1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) Intel Corporation. All rights reserved. 5 * Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include "spdk/stdinc.h" 35 36 #include "spdk/bdev.h" 37 38 #include "spdk/config.h" 39 #include "spdk/env.h" 40 #include "spdk/thread.h" 41 #include "spdk/likely.h" 42 #include "spdk/queue.h" 43 #include "spdk/nvme_spec.h" 44 #include "spdk/scsi_spec.h" 45 #include "spdk/notify.h" 46 #include "spdk/util.h" 47 #include "spdk/trace.h" 48 49 #include "spdk/bdev_module.h" 50 #include "spdk/log.h" 51 #include "spdk/string.h" 52 53 #include "bdev_internal.h" 54 55 #ifdef SPDK_CONFIG_VTUNE 56 #include "ittnotify.h" 57 #include "ittnotify_types.h" 58 int __itt_init_ittlib(const char *, __itt_group_id); 59 #endif 60 61 #define SPDK_BDEV_IO_POOL_SIZE (64 * 1024 - 1) 62 #define SPDK_BDEV_IO_CACHE_SIZE 256 63 #define SPDK_BDEV_AUTO_EXAMINE true 64 #define BUF_SMALL_POOL_SIZE 8191 65 #define BUF_LARGE_POOL_SIZE 1023 66 #define NOMEM_THRESHOLD_COUNT 8 67 #define ZERO_BUFFER_SIZE 0x100000 68 69 #define OWNER_BDEV 0x2 70 71 #define OBJECT_BDEV_IO 0x2 72 73 #define TRACE_GROUP_BDEV 0x3 74 #define TRACE_BDEV_IO_START SPDK_TPOINT_ID(TRACE_GROUP_BDEV, 0x0) 75 #define TRACE_BDEV_IO_DONE SPDK_TPOINT_ID(TRACE_GROUP_BDEV, 0x1) 76 77 #define SPDK_BDEV_QOS_TIMESLICE_IN_USEC 1000 78 #define SPDK_BDEV_QOS_MIN_IO_PER_TIMESLICE 1 79 #define SPDK_BDEV_QOS_MIN_BYTE_PER_TIMESLICE 512 80 #define SPDK_BDEV_QOS_MIN_IOS_PER_SEC 1000 81 #define SPDK_BDEV_QOS_MIN_BYTES_PER_SEC (1024 * 1024) 82 #define SPDK_BDEV_QOS_LIMIT_NOT_DEFINED UINT64_MAX 83 #define SPDK_BDEV_IO_POLL_INTERVAL_IN_MSEC 1000 84 85 #define SPDK_BDEV_POOL_ALIGNMENT 512 86 87 static const char *qos_rpc_type[] = {"rw_ios_per_sec", 88 "rw_mbytes_per_sec", "r_mbytes_per_sec", "w_mbytes_per_sec" 89 }; 90 91 TAILQ_HEAD(spdk_bdev_list, spdk_bdev); 92 93 struct spdk_bdev_mgr { 94 struct spdk_mempool *bdev_io_pool; 95 96 struct spdk_mempool *buf_small_pool; 97 struct spdk_mempool *buf_large_pool; 98 99 void *zero_buffer; 100 101 TAILQ_HEAD(bdev_module_list, spdk_bdev_module) bdev_modules; 102 103 struct spdk_bdev_list bdevs; 104 105 bool init_complete; 106 bool module_init_complete; 107 108 pthread_mutex_t mutex; 109 110 #ifdef SPDK_CONFIG_VTUNE 111 __itt_domain *domain; 112 #endif 113 }; 114 115 static struct spdk_bdev_mgr g_bdev_mgr = { 116 .bdev_modules = TAILQ_HEAD_INITIALIZER(g_bdev_mgr.bdev_modules), 117 .bdevs = TAILQ_HEAD_INITIALIZER(g_bdev_mgr.bdevs), 118 .init_complete = false, 119 .module_init_complete = false, 120 .mutex = PTHREAD_MUTEX_INITIALIZER, 121 }; 122 123 typedef void (*lock_range_cb)(void *ctx, int status); 124 125 struct lba_range { 126 uint64_t offset; 127 uint64_t length; 128 void *locked_ctx; 129 struct spdk_bdev_channel *owner_ch; 130 TAILQ_ENTRY(lba_range) tailq; 131 }; 132 133 static struct spdk_bdev_opts g_bdev_opts = { 134 .bdev_io_pool_size = SPDK_BDEV_IO_POOL_SIZE, 135 .bdev_io_cache_size = SPDK_BDEV_IO_CACHE_SIZE, 136 .bdev_auto_examine = SPDK_BDEV_AUTO_EXAMINE, 137 .small_buf_pool_size = BUF_SMALL_POOL_SIZE, 138 .large_buf_pool_size = BUF_LARGE_POOL_SIZE, 139 }; 140 141 static spdk_bdev_init_cb g_init_cb_fn = NULL; 142 static void *g_init_cb_arg = NULL; 143 144 static spdk_bdev_fini_cb g_fini_cb_fn = NULL; 145 static void *g_fini_cb_arg = NULL; 146 static struct spdk_thread *g_fini_thread = NULL; 147 148 struct spdk_bdev_qos_limit { 149 /** IOs or bytes allowed per second (i.e., 1s). */ 150 uint64_t limit; 151 152 /** Remaining IOs or bytes allowed in current timeslice (e.g., 1ms). 153 * For remaining bytes, allowed to run negative if an I/O is submitted when 154 * some bytes are remaining, but the I/O is bigger than that amount. The 155 * excess will be deducted from the next timeslice. 156 */ 157 int64_t remaining_this_timeslice; 158 159 /** Minimum allowed IOs or bytes to be issued in one timeslice (e.g., 1ms). */ 160 uint32_t min_per_timeslice; 161 162 /** Maximum allowed IOs or bytes to be issued in one timeslice (e.g., 1ms). */ 163 uint32_t max_per_timeslice; 164 165 /** Function to check whether to queue the IO. */ 166 bool (*queue_io)(const struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io); 167 168 /** Function to update for the submitted IO. */ 169 void (*update_quota)(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io); 170 }; 171 172 struct spdk_bdev_qos { 173 /** Types of structure of rate limits. */ 174 struct spdk_bdev_qos_limit rate_limits[SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES]; 175 176 /** The channel that all I/O are funneled through. */ 177 struct spdk_bdev_channel *ch; 178 179 /** The thread on which the poller is running. */ 180 struct spdk_thread *thread; 181 182 /** Queue of I/O waiting to be issued. */ 183 bdev_io_tailq_t queued; 184 185 /** Size of a timeslice in tsc ticks. */ 186 uint64_t timeslice_size; 187 188 /** Timestamp of start of last timeslice. */ 189 uint64_t last_timeslice; 190 191 /** Poller that processes queued I/O commands each time slice. */ 192 struct spdk_poller *poller; 193 }; 194 195 struct spdk_bdev_mgmt_channel { 196 bdev_io_stailq_t need_buf_small; 197 bdev_io_stailq_t need_buf_large; 198 199 /* 200 * Each thread keeps a cache of bdev_io - this allows 201 * bdev threads which are *not* DPDK threads to still 202 * benefit from a per-thread bdev_io cache. Without 203 * this, non-DPDK threads fetching from the mempool 204 * incur a cmpxchg on get and put. 205 */ 206 bdev_io_stailq_t per_thread_cache; 207 uint32_t per_thread_cache_count; 208 uint32_t bdev_io_cache_size; 209 210 TAILQ_HEAD(, spdk_bdev_shared_resource) shared_resources; 211 TAILQ_HEAD(, spdk_bdev_io_wait_entry) io_wait_queue; 212 }; 213 214 /* 215 * Per-module (or per-io_device) data. Multiple bdevs built on the same io_device 216 * will queue here their IO that awaits retry. It makes it possible to retry sending 217 * IO to one bdev after IO from other bdev completes. 218 */ 219 struct spdk_bdev_shared_resource { 220 /* The bdev management channel */ 221 struct spdk_bdev_mgmt_channel *mgmt_ch; 222 223 /* 224 * Count of I/O submitted to bdev module and waiting for completion. 225 * Incremented before submit_request() is called on an spdk_bdev_io. 226 */ 227 uint64_t io_outstanding; 228 229 /* 230 * Queue of IO awaiting retry because of a previous NOMEM status returned 231 * on this channel. 232 */ 233 bdev_io_tailq_t nomem_io; 234 235 /* 236 * Threshold which io_outstanding must drop to before retrying nomem_io. 237 */ 238 uint64_t nomem_threshold; 239 240 /* I/O channel allocated by a bdev module */ 241 struct spdk_io_channel *shared_ch; 242 243 /* Refcount of bdev channels using this resource */ 244 uint32_t ref; 245 246 TAILQ_ENTRY(spdk_bdev_shared_resource) link; 247 }; 248 249 #define BDEV_CH_RESET_IN_PROGRESS (1 << 0) 250 #define BDEV_CH_QOS_ENABLED (1 << 1) 251 252 struct spdk_bdev_channel { 253 struct spdk_bdev *bdev; 254 255 /* The channel for the underlying device */ 256 struct spdk_io_channel *channel; 257 258 /* Per io_device per thread data */ 259 struct spdk_bdev_shared_resource *shared_resource; 260 261 struct spdk_bdev_io_stat stat; 262 263 /* 264 * Count of I/O submitted to the underlying dev module through this channel 265 * and waiting for completion. 266 */ 267 uint64_t io_outstanding; 268 269 /* 270 * List of all submitted I/Os including I/O that are generated via splitting. 271 */ 272 bdev_io_tailq_t io_submitted; 273 274 /* 275 * List of spdk_bdev_io that are currently queued because they write to a locked 276 * LBA range. 277 */ 278 bdev_io_tailq_t io_locked; 279 280 uint32_t flags; 281 282 struct spdk_histogram_data *histogram; 283 284 #ifdef SPDK_CONFIG_VTUNE 285 uint64_t start_tsc; 286 uint64_t interval_tsc; 287 __itt_string_handle *handle; 288 struct spdk_bdev_io_stat prev_stat; 289 #endif 290 291 bdev_io_tailq_t queued_resets; 292 293 lba_range_tailq_t locked_ranges; 294 }; 295 296 struct media_event_entry { 297 struct spdk_bdev_media_event event; 298 TAILQ_ENTRY(media_event_entry) tailq; 299 }; 300 301 #define MEDIA_EVENT_POOL_SIZE 64 302 303 struct spdk_bdev_desc { 304 struct spdk_bdev *bdev; 305 struct spdk_thread *thread; 306 struct { 307 spdk_bdev_event_cb_t event_fn; 308 void *ctx; 309 } callback; 310 bool closed; 311 bool write; 312 pthread_mutex_t mutex; 313 uint32_t refs; 314 TAILQ_HEAD(, media_event_entry) pending_media_events; 315 TAILQ_HEAD(, media_event_entry) free_media_events; 316 struct media_event_entry *media_events_buffer; 317 TAILQ_ENTRY(spdk_bdev_desc) link; 318 319 uint64_t timeout_in_sec; 320 spdk_bdev_io_timeout_cb cb_fn; 321 void *cb_arg; 322 struct spdk_poller *io_timeout_poller; 323 }; 324 325 struct spdk_bdev_iostat_ctx { 326 struct spdk_bdev_io_stat *stat; 327 spdk_bdev_get_device_stat_cb cb; 328 void *cb_arg; 329 }; 330 331 struct set_qos_limit_ctx { 332 void (*cb_fn)(void *cb_arg, int status); 333 void *cb_arg; 334 struct spdk_bdev *bdev; 335 }; 336 337 #define __bdev_to_io_dev(bdev) (((char *)bdev) + 1) 338 #define __bdev_from_io_dev(io_dev) ((struct spdk_bdev *)(((char *)io_dev) - 1)) 339 340 static void bdev_write_zero_buffer_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg); 341 static void bdev_write_zero_buffer_next(void *_bdev_io); 342 343 static void bdev_enable_qos_msg(struct spdk_io_channel_iter *i); 344 static void bdev_enable_qos_done(struct spdk_io_channel_iter *i, int status); 345 346 static int 347 bdev_readv_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 348 struct iovec *iov, int iovcnt, void *md_buf, uint64_t offset_blocks, 349 uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg); 350 static int 351 bdev_writev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 352 struct iovec *iov, int iovcnt, void *md_buf, 353 uint64_t offset_blocks, uint64_t num_blocks, 354 spdk_bdev_io_completion_cb cb, void *cb_arg); 355 356 static int 357 bdev_lock_lba_range(struct spdk_bdev_desc *desc, struct spdk_io_channel *_ch, 358 uint64_t offset, uint64_t length, 359 lock_range_cb cb_fn, void *cb_arg); 360 361 static int 362 bdev_unlock_lba_range(struct spdk_bdev_desc *desc, struct spdk_io_channel *_ch, 363 uint64_t offset, uint64_t length, 364 lock_range_cb cb_fn, void *cb_arg); 365 366 static inline void bdev_io_complete(void *ctx); 367 368 static bool bdev_abort_queued_io(bdev_io_tailq_t *queue, struct spdk_bdev_io *bio_to_abort); 369 static bool bdev_abort_buf_io(bdev_io_stailq_t *queue, struct spdk_bdev_io *bio_to_abort); 370 371 void 372 spdk_bdev_get_opts(struct spdk_bdev_opts *opts, size_t opts_size) 373 { 374 if (!opts) { 375 SPDK_ERRLOG("opts should not be NULL\n"); 376 return; 377 } 378 379 if (!opts_size) { 380 SPDK_ERRLOG("opts_size should not be zero value\n"); 381 return; 382 } 383 384 opts->opts_size = opts_size; 385 386 #define SET_FIELD(field) \ 387 if (offsetof(struct spdk_bdev_opts, field) + sizeof(opts->field) <= opts_size) { \ 388 opts->field = g_bdev_opts.field; \ 389 } \ 390 391 SET_FIELD(bdev_io_pool_size); 392 SET_FIELD(bdev_io_cache_size); 393 SET_FIELD(bdev_auto_examine); 394 SET_FIELD(small_buf_pool_size); 395 SET_FIELD(large_buf_pool_size); 396 397 /* Do not remove this statement, you should always update this statement when you adding a new field, 398 * and do not forget to add the SET_FIELD statement for your added field. */ 399 SPDK_STATIC_ASSERT(sizeof(struct spdk_bdev_opts) == 32, "Incorrect size"); 400 401 #undef SET_FIELD 402 } 403 404 int 405 spdk_bdev_set_opts(struct spdk_bdev_opts *opts) 406 { 407 uint32_t min_pool_size; 408 409 if (!opts) { 410 SPDK_ERRLOG("opts cannot be NULL\n"); 411 return -1; 412 } 413 414 if (!opts->opts_size) { 415 SPDK_ERRLOG("opts_size inside opts cannot be zero value\n"); 416 return -1; 417 } 418 419 /* 420 * Add 1 to the thread count to account for the extra mgmt_ch that gets created during subsystem 421 * initialization. A second mgmt_ch will be created on the same thread when the application starts 422 * but before the deferred put_io_channel event is executed for the first mgmt_ch. 423 */ 424 min_pool_size = opts->bdev_io_cache_size * (spdk_thread_get_count() + 1); 425 if (opts->bdev_io_pool_size < min_pool_size) { 426 SPDK_ERRLOG("bdev_io_pool_size %" PRIu32 " is not compatible with bdev_io_cache_size %" PRIu32 427 " and %" PRIu32 " threads\n", opts->bdev_io_pool_size, opts->bdev_io_cache_size, 428 spdk_thread_get_count()); 429 SPDK_ERRLOG("bdev_io_pool_size must be at least %" PRIu32 "\n", min_pool_size); 430 return -1; 431 } 432 433 if (opts->small_buf_pool_size < BUF_SMALL_POOL_SIZE) { 434 SPDK_ERRLOG("small_buf_pool_size must be at least %" PRIu32 "\n", BUF_SMALL_POOL_SIZE); 435 return -1; 436 } 437 438 if (opts->large_buf_pool_size < BUF_LARGE_POOL_SIZE) { 439 SPDK_ERRLOG("large_buf_pool_size must be at least %" PRIu32 "\n", BUF_LARGE_POOL_SIZE); 440 return -1; 441 } 442 443 #define SET_FIELD(field) \ 444 if (offsetof(struct spdk_bdev_opts, field) + sizeof(opts->field) <= opts->opts_size) { \ 445 g_bdev_opts.field = opts->field; \ 446 } \ 447 448 SET_FIELD(bdev_io_pool_size); 449 SET_FIELD(bdev_io_cache_size); 450 SET_FIELD(bdev_auto_examine); 451 SET_FIELD(small_buf_pool_size); 452 SET_FIELD(large_buf_pool_size); 453 454 g_bdev_opts.opts_size = opts->opts_size; 455 456 #undef SET_FIELD 457 458 return 0; 459 } 460 461 struct spdk_bdev_wait_for_examine_ctx { 462 struct spdk_poller *poller; 463 spdk_bdev_wait_for_examine_cb cb_fn; 464 void *cb_arg; 465 }; 466 467 static bool 468 bdev_module_all_actions_completed(void); 469 470 static int 471 bdev_wait_for_examine_cb(void *arg) 472 { 473 struct spdk_bdev_wait_for_examine_ctx *ctx = arg; 474 475 if (!bdev_module_all_actions_completed()) { 476 return SPDK_POLLER_IDLE; 477 } 478 479 spdk_poller_unregister(&ctx->poller); 480 ctx->cb_fn(ctx->cb_arg); 481 free(ctx); 482 483 return SPDK_POLLER_BUSY; 484 } 485 486 int 487 spdk_bdev_wait_for_examine(spdk_bdev_wait_for_examine_cb cb_fn, void *cb_arg) 488 { 489 struct spdk_bdev_wait_for_examine_ctx *ctx; 490 491 ctx = calloc(1, sizeof(*ctx)); 492 if (ctx == NULL) { 493 return -ENOMEM; 494 } 495 ctx->cb_fn = cb_fn; 496 ctx->cb_arg = cb_arg; 497 ctx->poller = SPDK_POLLER_REGISTER(bdev_wait_for_examine_cb, ctx, 0); 498 499 return 0; 500 } 501 502 struct spdk_bdev_examine_item { 503 char *name; 504 TAILQ_ENTRY(spdk_bdev_examine_item) link; 505 }; 506 507 TAILQ_HEAD(spdk_bdev_examine_allowlist, spdk_bdev_examine_item); 508 509 struct spdk_bdev_examine_allowlist g_bdev_examine_allowlist = TAILQ_HEAD_INITIALIZER( 510 g_bdev_examine_allowlist); 511 512 static inline bool 513 bdev_examine_allowlist_check(const char *name) 514 { 515 struct spdk_bdev_examine_item *item; 516 TAILQ_FOREACH(item, &g_bdev_examine_allowlist, link) { 517 if (strcmp(name, item->name) == 0) { 518 return true; 519 } 520 } 521 return false; 522 } 523 524 static inline void 525 bdev_examine_allowlist_free(void) 526 { 527 struct spdk_bdev_examine_item *item; 528 while (!TAILQ_EMPTY(&g_bdev_examine_allowlist)) { 529 item = TAILQ_FIRST(&g_bdev_examine_allowlist); 530 TAILQ_REMOVE(&g_bdev_examine_allowlist, item, link); 531 free(item->name); 532 free(item); 533 } 534 } 535 536 static inline bool 537 bdev_in_examine_allowlist(struct spdk_bdev *bdev) 538 { 539 struct spdk_bdev_alias *tmp; 540 if (bdev_examine_allowlist_check(bdev->name)) { 541 return true; 542 } 543 TAILQ_FOREACH(tmp, &bdev->aliases, tailq) { 544 if (bdev_examine_allowlist_check(tmp->alias)) { 545 return true; 546 } 547 } 548 return false; 549 } 550 551 static inline bool 552 bdev_ok_to_examine(struct spdk_bdev *bdev) 553 { 554 if (g_bdev_opts.bdev_auto_examine) { 555 return true; 556 } else { 557 return bdev_in_examine_allowlist(bdev); 558 } 559 } 560 561 static void 562 bdev_examine(struct spdk_bdev *bdev) 563 { 564 struct spdk_bdev_module *module; 565 uint32_t action; 566 567 TAILQ_FOREACH(module, &g_bdev_mgr.bdev_modules, internal.tailq) { 568 if (module->examine_config && bdev_ok_to_examine(bdev)) { 569 action = module->internal.action_in_progress; 570 module->internal.action_in_progress++; 571 module->examine_config(bdev); 572 if (action != module->internal.action_in_progress) { 573 SPDK_ERRLOG("examine_config for module %s did not call spdk_bdev_module_examine_done()\n", 574 module->name); 575 } 576 } 577 } 578 579 if (bdev->internal.claim_module && bdev_ok_to_examine(bdev)) { 580 if (bdev->internal.claim_module->examine_disk) { 581 bdev->internal.claim_module->internal.action_in_progress++; 582 bdev->internal.claim_module->examine_disk(bdev); 583 } 584 return; 585 } 586 587 TAILQ_FOREACH(module, &g_bdev_mgr.bdev_modules, internal.tailq) { 588 if (module->examine_disk && bdev_ok_to_examine(bdev)) { 589 module->internal.action_in_progress++; 590 module->examine_disk(bdev); 591 } 592 } 593 } 594 595 int 596 spdk_bdev_examine(const char *name) 597 { 598 struct spdk_bdev *bdev; 599 struct spdk_bdev_examine_item *item; 600 601 if (g_bdev_opts.bdev_auto_examine) { 602 SPDK_ERRLOG("Manual examine is not allowed if auto examine is enabled"); 603 return -EINVAL; 604 } 605 606 if (bdev_examine_allowlist_check(name)) { 607 SPDK_ERRLOG("Duplicate bdev name for manual examine: %s\n", name); 608 return -EEXIST; 609 } 610 611 item = calloc(1, sizeof(*item)); 612 if (!item) { 613 return -ENOMEM; 614 } 615 item->name = strdup(name); 616 if (!item->name) { 617 free(item); 618 return -ENOMEM; 619 } 620 TAILQ_INSERT_TAIL(&g_bdev_examine_allowlist, item, link); 621 622 bdev = spdk_bdev_get_by_name(name); 623 if (bdev) { 624 bdev_examine(bdev); 625 } 626 return 0; 627 } 628 629 static inline void 630 bdev_examine_allowlist_config_json(struct spdk_json_write_ctx *w) 631 { 632 struct spdk_bdev_examine_item *item; 633 TAILQ_FOREACH(item, &g_bdev_examine_allowlist, link) { 634 spdk_json_write_object_begin(w); 635 spdk_json_write_named_string(w, "method", "bdev_examine"); 636 spdk_json_write_named_object_begin(w, "params"); 637 spdk_json_write_named_string(w, "name", item->name); 638 spdk_json_write_object_end(w); 639 spdk_json_write_object_end(w); 640 } 641 } 642 643 struct spdk_bdev * 644 spdk_bdev_first(void) 645 { 646 struct spdk_bdev *bdev; 647 648 bdev = TAILQ_FIRST(&g_bdev_mgr.bdevs); 649 if (bdev) { 650 SPDK_DEBUGLOG(bdev, "Starting bdev iteration at %s\n", bdev->name); 651 } 652 653 return bdev; 654 } 655 656 struct spdk_bdev * 657 spdk_bdev_next(struct spdk_bdev *prev) 658 { 659 struct spdk_bdev *bdev; 660 661 bdev = TAILQ_NEXT(prev, internal.link); 662 if (bdev) { 663 SPDK_DEBUGLOG(bdev, "Continuing bdev iteration at %s\n", bdev->name); 664 } 665 666 return bdev; 667 } 668 669 static struct spdk_bdev * 670 _bdev_next_leaf(struct spdk_bdev *bdev) 671 { 672 while (bdev != NULL) { 673 if (bdev->internal.claim_module == NULL) { 674 return bdev; 675 } else { 676 bdev = TAILQ_NEXT(bdev, internal.link); 677 } 678 } 679 680 return bdev; 681 } 682 683 struct spdk_bdev * 684 spdk_bdev_first_leaf(void) 685 { 686 struct spdk_bdev *bdev; 687 688 bdev = _bdev_next_leaf(TAILQ_FIRST(&g_bdev_mgr.bdevs)); 689 690 if (bdev) { 691 SPDK_DEBUGLOG(bdev, "Starting bdev iteration at %s\n", bdev->name); 692 } 693 694 return bdev; 695 } 696 697 struct spdk_bdev * 698 spdk_bdev_next_leaf(struct spdk_bdev *prev) 699 { 700 struct spdk_bdev *bdev; 701 702 bdev = _bdev_next_leaf(TAILQ_NEXT(prev, internal.link)); 703 704 if (bdev) { 705 SPDK_DEBUGLOG(bdev, "Continuing bdev iteration at %s\n", bdev->name); 706 } 707 708 return bdev; 709 } 710 711 struct spdk_bdev * 712 spdk_bdev_get_by_name(const char *bdev_name) 713 { 714 struct spdk_bdev_alias *tmp; 715 struct spdk_bdev *bdev = spdk_bdev_first(); 716 717 while (bdev != NULL) { 718 if (strcmp(bdev_name, bdev->name) == 0) { 719 return bdev; 720 } 721 722 TAILQ_FOREACH(tmp, &bdev->aliases, tailq) { 723 if (strcmp(bdev_name, tmp->alias) == 0) { 724 return bdev; 725 } 726 } 727 728 bdev = spdk_bdev_next(bdev); 729 } 730 731 return NULL; 732 } 733 734 void 735 spdk_bdev_io_set_buf(struct spdk_bdev_io *bdev_io, void *buf, size_t len) 736 { 737 struct iovec *iovs; 738 739 if (bdev_io->u.bdev.iovs == NULL) { 740 bdev_io->u.bdev.iovs = &bdev_io->iov; 741 bdev_io->u.bdev.iovcnt = 1; 742 } 743 744 iovs = bdev_io->u.bdev.iovs; 745 746 assert(iovs != NULL); 747 assert(bdev_io->u.bdev.iovcnt >= 1); 748 749 iovs[0].iov_base = buf; 750 iovs[0].iov_len = len; 751 } 752 753 void 754 spdk_bdev_io_set_md_buf(struct spdk_bdev_io *bdev_io, void *md_buf, size_t len) 755 { 756 assert((len / spdk_bdev_get_md_size(bdev_io->bdev)) >= bdev_io->u.bdev.num_blocks); 757 bdev_io->u.bdev.md_buf = md_buf; 758 } 759 760 static bool 761 _is_buf_allocated(const struct iovec *iovs) 762 { 763 if (iovs == NULL) { 764 return false; 765 } 766 767 return iovs[0].iov_base != NULL; 768 } 769 770 static bool 771 _are_iovs_aligned(struct iovec *iovs, int iovcnt, uint32_t alignment) 772 { 773 int i; 774 uintptr_t iov_base; 775 776 if (spdk_likely(alignment == 1)) { 777 return true; 778 } 779 780 for (i = 0; i < iovcnt; i++) { 781 iov_base = (uintptr_t)iovs[i].iov_base; 782 if ((iov_base & (alignment - 1)) != 0) { 783 return false; 784 } 785 } 786 787 return true; 788 } 789 790 static void 791 _copy_iovs_to_buf(void *buf, size_t buf_len, struct iovec *iovs, int iovcnt) 792 { 793 int i; 794 size_t len; 795 796 for (i = 0; i < iovcnt; i++) { 797 len = spdk_min(iovs[i].iov_len, buf_len); 798 memcpy(buf, iovs[i].iov_base, len); 799 buf += len; 800 buf_len -= len; 801 } 802 } 803 804 static void 805 _copy_buf_to_iovs(struct iovec *iovs, int iovcnt, void *buf, size_t buf_len) 806 { 807 int i; 808 size_t len; 809 810 for (i = 0; i < iovcnt; i++) { 811 len = spdk_min(iovs[i].iov_len, buf_len); 812 memcpy(iovs[i].iov_base, buf, len); 813 buf += len; 814 buf_len -= len; 815 } 816 } 817 818 static void 819 _bdev_io_set_bounce_buf(struct spdk_bdev_io *bdev_io, void *buf, size_t len) 820 { 821 /* save original iovec */ 822 bdev_io->internal.orig_iovs = bdev_io->u.bdev.iovs; 823 bdev_io->internal.orig_iovcnt = bdev_io->u.bdev.iovcnt; 824 /* set bounce iov */ 825 bdev_io->u.bdev.iovs = &bdev_io->internal.bounce_iov; 826 bdev_io->u.bdev.iovcnt = 1; 827 /* set bounce buffer for this operation */ 828 bdev_io->u.bdev.iovs[0].iov_base = buf; 829 bdev_io->u.bdev.iovs[0].iov_len = len; 830 /* if this is write path, copy data from original buffer to bounce buffer */ 831 if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) { 832 _copy_iovs_to_buf(buf, len, bdev_io->internal.orig_iovs, bdev_io->internal.orig_iovcnt); 833 } 834 } 835 836 static void 837 _bdev_io_set_bounce_md_buf(struct spdk_bdev_io *bdev_io, void *md_buf, size_t len) 838 { 839 /* save original md_buf */ 840 bdev_io->internal.orig_md_buf = bdev_io->u.bdev.md_buf; 841 /* set bounce md_buf */ 842 bdev_io->u.bdev.md_buf = md_buf; 843 844 if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) { 845 memcpy(md_buf, bdev_io->internal.orig_md_buf, len); 846 } 847 } 848 849 static void 850 bdev_io_get_buf_complete(struct spdk_bdev_io *bdev_io, void *buf, bool status) 851 { 852 struct spdk_io_channel *ch = spdk_bdev_io_get_io_channel(bdev_io); 853 854 if (spdk_unlikely(bdev_io->internal.get_aux_buf_cb != NULL)) { 855 bdev_io->internal.get_aux_buf_cb(ch, bdev_io, buf); 856 bdev_io->internal.get_aux_buf_cb = NULL; 857 } else { 858 assert(bdev_io->internal.get_buf_cb != NULL); 859 bdev_io->internal.buf = buf; 860 bdev_io->internal.get_buf_cb(ch, bdev_io, status); 861 bdev_io->internal.get_buf_cb = NULL; 862 } 863 } 864 865 static void 866 _bdev_io_set_buf(struct spdk_bdev_io *bdev_io, void *buf, uint64_t len) 867 { 868 struct spdk_bdev *bdev = bdev_io->bdev; 869 bool buf_allocated; 870 uint64_t md_len, alignment; 871 void *aligned_buf; 872 873 if (spdk_unlikely(bdev_io->internal.get_aux_buf_cb != NULL)) { 874 bdev_io_get_buf_complete(bdev_io, buf, true); 875 return; 876 } 877 878 alignment = spdk_bdev_get_buf_align(bdev); 879 buf_allocated = _is_buf_allocated(bdev_io->u.bdev.iovs); 880 aligned_buf = (void *)(((uintptr_t)buf + (alignment - 1)) & ~(alignment - 1)); 881 882 if (buf_allocated) { 883 _bdev_io_set_bounce_buf(bdev_io, aligned_buf, len); 884 } else { 885 spdk_bdev_io_set_buf(bdev_io, aligned_buf, len); 886 } 887 888 if (spdk_bdev_is_md_separate(bdev)) { 889 aligned_buf = (char *)aligned_buf + len; 890 md_len = bdev_io->u.bdev.num_blocks * bdev->md_len; 891 892 assert(((uintptr_t)aligned_buf & (alignment - 1)) == 0); 893 894 if (bdev_io->u.bdev.md_buf != NULL) { 895 _bdev_io_set_bounce_md_buf(bdev_io, aligned_buf, md_len); 896 } else { 897 spdk_bdev_io_set_md_buf(bdev_io, aligned_buf, md_len); 898 } 899 } 900 bdev_io_get_buf_complete(bdev_io, buf, true); 901 } 902 903 static void 904 _bdev_io_put_buf(struct spdk_bdev_io *bdev_io, void *buf, uint64_t buf_len) 905 { 906 struct spdk_bdev *bdev = bdev_io->bdev; 907 struct spdk_mempool *pool; 908 struct spdk_bdev_io *tmp; 909 bdev_io_stailq_t *stailq; 910 struct spdk_bdev_mgmt_channel *ch; 911 uint64_t md_len, alignment; 912 913 md_len = spdk_bdev_is_md_separate(bdev) ? bdev_io->u.bdev.num_blocks * bdev->md_len : 0; 914 alignment = spdk_bdev_get_buf_align(bdev); 915 ch = bdev_io->internal.ch->shared_resource->mgmt_ch; 916 917 if (buf_len + alignment + md_len <= SPDK_BDEV_BUF_SIZE_WITH_MD(SPDK_BDEV_SMALL_BUF_MAX_SIZE) + 918 SPDK_BDEV_POOL_ALIGNMENT) { 919 pool = g_bdev_mgr.buf_small_pool; 920 stailq = &ch->need_buf_small; 921 } else { 922 pool = g_bdev_mgr.buf_large_pool; 923 stailq = &ch->need_buf_large; 924 } 925 926 if (STAILQ_EMPTY(stailq)) { 927 spdk_mempool_put(pool, buf); 928 } else { 929 tmp = STAILQ_FIRST(stailq); 930 STAILQ_REMOVE_HEAD(stailq, internal.buf_link); 931 _bdev_io_set_buf(tmp, buf, tmp->internal.buf_len); 932 } 933 } 934 935 static void 936 bdev_io_put_buf(struct spdk_bdev_io *bdev_io) 937 { 938 assert(bdev_io->internal.buf != NULL); 939 _bdev_io_put_buf(bdev_io, bdev_io->internal.buf, bdev_io->internal.buf_len); 940 bdev_io->internal.buf = NULL; 941 } 942 943 void 944 spdk_bdev_io_put_aux_buf(struct spdk_bdev_io *bdev_io, void *buf) 945 { 946 uint64_t len = bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen; 947 948 assert(buf != NULL); 949 _bdev_io_put_buf(bdev_io, buf, len); 950 } 951 952 static void 953 _bdev_io_unset_bounce_buf(struct spdk_bdev_io *bdev_io) 954 { 955 if (spdk_likely(bdev_io->internal.orig_iovcnt == 0)) { 956 assert(bdev_io->internal.orig_md_buf == NULL); 957 return; 958 } 959 960 /* if this is read path, copy data from bounce buffer to original buffer */ 961 if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ && 962 bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) { 963 _copy_buf_to_iovs(bdev_io->internal.orig_iovs, 964 bdev_io->internal.orig_iovcnt, 965 bdev_io->internal.bounce_iov.iov_base, 966 bdev_io->internal.bounce_iov.iov_len); 967 } 968 /* set original buffer for this io */ 969 bdev_io->u.bdev.iovcnt = bdev_io->internal.orig_iovcnt; 970 bdev_io->u.bdev.iovs = bdev_io->internal.orig_iovs; 971 /* disable bouncing buffer for this io */ 972 bdev_io->internal.orig_iovcnt = 0; 973 bdev_io->internal.orig_iovs = NULL; 974 975 /* do the same for metadata buffer */ 976 if (spdk_unlikely(bdev_io->internal.orig_md_buf != NULL)) { 977 assert(spdk_bdev_is_md_separate(bdev_io->bdev)); 978 979 if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ && 980 bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) { 981 memcpy(bdev_io->internal.orig_md_buf, bdev_io->u.bdev.md_buf, 982 bdev_io->u.bdev.num_blocks * spdk_bdev_get_md_size(bdev_io->bdev)); 983 } 984 985 bdev_io->u.bdev.md_buf = bdev_io->internal.orig_md_buf; 986 bdev_io->internal.orig_md_buf = NULL; 987 } 988 989 /* We want to free the bounce buffer here since we know we're done with it (as opposed 990 * to waiting for the conditional free of internal.buf in spdk_bdev_free_io()). 