xref: /spdk/examples/nvme/reconnect/reconnect.c (revision 8afdeef3becfe9409cc9e7372bd0bc10e8b7d46d)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright (C) 2019 Intel Corporation. All rights reserved.
3  *   Copyright (c) 2020 Mellanox Technologies LTD. All rights reserved.
4  *
5  *   Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
6  */
7 
8 #include "spdk/stdinc.h"
9 
10 #include "spdk/env.h"
11 #include "spdk/nvme.h"
12 #include "spdk/queue.h"
13 #include "spdk/string.h"
14 #include "spdk/util.h"
15 #include "spdk/log.h"
16 #include "spdk/likely.h"
17 
18 struct ctrlr_entry {
19 	struct spdk_nvme_ctrlr			*ctrlr;
20 	struct spdk_nvme_transport_id		failover_trid;
21 	enum spdk_nvme_transport_type		trtype;
22 	TAILQ_ENTRY(ctrlr_entry)		link;
23 	char					name[1024];
24 	int					num_resets;
25 };
26 
27 struct ns_entry {
28 	struct spdk_nvme_ctrlr	*ctrlr;
29 	struct spdk_nvme_ns	*ns;
30 
31 	TAILQ_ENTRY(ns_entry)	link;
32 	uint32_t		io_size_blocks;
33 	uint32_t		num_io_requests;
34 	uint64_t		size_in_ios;
35 	uint32_t		block_size;
36 	uint32_t		io_flags;
37 	char			name[1024];
38 };
39 
40 struct ns_worker_ctx {
41 	struct ns_entry			*entry;
42 	uint64_t			io_completed;
43 	uint64_t			current_queue_depth;
44 	uint64_t			offset_in_ios;
45 	bool				is_draining;
46 
47 	int				num_qpairs;
48 	struct spdk_nvme_qpair		**qpair;
49 	int				last_qpair;
50 
51 	TAILQ_ENTRY(ns_worker_ctx)	link;
52 };
53 
54 struct perf_task {
55 	struct ns_worker_ctx	*ns_ctx;
56 	struct iovec		iov;
57 	bool			is_read;
58 };
59 
60 struct worker_thread {
61 	TAILQ_HEAD(, ns_worker_ctx)	ns_ctx;
62 	TAILQ_ENTRY(worker_thread)	link;
63 	unsigned			lcore;
64 };
65 
66 /* For basic reset handling. */
67 static int g_max_ctrlr_resets = 15;
68 
69 static TAILQ_HEAD(, ctrlr_entry) g_controllers = TAILQ_HEAD_INITIALIZER(g_controllers);
70 static TAILQ_HEAD(, ns_entry) g_namespaces = TAILQ_HEAD_INITIALIZER(g_namespaces);
71 static int g_num_namespaces = 0;
72 static TAILQ_HEAD(, worker_thread) g_workers = TAILQ_HEAD_INITIALIZER(g_workers);
73 static int g_num_workers = 0;
74 
75 static uint64_t g_tsc_rate;
76 
77 static uint32_t g_io_align = 0x200;
78 static uint32_t g_io_size_bytes;
79 static uint32_t g_max_io_size_blocks;
80 static int g_rw_percentage;
81 static int g_is_random;
82 static int g_queue_depth;
83 static int g_time_in_sec;
84 static uint32_t g_max_completions;
85 static int g_dpdk_mem;
86 static bool g_warn;
87 static uint32_t g_keep_alive_timeout_in_ms = 0;
88 static uint8_t g_transport_retry_count = 4;
89 static uint8_t g_transport_ack_timeout = 0; /* disabled */
90 static bool g_dpdk_mem_single_seg = false;
91 
92 static const char *g_core_mask;
93 
94 struct trid_entry {
95 	struct spdk_nvme_transport_id	trid;
96 	struct spdk_nvme_transport_id	failover_trid;
97 	TAILQ_ENTRY(trid_entry)		tailq;
98 };
99 
100 static TAILQ_HEAD(, trid_entry) g_trid_list = TAILQ_HEAD_INITIALIZER(g_trid_list);
101 
102 static inline void task_complete(struct perf_task *task);
103 static void submit_io(struct ns_worker_ctx *ns_ctx, int queue_depth);
104 
105 static void io_complete(void *ctx, const struct spdk_nvme_cpl *cpl);
106 
107 static void
108 nvme_setup_payload(struct perf_task *task)
109 {
110 	/* maximum extended lba format size from all active namespace,
111 	 * it's same with g_io_size_bytes for namespace without metadata.
