1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) Intel Corporation. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include "spdk/stdinc.h" 35 36 #include "spdk/env.h" 37 #include "spdk/log.h" 38 #include "spdk/nvme.h" 39 #include "spdk/queue.h" 40 #include "spdk/string.h" 41 #include "spdk/util.h" 42 #include "spdk/likely.h" 43 44 struct ctrlr_entry { 45 struct spdk_nvme_ctrlr *ctrlr; 46 enum spdk_nvme_transport_type trtype; 47 48 TAILQ_ENTRY(ctrlr_entry) link; 49 char name[1024]; 50 }; 51 52 struct ns_entry { 53 struct spdk_nvme_ctrlr *ctrlr; 54 struct spdk_nvme_ns *ns; 55 56 TAILQ_ENTRY(ns_entry) link; 57 uint32_t io_size_blocks; 58 uint32_t num_io_requests; 59 uint64_t size_in_ios; 60 uint32_t block_size; 61 char name[1024]; 62 }; 63 64 struct ctrlr_worker_ctx { 65 pthread_mutex_t mutex; 66 struct ctrlr_entry *entry; 67 uint64_t abort_submitted; 68 uint64_t abort_submit_failed; 69 uint64_t successful_abort; 70 uint64_t unsuccessful_abort; 71 uint64_t abort_failed; 72 uint64_t current_queue_depth; 73 struct spdk_nvme_ctrlr *ctrlr; 74 TAILQ_ENTRY(ctrlr_worker_ctx) link; 75 }; 76 77 struct ns_worker_ctx { 78 struct ns_entry *entry; 79 uint64_t io_submitted; 80 uint64_t io_completed; 81 uint64_t io_aborted; 82 uint64_t io_failed; 83 uint64_t current_queue_depth; 84 uint64_t offset_in_ios; 85 bool is_draining; 86 struct spdk_nvme_qpair *qpair; 87 struct ctrlr_worker_ctx *ctrlr_ctx; 88 TAILQ_ENTRY(ns_worker_ctx) link; 89 }; 90 91 struct perf_task { 92 struct ns_worker_ctx *ns_ctx; 93 void *buf; 94 }; 95 96 struct worker_thread { 97 TAILQ_HEAD(, ns_worker_ctx) ns_ctx; 98 TAILQ_HEAD(, ctrlr_worker_ctx) ctrlr_ctx; 99 TAILQ_ENTRY(worker_thread) link; 100 unsigned lcore; 101 }; 102 103 static const char *g_workload_type = "read"; 104 static TAILQ_HEAD(, ctrlr_entry) g_controllers = TAILQ_HEAD_INITIALIZER(g_controllers); 105 static TAILQ_HEAD(, ns_entry) g_namespaces = TAILQ_HEAD_INITIALIZER(g_namespaces); 106 static int g_num_namespaces; 107 static TAILQ_HEAD(, worker_thread) g_workers = TAILQ_HEAD_INITIALIZER(g_workers); 108 static int g_num_workers = 0; 109 static uint32_t g_main_core; 110 111 static int g_abort_interval = 1; 112 113 static uint64_t g_tsc_rate; 114 115 static uint32_t g_io_size_bytes = 131072; 116 static uint32_t g_max_io_size_blocks; 117 static int g_rw_percentage = -1; 118 static int g_is_random; 119 static int g_queue_depth = 128; 120 static int g_time_in_sec = 3; 121 static int g_dpdk_mem; 122 static int g_shm_id = -1; 123 static bool g_no_pci; 124 static bool g_warn; 125 static bool g_mix_specified; 126 127 static const char *g_core_mask; 128 129 struct trid_entry { 130 struct spdk_nvme_transport_id trid; 131 uint16_t nsid; 132 TAILQ_ENTRY(trid_entry) tailq; 133 }; 134 135 static TAILQ_HEAD(, trid_entry) g_trid_list = TAILQ_HEAD_INITIALIZER(g_trid_list); 136 137 static void io_complete(void *ctx, const struct spdk_nvme_cpl *cpl); 138 139 static int 140 build_nvme_name(char *name, size_t length, struct spdk_nvme_ctrlr *ctrlr) 141 { 142 const struct spdk_nvme_transport_id *trid; 143 int res = 0; 144 145 trid = spdk_nvme_ctrlr_get_transport_id(ctrlr); 146 147 switch (trid->trtype) { 148 case SPDK_NVME_TRANSPORT_PCIE: 149 res = snprintf(name, length, "PCIE (%s)", trid->traddr); 150 break; 151 case SPDK_NVME_TRANSPORT_RDMA: 152 res = snprintf(name, length, "RDMA (addr:%s subnqn:%s)", trid->traddr, trid->subnqn); 153 break; 154 case SPDK_NVME_TRANSPORT_TCP: 155 res = snprintf(name, length, "TCP (addr:%s subnqn:%s)", trid->traddr, trid->subnqn); 156 break; 157 case SPDK_NVME_TRANSPORT_CUSTOM: 