991 */ 992 bdev_io_put_buf(bdev_io); 993 } 994 995 static void 996 bdev_io_get_buf(struct spdk_bdev_io *bdev_io, uint64_t len) 997 { 998 struct spdk_bdev *bdev = bdev_io->bdev; 999 struct spdk_mempool *pool; 1000 bdev_io_stailq_t *stailq; 1001 struct spdk_bdev_mgmt_channel *mgmt_ch; 1002 uint64_t alignment, md_len; 1003 void *buf; 1004 1005 alignment = spdk_bdev_get_buf_align(bdev); 1006 md_len = spdk_bdev_is_md_separate(bdev) ? bdev_io->u.bdev.num_blocks * bdev->md_len : 0; 1007 1008 if (len + alignment + md_len > SPDK_BDEV_BUF_SIZE_WITH_MD(SPDK_BDEV_LARGE_BUF_MAX_SIZE) + 1009 SPDK_BDEV_POOL_ALIGNMENT) { 1010 SPDK_ERRLOG("Length + alignment %" PRIu64 " is larger than allowed\n", 1011 len + alignment); 1012 bdev_io_get_buf_complete(bdev_io, NULL, false); 1013 return; 1014 } 1015 1016 mgmt_ch = bdev_io->internal.ch->shared_resource->mgmt_ch; 1017 1018 bdev_io->internal.buf_len = len; 1019 1020 if (len + alignment + md_len <= SPDK_BDEV_BUF_SIZE_WITH_MD(SPDK_BDEV_SMALL_BUF_MAX_SIZE) + 1021 SPDK_BDEV_POOL_ALIGNMENT) { 1022 pool = g_bdev_mgr.buf_small_pool; 1023 stailq = &mgmt_ch->need_buf_small; 1024 } else { 1025 pool = g_bdev_mgr.buf_large_pool; 1026 stailq = &mgmt_ch->need_buf_large; 1027 } 1028 1029 buf = spdk_mempool_get(pool); 1030 if (!buf) { 1031 STAILQ_INSERT_TAIL(stailq, bdev_io, internal.buf_link); 1032 } else { 1033 _bdev_io_set_buf(bdev_io, buf, len); 1034 } 1035 } 1036 1037 void 1038 spdk_bdev_io_get_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_buf_cb cb, uint64_t len) 1039 { 1040 struct spdk_bdev *bdev = bdev_io->bdev; 1041 uint64_t alignment; 1042 1043 assert(cb != NULL); 1044 bdev_io->internal.get_buf_cb = cb; 1045 1046 alignment = spdk_bdev_get_buf_align(bdev); 1047 1048 if (_is_buf_allocated(bdev_io->u.bdev.iovs) && 1049 _are_iovs_aligned(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, alignment)) { 1050 /* Buffer already present and aligned */ 1051 cb(spdk_bdev_io_get_io_channel(bdev_io), bdev_io, true); 1052 return; 1053 } 1054 1055 bdev_io_get_buf(bdev_io, len); 1056 } 1057 1058 void 1059 spdk_bdev_io_get_aux_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_aux_buf_cb cb) 1060 { 1061 uint64_t len = bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen; 1062 1063 assert(cb != NULL); 1064 assert(bdev_io->internal.get_aux_buf_cb == NULL); 1065 bdev_io->internal.get_aux_buf_cb = cb; 1066 bdev_io_get_buf(bdev_io, len); 1067 } 1068 1069 static int 1070 bdev_module_get_max_ctx_size(void) 1071 { 1072 struct spdk_bdev_module *bdev_module; 1073 int max_bdev_module_size = 0; 1074 1075 TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, internal.tailq) { 1076 if (bdev_module->get_ctx_size && bdev_module->get_ctx_size() > max_bdev_module_size) { 1077 max_bdev_module_size = bdev_module->get_ctx_size(); 1078 } 1079 } 1080 1081 return max_bdev_module_size; 1082 } 1083 1084 static void 1085 bdev_qos_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w) 1086 { 1087 int i; 1088 struct spdk_bdev_qos *qos = bdev->internal.qos; 1089 uint64_t limits[SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES]; 1090 1091 if (!qos) { 1092 return; 1093 } 1094 1095 spdk_bdev_get_qos_rate_limits(bdev, limits); 1096 1097 spdk_json_write_object_begin(w); 1098 spdk_json_write_named_string(w, "method", "bdev_set_qos_limit"); 1099 1100 spdk_json_write_named_object_begin(w, "params"); 1101 spdk_json_write_named_string(w, "name", bdev->name); 1102 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 1103 if (limits[i] > 0) { 1104 spdk_json_write_named_uint64(w, qos_rpc_type[i], limits[i]); 1105 } 1106 } 1107 spdk_json_write_object_end(w); 1108 1109 spdk_json_write_object_end(w); 1110 } 1111 1112 void 1113 spdk_bdev_subsystem_config_json(struct spdk_json_write_ctx *w) 1114 { 1115 struct spdk_bdev_module *bdev_module; 1116 struct spdk_bdev *bdev; 1117 1118 assert(w != NULL); 1119 1120 spdk_json_write_array_begin(w); 1121 1122 spdk_json_write_object_begin(w); 1123 spdk_json_write_named_string(w, "method", "bdev_set_options"); 1124 spdk_json_write_named_object_begin(w, "params"); 1125 spdk_json_write_named_uint32(w, "bdev_io_pool_size", g_bdev_opts.bdev_io_pool_size); 1126 spdk_json_write_named_uint32(w, "bdev_io_cache_size", g_bdev_opts.bdev_io_cache_size); 1127 spdk_json_write_named_bool(w, "bdev_auto_examine", g_bdev_opts.bdev_auto_examine); 1128 spdk_json_write_object_end(w); 1129 spdk_json_write_object_end(w); 1130 1131 bdev_examine_allowlist_config_json(w); 1132 1133 TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, internal.tailq) { 1134 if (bdev_module->config_json) { 1135 bdev_module->config_json(w); 1136 } 1137 } 1138 1139 pthread_mutex_lock(&g_bdev_mgr.mutex); 1140 1141 TAILQ_FOREACH(bdev, &g_bdev_mgr.bdevs, internal.link) { 1142 if (bdev->fn_table->write_config_json) { 1143 bdev->fn_table->write_config_json(bdev, w); 1144 } 1145 1146 bdev_qos_config_json(bdev, w); 1147 } 1148 1149 pthread_mutex_unlock(&g_bdev_mgr.mutex); 1150 1151 /* This has to be last RPC in array to make sure all bdevs finished examine */ 1152 spdk_json_write_object_begin(w); 1153 spdk_json_write_named_string(w, "method", "bdev_wait_for_examine"); 1154 spdk_json_write_object_end(w); 1155 1156 spdk_json_write_array_end(w); 1157 } 1158 1159 static int 1160 bdev_mgmt_channel_create(void *io_device, void *ctx_buf) 1161 { 1162 struct spdk_bdev_mgmt_channel *ch = ctx_buf; 1163 struct spdk_bdev_io *bdev_io; 1164 uint32_t i; 1165 1166 STAILQ_INIT(&ch->need_buf_small); 1167 STAILQ_INIT(&ch->need_buf_large); 1168 1169 STAILQ_INIT(&ch->per_thread_cache); 1170 ch->bdev_io_cache_size = g_bdev_opts.bdev_io_cache_size; 1171 1172 /* Pre-populate bdev_io cache to ensure this thread cannot be starved. */ 1173 ch->per_thread_cache_count = 0; 1174 for (i = 0; i < ch->bdev_io_cache_size; i++) { 1175 bdev_io = spdk_mempool_get(g_bdev_mgr.bdev_io_pool); 1176 assert(bdev_io != NULL); 1177 ch->per_thread_cache_count++; 1178 STAILQ_INSERT_HEAD(&ch->per_thread_cache, bdev_io, internal.buf_link); 1179 } 1180 1181 TAILQ_INIT(&ch->shared_resources); 1182 TAILQ_INIT(&ch->io_wait_queue); 1183 1184 return 0; 1185 } 1186 1187 static void 1188 bdev_mgmt_channel_destroy(void *io_device, void *ctx_buf) 1189 { 1190 struct spdk_bdev_mgmt_channel *ch = ctx_buf; 1191 struct spdk_bdev_io *bdev_io; 1192 1193 if (!STAILQ_EMPTY(&ch->need_buf_small) || !STAILQ_EMPTY(&ch->need_buf_large)) { 1194 SPDK_ERRLOG("Pending I/O list wasn't empty on mgmt channel free\n"); 1195 } 1196 1197 if (!TAILQ_EMPTY(&ch->shared_resources)) { 1198 SPDK_ERRLOG("Module channel list wasn't empty on mgmt channel free\n"); 1199 } 1200 1201 while (!STAILQ_EMPTY(&ch->per_thread_cache)) { 1202 bdev_io = STAILQ_FIRST(&ch->per_thread_cache); 1203 STAILQ_REMOVE_HEAD(&ch->per_thread_cache, internal.buf_link); 1204 ch->per_thread_cache_count--; 1205 spdk_mempool_put(g_bdev_mgr.bdev_io_pool, (void *)bdev_io); 1206 } 1207 1208 assert(ch->per_thread_cache_count == 0); 1209 } 1210 1211 static void 1212 bdev_init_complete(int rc) 1213 { 1214 spdk_bdev_init_cb cb_fn = g_init_cb_fn; 1215 void *cb_arg = g_init_cb_arg; 1216 struct spdk_bdev_module *m; 1217 1218 g_bdev_mgr.init_complete = true; 1219 g_init_cb_fn = NULL; 1220 g_init_cb_arg = NULL; 1221 1222 /* 1223 * For modules that need to know when subsystem init is complete, 1224 * inform them now. 1225 */ 1226 if (rc == 0) { 1227 TAILQ_FOREACH(m, &g_bdev_mgr.bdev_modules, internal.tailq) { 1228 if (m->init_complete) { 1229 m->init_complete(); 1230 } 1231 } 1232 } 1233 1234 cb_fn(cb_arg, rc); 1235 } 1236 1237 static bool 1238 bdev_module_all_actions_completed(void) 1239 { 1240 struct spdk_bdev_module *m; 1241 1242 TAILQ_FOREACH(m, &g_bdev_mgr.bdev_modules, internal.tailq) { 1243 if (m->internal.action_in_progress > 0) { 1244 return false; 1245 } 1246 } 1247 return true; 1248 } 1249 1250 static void 1251 bdev_module_action_complete(void) 1252 { 1253 /* 1254 * Don't finish bdev subsystem initialization if 1255 * module pre-initialization is still in progress, or 1256 * the subsystem been already initialized. 1257 */ 1258 if (!g_bdev_mgr.module_init_complete || g_bdev_mgr.init_complete) { 1259 return; 1260 } 1261 1262 /* 1263 * Check all bdev modules for inits/examinations in progress. If any 1264 * exist, return immediately since we cannot finish bdev subsystem 1265 * initialization until all are completed. 1266 */ 1267 if (!bdev_module_all_actions_completed()) { 1268 return; 1269 } 1270 1271 /* 1272 * Modules already finished initialization - now that all 1273 * the bdev modules have finished their asynchronous I/O 1274 * processing, the entire bdev layer can be marked as complete. 1275 */ 1276 bdev_init_complete(0); 1277 } 1278 1279 static void 1280 bdev_module_action_done(struct spdk_bdev_module *module) 1281 { 1282 assert(module->internal.action_in_progress > 0); 1283 module->internal.action_in_progress--; 1284 bdev_module_action_complete(); 1285 } 1286 1287 void 1288 spdk_bdev_module_init_done(struct spdk_bdev_module *module) 1289 { 1290 bdev_module_action_done(module); 1291 } 1292 1293 void 1294 spdk_bdev_module_examine_done(struct spdk_bdev_module *module) 1295 { 1296 bdev_module_action_done(module); 1297 } 1298 1299 /** The last initialized bdev module */ 1300 static struct spdk_bdev_module *g_resume_bdev_module = NULL; 1301 1302 static void 1303 bdev_init_failed(void *cb_arg) 1304 { 1305 struct spdk_bdev_module *module = cb_arg; 1306 1307 module->internal.action_in_progress--; 1308 bdev_init_complete(-1); 1309 } 1310 1311 static int 1312 bdev_modules_init(void) 1313 { 1314 struct spdk_bdev_module *module; 1315 int rc = 0; 1316 1317 TAILQ_FOREACH(module, &g_bdev_mgr.bdev_modules, internal.tailq) { 1318 g_resume_bdev_module = module; 1319 if (module->async_init) { 1320 module->internal.action_in_progress = 1; 1321 } 1322 rc = module->module_init(); 1323 if (rc != 0) { 1324 /* Bump action_in_progress to prevent other modules from completion of modules_init 1325 * Send message to defer application shutdown until resources are cleaned up */ 1326 module->internal.action_in_progress = 1; 1327 spdk_thread_send_msg(spdk_get_thread(), bdev_init_failed, module); 1328 return rc; 1329 } 1330 } 1331 1332 g_resume_bdev_module = NULL; 1333 return 0; 1334 } 1335 1336 void 1337 spdk_bdev_initialize(spdk_bdev_init_cb cb_fn, void *cb_arg) 1338 { 1339 int cache_size; 1340 int rc = 0; 1341 char mempool_name[32]; 1342 1343 assert(cb_fn != NULL); 1344 1345 g_init_cb_fn = cb_fn; 1346 g_init_cb_arg = cb_arg; 1347 1348 spdk_notify_type_register("bdev_register"); 1349 spdk_notify_type_register("bdev_unregister"); 1350 1351 snprintf(mempool_name, sizeof(mempool_name), "bdev_io_%d", getpid()); 1352 1353 g_bdev_mgr.bdev_io_pool = spdk_mempool_create(mempool_name, 1354 g_bdev_opts.bdev_io_pool_size, 1355 sizeof(struct spdk_bdev_io) + 1356 bdev_module_get_max_ctx_size(), 1357 0, 1358 SPDK_ENV_SOCKET_ID_ANY); 1359 1360 if (g_bdev_mgr.bdev_io_pool == NULL) { 1361 SPDK_ERRLOG("could not allocate spdk_bdev_io pool\n"); 1362 bdev_init_complete(-1); 1363 return; 1364 } 1365 1366 /** 1367 * Ensure no more than half of the total buffers end up local caches, by 1368 * using spdk_env_get_core_count() to determine how many local caches we need 1369 * to account for. 1370 */ 1371 cache_size = BUF_SMALL_POOL_SIZE / (2 * spdk_env_get_core_count()); 1372 snprintf(mempool_name, sizeof(mempool_name), "buf_small_pool_%d", getpid()); 1373 1374 g_bdev_mgr.buf_small_pool = spdk_mempool_create(mempool_name, 1375 g_bdev_opts.small_buf_pool_size, 1376 SPDK_BDEV_BUF_SIZE_WITH_MD(SPDK_BDEV_SMALL_BUF_MAX_SIZE) + 1377 SPDK_BDEV_POOL_ALIGNMENT, 1378 cache_size, 1379 SPDK_ENV_SOCKET_ID_ANY); 1380 if (!g_bdev_mgr.buf_small_pool) { 1381 SPDK_ERRLOG("create rbuf small pool failed\n"); 1382 bdev_init_complete(-1); 1383 return; 1384 } 1385 1386 cache_size = BUF_LARGE_POOL_SIZE / (2 * spdk_env_get_core_count()); 1387 snprintf(mempool_name, sizeof(mempool_name), "buf_large_pool_%d", getpid()); 1388 1389 g_bdev_mgr.buf_large_pool = spdk_mempool_create(mempool_name, 1390 g_bdev_opts.large_buf_pool_size, 1391 SPDK_BDEV_BUF_SIZE_WITH_MD(SPDK_BDEV_LARGE_BUF_MAX_SIZE) + 1392 SPDK_BDEV_POOL_ALIGNMENT, 1393 cache_size, 1394 SPDK_ENV_SOCKET_ID_ANY); 1395 if (!g_bdev_mgr.buf_large_pool) { 1396 SPDK_ERRLOG("create rbuf large pool failed\n"); 1397 bdev_init_complete(-1); 1398 return; 1399 } 1400 1401 g_bdev_mgr.zero_buffer = spdk_zmalloc(ZERO_BUFFER_SIZE, ZERO_BUFFER_SIZE, 1402 NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); 1403 if (!g_bdev_mgr.zero_buffer) { 1404 SPDK_ERRLOG("create bdev zero buffer failed\n"); 1405 bdev_init_complete(-1); 1406 return; 1407 } 1408 1409 #ifdef SPDK_CONFIG_VTUNE 1410 g_bdev_mgr.domain = __itt_domain_create("spdk_bdev"); 1411 #endif 1412 1413 spdk_io_device_register(&g_bdev_mgr, bdev_mgmt_channel_create, 1414 bdev_mgmt_channel_destroy, 1415 sizeof(struct spdk_bdev_mgmt_channel), 1416 "bdev_mgr"); 1417 1418 rc = bdev_modules_init(); 1419 g_bdev_mgr.module_init_complete = true; 1420 if (rc != 0) { 1421 SPDK_ERRLOG("bdev modules init failed\n"); 1422 return; 1423 } 1424 1425 bdev_module_action_complete(); 1426 } 1427 1428 static void 1429 bdev_mgr_unregister_cb(void *io_device) 1430 { 1431 spdk_bdev_fini_cb cb_fn = g_fini_cb_fn; 1432 1433 if (g_bdev_mgr.bdev_io_pool) { 1434 if (spdk_mempool_count(g_bdev_mgr.bdev_io_pool) != g_bdev_opts.bdev_io_pool_size) { 1435 SPDK_ERRLOG("bdev IO pool count is %zu but should be %u\n", 1436 spdk_mempool_count(g_bdev_mgr.bdev_io_pool), 1437 g_bdev_opts.bdev_io_pool_size); 1438 } 1439 1440 spdk_mempool_free(g_bdev_mgr.bdev_io_pool); 1441 } 1442 1443 if (g_bdev_mgr.buf_small_pool) { 1444 if (spdk_mempool_count(g_bdev_mgr.buf_small_pool) != g_bdev_opts.small_buf_pool_size) { 1445 SPDK_ERRLOG("Small buffer pool count is %zu but should be %u\n", 1446 spdk_mempool_count(g_bdev_mgr.buf_small_pool), 1447 g_bdev_opts.small_buf_pool_size); 1448 assert(false); 1449 } 1450 1451 spdk_mempool_free(g_bdev_mgr.buf_small_pool); 1452 } 1453 1454 if (g_bdev_mgr.buf_large_pool) { 1455 if (spdk_mempool_count(g_bdev_mgr.buf_large_pool) != g_bdev_opts.large_buf_pool_size) { 1456 SPDK_ERRLOG("Large buffer pool count is %zu but should be %u\n", 1457 spdk_mempool_count(g_bdev_mgr.buf_large_pool), 1458 g_bdev_opts.large_buf_pool_size); 1459 assert(false); 1460 } 1461 1462 spdk_mempool_free(g_bdev_mgr.buf_large_pool); 1463 } 1464 1465 spdk_free(g_bdev_mgr.zero_buffer); 1466 1467 bdev_examine_allowlist_free(); 1468 1469 cb_fn(g_fini_cb_arg); 1470 g_fini_cb_fn = NULL; 1471 g_fini_cb_arg = NULL; 1472 g_bdev_mgr.init_complete = false; 1473 g_bdev_mgr.module_init_complete = false; 1474 } 1475 1476 static void 1477 bdev_module_finish_iter(void *arg) 1478 { 1479 struct spdk_bdev_module *bdev_module; 1480 1481 /* FIXME: Handling initialization failures is broken now, 1482 * so we won't even try cleaning up after successfully 1483 * initialized modules. if module_init_complete is false, 1484 * just call spdk_bdev_mgr_unregister_cb 1485 */ 1486 if (!g_bdev_mgr.module_init_complete) { 1487 bdev_mgr_unregister_cb(NULL); 1488 return; 1489 } 1490 1491 /* Start iterating from the last touched module */ 1492 if (!g_resume_bdev_module) { 1493 bdev_module = TAILQ_LAST(&g_bdev_mgr.bdev_modules, bdev_module_list); 1494 } else { 1495 bdev_module = TAILQ_PREV(g_resume_bdev_module, bdev_module_list, 1496 internal.tailq); 1497 } 1498 1499 while (bdev_module) { 1500 if (bdev_module->async_fini) { 1501 /* Save our place so we can resume later. We must 1502 * save the variable here, before calling module_fini() 1503 * below, because in some cases the module may immediately 1504 * call spdk_bdev_module_finish_done() and re-enter 1505 * this function to continue iterating. */ 1506 g_resume_bdev_module = bdev_module; 1507 } 1508 1509 if (bdev_module->module_fini) { 1510 bdev_module->module_fini(); 1511 } 1512 1513 if (bdev_module->async_fini) { 1514 return; 1515 } 1516 1517 bdev_module = TAILQ_PREV(bdev_module, bdev_module_list, 1518 internal.tailq); 1519 } 1520 1521 g_resume_bdev_module = NULL; 1522 spdk_io_device_unregister(&g_bdev_mgr, bdev_mgr_unregister_cb); 1523 } 1524 1525 void 1526 spdk_bdev_module_finish_done(void) 1527 { 1528 if (spdk_get_thread() != g_fini_thread) { 1529 spdk_thread_send_msg(g_fini_thread, bdev_module_finish_iter, NULL); 1530 } else { 1531 bdev_module_finish_iter(NULL); 1532 } 1533 } 1534 1535 static void 1536 bdev_finish_unregister_bdevs_iter(void *cb_arg, int bdeverrno) 1537 { 1538 struct spdk_bdev *bdev = cb_arg; 1539 1540 if (bdeverrno && bdev) { 1541 SPDK_WARNLOG("Unable to unregister bdev '%s' during spdk_bdev_finish()\n", 1542 bdev->name); 1543 1544 /* 1545 * Since the call to spdk_bdev_unregister() failed, we have no way to free this 1546 * bdev; try to continue by manually removing this bdev from the list and continue 1547 * with the next bdev in the list. 1548 */ 1549 TAILQ_REMOVE(&g_bdev_mgr.bdevs, bdev, internal.link); 1550 } 1551 1552 if (TAILQ_EMPTY(&g_bdev_mgr.bdevs)) { 1553 SPDK_DEBUGLOG(bdev, "Done unregistering bdevs\n"); 1554 /* 1555 * Bdev module finish need to be deferred as we might be in the middle of some context 1556 * (like bdev part free) that will use this bdev (or private bdev driver ctx data) 1557 * after returning. 1558 */ 1559 spdk_thread_send_msg(spdk_get_thread(), bdev_module_finish_iter, NULL); 1560 return; 1561 } 1562 1563 /* 1564 * Unregister last unclaimed bdev in the list, to ensure that bdev subsystem 1565 * shutdown proceeds top-down. The goal is to give virtual bdevs an opportunity 1566 * to detect clean shutdown as opposed to run-time hot removal of the underlying 1567 * base bdevs. 1568 * 1569 * Also, walk the list in the reverse order. 1570 */ 1571 for (bdev = TAILQ_LAST(&g_bdev_mgr.bdevs, spdk_bdev_list); 1572 bdev; bdev = TAILQ_PREV(bdev, spdk_bdev_list, internal.link)) { 1573 if (bdev->internal.claim_module != NULL) { 1574 SPDK_DEBUGLOG(bdev, "Skipping claimed bdev '%s'(<-'%s').\n", 1575 bdev->name, bdev->internal.claim_module->name); 1576 continue; 1577 } 1578 1579 SPDK_DEBUGLOG(bdev, "Unregistering bdev '%s'\n", bdev->name); 1580 spdk_bdev_unregister(bdev, bdev_finish_unregister_bdevs_iter, bdev); 1581 return; 1582 } 1583 1584 /* 1585 * If any bdev fails to unclaim underlying bdev properly, we may face the 1586 * case of bdev list consisting of claimed bdevs only (if claims are managed 1587 * correctly, this would mean there's a loop in the claims graph which is 1588 * clearly impossible). Warn and unregister last bdev on the list then. 1589 */ 1590 for (bdev = TAILQ_LAST(&g_bdev_mgr.bdevs, spdk_bdev_list); 1591 bdev; bdev = TAILQ_PREV(bdev, spdk_bdev_list, internal.link)) { 1592 SPDK_WARNLOG("Unregistering claimed bdev '%s'!\n", bdev->name); 1593 spdk_bdev_unregister(bdev, bdev_finish_unregister_bdevs_iter, bdev); 1594 return; 1595 } 1596 } 1597 1598 void 1599 spdk_bdev_finish(spdk_bdev_fini_cb cb_fn, void *cb_arg) 1600 { 1601 struct spdk_bdev_module *m; 1602 1603 assert(cb_fn != NULL); 1604 1605 g_fini_thread = spdk_get_thread(); 1606 1607 g_fini_cb_fn = cb_fn; 1608 g_fini_cb_arg = cb_arg; 1609 1610 TAILQ_FOREACH(m, &g_bdev_mgr.bdev_modules, internal.tailq) { 1611 if (m->fini_start) { 1612 m->fini_start(); 1613 } 1614 } 1615 1616 bdev_finish_unregister_bdevs_iter(NULL, 0); 1617 } 1618 1619 struct spdk_bdev_io * 1620 bdev_channel_get_io(struct spdk_bdev_channel *channel) 1621 { 1622 struct spdk_bdev_mgmt_channel *ch = channel->shared_resource->mgmt_ch; 1623 struct spdk_bdev_io *bdev_io; 1624 1625 if (ch->per_thread_cache_count > 0) { 1626 bdev_io = STAILQ_FIRST(&ch->per_thread_cache); 1627 STAILQ_REMOVE_HEAD(&ch->per_thread_cache, internal.buf_link); 1628 ch->per_thread_cache_count--; 1629 } else if (spdk_unlikely(!TAILQ_EMPTY(&ch->io_wait_queue))) { 1630 /* 1631 * Don't try to look for bdev_ios in the global pool if there are 1632 * waiters on bdev_ios - we don't want this caller to jump the line. 1633 */ 1634 bdev_io = NULL; 1635 } else { 1636 bdev_io = spdk_mempool_get(g_bdev_mgr.bdev_io_pool); 1637 } 1638 1639 return bdev_io; 1640 } 1641 1642 void 1643 spdk_bdev_free_io(struct spdk_bdev_io *bdev_io) 1644 { 1645 struct spdk_bdev_mgmt_channel *ch; 1646 1647 assert(bdev_io != NULL); 1648 assert(bdev_io->internal.status != SPDK_BDEV_IO_STATUS_PENDING); 1649 1650 ch = bdev_io->internal.ch->shared_resource->mgmt_ch; 1651 1652 if (bdev_io->internal.buf != NULL) { 1653 bdev_io_put_buf(bdev_io); 1654 } 1655 1656 if (ch->per_thread_cache_count < ch->bdev_io_cache_size) { 1657 ch->per_thread_cache_count++; 1658 STAILQ_INSERT_HEAD(&ch->per_thread_cache, bdev_io, internal.buf_link); 1659 while (ch->per_thread_cache_count > 0 && !TAILQ_EMPTY(&ch->io_wait_queue)) { 1660 struct spdk_bdev_io_wait_entry *entry; 1661 1662 entry = TAILQ_FIRST(&ch->io_wait_queue); 1663 TAILQ_REMOVE(&ch->io_wait_queue, entry, link); 1664 entry->cb_fn(entry->cb_arg); 1665 } 1666 } else { 1667 /* We should never have a full cache with entries on the io wait queue. */ 1668 assert(TAILQ_EMPTY(&ch->io_wait_queue)); 1669 spdk_mempool_put(g_bdev_mgr.bdev_io_pool, (void *)bdev_io); 1670 } 1671 } 1672 1673 static bool 1674 bdev_qos_is_iops_rate_limit(enum spdk_bdev_qos_rate_limit_type limit) 1675 { 1676 assert(limit != SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES); 1677 1678 switch (limit) { 1679 case SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT: 1680 return true; 1681 case SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT: 1682 case SPDK_BDEV_QOS_R_BPS_RATE_LIMIT: 1683 case SPDK_BDEV_QOS_W_BPS_RATE_LIMIT: 1684 return false; 1685 case SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES: 1686 default: 1687 return false; 1688 } 1689 } 1690 1691 static bool 1692 bdev_qos_io_to_limit(struct spdk_bdev_io *bdev_io) 1693 { 1694 switch (bdev_io->type) { 1695 case SPDK_BDEV_IO_TYPE_NVME_IO: 1696 case SPDK_BDEV_IO_TYPE_NVME_IO_MD: 1697 case SPDK_BDEV_IO_TYPE_READ: 1698 case SPDK_BDEV_IO_TYPE_WRITE: 1699 return true; 1700 case SPDK_BDEV_IO_TYPE_ZCOPY: 1701 if (bdev_io->u.bdev.zcopy.start) { 1702 return true; 1703 } else { 1704 return false; 1705 } 1706 default: 1707 return false; 1708 } 1709 } 1710 1711 static bool 1712 bdev_is_read_io(struct spdk_bdev_io *bdev_io) 1713 { 1714 switch (bdev_io->type) { 1715 case SPDK_BDEV_IO_TYPE_NVME_IO: 1716 case SPDK_BDEV_IO_TYPE_NVME_IO_MD: 1717 /* Bit 1 (0x2) set for read operation */ 1718 if (bdev_io->u.nvme_passthru.cmd.opc & SPDK_NVME_OPC_READ) { 1719 return true; 1720 } else { 1721 return false; 1722 } 1723 case SPDK_BDEV_IO_TYPE_READ: 1724 return true; 1725 case SPDK_BDEV_IO_TYPE_ZCOPY: 1726 /* Populate to read from disk */ 1727 if (bdev_io->u.bdev.zcopy.populate) { 1728 return true; 1729 } else { 1730 return false; 1731 } 1732 default: 1733 return false; 1734 } 1735 } 1736 1737 static uint64_t 1738 bdev_get_io_size_in_byte(struct spdk_bdev_io *bdev_io) 1739 { 1740 struct spdk_bdev *bdev = bdev_io->bdev; 1741 1742 switch (bdev_io->type) { 1743 case SPDK_BDEV_IO_TYPE_NVME_IO: 1744 case SPDK_BDEV_IO_TYPE_NVME_IO_MD: 1745 return bdev_io->u.nvme_passthru.nbytes; 1746 case SPDK_BDEV_IO_TYPE_READ: 1747 case SPDK_BDEV_IO_TYPE_WRITE: 1748 return bdev_io->u.bdev.num_blocks * bdev->blocklen; 1749 case SPDK_BDEV_IO_TYPE_ZCOPY: 1750 /* Track the data in the start phase only */ 1751 if (bdev_io->u.bdev.zcopy.start) { 1752 return bdev_io->u.bdev.num_blocks * bdev->blocklen; 1753 } else { 1754 return 0; 1755 } 1756 default: 1757 return 0; 1758 } 1759 } 1760 1761 static bool 1762 bdev_qos_rw_queue_io(const struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 1763 { 1764 if (limit->max_per_timeslice > 0 && limit->remaining_this_timeslice <= 0) { 1765 return true; 1766 } else { 1767 return false; 1768 } 1769 } 1770 1771 static bool 1772 bdev_qos_r_queue_io(const struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 1773 { 1774 if (bdev_is_read_io(io) == false) { 1775 return false; 1776 } 1777 1778 return bdev_qos_rw_queue_io(limit, io); 1779 } 1780 1781 static bool 1782 bdev_qos_w_queue_io(const struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 1783 { 1784 if (bdev_is_read_io(io) == true) { 1785 return false; 1786 } 1787 1788 return bdev_qos_rw_queue_io(limit, io); 1789 } 1790 1791 static void 1792 bdev_qos_rw_iops_update_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 1793 { 1794 limit->remaining_this_timeslice--; 1795 } 1796 1797 static void 1798 bdev_qos_rw_bps_update_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 1799 { 1800 limit->remaining_this_timeslice -= bdev_get_io_size_in_byte(io); 1801 } 1802 1803 static void 1804 bdev_qos_r_bps_update_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 1805 { 1806 if (bdev_is_read_io(io) == false) { 1807 return; 1808 } 1809 1810 return bdev_qos_rw_bps_update_quota(limit, io); 1811 } 1812 1813 static void 1814 bdev_qos_w_bps_update_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) 1815 { 1816 if (bdev_is_read_io(io) == true) { 1817 return; 1818 } 1819 1820 return bdev_qos_rw_bps_update_quota(limit, io); 1821 } 1822 1823 static void 1824 bdev_qos_set_ops(struct spdk_bdev_qos *qos) 1825 { 1826 int i; 1827 1828 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 1829 if (qos->rate_limits[i].limit == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) { 