112 	 */
113 	task->iov.iov_base = spdk_dma_zmalloc(g_io_size_bytes, g_io_align, NULL);
114 	task->iov.iov_len = g_io_size_bytes;
115 	if (task->iov.iov_base == NULL) {
116 		fprintf(stderr, "task->buf spdk_dma_zmalloc failed\n");
117 		exit(1);
118 	}
119 }
120 
121 static int
122 nvme_submit_io(struct perf_task *task, struct ns_worker_ctx *ns_ctx,
123 	       struct ns_entry *entry, uint64_t offset_in_ios)
124 {
125 	uint64_t lba;
126 	int qp_num;
127 
128 	lba = offset_in_ios * entry->io_size_blocks;
129 
130 	qp_num = ns_ctx->last_qpair;
131 	ns_ctx->last_qpair++;
132 	if (ns_ctx->last_qpair == ns_ctx->num_qpairs) {
133 		ns_ctx->last_qpair = 0;
134 	}
135 
136 	if (task->is_read) {
137 		return spdk_nvme_ns_cmd_read(entry->ns, ns_ctx->qpair[qp_num],
138 					     task->iov.iov_base, lba,
139 					     entry->io_size_blocks, io_complete,
140 					     task, entry->io_flags);
141 	}
142 
143 	return spdk_nvme_ns_cmd_write(entry->ns, ns_ctx->qpair[qp_num],
144 				      task->iov.iov_base, lba,
145 				      entry->io_size_blocks, io_complete,
146 				      task, entry->io_flags);
147 }
148 
149 static void
150 nvme_check_io(struct ns_worker_ctx *ns_ctx)
151 {
152 	int i, rc;
153 
154 	for (i = 0; i < ns_ctx->num_qpairs; i++) {
155 		rc = spdk_nvme_qpair_process_completions(ns_ctx->qpair[i], g_max_completions);
156 		/* The transport level qpair is failed and we need to reconnect it. */
157 		if (spdk_unlikely(rc == -ENXIO)) {
158 			rc = spdk_nvme_ctrlr_reconnect_io_qpair(ns_ctx->qpair[i]);
159 			/* successful reconnect */
160 			if (rc == 0) {
161 				continue;
162 			} else if (rc == -ENXIO) {
163 				/* This means the controller is failed. Defer to it to restore the qpair. */
164 				continue;
165 			} else {
166 				/*
167 				 * We were unable to restore the qpair on this attempt. We don't
168 				 * really know why. For naive handling, just keep trying.
169 				 * TODO: add a retry limit, and destroy the qpair after x iterations.
170 				 */
171 				fprintf(stderr, "qpair failed and we were unable to recover it.\n");
172 			}
173 		} else if (spdk_unlikely(rc < 0)) {
174 			fprintf(stderr, "Received an unknown error processing completions.\n");
175 			exit(1);
176 		}
177 	}
178 }
179 
180 /*
181  * TODO: If a controller has multiple namespaces, they could all use the same queue.
182  *  For now, give each namespace/thread combination its own queue.
183  */
184 static int
185 nvme_init_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
186 {
187 	struct spdk_nvme_io_qpair_opts opts;
188 	struct ns_entry *entry = ns_ctx->entry;
189 	int i;
190 
191 	ns_ctx->num_qpairs = 1;
192 	ns_ctx->qpair = calloc(ns_ctx->num_qpairs, sizeof(struct spdk_nvme_qpair *));
193 	if (!ns_ctx->qpair) {
194 		return -1;
195 	}
196 
197 	spdk_nvme_ctrlr_get_default_io_qpair_opts(entry->ctrlr, &opts, sizeof(opts));
198 	if (opts.io_queue_requests < entry->num_io_requests) {
199 		opts.io_queue_requests = entry->num_io_requests;
200 	}
201 
202 	for (i = 0; i < ns_ctx->num_qpairs; i++) {
203 		ns_ctx->qpair[i] = spdk_nvme_ctrlr_alloc_io_qpair(entry->ctrlr, &opts,
204 				   sizeof(opts));
205 		if (!ns_ctx->qpair[i]) {
206 			printf("ERROR: spdk_nvme_ctrlr_alloc_io_qpair failed\n");
207 			return -1;
208 		}
209 	}
210 
211 	return 0;
212 }
213 
214 static void
215 nvme_cleanup_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
216 {
217 	int i;
218 
219 	for (i = 0; i < ns_ctx->num_qpairs; i++) {
220 		spdk_nvme_ctrlr_free_io_qpair(ns_ctx->qpair[i]);
221 	}
222 
223 	free(ns_ctx->qpair);
224 }
225 
226 static void
227 build_nvme_name(char *name, size_t length, struct spdk_nvme_ctrlr *ctrlr)
228 {
229 	const struct spdk_nvme_transport_id *trid;
230 
231 	trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
232 
233 	switch (trid->trtype) {
234 	case SPDK_NVME_TRANSPORT_RDMA:
235 		snprintf(name, length, "RDMA (addr:%s subnqn:%s)", trid->traddr, trid->subnqn);
236 		break;
237 	case SPDK_NVME_TRANSPORT_TCP:
238 		snprintf(name, length, "TCP (addr:%s subnqn:%s)", trid->traddr, trid->subnqn);
239 		break;
240 	case SPDK_NVME_TRANSPORT_VFIOUSER:
241 		snprintf(name, length, "VFIOUSER (%s)", trid->traddr);
242 		break;
243 	case SPDK_NVME_TRANSPORT_CUSTOM:
244 		snprintf(name, length, "CUSTOM (%s)", trid->traddr);
245 		break;
246 	default:
247 		fprintf(stderr, "Unknown transport type %d\n", trid->trtype);
248 		break;
249 	}
250 }
251 
252 static void
253 register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns)
254 {
255 	struct ns_entry *entry;
256 	const struct spdk_nvme_ctrlr_data *cdata;
257 	uint32_t max_xfer_size, entries, sector_size;
258 	uint64_t ns_size;
259 	struct spdk_nvme_io_qpair_opts opts;
260 
261 	cdata = spdk_nvme_ctrlr_get_data(ctrlr);
262 
263 	if (!spdk_nvme_ns_is_active(ns)) {
264 		printf("Controller %-20.20s (%-20.20s): Skipping inactive NS %u\n",
265 		       cdata->mn, cdata->sn,
266 		       spdk_nvme_ns_get_id(ns));
267 		g_warn = true;
268 		return;
269 	}
270 
271 	ns_size = spdk_nvme_ns_get_size(ns);
272 	sector_size = spdk_nvme_ns_get_sector_size(ns);
273 
274 	if (ns_size < g_io_size_bytes || sector_size > g_io_size_bytes) {
275 		printf("WARNING: controller %-20.20s (%-20.20s) ns %u has invalid "
276 		       "ns size %" PRIu64 " / block size %u for I/O size %u\n",
277 		       cdata->mn, cdata->sn, spdk_nvme_ns_get_id(ns),
278 		       ns_size, spdk_nvme_ns_get_sector_size(ns), g_io_size_bytes);
279 		g_warn = true;
280 		return;
281 	}
282 
283 	max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
284 	spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts));
285 	/* NVMe driver may add additional entries based on
286 	 * stripe size and maximum transfer size, we assume
287 	 * 1 more entry be used for stripe.
