", stat->num_read_ops); 4515 spdk_json_write_named_uint64(w, "bytes_written", stat->bytes_written); 4516 spdk_json_write_named_uint64(w, "num_write_ops", stat->num_write_ops); 4517 spdk_json_write_named_uint64(w, "bytes_unmapped", stat->bytes_unmapped); 4518 spdk_json_write_named_uint64(w, "num_unmap_ops", stat->num_unmap_ops); 4519 spdk_json_write_named_uint64(w, "bytes_copied", stat->bytes_copied); 4520 spdk_json_write_named_uint64(w, "num_copy_ops", stat->num_copy_ops); 4521 spdk_json_write_named_uint64(w, "read_latency_ticks", stat->read_latency_ticks); 4522 spdk_json_write_named_uint64(w, "max_read_latency_ticks", stat->max_read_latency_ticks); 4523 spdk_json_write_named_uint64(w, "min_read_latency_ticks", 4524 stat->min_read_latency_ticks != UINT64_MAX ? 4525 stat->min_read_latency_ticks : 0); 4526 spdk_json_write_named_uint64(w, "write_latency_ticks", stat->write_latency_ticks); 4527 spdk_json_write_named_uint64(w, "max_write_latency_ticks", stat->max_write_latency_ticks); 4528 spdk_json_write_named_uint64(w, "min_write_latency_ticks", 4529 stat->min_write_latency_ticks != UINT64_MAX ? 4530 stat->min_write_latency_ticks : 0); 4531 spdk_json_write_named_uint64(w, "unmap_latency_ticks", stat->unmap_latency_ticks); 4532 spdk_json_write_named_uint64(w, "max_unmap_latency_ticks", stat->max_unmap_latency_ticks); 4533 spdk_json_write_named_uint64(w, "min_unmap_latency_ticks", 4534 stat->min_unmap_latency_ticks != UINT64_MAX ? 4535 stat->min_unmap_latency_ticks : 0); 4536 spdk_json_write_named_uint64(w, "copy_latency_ticks", stat->copy_latency_ticks); 4537 spdk_json_write_named_uint64(w, "max_copy_latency_ticks", stat->max_copy_latency_ticks); 4538 spdk_json_write_named_uint64(w, "min_copy_latency_ticks", 4539 stat->min_copy_latency_ticks != UINT64_MAX ? 4540 stat->min_copy_latency_ticks : 0); 4541 4542 if (stat->io_error != NULL) { 4543 spdk_json_write_named_object_begin(w, "io_error"); 4544 for (i = 0; i < -SPDK_MIN_BDEV_IO_STATUS; i++) { 4545 if (stat->io_error->error_status[i] != 0) { 4546 spdk_json_write_named_uint32(w, bdev_io_status_get_string(-(i + 1)), 4547 stat->io_error->error_status[i]); 4548 } 4549 } 4550 spdk_json_write_object_end(w); 4551 } 4552 } 4553 4554 static void 4555 bdev_channel_abort_queued_ios(struct spdk_bdev_channel *ch) 4556 { 4557 struct spdk_bdev_shared_resource *shared_resource = ch->shared_resource; 4558 struct spdk_bdev_mgmt_channel *mgmt_ch = shared_resource->mgmt_ch; 4559 4560 bdev_abort_all_queued_io(&shared_resource->nomem_io, ch); 4561 bdev_abort_all_buf_io(mgmt_ch, ch); 4562 } 4563 4564 static void 4565 bdev_channel_destroy(void *io_device, void *ctx_buf) 4566 { 4567 struct spdk_bdev_channel *ch = ctx_buf; 4568 4569 SPDK_DEBUGLOG(bdev, "Destroying channel %p for bdev %s on thread %p\n", ch, ch->bdev->name, 4570 spdk_get_thread()); 4571 4572 spdk_trace_record(TRACE_BDEV_IOCH_DESTROY, ch->bdev->internal.trace_id, 0, 0, 4573 spdk_thread_get_id(spdk_io_channel_get_thread(ch->channel))); 4574 4575 /* This channel is going away, so add its statistics into the bdev so that they don't get lost. */ 4576 spdk_spin_lock(&ch->bdev->internal.spinlock); 4577 spdk_bdev_add_io_stat(ch->bdev->internal.stat, ch->stat); 4578 spdk_spin_unlock(&ch->bdev->internal.spinlock); 4579 4580 bdev_abort_all_queued_io(&ch->queued_resets, ch); 4581 4582 bdev_channel_abort_queued_ios(ch); 4583 4584 if (ch->histogram) { 4585 spdk_histogram_data_free(ch->histogram); 4586 } 4587 4588 bdev_channel_destroy_resource(ch); 4589 } 4590 4591 /* 4592 * If the name already exists in the global bdev name tree, RB_INSERT() returns a pointer 4593 * to it. Hence we do not have to call bdev_get_by_name() when using this function. 4594 */ 4595 static int 4596 bdev_name_add(struct spdk_bdev_name *bdev_name, struct spdk_bdev *bdev, const char *name) 4597 { 4598 struct spdk_bdev_name *tmp; 4599 4600 bdev_name->name = strdup(name); 4601 if (bdev_name->name == NULL) { 4602 SPDK_ERRLOG("Unable to allocate bdev name\n"); 4603 return -ENOMEM; 4604 } 4605 4606 bdev_name->bdev = bdev; 4607 4608 spdk_spin_lock(&g_bdev_mgr.spinlock); 4609 tmp = RB_INSERT(bdev_name_tree, &g_bdev_mgr.bdev_names, bdev_name); 4610 spdk_spin_unlock(&g_bdev_mgr.spinlock); 4611 4612 if (tmp != NULL) { 4613 SPDK_ERRLOG("Bdev name %s already exists\n", name); 4614 free(bdev_name->name); 4615 return -EEXIST; 4616 } 4617 4618 return 0; 4619 } 4620 4621 static void 4622 bdev_name_del_unsafe(struct spdk_bdev_name *bdev_name) 4623 { 4624 RB_REMOVE(bdev_name_tree, &g_bdev_mgr.bdev_names, bdev_name); 4625 free(bdev_name->name); 4626 } 4627 4628 static void 4629 bdev_name_del(struct spdk_bdev_name *bdev_name) 4630 { 4631 spdk_spin_lock(&g_bdev_mgr.spinlock); 4632 bdev_name_del_unsafe(bdev_name); 4633 spdk_spin_unlock(&g_bdev_mgr.spinlock); 4634 } 4635 4636 int 4637 spdk_bdev_alias_add(struct spdk_bdev *bdev, const char *alias) 4638 { 4639 struct spdk_bdev_alias *tmp; 4640 int ret; 4641 4642 if (alias == NULL) { 4643 SPDK_ERRLOG("Empty alias passed\n"); 4644 return -EINVAL; 4645 } 4646 4647 tmp = calloc(1, sizeof(*tmp)); 4648 if (tmp == NULL) { 4649 SPDK_ERRLOG("Unable to allocate alias\n"); 4650 return -ENOMEM; 4651 } 4652 4653 ret = bdev_name_add(&tmp->alias, bdev, alias); 4654 if (ret != 0) { 4655 free(tmp); 4656 return ret; 4657 } 4658 4659 TAILQ_INSERT_TAIL(&bdev->aliases, tmp, tailq); 4660 4661 return 0; 4662 } 4663 4664 static int 4665 bdev_alias_del(struct spdk_bdev *bdev, const char *alias, 4666 void (*alias_del_fn)(struct spdk_bdev_name *n)) 4667 { 4668 struct spdk_bdev_alias *tmp; 4669 4670 TAILQ_FOREACH(tmp, &bdev->aliases, tailq) { 4671 if (strcmp(alias, tmp->alias.name) == 0) { 4672 TAILQ_REMOVE(&bdev->aliases, tmp, tailq); 4673 alias_del_fn(&tmp->alias); 4674 free(tmp); 4675 return 0; 4676 } 4677 } 4678 4679 return -ENOENT; 4680 } 4681 4682 int 4683 spdk_bdev_alias_del(struct spdk_bdev *bdev, const char *alias) 4684 { 4685 int rc; 4686 4687 rc = bdev_alias_del(bdev, alias, bdev_name_del); 4688 if (rc == -ENOENT) { 4689 SPDK_INFOLOG(bdev, "Alias %s does not exist\n", alias); 4690 } 4691 4692 return rc; 4693 } 4694 4695 void 4696 spdk_bdev_alias_del_all(struct spdk_bdev *bdev) 4697 { 4698 struct spdk_bdev_alias *p, *tmp; 4699 4700 TAILQ_FOREACH_SAFE(p, &bdev->aliases, tailq, tmp) { 4701 TAILQ_REMOVE(&bdev->aliases, p, tailq); 4702 bdev_name_del(&p->alias); 4703 free(p); 4704 } 4705 } 4706 4707 struct spdk_io_channel * 4708 spdk_bdev_get_io_channel(struct spdk_bdev_desc *desc) 4709 { 4710 return spdk_get_io_channel(__bdev_to_io_dev(spdk_bdev_desc_get_bdev(desc))); 4711 } 4712 4713 void * 4714 spdk_bdev_get_module_ctx(struct spdk_bdev_desc *desc) 4715 { 4716 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 4717 void *ctx = NULL; 4718 4719 if (bdev->fn_table->get_module_ctx) { 4720 ctx = bdev->fn_table->get_module_ctx(bdev->ctxt); 4721 } 4722 4723 return ctx; 4724 } 4725 4726 const char * 4727 spdk_bdev_get_module_name(const struct spdk_bdev *bdev) 4728 { 4729 return bdev->module->name; 4730 } 4731 4732 const char * 4733 spdk_bdev_get_name(const struct spdk_bdev *bdev) 4734 { 4735 return bdev->name; 4736 } 4737 4738 const char * 4739 spdk_bdev_get_product_name(const struct spdk_bdev *bdev) 4740 { 4741 return bdev->product_name; 4742 } 4743 4744 const struct spdk_bdev_aliases_list * 4745 spdk_bdev_get_aliases(const struct spdk_bdev *bdev) 4746 { 4747 return &bdev->aliases; 4748 } 4749 4750 uint32_t 4751 spdk_bdev_get_block_size(const struct spdk_bdev *bdev) 4752 { 4753 return bdev->blocklen; 4754 } 4755 4756 uint32_t 4757 spdk_bdev_get_write_unit_size(const struct spdk_bdev *bdev) 4758 { 4759 return bdev->write_unit_size; 4760 } 4761 4762 uint64_t 4763 spdk_bdev_get_num_blocks(const struct spdk_bdev *bdev) 4764 { 4765 return bdev->blockcnt; 4766 } 4767 4768 const char * 4769 spdk_bdev_get_qos_rpc_type(enum spdk_bdev_qos_rate_limit_type type) 4770 { 4771 return qos_rpc_type[type]; 4772 } 4773 4774 void 4775 spdk_bdev_get_qos_rate_limits(struct spdk_bdev *bdev, uint64_t *limits) 4776 { 4777 int i; 4778 4779 memset(limits, 0, sizeof(*limits) * SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES); 4780 4781 spdk_spin_lock(&bdev->internal.spinlock); 4782 if (bdev->internal.qos) { 4783 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 4784 if (bdev->internal.qos->rate_limits[i].limit != 4785 SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) { 4786 limits[i] = bdev->internal.qos->rate_limits[i].limit; 4787 if (bdev_qos_is_iops_rate_limit(i) == false) { 4788 /* Change from Byte to Megabyte which is user visible. */ 4789 limits[i] = limits[i] / 1024 / 1024; 4790 } 4791 } 4792 } 4793 } 4794 spdk_spin_unlock(&bdev->internal.spinlock); 4795 } 4796 4797 size_t 4798 spdk_bdev_get_buf_align(const struct spdk_bdev *bdev) 4799 { 4800 return 1 << bdev->required_alignment; 4801 } 4802 4803 uint32_t 4804 spdk_bdev_get_optimal_io_boundary(const struct spdk_bdev *bdev) 4805 { 4806 return bdev->optimal_io_boundary; 4807 } 4808 4809 bool 4810 spdk_bdev_has_write_cache(const struct spdk_bdev *bdev) 4811 { 4812 return bdev->write_cache; 4813 } 4814 4815 const struct spdk_uuid * 4816 spdk_bdev_get_uuid(const struct spdk_bdev *bdev) 4817 { 4818 return &bdev->uuid; 4819 } 4820 4821 uint16_t 4822 spdk_bdev_get_acwu(const struct spdk_bdev *bdev) 4823 { 4824 return bdev->acwu; 4825 } 4826 4827 uint32_t 4828 spdk_bdev_get_md_size(const struct spdk_bdev *bdev) 4829 { 4830 return bdev->md_len; 4831 } 4832 4833 bool 4834 spdk_bdev_is_md_interleaved(const struct spdk_bdev *bdev) 4835 { 4836 return (bdev->md_len != 0) && bdev->md_interleave; 4837 } 4838 4839 bool 4840 spdk_bdev_is_md_separate(const struct spdk_bdev *bdev) 4841 { 4842 return (bdev->md_len != 0) && !bdev->md_interleave; 4843 } 4844 4845 bool 4846 spdk_bdev_is_zoned(const struct spdk_bdev *bdev) 4847 { 4848 return bdev->zoned; 4849 } 4850 4851 uint32_t 4852 spdk_bdev_get_data_block_size(const struct spdk_bdev *bdev) 4853 { 4854 if (spdk_bdev_is_md_interleaved(bdev)) { 4855 return bdev->blocklen - bdev->md_len; 4856 } else { 4857 return bdev->blocklen; 4858 } 4859 } 4860 4861 uint32_t 4862 spdk_bdev_get_physical_block_size(const struct spdk_bdev *bdev) 4863 { 4864 return bdev->phys_blocklen; 4865 } 4866 4867 static uint32_t 4868 _bdev_get_block_size_with_md(const struct spdk_bdev *bdev) 4869 { 4870 if (!spdk_bdev_is_md_interleaved(bdev)) { 4871 return bdev->blocklen + bdev->md_len; 4872 } else { 4873 return bdev->blocklen; 4874 } 4875 } 4876 4877 /* We have to use the typedef in the function declaration to appease astyle. */ 4878 typedef enum spdk_dif_type spdk_dif_type_t; 4879 4880 spdk_dif_type_t 4881 spdk_bdev_get_dif_type(const struct spdk_bdev *bdev) 4882 { 4883 if (bdev->md_len != 0) { 4884 return bdev->dif_type; 4885 } else { 4886 return SPDK_DIF_DISABLE; 4887 } 4888 } 4889 4890 bool 4891 spdk_bdev_is_dif_head_of_md(const struct spdk_bdev *bdev) 4892 { 4893 if (spdk_bdev_get_dif_type(bdev) != SPDK_DIF_DISABLE) { 4894 return bdev->dif_is_head_of_md; 4895 } else { 4896 return false; 4897 } 4898 } 4899 4900 bool 4901 spdk_bdev_is_dif_check_enabled(const struct spdk_bdev *bdev, 4902 enum spdk_dif_check_type check_type) 4903 { 4904 if (spdk_bdev_get_dif_type(bdev) == SPDK_DIF_DISABLE) { 4905 return false; 4906 } 4907 4908 switch (check_type) { 4909 case SPDK_DIF_CHECK_TYPE_REFTAG: 4910 return (bdev->dif_check_flags & SPDK_DIF_FLAGS_REFTAG_CHECK) != 0; 4911 case SPDK_DIF_CHECK_TYPE_APPTAG: 4912 return (bdev->dif_check_flags & SPDK_DIF_FLAGS_APPTAG_CHECK) != 0; 4913 case SPDK_DIF_CHECK_TYPE_GUARD: 4914 return (bdev->dif_check_flags & SPDK_DIF_FLAGS_GUARD_CHECK) != 0; 4915 default: 4916 return false; 4917 } 4918 } 4919 4920 static uint32_t 4921 bdev_get_max_write(const struct spdk_bdev *bdev, uint64_t num_bytes) 4922 { 4923 uint64_t aligned_length, max_write_blocks; 4924 4925 aligned_length = num_bytes - (spdk_bdev_get_buf_align(bdev) - 1); 4926 max_write_blocks = aligned_length / _bdev_get_block_size_with_md(bdev); 4927 max_write_blocks -= max_write_blocks % bdev->write_unit_size; 4928 4929 return max_write_blocks; 4930 } 4931 4932 uint32_t 4933 spdk_bdev_get_max_copy(const struct spdk_bdev *bdev) 4934 { 4935 return bdev->max_copy; 4936 } 4937 4938 uint64_t 4939 spdk_bdev_get_qd(const struct spdk_bdev *bdev) 4940 { 4941 return bdev->internal.measured_queue_depth; 4942 } 4943 4944 uint64_t 4945 spdk_bdev_get_qd_sampling_period(const struct spdk_bdev *bdev) 4946 { 4947 return bdev->internal.period; 4948 } 4949 4950 uint64_t 4951 spdk_bdev_get_weighted_io_time(const struct spdk_bdev *bdev) 4952 { 4953 return bdev->internal.weighted_io_time; 4954 } 4955 4956 uint64_t 4957 spdk_bdev_get_io_time(const struct spdk_bdev *bdev) 4958 { 4959 return bdev->internal.io_time; 4960 } 4961 4962 union spdk_bdev_nvme_ctratt spdk_bdev_get_nvme_ctratt(struct spdk_bdev *bdev) 4963 { 4964 return bdev->ctratt; 4965 } 4966 4967 static void bdev_update_qd_sampling_period(void *ctx); 4968 4969 static void 4970 _calculate_measured_qd_cpl(struct spdk_bdev *bdev, void *_ctx, int status) 4971 { 4972 bdev->internal.measured_queue_depth = bdev->internal.temporary_queue_depth; 4973 4974 if (bdev->internal.measured_queue_depth) { 4975 bdev->internal.io_time += bdev->internal.period; 4976 bdev->internal.weighted_io_time += bdev->internal.period * bdev->internal.measured_queue_depth; 4977 } 4978 4979 bdev->internal.qd_poll_in_progress = false; 4980 4981 bdev_update_qd_sampling_period(bdev); 4982 } 4983 4984 static void 4985 _calculate_measured_qd(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 4986 struct spdk_io_channel *io_ch, void *_ctx) 4987 { 4988 struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(io_ch); 4989 4990 bdev->internal.temporary_queue_depth += ch->io_outstanding; 4991 spdk_bdev_for_each_channel_continue(i, 0); 4992 } 4993 4994 static int 4995 bdev_calculate_measured_queue_depth(void *ctx) 4996 { 4997 struct spdk_bdev *bdev = ctx; 4998 4999 bdev->internal.qd_poll_in_progress = true; 5000 bdev->internal.temporary_queue_depth = 0; 5001 spdk_bdev_for_each_channel(bdev, _calculate_measured_qd, bdev, _calculate_measured_qd_cpl); 5002 return SPDK_POLLER_BUSY; 5003 } 5004 5005 static void 5006 bdev_update_qd_sampling_period(void *ctx) 5007 { 5008 struct spdk_bdev *bdev = ctx; 5009 5010 if (bdev->internal.period == bdev->internal.new_period) { 5011 return; 5012 } 5013 5014 if (bdev->internal.qd_poll_in_progress) { 5015 return; 5016 } 5017 5018 bdev->internal.period = bdev->internal.new_period; 5019 5020 spdk_poller_unregister(&bdev->internal.qd_poller); 5021 if (bdev->internal.period != 0) { 5022 bdev->internal.qd_poller = SPDK_POLLER_REGISTER(bdev_calculate_measured_queue_depth, 5023 bdev, bdev->internal.period); 5024 } else { 5025 spdk_bdev_close(bdev->internal.qd_desc); 5026 bdev->internal.qd_desc = NULL; 5027 } 5028 } 5029 5030 static void 5031 _tmp_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx) 5032 { 5033 SPDK_NOTICELOG("Unexpected event type: %d\n", type); 5034 } 5035 5036 void 5037 spdk_bdev_set_qd_sampling_period(struct spdk_bdev *bdev, uint64_t period) 5038 { 5039 int rc; 5040 5041 if (bdev->internal.new_period == period) { 5042 return; 5043 } 5044 5045 bdev->internal.new_period = period; 5046 5047 if (bdev->internal.qd_desc != NULL) { 5048 assert(bdev->internal.period != 0); 5049 5050 spdk_thread_send_msg(bdev->internal.qd_desc->thread, 5051 bdev_update_qd_sampling_period, bdev); 5052 return; 5053 } 5054 5055 assert(bdev->internal.period == 0); 5056 5057 rc = spdk_bdev_open_ext(spdk_bdev_get_name(bdev), false, _tmp_bdev_event_cb, 5058 NULL, &bdev->internal.qd_desc); 5059 if (rc != 0) { 5060 return; 5061 } 5062 5063 bdev->internal.period = period; 5064 bdev->internal.qd_poller = SPDK_POLLER_REGISTER(bdev_calculate_measured_queue_depth, 5065 bdev, period); 5066 } 5067 5068 struct bdev_get_current_qd_ctx { 5069 uint64_t current_qd; 5070 spdk_bdev_get_current_qd_cb cb_fn; 5071 void *cb_arg; 5072 }; 5073 5074 static void 5075 bdev_get_current_qd_done(struct spdk_bdev *bdev, void *_ctx, int status) 5076 { 5077 struct bdev_get_current_qd_ctx *ctx = _ctx; 5078 5079 ctx->cb_fn(bdev, ctx->current_qd, ctx->cb_arg, 0); 5080 5081 free(ctx); 5082 } 5083 5084 static void 5085 bdev_get_current_qd(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 5086 struct spdk_io_channel *io_ch, void *_ctx) 5087 { 5088 struct bdev_get_current_qd_ctx *ctx = _ctx; 5089 struct spdk_bdev_channel *bdev_ch = __io_ch_to_bdev_ch(io_ch); 5090 5091 ctx->current_qd += bdev_ch->io_outstanding; 5092 5093 spdk_bdev_for_each_channel_continue(i, 0); 5094 } 5095 5096 void 5097 spdk_bdev_get_current_qd(struct spdk_bdev *bdev, spdk_bdev_get_current_qd_cb cb_fn, 5098 void *cb_arg) 5099 { 5100 struct bdev_get_current_qd_ctx *ctx; 5101 5102 assert(cb_fn != NULL); 5103 5104 ctx = calloc(1, sizeof(*ctx)); 5105 if (ctx == NULL) { 5106 cb_fn(bdev, 0, cb_arg, -ENOMEM); 5107 return; 5108 } 5109 5110 ctx->cb_fn = cb_fn; 5111 ctx->cb_arg = cb_arg; 5112 5113 spdk_bdev_for_each_channel(bdev, bdev_get_current_qd, ctx, bdev_get_current_qd_done); 5114 } 5115 5116 static void 5117 _event_notify(struct spdk_bdev_desc *desc, enum spdk_bdev_event_type type) 5118 { 5119 assert(desc->thread == spdk_get_thread()); 5120 5121 spdk_spin_lock(&desc->spinlock); 5122 desc->refs--; 5123 if (!desc->closed) { 5124 spdk_spin_unlock(&desc->spinlock); 5125 desc->callback.event_fn(type, 5126 desc->bdev, 5127 desc->callback.ctx); 5128 return; 5129 } else if (desc->refs == 0) { 5130 /* This descriptor was closed after this event_notify message was sent. 5131 * spdk_bdev_close() could not free the descriptor since this message was 5132 * in flight, so we free it now using bdev_desc_free(). 5133 */ 5134 spdk_spin_unlock(&desc->spinlock); 5135 bdev_desc_free(desc); 5136 return; 5137 } 5138 spdk_spin_unlock(&desc->spinlock); 5139 } 5140 5141 static void 5142 event_notify(struct spdk_bdev_desc *desc, spdk_msg_fn event_notify_fn) 5143 { 5144 spdk_spin_lock(&desc->spinlock); 5145 desc->refs++; 5146 spdk_thread_send_msg(desc->thread, event_notify_fn, desc); 5147 spdk_spin_unlock(&desc->spinlock); 5148 } 5149 5150 static void 5151 _resize_notify(void *ctx) 5152 { 5153 struct spdk_bdev_desc *desc = ctx; 5154 5155 _event_notify(desc, SPDK_BDEV_EVENT_RESIZE); 5156 } 5157 5158 int 5159 spdk_bdev_notify_blockcnt_change(struct spdk_bdev *bdev, uint64_t size) 5160 { 5161 struct spdk_bdev_desc *desc; 5162 int ret; 5163 5164 if (size == bdev->blockcnt) { 5165 return 0; 5166 } 5167 5168 spdk_spin_lock(&bdev->internal.spinlock); 5169 5170 /* bdev has open descriptors */ 5171 if (!TAILQ_EMPTY(&bdev->internal.open_descs) && 5172 bdev->blockcnt > size) { 5173 ret = -EBUSY; 5174 } else { 5175 bdev->blockcnt = size; 5176 TAILQ_FOREACH(desc, &bdev->internal.open_descs, link) { 5177 event_notify(desc, _resize_notify); 5178 } 5179 ret = 0; 5180 } 5181 5182 spdk_spin_unlock(&bdev->internal.spinlock); 5183 5184 return ret; 5185 } 5186 5187 /* 5188 * Convert I/O offset and length from bytes to blocks. 5189 * 5190 * Returns zero on success or non-zero if the byte parameters aren't divisible by the block size. 5191 */ 5192 static uint64_t 5193 bdev_bytes_to_blocks(struct spdk_bdev *bdev, uint64_t offset_bytes, uint64_t *offset_blocks, 5194 uint64_t num_bytes, uint64_t *num_blocks) 5195 { 5196 uint32_t block_size = bdev->blocklen; 5197 uint8_t shift_cnt; 5198 5199 /* Avoid expensive div operations if possible. These spdk_u32 functions are very cheap. */ 5200 if (spdk_likely(spdk_u32_is_pow2(block_size))) { 5201 shift_cnt = spdk_u32log2(block_size); 5202 *offset_blocks = offset_bytes >> shift_cnt; 5203 *num_blocks = num_bytes >> shift_cnt; 5204 return (offset_bytes - (*offset_blocks << shift_cnt)) | 5205 (num_bytes - (*num_blocks << shift_cnt)); 5206 } else { 5207 *offset_blocks = offset_bytes / block_size; 5208 *num_blocks = num_bytes / block_size; 5209 return (offset_bytes % block_size) | (num_bytes % block_size); 5210 } 5211 } 5212 5213 static bool 5214 bdev_io_valid_blocks(struct spdk_bdev *bdev, uint64_t offset_blocks, uint64_t num_blocks) 5215 { 5216 /* Return failure if offset_blocks + num_blocks is less than offset_blocks; indicates there 5217 * has been an overflow and hence the offset has been wrapped around */ 5218 if (offset_blocks + num_blocks < offset_blocks) { 5219 return false; 5220 } 5221 5222 /* Return failure if offset_blocks + num_blocks exceeds the size of the bdev */ 5223 if (offset_blocks + num_blocks > bdev->blockcnt) { 5224 return false; 5225 } 5226 5227 return true; 5228 } 5229 5230 static void 5231 bdev_seek_complete_cb(void *ctx) 5232 { 5233 struct spdk_bdev_io *bdev_io = ctx; 5234 5235 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; 5236 bdev_io->internal.cb(bdev_io, true, bdev_io->internal.caller_ctx); 5237 } 5238 5239 static int 5240 bdev_seek(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5241 uint64_t offset_blocks, enum spdk_bdev_io_type io_type, 5242 spdk_bdev_io_completion_cb cb, void *cb_arg) 5243 { 5244 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5245 struct spdk_bdev_io *bdev_io; 5246 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 5247 5248 assert(io_type == SPDK_BDEV_IO_TYPE_SEEK_DATA || io_type == SPDK_BDEV_IO_TYPE_SEEK_HOLE); 5249 5250 /* Check if offset_blocks is valid looking at the validity of one block */ 5251 if (!bdev_io_valid_blocks(bdev, offset_blocks, 1)) { 5252 return -EINVAL; 5253 } 5254 5255 bdev_io = bdev_channel_get_io(channel); 5256 if (!bdev_io) { 5257 return -ENOMEM; 5258 } 5259 5260 bdev_io->internal.ch = channel; 5261 bdev_io->internal.desc = desc; 5262 bdev_io->type = io_type; 5263 bdev_io->u.bdev.offset_blocks = offset_blocks; 5264 bdev_io->u.bdev.memory_domain = NULL; 5265 bdev_io->u.bdev.memory_domain_ctx = NULL; 5266 bdev_io->u.bdev.accel_sequence = NULL; 5267 bdev_io_init(bdev_io, bdev, cb_arg, cb); 5268 5269 if (!spdk_bdev_io_type_supported(bdev, io_type)) { 5270 /* In case bdev doesn't support seek to next data/hole offset, 5271 * it is assumed that only data and no holes are present */ 5272 if (io_type == SPDK_BDEV_IO_TYPE_SEEK_DATA) { 5273 bdev_io->u.bdev.seek.offset = offset_blocks; 5274 } else { 5275 bdev_io->u.bdev.seek.offset = UINT64_MAX; 5276 } 5277 5278 spdk_thread_send_msg(spdk_get_thread(), bdev_seek_complete_cb, bdev_io); 5279 return 0; 5280 } 5281 5282 bdev_io_submit(bdev_io); 5283 return 0; 5284 } 5285 5286 int 5287 spdk_bdev_seek_data(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5288 uint64_t offset_blocks, 5289 spdk_bdev_io_completion_cb cb, void *cb_arg) 5290 { 5291 return bdev_seek(desc, ch, offset_blocks, SPDK_BDEV_IO_TYPE_SEEK_DATA, cb, cb_arg); 5292 } 5293 5294 int 5295 spdk_bdev_seek_hole(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5296 uint64_t offset_blocks, 5297 spdk_bdev_io_completion_cb cb, void *cb_arg) 5298 { 5299 return bdev_seek(desc, ch, offset_blocks, SPDK_BDEV_IO_TYPE_SEEK_HOLE, cb, cb_arg); 5300 } 5301 5302 uint64_t 5303 spdk_bdev_io_get_seek_offset(const struct spdk_bdev_io *bdev_io) 5304 { 5305 return bdev_io->u.bdev.seek.offset; 5306 } 5307 5308 static int 5309 bdev_read_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, void *buf, 5310 void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, 5311 spdk_bdev_io_completion_cb cb, void *cb_arg) 5312 { 5313 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5314 struct spdk_bdev_io *bdev_io; 5315 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 5316 5317 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 5318 return -EINVAL; 5319 } 5320 5321 bdev_io = bdev_channel_get_io(channel); 5322 if (!bdev_io) { 5323 return -ENOMEM; 5324 } 5325 5326 bdev_io->internal.ch = channel; 5327 bdev_io->internal.desc = desc; 5328 bdev_io->type = SPDK_BDEV_IO_TYPE_READ; 5329 bdev_io->u.bdev.iovs = &bdev_io->iov; 5330 bdev_io->u.bdev.iovs[0].iov_base = buf; 5331 bdev_io->u.bdev.iovs[0].iov_len = num_blocks * bdev->blocklen; 5332 bdev_io->u.bdev.iovcnt = 1; 5333 bdev_io->u.bdev.md_buf = md_buf; 5334 bdev_io->u.bdev.num_blocks = num_blocks; 5335 bdev_io->u.bdev.offset_blocks = offset_blocks; 5336 bdev_io->u.bdev.memory_domain = NULL; 5337 bdev_io->u.bdev.memory_domain_ctx = NULL; 5338 bdev_io->u.bdev.accel_sequence = NULL; 5339 bdev_io->u.bdev.dif_check_flags = bdev->dif_check_flags; 5340 bdev_io_init(bdev_io, bdev, cb_arg, cb); 5341 5342 bdev_io_submit(bdev_io); 5343 return 0; 5344 } 5345 5346 int 5347 spdk_bdev_read(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5348 void *buf, uint64_t offset, uint64_t nbytes, 5349 spdk_bdev_io_completion_cb cb, void *cb_arg) 5350 { 5351 uint64_t offset_blocks, num_blocks; 5352 5353 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 5354 nbytes, &num_blocks) != 0) { 5355 return -EINVAL; 5356 } 5357 5358 return spdk_bdev_read_blocks(desc, ch, buf, offset_blocks, num_blocks, cb, cb_arg); 5359 } 5360 5361 int 5362 spdk_bdev_read_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5363 void *buf, uint64_t offset_blocks, uint64_t num_blocks, 5364 spdk_bdev_io_completion_cb cb, void *cb_arg) 5365 { 5366 return bdev_read_blocks_with_md(desc, ch, buf, NULL, offset_blocks, num_blocks, cb, cb_arg); 5367 } 5368 5369 int 5370 spdk_bdev_read_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5371 void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, 5372 spdk_bdev_io_completion_cb cb, void *cb_arg) 5373 { 5374 struct iovec iov = { 5375 .iov_base = buf, 5376 }; 5377 5378 if (md_buf && !spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) { 5379 return -EINVAL; 5380 } 5381 5382 if (md_buf && !