xref: /plan9/sys/src/ape/lib/ap/stdio/strtod.c (revision 7dd7cddf99dd7472612f1413b4da293630e6b1bc)
1 #include "fconv.h"
2 
3 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines (dmg).
4  *
5  * This strtod returns a nearest machine number to the input decimal
6  * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
7  * broken by the IEEE round-even rule.  Otherwise ties are broken by
8  * biased rounding (add half and chop).
9  *
10  * Inspired loosely by William D. Clinger's paper "How to Read Floating
11  * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
12  *
13  * Modifications:
14  *
15  *	1. We only require IEEE, IBM, or VAX double-precision
16  *		arithmetic (not IEEE double-extended).
17  *	2. We get by with floating-point arithmetic in a case that
18  *		Clinger missed -- when we're computing d * 10^n
19  *		for a small integer d and the integer n is not too
20  *		much larger than 22 (the maximum integer k for which
21  *		we can represent 10^k exactly), we may be able to
22  *		compute (d*10^k) * 10^(e-k) with just one roundoff.
23  *	3. Rather than a bit-at-a-time adjustment of the binary
24  *		result in the hard case, we use floating-point
25  *		arithmetic to determine the adjustment to within
26  *		one bit; only in really hard cases do we need to
27  *		compute a second residual.
28  *	4. Because of 3., we don't need a large table of powers of 10
29  *		for ten-to-e (just some small tables, e.g. of 10^k
30  *		for 0 <= k <= 22).
31  */
32 
33 #ifdef RND_PRODQUOT
34 #define rounded_product(a,b) a = rnd_prod(a, b)
35 #define rounded_quotient(a,b) a = rnd_quot(a, b)
36 extern double rnd_prod(double, double), rnd_quot(double, double);
37 #else
38 #define rounded_product(a,b) a *= b
39 #define rounded_quotient(a,b) a /= b
40 #endif
41 
42  static double
43 ulp(double xarg)
44 {
45 	register long L;
46 	Dul a;
47 	Dul x;
48 
49 	x.d = xarg;
50 	L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
51 #ifndef Sudden_Underflow
52 	if (L > 0) {
53 #endif
54 #ifdef IBM
55 		L |= Exp_msk1 >> 4;
56 #endif
57 		word0(a) = L;
58 		word1(a) = 0;
59 #ifndef Sudden_Underflow
60 		}
61 	else {
62 		L = -L >> Exp_shift;
63 		if (L < Exp_shift) {
64 			word0(a) = 0x80000 >> L;
65 			word1(a) = 0;
66 			}
67 		else {
68 			word0(a) = 0;
69 			L -= Exp_shift;
70 			word1(a) = L >= 31 ? 1 : 1 << 31 - L;
71 			}
72 		}
73 #endif
74 	return a.d;
75 	}
76 
77  static Bigint *
78 s2b(CONST char *s, int nd0, int nd, unsigned long y9)
79 {
80 	Bigint *b;
81 	int i, k;
82 	long x, y;
83 
84 	x = (nd + 8) / 9;
85 	for(k = 0, y = 1; x > y; y <<= 1, k++) ;
86 #ifdef Pack_32
87 	b = Balloc(k);
88 	b->x[0] = y9;
89 	b->wds = 1;
90 #else
91 	b = Balloc(k+1);
92 	b->x[0] = y9 & 0xffff;
93 	b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
94 #endif
95 
96 	i = 9;
97 	if (9 < nd0) {
98 		s += 9;
99 		do b = multadd(b, 10, *s++ - '0');
100 			while(++i < nd0);
101 		s++;
102 		}