288 	 */
289 	entries = (g_io_size_bytes - 1) / max_xfer_size + 2;
290 	if ((g_queue_depth * entries) > opts.io_queue_size) {
291 		printf("controller IO queue size %u less than required\n",
292 		       opts.io_queue_size);
293 		printf("Consider using lower queue depth or small IO size because "
294 		       "IO requests may be queued at the NVMe driver.\n");
295 		g_warn = true;
296 	}
297 	/* For requests which have children requests, parent request itself
298 	 * will also occupy 1 entry.
299 	 */
300 	entries += 1;
301 
302 	entry = calloc(1, sizeof(struct ns_entry));
303 	if (entry == NULL) {
304 		perror("ns_entry malloc");
305 		exit(1);
306 	}
307 
308 	entry->ctrlr = ctrlr;
309 	entry->ns = ns;
310 	entry->num_io_requests = g_queue_depth * entries;
311 
312 	entry->size_in_ios = ns_size / g_io_size_bytes;
313 	entry->io_size_blocks = g_io_size_bytes / sector_size;
314 
315 	entry->block_size = spdk_nvme_ns_get_sector_size(ns);
316 
317 
318 	if (g_max_io_size_blocks < entry->io_size_blocks) {
319 		g_max_io_size_blocks = entry->io_size_blocks;
320 	}
321 
322 	build_nvme_name(entry->name, sizeof(entry->name), ctrlr);
323 
324 	g_num_namespaces++;
325 	TAILQ_INSERT_TAIL(&g_namespaces, entry, link);
326 }
327 
328 static void
329 unregister_namespaces(void)
330 {
331 	struct ns_entry *entry, *tmp;
332 
333 	TAILQ_FOREACH_SAFE(entry, &g_namespaces, link, tmp) {
334 		TAILQ_REMOVE(&g_namespaces, entry, link);
335 		free(entry);
336 	}
337 }
338 
339 static void
340 register_ctrlr(struct spdk_nvme_ctrlr *ctrlr, struct trid_entry *trid_entry)
341 {
342 	struct spdk_nvme_ns *ns;
343 	struct ctrlr_entry *entry = calloc(1, sizeof(struct ctrlr_entry));
344 	const struct spdk_nvme_transport_id *ctrlr_trid;
345 	uint32_t nsid;
346 
347 	if (entry == NULL) {
348 		perror("ctrlr_entry malloc");
349 		exit(1);
350 	}
351 
352 	ctrlr_trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
353 	assert(ctrlr_trid != NULL);
354 
355 	/* each controller needs a unique failover trid. */
356 	entry->failover_trid = trid_entry->failover_trid;
357 
358 	/*
359 	 * Users are allowed to leave the trid subnqn blank or specify a discovery controller subnqn.
360 	 * In those cases, the controller subnqn will not equal the trid_entry subnqn and, by association,
361 	 * the failover_trid subnqn.
362 	 * When we do failover, we want to reconnect to the same nqn so explicitly set the failover nqn to
363 	 * the ctrlr nqn here.
