1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) Intel Corporation. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include "spdk/stdinc.h" 35 36 #include "spdk/nvme.h" 37 #include "spdk/vmd.h" 38 #include "spdk/env.h" 39 40 struct ctrlr_entry { 41 struct spdk_nvme_ctrlr *ctrlr; 42 TAILQ_ENTRY(ctrlr_entry) link; 43 char name[1024]; 44 }; 45 46 struct ns_entry { 47 struct spdk_nvme_ctrlr *ctrlr; 48 struct spdk_nvme_ns *ns; 49 TAILQ_ENTRY(ns_entry) link; 50 struct spdk_nvme_qpair *qpair; 51 }; 52 53 static TAILQ_HEAD(, ctrlr_entry) g_controllers = TAILQ_HEAD_INITIALIZER(g_controllers); 54 static TAILQ_HEAD(, ns_entry) g_namespaces = TAILQ_HEAD_INITIALIZER(g_namespaces); 55 56 static bool g_vmd = false; 57 58 static void 59 register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns) 60 { 61 struct ns_entry *entry; 62 63 if (!spdk_nvme_ns_is_active(ns)) { 64 return; 65 } 66 67 entry = malloc(sizeof(struct ns_entry)); 68 if (entry == NULL) { 69 perror("ns_entry malloc"); 70 exit(1); 71 } 72 73 entry->ctrlr = ctrlr; 74 entry->ns = ns; 75 TAILQ_INSERT_TAIL(&g_namespaces, entry, link); 76 77 printf(" Namespace ID: %d size: %juGB\n", spdk_nvme_ns_get_id(ns), 78 spdk_nvme_ns_get_size(ns) / 1000000000); 79 } 80 81 struct hello_world_sequence { 82 struct ns_entry *ns_entry; 83 char *buf; 84 unsigned using_cmb_io; 85 int is_completed; 86 }; 87 88 static void 89 read_complete(void *arg, const struct spdk_nvme_cpl *completion) 90 { 91 struct hello_world_sequence *sequence = arg; 92 93 /* Assume the I/O was successful */ 94 sequence->is_completed = 1; 95 /* See if an error occurred. If so, display information 96 * about it, and set completion value so that I/O 97 * caller is aware that an error occurred. 98 */ 99 if (spdk_nvme_cpl_is_error(completion)) { 100 spdk_nvme_qpair_print_completion(sequence->ns_entry->qpair, (struct spdk_nvme_cpl *)completion); 101 fprintf(stderr, "I/O error status: %s\n", spdk_nvme_cpl_get_status_string(&completion->status)); 102 fprintf(stderr, "Read I/O failed, aborting run\n"); 103 sequence->is_completed = 2; 104 } 105 106 /* 107 * The read I/O has completed. Print the contents of the 108 * buffer, free the buffer, then mark the sequence as 109 * completed. This will trigger the hello_world() function 110 * to exit its polling loop. 111 */ 112 printf("%s", sequence->buf); 113 spdk_free(sequence->buf); 114 } 115 116 static void 117 write_complete(void *arg, const struct spdk_nvme_cpl *completion) 118 { 119 struct hello_world_sequence *sequence = arg; 120 struct ns_entry *ns_entry = sequence->ns_entry; 121 int rc; 122 123 /* See if an error occurred. If so, display information 124 * about it, and set completion value so that I/O 125 * caller is aware that an error occurred. 126 */ 127 if (spdk_nvme_cpl_is_error(completion)) { 128 spdk_nvme_qpair_print_completion(sequence->ns_entry->qpair, (struct spdk_nvme_cpl *)completion); 129 fprintf(stderr, "I/O error status: %s\n", spdk_nvme_cpl_get_status_string(&completion->status)); 130 fprintf(stderr, "Write I/O failed, aborting run\n"); 131 sequence->is_completed = 2; 132 exit(1); 133 } 134 /* 135 * The write I/O has completed. Free the buffer associated with 136 * the write I/O and allocate a new zeroed buffer for reading 137 * the data back from the NVMe namespace. 138 */ 139 if (sequence->using_cmb_io) { 140 spdk_nvme_ctrlr_unmap_cmb(ns_entry->ctrlr); 141 } else { 142 spdk_free(sequence->buf); 143 } 144 sequence->buf = spdk_zmalloc(0x1000, 0x1000, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); 145 146 rc = spdk_nvme_ns_cmd_read(ns_entry->ns, ns_entry->qpair, sequence->buf, 147 0, /* LBA start */ 148 1, /* number of LBAs */ 149 read_complete, (void *)sequence, 0); 150 if (rc != 0) { 151 fprintf(stderr, "starting read I/O failed\n"); 152 exit(1); 153 } 154 } 155 156 static void 157 hello_world(void) 158 { 159 struct ns_entry *ns_entry; 160 struct hello_world_sequence sequence; 161 int rc; 162 size_t sz; 163 164 TAILQ_FOREACH(ns_entry, &g_namespaces, link) { 165 /* 166 * Allocate an I/O qpair that we can use to submit read/write requests 167 * to namespaces on the controller. NVMe controllers typically support 168 * many qpairs per controller. Any I/O qpair allocated for a controller 169 * can submit I/O to any namespace on that controller. 