158 res = snprintf(name, length, "CUSTOM (%s)", trid->traddr); 159 break; 160 161 default: 162 fprintf(stderr, "Unknown transport type %d\n", trid->trtype); 163 break; 164 } 165 return res; 166 } 167 168 static void 169 build_nvme_ns_name(char *name, size_t length, struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid) 170 { 171 int res = 0; 172 173 res = build_nvme_name(name, length, ctrlr); 174 if (res > 0) { 175 snprintf(name + res, length - res, " NSID %u", nsid); 176 } 177 178 } 179 180 static void 181 register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns) 182 { 183 struct ns_entry *entry; 184 const struct spdk_nvme_ctrlr_data *cdata; 185 uint32_t max_xfer_size, entries, sector_size; 186 uint64_t ns_size; 187 struct spdk_nvme_io_qpair_opts opts; 188 189 cdata = spdk_nvme_ctrlr_get_data(ctrlr); 190 191 if (!spdk_nvme_ns_is_active(ns)) { 192 printf("Controller %-20.20s (%-20.20s): Skipping inactive NS %u\n", 193 cdata->mn, cdata->sn, 194 spdk_nvme_ns_get_id(ns)); 195 g_warn = true; 196 return; 197 } 198 199 ns_size = spdk_nvme_ns_get_size(ns); 200 sector_size = spdk_nvme_ns_get_sector_size(ns); 201 202 if (ns_size < g_io_size_bytes || sector_size > g_io_size_bytes) { 203 printf("WARNING: controller %-20.20s (%-20.20s) ns %u has invalid " 204 "ns size %" PRIu64 " / block size %u for I/O size %u\n", 205 cdata->mn, cdata->sn, spdk_nvme_ns_get_id(ns), 206 ns_size, spdk_nvme_ns_get_sector_size(ns), g_io_size_bytes); 207 g_warn = true; 208 return; 209 } 210 211 max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns); 212 spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts)); 213 /* NVMe driver may add additional entries based on 214 * stripe size and maximum transfer size, we assume 215 * 1 more entry be used for stripe. 216 */ 217 entries = (g_io_size_bytes - 1) / max_xfer_size + 2; 218 if ((g_queue_depth * entries) > opts.io_queue_size) { 219 printf("controller IO queue size %u less than required\n", 220 opts.io_queue_size); 221 printf("Consider using lower queue depth or small IO size because " 222 "IO requests may be queued at the NVMe driver.\n"); 223 } 224 /* For requests which have children requests, parent request itself 225 * will also occupy 1 entry. 226 */ 227 entries += 1; 228 229 entry = calloc(1, sizeof(struct ns_entry)); 230 if (entry == NULL) { 231 perror("ns_entry malloc"); 232 exit(1); 233 } 234 235 entry->ctrlr = ctrlr; 236 entry->ns = ns; 237 entry->num_io_requests = g_queue_depth * entries; 238 239 entry->size_in_ios = ns_size / g_io_size_bytes; 240 entry->io_size_blocks = g_io_size_bytes / sector_size; 241 242 entry->block_size = spdk_nvme_ns_get_sector_size(ns); 243 244 if (g_max_io_size_blocks < entry->io_size_blocks) { 245 g_max_io_size_blocks = entry->io_size_blocks; 246 } 247 248 build_nvme_ns_name(entry->name, sizeof(entry->name), ctrlr, spdk_nvme_ns_get_id(ns)); 249 250 g_num_namespaces++; 251 TAILQ_INSERT_TAIL(&g_namespaces, entry, link); 252 } 253 254 static void 255 unregister_namespaces(void) 256 { 257 struct ns_entry *entry, *tmp; 258 259 TAILQ_FOREACH_SAFE(entry, &g_namespaces, link, tmp) { 260 TAILQ_REMOVE(&g_namespaces, entry, link); 261 free(entry); 262 } 263 } 264 265 static void 266 register_ctrlr(struct spdk_nvme_ctrlr *ctrlr, struct trid_entry *trid_entry) 267 { 268 struct spdk_nvme_ns *ns; 269 struct ctrlr_entry *entry = malloc(sizeof(struct ctrlr_entry)); 270 uint32_t nsid; 271 272 if (entry == NULL) { 273 perror("ctrlr_entry malloc"); 274 exit(1); 275 } 276 277 build_nvme_name(entry->name, sizeof(entry->name), ctrlr); 278 279 