1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) Intel Corporation. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include "spdk/stdinc.h" 35 36 #include "spdk/env.h" 37 #include "spdk/log.h" 38 #include "spdk/nvme.h" 39 #include "spdk/queue.h" 40 #include "spdk/string.h" 41 #include "spdk/util.h" 42 #include "spdk/likely.h" 43 44 struct ctrlr_entry { 45 struct spdk_nvme_ctrlr *ctrlr; 46 enum spdk_nvme_transport_type trtype; 47 48 struct ctrlr_entry *next; 49 char name[1024]; 50 }; 51 52 struct ns_entry { 53 struct spdk_nvme_ctrlr *ctrlr; 54 struct spdk_nvme_ns *ns; 55 56 struct ns_entry *next; 57 uint32_t io_size_blocks; 58 uint32_t num_io_requests; 59 uint64_t size_in_ios; 60 uint32_t block_size; 61 char name[1024]; 62 }; 63 64 struct ctrlr_worker_ctx { 65 pthread_mutex_t mutex; 66 struct ctrlr_entry *entry; 67 uint64_t abort_submitted; 68 uint64_t abort_submit_failed; 69 uint64_t successful_abort; 70 uint64_t unsuccessful_abort; 71 uint64_t abort_failed; 72 uint64_t current_queue_depth; 73 struct spdk_nvme_ctrlr *ctrlr; 74 struct ctrlr_worker_ctx *next; 75 }; 76 77 struct ns_worker_ctx { 78 struct ns_entry *entry; 79 uint64_t io_submitted; 80 uint64_t io_completed; 81 uint64_t io_aborted; 82 uint64_t io_failed; 83 uint64_t current_queue_depth; 84 uint64_t offset_in_ios; 85 bool is_draining; 86 struct spdk_nvme_qpair *qpair; 87 struct ctrlr_worker_ctx *ctrlr_ctx; 88 struct ns_worker_ctx *next; 89 }; 90 91 struct perf_task { 92 struct ns_worker_ctx *ns_ctx; 93 void *buf; 94 }; 95 96 struct worker_thread { 97 struct ns_worker_ctx *ns_ctx; 98 struct ctrlr_worker_ctx *ctrlr_ctx; 99 struct worker_thread *next; 100 unsigned lcore; 101 }; 102 103 static const char *g_workload_type = "read"; 104 static struct ctrlr_entry *g_controllers; 105 static struct ns_entry *g_namespaces; 106 static int g_num_namespaces; 107 static struct worker_thread *g_workers; 108 static int g_num_workers; 109 static uint32_t g_master_core; 110 111 static int g_abort_interval = 1; 112 113 static uint64_t g_tsc_rate; 114 115 static uint32_t g_io_size_bytes = 131072; 116 static uint32_t g_max_io_size_blocks; 117 static int g_rw_percentage = -1; 118 static int g_is_random; 119 static int g_queue_depth = 128; 120 static int g_time_in_sec = 3; 121 static int g_dpdk_mem; 122 static int g_shm_id = -1; 123 static bool g_no_pci; 124 static bool g_warn; 125 static bool g_mix_specified; 126 127 static const char *g_core_mask; 128 129 struct trid_entry { 130 struct spdk_nvme_transport_id trid; 131 uint16_t nsid; 132 TAILQ_ENTRY(trid_entry) tailq; 133 }; 134 135 static TAILQ_HEAD(, trid_entry) g_trid_list = TAILQ_HEAD_INITIALIZER(g_trid_list); 136 137 static void io_complete(void *ctx, const struct spdk_nvme_cpl *cpl); 138 139 static int 140 build_nvme_name(char *name, size_t length, struct spdk_nvme_ctrlr *ctrlr) 141 { 142 const struct spdk_nvme_transport_id *trid; 143 int res = 0; 144 145 trid = spdk_nvme_ctrlr_get_transport_id(ctrlr); 146 147 switch (trid->trtype) { 148 case SPDK_NVME_TRANSPORT_PCIE: 149 res = snprintf(name, length, "PCIE (%s)", trid->traddr); 150 break; 151 case SPDK_NVME_TRANSPORT_RDMA: 152 res = snprintf(name, length, "RDMA (addr:%s subnqn:%s)", trid->traddr, trid->subnqn); 153 break; 154 case SPDK_NVME_TRANSPORT_TCP: 155 res = snprintf(name, length, "TCP (addr:%s subnqn:%s)", trid->traddr, trid->subnqn); 156 break; 157 158 default: 159 fprintf(stderr, "Unknown transport type %d\n", trid->trtype); 160 break; 161 } 162 return res; 163 } 164 165 static void 166 build_nvme_ns_name(char *name, size_t length, struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid) 167 { 168 int res = 0; 169 170 res = build_nvme_name(name, length, ctrlr); 171 if (res > 0) { 172 snprintf(name + res, length - res, " NSID %u", nsid); 173 } 174 175 } 176 177 static void 178 register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns) 179 { 180 struct ns_entry *entry; 181 const struct spdk_nvme_ctrlr_data *cdata; 182 uint32_t max_xfer_size, entries, sector_size; 183 uint64_t ns_size; 184 struct spdk_nvme_io_qpair_opts opts; 185 186 cdata = spdk_nvme_ctrlr_get_data(ctrlr); 187 188 if (!spdk_nvme_ns_is_active(ns)) { 189 printf("Controller %-20.20s (%-20.20s): Skipping inactive NS %u\n", 190 cdata->mn, cdata->sn, 191 spdk_nvme_ns_get_id(ns)); 192 g_warn = true; 193 return; 194 } 195 196 ns_size = spdk_nvme_ns_get_size(ns); 197 sector_size = spdk_nvme_ns_get_sector_size(ns); 198 199 if (ns_size < g_io_size_bytes || sector_size > g_io_size_bytes) { 200 printf("WARNING: controller %-20.20s (%-20.20s) ns %u has invalid " 201 "ns size %" PRIu64 " / block size %u for I/O size %u\n", 202 cdata->mn, cdata->sn, spdk_nvme_ns_get_id(ns), 203 ns_size, spdk_nvme_ns_get_sector_size(ns), g_io_size_bytes); 204 g_warn = true; 205 return; 206 } 207 208 max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns); 209 spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts)); 210 /* NVMe driver may add additional entries based on 211 * stripe size and maximum transfer size, we assume 212 * 1 more entry be used for stripe. 213 */ 214 entries = (g_io_size_bytes - 1) / max_xfer_size + 2; 215 if ((g_queue_depth * entries) > opts.io_queue_size) { 216 printf("controller IO queue size %u less than required\n", 217 opts.io_queue_size); 218 printf("Consider using lower queue depth or small IO size because " 219 "IO requests may be queued at the NVMe driver.\n"); 220 } 221 /* For requests which have children requests, parent request itself 222 * will also occupy 1 entry. 223 */ 224 entries += 1; 225 226 entry = calloc(1, sizeof(struct ns_entry)); 227 if (entry == NULL) { 228 perror("ns_entry malloc"); 229 exit(1); 230 } 231 232 entry->ctrlr = ctrlr; 233 entry->ns = ns; 234 entry->num_io_requests = g_queue_depth * entries; 235 236 entry->size_in_ios = ns_size / g_io_size_bytes; 237 entry->io_size_blocks = g_io_size_bytes / sector_size; 238 239 entry->block_size = spdk_nvme_ns_get_sector_size(ns); 240 241 if (g_max_io_size_blocks < entry->io_size_blocks) { 242 g_max_io_size_blocks = entry->io_size_blocks; 243 } 244 245 build_nvme_ns_name(entry->name, sizeof(entry->name), ctrlr, spdk_nvme_ns_get_id(ns)); 246 247 g_num_namespaces++; 248 entry->next = g_namespaces; 249 g_namespaces = entry; 250 } 251 252 static void 253 unregister_namespaces(void) 254 { 255 struct ns_entry *entry = g_namespaces; 256 257 while (entry) { 258 struct ns_entry *next = entry->next; 259 free(entry); 260 entry = next; 261 } 262 } 263 264 static void 265 register_ctrlr(struct spdk_nvme_ctrlr *ctrlr, struct trid_entry *trid_entry) 266 { 267 struct spdk_nvme_ns *ns; 268 struct ctrlr_entry *entry = malloc(sizeof(struct ctrlr_entry)); 269 uint32_t nsid; 270 271 if (entry == NULL) { 272 perror("ctrlr_entry malloc"); 273 exit(1); 274 } 275 276 build_nvme_name(entry->name, sizeof(entry->name), ctrlr); 277 278 entry->ctrlr = ctrlr; 279 entry->trtype = trid_entry->trid.trtype; 280 entry->next = g_controllers; 281 g_controllers = entry; 282 283 if (trid_entry->nsid == 0) { 284 for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr); 285 nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) { 