1830 qos->rate_limits[i].queue_io = NULL; 1831 qos->rate_limits[i].update_quota = NULL; 1832 continue; 1833 } 1834 1835 switch (i) { 1836 case SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT: 1837 qos->rate_limits[i].queue_io = bdev_qos_rw_queue_io; 1838 qos->rate_limits[i].update_quota = bdev_qos_rw_iops_update_quota; 1839 break; 1840 case SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT: 1841 qos->rate_limits[i].queue_io = bdev_qos_rw_queue_io; 1842 qos->rate_limits[i].update_quota = bdev_qos_rw_bps_update_quota; 1843 break; 1844 case SPDK_BDEV_QOS_R_BPS_RATE_LIMIT: 1845 qos->rate_limits[i].queue_io = bdev_qos_r_queue_io; 1846 qos->rate_limits[i].update_quota = bdev_qos_r_bps_update_quota; 1847 break; 1848 case SPDK_BDEV_QOS_W_BPS_RATE_LIMIT: 1849 qos->rate_limits[i].queue_io = bdev_qos_w_queue_io; 1850 qos->rate_limits[i].update_quota = bdev_qos_w_bps_update_quota; 1851 break; 1852 default: 1853 break; 1854 } 1855 } 1856 } 1857 1858 static void 1859 _bdev_io_complete_in_submit(struct spdk_bdev_channel *bdev_ch, 1860 struct spdk_bdev_io *bdev_io, 1861 enum spdk_bdev_io_status status) 1862 { 1863 struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource; 1864 1865 bdev_io->internal.in_submit_request = true; 1866 bdev_ch->io_outstanding++; 1867 shared_resource->io_outstanding++; 1868 spdk_bdev_io_complete(bdev_io, status); 1869 bdev_io->internal.in_submit_request = false; 1870 } 1871 1872 static inline void 1873 bdev_io_do_submit(struct spdk_bdev_channel *bdev_ch, struct spdk_bdev_io *bdev_io) 1874 { 1875 struct spdk_bdev *bdev = bdev_io->bdev; 1876 struct spdk_io_channel *ch = bdev_ch->channel; 1877 struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource; 1878 1879 if (spdk_unlikely(bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT)) { 1880 struct spdk_bdev_mgmt_channel *mgmt_channel = shared_resource->mgmt_ch; 1881 struct spdk_bdev_io *bio_to_abort = bdev_io->u.abort.bio_to_abort; 1882 1883 if (bdev_abort_queued_io(&shared_resource->nomem_io, bio_to_abort) || 1884 bdev_abort_buf_io(&mgmt_channel->need_buf_small, bio_to_abort) || 1885 bdev_abort_buf_io(&mgmt_channel->need_buf_large, bio_to_abort)) { 1886 _bdev_io_complete_in_submit(bdev_ch, bdev_io, 1887 SPDK_BDEV_IO_STATUS_SUCCESS); 1888 return; 1889 } 1890 } 1891 1892 if (spdk_likely(TAILQ_EMPTY(&shared_resource->nomem_io))) { 1893 bdev_ch->io_outstanding++; 1894 shared_resource->io_outstanding++; 1895 bdev_io->internal.in_submit_request = true; 1896 bdev->fn_table->submit_request(ch, bdev_io); 1897 bdev_io->internal.in_submit_request = false; 1898 } else { 1899 TAILQ_INSERT_TAIL(&shared_resource->nomem_io, bdev_io, internal.link); 1900 } 1901 } 1902 1903 static int 1904 bdev_qos_io_submit(struct spdk_bdev_channel *ch, struct spdk_bdev_qos *qos) 1905 { 1906 struct spdk_bdev_io *bdev_io = NULL, *tmp = NULL; 1907 int i, submitted_ios = 0; 1908 1909 TAILQ_FOREACH_SAFE(bdev_io, &qos->queued, internal.link, tmp) { 1910 if (bdev_qos_io_to_limit(bdev_io) == true) { 1911 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 1912 if (!qos->rate_limits[i].queue_io) { 1913 continue; 1914 } 1915 1916 if (qos->rate_limits[i].queue_io(&qos->rate_limits[i], 1917 bdev_io) == true) { 1918 return submitted_ios; 1919 } 1920 } 1921 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 1922 if (!qos->rate_limits[i].update_quota) { 1923 continue; 1924 } 1925 1926 qos->rate_limits[i].update_quota(&qos->rate_limits[i], bdev_io); 1927 } 1928 } 1929 1930 TAILQ_REMOVE(&qos->queued, bdev_io, internal.link); 1931 bdev_io_do_submit(ch, bdev_io); 1932 submitted_ios++; 1933 } 1934 1935 return submitted_ios; 1936 } 1937 1938 static void 1939 bdev_queue_io_wait_with_cb(struct spdk_bdev_io *bdev_io, spdk_bdev_io_wait_cb cb_fn) 1940 { 1941 int rc; 1942 1943 bdev_io->internal.waitq_entry.bdev = bdev_io->bdev; 1944 bdev_io->internal.waitq_entry.cb_fn = cb_fn; 1945 bdev_io->internal.waitq_entry.cb_arg = bdev_io; 1946 rc = spdk_bdev_queue_io_wait(bdev_io->bdev, spdk_io_channel_from_ctx(bdev_io->internal.ch), 1947 &bdev_io->internal.waitq_entry); 1948 if (rc != 0) { 1949 SPDK_ERRLOG("Queue IO failed, rc=%d\n", rc); 1950 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 1951 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 1952 } 1953 } 1954 1955 static bool 1956 bdev_io_type_can_split(uint8_t type) 1957 { 1958 assert(type != SPDK_BDEV_IO_TYPE_INVALID); 1959 assert(type < SPDK_BDEV_NUM_IO_TYPES); 1960 1961 /* Only split READ and WRITE I/O. Theoretically other types of I/O like 1962 * UNMAP could be split, but these types of I/O are typically much larger 1963 * in size (sometimes the size of the entire block device), and the bdev 1964 * module can more efficiently split these types of I/O. Plus those types 1965 * of I/O do not have a payload, which makes the splitting process simpler. 1966 */ 1967 if (type == SPDK_BDEV_IO_TYPE_READ || type == SPDK_BDEV_IO_TYPE_WRITE) { 1968 return true; 1969 } else { 1970 return false; 1971 } 1972 } 1973 1974 static bool 1975 bdev_io_should_split(struct spdk_bdev_io *bdev_io) 1976 { 1977 uint32_t io_boundary = bdev_io->bdev->optimal_io_boundary; 1978 uint32_t max_size = bdev_io->bdev->max_segment_size; 1979 int max_segs = bdev_io->bdev->max_num_segments; 1980 1981 io_boundary = bdev_io->bdev->split_on_optimal_io_boundary ? io_boundary : 0; 1982 1983 if (spdk_likely(!io_boundary && !max_segs && !max_size)) { 1984 return false; 1985 } 1986 1987 if (!bdev_io_type_can_split(bdev_io->type)) { 1988 return false; 1989 } 1990 1991 if (io_boundary) { 1992 uint64_t start_stripe, end_stripe; 1993 1994 start_stripe = bdev_io->u.bdev.offset_blocks; 1995 end_stripe = start_stripe + bdev_io->u.bdev.num_blocks - 1; 1996 /* Avoid expensive div operations if possible. These spdk_u32 functions are very cheap. */ 1997 if (spdk_likely(spdk_u32_is_pow2(io_boundary))) { 1998 start_stripe >>= spdk_u32log2(io_boundary); 1999 end_stripe >>= spdk_u32log2(io_boundary); 2000 } else { 2001 start_stripe /= io_boundary; 2002 end_stripe /= io_boundary; 2003 } 2004 2005 if (start_stripe != end_stripe) { 2006 return true; 2007 } 2008 } 2009 2010 if (max_segs) { 2011 if (bdev_io->u.bdev.iovcnt > max_segs) { 2012 return true; 2013 } 2014 } 2015 2016 if (max_size) { 2017 for (int i = 0; i < bdev_io->u.bdev.iovcnt; i++) { 2018 if (bdev_io->u.bdev.iovs[i].iov_len > max_size) { 2019 return true; 2020 } 2021 } 2022 } 2023 2024 return false; 2025 } 2026 2027 static uint32_t 2028 _to_next_boundary(uint64_t offset, uint32_t boundary) 2029 { 2030 return (boundary - (offset % boundary)); 2031 } 2032 2033 static void 2034 bdev_io_split_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg); 2035 2036 static void 2037 _bdev_io_split(void *_bdev_io) 2038 { 2039 struct iovec *parent_iov, *iov; 2040 struct spdk_bdev_io *bdev_io = _bdev_io; 2041 struct spdk_bdev *bdev = bdev_io->bdev; 2042 uint64_t parent_offset, current_offset, remaining; 2043 uint32_t parent_iov_offset, parent_iovcnt, parent_iovpos, child_iovcnt; 2044 uint32_t to_next_boundary, to_next_boundary_bytes, to_last_block_bytes; 2045 uint32_t iovcnt, iov_len, child_iovsize; 2046 uint32_t blocklen = bdev->blocklen; 2047 uint32_t io_boundary = bdev->optimal_io_boundary; 2048 uint32_t max_segment_size = bdev->max_segment_size; 2049 uint32_t max_child_iovcnt = bdev->max_num_segments; 2050 void *md_buf = NULL; 2051 int rc; 2052 2053 max_segment_size = max_segment_size ? max_segment_size : UINT32_MAX; 2054 max_child_iovcnt = max_child_iovcnt ? spdk_min(max_child_iovcnt, BDEV_IO_NUM_CHILD_IOV) : 2055 BDEV_IO_NUM_CHILD_IOV; 2056 io_boundary = bdev->split_on_optimal_io_boundary ? io_boundary : UINT32_MAX; 2057 2058 remaining = bdev_io->u.bdev.split_remaining_num_blocks; 2059 current_offset = bdev_io->u.bdev.split_current_offset_blocks; 2060 parent_offset = bdev_io->u.bdev.offset_blocks; 2061 parent_iov_offset = (current_offset - parent_offset) * blocklen; 2062 parent_iovcnt = bdev_io->u.bdev.iovcnt; 2063 2064 for (parent_iovpos = 0; parent_iovpos < parent_iovcnt; parent_iovpos++) { 2065 parent_iov = &bdev_io->u.bdev.iovs[parent_iovpos]; 2066 if (parent_iov_offset < parent_iov->iov_len) { 2067 break; 2068 } 2069 parent_iov_offset -= parent_iov->iov_len; 2070 } 2071 2072 child_iovcnt = 0; 2073 while (remaining > 0 && parent_iovpos < parent_iovcnt && child_iovcnt < BDEV_IO_NUM_CHILD_IOV) { 2074 to_next_boundary = _to_next_boundary(current_offset, io_boundary); 2075 to_next_boundary = spdk_min(remaining, to_next_boundary); 2076 to_next_boundary_bytes = to_next_boundary * blocklen; 2077 2078 iov = &bdev_io->child_iov[child_iovcnt]; 2079 iovcnt = 0; 2080 2081 if (bdev_io->u.bdev.md_buf) { 2082 md_buf = (char *)bdev_io->u.bdev.md_buf + 2083 (current_offset - parent_offset) * spdk_bdev_get_md_size(bdev); 2084 } 2085 2086 child_iovsize = spdk_min(BDEV_IO_NUM_CHILD_IOV - child_iovcnt, max_child_iovcnt); 2087 while (to_next_boundary_bytes > 0 && parent_iovpos < parent_iovcnt && 2088 iovcnt < child_iovsize) { 2089 parent_iov = &bdev_io->u.bdev.iovs[parent_iovpos]; 2090 iov_len = parent_iov->iov_len - parent_iov_offset; 2091 2092 iov_len = spdk_min(iov_len, max_segment_size); 2093 iov_len = spdk_min(iov_len, to_next_boundary_bytes); 2094 to_next_boundary_bytes -= iov_len; 2095 2096 bdev_io->child_iov[child_iovcnt].iov_base = parent_iov->iov_base + parent_iov_offset; 2097 bdev_io->child_iov[child_iovcnt].iov_len = iov_len; 2098 2099 if (iov_len < parent_iov->iov_len - parent_iov_offset) { 2100 parent_iov_offset += iov_len; 2101 } else { 2102 parent_iovpos++; 2103 parent_iov_offset = 0; 2104 } 2105 child_iovcnt++; 2106 iovcnt++; 2107 } 2108 2109 if (to_next_boundary_bytes > 0) { 2110 /* We had to stop this child I/O early because we ran out of 2111 * child_iov space or were limited by max_num_segments. 2112 * Ensure the iovs to be aligned with block size and 2113 * then adjust to_next_boundary before starting the 2114 * child I/O. 2115 */ 2116 assert(child_iovcnt == BDEV_IO_NUM_CHILD_IOV || 2117 iovcnt == child_iovsize); 2118 to_last_block_bytes = to_next_boundary_bytes % blocklen; 2119 if (to_last_block_bytes != 0) { 2120 uint32_t child_iovpos = child_iovcnt - 1; 2121 /* don't decrease child_iovcnt when it equals to BDEV_IO_NUM_CHILD_IOV 2122 * so the loop will naturally end 2123 */ 2124 2125 to_last_block_bytes = blocklen - to_last_block_bytes; 2126 to_next_boundary_bytes += to_last_block_bytes; 2127 while (to_last_block_bytes > 0 && iovcnt > 0) { 2128 iov_len = spdk_min(to_last_block_bytes, 2129 bdev_io->child_iov[child_iovpos].iov_len); 2130 bdev_io->child_iov[child_iovpos].iov_len -= iov_len; 2131 if (bdev_io->child_iov[child_iovpos].iov_len == 0) { 2132 child_iovpos--; 2133 if (--iovcnt == 0) { 2134 /* If the child IO is less than a block size just return. 2135 * If the first child IO of any split round is less than 2136 * a block size, an error exit. 2137 */ 2138 if (bdev_io->u.bdev.split_outstanding == 0) { 2139 SPDK_ERRLOG("The first child io was less than a block size\n"); 2140 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 2141 spdk_trace_record_tsc(spdk_get_ticks(), TRACE_BDEV_IO_DONE, 0, 0, 2142 (uintptr_t)bdev_io, 0); 2143 TAILQ_REMOVE(&bdev_io->internal.ch->io_submitted, bdev_io, internal.ch_link); 2144 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 2145 } 2146 2147 return; 2148 } 2149 } 2150 2151 to_last_block_bytes -= iov_len; 2152 2153 if (parent_iov_offset == 0) { 2154 parent_iovpos--; 2155 parent_iov_offset = bdev_io->u.bdev.iovs[parent_iovpos].iov_len; 2156 } 2157 parent_iov_offset -= iov_len; 2158 } 2159 2160 assert(to_last_block_bytes == 0); 2161 } 2162 to_next_boundary -= to_next_boundary_bytes / blocklen; 2163 } 2164 2165 bdev_io->u.bdev.split_outstanding++; 2166 2167 if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ) { 2168 rc = bdev_readv_blocks_with_md(bdev_io->internal.desc, 2169 spdk_io_channel_from_ctx(bdev_io->internal.ch), 2170 iov, iovcnt, md_buf, current_offset, 2171 to_next_boundary, 2172 bdev_io_split_done, bdev_io); 2173 } else { 2174 rc = bdev_writev_blocks_with_md(bdev_io->internal.desc, 2175 spdk_io_channel_from_ctx(bdev_io->internal.ch), 2176 iov, iovcnt, md_buf, current_offset, 2177 to_next_boundary, 2178 bdev_io_split_done, bdev_io); 2179 } 2180 2181 if (rc == 0) { 2182 current_offset += to_next_boundary; 2183 remaining -= to_next_boundary; 2184 bdev_io->u.bdev.split_current_offset_blocks = current_offset; 2185 bdev_io->u.bdev.split_remaining_num_blocks = remaining; 2186 } else { 2187 bdev_io->u.bdev.split_outstanding--; 2188 if (rc == -ENOMEM) { 2189 if (bdev_io->u.bdev.split_outstanding == 0) { 2190 /* No I/O is outstanding. Hence we should wait here. */ 2191 bdev_queue_io_wait_with_cb(bdev_io, _bdev_io_split); 2192 } 2193 } else { 2194 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 2195 if (bdev_io->u.bdev.split_outstanding == 0) { 2196 spdk_trace_record_tsc(spdk_get_ticks(), TRACE_BDEV_IO_DONE, 0, 0, 2197 (uintptr_t)bdev_io, 0); 2198 TAILQ_REMOVE(&bdev_io->internal.ch->io_submitted, bdev_io, internal.ch_link); 2199 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 2200 } 2201 } 2202 2203 return; 2204 } 2205 } 2206 } 2207 2208 static void 2209 bdev_io_split_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 2210 { 2211 struct spdk_bdev_io *parent_io = cb_arg; 2212 2213 spdk_bdev_free_io(bdev_io); 2214 2215 if (!success) { 2216 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 2217 /* If any child I/O failed, stop further splitting process. */ 2218 parent_io->u.bdev.split_current_offset_blocks += parent_io->u.bdev.split_remaining_num_blocks; 2219 parent_io->u.bdev.split_remaining_num_blocks = 0; 2220 } 2221 parent_io->u.bdev.split_outstanding--; 2222 if (parent_io->u.bdev.split_outstanding != 0) { 2223 return; 2224 } 2225 2226 /* 2227 * Parent I/O finishes when all blocks are consumed. 2228 */ 2229 if (parent_io->u.bdev.split_remaining_num_blocks == 0) { 2230 assert(parent_io->internal.cb != bdev_io_split_done); 2231 spdk_trace_record_tsc(spdk_get_ticks(), TRACE_BDEV_IO_DONE, 0, 0, 2232 (uintptr_t)parent_io, 0); 2233 TAILQ_REMOVE(&parent_io->internal.ch->io_submitted, parent_io, internal.ch_link); 2234 parent_io->internal.cb(parent_io, parent_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS, 2235 parent_io->internal.caller_ctx); 2236 return; 2237 } 2238 2239 /* 2240 * Continue with the splitting process. This function will complete the parent I/O if the 2241 * splitting is done. 2242 */ 2243 _bdev_io_split(parent_io); 2244 } 2245 2246 static void 2247 bdev_io_split_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io, bool success); 2248 2249 static void 2250 bdev_io_split(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io) 2251 { 2252 assert(bdev_io_type_can_split(bdev_io->type)); 2253 2254 bdev_io->u.bdev.split_current_offset_blocks = bdev_io->u.bdev.offset_blocks; 2255 bdev_io->u.bdev.split_remaining_num_blocks = bdev_io->u.bdev.num_blocks; 2256 bdev_io->u.bdev.split_outstanding = 0; 2257 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; 2258 2259 if (_is_buf_allocated(bdev_io->u.bdev.iovs)) { 2260 _bdev_io_split(bdev_io); 2261 } else { 2262 assert(bdev_io->type == SPDK_BDEV_IO_TYPE_READ); 2263 spdk_bdev_io_get_buf(bdev_io, bdev_io_split_get_buf_cb, 2264 bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen); 2265 } 2266 } 2267 2268 static void 2269 bdev_io_split_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io, bool success) 2270 { 2271 if (!success) { 2272 spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED); 2273 return; 2274 } 2275 2276 _bdev_io_split(bdev_io); 2277 } 2278 2279 /* Explicitly mark this inline, since it's used as a function pointer and otherwise won't 2280 * be inlined, at least on some compilers. 2281 */ 2282 static inline void 2283 _bdev_io_submit(void *ctx) 2284 { 2285 struct spdk_bdev_io *bdev_io = ctx; 2286 struct spdk_bdev *bdev = bdev_io->bdev; 2287 struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch; 2288 uint64_t tsc; 2289 2290 tsc = spdk_get_ticks(); 2291 bdev_io->internal.submit_tsc = tsc; 2292 spdk_trace_record_tsc(tsc, TRACE_BDEV_IO_START, 0, 0, (uintptr_t)bdev_io, bdev_io->type); 2293 2294 if (spdk_likely(bdev_ch->flags == 0)) { 2295 bdev_io_do_submit(bdev_ch, bdev_io); 2296 return; 2297 } 2298 2299 if (bdev_ch->flags & BDEV_CH_RESET_IN_PROGRESS) { 2300 _bdev_io_complete_in_submit(bdev_ch, bdev_io, SPDK_BDEV_IO_STATUS_ABORTED); 2301 } else if (bdev_ch->flags & BDEV_CH_QOS_ENABLED) { 2302 if (spdk_unlikely(bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) && 2303 bdev_abort_queued_io(&bdev->internal.qos->queued, bdev_io->u.abort.bio_to_abort)) { 2304 _bdev_io_complete_in_submit(bdev_ch, bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS); 2305 } else { 2306 TAILQ_INSERT_TAIL(&bdev->internal.qos->queued, bdev_io, internal.link); 2307 bdev_qos_io_submit(bdev_ch, bdev->internal.qos); 2308 } 2309 } else { 2310 SPDK_ERRLOG("unknown bdev_ch flag %x found\n", bdev_ch->flags); 2311 _bdev_io_complete_in_submit(bdev_ch, bdev_io, SPDK_BDEV_IO_STATUS_FAILED); 2312 } 2313 } 2314 2315 bool 2316 bdev_lba_range_overlapped(struct lba_range *range1, struct lba_range *range2); 2317 2318 bool 2319 bdev_lba_range_overlapped(struct lba_range *range1, struct lba_range *range2) 2320 { 2321 if (range1->length == 0 || range2->length == 0) { 2322 return false; 2323 } 2324 2325 if (range1->offset + range1->length <= range2->offset) { 2326 return false; 2327 } 2328 2329 if (range2->offset + range2->length <= range1->offset) { 2330 return false; 2331 } 2332 2333 return true; 2334 } 2335 2336 static bool 2337 bdev_io_range_is_locked(struct spdk_bdev_io *bdev_io, struct lba_range *range) 2338 { 2339 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 2340 struct lba_range r; 2341 2342 switch (bdev_io->type) { 2343 case SPDK_BDEV_IO_TYPE_NVME_IO: 2344 case SPDK_BDEV_IO_TYPE_NVME_IO_MD: 2345 /* Don't try to decode the NVMe command - just assume worst-case and that 2346 * it overlaps a locked range. 2347 */ 2348 return true; 2349 case SPDK_BDEV_IO_TYPE_WRITE: 2350 case SPDK_BDEV_IO_TYPE_UNMAP: 2351 case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: 2352 case SPDK_BDEV_IO_TYPE_ZCOPY: 2353 r.offset = bdev_io->u.bdev.offset_blocks; 2354 r.length = bdev_io->u.bdev.num_blocks; 2355 if (!bdev_lba_range_overlapped(range, &r)) { 2356 /* This I/O doesn't overlap the specified LBA range. */ 2357 return false; 2358 } else if (range->owner_ch == ch && range->locked_ctx == bdev_io->internal.caller_ctx) { 2359 /* This I/O overlaps, but the I/O is on the same channel that locked this 2360 * range, and the caller_ctx is the same as the locked_ctx. This means 2361 * that this I/O is associated with the lock, and is allowed to execute. 2362 */ 2363 return false; 2364 } else { 2365 return true; 2366 } 2367 default: 2368 return false; 2369 } 2370 } 2371 2372 void 2373 bdev_io_submit(struct spdk_bdev_io *bdev_io) 2374 { 2375 struct spdk_bdev *bdev = bdev_io->bdev; 2376 struct spdk_thread *thread = spdk_bdev_io_get_thread(bdev_io); 2377 struct spdk_bdev_channel *ch = bdev_io->internal.ch; 2378 2379 assert(thread != NULL); 2380 assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_PENDING); 2381 2382 if (!TAILQ_EMPTY(&ch->locked_ranges)) { 2383 struct lba_range *range; 2384 2385 TAILQ_FOREACH(range, &ch->locked_ranges, tailq) { 2386 if (bdev_io_range_is_locked(bdev_io, range)) { 2387 TAILQ_INSERT_TAIL(&ch->io_locked, bdev_io, internal.ch_link); 2388 return; 2389 } 2390 } 2391 } 2392 2393 TAILQ_INSERT_TAIL(&ch->io_submitted, bdev_io, internal.ch_link); 2394 2395 if (bdev_io_should_split(bdev_io)) { 2396 bdev_io->internal.submit_tsc = spdk_get_ticks(); 2397 spdk_trace_record_tsc(bdev_io->internal.submit_tsc, TRACE_BDEV_IO_START, 0, 0, 2398 (uintptr_t)bdev_io, bdev_io->type); 2399 bdev_io_split(NULL, bdev_io); 2400 return; 2401 } 2402 2403 if (ch->flags & BDEV_CH_QOS_ENABLED) { 2404 if ((thread == bdev->internal.qos->thread) || !bdev->internal.qos->thread) { 2405 _bdev_io_submit(bdev_io); 2406 } else { 2407 bdev_io->internal.io_submit_ch = ch; 2408 bdev_io->internal.ch = bdev->internal.qos->ch; 2409 spdk_thread_send_msg(bdev->internal.qos->thread, _bdev_io_submit, bdev_io); 2410 } 2411 } else { 2412 _bdev_io_submit(bdev_io); 2413 } 2414 } 2415 2416 static void 2417 bdev_io_submit_reset(struct spdk_bdev_io *bdev_io) 2418 { 2419 struct spdk_bdev *bdev = bdev_io->bdev; 2420 struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch; 2421 struct spdk_io_channel *ch = bdev_ch->channel; 2422 2423 assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_PENDING); 2424 2425 bdev_io->internal.in_submit_request = true; 2426 bdev->fn_table->submit_request(ch, bdev_io); 2427 bdev_io->internal.in_submit_request = false; 2428 } 2429 2430 void 2431 bdev_io_init(struct spdk_bdev_io *bdev_io, 2432 struct spdk_bdev *bdev, void *cb_arg, 2433 spdk_bdev_io_completion_cb cb) 2434 { 2435 bdev_io->bdev = bdev; 2436 bdev_io->internal.caller_ctx = cb_arg; 2437 bdev_io->internal.cb = cb; 2438 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_PENDING; 2439 bdev_io->internal.in_submit_request = false; 2440 bdev_io->internal.buf = NULL; 2441 bdev_io->internal.io_submit_ch = NULL; 2442 bdev_io->internal.orig_iovs = NULL; 2443 bdev_io->internal.orig_iovcnt = 0; 2444 bdev_io->internal.orig_md_buf = NULL; 2445 bdev_io->internal.error.nvme.cdw0 = 0; 2446 bdev_io->num_retries = 0; 2447 bdev_io->internal.get_buf_cb = NULL; 2448 bdev_io->internal.get_aux_buf_cb = NULL; 2449 } 2450 2451 static bool 2452 bdev_io_type_supported(struct spdk_bdev *bdev, enum spdk_bdev_io_type io_type) 2453 { 2454 return bdev->fn_table->io_type_supported(bdev->ctxt, io_type); 2455 } 2456 2457 bool 2458 spdk_bdev_io_type_supported(struct spdk_bdev *bdev, enum spdk_bdev_io_type io_type) 2459 { 2460 bool supported; 2461 2462 supported = bdev_io_type_supported(bdev, io_type); 2463 2464 if (!supported) { 2465 switch (io_type) { 2466 case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: 2467 /* The bdev layer will emulate write zeroes as long as write is supported. */ 2468 supported = bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE); 2469 break; 2470 case SPDK_BDEV_IO_TYPE_ZCOPY: 2471 /* Zero copy can be emulated with regular read and write */ 2472 supported = bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_READ) && 2473 bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE); 2474 break; 2475 default: 2476 break; 2477 } 2478 } 2479 2480 return supported; 2481 } 2482 2483 int 2484 spdk_bdev_dump_info_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w) 2485 { 2486 if (bdev->fn_table->dump_info_json) { 2487 return bdev->fn_table->dump_info_json(bdev->ctxt, w); 2488 } 2489 2490 return 0; 2491 } 2492 2493 static void 2494 bdev_qos_update_max_quota_per_timeslice(struct spdk_bdev_qos *qos) 2495 { 2496 uint32_t max_per_timeslice = 0; 2497 int i; 2498 2499 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 2500 if (qos->rate_limits[i].limit == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) { 2501 qos->rate_limits[i].max_per_timeslice = 0; 2502 continue; 2503 } 2504 2505 max_per_timeslice = qos->rate_limits[i].limit * 2506 SPDK_BDEV_QOS_TIMESLICE_IN_USEC / SPDK_SEC_TO_USEC; 2507 2508 qos->rate_limits[i].max_per_timeslice = spdk_max(max_per_timeslice, 2509 qos->rate_limits[i].min_per_timeslice); 2510 2511 qos->rate_limits[i].remaining_this_timeslice = qos->rate_limits[i].max_per_timeslice; 2512 } 2513 2514 bdev_qos_set_ops(qos); 2515 } 2516 2517 static int 2518 bdev_channel_poll_qos(void *arg) 2519 { 2520 struct spdk_bdev_qos *qos = arg; 2521 uint64_t now = spdk_get_ticks(); 2522 int i; 2523 2524 if (now < (qos->last_timeslice + qos->timeslice_size)) { 2525 /* We received our callback earlier than expected - return 2526 * immediately and wait to do accounting until at least one 2527 * timeslice has actually expired. This should never happen 2528 * with a well-behaved timer implementation. 2529 */ 2530 return SPDK_POLLER_IDLE; 2531 } 2532 2533 /* Reset for next round of rate limiting */ 2534 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 2535 /* We may have allowed the IOs or bytes to slightly overrun in the last 2536 * timeslice. remaining_this_timeslice is signed, so if it's negative 2537 * here, we'll account for the overrun so that the next timeslice will 2538 * be appropriately reduced. 