1 /* Extended regular expression matching and search library, version 2 0.12. (Implements POSIX draft P10003.2/D11.2, except for 3 internationalization features.) 4 5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998 Free Software Foundation, Inc. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2, or (at your option) 10 any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, 20 USA. */ 21 22 /* AIX requires this to be the first thing in the file. */ 23 #if defined (_AIX) && !defined (REGEX_MALLOC) 24 #pragma alloca 25 #endif 26 27 #undef _GNU_SOURCE 28 #define _GNU_SOURCE 29 30 #ifdef emacs 31 /* Converts the pointer to the char to BEG-based offset from the start. */ 32 #define PTR_TO_OFFSET(d) \ 33 POS_AS_IN_BUFFER (MATCHING_IN_FIRST_STRING \ 34 ? (d) - string1 : (d) - (string2 - size1)) 35 #define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object))) 36 #else 37 #define PTR_TO_OFFSET(d) 0 38 #endif 39 40 #include "config.h" 41 42 /* We need this for `regex.h', and perhaps for the Emacs include files. */ 43 #include <sys/types.h> 44 45 /* This is for other GNU distributions with internationalized messages. */ 46 #if HAVE_LIBINTL_H || defined (_LIBC) 47 # include <libintl.h> 48 #else 49 # define gettext(msgid) (msgid) 50 #endif 51 52 #ifndef gettext_noop 53 /* This define is so xgettext can find the internationalizable 54 strings. */ 55 #define gettext_noop(String) String 56 #endif 57 58 /* The `emacs' switch turns on certain matching commands 59 that make sense only in Emacs. */ 60 #ifdef emacs 61 62 #include "lisp.h" 63 #include "buffer.h" 64 65 /* Make syntax table lookup grant data in gl_state. */ 66 #define SYNTAX_ENTRY_VIA_PROPERTY 67 68 #include "syntax.h" 69 #include "charset.h" 70 #include "category.h" 71 72 #define malloc xmalloc 73 #define realloc xrealloc 74 #define free xfree 75 76 #else /* not emacs */ 77 78 /* If we are not linking with Emacs proper, 79 we can't use the relocating allocator 80 even if config.h says that we can. */ 81 #undef REL_ALLOC 82 83 #if defined (STDC_HEADERS) || defined (_LIBC) 84 #include <stdlib.h> 85 #else 86 char *malloc (); 87 char *realloc (); 88 #endif 89 90 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow. 91 If nothing else has been done, use the method below. */ 92 #ifdef INHIBIT_STRING_HEADER 93 #if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY)) 94 #if !defined (bzero) && !defined (bcopy) 95 #undef INHIBIT_STRING_HEADER 96 #endif 97 #endif 98 #endif 99 100 /* This is the normal way of making sure we have a bcopy and a bzero. 101 This is used in most programs--a few other programs avoid this 102 by defining INHIBIT_STRING_HEADER. */ 103 #ifndef INHIBIT_STRING_HEADER 104 #if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC) 105 #include <string.h> 106 #ifndef bcmp 107 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n)) 108 #endif 109 #ifndef bcopy 110 #define bcopy(s, d, n) memcpy ((d), (s), (n)) 111 #endif 112 #ifndef bzero 113 #define bzero(s, n) memset ((s), 0, (n)) 114 #endif 115 #else 116 #include <strings.h> 117 #endif 118 #endif 119 120 /* Define the syntax stuff for \<, \>, etc. */ 121 122 /* This must be nonzero for the wordchar and notwordchar pattern 123 commands in re_match_2. */ 124 #ifndef Sword 125 #define Sword 1 126 #endif 127 128 #ifdef SWITCH_ENUM_BUG 129 #define SWITCH_ENUM_CAST(x) ((int)(x)) 130 #else 131 #define SWITCH_ENUM_CAST(x) (x) 132 #endif 133 134 #ifdef SYNTAX_TABLE 135 136 extern char *re_syntax_table; 137 138 #else /* not SYNTAX_TABLE */ 139 140 /* How many characters in the character set. */ 141 #define CHAR_SET_SIZE 256 142 143 static char re_syntax_table[CHAR_SET_SIZE]; 144 145 static void 146 init_syntax_once () 147 { 148 register int c; 149 static int done = 0; 150 151 if (done) 152 return; 153 154 bzero (re_syntax_table, sizeof re_syntax_table); 155 156 for (c = 'a'; c <= 'z'; c++) 157 re_syntax_table[c] = Sword; 158 159 for (c = 'A'; c <= 'Z'; c++) 160 re_syntax_table[c] = Sword; 161 162 for (c = '0'; c <= '9'; c++) 163 re_syntax_table[c] = Sword; 164 165 re_syntax_table['_'] = Sword; 166 167 done = 1; 168 } 169 170 #endif /* not SYNTAX_TABLE */ 171 172 #define SYNTAX(c) re_syntax_table[c] 173 174 /* Dummy macros for non-Emacs environments. */ 175 #define BASE_LEADING_CODE_P(c) (0) 176 #define WORD_BOUNDARY_P(c1, c2) (0) 177 #define CHAR_HEAD_P(p) (1) 178 #define SINGLE_BYTE_CHAR_P(c) (1) 179 #define SAME_CHARSET_P(c1, c2) (1) 180 #define MULTIBYTE_FORM_LENGTH(p, s) (1) 181 #define STRING_CHAR(p, s) (*(p)) 182 #define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p)) 183 #define GET_CHAR_AFTER_2(c, p, str1, end1, str2, end2) \ 184 (c = ((p) == (end1) ? *(str2) : *(p))) 185 #define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \ 186 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1))) 187 #endif /* not emacs */ 188 189 /* Get the interface, including the syntax bits. */ 190 #include "regex.h" 191 192 /* isalpha etc. are used for the character classes. */ 193 #include <ctype.h> 194 195 /* Jim Meyering writes: 196 197 "... Some ctype macros are valid only for character codes that 198 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when 199 using /bin/cc or gcc but without giving an ansi option). So, all 200 ctype uses should be through macros like ISPRINT... If 201 STDC_HEADERS is defined, then autoconf has verified that the ctype 202 macros don't need to be guarded with references to isascii. ... 203 Defining isascii to 1 should let any compiler worth its salt 204 eliminate the && through constant folding." */ 205 206 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII)) 207 #define ISASCII(c) 1 208 #else 209 #define ISASCII(c) isascii(c) 210 #endif 211 212 #ifdef isblank 213 #define ISBLANK(c) (ISASCII (c) && isblank (c)) 214 #else 215 #define ISBLANK(c) ((c) == ' ' || (c) == '\t') 216 #endif 217 #ifdef isgraph 218 #define ISGRAPH(c) (ISASCII (c) && isgraph (c)) 219 #else 220 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c)) 221 #endif 222 223 #define ISPRINT(c) (ISASCII (c) && isprint (c)) 224 #define ISDIGIT(c) (ISASCII (c) && isdigit (c)) 225 #define ISALNUM(c) (ISASCII (c) && isalnum (c)) 226 #define ISALPHA(c) (ISASCII (c) && isalpha (c)) 227 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c)) 228 #define ISLOWER(c) (ISASCII (c) && islower (c)) 229 #define ISPUNCT(c) (ISASCII (c) && ispunct (c)) 230 #define ISSPACE(c) (ISASCII (c) && isspace (c)) 231 #define ISUPPER(c) (ISASCII (c) && isupper (c)) 232 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c)) 233 234 #ifndef NULL 235 #define NULL (void *)0 236 #endif 237 238 /* We remove any previous definition of `SIGN_EXTEND_CHAR', 239 since ours (we hope) works properly with all combinations of 240 machines, compilers, `char' and `unsigned char' argument types. 241 (Per Bothner suggested the basic approach.) */ 242 #undef SIGN_EXTEND_CHAR 243 #if __STDC__ 244 #define SIGN_EXTEND_CHAR(c) ((signed char) (c)) 245 #else /* not __STDC__ */ 246 /* As in Harbison and Steele. */ 247 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128) 248 #endif 249 250 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we 251 use `alloca' instead of `malloc'. This is because using malloc in 252 re_search* or re_match* could cause memory leaks when C-g is used in 253 Emacs; also, malloc is slower and causes storage fragmentation. On 254 the other hand, malloc is more portable, and easier to debug. 255 256 Because we sometimes use alloca, some routines have to be macros, 257 not functions -- `alloca'-allocated space disappears at the end of the 258 function it is called in. */ 259 260 #ifdef REGEX_MALLOC 261 262 #define REGEX_ALLOCATE malloc 263 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize) 264 #define REGEX_FREE free 265 266 #else /* not REGEX_MALLOC */ 267 268 /* Emacs already defines alloca, sometimes. */ 269 #ifndef alloca 270 271 /* Make alloca work the best possible way. */ 272 #ifdef __GNUC__ 273 #define alloca __builtin_alloca 274 #else /* not __GNUC__ */ 275 #if HAVE_ALLOCA_H 276 #include <alloca.h> 277 #else /* not __GNUC__ or HAVE_ALLOCA_H */ 278 #if 0 /* It is a bad idea to declare alloca. We always cast the result. */ 279 #ifndef _AIX /* Already did AIX, up at the top. */ 280 char *alloca (); 281 #endif /* not _AIX */ 282 #endif 283 #endif /* not HAVE_ALLOCA_H */ 284 #endif /* not __GNUC__ */ 285 286 #endif /* not alloca */ 287 288 #define REGEX_ALLOCATE alloca 289 290 /* Assumes a `char *destination' variable. */ 291 #define REGEX_REALLOCATE(source, osize, nsize) \ 292 (destination = (char *) alloca (nsize), \ 293 bcopy (source, destination, osize), \ 294 destination) 295 296 /* No need to do anything to free, after alloca. */ 297 #define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */ 298 299 #endif /* not REGEX_MALLOC */ 300 301 /* Define how to allocate the failure stack. */ 302 303 #if defined (REL_ALLOC) && defined (REGEX_MALLOC) 304 305 #define REGEX_ALLOCATE_STACK(size) \ 306 r_alloc (&failure_stack_ptr, (size)) 307 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \ 308 r_re_alloc (&failure_stack_ptr, (nsize)) 309 #define REGEX_FREE_STACK(ptr) \ 310 r_alloc_free (&failure_stack_ptr) 311 312 #else /* not using relocating allocator */ 313 314 #ifdef REGEX_MALLOC 315 316 #define REGEX_ALLOCATE_STACK malloc 317 #define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize) 