286 ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid); 287 if (ns == NULL) { 288 continue; 289 } 290 register_ns(ctrlr, ns); 291 } 292 } else { 293 ns = spdk_nvme_ctrlr_get_ns(ctrlr, trid_entry->nsid); 294 if (!ns) { 295 perror("Namespace does not exist."); 296 exit(1); 297 } 298 299 register_ns(ctrlr, ns); 300 } 301 } 302 303 static void 304 abort_complete(void *ctx, const struct spdk_nvme_cpl *cpl) 305 { 306 struct ctrlr_worker_ctx *ctrlr_ctx = ctx; 307 308 ctrlr_ctx->current_queue_depth--; 309 if (spdk_unlikely(spdk_nvme_cpl_is_error(cpl))) { 310 ctrlr_ctx->abort_failed++; 311 } else if ((cpl->cdw0 & 0x1) == 0) { 312 ctrlr_ctx->successful_abort++; 313 } else { 314 ctrlr_ctx->unsuccessful_abort++; 315 } 316 } 317 318 static void 319 abort_task(struct perf_task *task) 320 { 321 struct ns_worker_ctx *ns_ctx = task->ns_ctx; 322 struct ctrlr_worker_ctx *ctrlr_ctx = ns_ctx->ctrlr_ctx; 323 int rc; 324 325 /* Hold mutex to guard ctrlr_ctx->current_queue_depth. */ 326 pthread_mutex_lock(&ctrlr_ctx->mutex); 327 328 rc = spdk_nvme_ctrlr_cmd_abort_ext(ctrlr_ctx->ctrlr, ns_ctx->qpair, task, abort_complete, 329 ctrlr_ctx); 330 331 if (spdk_unlikely(rc != 0)) { 332 ctrlr_ctx->abort_submit_failed++; 333 } else { 334 ctrlr_ctx->current_queue_depth++; 335 ctrlr_ctx->abort_submitted++; 336 } 337 338 pthread_mutex_unlock(&ctrlr_ctx->mutex); 339 } 340 341 static __thread unsigned int seed = 0; 342 343 static inline void 344 submit_single_io(struct perf_task *task) 345 { 346 uint64_t offset_in_ios, lba; 347 int rc; 348 struct ns_worker_ctx *ns_ctx = task->ns_ctx; 349 struct ns_entry *entry = ns_ctx->entry; 350 351 if (g_is_random) { 352 offset_in_ios = rand_r(&seed) % entry->size_in_ios; 353 } else { 354 offset_in_ios = ns_ctx->offset_in_ios++; 355 if (ns_ctx->offset_in_ios == entry->size_in_ios) { 356 ns_ctx->offset_in_ios = 0; 357 } 358 } 359 360 lba = offset_in_ios * entry->io_size_blocks; 361 362 if ((g_rw_percentage == 100) || 363 (g_rw_percentage != 0 && (rand_r(&seed) % 100) < g_rw_percentage)) { 364 rc = spdk_nvme_ns_cmd_read(entry->ns, ns_ctx->qpair, task->buf, 365 lba, entry->io_size_blocks, io_complete, task, 0); 366 } else { 367 rc = spdk_nvme_ns_cmd_write(entry->ns, ns_ctx->qpair, task->buf, 368 lba, entry->io_size_blocks, io_complete, task, 0); 369 } 370 371 if (spdk_unlikely(rc != 0)) { 372 fprintf(stderr, "I/O submission failed\n"); 373 } else { 374 ns_ctx->current_queue_depth++; 375 ns_ctx->io_submitted++; 376 377 if ((ns_ctx->io_submitted % g_abort_interval) == 0) { 378 abort_task(task); 379 } 380 } 381 382 } 383 384 static void 385 io_complete(void *ctx, const struct spdk_nvme_cpl *cpl) 386 { 387 struct perf_task *task = ctx; 388 struct ns_worker_ctx *ns_ctx = task->ns_ctx; 389 390 ns_ctx->current_queue_depth--; 391 if (spdk_unlikely(spdk_nvme_cpl_is_error(cpl))) { 392 ns_ctx->io_failed++; 393 } else { 394 ns_ctx->io_completed++; 395 } 396 397 /* is_draining indicates when time has expired for the test run and we are 398 * just waiting for the previously submitted I/O to complete. In this case, 399 * do not submit a new I/O to replace the one just completed. 