103 	else
104 		s += 10;
105 	for(; i < nd; i++)
106 		b = multadd(b, 10, *s++ - '0');
107 	return b;
108 	}
109 
110  static double
111 b2d(Bigint *a, int *e)
112 {
113 	unsigned long *xa, *xa0, w, y, z;
114 	int k;
115 	Dul d;
116 #ifdef VAX
117 	unsigned long d0, d1;
118 #else
119 #define d0 word0(d)
120 #define d1 word1(d)
121 #endif
122 
123 	xa0 = a->x;
124 	xa = xa0 + a->wds;
125 	y = *--xa;
126 #ifdef DEBUG
127 	if (!y) Bug("zero y in b2d");
128 #endif
129 	k = hi0bits(y);
130 	*e = 32 - k;
131 #ifdef Pack_32
132 	if (k < Ebits) {
133 		d0 = Exp_1 | y >> Ebits - k;
134 		w = xa > xa0 ? *--xa : 0;
135 		d1 = y << (32-Ebits) + k | w >> Ebits - k;
136 		goto ret_d;
137 		}
138 	z = xa > xa0 ? *--xa : 0;
139 	if (k -= Ebits) {
140 		d0 = Exp_1 | y << k | z >> 32 - k;
141 		y = xa > xa0 ? *--xa : 0;
142 		d1 = z << k | y >> 32 - k;
143 		}
144 	else {
145 		d0 = Exp_1 | y;
146 		d1 = z;
147 		}
148 #else
149 	if (k < Ebits + 16) {
150 		z = xa > xa0 ? *--xa : 0;
151 		d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
152 		w = xa > xa0 ? *--xa : 0;
153 		y = xa > xa0 ? *--xa : 0;
154 		d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
155 		goto ret_d;
156 		}
157 	z = xa > xa0 ? *--xa : 0;
158 	w = xa > xa0 ? *--xa : 0;
159 	k -= Ebits + 16;
160 	d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
161 	y = xa > xa0 ? *--xa : 0;
162 	d1 = w << k + 16 | y << k;
163 #endif
164  ret_d:
165 #ifdef VAX
166 	word0(d) = d0 >> 16 | d0 << 16;
167 	word1(d) = d1 >> 16 | d1 << 16;
168 #else
169 #undef d0
170 #undef d1
171 #endif
172 	return d.d;
173 	}
174 
175  static double
176 ratio(Bigint *a, Bigint *b)
177 {
178 	Dul da, db;
179 	int k, ka, kb;
180 
181 	da.d = b2d(a, &ka);
182 	db.d = b2d(b, &kb);
183 #ifdef Pack_32
184 	k = ka - kb + 32*(a->wds - b->wds);
185 #else
186 	k = ka - kb + 16*(a->wds - b->wds);
187 #endif
188 #ifdef IBM
189 	if (k > 0) {
190 		word0(da) += (k >> 2)*Exp_msk1;
191 		if (k &= 3)
192 			da *= 1 << k;
193 		}
194 	else {
195 		k = -k;
196 		word0(db) += (k >> 2)*Exp_msk1;
197 		if (k &= 3)
198 			db *= 1 << k;
199 		}
200 #else
201 	if (k > 0)
202 		word0(da) += k*Exp_msk1;
203 	else {
204 		k = -k;
205 		word0(db) += k*Exp_msk1;
206 		}
207 #endif
208 	return da.d / db.d;
209 	}
210 
211  double
212 strtod(CONST char *s00, char **se)
213 {
214 	int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
215 		 e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
216 	CONST char *s, *s0, *s1;
217 	double aadj, aadj1, adj;
218 	Dul rv, rv0;
219 	long L;
220 	unsigned long y, z;
221 	Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
222 	sign = nz0 = nz = 0;
223 	rv.d = 0.;
224 	for(s = s00;;s++) switch(*s) {
225 		case '-':
226 			sign = 1;
227 			/* no break */
228 		case '+':
229 			if (*++s)
230 				goto break2;
231 			/* no break */
232 		case 0:
233 			s = s00;
234 			goto ret;
235 		case '\t':
236 		case '\n':
237 		case '\v':