entry->ctrlr = ctrlr; 280 entry->trtype = trid_entry->trid.trtype; 281 TAILQ_INSERT_TAIL(&g_controllers, entry, link); 282 283 if (trid_entry->nsid == 0) { 284 for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr); 285 nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) { 286 ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid); 287 if (ns == NULL) { 288 continue; 289 } 290 register_ns(ctrlr, ns); 291 } 292 } else { 293 ns = spdk_nvme_ctrlr_get_ns(ctrlr, trid_entry->nsid); 294 if (!ns) { 295 perror("Namespace does not exist."); 296 exit(1); 297 } 298 299 register_ns(ctrlr, ns); 300 } 301 } 302 303 static void 304 abort_complete(void *ctx, const struct spdk_nvme_cpl *cpl) 305 { 306 struct ctrlr_worker_ctx *ctrlr_ctx = ctx; 307 308 ctrlr_ctx->current_queue_depth--; 309 if (spdk_unlikely(spdk_nvme_cpl_is_error(cpl))) { 310 ctrlr_ctx->abort_failed++; 311 } else if ((cpl->cdw0 & 0x1) == 0) { 312 ctrlr_ctx->successful_abort++; 313 } else { 314 ctrlr_ctx->unsuccessful_abort++; 315 } 316 } 317 318 static void 319 abort_task(struct perf_task *task) 320 { 321 struct ns_worker_ctx *ns_ctx = task->ns_ctx; 322 struct ctrlr_worker_ctx *ctrlr_ctx = ns_ctx->ctrlr_ctx; 323 int rc; 324 325 /* Hold mutex to guard ctrlr_ctx->current_queue_depth. */ 326 pthread_mutex_lock(&ctrlr_ctx->mutex); 327 328 rc = spdk_nvme_ctrlr_cmd_abort_ext(ctrlr_ctx->ctrlr, ns_ctx->qpair, task, abort_complete, 329 ctrlr_ctx); 330 331 if (spdk_unlikely(rc != 0)) { 332 ctrlr_ctx->abort_submit_failed++; 333 } else { 334 ctrlr_ctx->current_queue_depth++; 335 ctrlr_ctx->abort_submitted++; 336 } 337 338 pthread_mutex_unlock(&ctrlr_ctx->mutex); 339 } 340 341 static __thread unsigned int seed = 0; 342 343 static inline void 344 submit_single_io(struct perf_task *task) 345 { 346 uint64_t offset_in_ios, lba; 347 int rc; 348 struct ns_worker_ctx *ns_ctx = task->ns_ctx; 349 struct ns_entry *entry = ns_ctx->entry; 350 351 if (g_is_random) { 352 offset_in_ios = rand_r(&seed) % entry->size_in_ios; 353 } else { 354 offset_in_ios = ns_ctx->offset_in_ios++; 355 if (ns_ctx->offset_in_ios == entry->size_in_ios) { 356 ns_ctx->offset_in_ios = 0; 357 } 358 } 359 360 lba = offset_in_ios * entry->io_size_blocks; 361 362 if ((g_rw_percentage == 100) || 363 (g_rw_percentage != 0 && (rand_r(&seed) % 100) < g_rw_percentage)) { 364 rc = spdk_nvme_ns_cmd_read(entry->ns, ns_ctx->qpair, task->buf, 365 lba, entry->io_size_blocks, io_complete, task, 0); 366 } else { 367 rc = spdk_nvme_ns_cmd_write(entry->ns, ns_ctx->qpair, task->buf, 368 lba, entry->io_size_blocks, io_complete, task, 0); 369 } 370 371 if (spdk_unlikely(rc != 0)) { 372 fprintf(stderr, "I/O submission failed\n"); 373 } else { 374 ns_ctx->current_queue_depth++; 375 ns_ctx->io_submitted++; 376 377 if ((ns_ctx->io_submitted % g_abort_interval) == 0) { 378 abort_task(task); 379 } 380 } 381 382 } 383 384 static void 385 io_complete(void *ctx, const struct spdk_nvme_cpl *cpl) 386 { 387 struct perf_task *task = ctx; 388 struct ns_worker_ctx *ns_ctx = task->ns_ctx; 389 390 ns_ctx->current_queue_depth--; 391 if (spdk_unlikely(spdk_nvme_cpl_is_error(cpl))) { 392 ns_ctx->io_failed++; 393 } else { 394 ns_ctx->io_completed++; 395 } 396 397 /* is_draining indicates when time has expired for the test run and we are 398 * just waiting for the previously submitted I/O to complete. In this case, 399 * do not submit a new I/O to replace the one just completed. 