318 #define REGEX_FREE_STACK free 319 320 #else /* not REGEX_MALLOC */ 321 322 #define REGEX_ALLOCATE_STACK alloca 323 324 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \ 325 REGEX_REALLOCATE (source, osize, nsize) 326 /* No need to explicitly free anything. */ 327 #define REGEX_FREE_STACK(arg) 328 329 #endif /* not REGEX_MALLOC */ 330 #endif /* not using relocating allocator */ 331 332 333 /* True if `size1' is non-NULL and PTR is pointing anywhere inside 334 `string1' or just past its end. This works if PTR is NULL, which is 335 a good thing. */ 336 #define FIRST_STRING_P(ptr) \ 337 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1) 338 339 /* (Re)Allocate N items of type T using malloc, or fail. */ 340 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t))) 341 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t))) 342 #define RETALLOC_IF(addr, n, t) \ 343 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t) 344 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t))) 345 346 #define BYTEWIDTH 8 /* In bits. */ 347 348 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0)) 349 350 #undef MAX 351 #undef MIN 352 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 353 #define MIN(a, b) ((a) < (b) ? (a) : (b)) 354 355 typedef char boolean; 356 #define false 0 357 #define true 1 358 359 static int re_match_2_internal (); 360 361 /* These are the command codes that appear in compiled regular 362 expressions. Some opcodes are followed by argument bytes. A 363 command code can specify any interpretation whatsoever for its 364 arguments. Zero bytes may appear in the compiled regular expression. */ 365 366 typedef enum 367 { 368 no_op = 0, 369 370 /* Succeed right away--no more backtracking. */ 371 succeed, 372 373 /* Followed by one byte giving n, then by n literal bytes. */ 374 exactn, 375 376 /* Matches any (more or less) character. */ 377 anychar, 378 379 /* Matches any one char belonging to specified set. First 380 following byte is number of bitmap bytes. Then come bytes 381 for a bitmap saying which chars are in. Bits in each byte 382 are ordered low-bit-first. A character is in the set if its 383 bit is 1. A character too large to have a bit in the map is 384 automatically not in the set. */ 385 charset, 386 387 /* Same parameters as charset, but match any character that is 388 not one of those specified. */ 389 charset_not, 390 391 /* Start remembering the text that is matched, for storing in a 392 register. Followed by one byte with the register number, in 393 the range 0 to one less than the pattern buffer's re_nsub 394 field. Then followed by one byte with the number of groups 395 inner to this one. (This last has to be part of the 396 start_memory only because we need it in the on_failure_jump 397 of re_match_2.) */ 398 start_memory, 399 400 /* Stop remembering the text that is matched and store it in a 401 memory register. Followed by one byte with the register 402 number, in the range 0 to one less than `re_nsub' in the 403 pattern buffer, and one byte with the number of inner groups, 404 just like `start_memory'. (We need the number of inner 405 groups here because we don't have any easy way of finding the 406 corresponding start_memory when we're at a stop_memory.) */ 407 stop_memory, 408 409 /* Match a duplicate of something remembered. Followed by one 410 byte containing the register number. */ 411 duplicate, 412 413 /* Fail unless at beginning of line. */ 414 begline, 415 416 /* Fail unless at end of line. */ 417 endline, 418 419 /* Succeeds if at beginning of buffer (if emacs) or at beginning 420 of string to be matched (if not). */ 421 begbuf, 422 423 /* Analogously, for end of buffer/string. */ 424 endbuf, 425 426 /* Followed by two byte relative address to which to jump. */ 427 jump, 428 429 /* Same as jump, but marks the end of an alternative. */ 430 jump_past_alt, 431 432 /* Followed by two-byte relative address of place to resume at 433 in case of failure. */ 434 on_failure_jump, 435 436 /* Like on_failure_jump, but pushes a placeholder instead of the 437 current string position when executed. */ 438 on_failure_keep_string_jump, 439 440 /* Throw away latest failure point and then jump to following 441 two-byte relative address. */ 442 pop_failure_jump, 443 444 /* Change to pop_failure_jump if know won't have to backtrack to 445 match; otherwise change to jump. This is used to jump 446 back to the beginning of a repeat. If what follows this jump 447 clearly won't match what the repeat does, such that we can be 448 sure that there is no use backtracking out of repetitions 449 already matched, then we change it to a pop_failure_jump. 450 Followed by two-byte address. */ 