_is_buf_allocated(&iov)) { 5383 return -EINVAL; 5384 } 5385 5386 return bdev_read_blocks_with_md(desc, ch, buf, md_buf, offset_blocks, num_blocks, 5387 cb, cb_arg); 5388 } 5389 5390 int 5391 spdk_bdev_readv(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5392 struct iovec *iov, int iovcnt, 5393 uint64_t offset, uint64_t nbytes, 5394 spdk_bdev_io_completion_cb cb, void *cb_arg) 5395 { 5396 uint64_t offset_blocks, num_blocks; 5397 5398 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 5399 nbytes, &num_blocks) != 0) { 5400 return -EINVAL; 5401 } 5402 5403 return spdk_bdev_readv_blocks(desc, ch, iov, iovcnt, offset_blocks, num_blocks, cb, cb_arg); 5404 } 5405 5406 static int 5407 bdev_readv_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5408 struct iovec *iov, int iovcnt, void *md_buf, uint64_t offset_blocks, 5409 uint64_t num_blocks, struct spdk_memory_domain *domain, void *domain_ctx, 5410 struct spdk_accel_sequence *seq, uint32_t dif_check_flags, 5411 spdk_bdev_io_completion_cb cb, void *cb_arg) 5412 { 5413 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5414 struct spdk_bdev_io *bdev_io; 5415 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 5416 5417 if (spdk_unlikely(!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks))) { 5418 return -EINVAL; 5419 } 5420 5421 bdev_io = bdev_channel_get_io(channel); 5422 if (spdk_unlikely(!bdev_io)) { 5423 return -ENOMEM; 5424 } 5425 5426 bdev_io->internal.ch = channel; 5427 bdev_io->internal.desc = desc; 5428 bdev_io->type = SPDK_BDEV_IO_TYPE_READ; 5429 bdev_io->u.bdev.iovs = iov; 5430 bdev_io->u.bdev.iovcnt = iovcnt; 5431 bdev_io->u.bdev.md_buf = md_buf; 5432 bdev_io->u.bdev.num_blocks = num_blocks; 5433 bdev_io->u.bdev.offset_blocks = offset_blocks; 5434 bdev_io_init(bdev_io, bdev, cb_arg, cb); 5435 bdev_io->internal.memory_domain = domain; 5436 bdev_io->internal.memory_domain_ctx = domain_ctx; 5437 bdev_io->internal.accel_sequence = seq; 5438 bdev_io->internal.has_accel_sequence = seq != NULL; 5439 bdev_io->u.bdev.memory_domain = domain; 5440 bdev_io->u.bdev.memory_domain_ctx = domain_ctx; 5441 bdev_io->u.bdev.accel_sequence = seq; 5442 bdev_io->u.bdev.dif_check_flags = dif_check_flags; 5443 5444 _bdev_io_submit_ext(desc, bdev_io); 5445 5446 return 0; 5447 } 5448 5449 int 5450 spdk_bdev_readv_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5451 struct iovec *iov, int iovcnt, 5452 uint64_t offset_blocks, uint64_t num_blocks, 5453 spdk_bdev_io_completion_cb cb, void *cb_arg) 5454 { 5455 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5456 5457 return bdev_readv_blocks_with_md(desc, ch, iov, iovcnt, NULL, offset_blocks, 5458 num_blocks, NULL, NULL, NULL, bdev->dif_check_flags, cb, cb_arg); 5459 } 5460 5461 int 5462 spdk_bdev_readv_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5463 struct iovec *iov, int iovcnt, void *md_buf, 5464 uint64_t offset_blocks, uint64_t num_blocks, 5465 spdk_bdev_io_completion_cb cb, void *cb_arg) 5466 { 5467 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5468 5469 if (md_buf && !spdk_bdev_is_md_separate(bdev)) { 5470 return -EINVAL; 5471 } 5472 5473 if (md_buf && !_is_buf_allocated(iov)) { 5474 return -EINVAL; 5475 } 5476 5477 return bdev_readv_blocks_with_md(desc, ch, iov, iovcnt, md_buf, offset_blocks, 5478 num_blocks, NULL, NULL, NULL, bdev->dif_check_flags, cb, cb_arg); 5479 } 5480 5481 static inline bool 5482 _bdev_io_check_opts(struct spdk_bdev_ext_io_opts *opts, struct iovec *iov) 5483 { 5484 /* 5485 * We check if opts size is at least of size when we first introduced 5486 * spdk_bdev_ext_io_opts (ac6f2bdd8d) since access to those members 5487 * are not checked internal. 5488 */ 5489 return opts->size >= offsetof(struct spdk_bdev_ext_io_opts, metadata) + 5490 sizeof(opts->metadata) && 5491 opts->size <= sizeof(*opts) && 5492 /* When memory domain is used, the user must provide data buffers */ 5493 (!opts->memory_domain || (iov && iov[0].iov_base)); 5494 } 5495 5496 int 5497 spdk_bdev_readv_blocks_ext(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5498 struct iovec *iov, int iovcnt, 5499 uint64_t offset_blocks, uint64_t num_blocks, 5500 spdk_bdev_io_completion_cb cb, void *cb_arg, 5501 struct spdk_bdev_ext_io_opts *opts) 5502 { 5503 struct spdk_memory_domain *domain = NULL; 5504 struct spdk_accel_sequence *seq = NULL; 5505 void *domain_ctx = NULL, *md = NULL; 5506 uint32_t dif_check_flags = 0; 5507 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5508 5509 if (opts) { 5510 if (spdk_unlikely(!_bdev_io_check_opts(opts, iov))) { 5511 return -EINVAL; 5512 } 5513 5514 md = opts->metadata; 5515 domain = bdev_get_ext_io_opt(opts, memory_domain, NULL); 5516 domain_ctx = bdev_get_ext_io_opt(opts, memory_domain_ctx, NULL); 5517 seq = bdev_get_ext_io_opt(opts, accel_sequence, NULL); 5518 if (md) { 5519 if (spdk_unlikely(!spdk_bdev_is_md_separate(bdev))) { 5520 return -EINVAL; 5521 } 5522 5523 if (spdk_unlikely(!_is_buf_allocated(iov))) { 5524 return -EINVAL; 5525 } 5526 5527 if (spdk_unlikely(seq != NULL)) { 5528 return -EINVAL; 5529 } 5530 } 5531 } 5532 5533 dif_check_flags = bdev->dif_check_flags & 5534 ~(bdev_get_ext_io_opt(opts, dif_check_flags_exclude_mask, 0)); 5535 5536 return bdev_readv_blocks_with_md(desc, ch, iov, iovcnt, md, offset_blocks, 5537 num_blocks, domain, domain_ctx, seq, dif_check_flags, cb, cb_arg); 5538 } 5539 5540 static int 5541 bdev_write_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5542 void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, 5543 spdk_bdev_io_completion_cb cb, void *cb_arg) 5544 { 5545 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5546 struct spdk_bdev_io *bdev_io; 5547 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 5548 5549 if (!desc->write) { 5550 return -EBADF; 5551 } 5552 5553 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 5554 return -EINVAL; 5555 } 5556 5557 bdev_io = bdev_channel_get_io(channel); 5558 if (!bdev_io) { 5559 return -ENOMEM; 5560 } 5561 5562 bdev_io->internal.ch = channel; 5563 bdev_io->internal.desc = desc; 5564 bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE; 5565 bdev_io->u.bdev.iovs = &bdev_io->iov; 5566 bdev_io->u.bdev.iovs[0].iov_base = buf; 5567 bdev_io->u.bdev.iovs[0].iov_len = num_blocks * bdev->blocklen; 5568 bdev_io->u.bdev.iovcnt = 1; 5569 bdev_io->u.bdev.md_buf = md_buf; 5570 bdev_io->u.bdev.num_blocks = num_blocks; 5571 bdev_io->u.bdev.offset_blocks = offset_blocks; 5572 bdev_io->u.bdev.memory_domain = NULL; 5573 bdev_io->u.bdev.memory_domain_ctx = NULL; 5574 bdev_io->u.bdev.accel_sequence = NULL; 5575 bdev_io->u.bdev.dif_check_flags = bdev->dif_check_flags; 5576 bdev_io_init(bdev_io, bdev, cb_arg, cb); 5577 5578 bdev_io_submit(bdev_io); 5579 return 0; 5580 } 5581 5582 int 5583 spdk_bdev_write(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5584 void *buf, uint64_t offset, uint64_t nbytes, 5585 spdk_bdev_io_completion_cb cb, void *cb_arg) 5586 { 5587 uint64_t offset_blocks, num_blocks; 5588 5589 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 5590 nbytes, &num_blocks) != 0) { 5591 return -EINVAL; 5592 } 5593 5594 return spdk_bdev_write_blocks(desc, ch, buf, offset_blocks, num_blocks, cb, cb_arg); 5595 } 5596 5597 int 5598 spdk_bdev_write_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5599 void *buf, uint64_t offset_blocks, uint64_t num_blocks, 5600 spdk_bdev_io_completion_cb cb, void *cb_arg) 5601 { 5602 return bdev_write_blocks_with_md(desc, ch, buf, NULL, offset_blocks, num_blocks, 5603 cb, cb_arg); 5604 } 5605 5606 int 5607 spdk_bdev_write_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5608 void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, 5609 spdk_bdev_io_completion_cb cb, void *cb_arg) 5610 { 5611 struct iovec iov = { 5612 .iov_base = buf, 5613 }; 5614 5615 if (md_buf && !spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) { 5616 return -EINVAL; 5617 } 5618 5619 if (md_buf && !_is_buf_allocated(&iov)) { 5620 return -EINVAL; 5621 } 5622 5623 return bdev_write_blocks_with_md(desc, ch, buf, md_buf, offset_blocks, num_blocks, 5624 cb, cb_arg); 5625 } 5626 5627 static int 5628 bdev_writev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5629 struct iovec *iov, int iovcnt, void *md_buf, 5630 uint64_t offset_blocks, uint64_t num_blocks, 5631 struct spdk_memory_domain *domain, void *domain_ctx, 5632 struct spdk_accel_sequence *seq, uint32_t dif_check_flags, 5633 uint32_t nvme_cdw12_raw, uint32_t nvme_cdw13_raw, 5634 spdk_bdev_io_completion_cb cb, void *cb_arg) 5635 { 5636 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5637 struct spdk_bdev_io *bdev_io; 5638 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 5639 5640 if (spdk_unlikely(!desc->write)) { 5641 return -EBADF; 5642 } 5643 5644 if (spdk_unlikely(!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks))) { 5645 return -EINVAL; 5646 } 5647 5648 bdev_io = bdev_channel_get_io(channel); 5649 if (spdk_unlikely(!bdev_io)) { 5650 return -ENOMEM; 5651 } 5652 5653 bdev_io->internal.ch = channel; 5654 bdev_io->internal.desc = desc; 5655 bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE; 5656 bdev_io->u.bdev.iovs = iov; 5657 bdev_io->u.bdev.iovcnt = iovcnt; 5658 bdev_io->u.bdev.md_buf = md_buf; 5659 bdev_io->u.bdev.num_blocks = num_blocks; 5660 bdev_io->u.bdev.offset_blocks = offset_blocks; 5661 bdev_io_init(bdev_io, bdev, cb_arg, cb); 5662 bdev_io->internal.memory_domain = domain; 5663 bdev_io->internal.memory_domain_ctx = domain_ctx; 5664 bdev_io->internal.accel_sequence = seq; 5665 bdev_io->internal.has_accel_sequence = seq != NULL; 5666 bdev_io->u.bdev.memory_domain = domain; 5667 bdev_io->u.bdev.memory_domain_ctx = domain_ctx; 5668 bdev_io->u.bdev.accel_sequence = seq; 5669 bdev_io->u.bdev.dif_check_flags = dif_check_flags; 5670 bdev_io->u.bdev.nvme_cdw12.raw = nvme_cdw12_raw; 5671 bdev_io->u.bdev.nvme_cdw13.raw = nvme_cdw13_raw; 5672 5673 _bdev_io_submit_ext(desc, bdev_io); 5674 5675 return 0; 5676 } 5677 5678 int 5679 spdk_bdev_writev(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5680 struct iovec *iov, int iovcnt, 5681 uint64_t offset, uint64_t len, 5682 spdk_bdev_io_completion_cb cb, void *cb_arg) 5683 { 5684 uint64_t offset_blocks, num_blocks; 5685 5686 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 5687 len, &num_blocks) != 0) { 5688 return -EINVAL; 5689 } 5690 5691 return spdk_bdev_writev_blocks(desc, ch, iov, iovcnt, offset_blocks, num_blocks, cb, cb_arg); 5692 } 5693 5694 int 5695 spdk_bdev_writev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5696 struct iovec *iov, int iovcnt, 5697 uint64_t offset_blocks, uint64_t num_blocks, 5698 spdk_bdev_io_completion_cb cb, void *cb_arg) 5699 { 5700 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5701 5702 return bdev_writev_blocks_with_md(desc, ch, iov, iovcnt, NULL, offset_blocks, 5703 num_blocks, NULL, NULL, NULL, bdev->dif_check_flags, 0, 0, 5704 cb, cb_arg); 5705 } 5706 5707 int 5708 spdk_bdev_writev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5709 struct iovec *iov, int iovcnt, void *md_buf, 5710 uint64_t offset_blocks, uint64_t num_blocks, 5711 spdk_bdev_io_completion_cb cb, void *cb_arg) 5712 { 5713 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5714 5715 if (md_buf && !spdk_bdev_is_md_separate(bdev)) { 5716 return -EINVAL; 5717 } 5718 5719 if (md_buf && !_is_buf_allocated(iov)) { 5720 return -EINVAL; 5721 } 5722 5723 return bdev_writev_blocks_with_md(desc, ch, iov, iovcnt, md_buf, offset_blocks, 5724 num_blocks, NULL, NULL, NULL, bdev->dif_check_flags, 0, 0, 5725 cb, cb_arg); 5726 } 5727 5728 int 5729 spdk_bdev_writev_blocks_ext(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5730 struct iovec *iov, int iovcnt, 5731 uint64_t offset_blocks, uint64_t num_blocks, 5732 spdk_bdev_io_completion_cb cb, void *cb_arg, 5733 struct spdk_bdev_ext_io_opts *opts) 5734 { 5735 struct spdk_memory_domain *domain = NULL; 5736 struct spdk_accel_sequence *seq = NULL; 5737 void *domain_ctx = NULL, *md = NULL; 5738 uint32_t dif_check_flags = 0; 5739 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5740 uint32_t nvme_cdw12_raw = 0; 5741 uint32_t nvme_cdw13_raw = 0; 5742 5743 if (opts) { 5744 if (spdk_unlikely(!_bdev_io_check_opts(opts, iov))) { 5745 return -EINVAL; 5746 } 5747 md = opts->metadata; 5748 domain = bdev_get_ext_io_opt(opts, memory_domain, NULL); 5749 domain_ctx = bdev_get_ext_io_opt(opts, memory_domain_ctx, NULL); 5750 seq = bdev_get_ext_io_opt(opts, accel_sequence, NULL); 5751 nvme_cdw12_raw = bdev_get_ext_io_opt(opts, nvme_cdw12.raw, 0); 5752 nvme_cdw13_raw = bdev_get_ext_io_opt(opts, nvme_cdw13.raw, 0); 5753 if (md) { 5754 if (spdk_unlikely(!spdk_bdev_is_md_separate(bdev))) { 5755 return -EINVAL; 5756 } 5757 5758 if (spdk_unlikely(!_is_buf_allocated(iov))) { 5759 return -EINVAL; 5760 } 5761 5762 if (spdk_unlikely(seq != NULL)) { 5763 return -EINVAL; 5764 } 5765 } 5766 } 5767 5768 dif_check_flags = bdev->dif_check_flags & 5769 ~(bdev_get_ext_io_opt(opts, dif_check_flags_exclude_mask, 0)); 5770 5771 return bdev_writev_blocks_with_md(desc, ch, iov, iovcnt, md, offset_blocks, num_blocks, 5772 domain, domain_ctx, seq, dif_check_flags, 5773 nvme_cdw12_raw, nvme_cdw13_raw, cb, cb_arg); 5774 } 5775 5776 static void 5777 bdev_compare_do_read_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 5778 { 5779 struct spdk_bdev_io *parent_io = cb_arg; 5780 struct spdk_bdev *bdev = parent_io->bdev; 5781 uint8_t *read_buf = bdev_io->u.bdev.iovs[0].iov_base; 5782 int i, rc = 0; 5783 5784 if (!success) { 5785 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 5786 parent_io->internal.cb(parent_io, false, parent_io->internal.caller_ctx); 5787 spdk_bdev_free_io(bdev_io); 5788 return; 5789 } 5790 5791 for (i = 0; i < parent_io->u.bdev.iovcnt; i++) { 5792 rc = memcmp(read_buf, 5793 parent_io->u.bdev.iovs[i].iov_base, 5794 parent_io->u.bdev.iovs[i].iov_len); 5795 if (rc) { 5796 break; 5797 } 5798 read_buf += parent_io->u.bdev.iovs[i].iov_len; 5799 } 5800 5801 if (rc == 0 && parent_io->u.bdev.md_buf && spdk_bdev_is_md_separate(bdev)) { 5802 rc = memcmp(bdev_io->u.bdev.md_buf, 5803 parent_io->u.bdev.md_buf, 5804 spdk_bdev_get_md_size(bdev)); 5805 } 5806 5807 spdk_bdev_free_io(bdev_io); 5808 5809 if (rc == 0) { 5810 parent_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; 5811 parent_io->internal.cb(parent_io, true, parent_io->internal.caller_ctx); 5812 } else { 5813 parent_io->internal.status = SPDK_BDEV_IO_STATUS_MISCOMPARE; 5814 parent_io->internal.cb(parent_io, false, parent_io->internal.caller_ctx); 5815 } 5816 } 5817 5818 static void 5819 bdev_compare_do_read(void *_bdev_io) 5820 { 5821 struct spdk_bdev_io *bdev_io = _bdev_io; 5822 int rc; 5823 5824 rc = spdk_bdev_read_blocks(bdev_io->internal.desc, 5825 spdk_io_channel_from_ctx(bdev_io->internal.ch), NULL, 5826 bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, 5827 bdev_compare_do_read_done, bdev_io); 5828 5829 if (rc == -ENOMEM) { 5830 bdev_queue_io_wait_with_cb(bdev_io, bdev_compare_do_read); 5831 } else if (rc != 0) { 5832 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 5833 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 5834 } 5835 } 5836 5837 static int 5838 bdev_comparev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5839 struct iovec *iov, int iovcnt, void *md_buf, 5840 uint64_t offset_blocks, uint64_t num_blocks, 5841 spdk_bdev_io_completion_cb cb, void *cb_arg) 5842 { 5843 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5844 struct spdk_bdev_io *bdev_io; 5845 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 5846 5847 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 5848 return -EINVAL; 5849 } 5850 5851 bdev_io = bdev_channel_get_io(channel); 5852 if (!bdev_io) { 5853 return -ENOMEM; 5854 } 5855 5856 bdev_io->internal.ch = channel; 5857 bdev_io->internal.desc = desc; 5858 bdev_io->type = SPDK_BDEV_IO_TYPE_COMPARE; 5859 bdev_io->u.bdev.iovs = iov; 5860 bdev_io->u.bdev.iovcnt = iovcnt; 5861 bdev_io->u.bdev.md_buf = md_buf; 5862 bdev_io->u.bdev.num_blocks = num_blocks; 5863 bdev_io->u.bdev.offset_blocks = offset_blocks; 5864 bdev_io_init(bdev_io, bdev, cb_arg, cb); 5865 bdev_io->u.bdev.memory_domain = NULL; 5866 bdev_io->u.bdev.memory_domain_ctx = NULL; 5867 bdev_io->u.bdev.accel_sequence = NULL; 5868 5869 if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_COMPARE)) { 5870 bdev_io_submit(bdev_io); 5871 return 0; 5872 } 5873 5874 bdev_compare_do_read(bdev_io); 5875 5876 return 0; 5877 } 5878 5879 int 5880 spdk_bdev_comparev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5881 struct iovec *iov, int iovcnt, 5882 uint64_t offset_blocks, uint64_t num_blocks, 5883 spdk_bdev_io_completion_cb cb, void *cb_arg) 5884 { 5885 return bdev_comparev_blocks_with_md(desc, ch, iov, iovcnt, NULL, offset_blocks, 5886 num_blocks, cb, cb_arg); 5887 } 5888 5889 int 5890 spdk_bdev_comparev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5891 struct iovec *iov, int iovcnt, void *md_buf, 5892 uint64_t offset_blocks, uint64_t num_blocks, 5893 spdk_bdev_io_completion_cb cb, void *cb_arg) 5894 { 5895 if (md_buf && !spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) { 5896 return -EINVAL; 5897 } 5898 5899 if (md_buf && !_is_buf_allocated(iov)) { 5900 return -EINVAL; 5901 } 5902 5903 return bdev_comparev_blocks_with_md(desc, ch, iov, iovcnt, md_buf, offset_blocks, 5904 num_blocks, cb, cb_arg); 5905 } 5906 5907 static int 5908 bdev_compare_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5909 void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, 5910 spdk_bdev_io_completion_cb cb, void *cb_arg) 5911 { 5912 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5913 struct spdk_bdev_io *bdev_io; 5914 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 5915 5916 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 5917 return -EINVAL; 5918 } 5919 5920 bdev_io = bdev_channel_get_io(channel); 5921 if (!bdev_io) { 5922 return -ENOMEM; 5923 } 5924 5925 bdev_io->internal.ch = channel; 5926 bdev_io->internal.desc = desc; 5927 bdev_io->type = SPDK_BDEV_IO_TYPE_COMPARE; 5928 bdev_io->u.bdev.iovs = &bdev_io->iov; 5929 bdev_io->u.bdev.iovs[0].iov_base = buf; 5930 bdev_io->u.bdev.iovs[0].iov_len = num_blocks * bdev->blocklen; 5931 bdev_io->u.bdev.iovcnt = 1; 5932 bdev_io->u.bdev.md_buf = md_buf; 5933 bdev_io->u.bdev.num_blocks = num_blocks; 5934 bdev_io->u.bdev.offset_blocks = offset_blocks; 5935 bdev_io_init(bdev_io, bdev, cb_arg, cb); 5936 bdev_io->u.bdev.memory_domain = NULL; 5937 bdev_io->u.bdev.memory_domain_ctx = NULL; 5938 bdev_io->u.bdev.accel_sequence = NULL; 5939 5940 if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_COMPARE)) { 5941 bdev_io_submit(bdev_io); 5942 return 0; 5943 } 5944 5945 bdev_compare_do_read(bdev_io); 5946 5947 return 0; 5948 } 5949 5950 int 5951 spdk_bdev_compare_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5952 void *buf, uint64_t offset_blocks, uint64_t num_blocks, 5953 spdk_bdev_io_completion_cb cb, void *cb_arg) 5954 { 5955 return bdev_compare_blocks_with_md(desc, ch, buf, NULL, offset_blocks, num_blocks, 5956 cb, cb_arg); 5957 } 5958 5959 int 5960 spdk_bdev_compare_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 5961 void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, 5962 spdk_bdev_io_completion_cb cb, void *cb_arg) 5963 { 5964 struct iovec iov = { 5965 .iov_base = buf, 5966 }; 5967 5968 if (md_buf && !spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) { 5969 return -EINVAL; 5970 } 5971 5972 if (md_buf && !