400 */ 401 if (spdk_unlikely(ns_ctx->is_draining)) { 402 spdk_dma_free(task->buf); 403 free(task); 404 } else { 405 submit_single_io(task); 406 } 407 } 408 409 static struct perf_task * 410 allocate_task(struct ns_worker_ctx *ns_ctx) 411 { 412 struct perf_task *task; 413 414 task = calloc(1, sizeof(*task)); 415 if (task == NULL) { 416 fprintf(stderr, "Failed to allocate task\n"); 417 exit(1); 418 } 419 420 task->buf = spdk_dma_zmalloc(g_io_size_bytes, 0x200, NULL); 421 if (task->buf == NULL) { 422 free(task); 423 fprintf(stderr, "Failed to allocate task->buf\n"); 424 exit(1); 425 } 426 427 task->ns_ctx = ns_ctx; 428 429 return task; 430 } 431 432 static void 433 submit_io(struct ns_worker_ctx *ns_ctx, int queue_depth) 434 { 435 struct perf_task *task; 436 437 while (queue_depth-- > 0) { 438 task = allocate_task(ns_ctx); 439 submit_single_io(task); 440 } 441 } 442 443 static int 444 work_fn(void *arg) 445 { 446 struct worker_thread *worker = (struct worker_thread *)arg; 447 struct ns_worker_ctx *ns_ctx; 448 struct ctrlr_worker_ctx *ctrlr_ctx; 449 struct ns_entry *ns_entry; 450 struct spdk_nvme_io_qpair_opts opts; 451 uint64_t tsc_end; 452 uint32_t unfinished_ctx; 453 454 /* Allocate queue pair for each namespace. */ 455 TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) { 456 ns_entry = ns_ctx->entry; 457 458 spdk_nvme_ctrlr_get_default_io_qpair_opts(ns_entry->ctrlr, &opts, sizeof(opts)); 459 if (opts.io_queue_requests < ns_entry->num_io_requests) { 460 opts.io_queue_requests = ns_entry->num_io_requests; 461 } 462 463 ns_ctx->qpair = spdk_nvme_ctrlr_alloc_io_qpair(ns_entry->ctrlr, &opts, sizeof(opts)); 464 if (ns_ctx->qpair == NULL) { 465 fprintf(stderr, "spdk_nvme_ctrlr_alloc_io_qpair failed\n"); 466 return 1; 467 } 468 } 469 470 tsc_end = spdk_get_ticks() + g_time_in_sec * g_tsc_rate; 471 472 /* Submit initial I/O for each namespace. */ 473 TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) { 474 submit_io(ns_ctx, g_queue_depth); 475 } 476 477 while (1) { 478 TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) { 479 spdk_nvme_qpair_process_completions(ns_ctx->qpair, 0); 480 } 481 482 if (worker->lcore == g_main_core) { 483 TAILQ_FOREACH(ctrlr_ctx, &worker->ctrlr_ctx, link) { 484 /* Hold mutex to guard ctrlr_ctx->current_queue_depth. */ 485 pthread_mutex_lock(&ctrlr_ctx->mutex); 486 spdk_nvme_ctrlr_process_admin_completions(ctrlr_ctx->ctrlr); 487 pthread_mutex_unlock(&ctrlr_ctx->mutex); 488 } 489 } 490 491 if (spdk_get_ticks() > tsc_end) { 492 break; 493 } 494 } 495 496 do { 497 unfinished_ctx = 0; 498 499 TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) { 500 if (!ns_ctx->is_draining) { 501 ns_ctx->is_draining = true; 502 } 503 if (ns_ctx->current_queue_depth > 0) { 504 spdk_nvme_qpair_process_completions(ns_ctx->qpair, 0); 505 if (ns_ctx->current_queue_depth == 0) { 506 spdk_nvme_ctrlr_free_io_qpair(ns_ctx->qpair); 507 } else { 508 unfinished_ctx++; 509 } 510 } 511 } 512 } while (unfinished_ctx > 0); 513 514 if (worker->lcore == g_main_core) { 515 do { 516 unfinished_ctx = 0; 517 518 TAILQ_FOREACH(ctrlr_ctx, &worker->ctrlr_ctx, link) { 519 pthread_mutex_lock(&ctrlr_ctx->mutex); 520 if (ctrlr_ctx->current_queue_depth > 0) { 521 spdk_nvme_ctrlr_process_admin_completions(ctrlr_ctx->ctrlr); 522 if (ctrlr_ctx->current_queue_depth > 0) { 523 unfinished_ctx++; 524 } 525 } 526 pthread_mutex_unlock(&ctrlr_ctx->mutex); 527 } 528 } while (unfinished_ctx > 0); 529 } 530 531 return 0; 532 } 533 534 static void 535 usage(char *program_name) 536 { 537 printf("%s options", program_name); 538 539 printf("\n"); 540 printf("\t[-q io depth]\n"); 541 printf("\t[-o io size in bytes]\n"); 542 printf("\t[-w io pattern type, must be one of\n"); 543 printf("\t\t(read, write, randread, randwrite, rw, randrw)]\n"); 544 printf("\t[-M rwmixread (100 for reads, 0 for writes)]\n"); 545 printf("\t[-t time in seconds]\n"); 546 printf("\t[-c core mask for I/O submission/completion.]