238 		case '\f':
239 		case '\r':
240 		case ' ':
241 			continue;
242 		default:
243 			goto break2;
244 		}
245  break2:
246 	if (*s == '0') {
247 		nz0 = 1;
248 		while(*++s == '0') ;
249 		if (!*s)
250 			goto ret;
251 		}
252 	s0 = s;
253 	y = z = 0;
254 	for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
255 		if (nd < 9)
256 			y = 10*y + c - '0';
257 		else if (nd < 16)
258 			z = 10*z + c - '0';
259 	nd0 = nd;
260 	if (c == '.') {
261 		c = *++s;
262 		if (!nd) {
263 			for(; c == '0'; c = *++s)
264 				nz++;
265 			if (c > '0' && c <= '9') {
266 				s0 = s;
267 				nf += nz;
268 				nz = 0;
269 				goto have_dig;
270 				}
271 			goto dig_done;
272 			}
273 		for(; c >= '0' && c <= '9'; c = *++s) {
274  have_dig:
275 			nz++;
276 			if (c -= '0') {
277 				nf += nz;
278 				for(i = 1; i < nz; i++)
279 					if (nd++ < 9)
280 						y *= 10;
281 					else if (nd <= DBL_DIG + 1)
282 						z *= 10;
283 				if (nd++ < 9)
284 					y = 10*y + c;
285 				else if (nd <= DBL_DIG + 1)
286 					z = 10*z + c;
287 				nz = 0;
288 				}
289 			}
290 		}
291  dig_done:
292 	e = 0;
293 	if (c == 'e' || c == 'E') {
294 		if (!nd && !nz && !nz0) {
295 			s = s00;
296 			goto ret;
297 			}
298 		s00 = s;
299 		esign = 0;
300 		switch(c = *++s) {
301 			case '-':
302 				esign = 1;
303 			case '+':
304 				c = *++s;
305 			}
306 		if (c >= '0' && c <= '9') {
307 			while(c == '0')
308 				c = *++s;
309 			if (c > '0' && c <= '9') {
310 				e = c - '0';
311 				s1 = s;
312 				while((c = *++s) >= '0' && c <= '9')
313 					e = 10*e + c - '0';
314 				if (s - s1 > 8)
315 					/* Avoid confusion from exponents
316 					 * so large that e might overflow.
317 					 */
318 					e = 9999999;
319 				if (esign)
320 					e = -e;
321 				}
322 			else
323 				e = 0;
324 			}
325 		else
326 			s = s00;
327 		}
328 	if (!nd) {
329 		if (!nz && !nz0)
330 			s = s00;
331 		goto ret;
332 		}
333 	e1 = e -= nf;
334 
335 	/* Now we have nd0 digits, starting at s0, followed by a
336 	 * decimal point, followed by nd-nd0 digits.  The number we're
337 	 * after is the integer represented by those digits times
338 	 * 10**e */
339 
340 	if (!nd0)
341 		nd0 = nd;
342 	k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
343 	rv.d = y;
344 	if (k > 9)
345 		rv.d = tens[k - 9] * rv.d + z;
346 	bd0 = 0;
347 	if (nd <= DBL_DIG
348 #ifndef RND_PRODQUOT
349 		&& FLT_ROUNDS == 1
350 #endif
351 			) {
352 		if (!e)
353 			goto ret;
354 		if (e > 0) {
355 			if (e <= Ten_pmax) {
356 #ifdef VAX
357 				goto vax_ovfl_check;
358 #else
359 				/* rv = */ rounded_product(rv.d, tens[e]);
360 				goto ret;
361 #endif
362 				}
363 			i = DBL_DIG - nd;
364 			if (e <= Ten_pmax + i) {
365 				/* A fancier test would sometimes let us do
366 				 * this for larger i values.
367 				 */
368 				e -= i;
369 				rv.d *= tens[i];
370 #ifdef VAX
371 				/* VAX exponent range is so narrow we must
372 				 * worry about overflow here...