364 	 */
365 	snprintf(entry->failover_trid.subnqn, SPDK_NVMF_NQN_MAX_LEN + 1, "%s", ctrlr_trid->subnqn);
366 
367 
368 	build_nvme_name(entry->name, sizeof(entry->name), ctrlr);
369 
370 	entry->ctrlr = ctrlr;
371 	entry->trtype = trid_entry->trid.trtype;
372 	TAILQ_INSERT_TAIL(&g_controllers, entry, link);
373 
374 	for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
375 	     nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
376 		ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
377 		if (ns == NULL) {
378 			continue;
379 		}
380 		register_ns(ctrlr, ns);
381 	}
382 }
383 
384 static __thread unsigned int seed = 0;
385 
386 static inline void
387 submit_single_io(struct perf_task *task)
388 {
389 	uint64_t		offset_in_ios;
390 	int			rc;
391 	struct ns_worker_ctx	*ns_ctx = task->ns_ctx;
392 	struct ns_entry		*entry = ns_ctx->entry;
393 
394 	if (g_is_random) {
395 		offset_in_ios = rand_r(&seed) % entry->size_in_ios;
396 	} else {
397 		offset_in_ios = ns_ctx->offset_in_ios++;
398 		if (ns_ctx->offset_in_ios == entry->size_in_ios) {
399 			ns_ctx->offset_in_ios = 0;
400 		}
401 	}
402 
403 	if ((g_rw_percentage == 100) ||
404 	    (g_rw_percentage != 0 && ((rand_r(&seed) % 100) < g_rw_percentage))) {
405 		task->is_read = true;
406 	} else {
407 		task->is_read = false;
408 	}
409 
410 	rc = nvme_submit_io(task, ns_ctx, entry, offset_in_ios);
411 
412 	if (spdk_unlikely(rc != 0)) {
413 		fprintf(stderr, "starting I/O failed\n");
414 		spdk_dma_free(task->iov.iov_base);
415 		free(task);
416 	} else {
417 		ns_ctx->current_queue_depth++;
418 	}
419 }
420 
421 static inline void
422 task_complete(struct perf_task *task)
423 {
424 	struct ns_worker_ctx	*ns_ctx;
425 
426 	ns_ctx = task->ns_ctx;
427 	ns_ctx->current_queue_depth--;
428 	ns_ctx->io_completed++;
429 
430 	/*
431 	 * is_draining indicates when time has expired for the test run
432 	 * and we are just waiting for the previously submitted I/O
433 	 * to complete.  In this case, do not submit a new I/O to replace
434 	 * the one just completed.
435 	 */
436 	if (spdk_unlikely(ns_ctx->is_draining)) {
437 		spdk_dma_free(task->iov.iov_base);
438 		free(task);
439 	} else {
440 		submit_single_io(task);
441 	}
442 }
443 
444 static void
445 io_complete(void *ctx, const struct spdk_nvme_cpl *cpl)
446 {
447 	struct perf_task *task = ctx;
448 
449 	if (spdk_unlikely(spdk_nvme_cpl_is_error(cpl))) {
450 		fprintf(stderr, "%s completed with error (sct=%d, sc=%d)\n",
451 			task->is_read ? "Read" : "Write",
452 			cpl->status.sct, cpl->status.sc);
453 	}
454 
455 	task_complete(task);
456 }
457 
458 static void
459 check_io(struct ns_worker_ctx *ns_ctx)
460 {
461 	nvme_check_io(ns_ctx);
462 }
463 
464 static struct perf_task *
465 allocate_task(struct ns_worker_ctx *ns_ctx, int queue_depth)
466 {
467 	struct perf_task *task;
468 
469 	task = calloc(1, sizeof(*task));
470 	if (task == NULL) {
471 		fprintf(stderr, "Out of memory allocating tasks\n");
472 		exit(1);
473 	}
474 
475 	nvme_setup_payload(task);
476 
477 	task->ns_ctx = ns_ctx;
478 
479 	return task;
480 }
481 
482 static void
483 submit_io(struct ns_worker_ctx *ns_ctx, int queue_depth)
484 {
485 	struct perf_task *task;
486 
487 	while (queue_depth-- > 0) {
488 		task = allocate_task(ns_ctx, queue_depth);
489 		submit_single_io(task);
490 	}
491 }
492 
493 static int
494 work_fn(void *arg)
495 {
496 	uint64_t tsc_end;
497 	struct worker_thread *worker = (struct worker_thread *)arg;
498 	struct ns_worker_ctx *ns_ctx = NULL;
499 	uint32_t unfinished_ns_ctx;
500 
501 	printf("Starting thread on core %u\n", worker->lcore);
502 
503 	/* Allocate queue pairs for each namespace. */
504 	TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
505 		if (nvme_init_ns_worker_ctx(ns_ctx) != 0) {
506 			printf("ERROR: init_ns_worker_ctx() failed\n");
507 			return 1;
508 		}
509 	}
510 
511 	tsc_end = spdk_get_ticks() + g_time_in_sec * g_tsc_rate;
512 
513 	/* Submit initial I/O for each namespace. */
514 	TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
515 		submit_io(ns_ctx, g_queue_depth);
516 	}
517 
518 	while (1) {
519 		/*
520 		 * Check for completed I/O for each controller. A new
521 		 * I/O will be submitted in the io_complete callback
522 		 * to replace each I/O that is completed.