451 maybe_pop_jump, 452 453 /* Jump to following two-byte address, and push a dummy failure 454 point. This failure point will be thrown away if an attempt 455 is made to use it for a failure. A `+' construct makes this 456 before the first repeat. Also used as an intermediary kind 457 of jump when compiling an alternative. */ 458 dummy_failure_jump, 459 460 /* Push a dummy failure point and continue. Used at the end of 461 alternatives. */ 462 push_dummy_failure, 463 464 /* Followed by two-byte relative address and two-byte number n. 465 After matching N times, jump to the address upon failure. */ 466 succeed_n, 467 468 /* Followed by two-byte relative address, and two-byte number n. 469 Jump to the address N times, then fail. */ 470 jump_n, 471 472 /* Set the following two-byte relative address to the 473 subsequent two-byte number. The address *includes* the two 474 bytes of number. */ 475 set_number_at, 476 477 wordchar, /* Matches any word-constituent character. */ 478 notwordchar, /* Matches any char that is not a word-constituent. */ 479 480 wordbeg, /* Succeeds if at word beginning. */ 481 wordend, /* Succeeds if at word end. */ 482 483 wordbound, /* Succeeds if at a word boundary. */ 484 notwordbound /* Succeeds if not at a word boundary. */ 485 486 #ifdef emacs 487 ,before_dot, /* Succeeds if before point. */ 488 at_dot, /* Succeeds if at point. */ 489 after_dot, /* Succeeds if after point. */ 490 491 /* Matches any character whose syntax is specified. Followed by 492 a byte which contains a syntax code, e.g., Sword. */ 493 syntaxspec, 494 495 /* Matches any character whose syntax is not that specified. */ 496 notsyntaxspec, 497 498 /* Matches any character whose category-set contains the specified 499 category. The operator is followed by a byte which contains a 500 category code (mnemonic ASCII character). */ 501 categoryspec, 502 503 /* Matches any character whose category-set does not contain the 504 specified category. The operator is followed by a byte which 505 contains the category code (mnemonic ASCII character). */ 506 notcategoryspec 507 #endif /* emacs */ 508 } re_opcode_t; 509 510 /* Common operations on the compiled pattern. */ 511 512 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */ 513 514 #define STORE_NUMBER(destination, number) \ 515 do { \ 516 (destination)[0] = (number) & 0377; \ 517 (destination)[1] = (number) >> 8; \ 518 } while (0) 519 520 /* Same as STORE_NUMBER, except increment DESTINATION to 521 the byte after where the number is stored. Therefore, DESTINATION 522 must be an lvalue. */ 523 524 #define STORE_NUMBER_AND_INCR(destination, number) \ 525 do { \ 526 STORE_NUMBER (destination, number); \ 527 (destination) += 2; \ 528 } while (0) 529 530 /* Put into DESTINATION a number stored in two contiguous bytes starting 531 at SOURCE. */ 532 533 #define EXTRACT_NUMBER(destination, source) \ 534 do { \ 535 (destination) = *(source) & 0377; \ 536 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \ 537 } while (0) 538 539 #ifdef DEBUG 540 static void 541 extract_number (dest, source) 542 int *dest; 543 unsigned char *source; 544 { 545 int temp = SIGN_EXTEND_CHAR (*(source + 1)); 546 *dest = *source & 0377; 547 *dest += temp << 8; 548 } 549 550 #ifndef EXTRACT_MACROS /* To debug the macros. */ 551 #undef EXTRACT_NUMBER 552 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src) 553 #endif /* not EXTRACT_MACROS */ 554 555 #endif /* DEBUG */ 556 557 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number. 558 SOURCE must be an lvalue. */ 559 560 #define EXTRACT_NUMBER_AND_INCR(destination, source) \ 561 do { \ 562 EXTRACT_NUMBER (destination, source); \ 563 (source) += 2; \ 564 } while (0) 565 566 #ifdef DEBUG 567 static void 568 extract_number_and_incr (destination, source) 569 int *destination; 570 unsigned char **source; 571 { 572 extract_number (destination, *source); 573 *source += 2; 574 } 575 576 #ifndef EXTRACT_MACROS 577 #undef EXTRACT_NUMBER_AND_INCR 578 #define EXTRACT_NUMBER_AND_INCR(dest, src) \ 579 extract_number_and_incr (&dest, &src) 580 #endif /* not EXTRACT_MACROS */ 581 582 #endif /* DEBUG */ 583 584 /* Store a multibyte character in three contiguous bytes starting 585 DESTINATION, and increment DESTINATION to the byte after where the 586 character is stored. Therefore, DESTINATION must be an lvalue. */ 587 588 #define STORE_CHARACTER_AND_INCR(destination, character) \ 589 do { \ 590 (destination)[0] = (character) & 0377; \ 591 (destination)[1] = ((character) >> 8) & 0377; \ 592 (destination)[2] = (character) >> 16; \ 593 (destination) += 3; \ 594 } while (0) 595 596 /* Put into DESTINATION a character stored in three contiguous bytes 597 