170 * 171 * The SPDK NVMe driver provides no synchronization for qpair accesses - 172 * the application must ensure only a single thread submits I/O to a 173 * qpair, and that same thread must also check for completions on that 174 * qpair. This enables extremely efficient I/O processing by making all 175 * I/O operations completely lockless. 176 */ 177 ns_entry->qpair = spdk_nvme_ctrlr_alloc_io_qpair(ns_entry->ctrlr, NULL, 0); 178 if (ns_entry->qpair == NULL) { 179 printf("ERROR: spdk_nvme_ctrlr_alloc_io_qpair() failed\n"); 180 return; 181 } 182 183 /* 184 * Use spdk_dma_zmalloc to allocate a 4KB zeroed buffer. This memory 185 * will be pinned, which is required for data buffers used for SPDK NVMe 186 * I/O operations. 187 */ 188 sequence.using_cmb_io = 1; 189 sequence.buf = spdk_nvme_ctrlr_map_cmb(ns_entry->ctrlr, &sz); 190 if (sequence.buf == NULL || sz < 0x1000) { 191 sequence.using_cmb_io = 0; 192 sequence.buf = spdk_zmalloc(0x1000, 0x1000, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); 193 } 194 if (sequence.buf == NULL) { 195 printf("ERROR: write buffer allocation failed\n"); 196 return; 197 } 198 if (sequence.using_cmb_io) { 199 printf("INFO: using controller memory buffer for IO\n"); 200 } else { 201 printf("INFO: using host memory buffer for IO\n"); 202 } 203 sequence.is_completed = 0; 204 sequence.ns_entry = ns_entry; 205 206 /* 207 * Print "Hello world!" to sequence.buf. We will write this data to LBA 208 * 0 on the namespace, and then later read it back into a separate buffer 209 * to demonstrate the full I/O path. 210 */ 211 snprintf(sequence.buf, 0x1000, "%s", "Hello world!\n"); 212 213 /* 214 * Write the data buffer to LBA 0 of this namespace. "write_complete" and 215 * "&sequence" are specified as the completion callback function and 216 * argument respectively. write_complete() will be called with the 217 * value of &sequence as a parameter when the write I/O is completed. 218 * This allows users to potentially specify different completion 219 * callback routines for each I/O, as well as pass a unique handle 220 * as an argument so the application knows which I/O has completed. 221 * 222 * Note that the SPDK NVMe driver will only check for completions 223 * when the application calls spdk_nvme_qpair_process_completions(). 224 * It is the responsibility of the application to trigger the polling 225 * process. 226 */ 227 rc = spdk_nvme_ns_cmd_write(ns_entry->ns, ns_entry->qpair, sequence.buf, 228 0, /* LBA start */ 229 1, /* number of LBAs */ 230 write_complete, &sequence, 0); 231 if (rc != 0) { 232 fprintf(stderr, "starting write I/O failed\n"); 233 exit(1); 234 } 235 236 /* 237 * Poll for completions. 0 here means process all available completions. 238 * In certain usage models, the caller may specify a positive integer 239 * instead of 0 to signify the maximum number of completions it should 240 * process. This function will never block - if there are no 241 * completions pending on the specified qpair, it will return immediately. 242 * 243 * When the write I/O completes, write_complete() will submit a new I/O 244 * to read LBA 0 into a separate buffer, specifying read_complete() as its 245 * completion routine. When the read I/O completes, read_complete() will 246 * print the buffer contents and set sequence.is_completed = 1. That will 247 * break this loop and then exit the program. 248 */ 249 while (!sequence.is_completed) { 250 spdk_nvme_qpair_process_completions(ns_entry->qpair, 0); 251 } 252 253 /* 254 * Free the I/O qpair. This typically is done when an application exits. 255 * But SPDK does support freeing and then reallocating qpairs during 256 * operation. It is the responsibility of the caller to ensure all 257 * pending I/O are completed before trying to free the qpair. 