523 		 */
524 		TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
525 			check_io(ns_ctx);
526 		}
527 
528 		if (spdk_get_ticks() > tsc_end) {
529 			break;
530 		}
531 	}
532 
533 	/* drain the io of each ns_ctx in round robin to make the fairness */
534 	do {
535 		unfinished_ns_ctx = 0;
536 		TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
537 			/* first time will enter into this if case */
538 			if (!ns_ctx->is_draining) {
539 				ns_ctx->is_draining = true;
540 			}
541 
542 			check_io(ns_ctx);
543 			if (ns_ctx->current_queue_depth == 0) {
544 				nvme_cleanup_ns_worker_ctx(ns_ctx);
545 			} else {
546 				unfinished_ns_ctx++;
547 			}
548 		}
549 	} while (unfinished_ns_ctx > 0);
550 
551 	return 0;
552 }
553 
554 static void
555 usage(char *program_name)
556 {
557 	printf("%s options", program_name);
558 	printf("\n");
559 	printf("\t[-q io depth]\n");
560 	printf("\t[-o io size in bytes]\n");
561 	printf("\t[-w io pattern type, must be one of\n");
562 	printf("\t\t(read, write, randread, randwrite, rw, randrw)]\n");
563 	printf("\t[-M rwmixread (100 for reads, 0 for writes)]\n");
564 	printf("\t[-t time in seconds]\n");
565 	printf("\t[-c core mask for I/O submission/completion.]\n");
566 	printf("\t\t(default: 1)\n");
567 	printf("\t[-r Transport ID for NVMeoF]\n");
568 	printf("\t Format: 'key:value [key:value] ...'\n");
569 	printf("\t Keys:\n");
570 	printf("\t  trtype      Transport type (e.g. RDMA)\n");
571 	printf("\t  adrfam      Address family (e.g. IPv4, IPv6)\n");
572 	printf("\t  traddr      Transport address (e.g. 192.168.100.8 for RDMA)\n");
573 	printf("\t  trsvcid     Transport service identifier (e.g. 4420)\n");
574 	printf("\t  subnqn      Subsystem NQN (default: %s)\n", SPDK_NVMF_DISCOVERY_NQN);
575 	printf("\t  alt_traddr  (Optional) Alternative Transport address for failover.\n");
576 	printf("\t Example: -r 'trtype:RDMA adrfam:IPv4 traddr:192.168.100.8 trsvcid:4420' for NVMeoF\n");
577 	printf("\t[-k keep alive timeout period in millisecond]\n");
578 	printf("\t[-s DPDK huge memory size in MB.]\n");
579 	printf("\t[-m max completions per poll]\n");
580 	printf("\t\t(default: 0 - unlimited)\n");
581 	printf("\t[-i shared memory group ID]\n");
582 	printf("\t[-A transport ACK timeout]\n");
583 	printf("\t[-R transport retry count]\n");
584 	printf("\t");
585 	spdk_log_usage(stdout, "-T");
586 #ifdef DEBUG
587 	printf("\t[-G enable debug logging]\n");
588 #else
589 	printf("\t[-G enable debug logging (flag disabled, must reconfigure with --enable-debug)]\n");
590 #endif
591 }
592 
593 static void
594 unregister_trids(void)
595 {
596 	struct trid_entry *trid_entry, *tmp;
597 
598 	TAILQ_FOREACH_SAFE(trid_entry, &g_trid_list, tailq, tmp) {
599 		TAILQ_REMOVE(&g_trid_list, trid_entry, tailq);
600 		free(trid_entry);
601 	}
602 }
603 
604 static int
605 add_trid(const char *trid_str)
606 {
607 	struct trid_entry *trid_entry;
608 	struct spdk_nvme_transport_id *trid;
609 	char *alt_traddr;
610 	int len;
611 
612 	trid_entry = calloc(1, sizeof(*trid_entry));
613 	if (trid_entry == NULL) {
614 		return -1;
615 	}
616 
617 	trid = &trid_entry->trid;
618 	snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
619 
620 	if (spdk_nvme_transport_id_parse(trid, trid_str) != 0) {
621 		fprintf(stderr, "Invalid transport ID format '%s'\n", trid_str);
622 		free(trid_entry);
623 		return 1;
624 	}
625 
626 	trid_entry->failover_trid = trid_entry->trid;
627 
628 	alt_traddr = strcasestr(trid_str, "alt_traddr:");
629 	if (alt_traddr) {
630 		alt_traddr += strlen("alt_traddr:");
631 		len = strcspn(alt_traddr, " \t\n");
632 		if (len > SPDK_NVMF_TRADDR_MAX_LEN) {
633 			fprintf(stderr, "The failover traddr %s is too long.\n", alt_traddr);
634 			free(trid_entry);
635 			return -1;
636 		}
637 		snprintf(trid_entry->failover_trid.traddr, SPDK_NVMF_TRADDR_MAX_LEN + 1, "%s", alt_traddr);
638 	}
639 
640 	TAILQ_INSERT_TAIL(&g_trid_list, trid_entry, tailq);
641 	return 0;
642 }
643 
644 static int
645 parse_args(int argc, char **argv)
646 {
647 	struct trid_entry *trid_entry, *trid_entry_tmp;
648 	const char *workload_type;
649 	int op;
650 	bool mix_specified = false;
651 	long int val;
652 	int rc;
653 
654 	/* default value */
655 	g_queue_depth = 0;
656 	g_io_size_bytes = 0;
657 	workload_type = NULL;
658 	g_time_in_sec = 0;
659 	g_rw_percentage = -1;
660 	g_core_mask = NULL;
661 	g_max_completions = 0;
662 
663 	while ((op = getopt(argc, argv, "c:gm:o:q:r:k:s:t:w:A:GM:R:T:")) != -1) {
664 		switch (op) {
665 		case 'm':
666 		case 'o':
667 		case 'q':
668 		case 'k':
669 		case 's':
670 		case 't':
671 		case 'A':
672 		case 'M':
673 		case 'R':
674 			val = spdk_strtol(optarg, 10);
675 			if (val < 0) {
676 				fprintf(stderr, "Converting a string to integer failed\n");
677 				return val;
678 			}
679 			switch (op) {
680 			case 'm':
681 				g_max_completions = val;
682 				break;
683 			case 'o':
684 				g_io_size_bytes = val;
685 				break;
686 			case 'q':
687 				g_queue_depth = val;
688 				break;
689 			case 'k':
690 				g_keep_alive_timeout_in_ms = val;
691 				break;
692 			case 's':