starting at SOURCE. */ 598 599 #define EXTRACT_CHARACTER(destination, source) \ 600 do { \ 601 (destination) = ((source)[0] \ 602 | ((source)[1] << 8) \ 603 | ((source)[2] << 16)); \ 604 } while (0) 605 606 607 /* Macros for charset. */ 608 609 /* Size of bitmap of charset P in bytes. P is a start of charset, 610 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */ 611 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F) 612 613 /* Nonzero if charset P has range table. */ 614 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80) 615 616 /* Return the address of range table of charset P. But not the start 617 of table itself, but the before where the number of ranges is 618 stored. `2 +' means to skip re_opcode_t and size of bitmap. */ 619 #define CHARSET_RANGE_TABLE(p) (&(p)[2 + CHARSET_BITMAP_SIZE (p)]) 620 621 /* Test if C is listed in the bitmap of charset P. */ 622 #define CHARSET_LOOKUP_BITMAP(p, c) \ 623 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \ 624 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH))) 625 626 /* Return the address of end of RANGE_TABLE. COUNT is number of 627 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2' 628 is start of range and end of range. `* 3' is size of each start 629 and end. */ 630 #define CHARSET_RANGE_TABLE_END(range_table, count) \ 631 ((range_table) + (count) * 2 * 3) 632 633 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in. 634 COUNT is number of ranges in RANGE_TABLE. */ 635 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \ 636 do \ 637 { \ 638 int range_start, range_end; \ 639 unsigned char *p; \ 640 unsigned char *range_table_end \ 641 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \ 642 \ 643 for (p = (range_table); p < range_table_end; p += 2 * 3) \ 644 { \ 645 EXTRACT_CHARACTER (range_start, p); \ 646 EXTRACT_CHARACTER (range_end, p + 3); \ 647 \ 648 if (range_start <= (c) && (c) <= range_end) \ 649 { \ 650 (not) = !(not); \ 651 break; \ 652 } \ 653 } \ 654 } \ 655 while (0) 656 657 /* Test if C is in range table of CHARSET. The flag NOT is negated if 658 C is listed in it. */ 659 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \ 660 do \ 661 { \ 662 /* Number of ranges in range table. */ \ 663 int count; \ 664 unsigned char *range_table = CHARSET_RANGE_TABLE (charset); \ 665 \ 666 EXTRACT_NUMBER_AND_INCR (count, range_table); \ 667 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \ 668 } \ 669 while (0) 670 671 /* If DEBUG is defined, Regex prints many voluminous messages about what 672 it is doing (if the variable `debug' is nonzero). If linked with the 673 main program in `iregex.c', you can enter patterns and strings 674 interactively. And if linked with the main program in `main.c' and 675 the other test files, you can run the already-written tests. */ 676 677 #ifdef DEBUG 678 679 /* We use standard I/O for debugging. */ 680 #include <stdio.h> 681 682 /* It is useful to test things that ``must'' be true when debugging. */ 683 #include <assert.h> 684 685 static int debug = 0; 686 687 #define DEBUG_STATEMENT(e) e 688 #define DEBUG_PRINT1(x) if (debug) printf (x) 689 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2) 690 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3) 691 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4) 692 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \ 693 if (debug) print_partial_compiled_pattern (s, e) 694 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \ 695 if (debug) print_double_string (w, s1, sz1, s2, sz2) 696 697 698 /* Print the fastmap in human-readable form. */ 699 700 void 701 print_fastmap (fastmap) 702 char *fastmap; 703 { 704 unsigned was_a_range = 0; 705 unsigned i = 0; 706 707 while (i < (1 << BYTEWIDTH)) 708 { 709 if (fastmap[i++]) 710 { 711 was_a_range = 0; 712 putchar (i - 1); 713 while (i < (1 << BYTEWIDTH) && fastmap[i]) 714 { 715 was_a_range = 1; 716 i++; 717 } 718 if (was_a_range) 719 { 720 printf ("-"); 721 putchar (i - 1); 722 } 723 } 724 } 725 putchar ('\n'); 726 } 727 728 729 /* Print a compiled pattern string in human-readable form, starting at 730 the START pointer into it and ending just before the pointer END. */ 731 732 void 733 print_partial_compiled_pattern (start, end) 734 unsigned char *start; 735 unsigned char *end; 736 { 737 int mcnt, mcnt2; 738 unsigned char *p = start; 739 unsigned char *pend = end; 740 741 if (start == NULL) 742 { 743 printf ("(null)\n"); 744 return; 745 } 746 747 /* Loop over pattern commands. */ 748 while (p < pend) 749 { 750 printf ("%d:\t", p - start); 751 752 switch ((re_opcode_t) *p++) 753 { 754 case no_op: 755 printf ("/no_op"); 756 break; 757 758 case exactn: 759 mcnt = *p++; 760 printf ("/exactn/%d", mcnt); 761 do 762 { 763 putchar ('/'); 764 putchar (*p++); 765 } 766 while (--mcnt); 767 break; 768 769 case start_memory: 770 mcnt = *p++; 771 printf ("/start_memory/%d/%d", mcnt, *p++); 772 break; 773 774 case stop_memory: 775 mcnt = *p++; 776 printf ("/stop_memory/%d/%d", mcnt, *p++); 777 break; 778 779 case duplicate: 780 printf ("/duplicate/%d", *p++); 781 break; 782 783 case anychar: 784 printf ("/anychar"); 785 break; 786 787 case charset: 788 case charset_not: 789 { 790 register int c, last = -100; 791 register int in_range = 0; 792 793 printf ("/charset [%s", 794 (re_opcode_t) *(p - 1) == charset_not ? "^" : ""); 795 796 assert (p + *p < pend); 797 798 for (c = 0; c < 256; c++) 799 if (c / 8 < *p 800 && (p[1 + (c/8)] & (1 << (c % 8)))) 801 { 802 /* Are we starting a range? */ 803 if (last + 1 == c && ! in_range) 804 { 805 putchar ('-'); 806 in_range = 1; 807 } 808 /* Have we broken a range? */ 809 else if (last + 1 != c && in_range) 810 { 811 putchar (last); 812 in_range = 0; 813 } 814 815 if (! in_range) 816 putchar (c); 817 818 last = c; 819 } 820 821 if (in_range) 822 putchar (last); 823 824 putchar (']'); 825 826 p += 1 + *p; 827 } 828 break; 829 830 case begline: 831 printf ("/begline"); 832 break; 833 834 case endline: 835 printf ("/endline"); 836 break; 837 838 case on_failure_jump: 839 extract_number_and_incr (&mcnt, &p); 840 printf ("/on_failure_jump to %d", p + mcnt - start); 841 break; 842 843 case on_failure_keep_string_jump: 844 extract_number_and_incr (&mcnt, &p); 845 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start); 846 break; 847 848 case dummy_failure_jump: 849 extract_number_and_incr (&mcnt, &p); 850 printf ("/dummy_failure_jump to %d", p + mcnt - start); 851 break; 852 853 case push_dummy_failure: 854 printf ("/push_dummy_failure"); 855 break; 856 857 case maybe_pop_jump: 858 extract_number_and_incr (&mcnt, &p); 859 printf ("/maybe_pop_jump to %d", p + mcnt - start); 860 break; 861 862 case pop_failure_jump: 863 extract_number_and_incr (&mcnt, &p); 864 printf ("/pop_failure_jump to %d", p + mcnt - start); 865 break; 866 867 case jump_past_alt: 868 extract_number_and_incr (&mcnt, &p); 869 printf ("/jump_past_alt to %d", p + mcnt - start); 870 break; 871 872 case jump: 873 extract_number_and_incr (&mcnt, &p); 874 printf ("/jump to %d", p + mcnt - start); 875 break; 876 877 case succeed_n: 878 extract_number_and_incr (&mcnt, &p); 879 extract_number_and_incr (&mcnt2, &p); 880 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2); 881 break; 882 883 case jump_n: 884 extract_number_and_incr (&mcnt, &p); 885 extract_number_and_incr (&mcnt2, &p); 886 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2); 887 break; 888 889 case set_number_at: 890 extract_number_and_incr (&mcnt, &p); 891 extract_number_and_incr (&mcnt2, &p); 892 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2); 893 break; 894 895 case wordbound: 896 printf ("/wordbound"); 897 break; 898 899 case notwordbound: 900 printf ("/notwordbound"); 901 break; 902 903 case wordbeg: 904 printf ("/wordbeg"); 905 break; 906 907 case wordend: 908 printf ("/wordend"); 909 910 #ifdef emacs 911 case before_dot: 912 printf ("/before_dot"); 913 break; 914 915 case at_dot: 916 printf ("/at_dot"); 917 break; 918 919 case after_dot: 920 printf ("/after_dot"); 921 break; 922 923 case syntaxspec: 924 printf ("/syntaxspec"); 925 mcnt = *p++; 926 printf ("/%d", mcnt); 927 break; 928 929 case notsyntaxspec: 930 printf ("/notsyntaxspec"); 931 mcnt = *p++; 932 printf ("/%d", mcnt); 933 break; 934 #endif /* emacs */ 935 936 case wordchar: 937 printf ("/wordchar"); 938 break; 939 940 case notwordchar: 941 printf ("/notwordchar"); 942 break; 943 944 case begbuf: 945 printf ("/begbuf"); 946 break; 947 948 case endbuf: 949 printf ("/endbuf"); 950 break; 951 952 default: 953 printf ("?%d", *(p-1)); 954 } 955 956 putchar ('\n'); 957 } 958 959 printf ("%d:\tend of pattern.\n", p - start); 960 } 961 962 963 void 964 print_compiled_pattern (bufp) 965 struct re_pattern_buffer *bufp; 966 { 967 unsigned char *buffer = bufp->buffer; 968 969 print_partial_compiled_pattern (buffer, buffer + bufp->used); 970 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated); 971 972 if (bufp->fastmap_accurate && bufp->fastmap) 973 { 974 printf ("fastmap: "); 975 print_fastmap (bufp->fastmap); 976 } 977 978 printf ("re_nsub: %d\t", bufp->re_nsub); 979 printf ("regs_alloc: %d\t", bufp->regs_allocated); 980 printf ("can_be_null: %d\t", bufp->can_be_null); 981 printf ("newline_anchor: %d\n", bufp->newline_anchor); 982 printf ("no_sub: %d\t", bufp->no_sub); 983 printf ("not_bol: %d\t", bufp->not_bol); 984 printf ("not_eol: %d\t", bufp->not_eol); 985 