2539 */ 2540 if (qos->rate_limits[i].remaining_this_timeslice > 0) { 2541 qos->rate_limits[i].remaining_this_timeslice = 0; 2542 } 2543 } 2544 2545 while (now >= (qos->last_timeslice + qos->timeslice_size)) { 2546 qos->last_timeslice += qos->timeslice_size; 2547 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 2548 qos->rate_limits[i].remaining_this_timeslice += 2549 qos->rate_limits[i].max_per_timeslice; 2550 } 2551 } 2552 2553 return bdev_qos_io_submit(qos->ch, qos); 2554 } 2555 2556 static void 2557 bdev_channel_destroy_resource(struct spdk_bdev_channel *ch) 2558 { 2559 struct spdk_bdev_shared_resource *shared_resource; 2560 struct lba_range *range; 2561 2562 while (!TAILQ_EMPTY(&ch->locked_ranges)) { 2563 range = TAILQ_FIRST(&ch->locked_ranges); 2564 TAILQ_REMOVE(&ch->locked_ranges, range, tailq); 2565 free(range); 2566 } 2567 2568 spdk_put_io_channel(ch->channel); 2569 2570 shared_resource = ch->shared_resource; 2571 2572 assert(TAILQ_EMPTY(&ch->io_locked)); 2573 assert(TAILQ_EMPTY(&ch->io_submitted)); 2574 assert(ch->io_outstanding == 0); 2575 assert(shared_resource->ref > 0); 2576 shared_resource->ref--; 2577 if (shared_resource->ref == 0) { 2578 assert(shared_resource->io_outstanding == 0); 2579 TAILQ_REMOVE(&shared_resource->mgmt_ch->shared_resources, shared_resource, link); 2580 spdk_put_io_channel(spdk_io_channel_from_ctx(shared_resource->mgmt_ch)); 2581 free(shared_resource); 2582 } 2583 } 2584 2585 /* Caller must hold bdev->internal.mutex. */ 2586 static void 2587 bdev_enable_qos(struct spdk_bdev *bdev, struct spdk_bdev_channel *ch) 2588 { 2589 struct spdk_bdev_qos *qos = bdev->internal.qos; 2590 int i; 2591 2592 /* Rate limiting on this bdev enabled */ 2593 if (qos) { 2594 if (qos->ch == NULL) { 2595 struct spdk_io_channel *io_ch; 2596 2597 SPDK_DEBUGLOG(bdev, "Selecting channel %p as QoS channel for bdev %s on thread %p\n", ch, 2598 bdev->name, spdk_get_thread()); 2599 2600 /* No qos channel has been selected, so set one up */ 2601 2602 /* Take another reference to ch */ 2603 io_ch = spdk_get_io_channel(__bdev_to_io_dev(bdev)); 2604 assert(io_ch != NULL); 2605 qos->ch = ch; 2606 2607 qos->thread = spdk_io_channel_get_thread(io_ch); 2608 2609 TAILQ_INIT(&qos->queued); 2610 2611 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 2612 if (bdev_qos_is_iops_rate_limit(i) == true) { 2613 qos->rate_limits[i].min_per_timeslice = 2614 SPDK_BDEV_QOS_MIN_IO_PER_TIMESLICE; 2615 } else { 2616 qos->rate_limits[i].min_per_timeslice = 2617 SPDK_BDEV_QOS_MIN_BYTE_PER_TIMESLICE; 2618 } 2619 2620 if (qos->rate_limits[i].limit == 0) { 2621 qos->rate_limits[i].limit = SPDK_BDEV_QOS_LIMIT_NOT_DEFINED; 2622 } 2623 } 2624 bdev_qos_update_max_quota_per_timeslice(qos); 2625 qos->timeslice_size = 2626 SPDK_BDEV_QOS_TIMESLICE_IN_USEC * spdk_get_ticks_hz() / SPDK_SEC_TO_USEC; 2627 qos->last_timeslice = spdk_get_ticks(); 2628 qos->poller = SPDK_POLLER_REGISTER(bdev_channel_poll_qos, 2629 qos, 2630 SPDK_BDEV_QOS_TIMESLICE_IN_USEC); 2631 } 2632 2633 ch->flags |= BDEV_CH_QOS_ENABLED; 2634 } 2635 } 2636 2637 struct poll_timeout_ctx { 2638 struct spdk_bdev_desc *desc; 2639 uint64_t timeout_in_sec; 2640 spdk_bdev_io_timeout_cb cb_fn; 2641 void *cb_arg; 2642 }; 2643 2644 static void 2645 bdev_desc_free(struct spdk_bdev_desc *desc) 2646 { 2647 pthread_mutex_destroy(&desc->mutex); 2648 free(desc->media_events_buffer); 2649 free(desc); 2650 } 2651 2652 static void 2653 bdev_channel_poll_timeout_io_done(struct spdk_io_channel_iter *i, int status) 2654 { 2655 struct poll_timeout_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 2656 struct spdk_bdev_desc *desc = ctx->desc; 2657 2658 free(ctx); 2659 2660 pthread_mutex_lock(&desc->mutex); 2661 desc->refs--; 2662 if (desc->closed == true && desc->refs == 0) { 2663 pthread_mutex_unlock(&desc->mutex); 2664 bdev_desc_free(desc); 2665 return; 2666 } 2667 pthread_mutex_unlock(&desc->mutex); 2668 } 2669 2670 static void 2671 bdev_channel_poll_timeout_io(struct spdk_io_channel_iter *i) 2672 { 2673 struct poll_timeout_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 2674 struct spdk_io_channel *io_ch = spdk_io_channel_iter_get_channel(i); 2675 struct spdk_bdev_channel *bdev_ch = spdk_io_channel_get_ctx(io_ch); 2676 struct spdk_bdev_desc *desc = ctx->desc; 2677 struct spdk_bdev_io *bdev_io; 2678 uint64_t now; 2679 2680 pthread_mutex_lock(&desc->mutex); 2681 if (desc->closed == true) { 2682 pthread_mutex_unlock(&desc->mutex); 2683 spdk_for_each_channel_continue(i, -1); 2684 return; 2685 } 2686 pthread_mutex_unlock(&desc->mutex); 2687 2688 now = spdk_get_ticks(); 2689 TAILQ_FOREACH(bdev_io, &bdev_ch->io_submitted, internal.ch_link) { 2690 /* Exclude any I/O that are generated via splitting. */ 2691 if (bdev_io->internal.cb == bdev_io_split_done) { 2692 continue; 2693 } 2694 2695 /* Once we find an I/O that has not timed out, we can immediately 2696 * exit the loop. 2697 */ 2698 if (now < (bdev_io->internal.submit_tsc + 2699 ctx->timeout_in_sec * spdk_get_ticks_hz())) { 2700 goto end; 2701 } 2702 2703 if (bdev_io->internal.desc == desc) { 2704 ctx->cb_fn(ctx->cb_arg, bdev_io); 2705 } 2706 } 2707 2708 end: 2709 spdk_for_each_channel_continue(i, 0); 2710 } 2711 2712 static int 2713 bdev_poll_timeout_io(void *arg) 2714 { 2715 struct spdk_bdev_desc *desc = arg; 2716 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 2717 struct poll_timeout_ctx *ctx; 2718 2719 ctx = calloc(1, sizeof(struct poll_timeout_ctx)); 2720 if (!ctx) { 2721 SPDK_ERRLOG("failed to allocate memory\n"); 2722 return SPDK_POLLER_BUSY; 2723 } 2724 ctx->desc = desc; 2725 ctx->cb_arg = desc->cb_arg; 2726 ctx->cb_fn = desc->cb_fn; 2727 ctx->timeout_in_sec = desc->timeout_in_sec; 2728 2729 /* Take a ref on the descriptor in case it gets closed while we are checking 2730 * all of the channels. 2731 */ 2732 pthread_mutex_lock(&desc->mutex); 2733 desc->refs++; 2734 pthread_mutex_unlock(&desc->mutex); 2735 2736 spdk_for_each_channel(__bdev_to_io_dev(bdev), 2737 bdev_channel_poll_timeout_io, 2738 ctx, 2739 bdev_channel_poll_timeout_io_done); 2740 2741 return SPDK_POLLER_BUSY; 2742 } 2743 2744 int 2745 spdk_bdev_set_timeout(struct spdk_bdev_desc *desc, uint64_t timeout_in_sec, 2746 spdk_bdev_io_timeout_cb cb_fn, void *cb_arg) 2747 { 2748 assert(desc->thread == spdk_get_thread()); 2749 2750 spdk_poller_unregister(&desc->io_timeout_poller); 2751 2752 if (timeout_in_sec) { 2753 assert(cb_fn != NULL); 2754 desc->io_timeout_poller = SPDK_POLLER_REGISTER(bdev_poll_timeout_io, 2755 desc, 2756 SPDK_BDEV_IO_POLL_INTERVAL_IN_MSEC * SPDK_SEC_TO_USEC / 2757 1000); 2758 if (desc->io_timeout_poller == NULL) { 2759 SPDK_ERRLOG("can not register the desc timeout IO poller\n"); 2760 return -1; 2761 } 2762 } 2763 2764 desc->cb_fn = cb_fn; 2765 desc->cb_arg = cb_arg; 2766 desc->timeout_in_sec = timeout_in_sec; 2767 2768 return 0; 2769 } 2770 2771 static int 2772 bdev_channel_create(void *io_device, void *ctx_buf) 2773 { 2774 struct spdk_bdev *bdev = __bdev_from_io_dev(io_device); 2775 struct spdk_bdev_channel *ch = ctx_buf; 2776 struct spdk_io_channel *mgmt_io_ch; 2777 struct spdk_bdev_mgmt_channel *mgmt_ch; 2778 struct spdk_bdev_shared_resource *shared_resource; 2779 struct lba_range *range; 2780 2781 ch->bdev = bdev; 2782 ch->channel = bdev->fn_table->get_io_channel(bdev->ctxt); 2783 if (!ch->channel) { 2784 return -1; 2785 } 2786 2787 assert(ch->histogram == NULL); 2788 if (bdev->internal.histogram_enabled) { 2789 ch->histogram = spdk_histogram_data_alloc(); 2790 if (ch->histogram == NULL) { 2791 SPDK_ERRLOG("Could not allocate histogram\n"); 2792 } 2793 } 2794 2795 mgmt_io_ch = spdk_get_io_channel(&g_bdev_mgr); 2796 if (!mgmt_io_ch) { 2797 spdk_put_io_channel(ch->channel); 2798 return -1; 2799 } 2800 2801 mgmt_ch = spdk_io_channel_get_ctx(mgmt_io_ch); 2802 TAILQ_FOREACH(shared_resource, &mgmt_ch->shared_resources, link) { 2803 if (shared_resource->shared_ch == ch->channel) { 2804 spdk_put_io_channel(mgmt_io_ch); 2805 shared_resource->ref++; 2806 break; 2807 } 2808 } 2809 2810 if (shared_resource == NULL) { 2811 shared_resource = calloc(1, sizeof(*shared_resource)); 2812 if (shared_resource == NULL) { 2813 spdk_put_io_channel(ch->channel); 2814 spdk_put_io_channel(mgmt_io_ch); 2815 return -1; 2816 } 2817 2818 shared_resource->mgmt_ch = mgmt_ch; 2819 shared_resource->io_outstanding = 0; 2820 TAILQ_INIT(&shared_resource->nomem_io); 2821 shared_resource->nomem_threshold = 0; 2822 shared_resource->shared_ch = ch->channel; 2823 shared_resource->ref = 1; 2824 TAILQ_INSERT_TAIL(&mgmt_ch->shared_resources, shared_resource, link); 2825 } 2826 2827 memset(&ch->stat, 0, sizeof(ch->stat)); 2828 ch->stat.ticks_rate = spdk_get_ticks_hz(); 2829 ch->io_outstanding = 0; 2830 TAILQ_INIT(&ch->queued_resets); 2831 TAILQ_INIT(&ch->locked_ranges); 2832 ch->flags = 0; 2833 ch->shared_resource = shared_resource; 2834 2835 TAILQ_INIT(&ch->io_submitted); 2836 TAILQ_INIT(&ch->io_locked); 2837 2838 #ifdef SPDK_CONFIG_VTUNE 2839 { 2840 char *name; 2841 __itt_init_ittlib(NULL, 0); 2842 name = spdk_sprintf_alloc("spdk_bdev_%s_%p", ch->bdev->name, ch); 2843 if (!name) { 2844 bdev_channel_destroy_resource(ch); 2845 return -1; 2846 } 2847 ch->handle = __itt_string_handle_create(name); 2848 free(name); 2849 ch->start_tsc = spdk_get_ticks(); 2850 ch->interval_tsc = spdk_get_ticks_hz() / 100; 2851 memset(&ch->prev_stat, 0, sizeof(ch->prev_stat)); 2852 } 2853 #endif 2854 2855 pthread_mutex_lock(&bdev->internal.mutex); 2856 bdev_enable_qos(bdev, ch); 2857 2858 TAILQ_FOREACH(range, &bdev->internal.locked_ranges, tailq) { 2859 struct lba_range *new_range; 2860 2861 new_range = calloc(1, sizeof(*new_range)); 2862 if (new_range == NULL) { 2863 pthread_mutex_unlock(&bdev->internal.mutex); 2864 bdev_channel_destroy_resource(ch); 2865 return -1; 2866 } 2867 new_range->length = range->length; 2868 new_range->offset = range->offset; 2869 new_range->locked_ctx = range->locked_ctx; 2870 TAILQ_INSERT_TAIL(&ch->locked_ranges, new_range, tailq); 2871 } 2872 2873 pthread_mutex_unlock(&bdev->internal.mutex); 2874 2875 return 0; 2876 } 2877 2878 /* 2879 * Abort I/O that are waiting on a data buffer. These types of I/O are 2880 * linked using the spdk_bdev_io internal.buf_link TAILQ_ENTRY. 2881 */ 2882 static void 2883 bdev_abort_all_buf_io(bdev_io_stailq_t *queue, struct spdk_bdev_channel *ch) 2884 { 2885 bdev_io_stailq_t tmp; 2886 struct spdk_bdev_io *bdev_io; 2887 2888 STAILQ_INIT(&tmp); 2889 2890 while (!STAILQ_EMPTY(queue)) { 2891 bdev_io = STAILQ_FIRST(queue); 2892 STAILQ_REMOVE_HEAD(queue, internal.buf_link); 2893 if (bdev_io->internal.ch == ch) { 2894 spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED); 2895 } else { 2896 STAILQ_INSERT_TAIL(&tmp, bdev_io, internal.buf_link); 2897 } 2898 } 2899 2900 STAILQ_SWAP(&tmp, queue, spdk_bdev_io); 2901 } 2902 2903 /* 2904 * Abort I/O that are queued waiting for submission. These types of I/O are 2905 * linked using the spdk_bdev_io link TAILQ_ENTRY. 2906 */ 2907 static void 2908 bdev_abort_all_queued_io(bdev_io_tailq_t *queue, struct spdk_bdev_channel *ch) 2909 { 2910 struct spdk_bdev_io *bdev_io, *tmp; 2911 2912 TAILQ_FOREACH_SAFE(bdev_io, queue, internal.link, tmp) { 2913 if (bdev_io->internal.ch == ch) { 2914 TAILQ_REMOVE(queue, bdev_io, internal.link); 2915 /* 2916 * spdk_bdev_io_complete() assumes that the completed I/O had 2917 * been submitted to the bdev module. Since in this case it 2918 * hadn't, bump io_outstanding to account for the decrement 2919 * that spdk_bdev_io_complete() will do. 2920 */ 2921 if (bdev_io->type != SPDK_BDEV_IO_TYPE_RESET) { 2922 ch->io_outstanding++; 2923 ch->shared_resource->io_outstanding++; 2924 } 2925 spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED); 2926 } 2927 } 2928 } 2929 2930 static bool 2931 bdev_abort_queued_io(bdev_io_tailq_t *queue, struct spdk_bdev_io *bio_to_abort) 2932 { 2933 struct spdk_bdev_io *bdev_io; 2934 2935 TAILQ_FOREACH(bdev_io, queue, internal.link) { 2936 if (bdev_io == bio_to_abort) { 2937 TAILQ_REMOVE(queue, bio_to_abort, internal.link); 2938 spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_ABORTED); 2939 return true; 2940 } 2941 } 2942 2943 return false; 2944 } 2945 2946 static bool 2947 bdev_abort_buf_io(bdev_io_stailq_t *queue, struct spdk_bdev_io *bio_to_abort) 2948 { 2949 struct spdk_bdev_io *bdev_io; 2950 2951 STAILQ_FOREACH(bdev_io, queue, internal.buf_link) { 2952 if (bdev_io == bio_to_abort) { 2953 STAILQ_REMOVE(queue, bio_to_abort, spdk_bdev_io, internal.buf_link); 2954 spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_ABORTED); 2955 return true; 2956 } 2957 } 2958 2959 return false; 2960 } 2961 2962 static void 2963 bdev_qos_channel_destroy(void *cb_arg) 2964 { 2965 struct spdk_bdev_qos *qos = cb_arg; 2966 2967 spdk_put_io_channel(spdk_io_channel_from_ctx(qos->ch)); 2968 spdk_poller_unregister(&qos->poller); 2969 2970 SPDK_DEBUGLOG(bdev, "Free QoS %p.\n", qos); 2971 2972 free(qos); 2973 } 2974 2975 static int 2976 bdev_qos_destroy(struct spdk_bdev *bdev) 2977 { 2978 int i; 2979 2980 /* 2981 * Cleanly shutting down the QoS poller is tricky, because 2982 * during the asynchronous operation the user could open 2983 * a new descriptor and create a new channel, spawning 2984 * a new QoS poller. 2985 * 2986 * The strategy is to create a new QoS structure here and swap it 2987 * in. The shutdown path then continues to refer to the old one 2988 * until it completes and then releases it. 2989 */ 2990 struct spdk_bdev_qos *new_qos, *old_qos; 2991 2992 old_qos = bdev->internal.qos; 2993 2994 new_qos = calloc(1, sizeof(*new_qos)); 2995 if (!new_qos) { 2996 SPDK_ERRLOG("Unable to allocate memory to shut down QoS.\n"); 2997 return -ENOMEM; 2998 } 2999 3000 /* Copy the old QoS data into the newly allocated structure */ 3001 memcpy(new_qos, old_qos, sizeof(*new_qos)); 3002 3003 /* Zero out the key parts of the QoS structure */ 3004 new_qos->ch = NULL; 3005 new_qos->thread = NULL; 3006 new_qos->poller = NULL; 3007 TAILQ_INIT(&new_qos->queued); 3008 /* 3009 * The limit member of spdk_bdev_qos_limit structure is not zeroed. 3010 * It will be used later for the new QoS structure. 3011 */ 3012 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 3013 new_qos->rate_limits[i].remaining_this_timeslice = 0; 3014 new_qos->rate_limits[i].min_per_timeslice = 0; 3015 new_qos->rate_limits[i].max_per_timeslice = 0; 3016 } 3017 3018 bdev->internal.qos = new_qos; 3019 3020 if (old_qos->thread == NULL) { 3021 free(old_qos); 3022 } else { 3023 spdk_thread_send_msg(old_qos->thread, bdev_qos_channel_destroy, old_qos); 3024 } 3025 3026 /* It is safe to continue with destroying the bdev even though the QoS channel hasn't 3027 * been destroyed yet. The destruction path will end up waiting for the final 3028 * channel to be put before it releases resources. */ 3029 3030 return 0; 3031 } 3032 3033 static void 3034 bdev_io_stat_add(struct spdk_bdev_io_stat *total, struct spdk_bdev_io_stat *add) 3035 { 3036 total->bytes_read += add->bytes_read; 3037 total->num_read_ops += add->num_read_ops; 3038 total->bytes_written += add->bytes_written; 3039 total->num_write_ops += add->num_write_ops; 3040 total->bytes_unmapped += add->bytes_unmapped; 3041 total->num_unmap_ops += add->num_unmap_ops; 3042 total->read_latency_ticks += add->read_latency_ticks; 3043 total->write_latency_ticks += add->write_latency_ticks; 3044 total->unmap_latency_ticks += add->unmap_latency_ticks; 3045 } 3046 3047 static void 3048 bdev_channel_destroy(void *io_device, void *ctx_buf) 3049 { 3050 struct spdk_bdev_channel *ch = ctx_buf; 3051 struct spdk_bdev_mgmt_channel *mgmt_ch; 3052 struct spdk_bdev_shared_resource *shared_resource = ch->shared_resource; 3053 3054 SPDK_DEBUGLOG(bdev, "Destroying channel %p for bdev %s on thread %p\n", ch, ch->bdev->name, 3055 spdk_get_thread()); 3056 3057 /* This channel is going away, so add its statistics into the bdev so that they don't get lost. */ 3058 pthread_mutex_lock(&ch->bdev->internal.mutex); 3059 bdev_io_stat_add(&ch->bdev->internal.stat, &ch->stat); 3060 pthread_mutex_unlock(&ch->bdev->internal.mutex); 3061 3062 mgmt_ch = shared_resource->mgmt_ch; 3063 3064 bdev_abort_all_queued_io(&ch->queued_resets, ch); 3065 bdev_abort_all_queued_io(&shared_resource->nomem_io, ch); 3066 bdev_abort_all_buf_io(&mgmt_ch->need_buf_small, ch); 3067 bdev_abort_all_buf_io(&mgmt_ch->need_buf_large, ch); 3068 3069 if (ch->histogram) { 3070 spdk_histogram_data_free(ch->histogram); 3071 } 3072 3073 bdev_channel_destroy_resource(ch); 3074 } 3075 3076 int 3077 spdk_bdev_alias_add(struct spdk_bdev *bdev, const char *alias) 3078 { 3079 struct spdk_bdev_alias *tmp; 3080 3081 if (alias == NULL) { 3082 SPDK_ERRLOG("Empty alias passed\n"); 3083 return -EINVAL; 3084 } 3085 3086 if (spdk_bdev_get_by_name(alias)) { 3087 SPDK_ERRLOG("Bdev name/alias: %s already exists\n", alias); 3088 return -EEXIST; 3089 } 3090 3091 tmp = calloc(1, sizeof(*tmp)); 3092 if (tmp == NULL) { 3093 SPDK_ERRLOG("Unable to allocate alias\n"); 3094 return -ENOMEM; 3095 } 3096 3097 tmp->alias = strdup(alias); 3098 if (tmp->alias == NULL) { 3099 free(tmp); 3100 SPDK_ERRLOG("Unable to allocate alias\n"); 3101 return -ENOMEM; 3102 } 3103 3104 TAILQ_INSERT_TAIL(&bdev->aliases, tmp, tailq); 3105 3106 return 0; 3107 } 3108 3109 int 3110 spdk_bdev_alias_del(struct spdk_bdev *bdev, const char *alias) 3111 { 3112 struct spdk_bdev_alias *tmp; 3113 3114 TAILQ_FOREACH(tmp, &bdev->aliases, tailq) { 3115 if (strcmp(alias, tmp->alias) == 0) { 3116 TAILQ_REMOVE(&bdev->aliases, tmp, tailq); 3117 free(tmp->alias); 3118 free(tmp); 3119 return 0; 3120 } 3121 } 3122 3123 SPDK_INFOLOG(bdev, "Alias %s does not exists\n", alias); 3124 3125 return -ENOENT; 3126 } 3127 3128 void 3129 spdk_bdev_alias_del_all(struct spdk_bdev *bdev) 3130 { 3131 struct spdk_bdev_alias *p, *tmp; 3132 3133 TAILQ_FOREACH_SAFE(p, &bdev->aliases, tailq, tmp) { 3134 TAILQ_REMOVE(&bdev->aliases, p, tailq); 3135 free(p->alias); 3136 free(p); 3137 } 3138 } 3139 3140 struct spdk_io_channel * 3141 spdk_bdev_get_io_channel(struct spdk_bdev_desc *desc) 3142 { 3143 return spdk_get_io_channel(__bdev_to_io_dev(spdk_bdev_desc_get_bdev(desc))); 3144 } 3145 3146 void * 3147 spdk_bdev_get_module_ctx(struct spdk_bdev_desc *desc) 3148 { 3149 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 3150 void *ctx = NULL; 3151 3152 if (bdev->fn_table->get_module_ctx) { 3153 ctx = bdev->fn_table->get_module_ctx(bdev->ctxt); 3154 } 3155 3156 return ctx; 3157 } 3158 3159 const char * 3160 spdk_bdev_get_module_name(const struct spdk_bdev *bdev) 3161 { 3162 return bdev->module->name; 3163 } 3164 3165 const char * 3166 spdk_bdev_get_name(const struct spdk_bdev *bdev) 3167 { 3168 return bdev->name; 3169 } 3170 3171 const char * 3172 spdk_bdev_get_product_name(const struct spdk_bdev *bdev) 3173 { 3174 return bdev->product_name; 3175 } 3176 3177 const struct spdk_bdev_aliases_list * 3178 spdk_bdev_get_aliases(const struct spdk_bdev *bdev) 3179 { 3180 return &bdev->aliases; 3181 } 3182 3183 uint32_t 3184 spdk_bdev_get_block_size(const struct spdk_bdev *bdev) 3185 { 3186 return bdev->blocklen; 3187 } 3188 3189 uint32_t 3190 spdk_bdev_get_write_unit_size(const struct spdk_bdev *bdev) 3191 { 3192 return bdev->write_unit_size; 3193 } 3194 3195 uint64_t 3196 spdk_bdev_get_num_blocks(const struct spdk_bdev *bdev) 3197 { 3198 return bdev->blockcnt; 3199 } 3200 3201 const char * 3202 spdk_bdev_get_qos_rpc_type(enum spdk_bdev_qos_rate_limit_type type) 3203 { 3204 return qos_rpc_type[type]; 3205 } 3206 3207 void 3208 spdk_bdev_get_qos_rate_limits(struct spdk_bdev *bdev, uint64_t *limits) 3209 { 3210 int i; 3211 3212 memset(limits, 0, sizeof(*limits) * SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES); 3213 3214 pthread_mutex_lock(&bdev->internal.mutex); 3215 if (bdev->internal.qos) { 3216 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 3217 if (bdev->internal.qos->rate_limits[i].limit != 3218 SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) { 3219 limits[i] = bdev->internal.qos->rate_limits[i].limit; 3220 if (bdev_qos_is_iops_rate_limit(i) == false) { 3221 /* Change from Byte to Megabyte which is user visible. */ 3222 limits[i] = limits[i] / 1024 / 1024; 3223 } 3224 } 3225 } 3226 } 3227 pthread_mutex_unlock(&bdev->internal.mutex); 3228 } 3229 3230 size_t 3231 spdk_bdev_get_buf_align(const struct spdk_bdev *bdev) 3232 { 3233 return 1 << bdev->required_alignment; 3234 } 3235 3236 uint32_t 3237 spdk_bdev_get_optimal_io_boundary(const struct spdk_bdev *bdev) 3238 { 3239 return bdev->optimal_io_boundary; 3240 } 3241 3242 bool 3243 spdk_bdev_has_write_cache(const struct spdk_bdev *bdev) 3244 { 3245 return bdev->write_cache; 3246 } 3247 3248 const struct spdk_uuid * 3249 spdk_bdev_get_uuid(const struct spdk_bdev *bdev) 3250 { 3251 return &bdev->uuid; 3252 } 3253 3254 uint16_t 3255 spdk_bdev_get_acwu(const struct spdk_bdev *bdev) 3256 { 3257 return bdev->acwu; 3258 } 3259 3260 uint32_t 3261 spdk_bdev_get_md_size(const struct spdk_bdev *bdev) 3262 { 3263 return bdev->md_len; 3264 } 3265 3266 bool 3267 spdk_bdev_is_md_interleaved(const struct spdk_bdev *bdev) 3268 { 3269 return (bdev->md_len != 0) && bdev->md_interleave; 3270 } 3271 3272 bool 3273 spdk_bdev_is_md_separate(const struct spdk_bdev *bdev) 3274 { 3275 return (bdev->md_len != 0) && !bdev->md_interleave; 3276 } 3277 3278 bool 3279 spdk_bdev_is_zoned(const struct spdk_bdev *bdev) 3280 { 3281 return bdev->zoned; 3282 } 3283 3284 uint32_t 3285 spdk_bdev_get_data_block_size(const struct spdk_bdev *bdev) 3286 { 3287 if (spdk_bdev_is_md_interleaved(bdev)) { 3288 return bdev->blocklen - bdev->md_len; 3289 } else { 3290 return bdev->blocklen; 3291 } 3292 } 3293 3294 static uint32_t 3295 _bdev_get_block_size_with_md(const struct spdk_bdev *bdev) 3296 { 3297 if (!spdk_bdev_is_md_interleaved(bdev)) { 3298 return bdev->blocklen + bdev->md_len; 3299 } else { 3300 return bdev->blocklen; 3301 } 3302 } 3303 3304 enum spdk_dif_type spdk_bdev_get_dif_type(const struct spdk_bdev *bdev) 3305 { 3306 if (bdev->md_len != 0) { 3307 return bdev->dif_type; 3308 } else { 3309 return SPDK_DIF_DISABLE; 3310 } 3311 } 3312 3313 bool 3314 spdk_bdev_is_dif_head_of_md(const struct spdk_bdev *bdev) 3315 { 3316 if (spdk_bdev_get_dif_type(bdev) != SPDK_DIF_DISABLE) { 3317 return bdev->dif_is_head_of_md; 3318 } else { 3319 return false; 3320 } 3321 } 3322 3323 bool 3324 spdk_bdev_is_dif_check_enabled(const struct spdk_bdev *bdev, 3325 enum spdk_dif_check_type check_type) 3326 { 3327 if (spdk_bdev_get_dif_type(bdev) == SPDK_DIF_DISABLE) { 3328 return false; 3329 } 3330 3331 switch (check_type) { 3332 case SPDK_DIF_CHECK_TYPE_REFTAG: 3333 return (bdev->dif_check_flags & SPDK_DIF_FLAGS_REFTAG_CHECK) != 0; 3334 case SPDK_DIF_CHECK_TYPE_APPTAG: 3335 return (bdev->dif_check_flags & SPDK_DIF_FLAGS_APPTAG_CHECK) != 0; 3336 case SPDK_DIF_CHECK_TYPE_GUARD: 3337 return (bdev->dif_check_flags & SPDK_DIF_FLAGS_GUARD_CHECK) != 0; 3338 default: 3339 return false; 3340 } 3341 } 3342 3343 uint64_t 3344 spdk_bdev_get_qd(const struct spdk_bdev *bdev) 3345 { 3346 return bdev->internal.measured_queue_depth; 3347 } 3348 3349 uint64_t 3350 spdk_bdev_get_qd_sampling_period(const struct spdk_bdev *bdev) 3351 { 3352 return bdev->internal.period; 3353 } 3354 3355 uint64_t 3356 spdk_bdev_get_weighted_io_time(const struct spdk_bdev *bdev) 3357 { 3358 return bdev->internal.weighted_io_time; 3359 } 3360 3361 uint64_t 3362 spdk_bdev_get_io_time(const struct spdk_bdev *bdev) 3363 { 3364 return bdev->internal.io_time; 3365 } 3366 3367 static void 3368 _calculate_measured_qd_cpl(struct spdk_io_channel_iter *i, int status) 3369 { 3370 struct spdk_bdev *bdev = spdk_io_channel_iter_get_ctx(i); 3371 3372 bdev->internal.measured_queue_depth = bdev->internal.temporary_queue_depth; 3373 3374 if (bdev->internal.measured_queue_depth) { 3375 bdev->internal.io_time += bdev->internal.period; 3376 bdev->internal.weighted_io_time += bdev->internal.period * bdev->internal.measured_queue_depth; 3377 } 3378 } 3379 3380 static void 3381 _calculate_measured_qd(struct spdk_io_channel_iter *i) 3382 { 3383 struct spdk_bdev *bdev = spdk_io_channel_iter_get_ctx(i); 3384 struct spdk_io_channel *io_ch = spdk_io_channel_iter_get_channel(i); 3385 struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(io_ch); 3386 3387 bdev->internal.temporary_queue_depth += ch->io_outstanding; 3388 spdk_for_each_channel_continue(i, 0); 3389 } 3390 3391 static int 3392 bdev_calculate_measured_queue_depth(void *ctx) 3393 { 3394 struct spdk_bdev *bdev = ctx; 3395 bdev->internal.temporary_queue_depth = 0; 3396 spdk_for_each_channel(__bdev_to_io_dev(bdev), _calculate_measured_qd, bdev, 3397 _calculate_measured_qd_cpl); 3398 return SPDK_POLLER_BUSY; 3399 } 3400 3401 void 3402 spdk_bdev_set_qd_sampling_period(struct spdk_bdev *bdev, uint64_t period) 3403 { 3404 bdev->internal.period = period; 3405 3406 if (bdev->internal.qd_poller != NULL) { 3407 spdk_poller_unregister(&bdev->internal.qd_poller); 3408 bdev->internal.measured_queue_depth = UINT64_MAX; 3409 } 3410 3411 if (period != 0) { 3412 bdev->internal.qd_poller = SPDK_POLLER_REGISTER(bdev_calculate_measured_queue_depth, bdev, 3413 period); 3414 } 3415 } 3416 3417 static void 3418 _resize_notify(void *arg) 3419 { 3420 struct spdk_bdev_desc *desc = arg; 3421 3422 pthread_mutex_lock(&desc->mutex); 3423 desc->refs--; 3424 if (!desc->closed) { 3425 pthread_mutex_unlock(&desc->mutex); 3426 desc->callback.event_fn(SPDK_BDEV_EVENT_RESIZE, 3427 desc->bdev, 3428 desc->callback.ctx); 3429 return; 3430 } else if (0 == desc->refs) { 3431 /* This descriptor was closed after this resize_notify message was sent. 3432 * spdk_bdev_close() could not free the descriptor since this message was 3433 * in flight, so we free it now using bdev_desc_free(). 3434 */ 3435 pthread_mutex_unlock(&desc->mutex); 3436 bdev_desc_free(desc); 3437 return; 3438 } 3439 pthread_mutex_unlock(&desc->mutex); 3440 } 3441 3442 int 3443 spdk_bdev_notify_blockcnt_change(struct spdk_bdev *bdev, uint64_t size) 3444 { 3445 struct spdk_bdev_desc *desc; 3446 int ret; 3447 3448 if (size == bdev->blockcnt) { 3449 return 0; 3450 } 3451 3452 pthread_mutex_lock(&bdev->internal.mutex); 3453 3454 /* bdev has open descriptors */ 3455 if (!TAILQ_EMPTY(&bdev->internal.open_descs) && 3456 bdev->blockcnt > size) { 3457 ret = -EBUSY; 3458 } else { 3459 bdev->blockcnt = size; 3460 TAILQ_FOREACH(desc, &bdev->internal.open_descs, link) { 3461 pthread_mutex_lock(&desc->mutex); 3462 if (!desc->closed) { 3463 desc->refs++; 3464 spdk_thread_send_msg(desc->thread, _resize_notify, desc); 3465 } 3466 pthread_mutex_unlock(&desc->mutex); 3467 } 3468 ret = 0; 3469 } 3470 3471 pthread_mutex_unlock(&bdev->internal.mutex); 3472 3473 return ret; 3474 } 3475 3476 /* 3477 * Convert I/O offset and length from bytes to blocks. 