693 				g_dpdk_mem = val;
694 				break;
695 			case 't':
696 				g_time_in_sec = val;
697 				break;
698 			case 'A':
699 				g_transport_ack_timeout = val;
700 				break;
701 			case 'M':
702 				g_rw_percentage = val;
703 				mix_specified = true;
704 				break;
705 			case 'R':
706 				g_transport_retry_count = val;
707 				break;
708 			}
709 			break;
710 		case 'c':
711 			g_core_mask = optarg;
712 			break;
713 		case 'g':
714 			g_dpdk_mem_single_seg = true;
715 			break;
716 		case 'r':
717 			if (add_trid(optarg)) {
718 				usage(argv[0]);
719 				return 1;
720 			}
721 			break;
722 		case 'w':
723 			workload_type = optarg;
724 			break;
725 		case 'G':
726 #ifndef DEBUG
727 			fprintf(stderr, "%s must be configured with --enable-debug for -G flag\n",
728 				argv[0]);
729 			usage(argv[0]);
730 			return 1;
731 #else
732 			spdk_log_set_flag("nvme");
733 			spdk_log_set_print_level(SPDK_LOG_DEBUG);
734 			break;
735 #endif
736 		case 'T':
737 			rc = spdk_log_set_flag(optarg);
738 			if (rc < 0) {
739 				fprintf(stderr, "unknown flag\n");
740 				usage(argv[0]);
741 				exit(EXIT_FAILURE);
742 			}
743 #ifdef DEBUG
744 			spdk_log_set_print_level(SPDK_LOG_DEBUG);
745 #endif
746 			break;
747 		default:
748 			usage(argv[0]);
749 			return 1;
750 		}
751 	}
752 
753 	if (!g_queue_depth) {
754 		usage(argv[0]);
755 		return 1;
756 	}
757 	if (!g_io_size_bytes) {
758 		usage(argv[0]);
759 		return 1;
760 	}
761 	if (!workload_type) {
762 		usage(argv[0]);
763 		return 1;
764 	}
765 	if (!g_time_in_sec) {
766 		usage(argv[0]);
767 		return 1;
768 	}
769 
770 	if (strcmp(workload_type, "read") &&
771 	    strcmp(workload_type, "write") &&
772 	    strcmp(workload_type, "randread") &&
773 	    strcmp(workload_type, "randwrite") &&
774 	    strcmp(workload_type, "rw") &&
775 	    strcmp(workload_type, "randrw")) {
776 		fprintf(stderr,
777 			"io pattern type must be one of\n"
778 			"(read, write, randread, randwrite, rw, randrw)\n");
779 		return 1;
780 	}
781 
782 	if (!strcmp(workload_type, "read") ||
783 	    !strcmp(workload_type, "randread")) {
784 		g_rw_percentage = 100;
785 	}
786 
787 	if (!strcmp(workload_type, "write") ||
788 	    !strcmp(workload_type, "randwrite")) {
789 		g_rw_percentage = 0;
790 	}
791 
792 	if (!strcmp(workload_type, "read") ||
793 	    !strcmp(workload_type, "randread") ||
794 	    !strcmp(workload_type, "write") ||
795 	    !strcmp(workload_type, "randwrite")) {
796 		if (mix_specified) {
797 			fprintf(stderr, "Ignoring -M option... Please use -M option"
798 				" only when using rw or randrw.\n");
799 		}
800 	}
801 
802 	if (!strcmp(workload_type, "rw") ||
803 	    !strcmp(workload_type, "randrw")) {
804 		if (g_rw_percentage < 0 || g_rw_percentage > 100) {
805 			fprintf(stderr,
806 				"-M must be specified to value from 0 to 100 "
807 				"for rw or randrw.\n");
808 			return 1;
809 		}
810 	}
811 
812 	if (!strcmp(workload_type, "read") ||
813 	    !strcmp(workload_type, "write") ||
814 	    !strcmp(workload_type, "rw")) {
815 		g_is_random = 0;
816 	} else {
817 		g_is_random = 1;
818 	}
819 
820 	if (TAILQ_EMPTY(&g_trid_list)) {
821 		fprintf(stderr, "You must specify at least one fabrics TRID.\n");
822 		return -1;
823 	}
824 
825 	/* check whether there is local PCIe type and fail. */
826 	TAILQ_FOREACH_SAFE(trid_entry, &g_trid_list, tailq, trid_entry_tmp) {
827 		if (trid_entry->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
828 			fprintf(stderr, "This application was not intended to be run on PCIe controllers.\n");
829 			return 1;
830 		}
831 	}
832 
833 	return 0;
834 }
835 
836 static int
837 register_workers(void)
838 {
839 	uint32_t i;
840 	struct worker_thread *worker;
841 
842 	SPDK_ENV_FOREACH_CORE(i) {
843 		worker = calloc(1, sizeof(*worker));
844 		if (worker == NULL) {
845 			fprintf(stderr, "Unable to allocate worker\n");
846 			return -1;
847 		}
848 
849 		TAILQ_INIT(&worker->ns_ctx);
850 		worker->lcore = i;
851 		TAILQ_INSERT_TAIL(&g_workers, worker, link);
852 		g_num_workers++;
853 	}
854 
855 	return 0;
856 }
857 
858 static void
859 unregister_workers(void)
860 {
861 	struct worker_thread *worker, *tmp_worker;
862 	struct ns_worker_ctx *ns_ctx, *tmp_ns_ctx;
863 
864 	/* Free namespace context and worker thread */
865 	TAILQ_FOREACH_SAFE(worker, &g_workers, link, tmp_worker) {
866 		TAILQ_REMOVE(&g_workers, worker, link);
867 		TAILQ_FOREACH_SAFE(ns_ctx, &worker->ns_ctx, link, tmp_ns_ctx) {
868 			TAILQ_REMOVE(&worker->ns_ctx, ns_ctx, link);
869 			free(ns_ctx);
870 		}
871 
872 		free(worker);
873 	}
874 }
875 
876 static bool
877 probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
878 	 struct spdk_nvme_ctrlr_opts *opts)
879 {
880 	/* These should have been weeded out earlier. */
881 	assert(trid->trtype != SPDK_NVME_TRANSPORT_PCIE);
882 
883 	printf("Attaching to NVMe over Fabrics controller at %s:%s: %s\n",
884 	       trid->traddr, trid->trsvcid,
885 	       trid->subnqn);
886 
887 	/* Set io_queue_size to UINT16_MAX, NVMe driver
888 	 * will then reduce this to MQES to maximize
889 	 * the io_queue_size as much as possible.