373 				 */
374  vax_ovfl_check:
375 				word0(rv) -= P*Exp_msk1;
376 				/* rv = */ rounded_product(rv.d, tens[e]);
377 				if ((word0(rv) & Exp_mask)
378 				 > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
379 					goto ovfl;
380 				word0(rv) += P*Exp_msk1;
381 #else
382 				/* rv = */ rounded_product(rv.d, tens[e]);
383 #endif
384 				goto ret;
385 				}
386 			}
387 		else if (e >= -Ten_pmax) {
388 			/* rv = */ rounded_quotient(rv.d, tens[-e]);
389 			goto ret;
390 			}
391 		}
392 	e1 += nd - k;
393 
394 	/* Get starting approximation = rv * 10**e1 */
395 
396 	if (e1 > 0) {
397 		if (i = e1 & 15)
398 			rv.d *= tens[i];
399 		if (e1 &= ~15) {
400 			if (e1 > DBL_MAX_10_EXP) {
401  ovfl:
402 				errno = ERANGE;
403 				rv.d = HUGE_VAL;
404 				if (bd0)
405 					goto retfree;
406 				goto ret;
407 				}
408 			if (e1 >>= 4) {
409 				for(j = 0; e1 > 1; j++, e1 >>= 1)
410 					if (e1 & 1)
411 						rv.d *= bigtens[j];
412 			/* The last multiplication could overflow. */
413 				word0(rv) -= P*Exp_msk1;
414 				rv.d *= bigtens[j];
415 				if ((z = word0(rv) & Exp_mask)
416 				 > Exp_msk1*(DBL_MAX_EXP+Bias-P))
417 					goto ovfl;
418 				if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
419 					/* set to largest number */
420 					/* (Can't trust DBL_MAX) */
421 					word0(rv) = Big0;
422 					word1(rv) = Big1;
423 					}
424 				else
425 					word0(rv) += P*Exp_msk1;
426 				}
427 
428 			}
429 		}
430 	else if (e1 < 0) {
431 		e1 = -e1;
432 		if (i = e1 & 15)
433 			rv.d /= tens[i];
434 		if (e1 &= ~15) {
435 			e1 >>= 4;
436 			if (e1 >= 1 << n_bigtens)
437 				goto undfl;
438 			for(j = 0; e1 > 1; j++, e1 >>= 1)
439 				if (e1 & 1)
440 					rv.d *= tinytens[j];
441 			/* The last multiplication could underflow. */
442 			rv0.d = rv.d;
443 			rv.d *= tinytens[j];
444 			if (rv.d == 0) {
445 				rv.d = 2.*rv0.d;
446 				rv.d *= tinytens[j];
447 				if (rv.d == 0) {
448  undfl:
449 					rv.d = 0.;
450 					errno = ERANGE;
451 					if (bd0)
452 						goto retfree;
453 					goto ret;
454 					}
455 				word0(rv) = Tiny0;
456 				word1(rv) = Tiny1;
457 				/* The refinement below will clean
458 				 * this approximation up.