\n"); 547 printf("\t\t(default: 1)\n"); 548 printf("\t[-r Transport ID for local PCIe NVMe or NVMeoF]\n"); 549 printf("\t Format: 'key:value [key:value] ...'\n"); 550 printf("\t Keys:\n"); 551 printf("\t trtype Transport type (e.g. PCIe, RDMA)\n"); 552 printf("\t adrfam Address family (e.g. IPv4, IPv6)\n"); 553 printf("\t traddr Transport address (e.g. 0000:04:00.0 for PCIe or 192.168.100.8 for RDMA)\n"); 554 printf("\t trsvcid Transport service identifier (e.g. 4420)\n"); 555 printf("\t subnqn Subsystem NQN (default: %s)\n", SPDK_NVMF_DISCOVERY_NQN); 556 printf("\t Example: -r 'trtype:PCIe traddr:0000:04:00.0' for PCIe or\n"); 557 printf("\t -r 'trtype:RDMA adrfam:IPv4 traddr:192.168.100.8 trsvcid:4420' for NVMeoF\n"); 558 printf("\t[-s DPDK huge memory size in MB.]\n"); 559 printf("\t[-i shared memory group ID]\n"); 560 printf("\t[-a abort interval.]\n"); 561 printf("\t"); 562 spdk_log_usage(stdout, "-T"); 563 #ifdef DEBUG 564 printf("\t[-G enable debug logging]\n"); 565 #else 566 printf("\t[-G enable debug logging (flag disabled, must reconfigure with --enable-debug)\n"); 567 #endif 568 } 569 570 static void 571 unregister_trids(void) 572 { 573 struct trid_entry *trid_entry, *tmp; 574 575 TAILQ_FOREACH_SAFE(trid_entry, &g_trid_list, tailq, tmp) { 576 TAILQ_REMOVE(&g_trid_list, trid_entry, tailq); 577 free(trid_entry); 578 } 579 } 580 581 static int 582 add_trid(const char *trid_str) 583 { 584 struct trid_entry *trid_entry; 585 struct spdk_nvme_transport_id *trid; 586 char *ns; 587 588 trid_entry = calloc(1, sizeof(*trid_entry)); 589 if (trid_entry == NULL) { 590 return -1; 591 } 592 593 trid = &trid_entry->trid; 594 trid->trtype = SPDK_NVME_TRANSPORT_PCIE; 595 snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN); 596 597 if (spdk_nvme_transport_id_parse(trid, trid_str) != 0) { 598 fprintf(stderr, "Invalid transport ID format '%s'\n", trid_str); 599 free(trid_entry); 600 return 1; 601 } 602 603 spdk_nvme_transport_id_populate_trstring(trid, 604 spdk_nvme_transport_id_trtype_str(trid->trtype)); 605 606 ns = strcasestr(trid_str, "ns:"); 607 if (ns) { 608 char nsid_str[6]; /* 5 digits maximum in an nsid */ 609 int len; 610 int nsid; 611 612 ns += 3; 613 614 len = strcspn(ns, " \t\n"); 615 if (len > 5) { 616 fprintf(stderr, "NVMe namespace IDs must be 5 digits or less\n"); 617 free(trid_entry); 618 return 1; 619 } 620 621 memcpy(nsid_str, ns, len); 622 nsid_str[len] = '\0'; 623 624 nsid = spdk_strtol(nsid_str, 10); 625 if (nsid <= 0 || nsid > 65535) { 626 fprintf(stderr, "NVMe namespace IDs must be less than 65536 and greater than 0\n"); 627 free(trid_entry); 628 return 1; 629 } 630 631 trid_entry->nsid = (uint16_t)nsid; 632 } 633 634 TAILQ_INSERT_TAIL(&g_trid_list, trid_entry, tailq); 635 return 0; 636 } 637 638 static int 639 parse_args(int argc, char **argv) 640 { 641 int op; 642 long int val; 643 int rc; 644 645 while ((op = getopt(argc, argv, "a:c:i:o:q:r:s:t:w:M:")) != -1) { 646 switch (op) { 647 case 'a': 648 case 'i': 649 case 'o': 650 case 'q': 651 case 's': 652 case 't': 653 case 'M': 654 val = spdk_strtol(optarg, 10); 655 if (val < 0) { 656 fprintf(stderr, "Converting a string to integer failed\n"); 657 return val; 658 } 659 switch (op) { 660 case 'a': 661 g_abort_interval = val; 662 break; 663 case 'i': 664 g_shm_id = val; 665 break; 666 case 'o': 667 g_io_size_bytes = val; 668 break; 