890 	 */
891 	opts->io_queue_size = UINT16_MAX;
892 
893 	opts->keep_alive_timeout_ms = spdk_max(opts->keep_alive_timeout_ms,
894 					       g_keep_alive_timeout_in_ms);
895 
896 	opts->transport_retry_count = g_transport_retry_count;
897 	opts->transport_ack_timeout = g_transport_ack_timeout;
898 
899 	return true;
900 }
901 
902 static void
903 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
904 	  struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
905 {
906 	struct trid_entry	*trid_entry = cb_ctx;
907 
908 	printf("Attached to NVMe over Fabrics controller at %s:%s: %s\n",
909 	       trid->traddr, trid->trsvcid,
910 	       trid->subnqn);
911 
912 	register_ctrlr(ctrlr, trid_entry);
913 }
914 
915 static int
916 register_controllers(void)
917 {
918 	struct trid_entry *trid_entry;
919 
920 	printf("Initializing NVMe Controllers\n");
921 
922 	TAILQ_FOREACH(trid_entry, &g_trid_list, tailq) {
923 		if (spdk_nvme_probe(&trid_entry->trid, trid_entry, probe_cb, attach_cb, NULL) != 0) {
924 			fprintf(stderr, "spdk_nvme_probe() failed for transport address '%s'\n",
925 				trid_entry->trid.traddr);
926 			return -1;
927 		}
928 	}
929 
930 	return 0;
931 }
932 
933 static void
934 unregister_controllers(void)
935 {
936 	struct ctrlr_entry *entry, *tmp;
937 	struct spdk_nvme_detach_ctx *detach_ctx = NULL;
938 
939 	TAILQ_FOREACH_SAFE(entry, &g_controllers, link, tmp) {
940 		TAILQ_REMOVE(&g_controllers, entry, link);
941 		spdk_nvme_detach_async(entry->ctrlr, &detach_ctx);
942 		free(entry);
943 	}
944 
945 	if (detach_ctx) {
946 		spdk_nvme_detach_poll(detach_ctx);
947 	}
948 }
949 
950 static int
951 associate_workers_with_ns(void)
952 {
953 	struct ns_entry		*entry = TAILQ_FIRST(&g_namespaces);
954 	struct worker_thread	*worker = TAILQ_FIRST(&g_workers);
955 	struct ns_worker_ctx	*ns_ctx;
956 	int			i, count;
957 
958 	count = g_num_namespaces > g_num_workers ? g_num_namespaces : g_num_workers;
959 
960 	for (i = 0; i < count; i++) {
961 		if (entry == NULL) {
962 			break;
963 		}
964 
965 		ns_ctx = calloc(1, sizeof(struct ns_worker_ctx));
966 		if (!ns_ctx) {
967 			return -1;
968 		}
969 
970 		printf("Associating %s with lcore %d\n", entry->name, worker->lcore);
971 		ns_ctx->entry = entry;
972 
973 		TAILQ_INSERT_TAIL(&worker->ns_ctx, ns_ctx, link);
974 
975 		worker = TAILQ_NEXT(worker, link);
976 		if (worker == NULL) {
977 			worker = TAILQ_FIRST(&g_workers);
978 		}
979 
980 		entry = TAILQ_NEXT(entry, link);
981 		if (entry == NULL) {
982 			entry = TAILQ_FIRST(&g_namespaces);
983 		}
984 
985 	}
986 
987 	return 0;
988 }
989 
990 static void *
991 nvme_poll_ctrlrs(void *arg)
992 {
993 	struct ctrlr_entry			*entry;
994 	const struct spdk_nvme_transport_id	*old_trid;
995 	int					oldstate;
996 	int					rc;
997 
998 
999 	spdk_unaffinitize_thread();
1000 
1001 	while (true) {
1002 		pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &oldstate);
1003 
1004 		TAILQ_FOREACH(entry, &g_controllers, link) {
1005 			rc = spdk_nvme_ctrlr_process_admin_completions(entry->ctrlr);
1006 			/* This controller has encountered a failure at the transport level. reset it. */
1007 			if (rc == -ENXIO) {
1008 				if (entry->num_resets == 0) {
1009 					old_trid = spdk_nvme_ctrlr_get_transport_id(entry->ctrlr);
1010 					fprintf(stderr, "A controller has encountered a failure and is being reset.\n");
1011 					if (spdk_nvme_transport_id_compare(old_trid, &entry->failover_trid)) {
1012 						fprintf(stderr, "Resorting to new failover address %s\n", entry->failover_trid.traddr);
1013 						spdk_nvme_ctrlr_fail(entry->ctrlr);