459 				 */
460 				}
461 			}
462 		}
463 
464 	/* Now the hard part -- adjusting rv to the correct value.*/
465 
466 	/* Put digits into bd: true value = bd * 10^e */
467 
468 	bd0 = s2b(s0, nd0, nd, y);
469 
470 	for(;;) {
471 		bd = Balloc(bd0->k);
472 		Bcopy(bd, bd0);
473 		bb = d2b(rv.d, &bbe, &bbbits);	/* rv = bb * 2^bbe */
474 		bs = i2b(1);
475 
476 		if (e >= 0) {
477 			bb2 = bb5 = 0;
478 			bd2 = bd5 = e;
479 			}
480 		else {
481 			bb2 = bb5 = -e;
482 			bd2 = bd5 = 0;
483 			}
484 		if (bbe >= 0)
485 			bb2 += bbe;
486 		else
487 			bd2 -= bbe;
488 		bs2 = bb2;
489 #ifdef Sudden_Underflow
490 #ifdef IBM
491 		j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
492 #else
493 		j = P + 1 - bbbits;
494 #endif
495 #else
496 		i = bbe + bbbits - 1;	/* logb(rv) */
497 		if (i < Emin)	/* denormal */
498 			j = bbe + (P-Emin);
499 		else
500 			j = P + 1 - bbbits;
501 #endif
502 		bb2 += j;
503 		bd2 += j;
504 		i = bb2 < bd2 ? bb2 : bd2;
505 		if (i > bs2)
506 			i = bs2;
507 		if (i > 0) {
508 			bb2 -= i;
509 			bd2 -= i;
510 			bs2 -= i;
511 			}
512 		if (bb5 > 0) {
513 			bs = pow5mult(bs, bb5);
514 			bb1 = mult(bs, bb);
515 			Bfree(bb);
516 			bb = bb1;
517 			}
518 		if (bb2 > 0)
519 			bb = lshift(bb, bb2);
520 		if (bd5 > 0)
521 			bd = pow5mult(bd, bd5);
522 		if (bd2 > 0)
523 			bd = lshift(bd, bd2);
524 		if (bs2 > 0)
525 			bs = lshift(bs, bs2);
526 		delta = diff(bb, bd);
527 		dsign = delta->sign;
528 		delta->sign = 0;
529 		i = cmp(delta, bs);
530 		if (i < 0) {
531 			/* Error is less than half an ulp -- check for
532 			 * special case of mantissa a power of two.
533 			 */
534 			if (dsign || word1(rv) || word0(rv) & Bndry_mask)
535 				break;
536 			delta = lshift(delta,Log2P);
537 			if (cmp(delta, bs) > 0)
538 				goto drop_down;
539 			break;
540 			}
541 		if (i == 0) {
542 			/* exactly half-way between */
543 			if (dsign) {
544 				if ((word0(rv) & Bndry_mask1) == Bndry_mask1
545 				 &&  word1(rv) == 0xffffffff) {
546 					/*boundary case -- increment exponent*/
547 					word0(rv) = (word0(rv) & Exp_mask)
548 						+ Exp_msk1
549 #ifdef IBM
550 						| Exp_msk1 >> 4
551 #endif
552 						;
553 					word1(rv) = 0;
554 					break;
555 					}
556 				}
557 			else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
558  drop_down:
559 				/* boundary case -- decrement exponent */
560 #ifdef Sudden_Underflow
561 				L = word0(rv) & Exp_mask;
562 #ifdef IBM
563 				if (L <  Exp_msk1)
564 #else
565 				if (L <= Exp_msk1)
566 #endif
567 					goto undfl;
568 				L -= Exp_msk1;
569 #else
570 				L = (word0(rv) & Exp_mask) - Exp_msk1;
571 #endif
572 				word0(rv) = L | Bndry_mask1;
573 				word1(rv) = 0xffffffff;
574 #ifdef IBM
575 				goto cont;
576 #else
577 				break;
578 #endif
579 				}
580 #ifndef ROUND_BIASED
581 			if (!(word1(rv) & LSB))
582 				break;
583 #endif
584 			if (dsign)
585 				rv.d += ulp(rv.d);
586 #ifndef ROUND_BIASED
587 			else {
588 				rv.d -= ulp(rv.d);
589 #ifndef Sudden_Underflow
590 				if (rv.d == 0)
591 					goto undfl;
592 #endif
593 				}
594 #endif
595 			break;
596 			}
597 		if ((aadj = ratio(delta, bs)) <= 2.) {
598 			if (dsign)
599 				aadj = aadj1 = 1.;
600 			else if (word1(rv) || word0(rv) & Bndry_mask) {