3478 * 3479 * Returns zero on success or non-zero if the byte parameters aren't divisible by the block size. 3480 */ 3481 static uint64_t 3482 bdev_bytes_to_blocks(struct spdk_bdev *bdev, uint64_t offset_bytes, uint64_t *offset_blocks, 3483 uint64_t num_bytes, uint64_t *num_blocks) 3484 { 3485 uint32_t block_size = bdev->blocklen; 3486 uint8_t shift_cnt; 3487 3488 /* Avoid expensive div operations if possible. These spdk_u32 functions are very cheap. */ 3489 if (spdk_likely(spdk_u32_is_pow2(block_size))) { 3490 shift_cnt = spdk_u32log2(block_size); 3491 *offset_blocks = offset_bytes >> shift_cnt; 3492 *num_blocks = num_bytes >> shift_cnt; 3493 return (offset_bytes - (*offset_blocks << shift_cnt)) | 3494 (num_bytes - (*num_blocks << shift_cnt)); 3495 } else { 3496 *offset_blocks = offset_bytes / block_size; 3497 *num_blocks = num_bytes / block_size; 3498 return (offset_bytes % block_size) | (num_bytes % block_size); 3499 } 3500 } 3501 3502 static bool 3503 bdev_io_valid_blocks(struct spdk_bdev *bdev, uint64_t offset_blocks, uint64_t num_blocks) 3504 { 3505 /* Return failure if offset_blocks + num_blocks is less than offset_blocks; indicates there 3506 * has been an overflow and hence the offset has been wrapped around */ 3507 if (offset_blocks + num_blocks < offset_blocks) { 3508 return false; 3509 } 3510 3511 /* Return failure if offset_blocks + num_blocks exceeds the size of the bdev */ 3512 if (offset_blocks + num_blocks > bdev->blockcnt) { 3513 return false; 3514 } 3515 3516 return true; 3517 } 3518 3519 static bool 3520 _bdev_io_check_md_buf(const struct iovec *iovs, const void *md_buf) 3521 { 3522 return _is_buf_allocated(iovs) == (md_buf != NULL); 3523 } 3524 3525 static int 3526 bdev_read_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, void *buf, 3527 void *md_buf, int64_t offset_blocks, uint64_t num_blocks, 3528 spdk_bdev_io_completion_cb cb, void *cb_arg) 3529 { 3530 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 3531 struct spdk_bdev_io *bdev_io; 3532 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 3533 3534 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 3535 return -EINVAL; 3536 } 3537 3538 bdev_io = bdev_channel_get_io(channel); 3539 if (!bdev_io) { 3540 return -ENOMEM; 3541 } 3542 3543 bdev_io->internal.ch = channel; 3544 bdev_io->internal.desc = desc; 3545 bdev_io->type = SPDK_BDEV_IO_TYPE_READ; 3546 bdev_io->u.bdev.iovs = &bdev_io->iov; 3547 bdev_io->u.bdev.iovs[0].iov_base = buf; 3548 bdev_io->u.bdev.iovs[0].iov_len = num_blocks * bdev->blocklen; 3549 bdev_io->u.bdev.iovcnt = 1; 3550 bdev_io->u.bdev.md_buf = md_buf; 3551 bdev_io->u.bdev.num_blocks = num_blocks; 3552 bdev_io->u.bdev.offset_blocks = offset_blocks; 3553 bdev_io_init(bdev_io, bdev, cb_arg, cb); 3554 3555 bdev_io_submit(bdev_io); 3556 return 0; 3557 } 3558 3559 int 3560 spdk_bdev_read(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3561 void *buf, uint64_t offset, uint64_t nbytes, 3562 spdk_bdev_io_completion_cb cb, void *cb_arg) 3563 { 3564 uint64_t offset_blocks, num_blocks; 3565 3566 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 3567 nbytes, &num_blocks) != 0) { 3568 return -EINVAL; 3569 } 3570 3571 return spdk_bdev_read_blocks(desc, ch, buf, offset_blocks, num_blocks, cb, cb_arg); 3572 } 3573 3574 int 3575 spdk_bdev_read_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3576 void *buf, uint64_t offset_blocks, uint64_t num_blocks, 3577 spdk_bdev_io_completion_cb cb, void *cb_arg) 3578 { 3579 return bdev_read_blocks_with_md(desc, ch, buf, NULL, offset_blocks, num_blocks, cb, cb_arg); 3580 } 3581 3582 int 3583 spdk_bdev_read_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3584 void *buf, void *md_buf, int64_t offset_blocks, uint64_t num_blocks, 3585 spdk_bdev_io_completion_cb cb, void *cb_arg) 3586 { 3587 struct iovec iov = { 3588 .iov_base = buf, 3589 }; 3590 3591 if (!spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) { 3592 return -EINVAL; 3593 } 3594 3595 if (!_bdev_io_check_md_buf(&iov, md_buf)) { 3596 return -EINVAL; 3597 } 3598 3599 return bdev_read_blocks_with_md(desc, ch, buf, md_buf, offset_blocks, num_blocks, 3600 cb, cb_arg); 3601 } 3602 3603 int 3604 spdk_bdev_readv(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3605 struct iovec *iov, int iovcnt, 3606 uint64_t offset, uint64_t nbytes, 3607 spdk_bdev_io_completion_cb cb, void *cb_arg) 3608 { 3609 uint64_t offset_blocks, num_blocks; 3610 3611 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 3612 nbytes, &num_blocks) != 0) { 3613 return -EINVAL; 3614 } 3615 3616 return spdk_bdev_readv_blocks(desc, ch, iov, iovcnt, offset_blocks, num_blocks, cb, cb_arg); 3617 } 3618 3619 static int 3620 bdev_readv_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3621 struct iovec *iov, int iovcnt, void *md_buf, uint64_t offset_blocks, 3622 uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) 3623 { 3624 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 3625 struct spdk_bdev_io *bdev_io; 3626 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 3627 3628 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 3629 return -EINVAL; 3630 } 3631 3632 bdev_io = bdev_channel_get_io(channel); 3633 if (!bdev_io) { 3634 return -ENOMEM; 3635 } 3636 3637 bdev_io->internal.ch = channel; 3638 bdev_io->internal.desc = desc; 3639 bdev_io->type = SPDK_BDEV_IO_TYPE_READ; 3640 bdev_io->u.bdev.iovs = iov; 3641 bdev_io->u.bdev.iovcnt = iovcnt; 3642 bdev_io->u.bdev.md_buf = md_buf; 3643 bdev_io->u.bdev.num_blocks = num_blocks; 3644 bdev_io->u.bdev.offset_blocks = offset_blocks; 3645 bdev_io_init(bdev_io, bdev, cb_arg, cb); 3646 3647 bdev_io_submit(bdev_io); 3648 return 0; 3649 } 3650 3651 int spdk_bdev_readv_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3652 struct iovec *iov, int iovcnt, 3653 uint64_t offset_blocks, uint64_t num_blocks, 3654 spdk_bdev_io_completion_cb cb, void *cb_arg) 3655 { 3656 return bdev_readv_blocks_with_md(desc, ch, iov, iovcnt, NULL, offset_blocks, 3657 num_blocks, cb, cb_arg); 3658 } 3659 3660 int 3661 spdk_bdev_readv_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3662 struct iovec *iov, int iovcnt, void *md_buf, 3663 uint64_t offset_blocks, uint64_t num_blocks, 3664 spdk_bdev_io_completion_cb cb, void *cb_arg) 3665 { 3666 if (!spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) { 3667 return -EINVAL; 3668 } 3669 3670 if (!_bdev_io_check_md_buf(iov, md_buf)) { 3671 return -EINVAL; 3672 } 3673 3674 return bdev_readv_blocks_with_md(desc, ch, iov, iovcnt, md_buf, offset_blocks, 3675 num_blocks, cb, cb_arg); 3676 } 3677 3678 static int 3679 bdev_write_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3680 void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, 3681 spdk_bdev_io_completion_cb cb, void *cb_arg) 3682 { 3683 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 3684 struct spdk_bdev_io *bdev_io; 3685 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 3686 3687 if (!desc->write) { 3688 return -EBADF; 3689 } 3690 3691 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 3692 return -EINVAL; 3693 } 3694 3695 bdev_io = bdev_channel_get_io(channel); 3696 if (!bdev_io) { 3697 return -ENOMEM; 3698 } 3699 3700 bdev_io->internal.ch = channel; 3701 bdev_io->internal.desc = desc; 3702 bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE; 3703 bdev_io->u.bdev.iovs = &bdev_io->iov; 3704 bdev_io->u.bdev.iovs[0].iov_base = buf; 3705 bdev_io->u.bdev.iovs[0].iov_len = num_blocks * bdev->blocklen; 3706 bdev_io->u.bdev.iovcnt = 1; 3707 bdev_io->u.bdev.md_buf = md_buf; 3708 bdev_io->u.bdev.num_blocks = num_blocks; 3709 bdev_io->u.bdev.offset_blocks = offset_blocks; 3710 bdev_io_init(bdev_io, bdev, cb_arg, cb); 3711 3712 bdev_io_submit(bdev_io); 3713 return 0; 3714 } 3715 3716 int 3717 spdk_bdev_write(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3718 void *buf, uint64_t offset, uint64_t nbytes, 3719 spdk_bdev_io_completion_cb cb, void *cb_arg) 3720 { 3721 uint64_t offset_blocks, num_blocks; 3722 3723 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 3724 nbytes, &num_blocks) != 0) { 3725 return -EINVAL; 3726 } 3727 3728 return spdk_bdev_write_blocks(desc, ch, buf, offset_blocks, num_blocks, cb, cb_arg); 3729 } 3730 3731 int 3732 spdk_bdev_write_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3733 void *buf, uint64_t offset_blocks, uint64_t num_blocks, 3734 spdk_bdev_io_completion_cb cb, void *cb_arg) 3735 { 3736 return bdev_write_blocks_with_md(desc, ch, buf, NULL, offset_blocks, num_blocks, 3737 cb, cb_arg); 3738 } 3739 3740 int 3741 spdk_bdev_write_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3742 void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, 3743 spdk_bdev_io_completion_cb cb, void *cb_arg) 3744 { 3745 struct iovec iov = { 3746 .iov_base = buf, 3747 }; 3748 3749 if (!spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) { 3750 return -EINVAL; 3751 } 3752 3753 if (!_bdev_io_check_md_buf(&iov, md_buf)) { 3754 return -EINVAL; 3755 } 3756 3757 return bdev_write_blocks_with_md(desc, ch, buf, md_buf, offset_blocks, num_blocks, 3758 cb, cb_arg); 3759 } 3760 3761 static int 3762 bdev_writev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3763 struct iovec *iov, int iovcnt, void *md_buf, 3764 uint64_t offset_blocks, uint64_t num_blocks, 3765 spdk_bdev_io_completion_cb cb, void *cb_arg) 3766 { 3767 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 3768 struct spdk_bdev_io *bdev_io; 3769 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 3770 3771 if (!desc->write) { 3772 return -EBADF; 3773 } 3774 3775 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 3776 return -EINVAL; 3777 } 3778 3779 bdev_io = bdev_channel_get_io(channel); 3780 if (!bdev_io) { 3781 return -ENOMEM; 3782 } 3783 3784 bdev_io->internal.ch = channel; 3785 bdev_io->internal.desc = desc; 3786 bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE; 3787 bdev_io->u.bdev.iovs = iov; 3788 bdev_io->u.bdev.iovcnt = iovcnt; 3789 bdev_io->u.bdev.md_buf = md_buf; 3790 bdev_io->u.bdev.num_blocks = num_blocks; 3791 bdev_io->u.bdev.offset_blocks = offset_blocks; 3792 bdev_io_init(bdev_io, bdev, cb_arg, cb); 3793 3794 bdev_io_submit(bdev_io); 3795 return 0; 3796 } 3797 3798 int 3799 spdk_bdev_writev(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3800 struct iovec *iov, int iovcnt, 3801 uint64_t offset, uint64_t len, 3802 spdk_bdev_io_completion_cb cb, void *cb_arg) 3803 { 3804 uint64_t offset_blocks, num_blocks; 3805 3806 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 3807 len, &num_blocks) != 0) { 3808 return -EINVAL; 3809 } 3810 3811 return spdk_bdev_writev_blocks(desc, ch, iov, iovcnt, offset_blocks, num_blocks, cb, cb_arg); 3812 } 3813 3814 int 3815 spdk_bdev_writev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3816 struct iovec *iov, int iovcnt, 3817 uint64_t offset_blocks, uint64_t num_blocks, 3818 spdk_bdev_io_completion_cb cb, void *cb_arg) 3819 { 3820 return bdev_writev_blocks_with_md(desc, ch, iov, iovcnt, NULL, offset_blocks, 3821 num_blocks, cb, cb_arg); 3822 } 3823 3824 int 3825 spdk_bdev_writev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3826 struct iovec *iov, int iovcnt, void *md_buf, 3827 uint64_t offset_blocks, uint64_t num_blocks, 3828 spdk_bdev_io_completion_cb cb, void *cb_arg) 3829 { 3830 if (!spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) { 3831 return -EINVAL; 3832 } 3833 3834 if (!_bdev_io_check_md_buf(iov, md_buf)) { 3835 return -EINVAL; 3836 } 3837 3838 return bdev_writev_blocks_with_md(desc, ch, iov, iovcnt, md_buf, offset_blocks, 3839 num_blocks, cb, cb_arg); 3840 } 3841 3842 static void 3843 bdev_compare_do_read_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 3844 { 3845 struct spdk_bdev_io *parent_io = cb_arg; 3846 uint8_t *read_buf = bdev_io->u.bdev.iovs[0].iov_base; 3847 int i, rc = 0; 3848 3849 if (!success) { 3850 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 3851 parent_io->internal.cb(parent_io, false, parent_io->internal.caller_ctx); 3852 spdk_bdev_free_io(bdev_io); 3853 return; 3854 } 3855 3856 for (i = 0; i < parent_io->u.bdev.iovcnt; i++) { 3857 rc = memcmp(read_buf, 3858 parent_io->u.bdev.iovs[i].iov_base, 3859 parent_io->u.bdev.iovs[i].iov_len); 3860 if (rc) { 3861 break; 3862 } 3863 read_buf += parent_io->u.bdev.iovs[i].iov_len; 3864 } 3865 3866 spdk_bdev_free_io(bdev_io); 3867 3868 if (rc == 0) { 3869 parent_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; 3870 parent_io->internal.cb(parent_io, true, parent_io->internal.caller_ctx); 3871 } else { 3872 parent_io->internal.status = SPDK_BDEV_IO_STATUS_MISCOMPARE; 3873 parent_io->internal.cb(parent_io, false, parent_io->internal.caller_ctx); 3874 } 3875 } 3876 3877 static void 3878 bdev_compare_do_read(void *_bdev_io) 3879 { 3880 struct spdk_bdev_io *bdev_io = _bdev_io; 3881 int rc; 3882 3883 rc = spdk_bdev_read_blocks(bdev_io->internal.desc, 3884 spdk_io_channel_from_ctx(bdev_io->internal.ch), NULL, 3885 bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, 3886 bdev_compare_do_read_done, bdev_io); 3887 3888 if (rc == -ENOMEM) { 3889 bdev_queue_io_wait_with_cb(bdev_io, bdev_compare_do_read); 3890 } else if (rc != 0) { 3891 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 3892 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 3893 } 3894 } 3895 3896 static int 3897 bdev_comparev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3898 struct iovec *iov, int iovcnt, void *md_buf, 3899 uint64_t offset_blocks, uint64_t num_blocks, 3900 spdk_bdev_io_completion_cb cb, void *cb_arg) 3901 { 3902 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 3903 struct spdk_bdev_io *bdev_io; 3904 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 3905 3906 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 3907 return -EINVAL; 3908 } 3909 3910 bdev_io = bdev_channel_get_io(channel); 3911 if (!bdev_io) { 3912 return -ENOMEM; 3913 } 3914 3915 bdev_io->internal.ch = channel; 3916 bdev_io->internal.desc = desc; 3917 bdev_io->type = SPDK_BDEV_IO_TYPE_COMPARE; 3918 bdev_io->u.bdev.iovs = iov; 3919 bdev_io->u.bdev.iovcnt = iovcnt; 3920 bdev_io->u.bdev.md_buf = md_buf; 3921 bdev_io->u.bdev.num_blocks = num_blocks; 3922 bdev_io->u.bdev.offset_blocks = offset_blocks; 3923 bdev_io_init(bdev_io, bdev, cb_arg, cb); 3924 3925 if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_COMPARE)) { 3926 bdev_io_submit(bdev_io); 3927 return 0; 3928 } 3929 3930 bdev_compare_do_read(bdev_io); 3931 3932 return 0; 3933 } 3934 3935 int 3936 spdk_bdev_comparev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3937 struct iovec *iov, int iovcnt, 3938 uint64_t offset_blocks, uint64_t num_blocks, 3939 spdk_bdev_io_completion_cb cb, void *cb_arg) 3940 { 3941 return bdev_comparev_blocks_with_md(desc, ch, iov, iovcnt, NULL, offset_blocks, 3942 num_blocks, cb, cb_arg); 3943 } 3944 3945 int 3946 spdk_bdev_comparev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3947 struct iovec *iov, int iovcnt, void *md_buf, 3948 uint64_t offset_blocks, uint64_t num_blocks, 3949 spdk_bdev_io_completion_cb cb, void *cb_arg) 3950 { 3951 if (!spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) { 3952 return -EINVAL; 3953 } 3954 3955 if (!_bdev_io_check_md_buf(iov, md_buf)) { 3956 return -EINVAL; 3957 } 3958 3959 return bdev_comparev_blocks_with_md(desc, ch, iov, iovcnt, md_buf, offset_blocks, 3960 num_blocks, cb, cb_arg); 3961 } 3962 3963 static int 3964 bdev_compare_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 3965 void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, 3966 spdk_bdev_io_completion_cb cb, void *cb_arg) 3967 { 3968 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 3969 struct spdk_bdev_io *bdev_io; 3970 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 3971 3972 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 3973 return -EINVAL; 3974 } 3975 3976 bdev_io = bdev_channel_get_io(channel); 3977 if (!bdev_io) { 3978 return -ENOMEM; 3979 } 3980 3981 bdev_io->internal.ch = channel; 3982 bdev_io->internal.desc = desc; 3983 bdev_io->type = SPDK_BDEV_IO_TYPE_COMPARE; 3984 bdev_io->u.bdev.iovs = &bdev_io->iov; 3985 bdev_io->u.bdev.iovs[0].iov_base = buf; 3986 bdev_io->u.bdev.iovs[0].iov_len = num_blocks * bdev->blocklen; 3987 bdev_io->u.bdev.iovcnt = 1; 3988 bdev_io->u.bdev.md_buf = md_buf; 3989 bdev_io->u.bdev.num_blocks = num_blocks; 3990 bdev_io->u.bdev.offset_blocks = offset_blocks; 3991 bdev_io_init(bdev_io, bdev, cb_arg, cb); 3992 3993 if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_COMPARE)) { 3994 bdev_io_submit(bdev_io); 3995 return 0; 3996 } 3997 3998 bdev_compare_do_read(bdev_io); 3999 4000 return 0; 4001 } 4002 4003 int 4004 spdk_bdev_compare_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4005 void *buf, uint64_t offset_blocks, uint64_t num_blocks, 4006 spdk_bdev_io_completion_cb cb, void *cb_arg) 4007 { 4008 return bdev_compare_blocks_with_md(desc, ch, buf, NULL, offset_blocks, num_blocks, 4009 cb, cb_arg); 4010 } 4011 4012 int 4013 spdk_bdev_compare_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4014 void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, 4015 spdk_bdev_io_completion_cb cb, void *cb_arg) 4016 { 4017 struct iovec iov = { 4018 .iov_base = buf, 4019 }; 4020 4021 if (!spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) { 4022 return -EINVAL; 4023 } 4024 4025 if (!_bdev_io_check_md_buf(&iov, md_buf)) { 4026 return -EINVAL; 4027 } 4028 4029 return bdev_compare_blocks_with_md(desc, ch, buf, md_buf, offset_blocks, num_blocks, 4030 cb, cb_arg); 4031 } 4032 4033 static void 4034 bdev_comparev_and_writev_blocks_unlocked(void *ctx, int unlock_status) 4035 { 4036 struct spdk_bdev_io *bdev_io = ctx; 4037 4038 if (unlock_status) { 4039 SPDK_ERRLOG("LBA range unlock failed\n"); 4040 } 4041 4042 bdev_io->internal.cb(bdev_io, bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS ? true : 4043 false, bdev_io->internal.caller_ctx); 4044 } 4045 4046 static void 4047 bdev_comparev_and_writev_blocks_unlock(struct spdk_bdev_io *bdev_io, int status) 4048 { 4049 bdev_io->internal.status = status; 4050 4051 bdev_unlock_lba_range(bdev_io->internal.desc, spdk_io_channel_from_ctx(bdev_io->internal.ch), 4052 bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, 4053 bdev_comparev_and_writev_blocks_unlocked, bdev_io); 4054 } 4055 4056 static void 4057 bdev_compare_and_write_do_write_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 4058 { 4059 struct spdk_bdev_io *parent_io = cb_arg; 4060 4061 if (!success) { 4062 SPDK_ERRLOG("Compare and write operation failed\n"); 4063 } 4064 4065 spdk_bdev_free_io(bdev_io); 4066 4067 bdev_comparev_and_writev_blocks_unlock(parent_io, 4068 success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED); 4069 } 4070 4071 static void 4072 bdev_compare_and_write_do_write(void *_bdev_io) 4073 { 4074 struct spdk_bdev_io *bdev_io = _bdev_io; 4075 int rc; 4076 4077 rc = spdk_bdev_writev_blocks(bdev_io->internal.desc, 4078 spdk_io_channel_from_ctx(bdev_io->internal.ch), 4079 bdev_io->u.bdev.fused_iovs, bdev_io->u.bdev.fused_iovcnt, 4080 bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, 4081 bdev_compare_and_write_do_write_done, bdev_io); 4082 4083 4084 if (rc == -ENOMEM) { 4085 bdev_queue_io_wait_with_cb(bdev_io, bdev_compare_and_write_do_write); 4086 } else if (rc != 0) { 4087 bdev_comparev_and_writev_blocks_unlock(bdev_io, SPDK_BDEV_IO_STATUS_FAILED); 4088 } 4089 } 4090 4091 static void 4092 bdev_compare_and_write_do_compare_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 4093 { 4094 struct spdk_bdev_io *parent_io = cb_arg; 4095 4096 spdk_bdev_free_io(bdev_io); 4097 4098 if (!success) { 4099 bdev_comparev_and_writev_blocks_unlock(parent_io, SPDK_BDEV_IO_STATUS_MISCOMPARE); 4100 return; 4101 } 4102 4103 bdev_compare_and_write_do_write(parent_io); 4104 } 4105 4106 static void 4107 bdev_compare_and_write_do_compare(void *_bdev_io) 4108 { 4109 struct spdk_bdev_io *bdev_io = _bdev_io; 4110 int rc; 4111 4112 rc = spdk_bdev_comparev_blocks(bdev_io->internal.desc, 4113 spdk_io_channel_from_ctx(bdev_io->internal.ch), bdev_io->u.bdev.iovs, 4114 bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, 4115 bdev_compare_and_write_do_compare_done, bdev_io); 4116 4117 if (rc == -ENOMEM) { 4118 bdev_queue_io_wait_with_cb(bdev_io, bdev_compare_and_write_do_compare); 4119 } else if (rc != 0) { 4120 bdev_comparev_and_writev_blocks_unlock(bdev_io, SPDK_BDEV_IO_STATUS_FIRST_FUSED_FAILED); 4121 } 4122 } 4123 4124 static void 4125 bdev_comparev_and_writev_blocks_locked(void *ctx, int status) 4126 { 4127 struct spdk_bdev_io *bdev_io = ctx; 4128 4129 if (status) { 4130 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FIRST_FUSED_FAILED; 4131 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 4132 return; 4133 } 4134 4135 bdev_compare_and_write_do_compare(bdev_io); 4136 } 4137 4138 int 4139 spdk_bdev_comparev_and_writev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4140 struct iovec *compare_iov, int compare_iovcnt, 4141 struct iovec *write_iov, int write_iovcnt, 4142 uint64_t offset_blocks, uint64_t num_blocks, 4143 spdk_bdev_io_completion_cb cb, void *cb_arg) 4144 { 4145 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 4146 struct spdk_bdev_io *bdev_io; 4147 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 4148 4149 if (!desc->write) { 4150 return -EBADF; 4151 } 4152 4153 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 4154 return -EINVAL; 4155 } 4156 4157 if (num_blocks > bdev->acwu) { 4158 return -EINVAL; 4159 } 4160 4161 bdev_io = bdev_channel_get_io(channel); 4162 if (!bdev_io) { 4163 return -ENOMEM; 4164 } 4165 4166 bdev_io->internal.ch = channel; 4167 bdev_io->internal.desc = desc; 4168 bdev_io->type = SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE; 4169 bdev_io->u.bdev.iovs = compare_iov; 4170 bdev_io->u.bdev.iovcnt = compare_iovcnt; 4171 bdev_io->u.bdev.fused_iovs = write_iov; 4172 bdev_io->u.bdev.fused_iovcnt = write_iovcnt; 4173 bdev_io->u.bdev.md_buf = NULL; 4174 bdev_io->u.bdev.num_blocks = num_blocks; 4175 bdev_io->u.bdev.offset_blocks = offset_blocks; 4176 bdev_io_init(bdev_io, bdev, cb_arg, cb); 4177 4178 if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE)) { 4179 bdev_io_submit(bdev_io); 4180 return 0; 4181 } 4182 4183 return bdev_lock_lba_range(desc, ch, offset_blocks, num_blocks, 4184 bdev_comparev_and_writev_blocks_locked, bdev_io); 4185 } 4186 4187 static void 4188 bdev_zcopy_get_buf(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io, bool success) 4189 { 4190 if (!success) { 4191 /* Don't use spdk_bdev_io_complete here - this bdev_io was never actually submitted. */ 4192 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_NOMEM; 4193 bdev_io->internal.cb(bdev_io, success, bdev_io->internal.caller_ctx); 4194 return; 4195 } 4196 4197 if (bdev_io->u.bdev.zcopy.populate) { 4198 /* Read the real data into the buffer */ 4199 bdev_io->type = SPDK_BDEV_IO_TYPE_READ; 4200 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_PENDING; 4201 bdev_io_submit(bdev_io); 4202 return; 4203 } 4204 4205 /* Don't use spdk_bdev_io_complete here - this bdev_io was never actually submitted. */ 4206 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; 4207 bdev_io->internal.cb(bdev_io, success, bdev_io->internal.caller_ctx); 4208 } 4209 4210 int 4211 spdk_bdev_zcopy_start(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4212 uint64_t offset_blocks, uint64_t num_blocks, 4213 bool populate, 4214 spdk_bdev_io_completion_cb cb, void *cb_arg) 4215 { 4216 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 4217 struct spdk_bdev_io *bdev_io; 4218 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 4219 4220 if (!desc->write) { 4221 return -EBADF; 4222 } 4223 4224 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 4225 return -EINVAL; 4226 } 4227 4228 if (!spdk_bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_ZCOPY)) { 4229 return -ENOTSUP; 4230 } 4231 4232 bdev_io = bdev_channel_get_io(channel); 4233 if (!bdev_io) { 4234 return -ENOMEM; 4235 } 4236 4237 bdev_io->internal.ch = channel; 4238 bdev_io->internal.desc = desc; 4239 bdev_io->type = SPDK_BDEV_IO_TYPE_ZCOPY; 4240 bdev_io->u.bdev.num_blocks = num_blocks; 4241 bdev_io->u.bdev.offset_blocks = offset_blocks; 4242 bdev_io->u.bdev.iovs = NULL; 4243 bdev_io->u.bdev.iovcnt = 0; 4244 bdev_io->u.bdev.md_buf = NULL; 4245 bdev_io->u.bdev.zcopy.populate = populate ? 1 : 0; 4246 bdev_io->u.bdev.zcopy.commit = 0; 4247 bdev_io->u.bdev.zcopy.start = 1; 4248 bdev_io_init(bdev_io, bdev, cb_arg, cb); 4249 4250 if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_ZCOPY)) { 4251 bdev_io_submit(bdev_io); 4252 } else { 4253 /* Emulate zcopy by allocating a buffer */ 4254 spdk_bdev_io_get_buf(bdev_io, bdev_zcopy_get_buf, 4255 bdev_io->u.bdev.num_blocks * bdev->blocklen); 4256 } 4257 4258 return 0; 4259 } 4260 4261 int 4262 spdk_bdev_zcopy_end(struct spdk_bdev_io *bdev_io, bool commit, 4263 spdk_bdev_io_completion_cb cb, void *cb_arg) 4264 { 4265 struct spdk_bdev *bdev = bdev_io->bdev; 4266 4267 if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ) { 4268 /* This can happen if the zcopy was emulated in start */ 4269 if (bdev_io->u.bdev.zcopy.start != 1) { 4270 return -EINVAL; 4271 } 4272 bdev_io->type = SPDK_BDEV_IO_TYPE_ZCOPY; 4273 } 4274 4275 if (bdev_io->type != SPDK_BDEV_IO_TYPE_ZCOPY) { 4276 return -EINVAL; 4277 } 4278 4279 bdev_io->u.bdev.zcopy.commit = commit ? 