printf ("syntax: %d\n", bufp->syntax); 986 /* Perhaps we should print the translate table? */ 987 } 988 989 990 void 991 print_double_string (where, string1, size1, string2, size2) 992 const char *where; 993 const char *string1; 994 const char *string2; 995 int size1; 996 int size2; 997 { 998 unsigned this_char; 999 1000 if (where == NULL) 1001 printf ("(null)"); 1002 else 1003 { 1004 if (FIRST_STRING_P (where)) 1005 { 1006 for (this_char = where - string1; this_char < size1; this_char++) 1007 putchar (string1[this_char]); 1008 1009 where = string2; 1010 } 1011 1012 for (this_char = where - string2; this_char < size2; this_char++) 1013 putchar (string2[this_char]); 1014 } 1015 } 1016 1017 #else /* not DEBUG */ 1018 1019 #undef assert 1020 #define assert(e) 1021 1022 #define DEBUG_STATEMENT(e) 1023 #define DEBUG_PRINT1(x) 1024 #define DEBUG_PRINT2(x1, x2) 1025 #define DEBUG_PRINT3(x1, x2, x3) 1026 #define DEBUG_PRINT4(x1, x2, x3, x4) 1027 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) 1028 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) 1029 1030 #endif /* not DEBUG */ 1031 1032 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can 1033 also be assigned to arbitrarily: each pattern buffer stores its own 1034 syntax, so it can be changed between regex compilations. */ 1035 /* This has no initializer because initialized variables in Emacs 1036 become read-only after dumping. */ 1037 reg_syntax_t re_syntax_options; 1038 1039 1040 /* Specify the precise syntax of regexps for compilation. This provides 1041 for compatibility for various utilities which historically have 1042 different, incompatible syntaxes. 1043 1044 The argument SYNTAX is a bit mask comprised of the various bits 1045 defined in regex.h. We return the old syntax. */ 1046 1047 reg_syntax_t 1048 re_set_syntax (syntax) 1049 reg_syntax_t syntax; 1050 { 1051 reg_syntax_t ret = re_syntax_options; 1052 1053 re_syntax_options = syntax; 1054 return ret; 1055 } 1056 1057 /* This table gives an error message for each of the error codes listed 1058 in regex.h. Obviously the order here has to be same as there. 1059 POSIX doesn't require that we do anything for REG_NOERROR, 1060 but why not be nice? */ 1061 1062 static const char *re_error_msgid[] = 1063 { 1064 gettext_noop ("Success"), /* REG_NOERROR */ 1065 gettext_noop ("No match"), /* REG_NOMATCH */ 1066 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */ 1067 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */ 1068 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */ 1069 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */ 1070 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */ 1071 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */ 1072 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */ 1073 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */ 1074 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */ 1075 gettext_noop ("Invalid range end"), /* REG_ERANGE */ 1076 gettext_noop ("Memory exhausted"), /* REG_ESPACE */ 1077 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */ 1078 gettext_noop ("Premature end of regular expression"), /* REG_EEND */ 1079 gettext_noop ("Regular expression too big"), /* REG_ESIZE */ 1080 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */ 1081 }; 1082 1083 /* Avoiding alloca during matching, to placate r_alloc. */ 1084 1085 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the 1086 searching and matching functions should not call alloca. On some 1087 systems, alloca is implemented in terms of malloc, and if we're 1088 using the relocating allocator routines, then malloc could cause a 1089 relocation, which might (if the strings being searched are in the 1090 ralloc heap) shift the data out from underneath the regexp 1091 routines. 1092 1093 Here's another reason to avoid allocation: Emacs 1094 processes input from X in a signal handler; processing X input may 1095 call malloc; if input arrives while a matching routine is calling 1096 malloc, then we're scrod. But Emacs can't just block input while 1097 calling matching routines; then we don't notice interrupts when 1098 they come in. So, Emacs blocks input around all regexp calls 1099 except the matching calls, which it leaves unprotected, in the 1100 faith that they will not malloc. */ 1101 1102 /* Normally, this is fine. */ 1103 #define MATCH_MAY_ALLOCATE 1104 1105 /* When using GNU C, we are not REALLY using the C alloca, no matter 1106 what config.h may say. So don't take precautions for it. */ 1107 #ifdef __GNUC__ 1108 #undef C_ALLOCA 1109 #endif 1110 1111 /* The match routines may not allocate if (1) they would do it with malloc 1112 and (2) it's not safe for them to use malloc. 