xref: /plan9/sys/src/libgeometry/arith3.c (revision 219b2ee8daee37f4aad58d63f21287faa8e4ffdc)
1 #include <u.h>
2 #include <libc.h>
3 #include <libg.h>
4 #include <geometry.h>
5 /*
6  * Routines whose names end in 3 work on points in Affine 3-space.
7  * They ignore w in all arguments and produce w=1 in all results.
8  * Routines whose names end in 4 work on points in Projective 3-space.
9  */
10 Point3 add3(Point3 a, Point3 b){
11 	return (Point3){a.x+b.x, a.y+b.y, a.z+b.z, 1.};
12 }
13 Point3 sub3(Point3 a, Point3 b){
14 	return (Point3){a.x-b.x, a.y-b.y, a.z-b.z, 1.};
15 }
16 Point3 neg3(Point3 a){
17 	return (Point3){-a.x, -a.y, -a.z, 1.};
18 }
19 Point3 div3(Point3 a, double b){
20 	return (Point3){a.x/b, a.y/b, a.z/b, 1.};
21 }
22 Point3 mul3(Point3 a, double b){
23 	return (Point3){a.x*b, a.y*b, a.z*b, 1.};
24 }
25 int eqpt3(Point3 p, Point3 q){
26 	return p.x==q.x && p.y==q.y && p.z==q.z;
27 }
28 /*
29  * Are these points closer than eps, in a relative sense
30  */
31 int closept3(Point3 p, Point3 q, double eps){
32 	return 2.*dist3(p, q)<eps*(len3(p)+len3(q));
33 }
34 double dot3(Point3 p, Point3 q){
35 	return p.x*q.x+p.y*q.y+p.z*q.z;
36 }
37 Point3 cross3(Point3 p, Point3 q){
38 	return (Point3){p.y*q.z-p.z*q.y, p.z*q.x-p.x*q.z, p.x*q.y-p.y*q.x, 1.};
39 }
40 double len3(Point3 p){
41 	return sqrt(p.x*p.x+p.y*p.y+p.z*p.z);
42 }
43 double dist3(Point3 p, Point3 q){
44 	p.x-=q.x;
45 	p.y-=q.y;
46 	p.z-=q.z;
47 	return sqrt(p.x*p.x+p.y*p.y+p.z*p.z);
48 }
49 Point3 unit3(Point3 p){
50 	double len=sqrt(p.x*p.x+p.y*p.y+p.z*p.z);
51 	return (Point3){p.x/len, p.y/len, p.z/len, 1.};
52 }
53 Point3 midpt3(Point3 p, Point3 q){
54 	return (Point3){.5*(p.x+q.x), .5*(p.y+q.y), .5*(p.z+q.z), 1.};
55 }
56 Point3 lerp3(Point3 p, Point3 q, double alpha){
57 	return (Point3){p.x+(q.x-p.x)*alpha, p.y+(q.y-p.y)*alpha, p.z+(q.z-p.z)*alpha, 1.};
58 }
59 /*
60  * Reflect point p in the line joining p0 and p1
61  */
62 Point3 reflect3(Point3 p, Point3 p0, Point3 p1){
63 	Point3 a, b;
64 	a=sub3(p, p0);
65 	b=sub3(p1, p0);
66 	return add3(a, mul3(b, 2*dot3(a, b)/dot3(b, b)));
67 }
68 /*
69  * Return the nearest point on segment [p0,p1] to point testp
70  */
71 Point3 nearseg3(Point3 p0, Point3 p1, Point3 testp){
72 	double num, den;
73 	Point3 q, r;
74 	q=sub3(p1, p0);
75 	r=sub3(testp, p0);
76 	num=dot3(q, r);;
77 	if(num<=0) return p0;
78 	den=dot3(q, q);
79 	if(num>=den) return p1;
80 	return add3(p0, mul3(q, num/den));
81 }
82 /*
83  * distance from point p to segment [p0,p1]
84  */
85 #define	SMALL	1e-8	/* what should this value be? */
86 double pldist3(Point3 p, Point3 p0, Point3 p1){
87 	Point3 d, e;
88 	double dd, de, dsq;
89 	d=sub3(p1, p0);
90 	e=sub3(p, p0);
91 	dd=dot3(d, d);
92 	de=dot3(d, e);
93 	if(dd<SMALL*SMALL) return len3(e);
94 	dsq=dot3(e, e)-de*de/dd;
95 	if(dsq<SMALL*SMALL) return 0;
96 	return sqrt(dsq);
97 }
98 /*
99  * vdiv3(a, b) is the magnitude of the projection of a onto b
100  * measured in units of the length of b.
101  * vrem3(a, b) is the component of a perpendicular to b.
102  */
103 double vdiv3(Point3 a, Point3 b){
104 	return (a.x*b.x+a.y*b.y+a.z*b.z)/(b.x*b.x+b.y*b.y+b.z*b.z);
105 }
106 Point3 vrem3(Point3 a, Point3 b){
107 	double quo=(a.x*b.x+a.y*b.y+a.z*b.z)/(b.x*b.x+b.y*b.y+b.z*b.z);
108 	return (Point3){a.x-b.x*quo, a.y-b.y*quo, a.z-b.z*quo, 1.};
109 }
110 /*
111  * Compute face (plane) with given normal, containing a given point
112  */
113 Point3 pn2f3(Point3 p, Point3 n){
114 	return (Point3){n.x, n.y, n.z, -dot3(p, n)};
115 }
116 /*
117  * Compute face containing three points
118  */
119 Point3 ppp2f3(Point3 p0, Point3 p1, Point3 p2){
120 	Point3 p01, p02;
121 	p01=sub3(p1, p0);
122 	p02=sub3(p2, p0);
123 	return pn2f3(p0, cross3(p01, p02));
124 }
125 /*
126  * Compute point common to three faces.
127  * Cramer's rule, yuk.
128  */
129 Point3 fff2p3(Point3 f0, Point3 f1, Point3 f2){
130 	double det, x, y, z;
131 	det=dot3(f0, cross3(f1, f2));
132 	if(fabs(det)<SMALL) return (Point3){0,0,0,0};	/* parallel planes, bogus answer */
133 	x=f0.w*(f2.y*f1.z-f1.y*f2.z)+f1.w*(f0.y*f2.z-f2.y*f0.z)+f2.w*(f1.y*f0.z-f0.y*f1.z);
134 	y=f0.w*(f2.z*f1.x-f1.z*f2.x)+f1.w*(f0.z*f2.x-f2.z*f0.x)+f2.w*(f1.z*f0.x-f0.z*f1.x);
135 	z=f0.w*(f2.x*f1.y-f1.x*f2.y)+f1.w*(f0.x*f2.y-f2.x*f0.y)+f2.w*(f1.x*f0.y-f0.x*f1.y);
136 	return (Point3){x/det, y/det, z/det, 1.};
137 }
138 /*
139  * pdiv4 does perspective division to convert a projective point to affine coordinates.
140  */
141 Point3 pdiv4(Point3 a){
142 	if(a.w==0) return a;
143 	return (Point3){a.x/a.w, a.y/a.w, a.z/a.w, 1.};
144 }
145 Point3 add4(Point3 a, Point3 b){
146 	return (Point3){a.x+b.x, a.y+b.y, a.z+b.z, a.w+b.w};
147 }
148 Point3 sub4(Point3 a, Point3 b){
149 	return (Point3){a.x-b.x, a.y-b.y, a.z-b.z, a.w-b.w};
150 }
151