_is_buf_allocated(&iov)) { 5973 return -EINVAL; 5974 } 5975 5976 return bdev_compare_blocks_with_md(desc, ch, buf, md_buf, offset_blocks, num_blocks, 5977 cb, cb_arg); 5978 } 5979 5980 static void 5981 bdev_comparev_and_writev_blocks_unlocked(struct lba_range *range, void *ctx, int unlock_status) 5982 { 5983 struct spdk_bdev_io *bdev_io = ctx; 5984 5985 if (unlock_status) { 5986 SPDK_ERRLOG("LBA range unlock failed\n"); 5987 } 5988 5989 bdev_io->internal.cb(bdev_io, bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS ? true : 5990 false, bdev_io->internal.caller_ctx); 5991 } 5992 5993 static void 5994 bdev_comparev_and_writev_blocks_unlock(struct spdk_bdev_io *bdev_io, int status) 5995 { 5996 bdev_io->internal.status = status; 5997 5998 bdev_unlock_lba_range(bdev_io->internal.desc, spdk_io_channel_from_ctx(bdev_io->internal.ch), 5999 bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, 6000 bdev_comparev_and_writev_blocks_unlocked, bdev_io); 6001 } 6002 6003 static void 6004 bdev_compare_and_write_do_write_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 6005 { 6006 struct spdk_bdev_io *parent_io = cb_arg; 6007 6008 if (!success) { 6009 SPDK_ERRLOG("Compare and write operation failed\n"); 6010 } 6011 6012 spdk_bdev_free_io(bdev_io); 6013 6014 bdev_comparev_and_writev_blocks_unlock(parent_io, 6015 success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED); 6016 } 6017 6018 static void 6019 bdev_compare_and_write_do_write(void *_bdev_io) 6020 { 6021 struct spdk_bdev_io *bdev_io = _bdev_io; 6022 int rc; 6023 6024 rc = spdk_bdev_writev_blocks(bdev_io->internal.desc, 6025 spdk_io_channel_from_ctx(bdev_io->internal.ch), 6026 bdev_io->u.bdev.fused_iovs, bdev_io->u.bdev.fused_iovcnt, 6027 bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, 6028 bdev_compare_and_write_do_write_done, bdev_io); 6029 6030 6031 if (rc == -ENOMEM) { 6032 bdev_queue_io_wait_with_cb(bdev_io, bdev_compare_and_write_do_write); 6033 } else if (rc != 0) { 6034 bdev_comparev_and_writev_blocks_unlock(bdev_io, SPDK_BDEV_IO_STATUS_FAILED); 6035 } 6036 } 6037 6038 static void 6039 bdev_compare_and_write_do_compare_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 6040 { 6041 struct spdk_bdev_io *parent_io = cb_arg; 6042 6043 spdk_bdev_free_io(bdev_io); 6044 6045 if (!success) { 6046 bdev_comparev_and_writev_blocks_unlock(parent_io, SPDK_BDEV_IO_STATUS_MISCOMPARE); 6047 return; 6048 } 6049 6050 bdev_compare_and_write_do_write(parent_io); 6051 } 6052 6053 static void 6054 bdev_compare_and_write_do_compare(void *_bdev_io) 6055 { 6056 struct spdk_bdev_io *bdev_io = _bdev_io; 6057 int rc; 6058 6059 rc = spdk_bdev_comparev_blocks(bdev_io->internal.desc, 6060 spdk_io_channel_from_ctx(bdev_io->internal.ch), bdev_io->u.bdev.iovs, 6061 bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, 6062 bdev_compare_and_write_do_compare_done, bdev_io); 6063 6064 if (rc == -ENOMEM) { 6065 bdev_queue_io_wait_with_cb(bdev_io, bdev_compare_and_write_do_compare); 6066 } else if (rc != 0) { 6067 bdev_comparev_and_writev_blocks_unlock(bdev_io, SPDK_BDEV_IO_STATUS_FIRST_FUSED_FAILED); 6068 } 6069 } 6070 6071 static void 6072 bdev_comparev_and_writev_blocks_locked(struct lba_range *range, void *ctx, int status) 6073 { 6074 struct spdk_bdev_io *bdev_io = ctx; 6075 6076 if (status) { 6077 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FIRST_FUSED_FAILED; 6078 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 6079 return; 6080 } 6081 6082 bdev_compare_and_write_do_compare(bdev_io); 6083 } 6084 6085 int 6086 spdk_bdev_comparev_and_writev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 6087 struct iovec *compare_iov, int compare_iovcnt, 6088 struct iovec *write_iov, int write_iovcnt, 6089 uint64_t offset_blocks, uint64_t num_blocks, 6090 spdk_bdev_io_completion_cb cb, void *cb_arg) 6091 { 6092 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 6093 struct spdk_bdev_io *bdev_io; 6094 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 6095 6096 if (!desc->write) { 6097 return -EBADF; 6098 } 6099 6100 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 6101 return -EINVAL; 6102 } 6103 6104 if (num_blocks > bdev->acwu) { 6105 return -EINVAL; 6106 } 6107 6108 bdev_io = bdev_channel_get_io(channel); 6109 if (!bdev_io) { 6110 return -ENOMEM; 6111 } 6112 6113 bdev_io->internal.ch = channel; 6114 bdev_io->internal.desc = desc; 6115 bdev_io->type = SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE; 6116 bdev_io->u.bdev.iovs = compare_iov; 6117 bdev_io->u.bdev.iovcnt = compare_iovcnt; 6118 bdev_io->u.bdev.fused_iovs = write_iov; 6119 bdev_io->u.bdev.fused_iovcnt = write_iovcnt; 6120 bdev_io->u.bdev.md_buf = NULL; 6121 bdev_io->u.bdev.num_blocks = num_blocks; 6122 bdev_io->u.bdev.offset_blocks = offset_blocks; 6123 bdev_io_init(bdev_io, bdev, cb_arg, cb); 6124 bdev_io->u.bdev.memory_domain = NULL; 6125 bdev_io->u.bdev.memory_domain_ctx = NULL; 6126 bdev_io->u.bdev.accel_sequence = NULL; 6127 6128 if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE)) { 6129 bdev_io_submit(bdev_io); 6130 return 0; 6131 } 6132 6133 return bdev_lock_lba_range(desc, ch, offset_blocks, num_blocks, 6134 bdev_comparev_and_writev_blocks_locked, bdev_io); 6135 } 6136 6137 int 6138 spdk_bdev_zcopy_start(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 6139 struct iovec *iov, int iovcnt, 6140 uint64_t offset_blocks, uint64_t num_blocks, 6141 bool populate, 6142 spdk_bdev_io_completion_cb cb, void *cb_arg) 6143 { 6144 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 6145 struct spdk_bdev_io *bdev_io; 6146 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 6147 6148 if (!desc->write) { 6149 return -EBADF; 6150 } 6151 6152 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 6153 return -EINVAL; 6154 } 6155 6156 if (!spdk_bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_ZCOPY)) { 6157 return -ENOTSUP; 6158 } 6159 6160 bdev_io = bdev_channel_get_io(channel); 6161 if (!bdev_io) { 6162 return -ENOMEM; 6163 } 6164 6165 bdev_io->internal.ch = channel; 6166 bdev_io->internal.desc = desc; 6167 bdev_io->type = SPDK_BDEV_IO_TYPE_ZCOPY; 6168 bdev_io->u.bdev.num_blocks = num_blocks; 6169 bdev_io->u.bdev.offset_blocks = offset_blocks; 6170 bdev_io->u.bdev.iovs = iov; 6171 bdev_io->u.bdev.iovcnt = iovcnt; 6172 bdev_io->u.bdev.md_buf = NULL; 6173 bdev_io->u.bdev.zcopy.populate = populate ? 1 : 0; 6174 bdev_io->u.bdev.zcopy.commit = 0; 6175 bdev_io->u.bdev.zcopy.start = 1; 6176 bdev_io_init(bdev_io, bdev, cb_arg, cb); 6177 bdev_io->u.bdev.memory_domain = NULL; 6178 bdev_io->u.bdev.memory_domain_ctx = NULL; 6179 bdev_io->u.bdev.accel_sequence = NULL; 6180 6181 bdev_io_submit(bdev_io); 6182 6183 return 0; 6184 } 6185 6186 int 6187 spdk_bdev_zcopy_end(struct spdk_bdev_io *bdev_io, bool commit, 6188 spdk_bdev_io_completion_cb cb, void *cb_arg) 6189 { 6190 if (bdev_io->type != SPDK_BDEV_IO_TYPE_ZCOPY) { 6191 return -EINVAL; 6192 } 6193 6194 bdev_io->u.bdev.zcopy.commit = commit ? 1 : 0; 6195 bdev_io->u.bdev.zcopy.start = 0; 6196 bdev_io->internal.caller_ctx = cb_arg; 6197 bdev_io->internal.cb = cb; 6198 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_PENDING; 6199 6200 bdev_io_submit(bdev_io); 6201 6202 return 0; 6203 } 6204 6205 int 6206 spdk_bdev_write_zeroes(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 6207 uint64_t offset, uint64_t len, 6208 spdk_bdev_io_completion_cb cb, void *cb_arg) 6209 { 6210 uint64_t offset_blocks, num_blocks; 6211 6212 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 6213 len, &num_blocks) != 0) { 6214 return -EINVAL; 6215 } 6216 6217 return spdk_bdev_write_zeroes_blocks(desc, ch, offset_blocks, num_blocks, cb, cb_arg); 6218 } 6219 6220 int 6221 spdk_bdev_write_zeroes_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 6222 uint64_t offset_blocks, uint64_t num_blocks, 6223 spdk_bdev_io_completion_cb cb, void *cb_arg) 6224 { 6225 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 6226 struct spdk_bdev_io *bdev_io; 6227 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 6228 6229 if (!desc->write) { 6230 return -EBADF; 6231 } 6232 6233 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 6234 return -EINVAL; 6235 } 6236 6237 if (!bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE_ZEROES) && 6238 !bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE)) { 6239 return -ENOTSUP; 6240 } 6241 6242 bdev_io = bdev_channel_get_io(channel); 6243 6244 if (!bdev_io) { 6245 return -ENOMEM; 6246 } 6247 6248 bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE_ZEROES; 6249 bdev_io->internal.ch = channel; 6250 bdev_io->internal.desc = desc; 6251 bdev_io->u.bdev.offset_blocks = offset_blocks; 6252 bdev_io->u.bdev.num_blocks = num_blocks; 6253 bdev_io_init(bdev_io, bdev, cb_arg, cb); 6254 bdev_io->u.bdev.memory_domain = NULL; 6255 bdev_io->u.bdev.memory_domain_ctx = NULL; 6256 bdev_io->u.bdev.accel_sequence = NULL; 6257 6258 /* If the write_zeroes size is large and should be split, use the generic split 6259 * logic regardless of whether SPDK_BDEV_IO_TYPE_WRITE_ZEREOS is supported or not. 6260 * 6261 * Then, send the write_zeroes request if SPDK_BDEV_IO_TYPE_WRITE_ZEROES is supported 6262 * or emulate it using regular write request otherwise. 6263 */ 6264 if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE_ZEROES) || 6265 bdev_io->internal.split) { 6266 bdev_io_submit(bdev_io); 6267 return 0; 6268 } 6269 6270 assert(_bdev_get_block_size_with_md(bdev) <= ZERO_BUFFER_SIZE); 6271 6272 return bdev_write_zero_buffer(bdev_io); 6273 } 6274 6275 int 6276 spdk_bdev_unmap(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 6277 uint64_t offset, uint64_t nbytes, 6278 spdk_bdev_io_completion_cb cb, void *cb_arg) 6279 { 6280 uint64_t offset_blocks, num_blocks; 6281 6282 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 6283 nbytes, &num_blocks) != 0) { 6284 return -EINVAL; 6285 } 6286 6287 return spdk_bdev_unmap_blocks(desc, ch, offset_blocks, num_blocks, cb, cb_arg); 6288 } 6289 6290 static void 6291 bdev_io_complete_cb(void *ctx) 6292 { 6293 struct spdk_bdev_io *bdev_io = ctx; 6294 6295 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; 6296 bdev_io->internal.cb(bdev_io, true, bdev_io->internal.caller_ctx); 6297 } 6298 6299 int 6300 spdk_bdev_unmap_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 6301 uint64_t offset_blocks, uint64_t num_blocks, 6302 spdk_bdev_io_completion_cb cb, void *cb_arg) 6303 { 6304 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 6305 struct spdk_bdev_io *bdev_io; 6306 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 6307 6308 if (!desc->write) { 6309 return -EBADF; 6310 } 6311 6312 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 6313 return -EINVAL; 6314 } 6315 6316 bdev_io = bdev_channel_get_io(channel); 6317 if (!bdev_io) { 6318 return -ENOMEM; 6319 } 6320 6321 bdev_io->internal.ch = channel; 6322 bdev_io->internal.desc = desc; 6323 bdev_io->type = SPDK_BDEV_IO_TYPE_UNMAP; 6324 6325 bdev_io->u.bdev.iovs = &bdev_io->iov; 6326 bdev_io->u.bdev.iovs[0].iov_base = NULL; 6327 bdev_io->u.bdev.iovs[0].iov_len = 0; 6328 bdev_io->u.bdev.iovcnt = 1; 6329 6330 bdev_io->u.bdev.offset_blocks = offset_blocks; 6331 bdev_io->u.bdev.num_blocks = num_blocks; 6332 bdev_io_init(bdev_io, bdev, cb_arg, cb); 6333 bdev_io->u.bdev.memory_domain = NULL; 6334 bdev_io->u.bdev.memory_domain_ctx = NULL; 6335 bdev_io->u.bdev.accel_sequence = NULL; 6336 6337 if (num_blocks == 0) { 6338 spdk_thread_send_msg(spdk_get_thread(), bdev_io_complete_cb, bdev_io); 6339 return 0; 6340 } 6341 6342 bdev_io_submit(bdev_io); 6343 return 0; 6344 } 6345 6346 int 6347 spdk_bdev_flush(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 6348 uint64_t offset, uint64_t length, 6349 spdk_bdev_io_completion_cb cb, void *cb_arg) 6350 { 6351 uint64_t offset_blocks, num_blocks; 6352 6353 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 6354 length, &num_blocks) != 0) { 6355 return -EINVAL; 6356 } 6357 6358 return spdk_bdev_flush_blocks(desc, ch, offset_blocks, num_blocks, cb, cb_arg); 6359 } 6360 6361 int 6362 spdk_bdev_flush_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 6363 uint64_t offset_blocks, uint64_t num_blocks, 6364 spdk_bdev_io_completion_cb cb, void *cb_arg) 6365 { 6366 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 6367 struct spdk_bdev_io *bdev_io; 6368 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 6369 6370 if (!desc->write) { 6371 return -EBADF; 6372 } 6373 6374 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 6375 return -EINVAL; 6376 } 6377 6378 bdev_io = bdev_channel_get_io(channel); 6379 if (!bdev_io) { 6380 return -ENOMEM; 6381 } 6382 6383 bdev_io->internal.ch = channel; 6384 bdev_io->internal.desc = desc; 6385 bdev_io->type = SPDK_BDEV_IO_TYPE_FLUSH; 6386 bdev_io->u.bdev.iovs = NULL; 6387 bdev_io->u.bdev.iovcnt = 0; 6388 bdev_io->u.bdev.offset_blocks = offset_blocks; 6389 bdev_io->u.bdev.num_blocks = num_blocks; 6390 bdev_io->u.bdev.memory_domain = NULL; 6391 bdev_io->u.bdev.memory_domain_ctx = NULL; 6392 bdev_io->u.bdev.accel_sequence = NULL; 6393 bdev_io_init(bdev_io, bdev, cb_arg, cb); 6394 6395 bdev_io_submit(bdev_io); 6396 return 0; 6397 } 6398 6399 static int bdev_reset_poll_for_outstanding_io(void *ctx); 6400 6401 static void 6402 bdev_reset_check_outstanding_io_done(struct spdk_bdev *bdev, void *_ctx, int status) 6403 { 6404 struct spdk_bdev_channel *ch = _ctx; 6405 struct spdk_bdev_io *bdev_io; 6406 6407 bdev_io = TAILQ_FIRST(&ch->queued_resets); 6408 6409 if (status == -EBUSY) { 6410 if (spdk_get_ticks() < bdev_io->u.reset.wait_poller.stop_time_tsc) { 6411 bdev_io->u.reset.wait_poller.poller = SPDK_POLLER_REGISTER(bdev_reset_poll_for_outstanding_io, 6412 ch, BDEV_RESET_CHECK_OUTSTANDING_IO_PERIOD); 6413 } else { 6414 TAILQ_REMOVE(&ch->queued_resets, bdev_io, internal.link); 6415 6416 if (TAILQ_EMPTY(&ch->io_memory_domain) && TAILQ_EMPTY(&ch->io_accel_exec)) { 6417 /* If outstanding IOs are still present and reset_io_drain_timeout 6418 * seconds passed, start the reset. */ 6419 bdev_io_submit_reset(bdev_io); 6420 } else { 6421 /* We still have in progress memory domain pull/push or we're 6422 * executing accel sequence. Since we cannot abort either of those 6423 * operaions, fail the reset request. */ 6424 spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED); 6425 } 6426 } 6427 } else { 6428 TAILQ_REMOVE(&ch->queued_resets, bdev_io, internal.link); 6429 SPDK_DEBUGLOG(bdev, 6430 "Skipping reset for underlying device of bdev: %s - no outstanding I/O.\n", 6431 ch->bdev->name); 6432 /* Mark the completion status as a SUCCESS and complete the reset. */ 6433 spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS); 6434 } 6435 } 6436 6437 static void 6438 bdev_reset_check_outstanding_io(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 6439 struct spdk_io_channel *io_ch, void *_ctx) 6440 { 6441 struct spdk_bdev_channel *cur_ch = __io_ch_to_bdev_ch(io_ch); 6442 int status = 0; 6443 6444 if (cur_ch->io_outstanding > 0 || 6445 !TAILQ_EMPTY(&cur_ch->io_memory_domain) || 6446 !TAILQ_EMPTY(&cur_ch->io_accel_exec)) { 6447 /* If a channel has outstanding IO, set status to -EBUSY code. This will stop 6448 * further iteration over the rest of the channels and pass non-zero status 6449 * to the callback function. */ 6450 status = -EBUSY; 6451 } 6452 spdk_bdev_for_each_channel_continue(i, status); 6453 } 6454 6455 static int 6456 bdev_reset_poll_for_outstanding_io(void *ctx) 6457 { 6458 struct spdk_bdev_channel *ch = ctx; 6459 struct spdk_bdev_io *bdev_io; 6460 6461 bdev_io = TAILQ_FIRST(&ch->queued_resets); 6462 6463 spdk_poller_unregister(&bdev_io->u.reset.wait_poller.poller); 6464 spdk_bdev_for_each_channel(ch->bdev, bdev_reset_check_outstanding_io, ch, 6465 bdev_reset_check_outstanding_io_done); 6466 6467 return SPDK_POLLER_BUSY; 6468 } 6469 6470 static void 6471 bdev_reset_freeze_channel_done(struct spdk_bdev *bdev, void *_ctx, int status) 6472 { 6473 struct spdk_bdev_channel *ch = _ctx; 6474 struct spdk_bdev_io *bdev_io; 6475 6476 bdev_io = TAILQ_FIRST(&ch->queued_resets); 6477 6478 if (bdev->reset_io_drain_timeout == 0) { 6479 TAILQ_REMOVE(&ch->queued_resets, bdev_io, internal.link); 6480 6481 bdev_io_submit_reset(bdev_io); 6482 return; 6483 } 6484 6485 bdev_io->u.reset.wait_poller.stop_time_tsc = spdk_get_ticks() + 6486 (ch->bdev->reset_io_drain_timeout * spdk_get_ticks_hz()); 6487 6488 /* In case bdev->reset_io_drain_timeout is not equal to zero, 6489 * submit the reset to the underlying module only if outstanding I/O 6490 * remain after reset_io_drain_timeout seconds have passed. */ 6491 spdk_bdev_for_each_channel(ch->bdev, bdev_reset_check_outstanding_io, ch, 6492 bdev_reset_check_outstanding_io_done); 6493 } 6494 6495 static void 6496 bdev_reset_freeze_channel(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 6497 struct spdk_io_channel *ch, void *_ctx) 6498 { 6499 struct spdk_bdev_channel *channel; 6500 struct spdk_bdev_mgmt_channel *mgmt_channel; 6501 struct spdk_bdev_shared_resource *shared_resource; 6502 bdev_io_tailq_t tmp_queued; 6503 6504 TAILQ_INIT(&tmp_queued); 6505 6506 channel = __io_ch_to_bdev_ch(ch); 6507 shared_resource = channel->shared_resource; 6508 mgmt_channel = shared_resource->mgmt_ch; 6509 6510 channel->flags |= BDEV_CH_RESET_IN_PROGRESS; 6511 6512 if ((channel->flags & BDEV_CH_QOS_ENABLED) != 0) { 6513 TAILQ_SWAP(&channel->qos_queued_io, &tmp_queued, spdk_bdev_io, internal.link); 6514 } 6515 6516 bdev_abort_all_queued_io(&shared_resource->nomem_io, channel); 6517 bdev_abort_all_buf_io(mgmt_channel, channel); 6518 bdev_abort_all_queued_io(&tmp_queued, channel); 6519 6520 spdk_bdev_for_each_channel_continue(i, 0); 6521 } 6522 6523 static void 6524 bdev_start_reset(void *ctx) 6525 { 6526 struct spdk_bdev_channel *ch = ctx; 6527 6528 spdk_bdev_for_each_channel(ch->bdev, bdev_reset_freeze_channel, ch, 6529 bdev_reset_freeze_channel_done); 6530 } 6531 6532 static void 6533 bdev_channel_start_reset(struct spdk_bdev_channel *ch) 6534 { 6535 struct spdk_bdev *bdev = ch->bdev; 6536 6537 assert(!TAILQ_EMPTY(&ch->queued_resets)); 6538 6539 spdk_spin_lock(&bdev->internal.spinlock); 6540 if (bdev->internal.reset_in_progress == NULL) { 6541 bdev->internal.reset_in_progress = TAILQ_FIRST(&ch->queued_resets); 6542 /* 6543 * Take a channel reference for the target bdev for the life of this 6544 * reset. This guards against the channel getting destroyed while 6545 * spdk_bdev_for_each_channel() calls related to this reset IO are in 6546 * progress. We will release the reference when this reset is 6547 * completed. 6548 */ 6549 bdev->internal.reset_in_progress->u.reset.ch_ref = spdk_get_io_channel(__bdev_to_io_dev(bdev)); 6550 bdev_start_reset(ch); 6551 } 6552 spdk_spin_unlock(&bdev->internal.spinlock); 6553 } 6554 6555 int 6556 spdk_bdev_reset(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 6557 spdk_bdev_io_completion_cb cb, void *cb_arg) 6558 { 6559 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 6560 struct spdk_bdev_io *bdev_io; 6561 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 6562 6563 bdev_io = bdev_channel_get_io(channel); 6564 if (!bdev_io) { 6565 return -ENOMEM; 6566 } 6567 6568 bdev_io->internal.ch = channel; 6569 bdev_io->internal.desc = desc; 6570 bdev_io->internal.submit_tsc = spdk_get_ticks(); 6571 bdev_io->type = SPDK_BDEV_IO_TYPE_RESET; 6572 bdev_io->u.reset.ch_ref = NULL; 6573 bdev_io_init(bdev_io, bdev, cb_arg, cb); 6574 6575 spdk_spin_lock(&bdev->internal.spinlock); 6576 TAILQ_INSERT_TAIL(&channel->queued_resets, bdev_io, internal.link); 6577 spdk_spin_unlock(&bdev->internal.spinlock); 6578 6579 bdev_ch_add_to_io_submitted(bdev_io); 6580 6581 bdev_channel_start_reset(channel); 6582 6583 return 0; 6584 } 6585 6586 void 6587 spdk_bdev_get_io_stat(struct spdk_bdev *bdev, struct spdk_io_channel *ch, 6588 struct spdk_bdev_io_stat *stat) 6589 { 6590 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 6591 6592 bdev_get_io_stat(stat, channel->stat); 6593 } 6594 6595 static void 6596 bdev_get_device_stat_done(struct spdk_bdev *bdev, void *_ctx, int status) 6597 { 6598 struct spdk_bdev_iostat_ctx *bdev_iostat_ctx = _ctx; 6599 6600 bdev_iostat_ctx->cb(bdev, bdev_iostat_ctx->stat, 6601 bdev_iostat_ctx->cb_arg, 0); 6602 free(bdev_iostat_ctx); 6603 } 6604 6605 static void 6606 bdev_get_each_channel_stat(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 6607 struct spdk_io_channel *ch, void *_ctx) 6608 { 6609 struct spdk_bdev_iostat_ctx *bdev_iostat_ctx = _ctx; 6610 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 6611 6612 spdk_bdev_add_io_stat(bdev_iostat_ctx->stat, channel->stat); 6613 spdk_bdev_for_each_channel_continue(i, 0); 6614 } 6615 6616 void 6617 spdk_bdev_get_device_stat(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, 6618 spdk_bdev_get_device_stat_cb cb, void *cb_arg) 6619 { 6620 struct spdk_bdev_iostat_ctx *bdev_iostat_ctx; 6621 6622 assert(bdev != NULL); 6623 assert(stat != NULL); 6624 assert(cb != NULL); 6625 6626 bdev_iostat_ctx = calloc(1, sizeof(struct spdk_bdev_iostat_ctx)); 6627 if (bdev_iostat_ctx == NULL) { 6628 SPDK_ERRLOG("Unable to allocate memory for spdk_bdev_iostat_ctx\n"); 6629 cb(bdev, stat, cb_arg, -ENOMEM); 6630 return; 6631 } 6632 6633 bdev_iostat_ctx->stat = stat; 6634 bdev_iostat_ctx->cb = cb; 6635 bdev_iostat_ctx->cb_arg = cb_arg; 6636 6637 /* Start with the statistics from previously deleted channels. */ 6638 spdk_spin_lock(&bdev->internal.spinlock); 6639 bdev_get_io_stat(bdev_iostat_ctx->stat, bdev->internal.stat); 6640 spdk_spin_unlock(&bdev->internal.spinlock); 6641 6642 /* Then iterate and add the statistics from each existing channel. */ 6643 spdk_bdev_for_each_channel(bdev, bdev_get_each_channel_stat, bdev_iostat_ctx, 6644 bdev_get_device_stat_done); 6645 } 6646 6647 struct bdev_iostat_reset_ctx { 6648 enum spdk_bdev_reset_stat_mode mode; 6649 bdev_reset_device_stat_cb cb; 6650 void *cb_arg; 6651 }; 6652 6653 static void 6654 bdev_reset_device_stat_done(struct spdk_bdev *bdev, void *_ctx, int status) 6655 { 6656 struct bdev_iostat_reset_ctx *ctx = _ctx; 6657 6658 ctx->cb(bdev, ctx->cb_arg, 0); 6659 6660 free(ctx); 6661 } 6662 6663 static void 6664 bdev_reset_each_channel_stat(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 6665 struct spdk_io_channel *ch, void *_ctx) 6666 { 6667 struct bdev_iostat_reset_ctx *ctx = _ctx; 6668 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 6669 6670 spdk_bdev_reset_io_stat(channel->stat, ctx->mode); 6671 6672 spdk_bdev_for_each_channel_continue(i, 0); 6673 } 6674 6675 void 6676 bdev_reset_device_stat(struct spdk_bdev *bdev, enum spdk_bdev_reset_stat_mode mode, 6677 bdev_reset_device_stat_cb cb, void *cb_arg) 6678 { 6679 struct bdev_iostat_reset_ctx *ctx; 6680 6681 assert(bdev != NULL); 6682 assert(cb != NULL); 6683 6684 ctx = calloc(1, sizeof(*ctx)); 6685 if (ctx == NULL) { 6686 SPDK_ERRLOG("Unable to allocate bdev_iostat_reset_ctx.\n"); 6687 cb(bdev, cb_arg, -ENOMEM); 6688 return; 6689 } 6690 6691 ctx->mode = mode; 6692 ctx->cb = cb; 6693 ctx->cb_arg = cb_arg; 6694 6695 spdk_spin_lock(&bdev->internal.spinlock); 6696 spdk_bdev_reset_io_stat(bdev->internal.stat, mode); 6697 spdk_spin_unlock(&bdev->internal.spinlock); 6698 6699 spdk_bdev_for_each_channel(bdev, 6700 bdev_reset_each_channel_stat, 6701 ctx, 6702 bdev_reset_device_stat_done); 6703 } 6704 6705 int 6706 spdk_bdev_nvme_admin_passthru(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 6707 const struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, 6708 spdk_bdev_io_completion_cb cb, void *cb_arg) 6709 { 6710 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 6711 struct spdk_bdev_io *bdev_io; 6712 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 6713 6714 if (!desc->write) { 6715 return -EBADF; 6716 } 6717 6718 if (spdk_unlikely(!bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_NVME_ADMIN))) { 6719 return -ENOTSUP; 6720 } 6721 6722 bdev_io = bdev_channel_get_io(channel); 6723 if (!bdev_io) { 6724 return -ENOMEM; 6725 } 6726 6727 bdev_io->internal.ch = channel; 6728 bdev_io->internal.desc = desc; 6729 bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_ADMIN; 6730 bdev_io->u.nvme_passthru.cmd = *cmd; 6731 bdev_io->u.nvme_passthru.buf = buf; 6732 bdev_io->u.nvme_passthru.nbytes = nbytes; 6733 bdev_io->u.nvme_passthru.md_buf = NULL; 6734 bdev_io->u.nvme_passthru.md_len = 0; 6735 6736 bdev_io_init(bdev_io, bdev, cb_arg, cb); 6737 6738 bdev_io_submit(bdev_io); 6739 return 0; 6740 } 6741 6742 int 6743 spdk_bdev_nvme_io_passthru(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 6744 const struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, 6745 spdk_bdev_io_completion_cb cb, void *cb_arg) 6746 { 6747 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 6748 struct spdk_bdev_io *bdev_io; 6749 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 6750 6751 if (!desc->write) { 6752 /* 6753 * Do not try to parse the NVMe command - we could maybe use bits in the opcode 6754 * to easily determine if the command is a read or write, but for now just 6755 * do not allow io_passthru with a read-only descriptor. 