1014 						rc = spdk_nvme_ctrlr_set_trid(entry->ctrlr, &entry->failover_trid);
1015 						if (rc != 0) {
1016 							fprintf(stderr, "Unable to fail over to back up trid.\n");
1017 						}
1018 					}
1019 				}
1020 
1021 				rc = spdk_nvme_ctrlr_reset(entry->ctrlr);
1022 				if (rc != 0) {
1023 					entry->num_resets++;
1024 					fprintf(stderr, "Unable to reset the controller.\n");
1025 
1026 					if (entry->num_resets > g_max_ctrlr_resets) {
1027 						fprintf(stderr, "Controller cannot be recovered. Exiting.\n");
1028 						exit(1);
1029 					}
1030 				} else {
1031 					fprintf(stderr, "Controller properly reset.\n");
1032 				}
1033 			}
1034 		}
1035 
1036 		pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &oldstate);
1037 
1038 		/* This is a pthread cancellation point and cannot be removed. */
1039 		sleep(1);
1040 	}
1041 
1042 	return NULL;
1043 }
1044 
1045 int
1046 main(int argc, char **argv)
1047 {
1048 	int rc;
1049 	struct worker_thread *worker, *main_worker;
1050 	unsigned main_core;
1051 	struct spdk_env_opts opts;
1052 	pthread_t thread_id = 0;
1053 
1054 	rc = parse_args(argc, argv);
1055 	if (rc != 0) {
1056 		return rc;
1057 	}
1058 
1059 	opts.opts_size = sizeof(opts);
1060 	spdk_env_opts_init(&opts);
1061 	opts.name = "reconnect";
1062 	if (g_core_mask) {
1063 		opts.core_mask = g_core_mask;
1064 	}
1065 
1066 	if (g_dpdk_mem) {
1067 		opts.mem_size = g_dpdk_mem;
1068 	}
1069 	opts.hugepage_single_segments = g_dpdk_mem_single_seg;
1070 	if (spdk_env_init(&opts) < 0) {
1071 		fprintf(stderr, "Unable to initialize SPDK env\n");
1072 		unregister_trids();
1073 		return 1;
1074 	}
1075 
1076 	g_tsc_rate = spdk_get_ticks_hz();
1077 
1078 	if (register_workers() != 0) {
1079 		rc = 1;
1080 		goto cleanup;
1081 	}
1082 
1083 	if (register_controllers() != 0) {
1084 		rc = 1;
1085 		goto cleanup;
1086 	}
1087 
1088 	if (g_warn) {
1089 		printf("WARNING: Some requested NVMe devices were skipped\n");
1090 	}
1091 
1092 	if (g_num_namespaces == 0) {
1093 		fprintf(stderr, "No valid NVMe controllers found\n");
1094 		goto cleanup;
1095 	}
1096 
1097 	rc = pthread_create(&thread_id, NULL, &nvme_poll_ctrlrs, NULL);
1098 	if (rc != 0) {
1099 		fprintf(stderr, "Unable to spawn a thread to poll admin queues.\n");
1100 		goto cleanup;
1101 	}
1102 
1103 	if (associate_workers_with_ns() != 0) {
1104 		rc = 1;
1105 		goto cleanup;
1106 	}
1107 
1108 	printf("Initialization complete. Launching workers.\n");
1109 
1110 	/* Launch all of the secondary workers */
1111 	main_core = spdk_env_get_current_core();
1112 	main_worker = NULL;
1113 	TAILQ_FOREACH(worker, &g_workers, link) {
1114 		if (worker->lcore != main_core) {
1115 			spdk_env_thread_launch_pinned(worker->lcore, work_fn, worker);
1116 		} else {
1117 			assert(main_worker == NULL);
1118 			main_worker = worker;
1119 		}
1120 	}
1121 
1122 	assert(main_worker != NULL);
1123 	rc = work_fn(main_worker);
1124 
1125 	spdk_env_thread_wait_all();
1126 
1127 cleanup:
1128 	if (thread_id && pthread_cancel(thread_id) == 0) {
1129 		pthread_join(thread_id, NULL);
1130 	}
1131 	unregister_trids();
1132 	unregister_namespaces();
1133 	unregister_controllers();
1134 	unregister_workers();
1135 
1136 	spdk_env_fini();
1137 
1138 	if (rc != 0) {
1139 		fprintf(stderr, "%s: errors occurred\n", argv[0]);
1140 		/*
1141 		 * return a generic error to the caller. This allows us to
1142 		 * distinguish between a failure in the script and something
1143 		 * like a segfault or an invalid access which causes the program
1144 		 * to crash.
1145 		 */
1146 		rc = 1;
1147 	}
1148 
1149 	return rc;
1150 }
1151