669 case 'q': 670 g_queue_depth = val; 671 break; 672 case 's': 673 g_dpdk_mem = val; 674 break; 675 case 't': 676 g_time_in_sec = val; 677 break; 678 case 'M': 679 g_rw_percentage = val; 680 g_mix_specified = true; 681 break; 682 } 683 break; 684 case 'c': 685 g_core_mask = optarg; 686 break; 687 case 'r': 688 if (add_trid(optarg)) { 689 usage(argv[0]); 690 return 1; 691 } 692 break; 693 case 'w': 694 g_workload_type = optarg; 695 break; 696 case 'G': 697 #ifndef DEBUG 698 fprintf(stderr, "%s must be configured with --enable-debug for -G flag\n", 699 argv[0]); 700 usage(argv[0]); 701 return 1; 702 #else 703 spdk_log_set_flag("nvme"); 704 spdk_log_set_print_level(SPDK_LOG_DEBUG); 705 break; 706 #endif 707 case 'T': 708 rc = spdk_log_set_flag(optarg); 709 if (rc < 0) { 710 fprintf(stderr, "unknown flag\n"); 711 usage(argv[0]); 712 exit(EXIT_FAILURE); 713 } 714 #ifdef DEBUG 715 spdk_log_set_print_level(SPDK_LOG_DEBUG); 716 #endif 717 break; 718 default: 719 usage(argv[0]); 720 return 1; 721 } 722 } 723 724 if (!g_queue_depth) { 725 fprintf(stderr, "missing -q (queue size) operand\n"); 726 usage(argv[0]); 727 return 1; 728 } 729 if (!g_io_size_bytes) { 730 fprintf(stderr, "missing -o (block size) operand\n"); 731 usage(argv[0]); 732 return 1; 733 } 734 if (!g_workload_type) { 735 fprintf(stderr, "missing -t (test time in seconds) operand\n"); 736 usage(argv[0]); 737 return 1; 738 } 739 740 if (!g_time_in_sec) { 741 usage(argv[0]); 742 return 1; 743 } 744 745 if (strncmp(g_workload_type, "rand", 4) == 0) { 746 g_is_random = 1; 747 g_workload_type = &g_workload_type[4]; 748 } 749 750 if (strcmp(g_workload_type, "read") == 0 || strcmp(g_workload_type, "write") == 0) { 751 g_rw_percentage = strcmp(g_workload_type, "read") == 0 ? 100 : 0; 752 if (g_mix_specified) { 753 fprintf(stderr, "Ignoring -M option... Please use -M option" 754 " only when using rw or randrw.\n"); 755 } 756 } else if (strcmp(g_workload_type, "rw") == 0) { 757 if (g_rw_percentage < 0 || g_rw_percentage > 100) { 758 fprintf(stderr, 759 "-M must be specified to value from 0 to 100 " 760 "for rw or randrw.\n"); 761 return 1; 762 } 763 } else { 764 fprintf(stderr, 765 "io pattern type must be one of\n" 766 "(read, write, randread, randwrite, rw, randrw)\n"); 767 return 1; 768 } 769 770 if (TAILQ_EMPTY(&g_trid_list)) { 771 /* If no transport IDs specified, default to enumerating all local PCIe devices */ 772 add_trid("trtype:PCIe"); 773 } else { 774 struct trid_entry *trid_entry, *trid_entry_tmp; 775 776 g_no_pci = true; 777 /* check whether there is local PCIe type */ 778 TAILQ_FOREACH_SAFE(trid_entry, &g_trid_list, tailq, trid_entry_tmp) { 779 if (trid_entry->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) { 780 g_no_pci = false; 781 break; 782 } 783 } 784 } 785 786 return 0; 787 } 788 789 static int 790 register_workers(void) 791 { 792 uint32_t i; 793 struct worker_thread *worker; 794 795 SPDK_ENV_FOREACH_CORE(i) { 796 worker = calloc(1, sizeof(*worker)); 797 if (worker == NULL) { 798 fprintf(stderr, "Unable to allocate worker\n"); 799 return -1; 800 } 801 802 TAILQ_INIT(&worker->ns_ctx); 803 TAILQ_INIT(&worker->ctrlr_ctx); 804 worker->lcore = i; 805 TAILQ_INSERT_TAIL(&g_workers, worker, link); 806 g_num_workers++; 807 } 808 809 return 0; 810 } 811 812 static void 813 unregister_workers(void) 814 { 815 struct worker_thread *worker, *tmp_worker; 816 struct ns_worker_ctx *ns_ctx, *tmp_ns_ctx; 817 struct ctrlr_worker_ctx *ctrlr_ctx, *tmp_ctrlr_ctx; 818 819 /* Free namespace context and worker thread */ 820 TAILQ_FOREACH_SAFE(worker, &g_workers, link, tmp_worker) { 