601 #ifndef Sudden_Underflow
602 				if (word1(rv) == Tiny1 && !word0(rv))
603 					goto undfl;
604 #endif
605 				aadj = 1.;
606 				aadj1 = -1.;
607 				}
608 			else {
609 				/* special case -- power of FLT_RADIX to be */
610 				/* rounded down... */
611 
612 				if (aadj < 2./FLT_RADIX)
613 					aadj = 1./FLT_RADIX;
614 				else
615 					aadj *= 0.5;
616 				aadj1 = -aadj;
617 				}
618 			}
619 		else {
620 			aadj *= 0.5;
621 			aadj1 = dsign ? aadj : -aadj;
622 #ifdef Check_FLT_ROUNDS
623 			switch(FLT_ROUNDS) {
624 				case 2: /* towards +infinity */
625 					aadj1 -= 0.5;
626 					break;
627 				case 0: /* towards 0 */
628 				case 3: /* towards -infinity */
629 					aadj1 += 0.5;
630 				}
631 #else
632 			if (FLT_ROUNDS == 0)
633 				aadj1 += 0.5;
634 #endif
635 			}
636 		y = word0(rv) & Exp_mask;
637 
638 		/* Check for overflow */
639 
640 		if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
641 			rv0.d = rv.d;
642 			word0(rv) -= P*Exp_msk1;
643 			adj = aadj1 * ulp(rv.d);
644 			rv.d += adj;
645 			if ((word0(rv) & Exp_mask) >=
646 					Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
647 				if (word0(rv0) == Big0 && word1(rv0) == Big1)
648 					goto ovfl;
649 				word0(rv) = Big0;
650 				word1(rv) = Big1;
651 				goto cont;
652 				}
653 			else
654 				word0(rv) += P*Exp_msk1;
655 			}
656 		else {
657 #ifdef Sudden_Underflow
658 			if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
659 				rv0.d = rv.d;
660 				word0(rv) += P*Exp_msk1;
661 				adj = aadj1 * ulp(rv.d);
662 				rv.d += adj;
663 #ifdef IBM
664 				if ((word0(rv) & Exp_mask) <  P*Exp_msk1)
665 #else
666 				if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
667 #endif
668 					{
669 					if (word0(rv0) == Tiny0
670 					 && word1(rv0) == Tiny1)
671 						goto undfl;
672 					word0(rv) = Tiny0;
673 					word1(rv) = Tiny1;
674 					goto cont;
675 					}
676 				else
677 					word0(rv) -= P*Exp_msk1;
678 				}
679 			else {
680 				adj = aadj1 * ulp(rv.d);
681 				rv.d += adj;
682 				}
683 #else
684 			/* Compute adj so that the IEEE rounding rules will
685 			 * correctly round rv + adj in some half-way cases.
686 			 * If rv * ulp(rv) is denormalized (i.e.,
687 			 * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
688 			 * trouble from bits lost to denormalization;
689 			 * example: 1.2e-307 .
690 			 */
691 			if (y <= (P-1)*Exp_msk1 && aadj >= 1.) {
692 				aadj1 = (double)(int)(aadj + 0.5);
693 				if (!dsign)
694 					aadj1 = -aadj1;
695 				}
696 			adj = aadj1 * ulp(rv.d);
697 			rv.d += adj;
698 #endif
699 			}
700 		z = word0(rv) & Exp_mask;
701 		if (y == z) {
702 			/* Can we stop now? */
703 			L = aadj;
704 			aadj -= L;
705 			/* The tolerances below are conservative. */
706 			if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
707 				if (aadj < .4999999 || aadj > .5000001)
708 					break;
709 				}
710 			else if (aadj < .4999999/FLT_RADIX)
711 				break;
712 			}
713  cont:
714 		Bfree(bb);
715 		Bfree(bd);
716 		Bfree(bs);
717 		Bfree(delta);
718 		}
719  retfree:
720 	Bfree(bb);
721 	Bfree(bd);
722 	Bfree(bs);
723 	Bfree(bd0);
724 	Bfree(delta);
725  ret:
726 	if (se)
727 		*se = (char *)s;
728 	return sign ? -rv.d : rv.d;
729 	}
730