400 */ 401 if (spdk_unlikely(ns_ctx->is_draining)) { 402 spdk_dma_free(task->buf); 403 free(task); 404 } else { 405 submit_single_io(task); 406 } 407 } 408 409 static struct perf_task * 410 allocate_task(struct ns_worker_ctx *ns_ctx) 411 { 412 struct perf_task *task; 413 414 task = calloc(1, sizeof(*task)); 415 if (task == NULL) { 416 fprintf(stderr, "Failed to allocate task\n"); 417 exit(1); 418 } 419 420 task->buf = spdk_dma_zmalloc(g_io_size_bytes, 0x200, NULL); 421 if (task->buf == NULL) { 422 free(task); 423 fprintf(stderr, "Failed to allocate task->buf\n"); 424 exit(1); 425 } 426 427 task->ns_ctx = ns_ctx; 428 429 return task; 430 } 431 432 static void 433 submit_io(struct ns_worker_ctx *ns_ctx, int queue_depth) 434 { 435 struct perf_task *task; 436 437 while (queue_depth-- > 0) { 438 task = allocate_task(ns_ctx); 439 submit_single_io(task); 440 } 441 } 442 443 static int 444 work_fn(void *arg) 445 { 446 struct worker_thread *worker = (struct worker_thread *)arg; 447 struct ns_worker_ctx *ns_ctx; 448 struct ctrlr_worker_ctx *ctrlr_ctx; 449 struct ns_entry *ns_entry; 450 struct spdk_nvme_io_qpair_opts opts; 451 uint64_t tsc_end; 452 uint32_t unfinished_ctx; 453 454 /* Allocate queue pair for each namespace. */ 455 ns_ctx = worker->ns_ctx; 456 while (ns_ctx != NULL) { 457 ns_entry = ns_ctx->entry; 458 459 spdk_nvme_ctrlr_get_default_io_qpair_opts(ns_entry->ctrlr, &opts, sizeof(opts)); 460 if (opts.io_queue_requests < ns_entry->num_io_requests) { 461 opts.io_queue_requests = ns_entry->num_io_requests; 462 } 463 464 ns_ctx->qpair = spdk_nvme_ctrlr_alloc_io_qpair(ns_entry->ctrlr, &opts, sizeof(opts)); 465 if (ns_ctx->qpair == NULL) { 466 fprintf(stderr, "spdk_nvme_ctrlr_alloc_io_qpair failed\n"); 467 return 1; 468 } 469 470 ns_ctx = ns_ctx->next; 471 } 472 473 tsc_end = spdk_get_ticks() + g_time_in_sec * g_tsc_rate; 474 475 /* Submit initial I/O for each namespace. */ 476 ns_ctx = worker->ns_ctx; 477 while (ns_ctx != NULL) { 478 submit_io(ns_ctx, g_queue_depth); 479 ns_ctx = ns_ctx->next; 480 } 481 482 while (1) { 483 ns_ctx = worker->ns_ctx; 484 while (ns_ctx != NULL) { 485 spdk_nvme_qpair_process_completions(ns_ctx->qpair, 0); 486 ns_ctx = ns_ctx->next; 487 } 488 489 if (worker->lcore == g_master_core) { 490 ctrlr_ctx = worker->ctrlr_ctx; 491 while (ctrlr_ctx) { 492 /* Hold mutex to guard ctrlr_ctx->current_queue_depth. */ 493 pthread_mutex_lock(&ctrlr_ctx->mutex); 494 spdk_nvme_ctrlr_process_admin_completions(ctrlr_ctx->ctrlr); 495 pthread_mutex_unlock(&ctrlr_ctx->mutex); 496 ctrlr_ctx = ctrlr_ctx->next; 497 } 498 } 499 500 if (spdk_get_ticks() > tsc_end) { 501 break; 502 } 503 } 504 505 do { 506 unfinished_ctx = 0; 507 508 ns_ctx = worker->ns_ctx; 509 while (ns_ctx != NULL) { 510 if (!ns_ctx->is_draining) { 511 ns_ctx->is_draining = true; 512 } 513 if (ns_ctx->current_queue_depth > 0) { 514 spdk_nvme_qpair_process_completions(ns_ctx->qpair, 0); 515 if (ns_ctx->current_queue_depth == 0) { 516 spdk_nvme_ctrlr_free_io_qpair(ns_ctx->qpair); 517 } else { 518 unfinished_ctx++; 519 } 520 } 521 ns_ctx = ns_ctx->next; 522 } 523 } while (unfinished_ctx > 0); 524 525 if (worker->lcore == g_master_core) { 526 do { 527 unfinished_ctx = 0; 528 529 ctrlr_ctx = worker->ctrlr_ctx; 530 while (ctrlr_ctx != NULL) { 531 pthread_mutex_lock(&ctrlr_ctx->mutex); 532 if (ctrlr_ctx->current_queue_depth > 0) { 533 spdk_nvme_ctrlr_process_admin_completions(ctrlr_ctx->ctrlr); 534 if (ctrlr_ctx->current_queue_depth > 0) { 535 unfinished_ctx++; 536 } 537 } 538 pthread_mutex_unlock(&ctrlr_ctx->mutex); 539 ctrlr_ctx = ctrlr_ctx->next; 540 } 541 } while (unfinished_ctx > 0); 542 } 543 544 return 0; 545 } 546 547 static void 548 usage(char *program_name) 549 { 550 printf("%s options", program_name); 551 552 printf("\n"); 553 printf("\t[-q io depth]\n"); 554 printf("\t[-o io size in bytes]\n"); 555 printf("\t[-w io pattern type, must be one of\n"); 556 printf("\t\t(read, write, randread, randwrite, rw, randrw)]\n"); 557 printf("\t[-M rwmixread (100 for reads, 0 for writes)]\n"); 558 printf("\t[-t time in seconds]\n"); 559 printf("\t[-c core mask for I/O submission/completion.]