258 */ 259 spdk_nvme_ctrlr_free_io_qpair(ns_entry->qpair); 260 } 261 } 262 263 static bool 264 probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, 265 struct spdk_nvme_ctrlr_opts *opts) 266 { 267 printf("Attaching to %s\n", trid->traddr); 268 269 return true; 270 } 271 272 static void 273 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, 274 struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts) 275 { 276 int nsid, num_ns; 277 struct ctrlr_entry *entry; 278 struct spdk_nvme_ns *ns; 279 const struct spdk_nvme_ctrlr_data *cdata; 280 281 entry = malloc(sizeof(struct ctrlr_entry)); 282 if (entry == NULL) { 283 perror("ctrlr_entry malloc"); 284 exit(1); 285 } 286 287 printf("Attached to %s\n", trid->traddr); 288 289 /* 290 * spdk_nvme_ctrlr is the logical abstraction in SPDK for an NVMe 291 * controller. During initialization, the IDENTIFY data for the 292 * controller is read using an NVMe admin command, and that data 293 * can be retrieved using spdk_nvme_ctrlr_get_data() to get 294 * detailed information on the controller. Refer to the NVMe 295 * specification for more details on IDENTIFY for NVMe controllers. 296 */ 297 cdata = spdk_nvme_ctrlr_get_data(ctrlr); 298 299 snprintf(entry->name, sizeof(entry->name), "%-20.20s (%-20.20s)", cdata->mn, cdata->sn); 300 301 entry->ctrlr = ctrlr; 302 TAILQ_INSERT_TAIL(&g_controllers, entry, link); 303 304 /* 305 * Each controller has one or more namespaces. An NVMe namespace is basically 306 * equivalent to a SCSI LUN. The controller's IDENTIFY data tells us how 307 * many namespaces exist on the controller. For Intel(R) P3X00 controllers, 308 * it will just be one namespace. 309 * 310 * Note that in NVMe, namespace IDs start at 1, not 0. 311 */ 312 num_ns = spdk_nvme_ctrlr_get_num_ns(ctrlr); 313 printf("Using controller %s with %d namespaces.\n", entry->name, num_ns); 314 for (nsid = 1; nsid <= num_ns; nsid++) { 315 ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid); 316 if (ns == NULL) { 317 continue; 318 } 319 register_ns(ctrlr, ns); 320 } 321 } 322 323 static void 324 cleanup(void) 325 { 326 struct ns_entry *ns_entry, *tmp_ns_entry; 327 struct ctrlr_entry *ctrlr_entry, *tmp_ctrlr_entry; 328 329 TAILQ_FOREACH_SAFE(ns_entry, &g_namespaces, link, tmp_ns_entry) { 330 TAILQ_REMOVE(&g_namespaces, ns_entry, link); 331 free(ns_entry); 332 } 333 334 TAILQ_FOREACH_SAFE(ctrlr_entry, &g_controllers, link, tmp_ctrlr_entry) { 335 TAILQ_REMOVE(&g_controllers, ctrlr_entry, link); 336 spdk_nvme_detach(ctrlr_entry->ctrlr); 337 free(ctrlr_entry); 338 } 339 } 340 341 static void 342 usage(const char *program_name) 343 { 344 printf("%s [options]", program_name); 345 printf("\n"); 346 printf("options:\n"); 347 printf(" -V enumerate VMD\n"); 348 } 349 350 static int 351 parse_args(int argc, char **argv) 352 { 353 int op; 354 355 while ((op = getopt(argc, argv, "V")) != -1) { 356 switch (op) { 357 case 'V': 358 g_vmd = true; 359 break; 360 default: 361 usage(argv[0]); 362 return 1; 363 } 364 } 365 366 return 0; 367 } 368 369 int main(int argc, char **argv) 370 { 371 int rc; 372 struct spdk_env_opts opts; 373 374 rc = parse_args(argc, argv); 375 if (rc != 0) { 376 return rc; 377 } 378 379 /* 380 * SPDK relies on an abstraction around the local environment 381 * named env that handles memory allocation and PCI device operations. 382 * This library must be initialized first. 383 * 384 */ 385 spdk_env_opts_init(&opts); 386 opts.name = "hello_world"; 387 opts.shm_id = 0; 388 if (spdk_env_init(&opts) < 0) { 389 fprintf(stderr, "Unable to initialize SPDK env\n"); 390 return 1; 391 } 392 393 printf("Initializing NVMe Controllers\n"); 394 395 if (g_vmd && spdk_vmd_init()) { 396 fprintf(stderr, "Failed to initialize VMD." 397 " Some NVMe devices can be unavailable.\n"); 398 } 399 400 /* 401 * Start the SPDK NVMe enumeration process. probe_cb will be called 402 * for each NVMe controller found, giving our application a choice on 403 * whether to attach to each controller. attach_cb will then be 404 * called for each controller after the SPDK NVMe driver has completed 405 * initializing the controller we chose to attach. 406 */ 407 rc = spdk_nvme_probe(NULL, NULL, probe_cb, attach_cb, NULL); 408 if (rc != 0) { 409 fprintf(stderr, "spdk_nvme_probe() failed\n"); 410 cleanup(); 411 return 1; 412 } 413 414 if (TAILQ_EMPTY(&g_controllers)) { 415 fprintf(stderr, "no NVMe controllers found\n"); 416 cleanup(); 417 return 1; 418 } 419 420 printf("Initialization complete.\n"); 421 hello_world(); 422 cleanup(); 423 if (g_vmd) { 424 spdk_vmd_fini(); 425 } 426 427 return 0; 428 } 429