6756 */ 6757 return -EBADF; 6758 } 6759 6760 if (spdk_unlikely(!bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_NVME_IO))) { 6761 return -ENOTSUP; 6762 } 6763 6764 bdev_io = bdev_channel_get_io(channel); 6765 if (!bdev_io) { 6766 return -ENOMEM; 6767 } 6768 6769 bdev_io->internal.ch = channel; 6770 bdev_io->internal.desc = desc; 6771 bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_IO; 6772 bdev_io->u.nvme_passthru.cmd = *cmd; 6773 bdev_io->u.nvme_passthru.buf = buf; 6774 bdev_io->u.nvme_passthru.nbytes = nbytes; 6775 bdev_io->u.nvme_passthru.md_buf = NULL; 6776 bdev_io->u.nvme_passthru.md_len = 0; 6777 6778 bdev_io_init(bdev_io, bdev, cb_arg, cb); 6779 6780 bdev_io_submit(bdev_io); 6781 return 0; 6782 } 6783 6784 int 6785 spdk_bdev_nvme_io_passthru_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 6786 const struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, void *md_buf, size_t md_len, 6787 spdk_bdev_io_completion_cb cb, void *cb_arg) 6788 { 6789 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 6790 struct spdk_bdev_io *bdev_io; 6791 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 6792 6793 if (!desc->write) { 6794 /* 6795 * Do not try to parse the NVMe command - we could maybe use bits in the opcode 6796 * to easily determine if the command is a read or write, but for now just 6797 * do not allow io_passthru with a read-only descriptor. 6798 */ 6799 return -EBADF; 6800 } 6801 6802 if (spdk_unlikely(!bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_NVME_IO_MD))) { 6803 return -ENOTSUP; 6804 } 6805 6806 bdev_io = bdev_channel_get_io(channel); 6807 if (!bdev_io) { 6808 return -ENOMEM; 6809 } 6810 6811 bdev_io->internal.ch = channel; 6812 bdev_io->internal.desc = desc; 6813 bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_IO_MD; 6814 bdev_io->u.nvme_passthru.cmd = *cmd; 6815 bdev_io->u.nvme_passthru.buf = buf; 6816 bdev_io->u.nvme_passthru.nbytes = nbytes; 6817 bdev_io->u.nvme_passthru.md_buf = md_buf; 6818 bdev_io->u.nvme_passthru.md_len = md_len; 6819 6820 bdev_io_init(bdev_io, bdev, cb_arg, cb); 6821 6822 bdev_io_submit(bdev_io); 6823 return 0; 6824 } 6825 6826 int 6827 spdk_bdev_nvme_iov_passthru_md(struct spdk_bdev_desc *desc, 6828 struct spdk_io_channel *ch, 6829 const struct spdk_nvme_cmd *cmd, 6830 struct iovec *iov, int iovcnt, size_t nbytes, 6831 void *md_buf, size_t md_len, 6832 spdk_bdev_io_completion_cb cb, void *cb_arg) 6833 { 6834 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 6835 struct spdk_bdev_io *bdev_io; 6836 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 6837 6838 if (!desc->write) { 6839 /* 6840 * Do not try to parse the NVMe command - we could maybe use bits in the opcode 6841 * to easily determine if the command is a read or write, but for now just 6842 * do not allow io_passthru with a read-only descriptor. 6843 */ 6844 return -EBADF; 6845 } 6846 6847 if (md_buf && spdk_unlikely(!bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_NVME_IO_MD))) { 6848 return -ENOTSUP; 6849 } else if (spdk_unlikely(!bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_NVME_IO))) { 6850 return -ENOTSUP; 6851 } 6852 6853 bdev_io = bdev_channel_get_io(channel); 6854 if (!bdev_io) { 6855 return -ENOMEM; 6856 } 6857 6858 bdev_io->internal.ch = channel; 6859 bdev_io->internal.desc = desc; 6860 bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_IOV_MD; 6861 bdev_io->u.nvme_passthru.cmd = *cmd; 6862 bdev_io->u.nvme_passthru.iovs = iov; 6863 bdev_io->u.nvme_passthru.iovcnt = iovcnt; 6864 bdev_io->u.nvme_passthru.nbytes = nbytes; 6865 bdev_io->u.nvme_passthru.md_buf = md_buf; 6866 bdev_io->u.nvme_passthru.md_len = md_len; 6867 6868 bdev_io_init(bdev_io, bdev, cb_arg, cb); 6869 6870 bdev_io_submit(bdev_io); 6871 return 0; 6872 } 6873 6874 static void bdev_abort_retry(void *ctx); 6875 static void bdev_abort(struct spdk_bdev_io *parent_io); 6876 6877 static void 6878 bdev_abort_io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 6879 { 6880 struct spdk_bdev_channel *channel = bdev_io->internal.ch; 6881 struct spdk_bdev_io *parent_io = cb_arg; 6882 struct spdk_bdev_io *bio_to_abort, *tmp_io; 6883 6884 bio_to_abort = bdev_io->u.abort.bio_to_abort; 6885 6886 spdk_bdev_free_io(bdev_io); 6887 6888 if (!success) { 6889 /* Check if the target I/O completed in the meantime. */ 6890 TAILQ_FOREACH(tmp_io, &channel->io_submitted, internal.ch_link) { 6891 if (tmp_io == bio_to_abort) { 6892 break; 6893 } 6894 } 6895 6896 /* If the target I/O still exists, set the parent to failed. */ 6897 if (tmp_io != NULL) { 6898 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 6899 } 6900 } 6901 6902 parent_io->u.bdev.split_outstanding--; 6903 if (parent_io->u.bdev.split_outstanding == 0) { 6904 if (parent_io->internal.status == SPDK_BDEV_IO_STATUS_NOMEM) { 6905 bdev_abort_retry(parent_io); 6906 } else { 6907 bdev_io_complete(parent_io); 6908 } 6909 } 6910 } 6911 6912 static int 6913 bdev_abort_io(struct spdk_bdev_desc *desc, struct spdk_bdev_channel *channel, 6914 struct spdk_bdev_io *bio_to_abort, 6915 spdk_bdev_io_completion_cb cb, void *cb_arg) 6916 { 6917 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 6918 struct spdk_bdev_io *bdev_io; 6919 6920 if (bio_to_abort->type == SPDK_BDEV_IO_TYPE_ABORT || 6921 bio_to_abort->type == SPDK_BDEV_IO_TYPE_RESET) { 6922 /* TODO: Abort reset or abort request. */ 6923 return -ENOTSUP; 6924 } 6925 6926 bdev_io = bdev_channel_get_io(channel); 6927 if (bdev_io == NULL) { 6928 return -ENOMEM; 6929 } 6930 6931 bdev_io->internal.ch = channel; 6932 bdev_io->internal.desc = desc; 6933 bdev_io->type = SPDK_BDEV_IO_TYPE_ABORT; 6934 bdev_io_init(bdev_io, bdev, cb_arg, cb); 6935 6936 if (bdev->split_on_optimal_io_boundary && bio_to_abort->internal.split) { 6937 assert(bdev_io_should_split(bio_to_abort)); 6938 bdev_io->u.bdev.abort.bio_cb_arg = bio_to_abort; 6939 6940 /* Parent abort request is not submitted directly, but to manage its 6941 * execution add it to the submitted list here. 6942 */ 6943 bdev_io->internal.submit_tsc = spdk_get_ticks(); 6944 bdev_ch_add_to_io_submitted(bdev_io); 6945 6946 bdev_abort(bdev_io); 6947 6948 return 0; 6949 } 6950 6951 bdev_io->u.abort.bio_to_abort = bio_to_abort; 6952 6953 /* Submit the abort request to the underlying bdev module. */ 6954 bdev_io_submit(bdev_io); 6955 6956 return 0; 6957 } 6958 6959 static bool 6960 bdev_io_on_tailq(struct spdk_bdev_io *bdev_io, bdev_io_tailq_t *tailq) 6961 { 6962 struct spdk_bdev_io *iter; 6963 6964 TAILQ_FOREACH(iter, tailq, internal.link) { 6965 if (iter == bdev_io) { 6966 return true; 6967 } 6968 } 6969 6970 return false; 6971 } 6972 6973 static uint32_t 6974 _bdev_abort(struct spdk_bdev_io *parent_io) 6975 { 6976 struct spdk_bdev_desc *desc = parent_io->internal.desc; 6977 struct spdk_bdev_channel *channel = parent_io->internal.ch; 6978 void *bio_cb_arg; 6979 struct spdk_bdev_io *bio_to_abort; 6980 uint32_t matched_ios; 6981 int rc; 6982 6983 bio_cb_arg = parent_io->u.bdev.abort.bio_cb_arg; 6984 6985 /* matched_ios is returned and will be kept by the caller. 6986 * 6987 * This function will be used for two cases, 1) the same cb_arg is used for 6988 * multiple I/Os, 2) a single large I/O is split into smaller ones. 6989 * Incrementing split_outstanding directly here may confuse readers especially 6990 * for the 1st case. 6991 * 6992 * Completion of I/O abort is processed after stack unwinding. Hence this trick 6993 * works as expected. 6994 */ 6995 matched_ios = 0; 6996 parent_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; 6997 6998 TAILQ_FOREACH(bio_to_abort, &channel->io_submitted, internal.ch_link) { 6999 if (bio_to_abort->internal.caller_ctx != bio_cb_arg) { 7000 continue; 7001 } 7002 7003 if (bio_to_abort->internal.submit_tsc > parent_io->internal.submit_tsc) { 7004 /* Any I/O which was submitted after this abort command should be excluded. */ 7005 continue; 7006 } 7007 7008 /* We can't abort a request that's being pushed/pulled or executed by accel */ 7009 if (bdev_io_on_tailq(bio_to_abort, &channel->io_accel_exec) || 7010 bdev_io_on_tailq(bio_to_abort, &channel->io_memory_domain)) { 7011 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 7012 break; 7013 } 7014 7015 rc = bdev_abort_io(desc, channel, bio_to_abort, bdev_abort_io_done, parent_io); 7016 if (rc != 0) { 7017 if (rc == -ENOMEM) { 7018 parent_io->internal.status = SPDK_BDEV_IO_STATUS_NOMEM; 7019 } else { 7020 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 7021 } 7022 break; 7023 } 7024 matched_ios++; 7025 } 7026 7027 return matched_ios; 7028 } 7029 7030 static void 7031 bdev_abort_retry(void *ctx) 7032 { 7033 struct spdk_bdev_io *parent_io = ctx; 7034 uint32_t matched_ios; 7035 7036 matched_ios = _bdev_abort(parent_io); 7037 7038 if (matched_ios == 0) { 7039 if (parent_io->internal.status == SPDK_BDEV_IO_STATUS_NOMEM) { 7040 bdev_queue_io_wait_with_cb(parent_io, bdev_abort_retry); 7041 } else { 7042 /* For retry, the case that no target I/O was found is success 7043 * because it means target I/Os completed in the meantime. 7044 */ 7045 bdev_io_complete(parent_io); 7046 } 7047 return; 7048 } 7049 7050 /* Use split_outstanding to manage the progress of aborting I/Os. */ 7051 parent_io->u.bdev.split_outstanding = matched_ios; 7052 } 7053 7054 static void 7055 bdev_abort(struct spdk_bdev_io *parent_io) 7056 { 7057 uint32_t matched_ios; 7058 7059 matched_ios = _bdev_abort(parent_io); 7060 7061 if (matched_ios == 0) { 7062 if (parent_io->internal.status == SPDK_BDEV_IO_STATUS_NOMEM) { 7063 bdev_queue_io_wait_with_cb(parent_io, bdev_abort_retry); 7064 } else { 7065 /* The case the no target I/O was found is failure. */ 7066 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 7067 bdev_io_complete(parent_io); 7068 } 7069 return; 7070 } 7071 7072 /* Use split_outstanding to manage the progress of aborting I/Os. */ 7073 parent_io->u.bdev.split_outstanding = matched_ios; 7074 } 7075 7076 int 7077 spdk_bdev_abort(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 7078 void *bio_cb_arg, 7079 spdk_bdev_io_completion_cb cb, void *cb_arg) 7080 { 7081 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 7082 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 7083 struct spdk_bdev_io *bdev_io; 7084 7085 if (bio_cb_arg == NULL) { 7086 return -EINVAL; 7087 } 7088 7089 if (!spdk_bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_ABORT)) { 7090 return -ENOTSUP; 7091 } 7092 7093 bdev_io = bdev_channel_get_io(channel); 7094 if (bdev_io == NULL) { 7095 return -ENOMEM; 7096 } 7097 7098 bdev_io->internal.ch = channel; 7099 bdev_io->internal.desc = desc; 7100 bdev_io->internal.submit_tsc = spdk_get_ticks(); 7101 bdev_io->type = SPDK_BDEV_IO_TYPE_ABORT; 7102 bdev_io_init(bdev_io, bdev, cb_arg, cb); 7103 7104 bdev_io->u.bdev.abort.bio_cb_arg = bio_cb_arg; 7105 7106 /* Parent abort request is not submitted directly, but to manage its execution, 7107 * add it to the submitted list here. 7108 */ 7109 bdev_ch_add_to_io_submitted(bdev_io); 7110 7111 bdev_abort(bdev_io); 7112 7113 return 0; 7114 } 7115 7116 int 7117 spdk_bdev_queue_io_wait(struct spdk_bdev *bdev, struct spdk_io_channel *ch, 7118 struct spdk_bdev_io_wait_entry *entry) 7119 { 7120 struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch); 7121 struct spdk_bdev_mgmt_channel *mgmt_ch = channel->shared_resource->mgmt_ch; 7122 7123 if (bdev != entry->bdev) { 7124 SPDK_ERRLOG("bdevs do not match\n"); 7125 return -EINVAL; 7126 } 7127 7128 if (mgmt_ch->per_thread_cache_count > 0) { 7129 SPDK_ERRLOG("Cannot queue io_wait if spdk_bdev_io available in per-thread cache\n"); 7130 return -EINVAL; 7131 } 7132 7133 TAILQ_INSERT_TAIL(&mgmt_ch->io_wait_queue, entry, link); 7134 return 0; 7135 } 7136 7137 static inline void 7138 bdev_io_update_io_stat(struct spdk_bdev_io *bdev_io, uint64_t tsc_diff) 7139 { 7140 enum spdk_bdev_io_status io_status = bdev_io->internal.status; 7141 struct spdk_bdev_io_stat *io_stat = bdev_io->internal.ch->stat; 7142 uint64_t num_blocks = bdev_io->u.bdev.num_blocks; 7143 uint32_t blocklen = bdev_io->bdev->blocklen; 7144 7145 if (spdk_likely(io_status == SPDK_BDEV_IO_STATUS_SUCCESS)) { 7146 switch (bdev_io->type) { 7147 case SPDK_BDEV_IO_TYPE_READ: 7148 io_stat->bytes_read += num_blocks * blocklen; 7149 io_stat->num_read_ops++; 7150 io_stat->read_latency_ticks += tsc_diff; 7151 if (io_stat->max_read_latency_ticks < tsc_diff) { 7152 io_stat->max_read_latency_ticks = tsc_diff; 7153 } 7154 if (io_stat->min_read_latency_ticks > tsc_diff) { 7155 io_stat->min_read_latency_ticks = tsc_diff; 7156 } 7157 break; 7158 case SPDK_BDEV_IO_TYPE_WRITE: 7159 io_stat->bytes_written += num_blocks * blocklen; 7160 io_stat->num_write_ops++; 7161 io_stat->write_latency_ticks += tsc_diff; 7162 if (io_stat->max_write_latency_ticks < tsc_diff) { 7163 io_stat->max_write_latency_ticks = tsc_diff; 7164 } 7165 if (io_stat->min_write_latency_ticks > tsc_diff) { 7166 io_stat->min_write_latency_ticks = tsc_diff; 7167 } 7168 break; 7169 case SPDK_BDEV_IO_TYPE_UNMAP: 7170 io_stat->bytes_unmapped += num_blocks * blocklen; 7171 io_stat->num_unmap_ops++; 7172 io_stat->unmap_latency_ticks += tsc_diff; 7173 if (io_stat->max_unmap_latency_ticks < tsc_diff) { 7174 io_stat->max_unmap_latency_ticks = tsc_diff; 7175 } 7176 if (io_stat->min_unmap_latency_ticks > tsc_diff) { 7177 io_stat->min_unmap_latency_ticks = tsc_diff; 7178 } 7179 break; 7180 case SPDK_BDEV_IO_TYPE_ZCOPY: 7181 /* Track the data in the start phase only */ 7182 if (bdev_io->u.bdev.zcopy.start) { 7183 if (bdev_io->u.bdev.zcopy.populate) { 7184 io_stat->bytes_read += num_blocks * blocklen; 7185 io_stat->num_read_ops++; 7186 io_stat->read_latency_ticks += tsc_diff; 7187 if (io_stat->max_read_latency_ticks < tsc_diff) { 7188 io_stat->max_read_latency_ticks = tsc_diff; 7189 } 7190 if (io_stat->min_read_latency_ticks > tsc_diff) { 7191 io_stat->min_read_latency_ticks = tsc_diff; 7192 } 7193 } else { 7194 io_stat->bytes_written += num_blocks * blocklen; 7195 io_stat->num_write_ops++; 7196 io_stat->write_latency_ticks += tsc_diff; 7197 if (io_stat->max_write_latency_ticks < tsc_diff) { 7198 io_stat->max_write_latency_ticks = tsc_diff; 7199 } 7200 if (io_stat->min_write_latency_ticks > tsc_diff) { 7201 io_stat->min_write_latency_ticks = tsc_diff; 7202 } 7203 } 7204 } 7205 break; 7206 case SPDK_BDEV_IO_TYPE_COPY: 7207 io_stat->bytes_copied += num_blocks * blocklen; 7208 io_stat->num_copy_ops++; 7209 bdev_io->internal.ch->stat->copy_latency_ticks += tsc_diff; 7210 if (io_stat->max_copy_latency_ticks < tsc_diff) { 7211 io_stat->max_copy_latency_ticks = tsc_diff; 7212 } 7213 if (io_stat->min_copy_latency_ticks > tsc_diff) { 7214 io_stat->min_copy_latency_ticks = tsc_diff; 7215 } 7216 break; 7217 default: 7218 break; 7219 } 7220 } else if (io_status <= SPDK_BDEV_IO_STATUS_FAILED && io_status >= SPDK_MIN_BDEV_IO_STATUS) { 7221 io_stat = bdev_io->bdev->internal.stat; 7222 assert(io_stat->io_error != NULL); 7223 7224 spdk_spin_lock(&bdev_io->bdev->internal.spinlock); 7225 io_stat->io_error->error_status[-io_status - 1]++; 7226 spdk_spin_unlock(&bdev_io->bdev->internal.spinlock); 7227 } 7228 7229 #ifdef SPDK_CONFIG_VTUNE 7230 uint64_t now_tsc = spdk_get_ticks(); 7231 if (now_tsc > (bdev_io->internal.ch->start_tsc + bdev_io->internal.ch->interval_tsc)) { 7232 uint64_t data[5]; 7233 struct spdk_bdev_io_stat *prev_stat = bdev_io->internal.ch->prev_stat; 7234 7235 data[0] = io_stat->num_read_ops - prev_stat->num_read_ops; 7236 data[1] = io_stat->bytes_read - prev_stat->bytes_read; 7237 data[2] = io_stat->num_write_ops - prev_stat->num_write_ops; 7238 data[3] = io_stat->bytes_written - prev_stat->bytes_written; 7239 data[4] = bdev_io->bdev->fn_table->get_spin_time ? 7240 bdev_io->bdev->fn_table->get_spin_time(spdk_bdev_io_get_io_channel(bdev_io)) : 0; 7241 7242 __itt_metadata_add(g_bdev_mgr.domain, __itt_null, bdev_io->internal.ch->handle, 7243 __itt_metadata_u64, 5, data); 7244 7245 memcpy(prev_stat, io_stat, sizeof(struct spdk_bdev_io_stat)); 7246 bdev_io->internal.ch->start_tsc = now_tsc; 7247 } 7248 #endif 7249 } 7250 7251 static inline void 7252 _bdev_io_complete(void *ctx) 7253 { 7254 struct spdk_bdev_io *bdev_io = ctx; 7255 7256 if (spdk_unlikely(bdev_io->internal.accel_sequence != NULL)) { 7257 assert(bdev_io->internal.status != SPDK_BDEV_IO_STATUS_SUCCESS); 7258 spdk_accel_sequence_abort(bdev_io->internal.accel_sequence); 7259 } 7260 7261 assert(bdev_io->internal.cb != NULL); 7262 assert(spdk_get_thread() == spdk_bdev_io_get_thread(bdev_io)); 7263 7264 bdev_io->internal.cb(bdev_io, bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS, 7265 bdev_io->internal.caller_ctx); 7266 } 7267 7268 static inline void 7269 bdev_io_complete(void *ctx) 7270 { 7271 struct spdk_bdev_io *bdev_io = ctx; 7272 struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch; 7273 uint64_t tsc, tsc_diff; 7274 7275 if (spdk_unlikely(bdev_io->internal.in_submit_request)) { 7276 /* 7277 * Defer completion to avoid potential infinite recursion if the 7278 * user's completion callback issues a new I/O. 7279 */ 7280 spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), 7281 bdev_io_complete, bdev_io); 7282 return; 7283 } 7284 7285 tsc = spdk_get_ticks(); 7286 tsc_diff = tsc - bdev_io->internal.submit_tsc; 7287 7288 bdev_ch_remove_from_io_submitted(bdev_io); 7289 spdk_trace_record_tsc(tsc, TRACE_BDEV_IO_DONE, bdev_ch->trace_id, 0, (uintptr_t)bdev_io, 7290 bdev_io->internal.caller_ctx, bdev_ch->queue_depth); 7291 7292 if (bdev_ch->histogram) { 7293 spdk_histogram_data_tally(bdev_ch->histogram, tsc_diff); 7294 } 7295 7296 bdev_io_update_io_stat(bdev_io, tsc_diff); 7297 _bdev_io_complete(bdev_io); 7298 } 7299 7300 /* The difference between this function and bdev_io_complete() is that this should be called to 7301 * complete IOs that haven't been submitted via bdev_io_submit(), as they weren't added onto the 7302 * io_submitted list and don't have submit_tsc updated. 7303 */ 7304 static inline void 7305 bdev_io_complete_unsubmitted(struct spdk_bdev_io *bdev_io) 7306 { 7307 /* Since the IO hasn't been submitted it's bound to be failed */ 7308 assert(bdev_io->internal.status != SPDK_BDEV_IO_STATUS_SUCCESS); 7309 7310 /* At this point we don't know if the IO is completed from submission context or not, but, 7311 * since this is an error path, we can always do an spdk_thread_send_msg(). */ 7312 spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), 7313 _bdev_io_complete, bdev_io); 7314 } 7315 7316 static void bdev_destroy_cb(void *io_device); 7317 7318 static void 7319 bdev_reset_complete(struct spdk_bdev *bdev, void *_ctx, int status) 7320 { 7321 struct spdk_bdev_io *bdev_io = _ctx; 7322 7323 if (bdev_io->u.reset.ch_ref != NULL) { 7324 spdk_put_io_channel(bdev_io->u.reset.ch_ref); 7325 bdev_io->u.reset.ch_ref = NULL; 7326 } 7327 7328 bdev_io_complete(bdev_io); 7329 7330 if (bdev->internal.status == SPDK_BDEV_STATUS_REMOVING && 7331 TAILQ_EMPTY(&bdev->internal.open_descs)) { 7332 spdk_io_device_unregister(__bdev_to_io_dev(bdev), bdev_destroy_cb); 7333 } 7334 } 7335 7336 static void 7337 bdev_unfreeze_channel(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 7338 struct spdk_io_channel *_ch, void *_ctx) 7339 { 7340 struct spdk_bdev_io *bdev_io = _ctx; 7341 struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(_ch); 7342 struct spdk_bdev_io *queued_reset; 7343 7344 ch->flags &= ~BDEV_CH_RESET_IN_PROGRESS; 7345 while (!TAILQ_EMPTY(&ch->queued_resets)) { 7346 queued_reset = TAILQ_FIRST(&ch->queued_resets); 7347 TAILQ_REMOVE(&ch->queued_resets, queued_reset, internal.link); 7348 spdk_bdev_io_complete(queued_reset, bdev_io->internal.status); 7349 } 7350 7351 spdk_bdev_for_each_channel_continue(i, 0); 7352 } 7353 7354 static void 7355 bdev_io_complete_sequence_cb(void *ctx, int status) 7356 { 7357 struct spdk_bdev_io *bdev_io = ctx; 7358 7359 /* u.bdev.accel_sequence should have already been cleared at this point */ 7360 assert(bdev_io->u.bdev.accel_sequence == NULL); 7361 assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS); 7362 bdev_io->internal.accel_sequence = NULL; 7363 7364 if (spdk_unlikely(status != 0)) { 7365 SPDK_ERRLOG("Failed to execute accel sequence, status=%d\n", status); 7366 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 7367 } 7368 7369 bdev_io_complete(bdev_io); 7370 } 7371 7372 void 7373 spdk_bdev_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status) 7374 { 7375 struct spdk_bdev *bdev = bdev_io->bdev; 7376 struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch; 7377 struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource; 7378 7379 if (spdk_unlikely(bdev_io->internal.status != SPDK_BDEV_IO_STATUS_PENDING)) { 7380 SPDK_ERRLOG("Unexpected completion on IO from %s module, status was %s\n", 7381 spdk_bdev_get_module_name(bdev), 7382 bdev_io_status_get_string(bdev_io->internal.status)); 7383 assert(false); 7384 } 7385 bdev_io->internal.status = status; 7386 7387 if (spdk_unlikely(bdev_io->type == SPDK_BDEV_IO_TYPE_RESET)) { 7388 bool unlock_channels = false; 7389 7390 if (status == SPDK_BDEV_IO_STATUS_NOMEM) { 7391 SPDK_ERRLOG("NOMEM returned for reset\n"); 7392 } 7393 spdk_spin_lock(&bdev->internal.spinlock); 7394 if (bdev_io == bdev->internal.reset_in_progress) { 7395 bdev->internal.reset_in_progress = NULL; 7396 unlock_channels = true; 7397 } 7398 spdk_spin_unlock(&bdev->internal.spinlock); 7399 7400 if (unlock_channels) { 7401 spdk_bdev_for_each_channel(bdev, bdev_unfreeze_channel, bdev_io, 7402 bdev_reset_complete); 7403 return; 7404 } 7405 } else { 7406 bdev_io_decrement_outstanding(bdev_ch, shared_resource); 7407 if (spdk_likely(status == SPDK_BDEV_IO_STATUS_SUCCESS)) { 7408 if (bdev_io_needs_sequence_exec(bdev_io->internal.desc, bdev_io)) { 7409 bdev_io_exec_sequence(bdev_io, bdev_io_complete_sequence_cb); 7410 return; 7411 } else if (spdk_unlikely(bdev_io->internal.orig_iovcnt != 0 && 7412 !bdev_io_use_accel_sequence(bdev_io))) { 7413 _bdev_io_push_bounce_data_buffer(bdev_io, 7414 _bdev_io_complete_push_bounce_done); 7415 /* bdev IO will be completed in the callback */ 7416 return; 7417 } 7418 } 7419 7420 if (spdk_unlikely(_bdev_io_handle_no_mem(bdev_io, BDEV_IO_RETRY_STATE_SUBMIT))) { 7421 return; 7422 } 7423 } 7424 7425 bdev_io_complete(bdev_io); 7426 } 7427 7428 void 7429 spdk_bdev_io_complete_scsi_status(struct spdk_bdev_io *bdev_io, enum spdk_scsi_status sc, 7430 enum spdk_scsi_sense sk, uint8_t asc, uint8_t ascq) 7431 { 7432 enum spdk_bdev_io_status status; 7433 7434 if (sc == SPDK_SCSI_STATUS_GOOD) { 7435 status = SPDK_BDEV_IO_STATUS_SUCCESS; 7436 } else { 7437 status = SPDK_BDEV_IO_STATUS_SCSI_ERROR; 7438 bdev_io->internal.error.scsi.sc = sc; 7439 bdev_io->internal.error.scsi.sk = sk; 7440 bdev_io->internal.error.scsi.asc = asc; 7441 bdev_io->internal.error.scsi.ascq = ascq; 7442 } 7443 7444 spdk_bdev_io_complete(bdev_io, status); 7445 } 7446 7447 void 7448 