\n"); 560 printf("\t\t(default: 1)\n"); 561 printf("\t[-r Transport ID for local PCIe NVMe or NVMeoF]\n"); 562 printf("\t Format: 'key:value [key:value] ...'\n"); 563 printf("\t Keys:\n"); 564 printf("\t trtype Transport type (e.g. PCIe, RDMA)\n"); 565 printf("\t adrfam Address family (e.g. IPv4, IPv6)\n"); 566 printf("\t traddr Transport address (e.g. 0000:04:00.0 for PCIe or 192.168.100.8 for RDMA)\n"); 567 printf("\t trsvcid Transport service identifier (e.g. 4420)\n"); 568 printf("\t subnqn Subsystem NQN (default: %s)\n", SPDK_NVMF_DISCOVERY_NQN); 569 printf("\t Example: -r 'trtype:PCIe traddr:0000:04:00.0' for PCIe or\n"); 570 printf("\t -r 'trtype:RDMA adrfam:IPv4 traddr:192.168.100.8 trsvcid:4420' for NVMeoF\n"); 571 printf("\t[-s DPDK huge memory size in MB.]\n"); 572 printf("\t[-i shared memory group ID]\n"); 573 printf("\t[-a abort interval.]\n"); 574 printf("\t"); 575 spdk_log_usage(stdout, "-T"); 576 #ifdef DEBUG 577 printf("\t[-G enable debug logging]\n"); 578 #else 579 printf("\t[-G enable debug logging (flag disabled, must reconfigure with --enable-debug)\n"); 580 #endif 581 } 582 583 static void 584 unregister_trids(void) 585 { 586 struct trid_entry *trid_entry, *tmp; 587 588 TAILQ_FOREACH_SAFE(trid_entry, &g_trid_list, tailq, tmp) { 589 TAILQ_REMOVE(&g_trid_list, trid_entry, tailq); 590 free(trid_entry); 591 } 592 } 593 594 static int 595 add_trid(const char *trid_str) 596 { 597 struct trid_entry *trid_entry; 598 struct spdk_nvme_transport_id *trid; 599 char *ns; 600 601 trid_entry = calloc(1, sizeof(*trid_entry)); 602 if (trid_entry == NULL) { 603 return -1; 604 } 605 606 trid = &trid_entry->trid; 607 trid->trtype = SPDK_NVME_TRANSPORT_PCIE; 608 snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN); 609 610 if (spdk_nvme_transport_id_parse(trid, trid_str) != 0) { 611 fprintf(stderr, "Invalid transport ID format '%s'\n", trid_str); 612 free(trid_entry); 613 return 1; 614 } 615 616 spdk_nvme_transport_id_populate_trstring(trid, 617 spdk_nvme_transport_id_trtype_str(trid->trtype)); 618 619 ns = strcasestr(trid_str, "ns:"); 620 if (ns) { 621 char nsid_str[6]; /* 5 digits maximum in an nsid */ 622 int len; 623 int nsid; 624 625 ns += 3; 626 627 len = strcspn(ns, " \t\n"); 628 if (len > 5) { 629 fprintf(stderr, "NVMe namespace IDs must be 5 digits or less\n"); 630 free(trid_entry); 631 return 1; 632 } 633 634 memcpy(nsid_str, ns, len); 635 nsid_str[len] = '\0'; 636 637 nsid = spdk_strtol(nsid_str, 10); 638 if (nsid <= 0 || nsid > 65535) { 639 fprintf(stderr, "NVMe namespace IDs must be less than 65536 and greater than 0\n"); 640 free(trid_entry); 641 return 1; 642 } 643 644 trid_entry->nsid = (uint16_t)nsid; 645 } 646 647 TAILQ_INSERT_TAIL(&g_trid_list, trid_entry, tailq); 648 return 0; 649 } 650 651 static int 652 parse_args(int argc, char **argv) 653 { 654 int op; 655 long int val; 656 int rc; 657 658 while ((op = getopt(argc, argv, "a:c:i:o:q:r:s:t:w:M:")) != -1) { 659 switch (op) { 660 case 'a': 661 case 'i': 662 case 'o': 663 case 'q': 664 case 's': 665 case 't': 666 case 'M': 667 val = spdk_strtol(optarg, 10); 668 if (val < 0) { 669 fprintf(stderr, "Converting a string to integer failed\n"); 670 return val; 671 } 672 switch (op) { 673 case 'a': 674 g_abort_interval = val; 675 break; 676 case 'i': 677 g_shm_id = val; 678 break; 679 case 'o': 680 g_io_size_bytes = val; 681 break; 682 case 'q': 683 g_queue_depth = val; 684 break; 685 case 's': 686 g_dpdk_mem = val; 687 break; 688 case 't': 689 g_time_in_sec = val; 690 break; 691 case 'M': 692 g_rw_percentage = val; 693 g_mix_specified = true; 694 break; 695 } 696 break; 697 case 'c': 698 g_core_mask = optarg; 699 break; 700 case 'r': 701 if (add_trid(optarg)) { 702 usage(argv[0]); 703 return 1; 704 } 705 break; 706 case 'w': 707 g_workload_type = optarg; 708 break; 709 case 'G': 710 #ifndef DEBUG 711 fprintf(stderr, "%s must be configured with --enable-debug for -G flag\n", 712 argv[0]); 713 usage(argv[0]); 714 return 1; 715 #else 716 spdk_log_set_flag("nvme"); 717 spdk_log_set_print_level(SPDK_LOG_DEBUG); 718 break; 719 #endif 720 case 'T': 721 rc = spdk_log_set_flag(optarg); 722 if (rc < 0) { 723 fprintf(stderr, "unknown flag\n"); 724 usage(argv[0]); 725 exit(EXIT_FAILURE); 726 } 727 spdk_log_set_print_level(SPDK_LOG_DEBUG); 728 #ifndef DEBUG 729 fprintf(stderr, "%s must be rebuilt with CONFIG_DEBUG=y for -T flag.\n", 730 argv[0]); 731 usage(argv[0]); 732 return 0; 733 #endif 734 break; 735 default: 736 usage(argv[0]); 737 return 1; 738 } 739 } 740 741 if (!g_queue_depth) { 742 fprintf(stderr, "missing -q (queue size) operand\n"); 743 usage(argv[0]); 744 return 1; 745 } 746 if (!g_io_size_bytes) { 747 fprintf(stderr, "missing -o (block size) operand\n"); 748 usage(argv[0]); 749 return 1; 750 } 751 if (!g_workload_type) { 752 fprintf(stderr, "missing -t (test time in seconds) operand\n"); 753 usage(argv[0]); 754 return 1; 755 } 756 757 if (!g_time_in_sec) { 758 usage(argv[0]); 759 return 1; 760 } 761 762 if (strncmp(g_workload_type, "rand", 4) == 0) { 763 g_is_random = 1; 764 g_workload_type = &g_workload_type[4]; 765 } 766 767 if (strcmp(g_workload_type, "read") == 0 || strcmp(g_workload_type, "write") == 0) { 768 g_rw_percentage = strcmp(g_workload_type, "read") == 0 ? 100 : 0; 769 if (g_mix_specified) { 770 fprintf(stderr, "Ignoring -M option... Please use -M option" 771 " only when using rw or randrw.\n"); 772 } 773 } else if (strcmp(g_workload_type, "rw") == 0) { 774 if (g_rw_percentage < 0 || g_rw_percentage > 100) { 775 fprintf(stderr, 776 "-M must be specified to value from 0 to 100 " 777 "for rw or randrw.\n"); 778 return 1; 779 } 780 } else { 781 fprintf(stderr, 782 "io pattern type must be one of\n" 783 "(read, write, randread, randwrite, rw, randrw)\n"); 784 return 1; 785 } 786 787 if (TAILQ_EMPTY(&g_trid_list)) { 788 /* If no transport IDs specified, default to enumerating all local PCIe devices */ 789 add_trid("trtype:PCIe"); 790 } else { 791 struct trid_entry *trid_entry, *trid_entry_tmp; 792 793 g_no_pci = true; 794 /* check whether there is local PCIe type */ 795 TAILQ_FOREACH_SAFE(trid_entry, &g_trid_list, tailq, trid_entry_tmp) { 796 if (trid_entry->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) { 797 g_no_pci = false; 798 break; 799 } 800 } 801 } 802 803 return 0; 804 } 805 806 static int 807 register_workers(void) 808 { 809 uint32_t i; 810 struct worker_thread *worker; 811 812 g_workers = NULL; 813 g_num_workers = 0; 814 815 SPDK_ENV_FOREACH_CORE(i) { 816 worker = calloc(1, sizeof(*worker)); 817 if (worker == NULL) { 818 fprintf(stderr, "Unable to allocate worker\n"); 819 return -1; 820 } 821 822 worker->lcore = i; 823 worker->next = g_workers; 824 g_workers = worker; 825 g_num_workers++; 826 } 827 828 return 0; 829 } 830 831 static void 832 unregister_workers(void) 833 { 834 struct worker_thread *worker = g_workers; 835 836 /* Free namespace context and worker thread */ 837 while (worker) { 838 struct worker_thread *next_worker = worker->next; 839 struct ns_worker_ctx *ns_ctx = worker->ns_ctx; 840 841 while (ns_ctx) { 842 struct ns_worker_ctx *next_ns_ctx = ns_ctx->next; 843 844 printf("NS: %s I/O completed: %lu, failed: %lu\n", 845 ns_ctx->entry->name, ns_ctx->io_completed, ns_ctx->io_failed); 846 free(ns_ctx); 847 ns_ctx = next_ns_ctx; 848 } 849 850 struct ctrlr_worker_ctx *ctrlr_ctx = worker->ctrlr_ctx; 851 852 while (ctrlr_ctx) { 853 struct ctrlr_worker_ctx *next_ctrlr_ctx = ctrlr_ctx->next; 854 855 printf("CTRLR: %s abort submitted %lu, failed to submit %lu\n", 856 ctrlr_ctx->entry->name, ctrlr_ctx->abort_submitted, 857 ctrlr_ctx->abort_submit_failed); 858 printf("\t success %lu, unsuccess %lu, failed %lu\n", 859 ctrlr_ctx->successful_abort, ctrlr_ctx->unsuccessful_abort, 860 ctrlr_ctx->abort_failed); 861 free(ctrlr_ctx); 862 ctrlr_ctx = next_ctrlr_ctx; 863 } 864 865 free(worker); 866 worker = next_worker; 867 } 868 } 869 870 static bool 871 probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, 872 struct spdk_nvme_ctrlr_opts *opts) 873 { 874 return true; 875 } 876 877 static void 878 attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, 879 struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts) 880 { 881 struct trid_entry *trid_entry = cb_ctx; 882 struct spdk_pci_addr pci_addr; 883 struct spdk_pci_device *pci_dev; 884 struct spdk_pci_id pci_id; 885 886 if (trid->trtype != SPDK_NVME_TRANSPORT_PCIE) { 887 printf("Attached to NVMe over Fabrics controller at %s:%s: %s\n", 888 trid->traddr, trid->trsvcid, 889 trid->subnqn); 890 } else { 891 if (spdk_pci_addr_parse(&pci_addr, trid->traddr)) { 892 return; 893 } 894 895 pci_dev = spdk_nvme_ctrlr_get_pci_device(ctrlr); 896 if (!pci_dev) { 897 return; 898 } 899 900 pci_id = spdk_pci_device_get_id(pci_dev); 901 902 printf("Attached to NVMe Controller at %s [%04x:%04x]\n", 903 trid->traddr, 904 pci_id.vendor_id, pci_id.device_id); 905 } 906 907 register_ctrlr(ctrlr, trid_entry); 908 } 909 910 static int 911 register_controllers(void) 912 { 913 struct trid_entry *trid_entry; 914 915 printf("Initializing NVMe Controllers\n"); 916 917 TAILQ_FOREACH(trid_entry, &g_trid_list, tailq) { 918 if (spdk_nvme_probe(&trid_entry->trid, trid_entry, probe_cb, attach_cb, NULL) != 0) { 919 fprintf(stderr, "spdk_nvme_probe() failed for transport address '%s'\n", 920 trid_entry->trid.traddr); 921 return -1; 922 } 923 } 924 925 return 0; 926 } 927 928 static void 929 unregister_controllers(void) 930 { 931 struct ctrlr_entry *entry = g_controllers; 932 933 while (entry) { 934 struct ctrlr_entry *next = entry->next; 935 spdk_nvme_detach(entry->ctrlr); 936 free(entry); 937 entry = next; 938 } 939 } 940 941 static int 942 associate_master_worker_with_ctrlr(void) 943 { 944 struct ctrlr_entry *entry = g_controllers; 945 struct worker_thread *worker = g_workers; 946 struct ctrlr_worker_ctx *ctrlr_ctx; 947 948 while (worker) { 949 if (worker->lcore == g_master_core) { 950 break; 951 } 952 worker = worker->next; 953 } 954 955 if (!worker) { 956 return -1; 957 } 958 959 while (entry) { 960 ctrlr_ctx = calloc(1, sizeof(struct ctrlr_worker_ctx)); 961 if (!ctrlr_ctx) { 962 return -1; 963 } 964 965 pthread_mutex_init(&ctrlr_ctx->mutex, NULL); 966 ctrlr_ctx->entry = entry; 967 ctrlr_ctx->ctrlr = entry->ctrlr; 968 ctrlr_ctx->next = worker->ctrlr_ctx; 969 worker->ctrlr_ctx = ctrlr_ctx; 970 971 entry = entry->next; 972 } 973 974 return 0; 975 } 976 977 static struct ctrlr_worker_ctx * 978 get_ctrlr_worker_ctx(struct spdk_nvme_ctrlr *ctrlr) 979 { 980 struct worker_thread *worker = g_workers; 981 struct ctrlr_worker_ctx *ctrlr_ctx; 982 983 while (worker != NULL) { 984 if (worker->lcore == g_master_core) { 985 break; 986 } 987 worker = worker->next; 988 } 989 990 if (!worker) { 991 return NULL; 992 } 993 994 ctrlr_ctx = worker->ctrlr_ctx; 995 996 while (ctrlr_ctx != NULL) { 997 if (ctrlr_ctx->ctrlr == ctrlr) { 998 return ctrlr_ctx; 999 } 1000 ctrlr_ctx = ctrlr_ctx->next; 1001 } 1002 1003 return NULL; 1004 } 1005 1006 static int 1007 associate_workers_with_ns(void) 1008 { 1009 struct ns_entry *entry = g_namespaces; 1010 struct worker_thread *worker = g_workers; 1011 struct ns_worker_ctx *ns_ctx; 1012 int i, count; 1013 1014 count = g_num_namespaces > g_num_workers ? g_num_namespaces : g_num_workers; 1015 1016 for (i = 0; i < count; i++) { 1017 if (entry == NULL) { 1018 break; 1019 } 1020 1021 ns_ctx = calloc(1, sizeof(struct ns_worker_ctx)); 1022 if (!ns_ctx) { 1023 return -1; 1024 } 1025 1026 printf("Associating %s with lcore %d\n", entry->name, worker->lcore); 1027 ns_ctx->entry = entry; 1028 ns_ctx->ctrlr_ctx = get_ctrlr_worker_ctx(entry->ctrlr); 1029 if (!ns_ctx->ctrlr_ctx) { 1030 free(ns_ctx); 1031 return -1; 1032 } 1033 1034 ns_ctx->next = worker->ns_ctx; 1035 worker->ns_ctx = ns_ctx; 1036 1037 worker = worker->next; 1038 if (worker == NULL) { 1039 worker = g_workers; 1040 } 1041 1042 entry = entry->next; 1043 if (entry == NULL) { 1044 entry = g_namespaces; 1045 } 1046 } 1047 1048 return 0; 1049 } 1050 1051 int main(int argc, char **argv) 1052 { 1053 int rc; 1054 struct worker_thread *worker, *master_worker; 1055 struct spdk_env_opts opts; 1056 1057 rc = parse_args(argc, argv); 1058 if (rc != 0) { 1059 return rc; 1060 } 1061 1062 spdk_env_opts_init(&opts); 1063 opts.name = "abort"; 1064 opts.shm_id = g_shm_id; 1065 if (g_core_mask) { 1066 opts.core_mask = g_core_mask; 1067 } 1068 1069 if (g_dpdk_mem) { 1070 opts.mem_size = g_dpdk_mem; 1071 } 1072 if (g_no_pci) { 1073 opts.no_pci = g_no_pci; 1074 } 1075 if (spdk_env_init(&opts) < 0) { 1076 fprintf(stderr, "Unable to initialize SPDK env\n"); 1077 rc = -1; 1078 goto cleanup; 1079 } 1080 1081 g_tsc_rate = spdk_get_ticks_hz(); 1082 1083 if (register_workers() != 0) { 1084 rc = -1; 1085 goto cleanup; 1086 } 1087 1088 if (register_controllers() != 0) { 1089 rc = -1; 1090 goto cleanup; 1091 } 1092 1093 if (g_warn) { 1094 printf("WARNING: Some requested NVMe devices were skipped\n"); 1095 } 1096 1097 if (g_num_namespaces == 0) { 1098 fprintf(stderr, "No valid NVMe controllers found\n"); 1099 goto cleanup; 1100 } 1101 1102 if (associate_master_worker_with_ctrlr() != 0) { 1103 rc = -1; 1104 goto cleanup; 1105 } 1106 1107 if (associate_workers_with_ns() != 0) { 1108 rc = -1; 1109 goto cleanup; 1110 } 1111 1112 printf("Initialization complete. Launching workers.\n"); 1113 1114 /* Launch all of the slave workers */ 1115 g_master_core = spdk_env_get_current_core(); 1116 master_worker = NULL; 1117 worker = g_workers; 1118 while (worker != NULL) { 1119 if (worker->lcore != g_master_core) { 1120 spdk_env_thread_launch_pinned(worker->lcore, work_fn, worker); 1121 } else { 1122 assert(master_worker == NULL); 1123 master_worker = worker; 1124 } 1125 worker = worker->next; 1126 } 1127 1128 assert(master_worker != NULL); 1129 rc = work_fn(master_worker); 1130 1131 spdk_env_thread_wait_all(); 1132 1133 cleanup: 1134 unregister_trids(); 1135 unregister_workers(); 1136 unregister_namespaces(); 1137 unregister_controllers(); 1138 1139 if (rc != 0) { 1140 fprintf(stderr, "%s: errors occured\n", argv[0]); 1141 } 1142 1143 return rc; 1144 } 1145