1 : 0; 4280 bdev_io->u.bdev.zcopy.start = 0; 4281 bdev_io->internal.caller_ctx = cb_arg; 4282 bdev_io->internal.cb = cb; 4283 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_PENDING; 4284 4285 if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_ZCOPY)) { 4286 bdev_io_submit(bdev_io); 4287 return 0; 4288 } 4289 4290 if (!bdev_io->u.bdev.zcopy.commit) { 4291 /* Don't use spdk_bdev_io_complete here - this bdev_io was never actually submitted. */ 4292 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; 4293 bdev_io->internal.cb(bdev_io, true, bdev_io->internal.caller_ctx); 4294 return 0; 4295 } 4296 4297 bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE; 4298 bdev_io_submit(bdev_io); 4299 4300 return 0; 4301 } 4302 4303 int 4304 spdk_bdev_write_zeroes(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4305 uint64_t offset, uint64_t len, 4306 spdk_bdev_io_completion_cb cb, void *cb_arg) 4307 { 4308 uint64_t offset_blocks, num_blocks; 4309 4310 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 4311 len, &num_blocks) != 0) { 4312 return -EINVAL; 4313 } 4314 4315 return spdk_bdev_write_zeroes_blocks(desc, ch, offset_blocks, num_blocks, cb, cb_arg); 4316 } 4317 4318 int 4319 spdk_bdev_write_zeroes_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4320 uint64_t offset_blocks, uint64_t num_blocks, 4321 spdk_bdev_io_completion_cb cb, void *cb_arg) 4322 { 4323 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 4324 struct spdk_bdev_io *bdev_io; 4325 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 4326 4327 if (!desc->write) { 4328 return -EBADF; 4329 } 4330 4331 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 4332 return -EINVAL; 4333 } 4334 4335 if (!bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE_ZEROES) && 4336 !bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE)) { 4337 return -ENOTSUP; 4338 } 4339 4340 bdev_io = bdev_channel_get_io(channel); 4341 4342 if (!bdev_io) { 4343 return -ENOMEM; 4344 } 4345 4346 bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE_ZEROES; 4347 bdev_io->internal.ch = channel; 4348 bdev_io->internal.desc = desc; 4349 bdev_io->u.bdev.offset_blocks = offset_blocks; 4350 bdev_io->u.bdev.num_blocks = num_blocks; 4351 bdev_io_init(bdev_io, bdev, cb_arg, cb); 4352 4353 if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE_ZEROES)) { 4354 bdev_io_submit(bdev_io); 4355 return 0; 4356 } 4357 4358 assert(bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE)); 4359 assert(_bdev_get_block_size_with_md(bdev) <= ZERO_BUFFER_SIZE); 4360 bdev_io->u.bdev.split_remaining_num_blocks = num_blocks; 4361 bdev_io->u.bdev.split_current_offset_blocks = offset_blocks; 4362 bdev_write_zero_buffer_next(bdev_io); 4363 4364 return 0; 4365 } 4366 4367 int 4368 spdk_bdev_unmap(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4369 uint64_t offset, uint64_t nbytes, 4370 spdk_bdev_io_completion_cb cb, void *cb_arg) 4371 { 4372 uint64_t offset_blocks, num_blocks; 4373 4374 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 4375 nbytes, &num_blocks) != 0) { 4376 return -EINVAL; 4377 } 4378 4379 return spdk_bdev_unmap_blocks(desc, ch, offset_blocks, num_blocks, cb, cb_arg); 4380 } 4381 4382 int 4383 spdk_bdev_unmap_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4384 uint64_t offset_blocks, uint64_t num_blocks, 4385 spdk_bdev_io_completion_cb cb, void *cb_arg) 4386 { 4387 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 4388 struct spdk_bdev_io *bdev_io; 4389 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 4390 4391 if (!desc->write) { 4392 return -EBADF; 4393 } 4394 4395 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 4396 return -EINVAL; 4397 } 4398 4399 if (num_blocks == 0) { 4400 SPDK_ERRLOG("Can't unmap 0 bytes\n"); 4401 return -EINVAL; 4402 } 4403 4404 bdev_io = bdev_channel_get_io(channel); 4405 if (!bdev_io) { 4406 return -ENOMEM; 4407 } 4408 4409 bdev_io->internal.ch = channel; 4410 bdev_io->internal.desc = desc; 4411 bdev_io->type = SPDK_BDEV_IO_TYPE_UNMAP; 4412 4413 bdev_io->u.bdev.iovs = &bdev_io->iov; 4414 bdev_io->u.bdev.iovs[0].iov_base = NULL; 4415 bdev_io->u.bdev.iovs[0].iov_len = 0; 4416 bdev_io->u.bdev.iovcnt = 1; 4417 4418 bdev_io->u.bdev.offset_blocks = offset_blocks; 4419 bdev_io->u.bdev.num_blocks = num_blocks; 4420 bdev_io_init(bdev_io, bdev, cb_arg, cb); 4421 4422 bdev_io_submit(bdev_io); 4423 return 0; 4424 } 4425 4426 int 4427 spdk_bdev_flush(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4428 uint64_t offset, uint64_t length, 4429 spdk_bdev_io_completion_cb cb, void *cb_arg) 4430 { 4431 uint64_t offset_blocks, num_blocks; 4432 4433 if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, 4434 length, &num_blocks) != 0) { 4435 return -EINVAL; 4436 } 4437 4438 return spdk_bdev_flush_blocks(desc, ch, offset_blocks, num_blocks, cb, cb_arg); 4439 } 4440 4441 int 4442 spdk_bdev_flush_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4443 uint64_t offset_blocks, uint64_t num_blocks, 4444 spdk_bdev_io_completion_cb cb, void *cb_arg) 4445 { 4446 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 4447 struct spdk_bdev_io *bdev_io; 4448 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 4449 4450 if (!desc->write) { 4451 return -EBADF; 4452 } 4453 4454 if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { 4455 return -EINVAL; 4456 } 4457 4458 bdev_io = bdev_channel_get_io(channel); 4459 if (!bdev_io) { 4460 return -ENOMEM; 4461 } 4462 4463 bdev_io->internal.ch = channel; 4464 bdev_io->internal.desc = desc; 4465 bdev_io->type = SPDK_BDEV_IO_TYPE_FLUSH; 4466 bdev_io->u.bdev.iovs = NULL; 4467 bdev_io->u.bdev.iovcnt = 0; 4468 bdev_io->u.bdev.offset_blocks = offset_blocks; 4469 bdev_io->u.bdev.num_blocks = num_blocks; 4470 bdev_io_init(bdev_io, bdev, cb_arg, cb); 4471 4472 bdev_io_submit(bdev_io); 4473 return 0; 4474 } 4475 4476 static void 4477 bdev_reset_dev(struct spdk_io_channel_iter *i, int status) 4478 { 4479 struct spdk_bdev_channel *ch = spdk_io_channel_iter_get_ctx(i); 4480 struct spdk_bdev_io *bdev_io; 4481 4482 bdev_io = TAILQ_FIRST(&ch->queued_resets); 4483 TAILQ_REMOVE(&ch->queued_resets, bdev_io, internal.link); 4484 bdev_io_submit_reset(bdev_io); 4485 } 4486 4487 static void 4488 bdev_reset_freeze_channel(struct spdk_io_channel_iter *i) 4489 { 4490 struct spdk_io_channel *ch; 4491 struct spdk_bdev_channel *channel; 4492 struct spdk_bdev_mgmt_channel *mgmt_channel; 4493 struct spdk_bdev_shared_resource *shared_resource; 4494 bdev_io_tailq_t tmp_queued; 4495 4496 TAILQ_INIT(&tmp_queued); 4497 4498 ch = spdk_io_channel_iter_get_channel(i); 4499 channel = spdk_io_channel_get_ctx(ch); 4500 shared_resource = channel->shared_resource; 4501 mgmt_channel = shared_resource->mgmt_ch; 4502 4503 channel->flags |= BDEV_CH_RESET_IN_PROGRESS; 4504 4505 if ((channel->flags & BDEV_CH_QOS_ENABLED) != 0) { 4506 /* The QoS object is always valid and readable while 4507 * the channel flag is set, so the lock here should not 4508 * be necessary. We're not in the fast path though, so 4509 * just take it anyway. */ 4510 pthread_mutex_lock(&channel->bdev->internal.mutex); 4511 if (channel->bdev->internal.qos->ch == channel) { 4512 TAILQ_SWAP(&channel->bdev->internal.qos->queued, &tmp_queued, spdk_bdev_io, internal.link); 4513 } 4514 pthread_mutex_unlock(&channel->bdev->internal.mutex); 4515 } 4516 4517 bdev_abort_all_queued_io(&shared_resource->nomem_io, channel); 4518 bdev_abort_all_buf_io(&mgmt_channel->need_buf_small, channel); 4519 bdev_abort_all_buf_io(&mgmt_channel->need_buf_large, channel); 4520 bdev_abort_all_queued_io(&tmp_queued, channel); 4521 4522 spdk_for_each_channel_continue(i, 0); 4523 } 4524 4525 static void 4526 bdev_start_reset(void *ctx) 4527 { 4528 struct spdk_bdev_channel *ch = ctx; 4529 4530 spdk_for_each_channel(__bdev_to_io_dev(ch->bdev), bdev_reset_freeze_channel, 4531 ch, bdev_reset_dev); 4532 } 4533 4534 static void 4535 bdev_channel_start_reset(struct spdk_bdev_channel *ch) 4536 { 4537 struct spdk_bdev *bdev = ch->bdev; 4538 4539 assert(!TAILQ_EMPTY(&ch->queued_resets)); 4540 4541 pthread_mutex_lock(&bdev->internal.mutex); 4542 if (bdev->internal.reset_in_progress == NULL) { 4543 bdev->internal.reset_in_progress = TAILQ_FIRST(&ch->queued_resets); 4544 /* 4545 * Take a channel reference for the target bdev for the life of this 4546 * reset. This guards against the channel getting destroyed while 4547 * spdk_for_each_channel() calls related to this reset IO are in 4548 * progress. We will release the reference when this reset is 4549 * completed. 4550 */ 4551 bdev->internal.reset_in_progress->u.reset.ch_ref = spdk_get_io_channel(__bdev_to_io_dev(bdev)); 4552 bdev_start_reset(ch); 4553 } 4554 pthread_mutex_unlock(&bdev->internal.mutex); 4555 } 4556 4557 int 4558 spdk_bdev_reset(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4559 spdk_bdev_io_completion_cb cb, void *cb_arg) 4560 { 4561 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 4562 struct spdk_bdev_io *bdev_io; 4563 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 4564 4565 bdev_io = bdev_channel_get_io(channel); 4566 if (!bdev_io) { 4567 return -ENOMEM; 4568 } 4569 4570 bdev_io->internal.ch = channel; 4571 bdev_io->internal.desc = desc; 4572 bdev_io->internal.submit_tsc = spdk_get_ticks(); 4573 bdev_io->type = SPDK_BDEV_IO_TYPE_RESET; 4574 bdev_io->u.reset.ch_ref = NULL; 4575 bdev_io_init(bdev_io, bdev, cb_arg, cb); 4576 4577 pthread_mutex_lock(&bdev->internal.mutex); 4578 TAILQ_INSERT_TAIL(&channel->queued_resets, bdev_io, internal.link); 4579 pthread_mutex_unlock(&bdev->internal.mutex); 4580 4581 TAILQ_INSERT_TAIL(&bdev_io->internal.ch->io_submitted, bdev_io, 4582 internal.ch_link); 4583 4584 bdev_channel_start_reset(channel); 4585 4586 return 0; 4587 } 4588 4589 void 4590 spdk_bdev_get_io_stat(struct spdk_bdev *bdev, struct spdk_io_channel *ch, 4591 struct spdk_bdev_io_stat *stat) 4592 { 4593 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 4594 4595 *stat = channel->stat; 4596 } 4597 4598 static void 4599 bdev_get_device_stat_done(struct spdk_io_channel_iter *i, int status) 4600 { 4601 void *io_device = spdk_io_channel_iter_get_io_device(i); 4602 struct spdk_bdev_iostat_ctx *bdev_iostat_ctx = spdk_io_channel_iter_get_ctx(i); 4603 4604 bdev_iostat_ctx->cb(__bdev_from_io_dev(io_device), bdev_iostat_ctx->stat, 4605 bdev_iostat_ctx->cb_arg, 0); 4606 free(bdev_iostat_ctx); 4607 } 4608 4609 static void 4610 bdev_get_each_channel_stat(struct spdk_io_channel_iter *i) 4611 { 4612 struct spdk_bdev_iostat_ctx *bdev_iostat_ctx = spdk_io_channel_iter_get_ctx(i); 4613 struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i); 4614 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 4615 4616 bdev_io_stat_add(bdev_iostat_ctx->stat, &channel->stat); 4617 spdk_for_each_channel_continue(i, 0); 4618 } 4619 4620 void 4621 spdk_bdev_get_device_stat(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, 4622 spdk_bdev_get_device_stat_cb cb, void *cb_arg) 4623 { 4624 struct spdk_bdev_iostat_ctx *bdev_iostat_ctx; 4625 4626 assert(bdev != NULL); 4627 assert(stat != NULL); 4628 assert(cb != NULL); 4629 4630 bdev_iostat_ctx = calloc(1, sizeof(struct spdk_bdev_iostat_ctx)); 4631 if (bdev_iostat_ctx == NULL) { 4632 SPDK_ERRLOG("Unable to allocate memory for spdk_bdev_iostat_ctx\n"); 4633 cb(bdev, stat, cb_arg, -ENOMEM); 4634 return; 4635 } 4636 4637 bdev_iostat_ctx->stat = stat; 4638 bdev_iostat_ctx->cb = cb; 4639 bdev_iostat_ctx->cb_arg = cb_arg; 4640 4641 /* Start with the statistics from previously deleted channels. */ 4642 pthread_mutex_lock(&bdev->internal.mutex); 4643 bdev_io_stat_add(bdev_iostat_ctx->stat, &bdev->internal.stat); 4644 pthread_mutex_unlock(&bdev->internal.mutex); 4645 4646 /* Then iterate and add the statistics from each existing channel. */ 4647 spdk_for_each_channel(__bdev_to_io_dev(bdev), 4648 bdev_get_each_channel_stat, 4649 bdev_iostat_ctx, 4650 bdev_get_device_stat_done); 4651 } 4652 4653 int 4654 spdk_bdev_nvme_admin_passthru(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4655 const struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, 4656 spdk_bdev_io_completion_cb cb, void *cb_arg) 4657 { 4658 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 4659 struct spdk_bdev_io *bdev_io; 4660 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 4661 4662 if (!desc->write) { 4663 return -EBADF; 4664 } 4665 4666 bdev_io = bdev_channel_get_io(channel); 4667 if (!bdev_io) { 4668 return -ENOMEM; 4669 } 4670 4671 bdev_io->internal.ch = channel; 4672 bdev_io->internal.desc = desc; 4673 bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_ADMIN; 4674 bdev_io->u.nvme_passthru.cmd = *cmd; 4675 bdev_io->u.nvme_passthru.buf = buf; 4676 bdev_io->u.nvme_passthru.nbytes = nbytes; 4677 bdev_io->u.nvme_passthru.md_buf = NULL; 4678 bdev_io->u.nvme_passthru.md_len = 0; 4679 4680 bdev_io_init(bdev_io, bdev, cb_arg, cb); 4681 4682 bdev_io_submit(bdev_io); 4683 return 0; 4684 } 4685 4686 int 4687 spdk_bdev_nvme_io_passthru(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4688 const struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, 4689 spdk_bdev_io_completion_cb cb, void *cb_arg) 4690 { 4691 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 4692 struct spdk_bdev_io *bdev_io; 4693 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 4694 4695 if (!desc->write) { 4696 /* 4697 * Do not try to parse the NVMe command - we could maybe use bits in the opcode 4698 * to easily determine if the command is a read or write, but for now just 4699 * do not allow io_passthru with a read-only descriptor. 4700 */ 4701 return -EBADF; 4702 } 4703 4704 bdev_io = bdev_channel_get_io(channel); 4705 if (!bdev_io) { 4706 return -ENOMEM; 4707 } 4708 4709 bdev_io->internal.ch = channel; 4710 bdev_io->internal.desc = desc; 4711 bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_IO; 4712 bdev_io->u.nvme_passthru.cmd = *cmd; 4713 bdev_io->u.nvme_passthru.buf = buf; 4714 bdev_io->u.nvme_passthru.nbytes = nbytes; 4715 bdev_io->u.nvme_passthru.md_buf = NULL; 4716 bdev_io->u.nvme_passthru.md_len = 0; 4717 4718 bdev_io_init(bdev_io, bdev, cb_arg, cb); 4719 4720 bdev_io_submit(bdev_io); 4721 return 0; 4722 } 4723 4724 int 4725 spdk_bdev_nvme_io_passthru_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4726 const struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, void *md_buf, size_t md_len, 4727 spdk_bdev_io_completion_cb cb, void *cb_arg) 4728 { 4729 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 4730 struct spdk_bdev_io *bdev_io; 4731 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 4732 4733 if (!desc->write) { 4734 /* 4735 * Do not try to parse the NVMe command - we could maybe use bits in the opcode 4736 * to easily determine if the command is a read or write, but for now just 4737 * do not allow io_passthru with a read-only descriptor. 4738 */ 4739 return -EBADF; 4740 } 4741 4742 bdev_io = bdev_channel_get_io(channel); 4743 if (!bdev_io) { 4744 return -ENOMEM; 4745 } 4746 4747 bdev_io->internal.ch = channel; 4748 bdev_io->internal.desc = desc; 4749 bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_IO_MD; 4750 bdev_io->u.nvme_passthru.cmd = *cmd; 4751 bdev_io->u.nvme_passthru.buf = buf; 4752 bdev_io->u.nvme_passthru.nbytes = nbytes; 4753 bdev_io->u.nvme_passthru.md_buf = md_buf; 4754 bdev_io->u.nvme_passthru.md_len = md_len; 4755 4756 bdev_io_init(bdev_io, bdev, cb_arg, cb); 4757 4758 bdev_io_submit(bdev_io); 4759 return 0; 4760 } 4761 4762 static void bdev_abort_retry(void *ctx); 4763 static void bdev_abort(struct spdk_bdev_io *parent_io); 4764 4765 static void 4766 bdev_abort_io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 4767 { 4768 struct spdk_bdev_channel *channel = bdev_io->internal.ch; 4769 struct spdk_bdev_io *parent_io = cb_arg; 4770 struct spdk_bdev_io *bio_to_abort, *tmp_io; 4771 4772 bio_to_abort = bdev_io->u.abort.bio_to_abort; 4773 4774 spdk_bdev_free_io(bdev_io); 4775 4776 if (!success) { 4777 /* Check if the target I/O completed in the meantime. */ 4778 TAILQ_FOREACH(tmp_io, &channel->io_submitted, internal.ch_link) { 4779 if (tmp_io == bio_to_abort) { 4780 break; 4781 } 4782 } 4783 4784 /* If the target I/O still exists, set the parent to failed. */ 4785 if (tmp_io != NULL) { 4786 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 4787 } 4788 } 4789 4790 parent_io->u.bdev.split_outstanding--; 4791 if (parent_io->u.bdev.split_outstanding == 0) { 4792 if (parent_io->internal.status == SPDK_BDEV_IO_STATUS_NOMEM) { 4793 bdev_abort_retry(parent_io); 4794 } else { 4795 bdev_io_complete(parent_io); 4796 } 4797 } 4798 } 4799 4800 static int 4801 bdev_abort_io(struct spdk_bdev_desc *desc, struct spdk_bdev_channel *channel, 4802 struct spdk_bdev_io *bio_to_abort, 4803 spdk_bdev_io_completion_cb cb, void *cb_arg) 4804 { 4805 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 4806 struct spdk_bdev_io *bdev_io; 4807 4808 if (bio_to_abort->type == SPDK_BDEV_IO_TYPE_ABORT || 4809 bio_to_abort->type == SPDK_BDEV_IO_TYPE_RESET) { 4810 /* TODO: Abort reset or abort request. */ 4811 return -ENOTSUP; 4812 } 4813 4814 bdev_io = bdev_channel_get_io(channel); 4815 if (bdev_io == NULL) { 4816 return -ENOMEM; 4817 } 4818 4819 bdev_io->internal.ch = channel; 4820 bdev_io->internal.desc = desc; 4821 bdev_io->type = SPDK_BDEV_IO_TYPE_ABORT; 4822 bdev_io_init(bdev_io, bdev, cb_arg, cb); 4823 4824 if (bdev->split_on_optimal_io_boundary && bdev_io_should_split(bio_to_abort)) { 4825 bdev_io->u.bdev.abort.bio_cb_arg = bio_to_abort; 4826 4827 /* Parent abort request is not submitted directly, but to manage its 4828 * execution add it to the submitted list here. 4829 */ 4830 bdev_io->internal.submit_tsc = spdk_get_ticks(); 4831 TAILQ_INSERT_TAIL(&channel->io_submitted, bdev_io, internal.ch_link); 4832 4833 bdev_abort(bdev_io); 4834 4835 return 0; 4836 } 4837 4838 bdev_io->u.abort.bio_to_abort = bio_to_abort; 4839 4840 /* Submit the abort request to the underlying bdev module. */ 4841 bdev_io_submit(bdev_io); 4842 4843 return 0; 4844 } 4845 4846 static uint32_t 4847 _bdev_abort(struct spdk_bdev_io *parent_io) 4848 { 4849 struct spdk_bdev_desc *desc = parent_io->internal.desc; 4850 struct spdk_bdev_channel *channel = parent_io->internal.ch; 4851 void *bio_cb_arg; 4852 struct spdk_bdev_io *bio_to_abort; 4853 uint32_t matched_ios; 4854 int rc; 4855 4856 bio_cb_arg = parent_io->u.bdev.abort.bio_cb_arg; 4857 4858 /* matched_ios is returned and will be kept by the caller. 4859 * 4860 * This funcion will be used for two cases, 1) the same cb_arg is used for 4861 * multiple I/Os, 2) a single large I/O is split into smaller ones. 4862 * Incrementing split_outstanding directly here may confuse readers especially 4863 * for the 1st case. 4864 * 4865 * Completion of I/O abort is processed after stack unwinding. Hence this trick 4866 * works as expected. 4867 */ 4868 matched_ios = 0; 4869 parent_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; 4870 4871 TAILQ_FOREACH(bio_to_abort, &channel->io_submitted, internal.ch_link) { 4872 if (bio_to_abort->internal.caller_ctx != bio_cb_arg) { 4873 continue; 4874 } 4875 4876 if (bio_to_abort->internal.submit_tsc > parent_io->internal.submit_tsc) { 4877 /* Any I/O which was submitted after this abort command should be excluded. */ 4878 continue; 4879 } 4880 4881 rc = bdev_abort_io(desc, channel, bio_to_abort, bdev_abort_io_done, parent_io); 4882 if (rc != 0) { 4883 if (rc == -ENOMEM) { 4884 parent_io->internal.status = SPDK_BDEV_IO_STATUS_NOMEM; 4885 } else { 4886 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 4887 } 4888 break; 4889 } 4890 matched_ios++; 4891 } 4892 4893 return matched_ios; 4894 } 4895 4896 static void 4897 bdev_abort_retry(void *ctx) 4898 { 4899 struct spdk_bdev_io *parent_io = ctx; 4900 uint32_t matched_ios; 4901 4902 matched_ios = _bdev_abort(parent_io); 4903 4904 if (matched_ios == 0) { 4905 if (parent_io->internal.status == SPDK_BDEV_IO_STATUS_NOMEM) { 4906 bdev_queue_io_wait_with_cb(parent_io, bdev_abort_retry); 4907 } else { 4908 /* For retry, the case that no target I/O was found is success 4909 * because it means target I/Os completed in the meantime. 4910 */ 4911 bdev_io_complete(parent_io); 4912 } 4913 return; 4914 } 4915 4916 /* Use split_outstanding to manage the progress of aborting I/Os. */ 4917 parent_io->u.bdev.split_outstanding = matched_ios; 4918 } 4919 4920 static void 4921 bdev_abort(struct spdk_bdev_io *parent_io) 4922 { 4923 uint32_t matched_ios; 4924 4925 matched_ios = _bdev_abort(parent_io); 4926 4927 if (matched_ios == 0) { 4928 if (parent_io->internal.status == SPDK_BDEV_IO_STATUS_NOMEM) { 4929 bdev_queue_io_wait_with_cb(parent_io, bdev_abort_retry); 4930 } else { 4931 /* The case the no target I/O was found is failure. */ 4932 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 4933 bdev_io_complete(parent_io); 4934 } 4935 return; 4936 } 4937 4938 /* Use split_outstanding to manage the progress of aborting I/Os. */ 4939 parent_io->u.bdev.split_outstanding = matched_ios; 4940 } 4941 4942 int 4943 spdk_bdev_abort(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, 4944 void *bio_cb_arg, 4945 spdk_bdev_io_completion_cb cb, void *cb_arg) 4946 { 4947 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 4948 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 4949 struct spdk_bdev_io *bdev_io; 4950 4951 if (bio_cb_arg == NULL) { 4952 return -EINVAL; 4953 } 4954 4955 if (!spdk_bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_ABORT)) { 4956 return -ENOTSUP; 4957 } 4958 4959 bdev_io = bdev_channel_get_io(channel); 4960 if (bdev_io == NULL) { 4961 return -ENOMEM; 4962 } 4963 4964 bdev_io->internal.ch = channel; 4965 bdev_io->internal.desc = desc; 4966 bdev_io->internal.submit_tsc = spdk_get_ticks(); 4967 bdev_io->type = SPDK_BDEV_IO_TYPE_ABORT; 4968 bdev_io_init(bdev_io, bdev, cb_arg, cb); 4969 4970 bdev_io->u.bdev.abort.bio_cb_arg = bio_cb_arg; 4971 4972 /* Parent abort request is not submitted directly, but to manage its execution, 4973 * add it to the submitted list here. 4974 */ 4975 TAILQ_INSERT_TAIL(&channel->io_submitted, bdev_io, internal.ch_link); 4976 4977 bdev_abort(bdev_io); 4978 4979 return 0; 4980 } 4981 4982 int 4983 spdk_bdev_queue_io_wait(struct spdk_bdev *bdev, struct spdk_io_channel *ch, 4984 struct spdk_bdev_io_wait_entry *entry) 4985 { 4986 struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); 4987 struct spdk_bdev_mgmt_channel *mgmt_ch = channel->shared_resource->mgmt_ch; 4988 4989 if (bdev != entry->bdev) { 4990 SPDK_ERRLOG("bdevs do not match\n"); 4991 return -EINVAL; 4992 } 4993 4994 if (mgmt_ch->per_thread_cache_count > 0) { 4995 SPDK_ERRLOG("Cannot queue io_wait if spdk_bdev_io available in per-thread cache\n"); 4996 return -EINVAL; 4997 } 4998 4999 TAILQ_INSERT_TAIL(&mgmt_ch->io_wait_queue, entry, link); 5000 return 0; 5001 } 5002 5003 static void 5004 bdev_ch_retry_io(struct spdk_bdev_channel *bdev_ch) 5005 { 5006 struct spdk_bdev *bdev = bdev_ch->bdev; 5007 struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource; 5008 struct spdk_bdev_io *bdev_io; 5009 5010 if (shared_resource->io_outstanding > shared_resource->nomem_threshold) { 5011 /* 5012 * Allow some more I/O to complete before retrying the nomem_io queue. 5013 * Some drivers (such as nvme) cannot immediately take a new I/O in 5014 * the context of a completion, because the resources for the I/O are 5015 * not released until control returns to the bdev poller. Also, we 5016 * may require several small I/O to complete before a larger I/O 5017 * (that requires splitting) can be submitted. 5018 */ 5019 return; 5020 } 5021 5022 while (!TAILQ_EMPTY(&shared_resource->nomem_io)) { 5023 bdev_io = TAILQ_FIRST(&shared_resource->nomem_io); 5024 TAILQ_REMOVE(&shared_resource->nomem_io, bdev_io, internal.link); 5025 bdev_io->internal.ch->io_outstanding++; 5026 shared_resource->io_outstanding++; 5027 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_PENDING; 5028 bdev_io->internal.error.nvme.cdw0 = 0; 5029 bdev_io->num_retries++; 5030 bdev->fn_table->submit_request(spdk_bdev_io_get_io_channel(bdev_io), bdev_io); 5031 if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_NOMEM) { 5032 break; 5033 } 5034 } 5035 } 5036 5037 static inline void 5038 bdev_io_complete(void *ctx) 5039 { 5040 struct spdk_bdev_io *bdev_io = ctx; 5041 struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch; 5042 uint64_t tsc, tsc_diff; 5043 5044 if (spdk_unlikely(bdev_io->internal.in_submit_request || bdev_io->internal.io_submit_ch)) { 5045 /* 5046 * Send the completion to the thread that originally submitted the I/O, 5047 * which may not be the current thread in the case of QoS. 5048 */ 5049 if (bdev_io->internal.io_submit_ch) { 5050 bdev_io->internal.ch = bdev_io->internal.io_submit_ch; 5051 bdev_io->internal.io_submit_ch = NULL; 5052 } 5053 5054 /* 5055 * Defer completion to avoid potential infinite recursion if the 5056 * user's completion callback issues a new I/O. 5057 */ 5058 spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), 5059 bdev_io_complete, bdev_io); 5060 return; 5061 } 5062 5063 tsc = spdk_get_ticks(); 5064 tsc_diff = tsc - bdev_io->internal.submit_tsc; 5065 spdk_trace_record_tsc(tsc, TRACE_BDEV_IO_DONE, 0, 0, (uintptr_t)bdev_io, 0); 5066 5067 TAILQ_REMOVE(&bdev_ch->io_submitted, bdev_io, internal.ch_link); 5068 5069 if (bdev_io->internal.ch->histogram) { 5070 spdk_histogram_data_tally(bdev_io->internal.ch->histogram, tsc_diff); 5071 } 5072 5073 if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) { 5074 switch (bdev_io->type) { 5075 case SPDK_BDEV_IO_TYPE_READ: 5076 bdev_io->internal.ch->stat.bytes_read += bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen; 5077 bdev_io->internal.ch->stat.num_read_ops++; 5078 bdev_io->internal.ch->stat.read_latency_ticks += tsc_diff; 5079 break; 5080 case SPDK_BDEV_IO_TYPE_WRITE: 5081 bdev_io->internal.ch->stat.bytes_written += bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen; 5082 bdev_io->internal.ch->stat.num_write_ops++; 5083 bdev_io->internal.ch->stat.write_latency_ticks += tsc_diff; 5084 break; 5085 case SPDK_BDEV_IO_TYPE_UNMAP: 5086 bdev_io->internal.ch->stat.bytes_unmapped += bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen; 5087 bdev_io->internal.ch->stat.num_unmap_ops++; 5088 bdev_io->internal.ch->stat.unmap_latency_ticks += tsc_diff; 5089 break; 5090 case SPDK_BDEV_IO_TYPE_ZCOPY: 5091 /* Track the data in the start phase only */ 5092 if (bdev_io->u.bdev.zcopy.start) { 5093 if (bdev_io->u.bdev.zcopy.populate) { 5094 bdev_io->internal.ch->stat.bytes_read += 5095 bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen; 5096 bdev_io->internal.ch->stat.num_read_ops++; 5097 bdev_io->internal.ch->stat.read_latency_ticks += tsc_diff; 5098 } else { 5099 bdev_io->internal.ch->stat.bytes_written += 5100 bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen; 5101 bdev_io->internal.ch->stat.num_write_ops++; 5102 bdev_io->internal.ch->stat.write_latency_ticks += tsc_diff; 5103 } 5104 } 5105 break; 5106 default: 5107 break; 5108 } 5109 } 5110 5111 #ifdef SPDK_CONFIG_VTUNE 5112 uint64_t now_tsc = spdk_get_ticks(); 5113 if (now_tsc > (bdev_io->internal.ch->start_tsc + bdev_io->internal.ch->interval_tsc)) { 5114 uint64_t data[5]; 5115 5116 data[0] = bdev_io->internal.ch->stat.num_read_ops - bdev_io->internal.ch->prev_stat.num_read_ops; 5117 data[1] = bdev_io->internal.ch->stat.bytes_read - bdev_io->internal.ch->prev_stat.bytes_read; 5118 data[2] = bdev_io->internal.ch->stat.num_write_ops - bdev_io->internal.ch->prev_stat.num_write_ops; 5119 data[3] = bdev_io->internal.ch->stat.bytes_written - bdev_io->internal.ch->prev_stat.bytes_written; 5120 data[4] = bdev_io->bdev->fn_table->get_spin_time ? 5121 bdev_io->bdev->fn_table->get_spin_time(spdk_bdev_io_get_io_channel(bdev_io)) : 0; 5122 5123 __itt_metadata_add(g_bdev_mgr.domain, __itt_null, bdev_io->internal.ch->handle, 5124 __itt_metadata_u64, 5, data); 5125 5126 bdev_io->internal.ch->prev_stat = bdev_io->internal.ch->stat; 5127 bdev_io->internal.ch->start_tsc = now_tsc; 5128 } 5129 #endif 5130 5131 assert(bdev_io->internal.cb != NULL); 5132 assert(spdk_get_thread() == spdk_bdev_io_get_thread(bdev_io)); 5133 5134 bdev_io->internal.cb(bdev_io, bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS, 5135 bdev_io->internal.caller_ctx); 5136 } 5137 5138 static void 5139 bdev_reset_complete(struct spdk_io_channel_iter *i, int status) 5140 { 5141 struct spdk_bdev_io *bdev_io = spdk_io_channel_iter_get_ctx(i); 5142 5143 if (bdev_io->u.reset.ch_ref != NULL) { 5144 spdk_put_io_channel(bdev_io->u.reset.ch_ref); 5145 bdev_io->u.reset.ch_ref = NULL; 5146 } 5147 5148 bdev_io_complete(bdev_io); 5149 } 5150 5151 static void 5152 bdev_unfreeze_channel(struct spdk_io_channel_iter *i) 5153 { 5154 struct spdk_bdev_io *bdev_io = spdk_io_channel_iter_get_ctx(i); 5155 struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); 5156 struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); 5157 struct spdk_bdev_io *queued_reset; 5158 5159 ch->flags &= ~BDEV_CH_RESET_IN_PROGRESS; 5160 while (!TAILQ_EMPTY(&ch->queued_resets)) { 5161 queued_reset = TAILQ_FIRST(&ch->queued_resets); 5162 TAILQ_REMOVE(&ch->queued_resets, queued_reset, internal.link); 5163 spdk_bdev_io_complete(queued_reset, bdev_io->internal.status); 5164 } 5165 5166 spdk_for_each_channel_continue(i, 0); 5167 } 5168 5169 void 5170 spdk_bdev_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status) 5171 { 5172 struct spdk_bdev *bdev = bdev_io->bdev; 5173 struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch; 5174 struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource; 5175 5176 bdev_io->internal.status = status; 5177 5178 if (spdk_unlikely(bdev_io->type == SPDK_BDEV_IO_TYPE_RESET)) { 5179 bool unlock_channels = false; 5180 5181 if (status == SPDK_BDEV_IO_STATUS_NOMEM) { 5182 SPDK_ERRLOG("NOMEM returned for reset\n"); 5183 } 5184 pthread_mutex_lock(&bdev->internal.mutex); 5185 if (bdev_io == bdev->internal.reset_in_progress) { 5186 bdev->internal.reset_in_progress = NULL; 5187 unlock_channels = true; 5188 } 5189 pthread_mutex_unlock(&bdev->internal.mutex); 5190 5191 if (unlock_channels) { 5192 spdk_for_each_channel(__bdev_to_io_dev(bdev), bdev_unfreeze_channel, 5193 bdev_io, bdev_reset_complete); 5194 return; 5195 } 5196 } else { 5197 _bdev_io_unset_bounce_buf(bdev_io); 5198 5199 assert(bdev_ch->io_outstanding > 0); 5200 assert(shared_resource->io_outstanding > 0); 5201 bdev_ch->io_outstanding--; 5202 shared_resource->io_outstanding--; 5203 5204 if (spdk_unlikely(status == SPDK_BDEV_IO_STATUS_NOMEM)) { 5205 TAILQ_INSERT_HEAD(&shared_resource->nomem_io, bdev_io, internal.link); 5206 /* 5207 * Wait for some of the outstanding I/O to complete before we 5208 * retry any of the nomem_io. Normally we will wait for 5209 * NOMEM_THRESHOLD_COUNT I/O to complete but for low queue 5210 * depth channels we will instead wait for half to complete. 