spdk_bdev_io_get_scsi_status(const struct spdk_bdev_io *bdev_io, 7449 int *sc, int *sk, int *asc, int *ascq) 7450 { 7451 assert(sc != NULL); 7452 assert(sk != NULL); 7453 assert(asc != NULL); 7454 assert(ascq != NULL); 7455 7456 switch (bdev_io->internal.status) { 7457 case SPDK_BDEV_IO_STATUS_SUCCESS: 7458 *sc = SPDK_SCSI_STATUS_GOOD; 7459 *sk = SPDK_SCSI_SENSE_NO_SENSE; 7460 *asc = SPDK_SCSI_ASC_NO_ADDITIONAL_SENSE; 7461 *ascq = SPDK_SCSI_ASCQ_CAUSE_NOT_REPORTABLE; 7462 break; 7463 case SPDK_BDEV_IO_STATUS_NVME_ERROR: 7464 spdk_scsi_nvme_translate(bdev_io, sc, sk, asc, ascq); 7465 break; 7466 case SPDK_BDEV_IO_STATUS_MISCOMPARE: 7467 *sc = SPDK_SCSI_STATUS_CHECK_CONDITION; 7468 *sk = SPDK_SCSI_SENSE_MISCOMPARE; 7469 *asc = SPDK_SCSI_ASC_MISCOMPARE_DURING_VERIFY_OPERATION; 7470 *ascq = bdev_io->internal.error.scsi.ascq; 7471 break; 7472 case SPDK_BDEV_IO_STATUS_SCSI_ERROR: 7473 *sc = bdev_io->internal.error.scsi.sc; 7474 *sk = bdev_io->internal.error.scsi.sk; 7475 *asc = bdev_io->internal.error.scsi.asc; 7476 *ascq = bdev_io->internal.error.scsi.ascq; 7477 break; 7478 default: 7479 *sc = SPDK_SCSI_STATUS_CHECK_CONDITION; 7480 *sk = SPDK_SCSI_SENSE_ABORTED_COMMAND; 7481 *asc = SPDK_SCSI_ASC_NO_ADDITIONAL_SENSE; 7482 *ascq = SPDK_SCSI_ASCQ_CAUSE_NOT_REPORTABLE; 7483 break; 7484 } 7485 } 7486 7487 void 7488 spdk_bdev_io_complete_aio_status(struct spdk_bdev_io *bdev_io, int aio_result) 7489 { 7490 enum spdk_bdev_io_status status; 7491 7492 if (aio_result == 0) { 7493 status = SPDK_BDEV_IO_STATUS_SUCCESS; 7494 } else { 7495 status = SPDK_BDEV_IO_STATUS_AIO_ERROR; 7496 } 7497 7498 bdev_io->internal.error.aio_result = aio_result; 7499 7500 spdk_bdev_io_complete(bdev_io, status); 7501 } 7502 7503 void 7504 spdk_bdev_io_get_aio_status(const struct spdk_bdev_io *bdev_io, int *aio_result) 7505 { 7506 assert(aio_result != NULL); 7507 7508 if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_AIO_ERROR) { 7509 *aio_result = bdev_io->internal.error.aio_result; 7510 } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) { 7511 *aio_result = 0; 7512 } else { 7513 *aio_result = -EIO; 7514 } 7515 } 7516 7517 void 7518 spdk_bdev_io_complete_nvme_status(struct spdk_bdev_io *bdev_io, uint32_t cdw0, int sct, int sc) 7519 { 7520 enum spdk_bdev_io_status status; 7521 7522 if (spdk_likely(sct == SPDK_NVME_SCT_GENERIC && sc == SPDK_NVME_SC_SUCCESS)) { 7523 status = SPDK_BDEV_IO_STATUS_SUCCESS; 7524 } else if (sct == SPDK_NVME_SCT_GENERIC && sc == SPDK_NVME_SC_ABORTED_BY_REQUEST) { 7525 status = SPDK_BDEV_IO_STATUS_ABORTED; 7526 } else { 7527 status = SPDK_BDEV_IO_STATUS_NVME_ERROR; 7528 } 7529 7530 bdev_io->internal.error.nvme.cdw0 = cdw0; 7531 bdev_io->internal.error.nvme.sct = sct; 7532 bdev_io->internal.error.nvme.sc = sc; 7533 7534 spdk_bdev_io_complete(bdev_io, status); 7535 } 7536 7537 void 7538 spdk_bdev_io_get_nvme_status(const struct spdk_bdev_io *bdev_io, uint32_t *cdw0, int *sct, int *sc) 7539 { 7540 assert(sct != NULL); 7541 assert(sc != NULL); 7542 assert(cdw0 != NULL); 7543 7544 if (spdk_unlikely(bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT)) { 7545 *sct = SPDK_NVME_SCT_GENERIC; 7546 *sc = SPDK_NVME_SC_SUCCESS; 7547 if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) { 7548 *cdw0 = 0; 7549 } else { 7550 *cdw0 = 1U; 7551 } 7552 return; 7553 } 7554 7555 if (spdk_likely(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS)) { 7556 *sct = SPDK_NVME_SCT_GENERIC; 7557 *sc = SPDK_NVME_SC_SUCCESS; 7558 } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_NVME_ERROR) { 7559 *sct = bdev_io->internal.error.nvme.sct; 7560 *sc = bdev_io->internal.error.nvme.sc; 7561 } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_ABORTED) { 7562 *sct = SPDK_NVME_SCT_GENERIC; 7563 *sc = SPDK_NVME_SC_ABORTED_BY_REQUEST; 7564 } else { 7565 *sct = SPDK_NVME_SCT_GENERIC; 7566 *sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 7567 } 7568 7569 *cdw0 = bdev_io->internal.error.nvme.cdw0; 7570 } 7571 7572 void 7573 spdk_bdev_io_get_nvme_fused_status(const struct spdk_bdev_io *bdev_io, uint32_t *cdw0, 7574 int *first_sct, int *first_sc, int *second_sct, int *second_sc) 7575 { 7576 assert(first_sct != NULL); 7577 assert(first_sc != NULL); 7578 assert(second_sct != NULL); 7579 assert(second_sc != NULL); 7580 assert(cdw0 != NULL); 7581 7582 if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_NVME_ERROR) { 7583 if (bdev_io->internal.error.nvme.sct == SPDK_NVME_SCT_MEDIA_ERROR && 7584 bdev_io->internal.error.nvme.sc == SPDK_NVME_SC_COMPARE_FAILURE) { 7585 *first_sct = bdev_io->internal.error.nvme.sct; 7586 *first_sc = bdev_io->internal.error.nvme.sc; 7587 *second_sct = SPDK_NVME_SCT_GENERIC; 7588 *second_sc = SPDK_NVME_SC_ABORTED_FAILED_FUSED; 7589 } else { 7590 *first_sct = SPDK_NVME_SCT_GENERIC; 7591 *first_sc = SPDK_NVME_SC_SUCCESS; 7592 *second_sct = bdev_io->internal.error.nvme.sct; 7593 *second_sc = bdev_io->internal.error.nvme.sc; 7594 } 7595 } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_ABORTED) { 7596 *first_sct = SPDK_NVME_SCT_GENERIC; 7597 *first_sc = SPDK_NVME_SC_ABORTED_BY_REQUEST; 7598 *second_sct = SPDK_NVME_SCT_GENERIC; 7599 *second_sc = SPDK_NVME_SC_ABORTED_BY_REQUEST; 7600 } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) { 7601 *first_sct = SPDK_NVME_SCT_GENERIC; 7602 *first_sc = SPDK_NVME_SC_SUCCESS; 7603 *second_sct = SPDK_NVME_SCT_GENERIC; 7604 *second_sc = SPDK_NVME_SC_SUCCESS; 7605 } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_FIRST_FUSED_FAILED) { 7606 *first_sct = SPDK_NVME_SCT_GENERIC; 7607 *first_sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 7608 *second_sct = SPDK_NVME_SCT_GENERIC; 7609 *second_sc = SPDK_NVME_SC_ABORTED_FAILED_FUSED; 7610 } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_MISCOMPARE) { 7611 *first_sct = SPDK_NVME_SCT_MEDIA_ERROR; 7612 *first_sc = SPDK_NVME_SC_COMPARE_FAILURE; 7613 *second_sct = SPDK_NVME_SCT_GENERIC; 7614 *second_sc = SPDK_NVME_SC_ABORTED_FAILED_FUSED; 7615 } else { 7616 *first_sct = SPDK_NVME_SCT_GENERIC; 7617 *first_sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 7618 *second_sct = SPDK_NVME_SCT_GENERIC; 7619 *second_sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 7620 } 7621 7622 *cdw0 = bdev_io->internal.error.nvme.cdw0; 7623 } 7624 7625 void 7626 spdk_bdev_io_complete_base_io_status(struct spdk_bdev_io *bdev_io, 7627 const struct spdk_bdev_io *base_io) 7628 { 7629 switch (base_io->internal.status) { 7630 case SPDK_BDEV_IO_STATUS_NVME_ERROR: 7631 spdk_bdev_io_complete_nvme_status(bdev_io, 7632 base_io->internal.error.nvme.cdw0, 7633 base_io->internal.error.nvme.sct, 7634 base_io->internal.error.nvme.sc); 7635 break; 7636 case SPDK_BDEV_IO_STATUS_SCSI_ERROR: 7637 spdk_bdev_io_complete_scsi_status(bdev_io, 7638 base_io->internal.error.scsi.sc, 7639 base_io->internal.error.scsi.sk, 7640 base_io->internal.error.scsi.asc, 7641 base_io->internal.error.scsi.ascq); 7642 break; 7643 case SPDK_BDEV_IO_STATUS_AIO_ERROR: 7644 spdk_bdev_io_complete_aio_status(bdev_io, base_io->internal.error.aio_result); 7645 break; 7646 default: 7647 spdk_bdev_io_complete(bdev_io, base_io->internal.status); 7648 break; 7649 } 7650 } 7651 7652 struct spdk_thread * 7653 spdk_bdev_io_get_thread(struct spdk_bdev_io *bdev_io) 7654 { 7655 return spdk_io_channel_get_thread(bdev_io->internal.ch->channel); 7656 } 7657 7658 struct spdk_io_channel * 7659 spdk_bdev_io_get_io_channel(struct spdk_bdev_io *bdev_io) 7660 { 7661 return bdev_io->internal.ch->channel; 7662 } 7663 7664 static int 7665 bdev_register(struct spdk_bdev *bdev) 7666 { 7667 char *bdev_name; 7668 char uuid[SPDK_UUID_STRING_LEN]; 7669 struct spdk_iobuf_opts iobuf_opts; 7670 int ret; 7671 7672 assert(bdev->module != NULL); 7673 7674 if (!bdev->name) { 7675 SPDK_ERRLOG("Bdev name is NULL\n"); 7676 return -EINVAL; 7677 } 7678 7679 if (!strlen(bdev->name)) { 7680 SPDK_ERRLOG("Bdev name must not be an empty string\n"); 7681 return -EINVAL; 7682 } 7683 7684 /* Users often register their own I/O devices using the bdev name. In 7685 * order to avoid conflicts, prepend bdev_. */ 7686 bdev_name = spdk_sprintf_alloc("bdev_%s", bdev->name); 7687 if (!bdev_name) { 7688 SPDK_ERRLOG("Unable to allocate memory for internal bdev name.\n"); 7689 return -ENOMEM; 7690 } 7691 7692 bdev->internal.stat = bdev_alloc_io_stat(true); 7693 if (!bdev->internal.stat) { 7694 SPDK_ERRLOG("Unable to allocate I/O statistics structure.\n"); 7695 free(bdev_name); 7696 return -ENOMEM; 7697 } 7698 7699 bdev->internal.status = SPDK_BDEV_STATUS_READY; 7700 bdev->internal.measured_queue_depth = UINT64_MAX; 7701 bdev->internal.claim_type = SPDK_BDEV_CLAIM_NONE; 7702 memset(&bdev->internal.claim, 0, sizeof(bdev->internal.claim)); 7703 bdev->internal.qd_poller = NULL; 7704 bdev->internal.qos = NULL; 7705 7706 TAILQ_INIT(&bdev->internal.open_descs); 7707 TAILQ_INIT(&bdev->internal.locked_ranges); 7708 TAILQ_INIT(&bdev->internal.pending_locked_ranges); 7709 TAILQ_INIT(&bdev->aliases); 7710 7711 /* UUID may be specified by the user or defined by bdev itself. 7712 * Otherwise it will be generated here, so this field will never be empty. */ 7713 if (spdk_uuid_is_null(&bdev->uuid)) { 7714 spdk_uuid_generate(&bdev->uuid); 7715 } 7716 7717 /* Add the UUID alias only if it's different than the name */ 7718 spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid); 7719 if (strcmp(bdev->name, uuid) != 0) { 7720 ret = spdk_bdev_alias_add(bdev, uuid); 7721 if (ret != 0) { 7722 SPDK_ERRLOG("Unable to add uuid:%s alias for bdev %s\n", uuid, bdev->name); 7723 bdev_free_io_stat(bdev->internal.stat); 7724 free(bdev_name); 7725 return ret; 7726 } 7727 } 7728 7729 spdk_iobuf_get_opts(&iobuf_opts, sizeof(iobuf_opts)); 7730 if (spdk_bdev_get_buf_align(bdev) > 1) { 7731 bdev->max_rw_size = spdk_min(bdev->max_rw_size ? bdev->max_rw_size : UINT32_MAX, 7732 iobuf_opts.large_bufsize / bdev->blocklen); 7733 } 7734 7735 /* If the user didn't specify a write unit size, set it to one. */ 7736 if (bdev->write_unit_size == 0) { 7737 bdev->write_unit_size = 1; 7738 } 7739 7740 /* Set ACWU value to the write unit size if bdev module did not set it (does not support it natively) */ 7741 if (bdev->acwu == 0) { 7742 bdev->acwu = bdev->write_unit_size; 7743 } 7744 7745 if (bdev->phys_blocklen == 0) { 7746 bdev->phys_blocklen = spdk_bdev_get_data_block_size(bdev); 7747 } 7748 7749 if (!bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_COPY)) { 7750 bdev->max_copy = bdev_get_max_write(bdev, iobuf_opts.large_bufsize); 7751 } 7752 7753 if (!bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE_ZEROES)) { 7754 bdev->max_write_zeroes = bdev_get_max_write(bdev, ZERO_BUFFER_SIZE); 7755 } 7756 7757 bdev->internal.reset_in_progress = NULL; 7758 bdev->internal.qd_poll_in_progress = false; 7759 bdev->internal.period = 0; 7760 bdev->internal.new_period = 0; 7761 bdev->internal.trace_id = spdk_trace_register_owner(OWNER_TYPE_BDEV, bdev_name); 7762 7763 /* 7764 * Initialize spinlock before registering IO device because spinlock is used in 7765 * bdev_channel_create 7766 */ 7767 spdk_spin_init(&bdev->internal.spinlock); 7768 7769 spdk_io_device_register(__bdev_to_io_dev(bdev), 7770 bdev_channel_create, bdev_channel_destroy, 7771 sizeof(struct spdk_bdev_channel), 7772 bdev_name); 7773 7774 /* 7775 * Register bdev name only after the bdev object is ready. 7776 * After bdev_name_add returns, it is possible for oter threads to start using the bdev, 7777 * create IO channels... 7778 */ 7779 ret = bdev_name_add(&bdev->internal.bdev_name, bdev, bdev->name); 7780 if (ret != 0) { 7781 spdk_io_device_unregister(__bdev_to_io_dev(bdev), NULL); 7782 bdev_free_io_stat(bdev->internal.stat); 7783 spdk_spin_destroy(&bdev->internal.spinlock); 7784 free(bdev_name); 7785 return ret; 7786 } 7787 7788 free(bdev_name); 7789 7790 SPDK_DEBUGLOG(bdev, "Inserting bdev %s into list\n", bdev->name); 7791 TAILQ_INSERT_TAIL(&g_bdev_mgr.bdevs, bdev, internal.link); 7792 7793 return 0; 7794 } 7795 7796 static void 7797 bdev_destroy_cb(void *io_device) 7798 { 7799 int rc; 7800 struct spdk_bdev *bdev; 7801 spdk_bdev_unregister_cb cb_fn; 7802 void *cb_arg; 7803 7804 bdev = __bdev_from_io_dev(io_device); 7805 7806 if (bdev->internal.unregister_td != spdk_get_thread()) { 7807 spdk_thread_send_msg(bdev->internal.unregister_td, bdev_destroy_cb, io_device); 7808 return; 7809 } 7810 7811 cb_fn = bdev->internal.unregister_cb; 7812 cb_arg = bdev->internal.unregister_ctx; 7813 7814 spdk_spin_destroy(&bdev->internal.spinlock); 7815 free(bdev->internal.qos); 7816 bdev_free_io_stat(bdev->internal.stat); 7817 spdk_trace_unregister_owner(bdev->internal.trace_id); 7818 7819 rc = bdev->fn_table->destruct(bdev->ctxt); 7820 if (rc < 0) { 7821 SPDK_ERRLOG("destruct failed\n"); 7822 } 7823 if (rc <= 0 && cb_fn != NULL) { 7824 cb_fn(cb_arg, rc); 7825 } 7826 } 7827 7828 void 7829 spdk_bdev_destruct_done(struct spdk_bdev *bdev, int bdeverrno) 7830 { 7831 if (bdev->internal.unregister_cb != NULL) { 7832 bdev->internal.unregister_cb(bdev->internal.unregister_ctx, bdeverrno); 7833 } 7834 } 7835 7836 static void 7837 _remove_notify(void *arg) 7838 { 7839 struct spdk_bdev_desc *desc = arg; 7840 7841 _event_notify(desc, SPDK_BDEV_EVENT_REMOVE); 7842 } 7843 7844 /* returns: 0 - bdev removed and ready to be destructed. 7845 * -EBUSY - bdev can't be destructed yet. */ 7846 static int 7847 bdev_unregister_unsafe(struct spdk_bdev *bdev) 7848 { 7849 struct spdk_bdev_desc *desc, *tmp; 7850 int rc = 0; 7851 char uuid[SPDK_UUID_STRING_LEN]; 7852 7853 assert(spdk_spin_held(&g_bdev_mgr.spinlock)); 7854 assert(spdk_spin_held(&bdev->internal.spinlock)); 7855 7856 /* Notify each descriptor about hotremoval */ 7857 TAILQ_FOREACH_SAFE(desc, &bdev->internal.open_descs, link, tmp) { 7858 rc = -EBUSY; 7859 /* 7860 * Defer invocation of the event_cb to a separate message that will 7861 * run later on its thread. This ensures this context unwinds and 7862 * we don't recursively unregister this bdev again if the event_cb 7863 * immediately closes its descriptor. 7864 */ 7865 event_notify(desc, _remove_notify); 7866 } 7867 7868 /* If there are no descriptors, proceed removing the bdev */ 7869 if (rc == 0) { 7870 TAILQ_REMOVE(&g_bdev_mgr.bdevs, bdev, internal.link); 7871 SPDK_DEBUGLOG(bdev, "Removing bdev %s from list done\n", bdev->name); 7872 7873 /* Delete the name and the UUID alias */ 7874 spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid); 7875 bdev_name_del_unsafe(&bdev->internal.bdev_name); 7876 bdev_alias_del(bdev, uuid, bdev_name_del_unsafe); 7877 7878 spdk_notify_send("bdev_unregister", spdk_bdev_get_name(bdev)); 7879 7880 if (bdev->internal.reset_in_progress != NULL) { 7881 /* If reset is in progress, let the completion callback for reset 7882 * unregister the bdev. 7883 */ 7884 rc = -EBUSY; 7885 } 7886 } 7887 7888 return rc; 7889 } 7890 7891 static void 7892 bdev_unregister_abort_channel(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 7893 struct spdk_io_channel *io_ch, void *_ctx) 7894 { 7895 struct spdk_bdev_channel *bdev_ch = __io_ch_to_bdev_ch(io_ch); 7896 7897 bdev_channel_abort_queued_ios(bdev_ch); 7898 spdk_bdev_for_each_channel_continue(i, 0); 7899 } 7900 7901 static void 7902 bdev_unregister(struct spdk_bdev *bdev, void *_ctx, int status) 7903 { 7904 int rc; 7905 7906 spdk_spin_lock(&g_bdev_mgr.spinlock); 7907 spdk_spin_lock(&bdev->internal.spinlock); 7908 /* 7909 * Set the status to REMOVING after completing to abort channels. Otherwise, 7910 * the last spdk_bdev_close() may call spdk_io_device_unregister() while 7911 * spdk_bdev_for_each_channel() is executed and spdk_io_device_unregister() 7912 * may fail. 7913 */ 7914 bdev->internal.status = SPDK_BDEV_STATUS_REMOVING; 7915 rc = bdev_unregister_unsafe(bdev); 7916 spdk_spin_unlock(&bdev->internal.spinlock); 7917 spdk_spin_unlock(&g_bdev_mgr.spinlock); 7918 7919 if (rc == 0) { 7920 spdk_io_device_unregister(__bdev_to_io_dev(bdev), bdev_destroy_cb); 7921 } 7922 } 7923 7924 void 7925 spdk_bdev_unregister(struct spdk_bdev *bdev, spdk_bdev_unregister_cb cb_fn, void *cb_arg) 7926 { 7927 struct spdk_thread *thread; 7928 7929 SPDK_DEBUGLOG(bdev, "Removing bdev %s from list\n", bdev->name); 7930 7931 thread = spdk_get_thread(); 7932 if (!thread) { 7933 /* The user called this from a non-SPDK thread. */ 7934 if (cb_fn != NULL) { 7935 cb_fn(cb_arg, -ENOTSUP); 7936 } 7937 return; 7938 } 7939 7940 spdk_spin_lock(&g_bdev_mgr.spinlock); 7941 if (bdev->internal.status == SPDK_BDEV_STATUS_UNREGISTERING || 7942 bdev->internal.status == SPDK_BDEV_STATUS_REMOVING) { 7943 spdk_spin_unlock(&g_bdev_mgr.spinlock); 7944 if (cb_fn) { 7945 cb_fn(cb_arg, -EBUSY); 7946 } 7947 return; 7948 } 7949 7950 spdk_spin_lock(&bdev->internal.spinlock); 7951 bdev->internal.status = SPDK_BDEV_STATUS_UNREGISTERING; 7952 bdev->internal.unregister_cb = cb_fn; 7953 bdev->internal.unregister_ctx = cb_arg; 7954 bdev->internal.unregister_td = thread; 7955 spdk_spin_unlock(&bdev->internal.spinlock); 7956 spdk_spin_unlock(&g_bdev_mgr.spinlock); 7957 7958 spdk_bdev_set_qd_sampling_period(bdev, 0); 7959 7960 spdk_bdev_for_each_channel(bdev, bdev_unregister_abort_channel, bdev, 7961 bdev_unregister); 7962 } 7963 7964 int 7965 spdk_bdev_unregister_by_name(const char *bdev_name, struct spdk_bdev_module *module, 7966 spdk_bdev_unregister_cb cb_fn, void *cb_arg) 7967 { 7968 struct spdk_bdev_desc *desc; 7969 struct spdk_bdev *bdev; 7970 int rc; 7971 7972 rc = spdk_bdev_open_ext(bdev_name, false, _tmp_bdev_event_cb, NULL, &desc); 7973 if (rc != 0) { 7974 SPDK_ERRLOG("Failed to open bdev with name: %s\n", bdev_name); 7975 return rc; 7976 } 7977 7978 bdev = spdk_bdev_desc_get_bdev(desc); 7979 7980 if (bdev->module != module) { 7981 spdk_bdev_close(desc); 7982 SPDK_ERRLOG("Bdev %s was not registered by the specified module.\n", 7983 bdev_name); 7984 return -ENODEV; 7985 } 7986 7987 spdk_bdev_unregister(bdev, cb_fn, cb_arg); 7988 7989 spdk_bdev_close(desc); 7990 7991 return 0; 7992 } 7993 7994 static int 7995 bdev_start_qos(struct spdk_bdev *bdev) 7996 { 7997 struct set_qos_limit_ctx *ctx; 7998 7999 /* Enable QoS */ 8000 if (bdev->internal.qos && bdev->internal.qos->thread == NULL) { 8001 ctx = calloc(1, sizeof(*ctx)); 8002 if (ctx == NULL) { 8003 SPDK_ERRLOG("Failed to allocate memory for QoS context\n"); 8004 return -ENOMEM; 8005 } 8006 ctx->bdev = bdev; 8007 spdk_bdev_for_each_channel(bdev, bdev_enable_qos_msg, ctx, bdev_enable_qos_done); 8008 } 8009 8010 return 0; 8011 } 8012 8013 static void 8014 log_already_claimed(enum spdk_log_level level, const int line, const char *func, const char *detail, 8015 struct spdk_bdev *bdev) 8016 { 8017 enum spdk_bdev_claim_type type; 8018 const char *typename, *modname; 8019 extern struct spdk_log_flag SPDK_LOG_bdev; 8020 8021 assert(spdk_spin_held(&bdev->internal.spinlock)); 8022 8023 if (level >= SPDK_LOG_INFO && !SPDK_LOG_bdev.enabled) { 8024 return; 8025 } 8026 8027 type = bdev->internal.claim_type; 8028 typename = spdk_bdev_claim_get_name(type); 8029 8030 if (type == SPDK_BDEV_CLAIM_EXCL_WRITE) { 8031 modname = bdev->internal.claim.v1.module->name; 8032 spdk_log(level, __FILE__, line, func, "bdev %s %s: type %s by module %s\n", 8033 bdev->name, detail, typename, modname); 8034 return; 8035 } 8036 8037 if (claim_type_is_v2(type)) { 8038 struct spdk_bdev_module_claim *claim; 8039 8040 TAILQ_FOREACH(claim, &bdev->internal.claim.v2.claims, link) { 8041 modname = claim->module->name; 8042 spdk_log(level, __FILE__, line, func, "bdev %s %s: type %s by module %s\n", 8043 bdev->name, detail, typename, modname); 8044 } 8045 return; 8046 } 8047 8048 assert(false); 8049 } 8050 8051 static int 8052 bdev_open(struct spdk_bdev *bdev, bool write, struct spdk_bdev_desc *desc) 8053 { 8054 struct spdk_thread *thread; 8055 int rc = 0; 8056 8057 thread = spdk_get_thread(); 8058 if (!thread) { 8059 SPDK_ERRLOG("Cannot open bdev from non-SPDK thread.\n"); 8060 return -ENOTSUP; 8061 } 8062 8063 SPDK_DEBUGLOG(bdev, "Opening descriptor %p for bdev %s on thread %p\n", desc, bdev->name, 8064 spdk_get_thread()); 8065 8066 desc->bdev = bdev; 8067 desc->thread = thread; 8068 desc->write = write; 8069 8070 spdk_spin_lock(&bdev->internal.spinlock); 8071 if (bdev->internal.status == SPDK_BDEV_STATUS_UNREGISTERING || 8072 bdev->internal.status == SPDK_BDEV_STATUS_REMOVING) { 8073 spdk_spin_unlock(&bdev->internal.spinlock); 8074 return -ENODEV; 8075 } 8076 8077 if (write && bdev->internal.claim_type != SPDK_BDEV_CLAIM_NONE) { 8078 LOG_ALREADY_CLAIMED_ERROR("already claimed", bdev); 8079 spdk_spin_unlock(&bdev->internal.spinlock); 8080 return -EPERM; 8081 } 8082 8083 rc = bdev_start_qos(bdev); 8084 if (rc != 0) { 8085 SPDK_ERRLOG("Failed to start QoS on bdev %s\n", bdev->name); 8086 spdk_spin_unlock(&bdev->internal.spinlock); 8087 return rc; 8088 } 8089 8090 TAILQ_INSERT_TAIL(&bdev->internal.open_descs, desc, link); 8091 8092 spdk_spin_unlock(&bdev->internal.spinlock); 8093 8094 return 0; 8095 } 8096 8097 static int 8098 bdev_desc_alloc(struct spdk_bdev *bdev, spdk_bdev_event_cb_t event_cb, void *event_ctx, 8099 struct spdk_bdev_desc **_desc) 8100 { 8101 struct spdk_bdev_desc *desc; 8102 unsigned int i; 8103 8104 desc = calloc(1, sizeof(*desc)); 8105 if (desc == NULL) { 8106 SPDK_ERRLOG("Failed to allocate memory for bdev descriptor\n"); 8107 return -ENOMEM; 8108 } 8109 8110 TAILQ_INIT(&desc->pending_media_events); 8111 TAILQ_INIT(&desc->free_media_events); 8112 8113 desc->memory_domains_supported = spdk_bdev_get_memory_domains(bdev, NULL, 0) > 0; 8114 desc->callback.event_fn = event_cb; 8115 desc->callback.ctx = event_ctx; 8116 spdk_spin_init(&desc->spinlock); 8117 8118 if (bdev->media_events) { 8119 desc->media_events_buffer = calloc(MEDIA_EVENT_POOL_SIZE, 8120 sizeof(*desc->media_events_buffer)); 8121 if (desc->media_events_buffer == NULL) { 8122 SPDK_ERRLOG("Failed to initialize media event pool\n"); 8123 bdev_desc_free(desc); 8124 return -ENOMEM; 8125 } 8126 8127 for (i = 0; i < MEDIA_EVENT_POOL_SIZE; ++i) { 8128 TAILQ_INSERT_TAIL(&desc->free_media_events, 8129 &desc->media_events_buffer[i], tailq); 8130 } 8131 } 8132 8133 if (bdev->fn_table->accel_sequence_supported != NULL) { 8134 for (i = 0; i < SPDK_BDEV_NUM_IO_TYPES; ++i) { 8135 desc->accel_sequence_supported[i] = 8136 bdev->fn_table->accel_sequence_supported(bdev->ctxt, 8137 (enum spdk_bdev_io_type)i); 8138 } 8139 } 8140 8141 *_desc = desc; 8142 8143 return 0; 8144 } 8145 8146 static int 8147 bdev_open_ext(const char *bdev_name, bool write, spdk_bdev_event_cb_t event_cb, 8148 void *event_ctx, struct spdk_bdev_desc **_desc) 8149 { 8150 struct spdk_bdev_desc *desc; 8151 struct spdk_bdev *bdev; 8152 int rc; 8153 8154 bdev = bdev_get_by_name(bdev_name); 8155 8156 if (bdev == NULL) { 8157 SPDK_NOTICELOG("Currently unable to find bdev with name: %s\n", bdev_name); 8158 return -ENODEV; 8159 } 8160 8161 rc = bdev_desc_alloc(bdev, event_cb, event_ctx, &desc); 8162 if (rc != 0) { 8163 return rc; 8164 } 8165 8166 rc = bdev_open(bdev, write, desc); 8167 if (rc != 0) { 8168 bdev_desc_free(desc); 8169 desc = NULL; 8170 } 8171 8172 *_desc = desc; 8173 8174 return rc; 8175 } 8176 8177 int 8178 spdk_bdev_open_ext(const char *bdev_name, bool write, spdk_bdev_event_cb_t event_cb, 8179 void *event_ctx, struct spdk_bdev_desc **_desc) 8180 { 8181 int rc; 8182 8183 if (event_cb == NULL) { 8184 SPDK_ERRLOG("Missing event callback function\n"); 8185 return -EINVAL; 8186 } 8187 8188 spdk_spin_lock(&g_bdev_mgr.spinlock); 8189 rc = bdev_open_ext(bdev_name, write, event_cb, event_ctx, _desc); 8190 spdk_spin_unlock(&g_bdev_mgr.spinlock); 8191 8192 return rc; 8193 } 8194 8195 struct spdk_bdev_open_async_ctx { 8196 char *bdev_name; 8197 spdk_bdev_event_cb_t event_cb; 8198 void *event_ctx; 8199 bool write; 8200 int rc; 8201 spdk_bdev_open_async_cb_t cb_fn; 8202 void *cb_arg; 8203 struct spdk_bdev_desc *desc; 8204 struct spdk_bdev_open_async_opts opts; 8205 uint64_t start_ticks; 8206 struct spdk_thread *orig_thread; 8207 struct spdk_poller *poller; 8208 TAILQ_ENTRY(spdk_bdev_open_async_ctx) tailq; 8209 }; 8210 8211 static void 8212 bdev_open_async_done(void *arg) 8213 { 8214 struct spdk_bdev_open_async_ctx *ctx = arg; 8215 8216 ctx->cb_fn(ctx->desc, ctx->rc, ctx->cb_arg); 8217 8218 free(ctx->bdev_name); 8219 free(ctx); 8220 } 8221 8222 static void 8223 bdev_open_async_cancel(void *arg) 8224 { 8225 struct spdk_bdev_open_async_ctx *ctx = arg; 8226 8227 assert(ctx->rc == -ESHUTDOWN); 8228 8229 spdk_poller_unregister(&ctx->poller); 8230 8231 bdev_open_async_done(ctx); 8232 } 8233 8234 /* This is called when the bdev library finishes at shutdown. */ 8235 static void 8236 bdev_open_async_fini(void) 8237 { 8238 struct spdk_bdev_open_async_ctx *ctx, *tmp_ctx; 8239 8240 spdk_spin_lock(&g_bdev_mgr.spinlock); 8241 TAILQ_FOREACH_SAFE(ctx, &g_bdev_mgr.async_bdev_opens, tailq, tmp_ctx) { 8242 TAILQ_REMOVE(&g_bdev_mgr.async_bdev_opens, ctx, tailq); 8243 /* 8244 * We have to move to ctx->orig_thread to unregister ctx->poller. 