821 TAILQ_REMOVE(&g_workers, worker, link); 822 823 TAILQ_FOREACH_SAFE(ns_ctx, &worker->ns_ctx, link, tmp_ns_ctx) { 824 TAILQ_REMOVE(&worker->ns_ctx, ns_ctx, link); 825 printf("NS: %s I/O completed: %" PRIu64 ", failed: %" PRIu64 "\n", 826 ns_ctx->entry->name, ns_ctx->io_completed, ns_ctx->io_failed); 827 free(ns_ctx); 828 } 829 830 TAILQ_FOREACH_SAFE(ctrlr_ctx, &worker->ctrlr_ctx, link, tmp_ctrlr_ctx) { 831 TAILQ_REMOVE(&worker->ctrlr_ctx, ctrlr_ctx, link); 832 printf("CTRLR: %s abort submitted %" PRIu64 ", failed to submit %" PRIu64 "\n", 833 ctrlr_ctx->entry->name, ctrlr_ctx->abort_submitted, 834 ctrlr_ctx->abort_submit_failed); 835 printf("\t success %" PRIu64 ", unsuccess %" PRIu64 ", failed %" PRIu64 "\n", 836 ctrlr_ctx->successful_abort, ctrlr_ctx->unsuccessful_abort, 837 ctrlr_ctx->abort_failed); 838 free(ctrlr_ctx); 839 } 840 841 free(worker); 842 } 843 } 844 845 static bool 846 probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, 847 struct spdk_nvme_ctrlr_opts *opts) 848 { 849 return true; 850 } 851 852 static void 853 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, 854 struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts) 855 { 856 struct trid_entry *trid_entry = cb_ctx; 857 struct spdk_pci_addr pci_addr; 858 struct spdk_pci_device *pci_dev; 859 struct spdk_pci_id pci_id; 860 861 if (trid->trtype != SPDK_NVME_TRANSPORT_PCIE) { 862 printf("Attached to NVMe over Fabrics controller at %s:%s: %s\n", 863 trid->traddr, trid->trsvcid, 864 trid->subnqn); 865 } else { 866 if (spdk_pci_addr_parse(&pci_addr, trid->traddr)) { 867 return; 868 } 869 870 pci_dev = spdk_nvme_ctrlr_get_pci_device(ctrlr); 871 if (!pci_dev) { 872 return; 873 } 874 875 pci_id = spdk_pci_device_get_id(pci_dev); 876 877 printf("Attached to NVMe Controller at %s [%04x:%04x]\n", 878 trid->traddr, 879 pci_id.vendor_id, pci_id.device_id); 880 } 881 882 register_ctrlr(ctrlr, trid_entry); 883 } 884 885 static int 886 register_controllers(void) 887 { 888 struct trid_entry *trid_entry; 889 890 printf("Initializing NVMe Controllers\n"); 891 892 TAILQ_FOREACH(trid_entry, &g_trid_list, tailq) { 893 if (spdk_nvme_probe(&trid_entry->trid, trid_entry, probe_cb, attach_cb, NULL) != 0) { 894 fprintf(stderr, "spdk_nvme_probe() failed for transport address '%s'\n", 895 trid_entry->trid.traddr); 896 return -1; 897 } 898 } 899 900 return 0; 901 } 902 903 static void 904 unregister_controllers(void) 905 { 906 struct ctrlr_entry *entry, *tmp; 907 struct spdk_nvme_detach_ctx *detach_ctx = NULL; 908 909 TAILQ_FOREACH_SAFE(entry, &g_controllers, link, tmp) { 910 TAILQ_REMOVE(&g_controllers, entry, link); 911 spdk_nvme_detach_async(entry->ctrlr, &detach_ctx); 912 free(entry); 913 } 914 915 while (detach_ctx && spdk_nvme_detach_poll_async(detach_ctx) == -EAGAIN) { 916 ; 917 } 918 } 919 920 static int 921 associate_main_worker_with_ctrlr(void) 922 { 923 struct ctrlr_entry *entry; 924 struct worker_thread *worker; 925 struct ctrlr_worker_ctx *ctrlr_ctx; 926 927 TAILQ_FOREACH(worker, &g_workers, link) { 928 if (worker->lcore == g_main_core) { 929 break; 930 } 931 } 932 933 if (!worker) { 934 return -1; 935 } 936 937 TAILQ_FOREACH(entry, &g_controllers, link) { 938 ctrlr_ctx = calloc(1, sizeof(struct ctrlr_worker_ctx)); 939 if (!ctrlr_ctx) { 940 return -1; 941 } 942 943 pthread_mutex_init(&ctrlr_ctx->mutex, NULL); 944 ctrlr_ctx->entry = entry; 945 ctrlr_ctx->ctrlr = entry->ctrlr; 946 947 TAILQ_INSERT_TAIL(&worker->ctrlr_ctx, ctrlr_ctx, link); 948 } 949 950 return 0; 951 } 952 953 static struct ctrlr_worker_ctx * 954 