5211 */ 5212 shared_resource->nomem_threshold = spdk_max((int64_t)shared_resource->io_outstanding / 2, 5213 (int64_t)shared_resource->io_outstanding - NOMEM_THRESHOLD_COUNT); 5214 return; 5215 } 5216 5217 if (spdk_unlikely(!TAILQ_EMPTY(&shared_resource->nomem_io))) { 5218 bdev_ch_retry_io(bdev_ch); 5219 } 5220 } 5221 5222 bdev_io_complete(bdev_io); 5223 } 5224 5225 void 5226 spdk_bdev_io_complete_scsi_status(struct spdk_bdev_io *bdev_io, enum spdk_scsi_status sc, 5227 enum spdk_scsi_sense sk, uint8_t asc, uint8_t ascq) 5228 { 5229 if (sc == SPDK_SCSI_STATUS_GOOD) { 5230 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; 5231 } else { 5232 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SCSI_ERROR; 5233 bdev_io->internal.error.scsi.sc = sc; 5234 bdev_io->internal.error.scsi.sk = sk; 5235 bdev_io->internal.error.scsi.asc = asc; 5236 bdev_io->internal.error.scsi.ascq = ascq; 5237 } 5238 5239 spdk_bdev_io_complete(bdev_io, bdev_io->internal.status); 5240 } 5241 5242 void 5243 spdk_bdev_io_get_scsi_status(const struct spdk_bdev_io *bdev_io, 5244 int *sc, int *sk, int *asc, int *ascq) 5245 { 5246 assert(sc != NULL); 5247 assert(sk != NULL); 5248 assert(asc != NULL); 5249 assert(ascq != NULL); 5250 5251 switch (bdev_io->internal.status) { 5252 case SPDK_BDEV_IO_STATUS_SUCCESS: 5253 *sc = SPDK_SCSI_STATUS_GOOD; 5254 *sk = SPDK_SCSI_SENSE_NO_SENSE; 5255 *asc = SPDK_SCSI_ASC_NO_ADDITIONAL_SENSE; 5256 *ascq = SPDK_SCSI_ASCQ_CAUSE_NOT_REPORTABLE; 5257 break; 5258 case SPDK_BDEV_IO_STATUS_NVME_ERROR: 5259 spdk_scsi_nvme_translate(bdev_io, sc, sk, asc, ascq); 5260 break; 5261 case SPDK_BDEV_IO_STATUS_SCSI_ERROR: 5262 *sc = bdev_io->internal.error.scsi.sc; 5263 *sk = bdev_io->internal.error.scsi.sk; 5264 *asc = bdev_io->internal.error.scsi.asc; 5265 *ascq = bdev_io->internal.error.scsi.ascq; 5266 break; 5267 default: 5268 *sc = SPDK_SCSI_STATUS_CHECK_CONDITION; 5269 *sk = SPDK_SCSI_SENSE_ABORTED_COMMAND; 5270 *asc = SPDK_SCSI_ASC_NO_ADDITIONAL_SENSE; 5271 *ascq = SPDK_SCSI_ASCQ_CAUSE_NOT_REPORTABLE; 5272 break; 5273 } 5274 } 5275 5276 void 5277 spdk_bdev_io_complete_aio_status(struct spdk_bdev_io *bdev_io, int aio_result) 5278 { 5279 if (aio_result == 0) { 5280 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; 5281 } else { 5282 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_AIO_ERROR; 5283 } 5284 5285 bdev_io->internal.error.aio_result = aio_result; 5286 5287 spdk_bdev_io_complete(bdev_io, bdev_io->internal.status); 5288 } 5289 5290 void 5291 spdk_bdev_io_get_aio_status(const struct spdk_bdev_io *bdev_io, int *aio_result) 5292 { 5293 assert(aio_result != NULL); 5294 5295 if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_AIO_ERROR) { 5296 *aio_result = bdev_io->internal.error.aio_result; 5297 } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) { 5298 *aio_result = 0; 5299 } else { 5300 *aio_result = -EIO; 5301 } 5302 } 5303 5304 void 5305 spdk_bdev_io_complete_nvme_status(struct spdk_bdev_io *bdev_io, uint32_t cdw0, int sct, int sc) 5306 { 5307 if (sct == SPDK_NVME_SCT_GENERIC && sc == SPDK_NVME_SC_SUCCESS) { 5308 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; 5309 } else if (sct == SPDK_NVME_SCT_GENERIC && sc == SPDK_NVME_SC_ABORTED_BY_REQUEST) { 5310 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_ABORTED; 5311 } else { 5312 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_NVME_ERROR; 5313 } 5314 5315 bdev_io->internal.error.nvme.cdw0 = cdw0; 5316 bdev_io->internal.error.nvme.sct = sct; 5317 bdev_io->internal.error.nvme.sc = sc; 5318 5319 spdk_bdev_io_complete(bdev_io, bdev_io->internal.status); 5320 } 5321 5322 void 5323 spdk_bdev_io_get_nvme_status(const struct spdk_bdev_io *bdev_io, uint32_t *cdw0, int *sct, int *sc) 5324 { 5325 assert(sct != NULL); 5326 assert(sc != NULL); 5327 assert(cdw0 != NULL); 5328 5329 if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_NVME_ERROR) { 5330 *sct = bdev_io->internal.error.nvme.sct; 5331 *sc = bdev_io->internal.error.nvme.sc; 5332 } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) { 5333 *sct = SPDK_NVME_SCT_GENERIC; 5334 *sc = SPDK_NVME_SC_SUCCESS; 5335 } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_ABORTED) { 5336 *sct = SPDK_NVME_SCT_GENERIC; 5337 *sc = SPDK_NVME_SC_ABORTED_BY_REQUEST; 5338 } else { 5339 *sct = SPDK_NVME_SCT_GENERIC; 5340 *sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 5341 } 5342 5343 *cdw0 = bdev_io->internal.error.nvme.cdw0; 5344 } 5345 5346 void 5347 spdk_bdev_io_get_nvme_fused_status(const struct spdk_bdev_io *bdev_io, uint32_t *cdw0, 5348 int *first_sct, int *first_sc, int *second_sct, int *second_sc) 5349 { 5350 assert(first_sct != NULL); 5351 assert(first_sc != NULL); 5352 assert(second_sct != NULL); 5353 assert(second_sc != NULL); 5354 assert(cdw0 != NULL); 5355 5356 if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_NVME_ERROR) { 5357 if (bdev_io->internal.error.nvme.sct == SPDK_NVME_SCT_MEDIA_ERROR && 5358 bdev_io->internal.error.nvme.sc == SPDK_NVME_SC_COMPARE_FAILURE) { 5359 *first_sct = bdev_io->internal.error.nvme.sct; 5360 *first_sc = bdev_io->internal.error.nvme.sc; 5361 *second_sct = SPDK_NVME_SCT_GENERIC; 5362 *second_sc = SPDK_NVME_SC_ABORTED_FAILED_FUSED; 5363 } else { 5364 *first_sct = SPDK_NVME_SCT_GENERIC; 5365 *first_sc = SPDK_NVME_SC_SUCCESS; 5366 *second_sct = bdev_io->internal.error.nvme.sct; 5367 *second_sc = bdev_io->internal.error.nvme.sc; 5368 } 5369 } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) { 5370 *first_sct = SPDK_NVME_SCT_GENERIC; 5371 *first_sc = SPDK_NVME_SC_SUCCESS; 5372 *second_sct = SPDK_NVME_SCT_GENERIC; 5373 *second_sc = SPDK_NVME_SC_SUCCESS; 5374 } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_FIRST_FUSED_FAILED) { 5375 *first_sct = SPDK_NVME_SCT_GENERIC; 5376 *first_sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 5377 *second_sct = SPDK_NVME_SCT_GENERIC; 5378 *second_sc = SPDK_NVME_SC_ABORTED_FAILED_FUSED; 5379 } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_MISCOMPARE) { 5380 *first_sct = SPDK_NVME_SCT_MEDIA_ERROR; 5381 *first_sc = SPDK_NVME_SC_COMPARE_FAILURE; 5382 *second_sct = SPDK_NVME_SCT_GENERIC; 5383 *second_sc = SPDK_NVME_SC_ABORTED_FAILED_FUSED; 5384 } else { 5385 *first_sct = SPDK_NVME_SCT_GENERIC; 5386 *first_sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 5387 *second_sct = SPDK_NVME_SCT_GENERIC; 5388 *second_sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; 5389 } 5390 5391 *cdw0 = bdev_io->internal.error.nvme.cdw0; 5392 } 5393 5394 struct spdk_thread * 5395 spdk_bdev_io_get_thread(struct spdk_bdev_io *bdev_io) 5396 { 5397 return spdk_io_channel_get_thread(bdev_io->internal.ch->channel); 5398 } 5399 5400 struct spdk_io_channel * 5401 spdk_bdev_io_get_io_channel(struct spdk_bdev_io *bdev_io) 5402 { 5403 return bdev_io->internal.ch->channel; 5404 } 5405 5406 static int 5407 bdev_init(struct spdk_bdev *bdev) 5408 { 5409 char *bdev_name; 5410 5411 assert(bdev->module != NULL); 5412 5413 if (!bdev->name) { 5414 SPDK_ERRLOG("Bdev name is NULL\n"); 5415 return -EINVAL; 5416 } 5417 5418 if (!strlen(bdev->name)) { 5419 SPDK_ERRLOG("Bdev name must not be an empty string\n"); 5420 return -EINVAL; 5421 } 5422 5423 if (spdk_bdev_get_by_name(bdev->name)) { 5424 SPDK_ERRLOG("Bdev name:%s already exists\n", bdev->name); 5425 return -EEXIST; 5426 } 5427 5428 /* Users often register their own I/O devices using the bdev name. In 5429 * order to avoid conflicts, prepend bdev_. */ 5430 bdev_name = spdk_sprintf_alloc("bdev_%s", bdev->name); 5431 if (!bdev_name) { 5432 SPDK_ERRLOG("Unable to allocate memory for internal bdev name.\n"); 5433 return -ENOMEM; 5434 } 5435 5436 bdev->internal.status = SPDK_BDEV_STATUS_READY; 5437 bdev->internal.measured_queue_depth = UINT64_MAX; 5438 bdev->internal.claim_module = NULL; 5439 bdev->internal.qd_poller = NULL; 5440 bdev->internal.qos = NULL; 5441 5442 /* If the user didn't specify a uuid, generate one. */ 5443 if (spdk_mem_all_zero(&bdev->uuid, sizeof(bdev->uuid))) { 5444 spdk_uuid_generate(&bdev->uuid); 5445 } 5446 5447 if (spdk_bdev_get_buf_align(bdev) > 1) { 5448 if (bdev->split_on_optimal_io_boundary) { 5449 bdev->optimal_io_boundary = spdk_min(bdev->optimal_io_boundary, 5450 SPDK_BDEV_LARGE_BUF_MAX_SIZE / bdev->blocklen); 5451 } else { 5452 bdev->split_on_optimal_io_boundary = true; 5453 bdev->optimal_io_boundary = SPDK_BDEV_LARGE_BUF_MAX_SIZE / bdev->blocklen; 5454 } 5455 } 5456 5457 /* If the user didn't specify a write unit size, set it to one. */ 5458 if (bdev->write_unit_size == 0) { 5459 bdev->write_unit_size = 1; 5460 } 5461 5462 /* Set ACWU value to 1 if bdev module did not set it (does not support it natively) */ 5463 if (bdev->acwu == 0) { 5464 bdev->acwu = 1; 5465 } 5466 5467 TAILQ_INIT(&bdev->internal.open_descs); 5468 TAILQ_INIT(&bdev->internal.locked_ranges); 5469 TAILQ_INIT(&bdev->internal.pending_locked_ranges); 5470 5471 TAILQ_INIT(&bdev->aliases); 5472 5473 bdev->internal.reset_in_progress = NULL; 5474 5475 spdk_io_device_register(__bdev_to_io_dev(bdev), 5476 bdev_channel_create, bdev_channel_destroy, 5477 sizeof(struct spdk_bdev_channel), 5478 bdev_name); 5479 5480 free(bdev_name); 5481 5482 pthread_mutex_init(&bdev->internal.mutex, NULL); 5483 return 0; 5484 } 5485 5486 static void 5487 bdev_destroy_cb(void *io_device) 5488 { 5489 int rc; 5490 struct spdk_bdev *bdev; 5491 spdk_bdev_unregister_cb cb_fn; 5492 void *cb_arg; 5493 5494 bdev = __bdev_from_io_dev(io_device); 5495 cb_fn = bdev->internal.unregister_cb; 5496 cb_arg = bdev->internal.unregister_ctx; 5497 5498 pthread_mutex_destroy(&bdev->internal.mutex); 5499 free(bdev->internal.qos); 5500 5501 rc = bdev->fn_table->destruct(bdev->ctxt); 5502 if (rc < 0) { 5503 SPDK_ERRLOG("destruct failed\n"); 5504 } 5505 if (rc <= 0 && cb_fn != NULL) { 5506 cb_fn(cb_arg, rc); 5507 } 5508 } 5509 5510 static void 5511 bdev_start_finished(void *arg) 5512 { 5513 struct spdk_bdev *bdev = arg; 5514 5515 spdk_notify_send("bdev_register", spdk_bdev_get_name(bdev)); 5516 } 5517 5518 static void 5519 bdev_start(struct spdk_bdev *bdev) 5520 { 5521 SPDK_DEBUGLOG(bdev, "Inserting bdev %s into list\n", bdev->name); 5522 TAILQ_INSERT_TAIL(&g_bdev_mgr.bdevs, bdev, internal.link); 5523 5524 /* Examine configuration before initializing I/O */ 5525 bdev_examine(bdev); 5526 5527 spdk_bdev_wait_for_examine(bdev_start_finished, bdev); 5528 } 5529 5530 int 5531 spdk_bdev_register(struct spdk_bdev *bdev) 5532 { 5533 int rc = bdev_init(bdev); 5534 5535 if (rc == 0) { 5536 bdev_start(bdev); 5537 } 5538 5539 return rc; 5540 } 5541 5542 void 5543 spdk_bdev_destruct_done(struct spdk_bdev *bdev, int bdeverrno) 5544 { 5545 if (bdev->internal.unregister_cb != NULL) { 5546 bdev->internal.unregister_cb(bdev->internal.unregister_ctx, bdeverrno); 5547 } 5548 } 5549 5550 static void 5551 _remove_notify(void *arg) 5552 { 5553 struct spdk_bdev_desc *desc = arg; 5554 5555 pthread_mutex_lock(&desc->mutex); 5556 desc->refs--; 5557 5558 if (!desc->closed) { 5559 pthread_mutex_unlock(&desc->mutex); 5560 desc->callback.event_fn(SPDK_BDEV_EVENT_REMOVE, desc->bdev, desc->callback.ctx); 5561 return; 5562 } else if (0 == desc->refs) { 5563 /* This descriptor was closed after this remove_notify message was sent. 5564 * spdk_bdev_close() could not free the descriptor since this message was 5565 * in flight, so we free it now using bdev_desc_free(). 5566 */ 5567 pthread_mutex_unlock(&desc->mutex); 5568 bdev_desc_free(desc); 5569 return; 5570 } 5571 pthread_mutex_unlock(&desc->mutex); 5572 } 5573 5574 /* Must be called while holding bdev->internal.mutex. 5575 * returns: 0 - bdev removed and ready to be destructed. 5576 * -EBUSY - bdev can't be destructed yet. */ 5577 static int 5578 bdev_unregister_unsafe(struct spdk_bdev *bdev) 5579 { 5580 struct spdk_bdev_desc *desc, *tmp; 5581 int rc = 0; 5582 5583 /* Notify each descriptor about hotremoval */ 5584 TAILQ_FOREACH_SAFE(desc, &bdev->internal.open_descs, link, tmp) { 5585 rc = -EBUSY; 5586 pthread_mutex_lock(&desc->mutex); 5587 /* 5588 * Defer invocation of the event_cb to a separate message that will 5589 * run later on its thread. This ensures this context unwinds and 5590 * we don't recursively unregister this bdev again if the event_cb 5591 * immediately closes its descriptor. 5592 */ 5593 desc->refs++; 5594 spdk_thread_send_msg(desc->thread, _remove_notify, desc); 5595 pthread_mutex_unlock(&desc->mutex); 5596 } 5597 5598 /* If there are no descriptors, proceed removing the bdev */ 5599 if (rc == 0) { 5600 TAILQ_REMOVE(&g_bdev_mgr.bdevs, bdev, internal.link); 5601 SPDK_DEBUGLOG(bdev, "Removing bdev %s from list done\n", bdev->name); 5602 spdk_notify_send("bdev_unregister", spdk_bdev_get_name(bdev)); 5603 } 5604 5605 return rc; 5606 } 5607 5608 void 5609 spdk_bdev_unregister(struct spdk_bdev *bdev, spdk_bdev_unregister_cb cb_fn, void *cb_arg) 5610 { 5611 struct spdk_thread *thread; 5612 int rc; 5613 5614 SPDK_DEBUGLOG(bdev, "Removing bdev %s from list\n", bdev->name); 5615 5616 thread = spdk_get_thread(); 5617 if (!thread) { 5618 /* The user called this from a non-SPDK thread. */ 5619 if (cb_fn != NULL) { 5620 cb_fn(cb_arg, -ENOTSUP); 5621 } 5622 return; 5623 } 5624 5625 pthread_mutex_lock(&g_bdev_mgr.mutex); 5626 if (bdev->internal.status == SPDK_BDEV_STATUS_REMOVING) { 5627 pthread_mutex_unlock(&g_bdev_mgr.mutex); 5628 if (cb_fn) { 5629 cb_fn(cb_arg, -EBUSY); 5630 } 5631 return; 5632 } 5633 5634 pthread_mutex_lock(&bdev->internal.mutex); 5635 bdev->internal.status = SPDK_BDEV_STATUS_REMOVING; 5636 bdev->internal.unregister_cb = cb_fn; 5637 bdev->internal.unregister_ctx = cb_arg; 5638 5639 /* Call under lock. */ 5640 rc = bdev_unregister_unsafe(bdev); 5641 pthread_mutex_unlock(&bdev->internal.mutex); 5642 pthread_mutex_unlock(&g_bdev_mgr.mutex); 5643 5644 if (rc == 0) { 5645 spdk_io_device_unregister(__bdev_to_io_dev(bdev), bdev_destroy_cb); 5646 } 5647 } 5648 5649 static int 5650 bdev_start_qos(struct spdk_bdev *bdev) 5651 { 5652 struct set_qos_limit_ctx *ctx; 5653 5654 /* Enable QoS */ 5655 if (bdev->internal.qos && bdev->internal.qos->thread == NULL) { 5656 ctx = calloc(1, sizeof(*ctx)); 5657 if (ctx == NULL) { 5658 SPDK_ERRLOG("Failed to allocate memory for QoS context\n"); 5659 return -ENOMEM; 5660 } 5661 ctx->bdev = bdev; 5662 spdk_for_each_channel(__bdev_to_io_dev(bdev), 5663 bdev_enable_qos_msg, ctx, 5664 bdev_enable_qos_done); 5665 } 5666 5667 return 0; 5668 } 5669 5670 static int 5671 bdev_open(struct spdk_bdev *bdev, bool write, struct spdk_bdev_desc *desc) 5672 { 5673 struct spdk_thread *thread; 5674 int rc = 0; 5675 5676 thread = spdk_get_thread(); 5677 if (!thread) { 5678 SPDK_ERRLOG("Cannot open bdev from non-SPDK thread.\n"); 5679 return -ENOTSUP; 5680 } 5681 5682 SPDK_DEBUGLOG(bdev, "Opening descriptor %p for bdev %s on thread %p\n", desc, bdev->name, 5683 spdk_get_thread()); 5684 5685 desc->bdev = bdev; 5686 desc->thread = thread; 5687 desc->write = write; 5688 5689 pthread_mutex_lock(&bdev->internal.mutex); 5690 if (bdev->internal.status == SPDK_BDEV_STATUS_REMOVING) { 5691 pthread_mutex_unlock(&bdev->internal.mutex); 5692 return -ENODEV; 5693 } 5694 5695 if (write && bdev->internal.claim_module) { 5696 SPDK_ERRLOG("Could not open %s - %s module already claimed it\n", 5697 bdev->name, bdev->internal.claim_module->name); 5698 pthread_mutex_unlock(&bdev->internal.mutex); 5699 return -EPERM; 5700 } 5701 5702 rc = bdev_start_qos(bdev); 5703 if (rc != 0) { 5704 SPDK_ERRLOG("Failed to start QoS on bdev %s\n", bdev->name); 5705 pthread_mutex_unlock(&bdev->internal.mutex); 5706 return rc; 5707 } 5708 5709 TAILQ_INSERT_TAIL(&bdev->internal.open_descs, desc, link); 5710 5711 pthread_mutex_unlock(&bdev->internal.mutex); 5712 5713 return 0; 5714 } 5715 5716 int 5717 spdk_bdev_open_ext(const char *bdev_name, bool write, spdk_bdev_event_cb_t event_cb, 5718 void *event_ctx, struct spdk_bdev_desc **_desc) 5719 { 5720 struct spdk_bdev_desc *desc; 5721 struct spdk_bdev *bdev; 5722 unsigned int event_id; 5723 int rc; 5724 5725 if (event_cb == NULL) { 5726 SPDK_ERRLOG("Missing event callback function\n"); 5727 return -EINVAL; 5728 } 5729 5730 pthread_mutex_lock(&g_bdev_mgr.mutex); 5731 5732 bdev = spdk_bdev_get_by_name(bdev_name); 5733 5734 if (bdev == NULL) { 5735 SPDK_NOTICELOG("Currently unable to find bdev with name: %s\n", bdev_name); 5736 pthread_mutex_unlock(&g_bdev_mgr.mutex); 5737 return -ENODEV; 5738 } 5739 5740 desc = calloc(1, sizeof(*desc)); 5741 if (desc == NULL) { 5742 SPDK_ERRLOG("Failed to allocate memory for bdev descriptor\n"); 5743 pthread_mutex_unlock(&g_bdev_mgr.mutex); 5744 return -ENOMEM; 5745 } 5746 5747 TAILQ_INIT(&desc->pending_media_events); 5748 TAILQ_INIT(&desc->free_media_events); 5749 5750 desc->callback.event_fn = event_cb; 5751 desc->callback.ctx = event_ctx; 5752 pthread_mutex_init(&desc->mutex, NULL); 5753 5754 if (bdev->media_events) { 5755 desc->media_events_buffer = calloc(MEDIA_EVENT_POOL_SIZE, 5756 sizeof(*desc->media_events_buffer)); 5757 if (desc->media_events_buffer == NULL) { 5758 SPDK_ERRLOG("Failed to initialize media event pool\n"); 5759 bdev_desc_free(desc); 5760 pthread_mutex_unlock(&g_bdev_mgr.mutex); 5761 return -ENOMEM; 5762 } 5763 5764 for (event_id = 0; event_id < MEDIA_EVENT_POOL_SIZE; ++event_id) { 5765 TAILQ_INSERT_TAIL(&desc->free_media_events, 5766 &desc->media_events_buffer[event_id], tailq); 5767 } 5768 } 5769 5770 rc = bdev_open(bdev, write, desc); 5771 if (rc != 0) { 5772 bdev_desc_free(desc); 5773 desc = NULL; 5774 } 5775 5776 *_desc = desc; 5777 5778 pthread_mutex_unlock(&g_bdev_mgr.mutex); 5779 5780 return rc; 5781 } 5782 5783 void 5784 spdk_bdev_close(struct spdk_bdev_desc *desc) 5785 { 5786 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 5787 int rc; 5788 5789 SPDK_DEBUGLOG(bdev, "Closing descriptor %p for bdev %s on thread %p\n", desc, bdev->name, 5790 spdk_get_thread()); 5791 5792 assert(desc->thread == spdk_get_thread()); 5793 5794 spdk_poller_unregister(&desc->io_timeout_poller); 5795 5796 pthread_mutex_lock(&bdev->internal.mutex); 5797 pthread_mutex_lock(&desc->mutex); 5798 5799 TAILQ_REMOVE(&bdev->internal.open_descs, desc, link); 5800 5801 desc->closed = true; 5802 5803 if (0 == desc->refs) { 5804 pthread_mutex_unlock(&desc->mutex); 5805 bdev_desc_free(desc); 5806 } else { 5807 pthread_mutex_unlock(&desc->mutex); 5808 } 5809 5810 /* If no more descriptors, kill QoS channel */ 5811 if (bdev->internal.qos && TAILQ_EMPTY(&bdev->internal.open_descs)) { 5812 SPDK_DEBUGLOG(bdev, "Closed last descriptor for bdev %s on thread %p. Stopping QoS.\n", 5813 bdev->name, spdk_get_thread()); 5814 5815 if (bdev_qos_destroy(bdev)) { 5816 /* There isn't anything we can do to recover here. Just let the 5817 * old QoS poller keep running. The QoS handling won't change 5818 * cores when the user allocates a new channel, but it won't break. */ 5819 SPDK_ERRLOG("Unable to shut down QoS poller. It will continue running on the current thread.\n"); 5820 } 5821 } 5822 5823 spdk_bdev_set_qd_sampling_period(bdev, 0); 5824 5825 if (bdev->internal.status == SPDK_BDEV_STATUS_REMOVING && TAILQ_EMPTY(&bdev->internal.open_descs)) { 5826 rc = bdev_unregister_unsafe(bdev); 5827 pthread_mutex_unlock(&bdev->internal.mutex); 5828 5829 if (rc == 0) { 5830 spdk_io_device_unregister(__bdev_to_io_dev(bdev), bdev_destroy_cb); 5831 } 5832 } else { 5833 pthread_mutex_unlock(&bdev->internal.mutex); 5834 } 5835 } 5836 5837 int 5838 spdk_bdev_module_claim_bdev(struct spdk_bdev *bdev, struct spdk_bdev_desc *desc, 5839 struct spdk_bdev_module *module) 5840 { 5841 if (bdev->internal.claim_module != NULL) { 5842 SPDK_ERRLOG("bdev %s already claimed by module %s\n", bdev->name, 5843 bdev->internal.claim_module->name); 5844 return -EPERM; 5845 } 5846 5847 if (desc && !desc->write) { 5848 desc->write = true; 5849 } 5850 5851 bdev->internal.claim_module = module; 5852 return 0; 5853 } 5854 5855 void 5856 spdk_bdev_module_release_bdev(struct spdk_bdev *bdev) 5857 { 5858 assert(bdev->internal.claim_module != NULL); 5859 bdev->internal.claim_module = NULL; 5860 } 5861 5862 struct spdk_bdev * 5863 spdk_bdev_desc_get_bdev(struct spdk_bdev_desc *desc) 5864 { 5865 assert(desc != NULL); 5866 return desc->bdev; 5867 } 5868 5869 void 5870 spdk_bdev_io_get_iovec(struct spdk_bdev_io *bdev_io, struct iovec **iovp, int *iovcntp) 5871 { 5872 struct iovec *iovs; 5873 int iovcnt; 5874 5875 if (bdev_io == NULL) { 5876 return; 5877 } 5878 5879 switch (bdev_io->type) { 5880 case SPDK_BDEV_IO_TYPE_READ: 5881 case SPDK_BDEV_IO_TYPE_WRITE: 5882 case SPDK_BDEV_IO_TYPE_ZCOPY: 5883 iovs = bdev_io->u.bdev.iovs; 5884 iovcnt = bdev_io->u.bdev.iovcnt; 5885 break; 5886 default: 5887 iovs = NULL; 5888 iovcnt = 0; 5889 break; 5890 } 5891 5892 if (iovp) { 5893 *iovp = iovs; 5894 } 5895 if (iovcntp) { 5896 *iovcntp = iovcnt; 5897 } 5898 } 5899 5900 void * 5901 spdk_bdev_io_get_md_buf(struct spdk_bdev_io *bdev_io) 5902 { 5903 if (bdev_io == NULL) { 5904 return NULL; 5905 } 5906 5907 if (!spdk_bdev_is_md_separate(bdev_io->bdev)) { 5908 return NULL; 5909 } 5910 5911 if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ || 5912 bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) { 5913 return bdev_io->u.bdev.md_buf; 5914 } 5915 5916 return NULL; 5917 } 5918 5919 void * 5920 spdk_bdev_io_get_cb_arg(struct spdk_bdev_io *bdev_io) 5921 { 5922 if (bdev_io == NULL) { 5923 assert(false); 5924 return NULL; 5925 } 5926 5927 return bdev_io->internal.caller_ctx; 5928 } 5929 5930 void 5931 spdk_bdev_module_list_add(struct spdk_bdev_module *bdev_module) 5932 { 5933 5934 if (spdk_bdev_module_list_find(bdev_module->name)) { 5935 SPDK_ERRLOG("ERROR: module '%s' already registered.\n", bdev_module->name); 5936 assert(false); 5937 } 5938 5939 /* 5940 * Modules with examine callbacks must be initialized first, so they are 5941 * ready to handle examine callbacks from later modules that will 5942 * register physical bdevs. 5943 */ 5944 if (bdev_module->examine_config != NULL || bdev_module->examine_disk != NULL) { 5945 TAILQ_INSERT_HEAD(&g_bdev_mgr.bdev_modules, bdev_module, internal.tailq); 5946 } else { 5947 TAILQ_INSERT_TAIL(&g_bdev_mgr.bdev_modules, bdev_module, internal.tailq); 5948 } 5949 } 5950 5951 struct spdk_bdev_module * 5952 spdk_bdev_module_list_find(const char *name) 5953 { 5954 struct spdk_bdev_module *bdev_module; 5955 5956 TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, internal.tailq) { 5957 if (strcmp(name, bdev_module->name) == 0) { 5958 break; 5959 } 5960 } 5961 5962 return bdev_module; 5963 } 5964 5965 static void 5966 bdev_write_zero_buffer_next(void *_bdev_io) 5967 { 5968 struct spdk_bdev_io *bdev_io = _bdev_io; 5969 uint64_t num_bytes, num_blocks; 5970 void *md_buf = NULL; 5971 int rc; 5972 5973 num_bytes = spdk_min(_bdev_get_block_size_with_md(bdev_io->bdev) * 5974 bdev_io->u.bdev.split_remaining_num_blocks, 5975 ZERO_BUFFER_SIZE); 5976 num_blocks = num_bytes / _bdev_get_block_size_with_md(bdev_io->bdev); 5977 5978 if (spdk_bdev_is_md_separate(bdev_io->bdev)) { 5979 md_buf = (char *)g_bdev_mgr.zero_buffer + 5980 spdk_bdev_get_block_size(bdev_io->bdev) * num_blocks; 5981 } 5982 5983 rc = bdev_write_blocks_with_md(bdev_io->internal.desc, 5984 spdk_io_channel_from_ctx(bdev_io->internal.ch), 5985 g_bdev_mgr.zero_buffer, md_buf, 5986 bdev_io->u.bdev.split_current_offset_blocks, num_blocks, 5987 bdev_write_zero_buffer_done, bdev_io); 5988 if (rc == 0) { 5989 bdev_io->u.bdev.split_remaining_num_blocks -= num_blocks; 5990 bdev_io->u.bdev.split_current_offset_blocks += num_blocks; 5991 } else if (rc == -ENOMEM) { 5992 bdev_queue_io_wait_with_cb(bdev_io, bdev_write_zero_buffer_next); 5993 } else { 5994 bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 5995 bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); 5996 } 5997 } 5998 5999 static void 6000 bdev_write_zero_buffer_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) 6001 { 6002 struct spdk_bdev_io *parent_io = cb_arg; 6003 6004 spdk_bdev_free_io(bdev_io); 6005 6006 if (!success) { 6007 parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; 6008 parent_io->internal.cb(parent_io, false, parent_io->internal.caller_ctx); 6009 return; 6010 } 6011 6012 if (parent_io->u.bdev.split_remaining_num_blocks == 0) { 6013 parent_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; 6014 parent_io->internal.cb(parent_io, true, parent_io->internal.caller_ctx); 6015 return; 6016 } 6017 6018 bdev_write_zero_buffer_next(parent_io); 6019 } 6020 6021 static void 6022 bdev_set_qos_limit_done(struct set_qos_limit_ctx *ctx, int status) 6023 { 6024 pthread_mutex_lock(&ctx->bdev->internal.mutex); 6025 ctx->bdev->internal.qos_mod_in_progress = false; 6026 pthread_mutex_unlock(&ctx->bdev->internal.mutex); 6027 6028 if (ctx->cb_fn) { 6029 ctx->cb_fn(ctx->cb_arg, status); 6030 } 6031 free(ctx); 6032 } 6033 6034 static void 6035 bdev_disable_qos_done(void *cb_arg) 6036 { 6037 struct set_qos_limit_ctx *ctx = cb_arg; 6038 struct spdk_bdev *bdev = ctx->bdev; 6039 struct spdk_bdev_io *bdev_io; 6040 struct spdk_bdev_qos *qos; 6041 6042 pthread_mutex_lock(&bdev->internal.mutex); 6043 qos = bdev->internal.qos; 6044 bdev->internal.qos = NULL; 6045 pthread_mutex_unlock(&bdev->internal.mutex); 6046 6047 while (!TAILQ_EMPTY(&qos->queued)) { 6048 /* Send queued I/O back to their original thread for resubmission. */ 6049 bdev_io = TAILQ_FIRST(&qos->queued); 6050 TAILQ_REMOVE(&qos->queued, bdev_io, internal.link); 6051 6052 if (bdev_io->internal.io_submit_ch) { 6053 /* 6054 * Channel was changed when sending it to the QoS thread - change it back 6055 * before sending it back to the original thread. 