8245 * However, there is a chance that ctx->poller is executed before 8246 * message is executed, which could result in bdev_open_async_done() 8247 * being called twice. To avoid such race condition, set ctx->rc to 8248 * -ESHUTDOWN. 8249 */ 8250 ctx->rc = -ESHUTDOWN; 8251 spdk_thread_send_msg(ctx->orig_thread, bdev_open_async_cancel, ctx); 8252 } 8253 spdk_spin_unlock(&g_bdev_mgr.spinlock); 8254 } 8255 8256 static int bdev_open_async(void *arg); 8257 8258 static void 8259 _bdev_open_async(struct spdk_bdev_open_async_ctx *ctx) 8260 { 8261 uint64_t timeout_ticks; 8262 8263 if (ctx->rc == -ESHUTDOWN) { 8264 /* This context is being canceled. Do nothing. */ 8265 return; 8266 } 8267 8268 ctx->rc = bdev_open_ext(ctx->bdev_name, ctx->write, ctx->event_cb, ctx->event_ctx, 8269 &ctx->desc); 8270 if (ctx->rc == 0 || ctx->opts.timeout_ms == 0) { 8271 goto exit; 8272 } 8273 8274 timeout_ticks = ctx->start_ticks + ctx->opts.timeout_ms * spdk_get_ticks_hz() / 1000ull; 8275 if (spdk_get_ticks() >= timeout_ticks) { 8276 SPDK_ERRLOG("Timed out while waiting for bdev '%s' to appear\n", ctx->bdev_name); 8277 ctx->rc = -ETIMEDOUT; 8278 goto exit; 8279 } 8280 8281 return; 8282 8283 exit: 8284 spdk_poller_unregister(&ctx->poller); 8285 TAILQ_REMOVE(&g_bdev_mgr.async_bdev_opens, ctx, tailq); 8286 8287 /* Completion callback is processed after stack unwinding. */ 8288 spdk_thread_send_msg(ctx->orig_thread, bdev_open_async_done, ctx); 8289 } 8290 8291 static int 8292 bdev_open_async(void *arg) 8293 { 8294 struct spdk_bdev_open_async_ctx *ctx = arg; 8295 8296 spdk_spin_lock(&g_bdev_mgr.spinlock); 8297 8298 _bdev_open_async(ctx); 8299 8300 spdk_spin_unlock(&g_bdev_mgr.spinlock); 8301 8302 return SPDK_POLLER_BUSY; 8303 } 8304 8305 static void 8306 bdev_open_async_opts_copy(struct spdk_bdev_open_async_opts *opts, 8307 struct spdk_bdev_open_async_opts *opts_src, 8308 size_t size) 8309 { 8310 assert(opts); 8311 assert(opts_src); 8312 8313 opts->size = size; 8314 8315 #define SET_FIELD(field) \ 8316 if (offsetof(struct spdk_bdev_open_async_opts, field) + sizeof(opts->field) <= size) { \ 8317 opts->field = opts_src->field; \ 8318 } \ 8319 8320 SET_FIELD(timeout_ms); 8321 8322 /* Do not remove this statement, you should always update this statement when you adding a new field, 8323 * and do not forget to add the SET_FIELD statement for your added field. */ 8324 SPDK_STATIC_ASSERT(sizeof(struct spdk_bdev_open_async_opts) == 16, "Incorrect size"); 8325 8326 #undef SET_FIELD 8327 } 8328 8329 static void 8330 bdev_open_async_opts_get_default(struct spdk_bdev_open_async_opts *opts, size_t size) 8331 { 8332 assert(opts); 8333 8334 opts->size = size; 8335 8336 #define SET_FIELD(field, value) \ 8337 if (offsetof(struct spdk_bdev_open_async_opts, field) + sizeof(opts->field) <= size) { \ 8338 opts->field = value; \ 8339 } \ 8340 8341 SET_FIELD(timeout_ms, 0); 8342 8343 #undef SET_FIELD 8344 } 8345 8346 int 8347 spdk_bdev_open_async(const char *bdev_name, bool write, spdk_bdev_event_cb_t event_cb, 8348 void *event_ctx, struct spdk_bdev_open_async_opts *opts, 8349 spdk_bdev_open_async_cb_t open_cb, void *open_cb_arg) 8350 { 8351 struct spdk_bdev_open_async_ctx *ctx; 8352 8353 if (event_cb == NULL) { 8354 SPDK_ERRLOG("Missing event callback function\n"); 8355 return -EINVAL; 8356 } 8357 8358 if (open_cb == NULL) { 8359 SPDK_ERRLOG("Missing open callback function\n"); 8360 return -EINVAL; 8361 } 8362 8363 if (opts != NULL && opts->size == 0) { 8364 SPDK_ERRLOG("size in the options structure should not be zero\n"); 8365 return -EINVAL; 8366 } 8367 8368 ctx = calloc(1, sizeof(*ctx)); 8369 if (ctx == NULL) { 8370 SPDK_ERRLOG("Failed to allocate open context\n"); 8371 return -ENOMEM; 8372 } 8373 8374 ctx->bdev_name = strdup(bdev_name); 8375 if (ctx->bdev_name == NULL) { 8376 SPDK_ERRLOG("Failed to duplicate bdev_name\n"); 8377 free(ctx); 8378 return -ENOMEM; 8379 } 8380 8381 ctx->poller = SPDK_POLLER_REGISTER(bdev_open_async, ctx, 100 * 1000); 8382 if (ctx->poller == NULL) { 8383 SPDK_ERRLOG("Failed to register bdev_open_async poller\n"); 8384 free(ctx->bdev_name); 8385 free(ctx); 8386 return -ENOMEM; 8387 } 8388 8389 ctx->cb_fn = open_cb; 8390 ctx->cb_arg = open_cb_arg; 8391 ctx->write = write; 8392 ctx->event_cb = event_cb; 8393 ctx->event_ctx = event_ctx; 8394 ctx->orig_thread = spdk_get_thread(); 8395 ctx->start_ticks = spdk_get_ticks(); 8396 8397 bdev_open_async_opts_get_default(&ctx->opts, sizeof(ctx->opts)); 8398 if (opts != NULL) { 8399 bdev_open_async_opts_copy(&ctx->opts, opts, opts->size); 8400 } 8401 8402 spdk_spin_lock(&g_bdev_mgr.spinlock); 8403 8404 TAILQ_INSERT_TAIL(&g_bdev_mgr.async_bdev_opens, ctx, tailq); 8405 _bdev_open_async(ctx); 8406 8407 spdk_spin_unlock(&g_bdev_mgr.spinlock); 8408 8409 return 0; 8410 } 8411 8412 static void 8413 bdev_close(struct spdk_bdev *bdev, struct spdk_bdev_desc *desc) 8414 { 8415 int rc; 8416 8417 spdk_spin_lock(&bdev->internal.spinlock); 8418 spdk_spin_lock(&desc->spinlock); 8419 8420 TAILQ_REMOVE(&bdev->internal.open_descs, desc, link); 8421 8422 desc->closed = true; 8423 8424 if (desc->claim != NULL) { 8425 bdev_desc_release_claims(desc); 8426 } 8427 8428 if (0 == desc->refs) { 8429 spdk_spin_unlock(&desc->spinlock); 8430 bdev_desc_free(desc); 8431 } else { 8432 spdk_spin_unlock(&desc->spinlock); 8433 } 8434 8435 /* If no more descriptors, kill QoS channel */ 8436 if (bdev->internal.qos && TAILQ_EMPTY(&bdev->internal.open_descs)) { 8437 SPDK_DEBUGLOG(bdev, "Closed last descriptor for bdev %s on thread %p. Stopping QoS.\n", 8438 bdev->name, spdk_get_thread()); 8439 8440 if (bdev_qos_destroy(bdev)) { 8441 /* There isn't anything we can do to recover here. Just let the 8442 * old QoS poller keep running. The QoS handling won't change 8443 * cores when the user allocates a new channel, but it won't break. */ 8444 SPDK_ERRLOG("Unable to shut down QoS poller. It will continue running on the current thread.\n"); 8445 } 8446 } 8447 8448 if (bdev->internal.status == SPDK_BDEV_STATUS_REMOVING && TAILQ_EMPTY(&bdev->internal.open_descs)) { 8449 rc = bdev_unregister_unsafe(bdev); 8450 spdk_spin_unlock(&bdev->internal.spinlock); 8451 8452 if (rc == 0) { 8453 spdk_io_device_unregister(__bdev_to_io_dev(bdev), bdev_destroy_cb); 8454 } 8455 } else { 8456 spdk_spin_unlock(&bdev->internal.spinlock); 8457 } 8458 } 8459 8460 void 8461 spdk_bdev_close(struct spdk_bdev_desc *desc) 8462 { 8463 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 8464 8465 SPDK_DEBUGLOG(bdev, "Closing descriptor %p for bdev %s on thread %p\n", desc, bdev->name, 8466 spdk_get_thread()); 8467 8468 assert(desc->thread == spdk_get_thread()); 8469 8470 spdk_poller_unregister(&desc->io_timeout_poller); 8471 8472 spdk_spin_lock(&g_bdev_mgr.spinlock); 8473 8474 bdev_close(bdev, desc); 8475 8476 spdk_spin_unlock(&g_bdev_mgr.spinlock); 8477 } 8478 8479 static void 8480 bdev_register_finished(void *arg) 8481 { 8482 struct spdk_bdev_desc *desc = arg; 8483 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 8484 8485 spdk_notify_send("bdev_register", spdk_bdev_get_name(bdev)); 8486 8487 spdk_spin_lock(&g_bdev_mgr.spinlock); 8488 8489 bdev_close(bdev, desc); 8490 8491 spdk_spin_unlock(&g_bdev_mgr.spinlock); 8492 } 8493 8494 int 8495 spdk_bdev_register(struct spdk_bdev *bdev) 8496 { 8497 struct spdk_bdev_desc *desc; 8498 struct spdk_thread *thread = spdk_get_thread(); 8499 int rc; 8500 8501 if (spdk_unlikely(!spdk_thread_is_app_thread(NULL))) { 8502 SPDK_ERRLOG("Cannot register bdev %s on thread %p (%s)\n", bdev->name, thread, 8503 thread ? spdk_thread_get_name(thread) : "null"); 8504 return -EINVAL; 8505 } 8506 8507 rc = bdev_register(bdev); 8508 if (rc != 0) { 8509 return rc; 8510 } 8511 8512 /* A descriptor is opened to prevent bdev deletion during examination */ 8513 rc = bdev_desc_alloc(bdev, _tmp_bdev_event_cb, NULL, &desc); 8514 if (rc != 0) { 8515 spdk_bdev_unregister(bdev, NULL, NULL); 8516 return rc; 8517 } 8518 8519 rc = bdev_open(bdev, false, desc); 8520 if (rc != 0) { 8521 bdev_desc_free(desc); 8522 spdk_bdev_unregister(bdev, NULL, NULL); 8523 return rc; 8524 } 8525 8526 /* Examine configuration before initializing I/O */ 8527 bdev_examine(bdev); 8528 8529 rc = spdk_bdev_wait_for_examine(bdev_register_finished, desc); 8530 if (rc != 0) { 8531 bdev_close(bdev, desc); 8532 spdk_bdev_unregister(bdev, NULL, NULL); 8533 } 8534 8535 return rc; 8536 } 8537 8538 int 8539 spdk_bdev_module_claim_bdev(struct spdk_bdev *bdev, struct spdk_bdev_desc *desc, 8540 struct spdk_bdev_module *module) 8541 { 8542 spdk_spin_lock(&bdev->internal.spinlock); 8543 8544 if (bdev->internal.claim_type != SPDK_BDEV_CLAIM_NONE) { 8545 LOG_ALREADY_CLAIMED_ERROR("already claimed", bdev); 8546 spdk_spin_unlock(&bdev->internal.spinlock); 8547 return -EPERM; 8548 } 8549 8550 if (desc && !desc->write) { 8551 desc->write = true; 8552 } 8553 8554 bdev->internal.claim_type = SPDK_BDEV_CLAIM_EXCL_WRITE; 8555 bdev->internal.claim.v1.module = module; 8556 8557 spdk_spin_unlock(&bdev->internal.spinlock); 8558 return 0; 8559 } 8560 8561 void 8562 spdk_bdev_module_release_bdev(struct spdk_bdev *bdev) 8563 { 8564 spdk_spin_lock(&bdev->internal.spinlock); 8565 8566 assert(bdev->internal.claim.v1.module != NULL); 8567 assert(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE); 8568 bdev->internal.claim_type = SPDK_BDEV_CLAIM_NONE; 8569 bdev->internal.claim.v1.module = NULL; 8570 8571 spdk_spin_unlock(&bdev->internal.spinlock); 8572 } 8573 8574 /* 8575 * Start claims v2 8576 */ 8577 8578 const char * 8579 spdk_bdev_claim_get_name(enum spdk_bdev_claim_type type) 8580 { 8581 switch (type) { 8582 case SPDK_BDEV_CLAIM_NONE: 8583 return "not_claimed"; 8584 case SPDK_BDEV_CLAIM_EXCL_WRITE: 8585 return "exclusive_write"; 8586 case SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE: 8587 return "read_many_write_one"; 8588 case SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE: 8589 return "read_many_write_none"; 8590 case SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED: 8591 return "read_many_write_many"; 8592 default: 8593 break; 8594 } 8595 return "invalid_claim"; 8596 } 8597 8598 static bool 8599 claim_type_is_v2(enum spdk_bdev_claim_type type) 8600 { 8601 switch (type) { 8602 case SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE: 8603 case SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE: 8604 case SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED: 8605 return true; 8606 default: 8607 break; 8608 } 8609 return false; 8610 } 8611 8612 /* Returns true if taking a claim with desc->write == false should make the descriptor writable. */ 8613 static bool 8614 claim_type_promotes_to_write(enum spdk_bdev_claim_type type) 8615 { 8616 switch (type) { 8617 case SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE: 8618 case SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED: 8619 return true; 8620 default: 8621 break; 8622 } 8623 return false; 8624 } 8625 8626 void 8627 spdk_bdev_claim_opts_init(struct spdk_bdev_claim_opts *opts, size_t size) 8628 { 8629 if (opts == NULL) { 8630 SPDK_ERRLOG("opts should not be NULL\n"); 8631 assert(opts != NULL); 8632 return; 8633 } 8634 if (size == 0) { 8635 SPDK_ERRLOG("size should not be zero\n"); 8636 assert(size != 0); 8637 return; 8638 } 8639 8640 memset(opts, 0, size); 8641 opts->opts_size = size; 8642 8643 #define FIELD_OK(field) \ 8644 offsetof(struct spdk_bdev_claim_opts, field) + sizeof(opts->field) <= size 8645 8646 #define SET_FIELD(field, value) \ 8647 if (FIELD_OK(field)) { \ 8648 opts->field = value; \ 8649 } \ 8650 8651 SET_FIELD(shared_claim_key, 0); 8652 8653 #undef FIELD_OK 8654 #undef SET_FIELD 8655 } 8656 8657 static int 8658 claim_opts_copy(struct spdk_bdev_claim_opts *src, struct spdk_bdev_claim_opts *dst) 8659 { 8660 if (src->opts_size == 0) { 8661 SPDK_ERRLOG("size should not be zero\n"); 8662 return -1; 8663 } 8664 8665 memset(dst, 0, sizeof(*dst)); 8666 dst->opts_size = src->opts_size; 8667 8668 #define FIELD_OK(field) \ 8669 offsetof(struct spdk_bdev_claim_opts, field) + sizeof(src->field) <= src->opts_size 8670 8671 #define SET_FIELD(field) \ 8672 if (FIELD_OK(field)) { \ 8673 dst->field = src->field; \ 8674 } \ 8675 8676 if (FIELD_OK(name)) { 8677 snprintf(dst->name, sizeof(dst->name), "%s", src->name); 8678 } 8679 8680 SET_FIELD(shared_claim_key); 8681 8682 /* You should not remove this statement, but need to update the assert statement 8683 * if you add a new field, and also add a corresponding SET_FIELD statement */ 8684 SPDK_STATIC_ASSERT(sizeof(struct spdk_bdev_claim_opts) == 48, "Incorrect size"); 8685 8686 #undef FIELD_OK 8687 #undef SET_FIELD 8688 return 0; 8689 } 8690 8691 /* Returns 0 if a read-write-once claim can be taken. */ 8692 static int 8693 claim_verify_rwo(struct spdk_bdev_desc *desc, enum spdk_bdev_claim_type type, 8694 struct spdk_bdev_claim_opts *opts, struct spdk_bdev_module *module) 8695 { 8696 struct spdk_bdev *bdev = desc->bdev; 8697 struct spdk_bdev_desc *open_desc; 8698 8699 assert(spdk_spin_held(&bdev->internal.spinlock)); 8700 assert(type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE); 8701 8702 if (opts->shared_claim_key != 0) { 8703 SPDK_ERRLOG("%s: key option not supported with read-write-once claims\n", 8704 bdev->name); 8705 return -EINVAL; 8706 } 8707 if (bdev->internal.claim_type != SPDK_BDEV_CLAIM_NONE) { 8708 LOG_ALREADY_CLAIMED_ERROR("already claimed", bdev); 8709 return -EPERM; 8710 } 8711 if (desc->claim != NULL) { 8712 SPDK_NOTICELOG("%s: descriptor already claimed bdev with module %s\n", 8713 bdev->name, desc->claim->module->name); 8714 return -EPERM; 8715 } 8716 TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) { 8717 if (desc != open_desc && open_desc->write) { 8718 SPDK_NOTICELOG("%s: Cannot obtain read-write-once claim while " 8719 "another descriptor is open for writing\n", 8720 bdev->name); 8721 return -EPERM; 8722 } 8723 } 8724 8725 return 0; 8726 } 8727 8728 /* Returns 0 if a read-only-many claim can be taken. */ 8729 static int 8730 claim_verify_rom(struct spdk_bdev_desc *desc, enum spdk_bdev_claim_type type, 8731 struct spdk_bdev_claim_opts *opts, struct spdk_bdev_module *module) 8732 { 8733 struct spdk_bdev *bdev = desc->bdev; 8734 struct spdk_bdev_desc *open_desc; 8735 8736 assert(spdk_spin_held(&bdev->internal.spinlock)); 8737 assert(type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE); 8738 assert(desc->claim == NULL); 8739 8740 if (desc->write) { 8741 SPDK_ERRLOG("%s: Cannot obtain read-only-many claim with writable descriptor\n", 8742 bdev->name); 8743 return -EINVAL; 8744 } 8745 if (opts->shared_claim_key != 0) { 8746 SPDK_ERRLOG("%s: key option not supported with read-only-may claims\n", bdev->name); 8747 return -EINVAL; 8748 } 8749 if (bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE) { 8750 TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) { 8751 if (open_desc->write) { 8752 SPDK_NOTICELOG("%s: Cannot obtain read-only-many claim while " 8753 "another descriptor is open for writing\n", 8754 bdev->name); 8755 return -EPERM; 8756 } 8757 } 8758 } 8759 8760 return 0; 8761 } 8762 8763 /* Returns 0 if a read-write-many claim can be taken. */ 8764 static int 8765 claim_verify_rwm(struct spdk_bdev_desc *desc, enum spdk_bdev_claim_type type, 8766 struct spdk_bdev_claim_opts *opts, struct spdk_bdev_module *module) 8767 { 8768 struct spdk_bdev *bdev = desc->bdev; 8769 struct spdk_bdev_desc *open_desc; 8770 8771 assert(spdk_spin_held(&bdev->internal.spinlock)); 8772 assert(type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED); 8773 assert(desc->claim == NULL); 8774 8775 if (opts->shared_claim_key == 0) { 8776 SPDK_ERRLOG("%s: shared_claim_key option required with read-write-may claims\n", 8777 bdev->name); 8778 return -EINVAL; 8779 } 8780 switch (bdev->internal.claim_type) { 8781 case SPDK_BDEV_CLAIM_NONE: 8782 TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) { 8783 if (open_desc == desc) { 8784 continue; 8785 } 8786 if (open_desc->write) { 8787 SPDK_NOTICELOG("%s: Cannot obtain read-write-many claim while " 8788 "another descriptor is open for writing without a " 8789 "claim\n", bdev->name); 8790 return -EPERM; 8791 } 8792 } 8793 break; 8794 case SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED: 8795 if (opts->shared_claim_key != bdev->internal.claim.v2.key) { 8796 LOG_ALREADY_CLAIMED_ERROR("already claimed with another key", bdev); 8797 return -EPERM; 8798 } 8799 break; 8800 default: 8801 LOG_ALREADY_CLAIMED_ERROR("already claimed", bdev); 8802 return -EBUSY; 8803 } 8804 8805 return 0; 8806 } 8807 8808 /* Updates desc and its bdev with a v2 claim. */ 8809 static int 8810 claim_bdev(struct spdk_bdev_desc *desc, enum spdk_bdev_claim_type type, 8811 struct spdk_bdev_claim_opts *opts, struct spdk_bdev_module *module) 8812 { 8813 struct spdk_bdev *bdev = desc->bdev; 8814 struct spdk_bdev_module_claim *claim; 8815 8816 assert(spdk_spin_held(&bdev->internal.spinlock)); 8817 assert(claim_type_is_v2(type)); 8818 assert(desc->claim == NULL); 8819 8820 claim = calloc(1, sizeof(*desc->claim)); 8821 if (claim == NULL) { 8822 SPDK_ERRLOG("%s: out of memory while allocating claim\n", bdev->name); 8823 return -ENOMEM; 8824 } 8825 claim->module = module; 8826 claim->desc = desc; 8827 SPDK_STATIC_ASSERT(sizeof(claim->name) == sizeof(opts->name), "sizes must match"); 8828 memcpy(claim->name, opts->name, sizeof(claim->name)); 8829 desc->claim = claim; 8830 8831 if (bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE) { 8832 bdev->internal.claim_type = type; 8833 TAILQ_INIT(&bdev->internal.claim.v2.claims); 8834 bdev->internal.claim.v2.key = opts->shared_claim_key; 8835 } 8836 assert(type == bdev->internal.claim_type); 8837 8838 TAILQ_INSERT_TAIL(&bdev->internal.claim.v2.claims, claim, link); 8839 8840 if (!desc->write && claim_type_promotes_to_write(type)) { 8841 desc->write = true; 8842 } 8843 8844 return 0; 8845 } 8846 8847 int 8848 spdk_bdev_module_claim_bdev_desc(struct spdk_bdev_desc *desc, enum spdk_bdev_claim_type type, 8849 struct spdk_bdev_claim_opts *_opts, 8850 struct spdk_bdev_module *module) 8851 { 8852 struct spdk_bdev *bdev; 8853 struct spdk_bdev_claim_opts opts; 8854 int rc = 0; 8855 8856 if (desc == NULL) { 8857 SPDK_ERRLOG("descriptor must not be NULL\n"); 8858 return -EINVAL; 8859 } 8860 8861 bdev = desc->bdev; 8862 8863 if (_opts == NULL) { 8864 spdk_bdev_claim_opts_init(&opts, sizeof(opts)); 8865 } else if (claim_opts_copy(_opts, &opts) != 0) { 8866 return -EINVAL; 8867 } 8868 8869 spdk_spin_lock(&bdev->internal.spinlock); 8870 8871 if (bdev->internal.claim_type != SPDK_BDEV_CLAIM_NONE && 8872 bdev->internal.claim_type != type) { 8873 LOG_ALREADY_CLAIMED_ERROR("already claimed", bdev); 8874 spdk_spin_unlock(&bdev->internal.spinlock); 8875 return -EPERM; 8876 } 8877 8878 if (claim_type_is_v2(type) && desc->claim != NULL) { 8879 SPDK_ERRLOG("%s: descriptor already has %s claim with name '%s'\n", 8880 bdev->name, spdk_bdev_claim_get_name(type), desc->claim->name); 8881 spdk_spin_unlock(&bdev->internal.spinlock); 8882 return -EPERM; 8883 } 8884 8885 switch (type) { 8886 case SPDK_BDEV_CLAIM_EXCL_WRITE: 8887 spdk_spin_unlock(&bdev->internal.spinlock); 8888 return spdk_bdev_module_claim_bdev(bdev, desc, module); 8889 case SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE: 8890 rc = claim_verify_rwo(desc, type, &opts, module); 8891 break; 8892 case SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE: 8893 rc = claim_verify_rom(desc, type, &opts, module); 8894 break; 8895 case SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED: 8896 rc = claim_verify_rwm(desc, type, &opts, module); 8897 break; 8898 default: 8899 SPDK_ERRLOG("%s: claim type %d not supported\n", bdev->name, type); 8900 rc = -ENOTSUP; 8901 } 8902 8903 if (rc == 0) { 8904 rc = claim_bdev(desc, type, &opts, module); 8905 } 8906 8907 spdk_spin_unlock(&bdev->internal.spinlock); 8908 return rc; 8909 } 8910 8911 static void 8912 claim_reset(struct spdk_bdev *bdev) 8913 { 8914 assert(spdk_spin_held(&bdev->internal.spinlock)); 8915 assert(claim_type_is_v2(bdev->internal.claim_type)); 8916 assert(TAILQ_EMPTY(&bdev->internal.claim.v2.claims)); 8917 8918 memset(&bdev->internal.claim, 0, sizeof(bdev->internal.claim)); 8919 bdev->internal.claim_type = SPDK_BDEV_CLAIM_NONE; 8920 } 8921 8922 static void 8923 bdev_desc_release_claims(struct spdk_bdev_desc *desc) 8924 { 8925 struct spdk_bdev *bdev = desc->bdev; 8926 8927 assert(spdk_spin_held(&bdev->internal.spinlock)); 8928 assert(claim_type_is_v2(bdev->internal.claim_type)); 8929 8930 if (bdev->internal.examine_in_progress == 0) { 8931 TAILQ_REMOVE(&bdev->internal.claim.v2.claims, desc->claim, link); 8932 free(desc->claim); 8933 if (TAILQ_EMPTY(&bdev->internal.claim.v2.claims)) { 8934 claim_reset(bdev); 8935 } 8936 } else { 8937 /* This is a dead claim that will be cleaned up when bdev_examine() is done. */ 8938 desc->claim->module = NULL; 8939 desc->claim->desc = NULL; 8940 } 8941 desc->claim = NULL; 8942 } 8943 8944 /* 8945 * End claims v2 8946 */ 8947 8948 struct spdk_bdev * 8949 spdk_bdev_desc_get_bdev(struct spdk_bdev_desc *desc) 8950 { 8951 assert(desc != NULL); 8952 return desc->bdev; 8953 } 8954 8955 int 8956 spdk_for_each_bdev(void *ctx, spdk_for_each_bdev_fn fn) 8957 { 8958 struct spdk_bdev *bdev, *tmp; 8959 struct spdk_bdev_desc *desc; 8960 int rc = 0; 8961 8962 assert(fn != NULL); 8963 8964 spdk_spin_lock(&g_bdev_mgr.spinlock); 8965 bdev = spdk_bdev_first(); 8966 while (bdev != NULL) { 8967 rc = bdev_desc_alloc(bdev, _tmp_bdev_event_cb, NULL, &desc); 8968 if (rc != 0) { 8969 break; 8970 } 8971 rc = bdev_open(bdev, false, desc); 8972 if (rc != 0) { 8973 bdev_desc_free(desc); 8974 if (rc == -ENODEV) { 8975 /* Ignore the error and move to the next bdev. */ 8976 rc = 0; 8977 bdev = spdk_bdev_next(bdev); 8978 continue; 8979 } 8980 break; 8981 } 8982 spdk_spin_unlock(&g_bdev_mgr.spinlock); 8983 8984 rc = fn(ctx, bdev); 8985 8986 spdk_spin_lock(&g_bdev_mgr.spinlock); 8987 tmp = spdk_bdev_next(bdev); 8988 bdev_close(bdev, desc); 8989 if (rc != 0) { 8990 break; 8991 } 8992 bdev = tmp; 8993 } 8994 spdk_spin_unlock(&g_bdev_mgr.spinlock); 8995 8996 return rc; 8997 } 8998 8999 int 9000 spdk_for_each_bdev_leaf(void *ctx, spdk_for_each_bdev_fn fn) 9001 { 9002 struct spdk_bdev *bdev, *tmp; 9003 struct spdk_bdev_desc *desc; 9004 int rc = 0; 9005 9006 assert(fn != NULL); 9007 9008 spdk_spin_lock(&g_bdev_mgr.spinlock); 9009 bdev = spdk_bdev_first_leaf(); 9010 while (bdev != NULL) { 9011 rc = bdev_desc_alloc(bdev, _tmp_bdev_event_cb, NULL, &desc); 9012 if (rc != 0) { 9013 break; 9014 } 9015 rc = bdev_open(bdev, false, desc); 9016 if (rc != 0) { 9017 bdev_desc_free(desc); 9018 if (rc == -ENODEV) { 9019 /* Ignore the error and move to the next bdev. */ 9020 rc = 0; 9021 bdev = spdk_bdev_next_leaf(bdev); 9022 continue; 9023 } 9024 break; 9025 } 9026 spdk_spin_unlock(&g_bdev_mgr.spinlock); 9027 9028 rc = fn(ctx, bdev); 9029 9030 spdk_spin_lock(&g_bdev_mgr.spinlock); 9031 tmp = spdk_bdev_next_leaf(bdev); 9032 bdev_close(bdev, desc); 9033 if (rc != 0) { 9034 break; 9035 } 9036 bdev = tmp; 9037 } 9038 spdk_spin_unlock(&g_bdev_mgr.spinlock); 9039 9040 return rc; 9041 } 9042 9043 void 9044 spdk_bdev_io_get_iovec(struct spdk_bdev_io *bdev_io, struct iovec **iovp, int *iovcntp) 9045 { 9046 struct iovec *iovs; 9047 int iovcnt; 9048 9049 if (bdev_io == NULL) { 9050 return; 9051 } 9052 9053 switch (bdev_io->type) { 9054 case SPDK_BDEV_IO_TYPE_READ: 9055 case SPDK_BDEV_IO_TYPE_WRITE: 9056 case SPDK_BDEV_IO_TYPE_ZCOPY: 9057 iovs = bdev_io->u.bdev.iovs; 9058 iovcnt = bdev_io->u.bdev.iovcnt; 9059 break; 9060 default: 9061 iovs = NULL; 9062 iovcnt = 0; 9063 break; 9064 } 9065 9066 if (iovp) { 9067 *iovp = iovs; 9068 } 9069 if (iovcntp) { 9070 *iovcntp = iovcnt; 9071 } 9072 } 9073 9074 void * 9075 spdk_bdev_io_get_md_buf(struct spdk_bdev_io *bdev_io) 9076 { 9077 if (bdev_io == NULL) { 9078 return NULL; 9079 } 9080 9081 if (!spdk_bdev_is_md_separate(bdev_io->bdev)) { 9082 return NULL; 9083 } 9084 9085 if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ || 9086 bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) { 9087 return bdev_io->u.bdev.md_buf; 9088 } 9089 9090 return NULL; 9091 } 9092 9093 void * 9094 spdk_bdev_io_get_cb_arg(struct spdk_bdev_io *bdev_io) 9095 { 9096 if (bdev_io == NULL) { 9097 assert(false); 9098 return NULL; 9099 } 9100 9101 return bdev_io->internal.caller_ctx; 9102 } 9103 9104 void 9105 spdk_bdev_module_list_add(struct spdk_bdev_module *bdev_module) 9106 { 9107 9108 if (spdk_bdev_module_list_find(bdev_module->name)) { 9109 SPDK_ERRLOG("ERROR: module '%s' already registered.