get_ctrlr_worker_ctx(struct spdk_nvme_ctrlr *ctrlr) 955 { 956 struct worker_thread *worker; 957 struct ctrlr_worker_ctx *ctrlr_ctx; 958 959 TAILQ_FOREACH(worker, &g_workers, link) { 960 if (worker->lcore == g_main_core) { 961 break; 962 } 963 } 964 965 if (!worker) { 966 return NULL; 967 } 968 969 TAILQ_FOREACH(ctrlr_ctx, &worker->ctrlr_ctx, link) { 970 if (ctrlr_ctx->ctrlr == ctrlr) { 971 return ctrlr_ctx; 972 } 973 } 974 975 return NULL; 976 } 977 978 static int 979 associate_workers_with_ns(void) 980 { 981 struct ns_entry *entry = TAILQ_FIRST(&g_namespaces); 982 struct worker_thread *worker = TAILQ_FIRST(&g_workers); 983 struct ns_worker_ctx *ns_ctx; 984 int i, count; 985 986 count = g_num_namespaces > g_num_workers ? g_num_namespaces : g_num_workers; 987 988 for (i = 0; i < count; i++) { 989 if (entry == NULL) { 990 break; 991 } 992 993 ns_ctx = calloc(1, sizeof(struct ns_worker_ctx)); 994 if (!ns_ctx) { 995 return -1; 996 } 997 998 printf("Associating %s with lcore %d\n", entry->name, worker->lcore); 999 ns_ctx->entry = entry; 1000 ns_ctx->ctrlr_ctx = get_ctrlr_worker_ctx(entry->ctrlr); 1001 if (!ns_ctx->ctrlr_ctx) { 1002 free(ns_ctx); 1003 return -1; 1004 } 1005 1006 TAILQ_INSERT_TAIL(&worker->ns_ctx, ns_ctx, link); 1007 1008 worker = TAILQ_NEXT(worker, link); 1009 if (worker == NULL) { 1010 worker = TAILQ_FIRST(&g_workers); 1011 } 1012 1013 entry = TAILQ_NEXT(entry, link); 1014 if (entry == NULL) { 1015 entry = TAILQ_FIRST(&g_namespaces); 1016 } 1017 } 1018 1019 return 0; 1020 } 1021 1022 int main(int argc, char **argv) 1023 { 1024 int rc; 1025 struct worker_thread *worker, *main_worker; 1026 struct spdk_env_opts opts; 1027 1028 rc = parse_args(argc, argv); 1029 if (rc != 0) { 1030 return rc; 1031 } 1032 1033 spdk_env_opts_init(&opts); 1034 opts.name = "abort"; 1035 opts.shm_id = g_shm_id; 1036 if (g_core_mask) { 1037 opts.core_mask = g_core_mask; 1038 } 1039 1040 if (g_dpdk_mem) { 1041 opts.mem_size = g_dpdk_mem; 1042 } 1043 if (g_no_pci) { 1044 opts.no_pci = g_no_pci; 1045 } 1046 if (spdk_env_init(&opts) < 0) { 1047 fprintf(stderr, "Unable to initialize SPDK env\n"); 1048 rc = -1; 1049 goto cleanup; 1050 } 1051 1052 g_tsc_rate = spdk_get_ticks_hz(); 1053 1054 if (register_workers() != 0) { 1055 rc = -1; 1056 goto cleanup; 1057 } 1058 1059 if (register_controllers() != 0) { 1060 rc = -1; 1061 goto cleanup; 1062 } 1063 1064 if (g_warn) { 1065 printf("WARNING: Some requested NVMe devices were skipped\n"); 1066 } 1067 1068 if (g_num_namespaces == 0) { 1069 fprintf(stderr, "No valid NVMe controllers found\n"); 1070 goto cleanup; 1071 } 1072 1073 if (associate_main_worker_with_ctrlr() != 0) { 1074 rc = -1; 1075 goto cleanup; 1076 } 1077 1078 if (associate_workers_with_ns() != 0) { 1079 rc = -1; 1080 goto cleanup; 1081 } 1082 1083 printf("Initialization complete. Launching workers.\n"); 1084 1085 /* Launch all of the secondary workers */ 1086 g_main_core = spdk_env_get_current_core(); 1087 main_worker = NULL; 1088 TAILQ_FOREACH(worker, &g_workers, link) { 1089 if (worker->lcore != g_main_core) { 1090 spdk_env_thread_launch_pinned(worker->lcore, work_fn, worker); 1091 } else { 1092 assert(main_worker == NULL); 1093 main_worker = worker; 1094 } 1095 } 1096 1097 assert(main_worker != NULL); 1098 rc = work_fn(main_worker); 1099 1100 spdk_env_thread_wait_all(); 1101 1102 cleanup: 1103 unregister_trids(); 1104 unregister_workers(); 1105 unregister_namespaces(); 1106 unregister_controllers(); 1107 1108 if (rc != 0) { 1109 fprintf(stderr, "%s: errors occured\n", argv[0]); 1110 } 1111 1112 return rc; 1113 } 1114