6056 */ 6057 bdev_io->internal.ch = bdev_io->internal.io_submit_ch; 6058 bdev_io->internal.io_submit_ch = NULL; 6059 } 6060 6061 spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), 6062 _bdev_io_submit, bdev_io); 6063 } 6064 6065 if (qos->thread != NULL) { 6066 spdk_put_io_channel(spdk_io_channel_from_ctx(qos->ch)); 6067 spdk_poller_unregister(&qos->poller); 6068 } 6069 6070 free(qos); 6071 6072 bdev_set_qos_limit_done(ctx, 0); 6073 } 6074 6075 static void 6076 bdev_disable_qos_msg_done(struct spdk_io_channel_iter *i, int status) 6077 { 6078 void *io_device = spdk_io_channel_iter_get_io_device(i); 6079 struct spdk_bdev *bdev = __bdev_from_io_dev(io_device); 6080 struct set_qos_limit_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 6081 struct spdk_thread *thread; 6082 6083 pthread_mutex_lock(&bdev->internal.mutex); 6084 thread = bdev->internal.qos->thread; 6085 pthread_mutex_unlock(&bdev->internal.mutex); 6086 6087 if (thread != NULL) { 6088 spdk_thread_send_msg(thread, bdev_disable_qos_done, ctx); 6089 } else { 6090 bdev_disable_qos_done(ctx); 6091 } 6092 } 6093 6094 static void 6095 bdev_disable_qos_msg(struct spdk_io_channel_iter *i) 6096 { 6097 struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i); 6098 struct spdk_bdev_channel *bdev_ch = spdk_io_channel_get_ctx(ch); 6099 6100 bdev_ch->flags &= ~BDEV_CH_QOS_ENABLED; 6101 6102 spdk_for_each_channel_continue(i, 0); 6103 } 6104 6105 static void 6106 bdev_update_qos_rate_limit_msg(void *cb_arg) 6107 { 6108 struct set_qos_limit_ctx *ctx = cb_arg; 6109 struct spdk_bdev *bdev = ctx->bdev; 6110 6111 pthread_mutex_lock(&bdev->internal.mutex); 6112 bdev_qos_update_max_quota_per_timeslice(bdev->internal.qos); 6113 pthread_mutex_unlock(&bdev->internal.mutex); 6114 6115 bdev_set_qos_limit_done(ctx, 0); 6116 } 6117 6118 static void 6119 bdev_enable_qos_msg(struct spdk_io_channel_iter *i) 6120 { 6121 void *io_device = spdk_io_channel_iter_get_io_device(i); 6122 struct spdk_bdev *bdev = __bdev_from_io_dev(io_device); 6123 struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i); 6124 struct spdk_bdev_channel *bdev_ch = spdk_io_channel_get_ctx(ch); 6125 6126 pthread_mutex_lock(&bdev->internal.mutex); 6127 bdev_enable_qos(bdev, bdev_ch); 6128 pthread_mutex_unlock(&bdev->internal.mutex); 6129 spdk_for_each_channel_continue(i, 0); 6130 } 6131 6132 static void 6133 bdev_enable_qos_done(struct spdk_io_channel_iter *i, int status) 6134 { 6135 struct set_qos_limit_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 6136 6137 bdev_set_qos_limit_done(ctx, status); 6138 } 6139 6140 static void 6141 bdev_set_qos_rate_limits(struct spdk_bdev *bdev, uint64_t *limits) 6142 { 6143 int i; 6144 6145 assert(bdev->internal.qos != NULL); 6146 6147 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 6148 if (limits[i] != SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) { 6149 bdev->internal.qos->rate_limits[i].limit = limits[i]; 6150 6151 if (limits[i] == 0) { 6152 bdev->internal.qos->rate_limits[i].limit = 6153 SPDK_BDEV_QOS_LIMIT_NOT_DEFINED; 6154 } 6155 } 6156 } 6157 } 6158 6159 void 6160 spdk_bdev_set_qos_rate_limits(struct spdk_bdev *bdev, uint64_t *limits, 6161 void (*cb_fn)(void *cb_arg, int status), void *cb_arg) 6162 { 6163 struct set_qos_limit_ctx *ctx; 6164 uint32_t limit_set_complement; 6165 uint64_t min_limit_per_sec; 6166 int i; 6167 bool disable_rate_limit = true; 6168 6169 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 6170 if (limits[i] == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) { 6171 continue; 6172 } 6173 6174 if (limits[i] > 0) { 6175 disable_rate_limit = false; 6176 } 6177 6178 if (bdev_qos_is_iops_rate_limit(i) == true) { 6179 min_limit_per_sec = SPDK_BDEV_QOS_MIN_IOS_PER_SEC; 6180 } else { 6181 /* Change from megabyte to byte rate limit */ 6182 limits[i] = limits[i] * 1024 * 1024; 6183 min_limit_per_sec = SPDK_BDEV_QOS_MIN_BYTES_PER_SEC; 6184 } 6185 6186 limit_set_complement = limits[i] % min_limit_per_sec; 6187 if (limit_set_complement) { 6188 SPDK_ERRLOG("Requested rate limit %" PRIu64 " is not a multiple of %" PRIu64 "\n", 6189 limits[i], min_limit_per_sec); 6190 limits[i] += min_limit_per_sec - limit_set_complement; 6191 SPDK_ERRLOG("Round up the rate limit to %" PRIu64 "\n", limits[i]); 6192 } 6193 } 6194 6195 ctx = calloc(1, sizeof(*ctx)); 6196 if (ctx == NULL) { 6197 cb_fn(cb_arg, -ENOMEM); 6198 return; 6199 } 6200 6201 ctx->cb_fn = cb_fn; 6202 ctx->cb_arg = cb_arg; 6203 ctx->bdev = bdev; 6204 6205 pthread_mutex_lock(&bdev->internal.mutex); 6206 if (bdev->internal.qos_mod_in_progress) { 6207 pthread_mutex_unlock(&bdev->internal.mutex); 6208 free(ctx); 6209 cb_fn(cb_arg, -EAGAIN); 6210 return; 6211 } 6212 bdev->internal.qos_mod_in_progress = true; 6213 6214 if (disable_rate_limit == true && bdev->internal.qos) { 6215 for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { 6216 if (limits[i] == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED && 6217 (bdev->internal.qos->rate_limits[i].limit > 0 && 6218 bdev->internal.qos->rate_limits[i].limit != 6219 SPDK_BDEV_QOS_LIMIT_NOT_DEFINED)) { 6220 disable_rate_limit = false; 6221 break; 6222 } 6223 } 6224 } 6225 6226 if (disable_rate_limit == false) { 6227 if (bdev->internal.qos == NULL) { 6228 bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos)); 6229 if (!bdev->internal.qos) { 6230 pthread_mutex_unlock(&bdev->internal.mutex); 6231 SPDK_ERRLOG("Unable to allocate memory for QoS tracking\n"); 6232 bdev_set_qos_limit_done(ctx, -ENOMEM); 6233 return; 6234 } 6235 } 6236 6237 if (bdev->internal.qos->thread == NULL) { 6238 /* Enabling */ 6239 bdev_set_qos_rate_limits(bdev, limits); 6240 6241 spdk_for_each_channel(__bdev_to_io_dev(bdev), 6242 bdev_enable_qos_msg, ctx, 6243 bdev_enable_qos_done); 6244 } else { 6245 /* Updating */ 6246 bdev_set_qos_rate_limits(bdev, limits); 6247 6248 spdk_thread_send_msg(bdev->internal.qos->thread, 6249 bdev_update_qos_rate_limit_msg, ctx); 6250 } 6251 } else { 6252 if (bdev->internal.qos != NULL) { 6253 bdev_set_qos_rate_limits(bdev, limits); 6254 6255 /* Disabling */ 6256 spdk_for_each_channel(__bdev_to_io_dev(bdev), 6257 bdev_disable_qos_msg, ctx, 6258 bdev_disable_qos_msg_done); 6259 } else { 6260 pthread_mutex_unlock(&bdev->internal.mutex); 6261 bdev_set_qos_limit_done(ctx, 0); 6262 return; 6263 } 6264 } 6265 6266 pthread_mutex_unlock(&bdev->internal.mutex); 6267 } 6268 6269 struct spdk_bdev_histogram_ctx { 6270 spdk_bdev_histogram_status_cb cb_fn; 6271 void *cb_arg; 6272 struct spdk_bdev *bdev; 6273 int status; 6274 }; 6275 6276 static void 6277 bdev_histogram_disable_channel_cb(struct spdk_io_channel_iter *i, int status) 6278 { 6279 struct spdk_bdev_histogram_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 6280 6281 pthread_mutex_lock(&ctx->bdev->internal.mutex); 6282 ctx->bdev->internal.histogram_in_progress = false; 6283 pthread_mutex_unlock(&ctx->bdev->internal.mutex); 6284 ctx->cb_fn(ctx->cb_arg, ctx->status); 6285 free(ctx); 6286 } 6287 6288 static void 6289 bdev_histogram_disable_channel(struct spdk_io_channel_iter *i) 6290 { 6291 struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); 6292 struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); 6293 6294 if (ch->histogram != NULL) { 6295 spdk_histogram_data_free(ch->histogram); 6296 ch->histogram = NULL; 6297 } 6298 spdk_for_each_channel_continue(i, 0); 6299 } 6300 6301 static void 6302 bdev_histogram_enable_channel_cb(struct spdk_io_channel_iter *i, int status) 6303 { 6304 struct spdk_bdev_histogram_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 6305 6306 if (status != 0) { 6307 ctx->status = status; 6308 ctx->bdev->internal.histogram_enabled = false; 6309 spdk_for_each_channel(__bdev_to_io_dev(ctx->bdev), bdev_histogram_disable_channel, ctx, 6310 bdev_histogram_disable_channel_cb); 6311 } else { 6312 pthread_mutex_lock(&ctx->bdev->internal.mutex); 6313 ctx->bdev->internal.histogram_in_progress = false; 6314 pthread_mutex_unlock(&ctx->bdev->internal.mutex); 6315 ctx->cb_fn(ctx->cb_arg, ctx->status); 6316 free(ctx); 6317 } 6318 } 6319 6320 static void 6321 bdev_histogram_enable_channel(struct spdk_io_channel_iter *i) 6322 { 6323 struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); 6324 struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); 6325 int status = 0; 6326 6327 if (ch->histogram == NULL) { 6328 ch->histogram = spdk_histogram_data_alloc(); 6329 if (ch->histogram == NULL) { 6330 status = -ENOMEM; 6331 } 6332 } 6333 6334 spdk_for_each_channel_continue(i, status); 6335 } 6336 6337 void 6338 spdk_bdev_histogram_enable(struct spdk_bdev *bdev, spdk_bdev_histogram_status_cb cb_fn, 6339 void *cb_arg, bool enable) 6340 { 6341 struct spdk_bdev_histogram_ctx *ctx; 6342 6343 ctx = calloc(1, sizeof(struct spdk_bdev_histogram_ctx)); 6344 if (ctx == NULL) { 6345 cb_fn(cb_arg, -ENOMEM); 6346 return; 6347 } 6348 6349 ctx->bdev = bdev; 6350 ctx->status = 0; 6351 ctx->cb_fn = cb_fn; 6352 ctx->cb_arg = cb_arg; 6353 6354 pthread_mutex_lock(&bdev->internal.mutex); 6355 if (bdev->internal.histogram_in_progress) { 6356 pthread_mutex_unlock(&bdev->internal.mutex); 6357 free(ctx); 6358 cb_fn(cb_arg, -EAGAIN); 6359 return; 6360 } 6361 6362 bdev->internal.histogram_in_progress = true; 6363 pthread_mutex_unlock(&bdev->internal.mutex); 6364 6365 bdev->internal.histogram_enabled = enable; 6366 6367 if (enable) { 6368 /* Allocate histogram for each channel */ 6369 spdk_for_each_channel(__bdev_to_io_dev(bdev), bdev_histogram_enable_channel, ctx, 6370 bdev_histogram_enable_channel_cb); 6371 } else { 6372 spdk_for_each_channel(__bdev_to_io_dev(bdev), bdev_histogram_disable_channel, ctx, 6373 bdev_histogram_disable_channel_cb); 6374 } 6375 } 6376 6377 struct spdk_bdev_histogram_data_ctx { 6378 spdk_bdev_histogram_data_cb cb_fn; 6379 void *cb_arg; 6380 struct spdk_bdev *bdev; 6381 /** merged histogram data from all channels */ 6382 struct spdk_histogram_data *histogram; 6383 }; 6384 6385 static void 6386 bdev_histogram_get_channel_cb(struct spdk_io_channel_iter *i, int status) 6387 { 6388 struct spdk_bdev_histogram_data_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 6389 6390 ctx->cb_fn(ctx->cb_arg, status, ctx->histogram); 6391 free(ctx); 6392 } 6393 6394 static void 6395 bdev_histogram_get_channel(struct spdk_io_channel_iter *i) 6396 { 6397 struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); 6398 struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); 6399 struct spdk_bdev_histogram_data_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 6400 int status = 0; 6401 6402 if (ch->histogram == NULL) { 6403 status = -EFAULT; 6404 } else { 6405 spdk_histogram_data_merge(ctx->histogram, ch->histogram); 6406 } 6407 6408 spdk_for_each_channel_continue(i, status); 6409 } 6410 6411 void 6412 spdk_bdev_histogram_get(struct spdk_bdev *bdev, struct spdk_histogram_data *histogram, 6413 spdk_bdev_histogram_data_cb cb_fn, 6414 void *cb_arg) 6415 { 6416 struct spdk_bdev_histogram_data_ctx *ctx; 6417 6418 ctx = calloc(1, sizeof(struct spdk_bdev_histogram_data_ctx)); 6419 if (ctx == NULL) { 6420 cb_fn(cb_arg, -ENOMEM, NULL); 6421 return; 6422 } 6423 6424 ctx->bdev = bdev; 6425 ctx->cb_fn = cb_fn; 6426 ctx->cb_arg = cb_arg; 6427 6428 ctx->histogram = histogram; 6429 6430 spdk_for_each_channel(__bdev_to_io_dev(bdev), bdev_histogram_get_channel, ctx, 6431 bdev_histogram_get_channel_cb); 6432 } 6433 6434 size_t 6435 spdk_bdev_get_media_events(struct spdk_bdev_desc *desc, struct spdk_bdev_media_event *events, 6436 size_t max_events) 6437 { 6438 struct media_event_entry *entry; 6439 size_t num_events = 0; 6440 6441 for (; num_events < max_events; ++num_events) { 6442 entry = TAILQ_FIRST(&desc->pending_media_events); 6443 if (entry == NULL) { 6444 break; 6445 } 6446 6447 events[num_events] = entry->event; 6448 TAILQ_REMOVE(&desc->pending_media_events, entry, tailq); 6449 TAILQ_INSERT_TAIL(&desc->free_media_events, entry, tailq); 6450 } 6451 6452 return num_events; 6453 } 6454 6455 int 6456 spdk_bdev_push_media_events(struct spdk_bdev *bdev, const struct spdk_bdev_media_event *events, 6457 size_t num_events) 6458 { 6459 struct spdk_bdev_desc *desc; 6460 struct media_event_entry *entry; 6461 size_t event_id; 6462 int rc = 0; 6463 6464 assert(bdev->media_events); 6465 6466 pthread_mutex_lock(&bdev->internal.mutex); 6467 TAILQ_FOREACH(desc, &bdev->internal.open_descs, link) { 6468 if (desc->write) { 6469 break; 6470 } 6471 } 6472 6473 if (desc == NULL || desc->media_events_buffer == NULL) { 6474 rc = -ENODEV; 6475 goto out; 6476 } 6477 6478 for (event_id = 0; event_id < num_events; ++event_id) { 6479 entry = TAILQ_FIRST(&desc->free_media_events); 6480 if (entry == NULL) { 6481 break; 6482 } 6483 6484 TAILQ_REMOVE(&desc->free_media_events, entry, tailq); 6485 TAILQ_INSERT_TAIL(&desc->pending_media_events, entry, tailq); 6486 entry->event = events[event_id]; 6487 } 6488 6489 rc = event_id; 6490 out: 6491 pthread_mutex_unlock(&bdev->internal.mutex); 6492 return rc; 6493 } 6494 6495 void 6496 spdk_bdev_notify_media_management(struct spdk_bdev *bdev) 6497 { 6498 struct spdk_bdev_desc *desc; 6499 6500 pthread_mutex_lock(&bdev->internal.mutex); 6501 TAILQ_FOREACH(desc, &bdev->internal.open_descs, link) { 6502 if (!TAILQ_EMPTY(&desc->pending_media_events)) { 6503 desc->callback.event_fn(SPDK_BDEV_EVENT_MEDIA_MANAGEMENT, bdev, 6504 desc->callback.ctx); 6505 } 6506 } 6507 pthread_mutex_unlock(&bdev->internal.mutex); 6508 } 6509 6510 struct locked_lba_range_ctx { 6511 struct lba_range range; 6512 struct spdk_bdev *bdev; 6513 struct lba_range *current_range; 6514 struct lba_range *owner_range; 6515 struct spdk_poller *poller; 6516 lock_range_cb cb_fn; 6517 void *cb_arg; 6518 }; 6519 6520 static void 6521 bdev_lock_error_cleanup_cb(struct spdk_io_channel_iter *i, int status) 6522 { 6523 struct locked_lba_range_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 6524 6525 ctx->cb_fn(ctx->cb_arg, -ENOMEM); 6526 free(ctx); 6527 } 6528 6529 static void 6530 bdev_unlock_lba_range_get_channel(struct spdk_io_channel_iter *i); 6531 6532 static void 6533 bdev_lock_lba_range_cb(struct spdk_io_channel_iter *i, int status) 6534 { 6535 struct locked_lba_range_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 6536 struct spdk_bdev *bdev = ctx->bdev; 6537 6538 if (status == -ENOMEM) { 6539 /* One of the channels could not allocate a range object. 6540 * So we have to go back and clean up any ranges that were 6541 * allocated successfully before we return error status to 6542 * the caller. We can reuse the unlock function to do that 6543 * clean up. 6544 */ 6545 spdk_for_each_channel(__bdev_to_io_dev(bdev), 6546 bdev_unlock_lba_range_get_channel, ctx, 6547 bdev_lock_error_cleanup_cb); 6548 return; 6549 } 6550 6551 /* All channels have locked this range and no I/O overlapping the range 6552 * are outstanding! Set the owner_ch for the range object for the 6553 * locking channel, so that this channel will know that it is allowed 6554 * to write to this range. 6555 */ 6556 ctx->owner_range->owner_ch = ctx->range.owner_ch; 6557 ctx->cb_fn(ctx->cb_arg, status); 6558 6559 /* Don't free the ctx here. Its range is in the bdev's global list of 6560 * locked ranges still, and will be removed and freed when this range 6561 * is later unlocked. 6562 */ 6563 } 6564 6565 static int 6566 bdev_lock_lba_range_check_io(void *_i) 6567 { 6568 struct spdk_io_channel_iter *i = _i; 6569 struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); 6570 struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); 6571 struct locked_lba_range_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 6572 struct lba_range *range = ctx->current_range; 6573 struct spdk_bdev_io *bdev_io; 6574 6575 spdk_poller_unregister(&ctx->poller); 6576 6577 /* The range is now in the locked_ranges, so no new IO can be submitted to this 6578 * range. But we need to wait until any outstanding IO overlapping with this range 6579 * are completed. 6580 */ 6581 TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) { 6582 if (bdev_io_range_is_locked(bdev_io, range)) { 6583 ctx->poller = SPDK_POLLER_REGISTER(bdev_lock_lba_range_check_io, i, 100); 6584 return SPDK_POLLER_BUSY; 6585 } 6586 } 6587 6588 spdk_for_each_channel_continue(i, 0); 6589 return SPDK_POLLER_BUSY; 6590 } 6591 6592 static void 6593 bdev_lock_lba_range_get_channel(struct spdk_io_channel_iter *i) 6594 { 6595 struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); 6596 struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); 6597 struct locked_lba_range_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 6598 struct lba_range *range; 6599 6600 TAILQ_FOREACH(range, &ch->locked_ranges, tailq) { 6601 if (range->length == ctx->range.length && 6602 range->offset == ctx->range.offset && 6603 range->locked_ctx == ctx->range.locked_ctx) { 6604 /* This range already exists on this channel, so don't add 6605 * it again. This can happen when a new channel is created 6606 * while the for_each_channel operation is in progress. 6607 * Do not check for outstanding I/O in that case, since the 6608 * range was locked before any I/O could be submitted to the 6609 * new channel. 6610 */ 6611 spdk_for_each_channel_continue(i, 0); 6612 return; 6613 } 6614 } 6615 6616 range = calloc(1, sizeof(*range)); 6617 if (range == NULL) { 6618 spdk_for_each_channel_continue(i, -ENOMEM); 6619 return; 6620 } 6621 6622 range->length = ctx->range.length; 6623 range->offset = ctx->range.offset; 6624 range->locked_ctx = ctx->range.locked_ctx; 6625 ctx->current_range = range; 6626 if (ctx->range.owner_ch == ch) { 6627 /* This is the range object for the channel that will hold 6628 * the lock. Store it in the ctx object so that we can easily 6629 * set its owner_ch after the lock is finally acquired. 6630 */ 6631 ctx->owner_range = range; 6632 } 6633 TAILQ_INSERT_TAIL(&ch->locked_ranges, range, tailq); 6634 bdev_lock_lba_range_check_io(i); 6635 } 6636 6637 static void 6638 bdev_lock_lba_range_ctx(struct spdk_bdev *bdev, struct locked_lba_range_ctx *ctx) 6639 { 6640 assert(spdk_get_thread() == ctx->range.owner_ch->channel->thread); 6641 6642 /* We will add a copy of this range to each channel now. */ 6643 spdk_for_each_channel(__bdev_to_io_dev(bdev), bdev_lock_lba_range_get_channel, ctx, 6644 bdev_lock_lba_range_cb); 6645 } 6646 6647 static bool 6648 bdev_lba_range_overlaps_tailq(struct lba_range *range, lba_range_tailq_t *tailq) 6649 { 6650 struct lba_range *r; 6651 6652 TAILQ_FOREACH(r, tailq, tailq) { 6653 if (bdev_lba_range_overlapped(range, r)) { 6654 return true; 6655 } 6656 } 6657 return false; 6658 } 6659 6660 static int 6661 bdev_lock_lba_range(struct spdk_bdev_desc *desc, struct spdk_io_channel *_ch, 6662 uint64_t offset, uint64_t length, 6663 lock_range_cb cb_fn, void *cb_arg) 6664 { 6665 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 6666 struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); 6667 struct locked_lba_range_ctx *ctx; 6668 6669 if (cb_arg == NULL) { 6670 SPDK_ERRLOG("cb_arg must not be NULL\n"); 6671 return -EINVAL; 6672 } 6673 6674 ctx = calloc(1, sizeof(*ctx)); 6675 if (ctx == NULL) { 6676 return -ENOMEM; 6677 } 6678 6679 ctx->range.offset = offset; 6680 ctx->range.length = length; 6681 ctx->range.owner_ch = ch; 6682 ctx->range.locked_ctx = cb_arg; 6683 ctx->bdev = bdev; 6684 ctx->cb_fn = cb_fn; 6685 ctx->cb_arg = cb_arg; 6686 6687 pthread_mutex_lock(&bdev->internal.mutex); 6688 if (bdev_lba_range_overlaps_tailq(&ctx->range, &bdev->internal.locked_ranges)) { 6689 /* There is an active lock overlapping with this range. 6690 * Put it on the pending list until this range no 6691 * longer overlaps with another. 6692 */ 6693 TAILQ_INSERT_TAIL(&bdev->internal.pending_locked_ranges, &ctx->range, tailq); 6694 } else { 6695 TAILQ_INSERT_TAIL(&bdev->internal.locked_ranges, &ctx->range, tailq); 6696 bdev_lock_lba_range_ctx(bdev, ctx); 6697 } 6698 pthread_mutex_unlock(&bdev->internal.mutex); 6699 return 0; 6700 } 6701 6702 static void 6703 bdev_lock_lba_range_ctx_msg(void *_ctx) 6704 { 6705 struct locked_lba_range_ctx *ctx = _ctx; 6706 6707 bdev_lock_lba_range_ctx(ctx->bdev, ctx); 6708 } 6709 6710 static void 6711 bdev_unlock_lba_range_cb(struct spdk_io_channel_iter *i, int status) 6712 { 6713 struct locked_lba_range_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 6714 struct locked_lba_range_ctx *pending_ctx; 6715 struct spdk_bdev_channel *ch = ctx->range.owner_ch; 6716 struct spdk_bdev *bdev = ch->bdev; 6717 struct lba_range *range, *tmp; 6718 6719 pthread_mutex_lock(&bdev->internal.mutex); 6720 /* Check if there are any pending locked ranges that overlap with this range 6721 * that was just unlocked. If there are, check that it doesn't overlap with any 6722 * other locked ranges before calling bdev_lock_lba_range_ctx which will start 6723 * the lock process. 6724 */ 6725 TAILQ_FOREACH_SAFE(range, &bdev->internal.pending_locked_ranges, tailq, tmp) { 6726 if (bdev_lba_range_overlapped(range, &ctx->range) && 6727 !bdev_lba_range_overlaps_tailq(range, &bdev->internal.locked_ranges)) { 6728 TAILQ_REMOVE(&bdev->internal.pending_locked_ranges, range, tailq); 6729 pending_ctx = SPDK_CONTAINEROF(range, struct locked_lba_range_ctx, range); 6730 TAILQ_INSERT_TAIL(&bdev->internal.locked_ranges, range, tailq); 6731 spdk_thread_send_msg(pending_ctx->range.owner_ch->channel->thread, 6732 bdev_lock_lba_range_ctx_msg, pending_ctx); 6733 } 6734 } 6735 pthread_mutex_unlock(&bdev->internal.mutex); 6736 6737 ctx->cb_fn(ctx->cb_arg, status); 6738 free(ctx); 6739 } 6740 6741 static void 6742 bdev_unlock_lba_range_get_channel(struct spdk_io_channel_iter *i) 6743 { 6744 struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); 6745 struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); 6746 struct locked_lba_range_ctx *ctx = spdk_io_channel_iter_get_ctx(i); 6747 TAILQ_HEAD(, spdk_bdev_io) io_locked; 6748 struct spdk_bdev_io *bdev_io; 6749 struct lba_range *range; 6750 6751 TAILQ_FOREACH(range, &ch->locked_ranges, tailq) { 6752 if (ctx->range.offset == range->offset && 6753 ctx->range.length == range->length && 6754 ctx->range.locked_ctx == range->locked_ctx) { 6755 TAILQ_REMOVE(&ch->locked_ranges, range, tailq); 6756 free(range); 6757 break; 6758 } 6759 } 6760 6761 /* Note: we should almost always be able to assert that the range specified 6762 * was found. But there are some very rare corner cases where a new channel 6763 * gets created simultaneously with a range unlock, where this function 6764 * would execute on that new channel and wouldn't have the range. 6765 * We also use this to clean up range allocations when a later allocation 6766 * fails in the locking path. 6767 * So we can't actually assert() here. 6768 */ 6769 6770 /* Swap the locked IO into a temporary list, and then try to submit them again. 6771 * We could hyper-optimize this to only resubmit locked I/O that overlap 6772 * with the range that was just unlocked, but this isn't a performance path so 6773 * we go for simplicity here. 6774 */ 6775 TAILQ_INIT(&io_locked); 6776 TAILQ_SWAP(&ch->io_locked, &io_locked, spdk_bdev_io, internal.ch_link); 6777 while (!TAILQ_EMPTY(&io_locked)) { 6778 bdev_io = TAILQ_FIRST(&io_locked); 6779 TAILQ_REMOVE(&io_locked, bdev_io, internal.ch_link); 6780 bdev_io_submit(bdev_io); 6781 } 6782 6783 spdk_for_each_channel_continue(i, 0); 6784 } 6785 6786 static int 6787 bdev_unlock_lba_range(struct spdk_bdev_desc *desc, struct spdk_io_channel *_ch, 6788 uint64_t offset, uint64_t length, 6789 lock_range_cb cb_fn, void *cb_arg) 6790 { 6791 struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); 6792 struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); 6793 struct locked_lba_range_ctx *ctx; 6794 struct lba_range *range; 6795 bool range_found = false; 6796 6797 /* Let's make sure the specified channel actually has a lock on 6798 * the specified range. Note that the range must match exactly. 6799 */ 6800 TAILQ_FOREACH(range, &ch->locked_ranges, tailq) { 6801 if (range->offset == offset && range->length == length && 6802 range->owner_ch == ch && range->locked_ctx == cb_arg) { 6803 range_found = true; 6804 break; 6805 } 6806 } 6807 6808 if (!range_found) { 6809 return -EINVAL; 6810 } 6811 6812 pthread_mutex_lock(&bdev->internal.mutex); 6813 /* We confirmed that this channel has locked the specified range. To 6814 * start the unlock the process, we find the range in the bdev's locked_ranges 6815 * and remove it. This ensures new channels don't inherit the locked range. 6816 * Then we will send a message to each channel (including the one specified 6817 * here) to remove the range from its per-channel list. 6818 */ 6819 TAILQ_FOREACH(range, &bdev->internal.locked_ranges, tailq) { 6820 if (range->offset == offset && range->length == length && 6821 range->locked_ctx == cb_arg) { 6822 break; 6823 } 6824 } 6825 if (range == NULL) { 6826 assert(false); 6827 pthread_mutex_unlock(&bdev->internal.mutex); 6828 return -EINVAL; 6829 } 6830 TAILQ_REMOVE(&bdev->internal.locked_ranges, range, tailq); 6831 ctx = SPDK_CONTAINEROF(range, struct locked_lba_range_ctx, range); 6832 pthread_mutex_unlock(&bdev->internal.mutex); 6833 6834 ctx->cb_fn = cb_fn; 6835 ctx->cb_arg = cb_arg; 6836 6837 spdk_for_each_channel(__bdev_to_io_dev(bdev), bdev_unlock_lba_range_get_channel, ctx, 6838 bdev_unlock_lba_range_cb); 6839 return 0; 6840 } 6841 6842 SPDK_LOG_REGISTER_COMPONENT(bdev) 6843 6844 SPDK_TRACE_REGISTER_FN(bdev_trace, "bdev", TRACE_GROUP_BDEV) 6845 { 6846 spdk_trace_register_owner(OWNER_BDEV, 'b'); 6847 spdk_trace_register_object(OBJECT_BDEV_IO, 'i'); 6848 spdk_trace_register_description("BDEV_IO_START", TRACE_BDEV_IO_START, OWNER_BDEV, 6849 OBJECT_BDEV_IO, 1, 0, "type: "); 6850 spdk_trace_register_description("BDEV_IO_DONE", TRACE_BDEV_IO_DONE, OWNER_BDEV, 6851 OBJECT_BDEV_IO, 0, 0, ""); 6852 } 6853