\n", bdev_module->name); 9110 assert(false); 9111 } 9112 9113 spdk_spin_init(&bdev_module->internal.spinlock); 9114 TAILQ_INIT(&bdev_module->internal.quiesced_ranges); 9115 9116 /* 9117 * Modules with examine callbacks must be initialized first, so they are 9118 * ready to handle examine callbacks from later modules that will 9119 * register physical bdevs. 9120 */ 9121 if (bdev_module->examine_config != NULL || bdev_module->examine_disk != NULL) { 9122 TAILQ_INSERT_HEAD(&g_bdev_mgr.bdev_modules, bdev_module, internal.tailq); 9123 } else { 9124 TAILQ_INSERT_TAIL(&g_bdev_mgr.bdev_modules, bdev_module, internal.tailq); 9125 } 9126 } 9127 9128 struct spdk_bdev_module * 9129 spdk_bdev_module_list_find(const char *name) 9130 { 9131 struct spdk_bdev_module *bdev_module; 9132 9133 TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, internal.tailq) { 9134 if (strcmp(name, bdev_module->name) == 0) { 9135 break; 9136 } 9137 } 9138 9139 return bdev_module; 9140 } 9141 9142 static int 9143 bdev_write_zero_buffer(struct spdk_bdev_io *bdev_io) 9144 { 9145 uint64_t num_blocks; 9146 void *md_buf = NULL; 9147 9148 num_blocks = bdev_io->u.bdev.num_blocks; 9149 9150 if (spdk_bdev_is_md_separate(bdev_io->bdev)) { 9151 md_buf = (char *)g_bdev_mgr.zero_buffer + 9152 spdk_bdev_get_block_size(bdev_io->bdev) * num_blocks; 9153 } 9154 9155 return bdev_write_blocks_with_md(bdev_io->internal.desc, 9156 spdk_io_channel_from_ctx(bdev_io->internal.ch), 9157 g_bdev_mgr.zero_buffer, md_buf, 9158 bdev_io->u.bdev.offset_blocks, num_blocks, 9159 bdev_write_zero_buffer_done, bdev_io); 9160 } 9161 9162 static void 9163 bdev_write_zero_buffer_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 9164 { 9165 struct spdk_bdev_io *parent_io = cb_arg; 9166 9167 spdk_bdev_free_io(bdev_io); 9168 9169 parent_io->internal.status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED; 9170 parent_io->internal.cb(parent_io, success, parent_io->internal.caller_ctx); 9171 } 9172 9173 static void 9174 bdev_set_qos_limit_done(struct set_qos_limit_ctx *ctx, int status) 9175 { 9176 spdk_spin_lock(&ctx->bdev->internal.spinlock); 9177 ctx->bdev->internal.qos_mod_in_progress = false; 9178 spdk_spin_unlock(&ctx->bdev->internal.spinlock); 9179 9180 if (ctx->cb_fn) { 9181 ctx->cb_fn(ctx->cb_arg, status); 9182 } 9183 free(ctx); 9184 } 9185 9186 static void 9187 bdev_disable_qos_done(void *cb_arg) 9188 { 9189 struct set_qos_limit_ctx *ctx = cb_arg; 9190 struct spdk_bdev *bdev = ctx->bdev; 9191 struct spdk_bdev_qos *qos; 9192 9193 spdk_spin_lock(&bdev->internal.spinlock); 9194 qos = bdev->internal.qos; 9195 bdev->internal.qos = NULL; 9196 spdk_spin_unlock(&bdev->internal.spinlock); 9197 9198 if (qos->thread != NULL) { 9199 spdk_put_io_channel(spdk_io_channel_from_ctx(qos->ch)); 9200 spdk_poller_unregister(&qos->poller); 9201 } 9202 9203 free(qos); 9204 9205 bdev_set_qos_limit_done(ctx, 0); 9206 } 9207 9208 static void 9209 bdev_disable_qos_msg_done(struct spdk_bdev *bdev, void *_ctx, int status) 9210 { 9211 struct set_qos_limit_ctx *ctx = _ctx; 9212 struct spdk_thread *thread; 9213 9214 spdk_spin_lock(&bdev->internal.spinlock); 9215 thread = bdev->internal.qos->thread; 9216 spdk_spin_unlock(&bdev->internal.spinlock); 9217 9218 if (thread != NULL) { 9219 spdk_thread_send_msg(thread, bdev_disable_qos_done, ctx); 9220 } else { 9221 bdev_disable_qos_done(ctx); 9222 } 9223 } 9224 9225 static void 9226 bdev_disable_qos_msg(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 9227 struct spdk_io_channel *ch, void *_ctx) 9228 { 9229 struct spdk_bdev_channel *bdev_ch = __io_ch_to_bdev_ch(ch); 9230 struct spdk_bdev_io *bdev_io; 9231 9232 bdev_ch->flags &= ~BDEV_CH_QOS_ENABLED; 9233 9234 while (!TAILQ_EMPTY(&bdev_ch->qos_queued_io)) { 9235 /* Re-submit the queued I/O. */ 9236 bdev_io = TAILQ_FIRST(&bdev_ch->qos_queued_io); 9237 TAILQ_REMOVE(&bdev_ch->qos_queued_io, bdev_io, internal.link); 9238 _bdev_io_submit(bdev_io); 9239 } 9240 9241 spdk_bdev_for_each_channel_continue(i, 0); 9242 } 9243 9244 static void 9245 bdev_update_qos_rate_limit_msg(void *cb_arg) 9246 { 9247 struct set_qos_limit_ctx *ctx = cb_arg; 9248 struct spdk_bdev *bdev = ctx->bdev; 9249 9250 spdk_spin_lock(&bdev->internal.spinlock); 9251 bdev_qos_update_max_quota_per_timeslice(bdev->internal.qos); 9252 spdk_spin_unlock(&bdev->internal.spinlock); 9253 9254 bdev_set_qos_limit_done(ctx, 0); 9255 } 9256 9257 static void 9258 bdev_enable_qos_msg(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 9259 struct spdk_io_channel *ch, void *_ctx) 9260 { 9261 struct spdk_bdev_channel *bdev_ch = __io_ch_to_bdev_ch(ch); 9262 9263 spdk_spin_lock(&bdev->internal.spinlock); 9264 bdev_enable_qos(bdev, bdev_ch); 9265 spdk_spin_unlock(&bdev->internal.spinlock); 9266 spdk_bdev_for_each_channel_continue(i, 0); 9267 } 9268 9269 static void 9270 bdev_enable_qos_done(struct spdk_bdev *bdev, void *_ctx, int status) 9271 { 9272 struct set_qos_limit_ctx *ctx = _ctx; 9273 9274 bdev_set_qos_limit_done(ctx, status); 9275 } 9276 9277 static void 9278 bdev_set_qos_rate_limits(struct spdk_bdev *bdev, uint64_t *limits) 9279 { 9280 int i; 9281 9282 assert(bdev->internal.qos != NULL); 9283 9284 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 9285 if (limits[i] != SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) { 9286 bdev->internal.qos->rate_limits[i].limit = limits[i]; 9287 9288 if (limits[i] == 0) { 9289 bdev->internal.qos->rate_limits[i].limit = 9290 SPDK_BDEV_QOS_LIMIT_NOT_DEFINED; 9291 } 9292 } 9293 } 9294 } 9295 9296 void 9297 spdk_bdev_set_qos_rate_limits(struct spdk_bdev *bdev, uint64_t *limits, 9298 void (*cb_fn)(void *cb_arg, int status), void *cb_arg) 9299 { 9300 struct set_qos_limit_ctx *ctx; 9301 uint32_t limit_set_complement; 9302 uint64_t min_limit_per_sec; 9303 int i; 9304 bool disable_rate_limit = true; 9305 9306 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 9307 if (limits[i] == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) { 9308 continue; 9309 } 9310 9311 if (limits[i] > 0) { 9312 disable_rate_limit = false; 9313 } 9314 9315 if (bdev_qos_is_iops_rate_limit(i) == true) { 9316 min_limit_per_sec = SPDK_BDEV_QOS_MIN_IOS_PER_SEC; 9317 } else { 9318 if (limits[i] > SPDK_BDEV_QOS_MAX_MBYTES_PER_SEC) { 9319 SPDK_WARNLOG("Requested rate limit %" PRIu64 " will result in uint64_t overflow, " 9320 "reset to %" PRIu64 "\n", limits[i], SPDK_BDEV_QOS_MAX_MBYTES_PER_SEC); 9321 limits[i] = SPDK_BDEV_QOS_MAX_MBYTES_PER_SEC; 9322 } 9323 /* Change from megabyte to byte rate limit */ 9324 limits[i] = limits[i] * 1024 * 1024; 9325 min_limit_per_sec = SPDK_BDEV_QOS_MIN_BYTES_PER_SEC; 9326 } 9327 9328 limit_set_complement = limits[i] % min_limit_per_sec; 9329 if (limit_set_complement) { 9330 SPDK_ERRLOG("Requested rate limit %" PRIu64 " is not a multiple of %" PRIu64 "\n", 9331 limits[i], min_limit_per_sec); 9332 limits[i] += min_limit_per_sec - limit_set_complement; 9333 SPDK_ERRLOG("Round up the rate limit to %" PRIu64 "\n", limits[i]); 9334 } 9335 } 9336 9337 ctx = calloc(1, sizeof(*ctx)); 9338 if (ctx == NULL) { 9339 cb_fn(cb_arg, -ENOMEM); 9340 return; 9341 } 9342 9343 ctx->cb_fn = cb_fn; 9344 ctx->cb_arg = cb_arg; 9345 ctx->bdev = bdev; 9346 9347 spdk_spin_lock(&bdev->internal.spinlock); 9348 if (bdev->internal.qos_mod_in_progress) { 9349 spdk_spin_unlock(&bdev->internal.spinlock); 9350 free(ctx); 9351 cb_fn(cb_arg, -EAGAIN); 9352 return; 9353 } 9354 bdev->internal.qos_mod_in_progress = true; 9355 9356 if (disable_rate_limit == true && bdev->internal.qos) { 9357 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 9358 if (limits[i] == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED && 9359 (bdev->internal.qos->rate_limits[i].limit > 0 && 9360 bdev->internal.qos->rate_limits[i].limit != 9361 SPDK_BDEV_QOS_LIMIT_NOT_DEFINED)) { 9362 disable_rate_limit = false; 9363 break; 9364 } 9365 } 9366 } 9367 9368 if (disable_rate_limit == false) { 9369 if (bdev->internal.qos == NULL) { 9370 bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos)); 9371 if (!bdev->internal.qos) { 9372 spdk_spin_unlock(&bdev->internal.spinlock); 9373 SPDK_ERRLOG("Unable to allocate memory for QoS tracking\n"); 9374 bdev_set_qos_limit_done(ctx, -ENOMEM); 9375 return; 9376 } 9377 } 9378 9379 if (bdev->internal.qos->thread == NULL) { 9380 /* Enabling */ 9381 bdev_set_qos_rate_limits(bdev, limits); 9382 9383 spdk_bdev_for_each_channel(bdev, bdev_enable_qos_msg, ctx, 9384 bdev_enable_qos_done); 9385 } else { 9386 /* Updating */ 9387 bdev_set_qos_rate_limits(bdev, limits); 9388 9389 spdk_thread_send_msg(bdev->internal.qos->thread, 9390 bdev_update_qos_rate_limit_msg, ctx); 9391 } 9392 } else { 9393 if (bdev->internal.qos != NULL) { 9394 bdev_set_qos_rate_limits(bdev, limits); 9395 9396 /* Disabling */ 9397 spdk_bdev_for_each_channel(bdev, bdev_disable_qos_msg, ctx, 9398 bdev_disable_qos_msg_done); 9399 } else { 9400 spdk_spin_unlock(&bdev->internal.spinlock); 9401 bdev_set_qos_limit_done(ctx, 0); 9402 return; 9403 } 9404 } 9405 9406 spdk_spin_unlock(&bdev->internal.spinlock); 9407 } 9408 9409 struct spdk_bdev_histogram_ctx { 9410 spdk_bdev_histogram_status_cb cb_fn; 9411 void *cb_arg; 9412 struct spdk_bdev *bdev; 9413 int status; 9414 }; 9415 9416 static void 9417 bdev_histogram_disable_channel_cb(struct spdk_bdev *bdev, void *_ctx, int status) 9418 { 9419 struct spdk_bdev_histogram_ctx *ctx = _ctx; 9420 9421 spdk_spin_lock(&ctx->bdev->internal.spinlock); 9422 ctx->bdev->internal.histogram_in_progress = false; 9423 spdk_spin_unlock(&ctx->bdev->internal.spinlock); 9424 ctx->cb_fn(ctx->cb_arg, ctx->status); 9425 free(ctx); 9426 } 9427 9428 static void 9429 bdev_histogram_disable_channel(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 9430 struct spdk_io_channel *_ch, void *_ctx) 9431 { 9432 struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(_ch); 9433 9434 if (ch->histogram != NULL) { 9435 spdk_histogram_data_free(ch->histogram); 9436 ch->histogram = NULL; 9437 } 9438 spdk_bdev_for_each_channel_continue(i, 0); 9439 } 9440 9441 static void 9442 bdev_histogram_enable_channel_cb(struct spdk_bdev *bdev, void *_ctx, int status) 9443 { 9444 struct spdk_bdev_histogram_ctx *ctx = _ctx; 9445 9446 if (status != 0) { 9447 ctx->status = status; 9448 ctx->bdev->internal.histogram_enabled = false; 9449 spdk_bdev_for_each_channel(ctx->bdev, bdev_histogram_disable_channel, ctx, 9450 bdev_histogram_disable_channel_cb); 9451 } else { 9452 spdk_spin_lock(&ctx->bdev->internal.spinlock); 9453 ctx->bdev->internal.histogram_in_progress = false; 9454 spdk_spin_unlock(&ctx->bdev->internal.spinlock); 9455 ctx->cb_fn(ctx->cb_arg, ctx->status); 9456 free(ctx); 9457 } 9458 } 9459 9460 static void 9461 bdev_histogram_enable_channel(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 9462 struct spdk_io_channel *_ch, void *_ctx) 9463 { 9464 struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(_ch); 9465 int status = 0; 9466 9467 if (ch->histogram == NULL) { 9468 ch->histogram = spdk_histogram_data_alloc(); 9469 if (ch->histogram == NULL) { 9470 status = -ENOMEM; 9471 } 9472 } 9473 9474 spdk_bdev_for_each_channel_continue(i, status); 9475 } 9476 9477 void 9478 spdk_bdev_histogram_enable(struct spdk_bdev *bdev, spdk_bdev_histogram_status_cb cb_fn, 9479 void *cb_arg, bool enable) 9480 { 9481 struct spdk_bdev_histogram_ctx *ctx; 9482 9483 ctx = calloc(1, sizeof(struct spdk_bdev_histogram_ctx)); 9484 if (ctx == NULL) { 9485 cb_fn(cb_arg, -ENOMEM); 9486 return; 9487 } 9488 9489 ctx->bdev = bdev; 9490 ctx->status = 0; 9491 ctx->cb_fn = cb_fn; 9492 ctx->cb_arg = cb_arg; 9493 9494 spdk_spin_lock(&bdev->internal.spinlock); 9495 if (bdev->internal.histogram_in_progress) { 9496 spdk_spin_unlock(&bdev->internal.spinlock); 9497 free(ctx); 9498 cb_fn(cb_arg, -EAGAIN); 9499 return; 9500 } 9501 9502 bdev->internal.histogram_in_progress = true; 9503 spdk_spin_unlock(&bdev->internal.spinlock); 9504 9505 bdev->internal.histogram_enabled = enable; 9506 9507 if (enable) { 9508 /* Allocate histogram for each channel */ 9509 spdk_bdev_for_each_channel(bdev, bdev_histogram_enable_channel, ctx, 9510 bdev_histogram_enable_channel_cb); 9511 } else { 9512 spdk_bdev_for_each_channel(bdev, bdev_histogram_disable_channel, ctx, 9513 bdev_histogram_disable_channel_cb); 9514 } 9515 } 9516 9517 struct spdk_bdev_histogram_data_ctx { 9518 spdk_bdev_histogram_data_cb cb_fn; 9519 void *cb_arg; 9520 struct spdk_bdev *bdev; 9521 /** merged histogram data from all channels */ 9522 struct spdk_histogram_data *histogram; 9523 }; 9524 9525 static void 9526 bdev_histogram_get_channel_cb(struct spdk_bdev *bdev, void *_ctx, int status) 9527 { 9528 struct spdk_bdev_histogram_data_ctx *ctx = _ctx; 9529 9530 ctx->cb_fn(ctx->cb_arg, status, ctx->histogram); 9531 free(ctx); 9532 } 9533 9534 static void 9535 bdev_histogram_get_channel(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 9536 struct spdk_io_channel *_ch, void *_ctx) 9537 { 9538 struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(_ch); 9539 struct spdk_bdev_histogram_data_ctx *ctx = _ctx; 9540 int status = 0; 9541 9542 if (ch->histogram == NULL) { 9543 status = -EFAULT; 9544 } else { 9545 spdk_histogram_data_merge(ctx->histogram, ch->histogram); 9546 } 9547 9548 spdk_bdev_for_each_channel_continue(i, status); 9549 } 9550 9551 void 9552 spdk_bdev_histogram_get(struct spdk_bdev *bdev, struct spdk_histogram_data *histogram, 9553 spdk_bdev_histogram_data_cb cb_fn, 9554 void *cb_arg) 9555 { 9556 struct spdk_bdev_histogram_data_ctx *ctx; 9557 9558 ctx = calloc(1, sizeof(struct spdk_bdev_histogram_data_ctx)); 9559 if (ctx == NULL) { 9560 cb_fn(cb_arg, -ENOMEM, NULL); 9561 return; 9562 } 9563 9564 ctx->bdev = bdev; 9565 ctx->cb_fn = cb_fn; 9566 ctx->cb_arg = cb_arg; 9567 9568 ctx->histogram = histogram; 9569 9570 spdk_bdev_for_each_channel(bdev, bdev_histogram_get_channel, ctx, 9571 bdev_histogram_get_channel_cb); 9572 } 9573 9574 void 9575 spdk_bdev_channel_get_histogram(struct spdk_io_channel *ch, spdk_bdev_histogram_data_cb cb_fn, 9576 void *cb_arg) 9577 { 9578 struct spdk_bdev_channel *bdev_ch = __io_ch_to_bdev_ch(ch); 9579 int status = 0; 9580 9581 assert(cb_fn != NULL); 9582 9583 if (bdev_ch->histogram == NULL) { 9584 status = -EFAULT; 9585 } 9586 cb_fn(cb_arg, status, bdev_ch->histogram); 9587 } 9588 9589 size_t 9590 spdk_bdev_get_media_events(struct spdk_bdev_desc *desc, struct spdk_bdev_media_event *events, 9591 size_t max_events) 9592 { 9593 struct media_event_entry *entry; 9594 size_t num_events = 0; 9595 9596 for (; num_events < max_events; ++num_events) { 9597 entry = TAILQ_FIRST(&desc->pending_media_events); 9598 if (entry == NULL) { 9599 break; 9600 } 9601 9602 events[num_events] = entry->event; 9603 TAILQ_REMOVE(&desc->pending_media_events, entry, tailq); 9604 TAILQ_INSERT_TAIL(&desc->free_media_events, entry, tailq); 9605 } 9606 9607 return num_events; 9608 } 9609 9610 int 9611 spdk_bdev_push_media_events(struct spdk_bdev *bdev, const struct spdk_bdev_media_event *events, 9612 size_t num_events) 9613 { 9614 struct spdk_bdev_desc *desc; 9615 struct media_event_entry *entry; 9616 size_t event_id; 9617 int rc = 0; 9618 9619 assert(bdev->media_events); 9620 9621 spdk_spin_lock(&bdev->internal.spinlock); 9622 TAILQ_FOREACH(desc, &bdev->internal.open_descs, link) { 9623 if (desc->write) { 9624 break; 9625 } 9626 } 9627 9628 if (desc == NULL || desc->media_events_buffer == NULL) { 9629 rc = -ENODEV; 9630 goto out; 9631 } 9632 9633 for (event_id = 0; event_id < num_events; ++event_id) { 9634 entry = TAILQ_FIRST(&desc->free_media_events); 9635 if (entry == NULL) { 9636 break; 9637 } 9638 9639 TAILQ_REMOVE(&desc->free_media_events, entry, tailq); 9640 TAILQ_INSERT_TAIL(&desc->pending_media_events, entry, tailq); 9641 entry->event = events[event_id]; 9642 } 9643 9644 rc = event_id; 9645 out: 9646 spdk_spin_unlock(&bdev->internal.spinlock); 9647 return rc; 9648 } 9649 9650 static void 9651 _media_management_notify(void *arg) 9652 { 9653 struct spdk_bdev_desc *desc = arg; 9654 9655 _event_notify(desc, SPDK_BDEV_EVENT_MEDIA_MANAGEMENT); 9656 } 9657 9658 void 9659 spdk_bdev_notify_media_management(struct spdk_bdev *bdev) 9660 { 9661 struct spdk_bdev_desc *desc; 9662 9663 spdk_spin_lock(&bdev->internal.spinlock); 9664 TAILQ_FOREACH(desc, &bdev->internal.open_descs, link) { 9665 if (!TAILQ_EMPTY(&desc->pending_media_events)) { 9666 event_notify(desc, _media_management_notify); 9667 } 9668 } 9669 spdk_spin_unlock(&bdev->internal.spinlock); 9670 } 9671 9672 struct locked_lba_range_ctx { 9673 struct lba_range range; 9674 struct lba_range *current_range; 9675 struct lba_range *owner_range; 9676 struct spdk_poller *poller; 9677 lock_range_cb cb_fn; 9678 void *cb_arg; 9679 }; 9680 9681 static void 9682 bdev_lock_error_cleanup_cb(struct spdk_bdev *bdev, void *_ctx, int status) 9683 { 9684 struct locked_lba_range_ctx *ctx = _ctx; 9685 9686 ctx->cb_fn(&ctx->range, ctx->cb_arg, -ENOMEM); 9687 free(ctx); 9688 } 9689 9690 static void bdev_unlock_lba_range_get_channel(struct spdk_bdev_channel_iter *i, 9691 struct spdk_bdev *bdev, struct spdk_io_channel *ch, void *_ctx); 9692 9693 static void 9694 bdev_lock_lba_range_cb(struct spdk_bdev *bdev, void *_ctx, int status) 9695 { 9696 struct locked_lba_range_ctx *ctx = _ctx; 9697 9698 if (status == -ENOMEM) { 9699 /* One of the channels could not allocate a range object. 9700 * So we have to go back and clean up any ranges that were 9701 * allocated successfully before we return error status to 9702 * the caller. We can reuse the unlock function to do that 9703 * clean up. 9704 */ 9705 spdk_bdev_for_each_channel(bdev, bdev_unlock_lba_range_get_channel, ctx, 9706 bdev_lock_error_cleanup_cb); 9707 return; 9708 } 9709 9710 /* All channels have locked this range and no I/O overlapping the range 9711 * are outstanding! Set the owner_ch for the range object for the 9712 * locking channel, so that this channel will know that it is allowed 9713 * to write to this range. 9714 */ 9715 if (ctx->owner_range != NULL) { 9716 ctx->owner_range->owner_ch = ctx->range.owner_ch; 9717 } 9718 9719 ctx->cb_fn(&ctx->range, ctx->cb_arg, status); 9720 9721 /* Don't free the ctx here. Its range is in the bdev's global list of 9722 * locked ranges still, and will be removed and freed when this range 9723 * is later unlocked. 9724 */ 9725 } 9726 9727 static int 9728 bdev_lock_lba_range_check_io(void *_i) 9729 { 9730 struct spdk_bdev_channel_iter *i = _i; 9731 struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i->i); 9732 struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(_ch); 9733 struct locked_lba_range_ctx *ctx = i->ctx; 9734 struct lba_range *range = ctx->current_range; 9735 struct spdk_bdev_io *bdev_io; 9736 9737 spdk_poller_unregister(&ctx->poller); 9738 9739 /* The range is now in the locked_ranges, so no new IO can be submitted to this 9740 * range. But we need to wait until any outstanding IO overlapping with this range 9741 * are completed. 9742 */ 9743 TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) { 9744 if (bdev_io_range_is_locked(bdev_io, range)) { 9745 ctx->poller = SPDK_POLLER_REGISTER(bdev_lock_lba_range_check_io, i, 100); 9746 return SPDK_POLLER_BUSY; 9747 } 9748 } 9749 9750 spdk_bdev_for_each_channel_continue(i, 0); 9751 return SPDK_POLLER_BUSY; 9752 } 9753 9754 static void 9755 bdev_lock_lba_range_get_channel(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 9756 struct spdk_io_channel *_ch, void *_ctx) 9757 { 9758 struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(_ch); 9759 struct locked_lba_range_ctx *ctx = _ctx; 9760 struct lba_range *range; 9761 9762 TAILQ_FOREACH(range, &ch->locked_ranges, tailq) { 9763 if (range->length == ctx->range.length && 9764 range->offset == ctx->range.offset && 9765 range->locked_ctx == ctx->range.locked_ctx) { 9766 /* This range already exists on this channel, so don't add 9767 * it again. This can happen when a new channel is created 9768 * while the for_each_channel operation is in progress. 9769 * Do not check for outstanding I/O in that case, since the 9770 * range was locked before any I/O could be submitted to the 9771 * new channel. 9772 */ 9773 spdk_bdev_for_each_channel_continue(i, 0); 9774 return; 9775 } 9776 } 9777 9778 range = calloc(1, sizeof(*range)); 9779 if (range == NULL) { 9780 spdk_bdev_for_each_channel_continue(i, -ENOMEM); 9781 return; 9782 } 9783 9784 range->length = ctx->range.length; 9785 range->offset = ctx->range.offset; 9786 range->locked_ctx = ctx->range.locked_ctx; 9787 range->quiesce = ctx->range.quiesce; 9788 ctx->current_range = range; 9789 if (ctx->range.owner_ch == ch) { 9790 /* This is the range object for the channel that will hold 9791 * the lock. Store it in the ctx object so that we can easily 9792 * set its owner_ch after the lock is finally acquired. 9793 */ 9794 ctx->owner_range = range; 9795 } 9796 TAILQ_INSERT_TAIL(&ch->locked_ranges, range, tailq); 9797 bdev_lock_lba_range_check_io(i); 9798 } 9799 9800 static void 9801 bdev_lock_lba_range_ctx(struct spdk_bdev *bdev, struct locked_lba_range_ctx *ctx) 9802 { 9803 assert(spdk_get_thread() == ctx->range.owner_thread); 9804 assert(ctx->range.owner_ch == NULL || 9805 spdk_io_channel_get_thread(ctx->range.owner_ch->channel) == ctx->range.owner_thread); 9806 9807 /* We will add a copy of this range to each channel now. */ 9808 spdk_bdev_for_each_channel(bdev, bdev_lock_lba_range_get_channel, ctx, 9809 bdev_lock_lba_range_cb); 9810 } 9811 9812 static bool 9813 bdev_lba_range_overlaps_tailq(struct lba_range *range, lba_range_tailq_t *tailq) 9814 { 9815 struct lba_range *r; 9816 9817 TAILQ_FOREACH(r, tailq, tailq) { 9818 if (bdev_lba_range_overlapped(range, r)) { 9819 return true; 9820 } 9821 } 9822 return false; 9823 } 9824 9825 static void bdev_quiesce_range_locked(struct lba_range *range, void *ctx, int status); 9826 9827 static int 9828 _bdev_lock_lba_range(struct spdk_bdev *bdev, struct spdk_bdev_channel *ch, 9829 uint64_t offset, uint64_t length, 9830 lock_range_cb cb_fn, void *cb_arg) 9831 { 9832 struct locked_lba_range_ctx *ctx; 9833 9834 ctx = calloc(1, sizeof(*ctx)); 9835 if (ctx == NULL) { 9836 return -ENOMEM; 9837 } 9838 9839 ctx->range.offset = offset; 9840 ctx->range.length = length; 9841 ctx->range.owner_thread = spdk_get_thread(); 9842 ctx->range.owner_ch = ch; 9843 ctx->range.locked_ctx = cb_arg; 9844 ctx->range.bdev = bdev; 9845 ctx->range.quiesce = (cb_fn == bdev_quiesce_range_locked); 9846 ctx->cb_fn = cb_fn; 9847 ctx->cb_arg = cb_arg; 9848 9849 spdk_spin_lock(&bdev->internal.spinlock); 9850 if (bdev_lba_range_overlaps_tailq(&ctx->range, &bdev->internal.locked_ranges)) { 9851 /* There is an active lock overlapping with this range. 9852 * Put it on the pending list until this range no 9853 * longer overlaps with another. 9854 */ 9855 TAILQ_INSERT_TAIL(&bdev->internal.pending_locked_ranges, &ctx->range, tailq); 9856 } else { 9857 TAILQ_INSERT_TAIL(&bdev->internal.locked_ranges, &ctx->range, tailq); 9858 bdev_lock_lba_range_ctx(bdev, ctx); 9859 } 9860 spdk_spin_unlock(&bdev->internal.spinlock); 9861 return 0; 9862 } 9863 9864 static int 9865 bdev_lock_lba_range(struct spdk_bdev_desc *desc, struct spdk_io_channel *_ch, 9866 uint64_t offset, uint64_t length, 9867 lock_range_cb cb_fn, void *cb_arg) 9868 { 9869 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 9870 struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(_ch); 9871 9872 if (cb_arg == NULL) { 9873 SPDK_ERRLOG("cb_arg must not be NULL\n"); 9874 return -EINVAL; 9875 } 9876 9877 return _bdev_lock_lba_range(bdev, ch, offset, length, cb_fn, cb_arg); 9878 } 9879 9880 static void 9881 bdev_lock_lba_range_ctx_msg(void *_ctx) 9882 { 9883 struct locked_lba_range_ctx *ctx = _ctx; 9884 9885 bdev_lock_lba_range_ctx(ctx->range.bdev, ctx); 9886 } 9887 9888 static void 9889 bdev_unlock_lba_range_cb(struct spdk_bdev *bdev, void *_ctx, int status) 9890 { 9891 struct locked_lba_range_ctx *ctx = _ctx; 9892 struct locked_lba_range_ctx *pending_ctx; 9893 struct lba_range *range, *tmp; 9894 9895 spdk_spin_lock(&bdev->internal.spinlock); 9896 /* Check if there are any pending locked ranges that overlap with this range 9897 * that was just unlocked. If there are, check that it doesn't overlap with any 9898 * other locked ranges before calling bdev_lock_lba_range_ctx which will start 9899 * the lock process. 9900 */ 9901 TAILQ_FOREACH_SAFE(range, &bdev->internal.pending_locked_ranges, tailq, tmp) { 9902 if (bdev_lba_range_overlapped(range, &ctx->range) && 9903 !bdev_lba_range_overlaps_tailq(range, &bdev->internal.locked_ranges)) { 9904 TAILQ_REMOVE(&bdev->internal.pending_locked_ranges, range, tailq); 9905 pending_ctx = SPDK_CONTAINEROF(range, struct locked_lba_range_ctx, range); 9906 TAILQ_INSERT_TAIL(&bdev->internal.locked_ranges, range, tailq); 9907 spdk_thread_send_msg(pending_ctx->range.owner_thread, 9908 bdev_lock_lba_range_ctx_msg, pending_ctx); 9909 } 9910 } 9911 spdk_spin_unlock(&bdev->internal.spinlock); 9912 9913 ctx->cb_fn(&ctx->range, ctx->cb_arg, status); 9914 free(ctx); 9915 } 9916 9917 static void 9918 bdev_unlock_lba_range_get_channel(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 9919 struct spdk_io_channel *_ch, void *_ctx) 9920 { 9921 struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(_ch); 9922 struct locked_lba_range_ctx *ctx = _ctx; 9923 TAILQ_HEAD(, spdk_bdev_io) io_locked; 9924 struct spdk_bdev_io *bdev_io; 9925 struct lba_range *range; 9926 9927 TAILQ_FOREACH(range, &ch->locked_ranges, tailq) { 9928 if (ctx->range.offset == range->offset && 9929 ctx->range.length == range->length && 9930 ctx->range.locked_ctx == range->locked_ctx) { 9931 TAILQ_REMOVE(&ch->locked_ranges, range, tailq); 9932 free(range); 9933 break; 9934 } 9935 } 9936 9937 /* Note: we should almost always be able to assert that the range specified 9938 * was found. But there are some very rare corner cases where a new channel 9939 * gets created simultaneously with a range unlock, where this function 9940 * would execute on that new channel and wouldn't have the range. 9941 * We also use this to clean up range allocations when a later allocation 9942 * fails in the locking path. 9943 * So we can't actually assert() here. 9944 */ 9945 9946 /* Swap the locked IO into a temporary list, and then try to submit them again. 9947 * We could hyper-optimize this to only resubmit locked I/O that overlap 9948 * with the range that was just unlocked, but this isn't a performance path so 9949 * we go for simplicity here. 9950 */ 9951 TAILQ_INIT(&io_locked); 9952 TAILQ_SWAP(&ch->io_locked, &io_locked, spdk_bdev_io, internal.ch_link); 9953 while (!TAILQ_EMPTY(&io_locked)) { 9954 bdev_io = TAILQ_FIRST(&io_locked); 9955 TAILQ_REMOVE(&io_locked, bdev_io, internal.ch_link); 9956 bdev_io_submit(bdev_io); 9957 } 9958 9959 spdk_bdev_for_each_channel_continue(i, 0); 9960 } 9961 9962 static int 9963 _bdev_unlock_lba_range(struct spdk_bdev *bdev, uint64_t offset, uint64_t length, 9964 lock_range_cb cb_fn, void *cb_arg) 9965 { 9966 struct locked_lba_range_ctx *ctx; 9967 struct lba_range *range; 9968 9969 spdk_spin_lock(&bdev->internal.spinlock); 9970 /* To start the unlock the process, we find the range in the bdev's locked_ranges 9971 * and remove it. This ensures new channels don't inherit the locked range. 9972 * Then we will send a message to each channel to remove the range from its 9973 * per-channel list. 9974 */ 9975 TAILQ_FOREACH(range, &bdev->internal.locked_ranges, tailq) { 9976 if (range->offset == offset && range->length == length && 9977 (range->owner_ch == NULL || range->locked_ctx == cb_arg)) { 9978 break; 9979 } 9980 } 9981 if (range == NULL) { 9982 assert(false); 9983 spdk_spin_unlock(&bdev->internal.spinlock); 9984 return -EINVAL; 9985 } 9986 TAILQ_REMOVE(&bdev->internal.locked_ranges, range, tailq); 9987 ctx = SPDK_CONTAINEROF(range, struct locked_lba_range_ctx, range); 9988 spdk_spin_unlock(&bdev->internal.spinlock); 9989 9990 ctx->cb_fn = cb_fn; 9991 ctx->cb_arg = cb_arg; 9992 9993 spdk_bdev_for_each_channel(bdev, bdev_unlock_lba_range_get_channel, ctx, 9994 bdev_unlock_lba_range_cb); 9995 return 0; 9996 } 9997 9998 static int 9999 bdev_unlock_lba_range(struct spdk_bdev_desc *desc, struct spdk_io_channel *_ch, 10000 uint64_t offset, uint64_t length, 10001 lock_range_cb cb_fn, void *cb_arg) 10002 { 10003 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 10004 struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(_ch); 10005 struct lba_range *range; 10006 bool range_found = false; 10007 10008 /* Let's make sure the specified channel actually has a lock on 10009 * the specified range. Note that the range must match exactly. 10010 */ 10011 TAILQ_FOREACH(range, &ch->locked_ranges, tailq) { 10012 if (range->offset == offset && range->length == length && 10013 range->owner_ch == ch && range->locked_ctx == cb_arg) { 10014 range_found = true; 10015 break; 10016 } 10017 } 10018 10019 if (!range_found) { 10020 return -EINVAL; 10021 } 10022 10023 return _bdev_unlock_lba_range(bdev, offset, length, cb_fn, cb_arg); 10024 } 10025 10026 struct bdev_quiesce_ctx { 10027 spdk_bdev_quiesce_cb cb_fn; 10028 void *cb_arg; 10029 }; 10030 10031 static void 10032 bdev_unquiesce_range_unlocked(struct lba_range *range, void *ctx, int status) 10033 { 10034 struct bdev_quiesce_ctx *quiesce_ctx = ctx; 10035 10036 if (quiesce_ctx->cb_fn != NULL) { 10037 quiesce_ctx->cb_fn(quiesce_ctx->cb_arg, status); 10038 } 10039 10040 free(quiesce_ctx); 10041 } 10042 10043 static void 10044 bdev_quiesce_range_locked(struct lba_range *range, void *ctx, int status) 10045 { 10046 struct bdev_quiesce_ctx *quiesce_ctx = ctx; 10047 struct spdk_bdev_module *module = range->bdev->module; 10048 10049 if (status != 0) { 10050 if (quiesce_ctx->cb_fn != NULL) { 10051 quiesce_ctx->cb_fn(quiesce_ctx->cb_arg, status); 10052 } 10053 free(quiesce_ctx); 10054 return; 10055 } 10056 10057 spdk_spin_lock(&module->internal.spinlock); 10058 TAILQ_INSERT_TAIL(&module->internal.quiesced_ranges, range, tailq_module); 10059 spdk_spin_unlock(&module->internal.spinlock); 10060 10061 if (quiesce_ctx->cb_fn != NULL) { 10062 /* copy the context in case the range is unlocked by the callback */ 10063 struct bdev_quiesce_ctx tmp = *quiesce_ctx; 10064 10065 quiesce_ctx->cb_fn = NULL; 10066 quiesce_ctx->cb_arg = NULL; 10067 10068 tmp.cb_fn(tmp.cb_arg, status); 10069 } 10070 /* quiesce_ctx will be freed on unquiesce */ 10071 } 10072 10073 static int 10074 _spdk_bdev_quiesce(struct spdk_bdev *bdev, struct spdk_bdev_module *module, 10075 uint64_t offset, uint64_t length, 10076 spdk_bdev_quiesce_cb cb_fn, void *cb_arg, 10077 bool unquiesce) 10078 { 10079 struct bdev_quiesce_ctx *quiesce_ctx; 10080 int rc; 10081 10082 if (module != bdev->module) { 10083 SPDK_ERRLOG("Bdev does not belong to specified module.\n"); 10084 return -EINVAL; 10085 } 10086 10087 if (!bdev_io_valid_blocks(bdev, offset, length)) { 10088 return -EINVAL; 10089 } 10090 10091 if (unquiesce) { 10092 struct lba_range *range; 10093 10094 /* Make sure the specified range is actually quiesced in the specified module and 10095 * then remove it from the list. Note that the range must match exactly. 10096 */ 10097 spdk_spin_lock(&module->internal.spinlock); 10098 TAILQ_FOREACH(range, &module->internal.quiesced_ranges, tailq_module) { 10099 if (range->bdev == bdev && range->offset == offset && range->length == length) { 10100 TAILQ_REMOVE(&module->internal.quiesced_ranges, range, tailq_module); 10101 break; 10102 } 10103 } 10104 spdk_spin_unlock(&module->internal.spinlock); 10105 10106 if (range == NULL) { 10107 SPDK_ERRLOG("The range to unquiesce was not found.\n"); 10108 return -EINVAL; 10109 } 10110 10111 quiesce_ctx = range->locked_ctx; 10112 quiesce_ctx->cb_fn = cb_fn; 10113 quiesce_ctx->cb_arg = cb_arg; 10114 10115 rc = _bdev_unlock_lba_range(bdev, offset, length, bdev_unquiesce_range_unlocked, quiesce_ctx); 10116 } else { 10117 quiesce_ctx = malloc(sizeof(*quiesce_ctx)); 10118 if (quiesce_ctx == NULL) { 10119 return -ENOMEM; 10120 } 10121 10122 quiesce_ctx->cb_fn = cb_fn; 10123 quiesce_ctx->cb_arg = cb_arg; 10124 10125 rc = _bdev_lock_lba_range(bdev, NULL, offset, length, bdev_quiesce_range_locked, quiesce_ctx); 10126 if (rc != 0) { 10127 free(quiesce_ctx); 10128 } 10129 } 10130 10131 return rc; 10132 } 10133 10134 int 10135 spdk_bdev_quiesce(struct spdk_bdev *bdev, struct spdk_bdev_module *module, 10136 spdk_bdev_quiesce_cb cb_fn, void *cb_arg) 10137 { 10138 return _spdk_bdev_quiesce(bdev, module, 0, bdev->blockcnt, cb_fn, cb_arg, false); 10139 } 10140 10141 int 10142 spdk_bdev_unquiesce(struct spdk_bdev *bdev, struct spdk_bdev_module *module, 10143 spdk_bdev_quiesce_cb cb_fn, void *cb_arg) 10144 { 10145 return _spdk_bdev_quiesce(bdev, module, 0, bdev->blockcnt, cb_fn, cb_arg, true); 10146 } 10147 10148 int 10149 spdk_bdev_quiesce_range(struct spdk_bdev *bdev, struct spdk_bdev_module *module, 10150 uint64_t offset, uint64_t length, 10151 spdk_bdev_quiesce_cb cb_fn, void *cb_arg) 10152 { 10153 return _spdk_bdev_quiesce(bdev, module, offset, length, cb_fn, cb_arg, false); 10154 } 10155 10156 int 10157 spdk_bdev_unquiesce_range(struct spdk_bdev *bdev, struct spdk_bdev_module *module, 10158 uint64_t offset, uint64_t length, 10159 spdk_bdev_quiesce_cb cb_fn, void *cb_arg) 10160 { 10161 return _spdk_bdev_quiesce(bdev, module, offset, length, cb_fn, cb_arg, true); 10162 } 10163 10164 int 10165 spdk_bdev_get_memory_domains(struct spdk_bdev *bdev, struct spdk_memory_domain **domains, 10166 int array_size) 10167 { 10168 if (!bdev) { 10169 return -EINVAL; 10170 } 10171 10172 if (bdev->fn_table->get_memory_domains) { 10173 return bdev->fn_table->get_memory_domains(bdev->ctxt, domains, array_size); 10174 } 10175 10176 return 0; 10177 } 10178 10179 struct spdk_bdev_for_each_io_ctx { 10180 void *ctx; 10181 spdk_bdev_io_fn fn; 10182 spdk_bdev_for_each_io_cb cb; 10183 }; 10184 10185 static void 10186 bdev_channel_for_each_io(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev, 10187 struct spdk_io_channel *io_ch, void *_ctx) 10188 { 10189 struct spdk_bdev_for_each_io_ctx *ctx = _ctx; 10190 struct spdk_bdev_channel *bdev_ch = __io_ch_to_bdev_ch(io_ch); 10191 struct spdk_bdev_io *bdev_io; 10192 int rc = 0; 10193 10194 TAILQ_FOREACH(bdev_io, &bdev_ch->io_submitted, internal.ch_link) { 10195 rc = ctx->fn(ctx->ctx, bdev_io); 10196 if (rc != 0) { 10197 break; 10198 } 10199 } 10200 10201 spdk_bdev_for_each_channel_continue(i, rc); 10202 } 10203 10204 static void 10205 bdev_for_each_io_done(struct spdk_bdev *bdev, void *_ctx, int status) 10206 { 10207 struct spdk_bdev_for_each_io_ctx *ctx = _ctx; 10208 10209 ctx->cb(ctx->ctx, status); 10210 10211 free(ctx); 10212 } 10213 10214 void 10215 spdk_bdev_for_each_bdev_io(struct spdk_bdev *bdev, void *_ctx, spdk_bdev_io_fn fn, 10216 spdk_bdev_for_each_io_cb cb) 10217 { 10218 struct spdk_bdev_for_each_io_ctx *ctx; 10219 10220 assert(fn != NULL && cb != NULL); 10221 10222 ctx = calloc(1, sizeof(*ctx)); 10223 if (ctx == NULL) { 10224 SPDK_ERRLOG("Failed to allocate context.\n"); 10225 cb(_ctx, -ENOMEM); 10226 return; 10227 } 10228 10229 ctx->ctx = _ctx; 10230 ctx->fn = fn; 10231 ctx->cb = cb; 10232 10233 spdk_bdev_for_each_channel(bdev, bdev_channel_for_each_io, ctx, 10234 bdev_for_each_io_done); 10235 } 10236 10237 void 10238 spdk_bdev_for_each_channel_continue(struct spdk_bdev_channel_iter *iter, int status) 10239 { 10240 spdk_for_each_channel_continue(iter->i, status); 10241 } 10242 10243 static struct spdk_bdev * 10244 io_channel_iter_get_bdev(struct spdk_io_channel_iter *i) 10245 { 10246 void *io_device = spdk_io_channel_iter_get_io_device(i); 10247 10248 return __bdev_from_io_dev(io_device); 10249 } 10250 10251 static void 10252 bdev_each_channel_msg(struct spdk_io_channel_iter *i) 10253 { 10254 struct spdk_bdev_channel_iter *iter = spdk_io_channel_iter_get_ctx(i); 10255 struct spdk_bdev *bdev = io_channel_iter_get_bdev(i); 10256 struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i); 10257 10258 iter->i = i; 10259 iter->fn(iter, bdev, ch, iter->ctx); 10260 } 10261 10262 static void 10263 bdev_each_channel_cpl(struct spdk_io_channel_iter *i, int status) 10264 { 10265 struct spdk_bdev_channel_iter *iter = spdk_io_channel_iter_get_ctx(i); 10266 struct spdk_bdev *bdev = io_channel_iter_get_bdev(i); 10267 10268 iter->i = i; 10269 iter->cpl(bdev, iter->ctx, status); 10270 10271 free(iter); 10272 } 10273 10274 void 10275 spdk_bdev_for_each_channel(struct spdk_bdev *bdev, spdk_bdev_for_each_channel_msg fn, 10276 void *ctx, spdk_bdev_for_each_channel_done cpl) 10277 { 10278 struct spdk_bdev_channel_iter *iter; 10279 10280 assert(bdev != NULL && fn != NULL && ctx != NULL); 10281 10282 iter = calloc(1, sizeof(struct spdk_bdev_channel_iter)); 10283 if (iter == NULL) { 10284 SPDK_ERRLOG("Unable to allocate iterator\n"); 10285 assert(false); 10286 return; 10287 } 10288 10289 iter->fn = fn; 10290 iter->cpl = cpl; 10291 iter->ctx = ctx; 10292 10293 spdk_for_each_channel(__bdev_to_io_dev(bdev), bdev_each_channel_msg, 10294 iter, bdev_each_channel_cpl); 10295 } 10296 10297 static void 10298 bdev_copy_do_write_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 10299 { 10300 struct spdk_bdev_io *parent_io = cb_arg; 10301 10302 spdk_bdev_free_io(bdev_io); 10303 10304 /* Check return status of write */ 10305 parent_io->internal.status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED; 10306 parent_io->internal.cb(parent_io, success, parent_io->internal.caller_ctx); 10307 } 10308 10309 static void 10310 bdev_copy_do_write(void *_bdev_io) 10311 { 10312 struct spdk_bdev_io *bdev_io = _bdev_io; 10313 int rc; 10314 10315 /* Write blocks */ 10316 rc = spdk_bdev_write_blocks_with_md(bdev_io->internal.desc, 10317 spdk_io_channel_from_ctx(bdev_io->internal.ch), 10318 bdev_io->u.bdev.iovs[0].iov_base, 10319 bdev_io->u.bdev.md_buf, bdev_io->u.bdev.offset_blocks, 10320 bdev_io->u.bdev.num_blocks, bdev_copy_do_write_done, bdev_io); 10321 10322 if (rc == -ENOMEM) { 10323 bdev_queue_io_wait_with_cb(bdev_io, bdev_copy_do_write); 10324 } else if (rc != 0) { 10325 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 10326 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 10327 } 10328 } 10329 10330 static void 10331 bdev_copy_do_read_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 10332 { 10333 struct spdk_bdev_io *parent_io = cb_arg; 10334 10335 spdk_bdev_free_io(bdev_io); 10336 10337 /* Check return status of read */ 10338 if (!success) { 10339 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 10340 parent_io->internal.cb(parent_io, false, parent_io->internal.caller_ctx); 10341 return; 10342 } 10343 10344 /* Do write */ 10345 bdev_copy_do_write(parent_io); 10346 } 10347 10348 static void 10349 bdev_copy_do_read(void *_bdev_io) 10350 { 10351 struct spdk_bdev_io *bdev_io = _bdev_io; 10352 int rc; 10353 10354 /* Read blocks */ 10355 rc = spdk_bdev_read_blocks_with_md(bdev_io->internal.desc, 10356 spdk_io_channel_from_ctx(bdev_io->internal.ch), 10357 bdev_io->u.bdev.iovs[0].iov_base, 10358 bdev_io->u.bdev.md_buf, bdev_io->u.bdev.copy.src_offset_blocks, 10359 bdev_io->u.bdev.num_blocks, bdev_copy_do_read_done, bdev_io); 10360 10361 if (rc == -ENOMEM) { 10362 bdev_queue_io_wait_with_cb(bdev_io, bdev_copy_do_read); 10363 } else if (rc != 0) { 10364 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 10365 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 10366 } 10367 } 10368 10369 static void 10370 bdev_copy_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io, bool success) 10371 { 10372 if (!success) { 10373 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 10374 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 10375 return; 10376 } 10377 10378 bdev_copy_do_read(bdev_io); 10379 } 10380 10381 int 10382 spdk_bdev_copy_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 10383 uint64_t dst_offset_blocks, uint64_t src_offset_blocks, uint64_t num_blocks, 10384 spdk_bdev_io_completion_cb cb, void *cb_arg) 10385 { 10386 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 10387 struct spdk_bdev_io *bdev_io; 10388 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 10389 10390 if (!desc->write) { 10391 return -EBADF; 10392 } 10393 10394 if (!bdev_io_valid_blocks(bdev, dst_offset_blocks, num_blocks) || 10395 !bdev_io_valid_blocks(bdev, src_offset_blocks, num_blocks)) { 10396 SPDK_DEBUGLOG(bdev, 10397 "Invalid offset or number of blocks: dst %lu, src %lu, count %lu\n", 10398 dst_offset_blocks, src_offset_blocks, num_blocks); 10399 return -EINVAL; 10400 } 10401 10402 bdev_io = bdev_channel_get_io(channel); 10403 if (!bdev_io) { 10404 return -ENOMEM; 10405 } 10406 10407 bdev_io->internal.ch = channel; 10408 bdev_io->internal.desc = desc; 10409 bdev_io->type = SPDK_BDEV_IO_TYPE_COPY; 10410 10411 bdev_io->u.bdev.offset_blocks = dst_offset_blocks; 10412 bdev_io->u.bdev.copy.src_offset_blocks = src_offset_blocks; 10413 bdev_io->u.bdev.num_blocks = num_blocks; 10414 bdev_io->u.bdev.memory_domain = NULL; 10415 bdev_io->u.bdev.memory_domain_ctx = NULL; 10416 bdev_io->u.bdev.iovs = NULL; 10417 bdev_io->u.bdev.iovcnt = 0; 10418 bdev_io->u.bdev.md_buf = NULL; 10419 bdev_io->u.bdev.accel_sequence = NULL; 10420 bdev_io_init(bdev_io, bdev, cb_arg, cb); 10421 10422 if (dst_offset_blocks == src_offset_blocks || num_blocks == 0) { 10423 spdk_thread_send_msg(spdk_get_thread(), bdev_io_complete_cb, bdev_io); 10424 return 0; 10425 } 10426 10427 10428 /* If the copy size is large and should be split, use the generic split logic 10429 * regardless of whether SPDK_BDEV_IO_TYPE_COPY is supported or not. 10430 * 10431 * Then, send the copy request if SPDK_BDEV_IO_TYPE_COPY is supported or 10432 * emulate it using regular read and write requests otherwise. 10433 */ 10434 if (spdk_bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_COPY) || 10435 bdev_io->internal.split) { 10436 bdev_io_submit(bdev_io); 10437 return 0; 10438 } 10439 10440 spdk_bdev_io_get_buf(bdev_io, bdev_copy_get_buf_cb, num_blocks * spdk_bdev_get_block_size(bdev)); 10441 10442 return 0; 10443 } 10444 10445 SPDK_LOG_REGISTER_COMPONENT(bdev) 10446 10447 SPDK_TRACE_REGISTER_FN(bdev_trace, "bdev", TRACE_GROUP_BDEV) 10448 { 10449 struct spdk_trace_tpoint_opts opts[] = { 10450 { 10451 "BDEV_IO_START", TRACE_BDEV_IO_START, 10452 OWNER_TYPE_BDEV, OBJECT_BDEV_IO, 1, 10453 { 10454 { "type", SPDK_TRACE_ARG_TYPE_INT, 8 }, 10455 { "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }, 10456 { "offset", SPDK_TRACE_ARG_TYPE_INT, 8 }, 10457 { "qd", SPDK_TRACE_ARG_TYPE_INT, 4 } 10458 } 10459 }, 10460 { 10461 "BDEV_IO_DONE", TRACE_BDEV_IO_DONE, 10462 OWNER_TYPE_BDEV, OBJECT_BDEV_IO, 0, 10463 { 10464 { "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }, 10465 { "qd", SPDK_TRACE_ARG_TYPE_INT, 4 } 10466 } 10467 }, 10468 { 10469 "BDEV_IOCH_CREATE", TRACE_BDEV_IOCH_CREATE, 10470 OWNER_TYPE_BDEV, OBJECT_NONE, 0, 10471 { 10472 { "tid", SPDK_TRACE_ARG_TYPE_INT, 8 } 10473 } 10474 }, 10475 { 10476 "BDEV_IOCH_DESTROY", TRACE_BDEV_IOCH_DESTROY, 10477 OWNER_TYPE_BDEV, OBJECT_NONE, 0, 10478 { 10479 { "tid", SPDK_TRACE_ARG_TYPE_INT, 8 } 10480 } 10481 }, 10482 }; 10483 10484 10485 spdk_trace_register_owner_type(OWNER_TYPE_BDEV, 'b'); 10486 spdk_trace_register_object(OBJECT_BDEV_IO, 'i'); 10487 spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts)); 10488 spdk_trace_tpoint_register_relation(TRACE_BDEV_NVME_IO_START, OBJECT_BDEV_IO, 0); 10489 spdk_trace_tpoint_register_relation(TRACE_BDEV_NVME_IO_DONE, OBJECT_BDEV_IO, 0); 10490 } 10491