1113 Note that if REL_ALLOC is defined, matching would not use malloc for the 1114 failure stack, but we would still use it for the register vectors; 1115 so REL_ALLOC should not affect this. */ 1116 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs) 1117 #undef MATCH_MAY_ALLOCATE 1118 #endif 1119 1120 1121 /* Failure stack declarations and macros; both re_compile_fastmap and 1122 re_match_2 use a failure stack. These have to be macros because of 1123 REGEX_ALLOCATE_STACK. */ 1124 1125 1126 /* Approximate number of failure points for which to initially allocate space 1127 when matching. If this number is exceeded, we allocate more 1128 space, so it is not a hard limit. */ 1129 #ifndef INIT_FAILURE_ALLOC 1130 #define INIT_FAILURE_ALLOC 20 1131 #endif 1132 1133 /* Roughly the maximum number of failure points on the stack. Would be 1134 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed. 1135 This is a variable only so users of regex can assign to it; we never 1136 change it ourselves. */ 1137 #if defined (MATCH_MAY_ALLOCATE) 1138 /* Note that 4400 is enough to cause a crash on Alpha OSF/1, 1139 whose default stack limit is 2mb. In order for a larger 1140 value to work reliably, you have to try to make it accord 1141 with the process stack limit. */ 1142 int re_max_failures = 40000; 1143 #else 1144 int re_max_failures = 4000; 1145 #endif 1146 1147 union fail_stack_elt 1148 { 1149 unsigned char *pointer; 1150 int integer; 1151 }; 1152 1153 typedef union fail_stack_elt fail_stack_elt_t; 1154 1155 typedef struct 1156 { 1157 fail_stack_elt_t *stack; 1158 unsigned size; 1159 unsigned avail; /* Offset of next open position. */ 1160 } fail_stack_type; 1161 1162 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0) 1163 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0) 1164 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size) 1165 1166 1167 /* Define macros to initialize and free the failure stack. 1168 Do `return -2' if the alloc fails. */ 1169 1170 #ifdef MATCH_MAY_ALLOCATE 1171 #define INIT_FAIL_STACK() \ 1172 do { \ 1173 fail_stack.stack = (fail_stack_elt_t *) \ 1174 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \ 1175 * sizeof (fail_stack_elt_t)); \ 1176 \ 1177 if (fail_stack.stack == NULL) \ 1178 return -2; \ 1179 \ 1180 fail_stack.size = INIT_FAILURE_ALLOC; \ 1181 fail_stack.avail = 0; \ 1182 } while (0) 1183 1184 #define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack) 1185 #else 1186 #define INIT_FAIL_STACK() \ 1187 do { \ 1188 fail_stack.avail = 0; \ 1189 } while (0) 1190 1191 #define RESET_FAIL_STACK() 1192 #endif 1193 1194 1195 /* Double the size of FAIL_STACK, up to a limit 1196 which allows approximately `re_max_failures' items. 1197 1198 Return 1 if succeeds, and 0 if either ran out of memory 1199 allocating space for it or it was already too large. 1200 1201 REGEX_REALLOCATE_STACK requires `destination' be declared. */ 1202 1203 /* Factor to increase the failure stack size by 1204 when we increase it. 1205 This used to be 2, but 2 was too wasteful 1206 because the old discarded stacks added up to as much space 1207 were as ultimate, maximum-size stack. */ 1208 #define FAIL_STACK_GROWTH_FACTOR 4 1209 1210 #define GROW_FAIL_STACK(fail_stack) \ 1211 (((fail_stack).size * sizeof (fail_stack_elt_t) \ 1212 >= re_max_failures * TYPICAL_FAILURE_SIZE) \ 1213 ? 0 \ 1214 : ((fail_stack).stack \ 1215 = (fail_stack_elt_t *) \ 1216 REGEX_REALLOCATE_STACK ((fail_stack).stack, \ 1217 (fail_stack).size * sizeof (fail_stack_elt_t), \ 1218 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \ 1219 ((fail_stack).size * sizeof (fail_stack_elt_t) \ 1220 * FAIL_STACK_GROWTH_FACTOR))), \ 1221 \ 1222 (fail_stack).stack == NULL \ 1223 ? 0 \ 1224 : ((fail_stack).size \ 1225 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \ 1226 ((fail_stack).size * sizeof (fail_stack_elt_t) \ 1227 * FAIL_STACK_GROWTH_FACTOR)) \ 1228 / sizeof (fail_stack_elt_t)), \ 1229 1))) 1230 1231 1232 /* Push pointer POINTER on FAIL_STACK. 1233 Return 1 if was able to do so and 0 if ran out of memory allocating 1234 space to do so. */ 1235 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \ 1236 ((FAIL_STACK_FULL () \ 1237 && !GROW_FAIL_STACK (FAIL_STACK)) \ 1238 ? 0 \ 1239 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \ 1240 1)) 1241 1242 /* Push a pointer value onto the failure stack. 1243 Assumes the variable `fail_stack'. Probably should only 1244 be called from within `PUSH_FAILURE_POINT'. */ 1245 #define PUSH_FAILURE_POINTER(item) \ 1246 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item) 1247 1248 /* This pushes an integer-valued item onto the failure stack. 1249 Assumes the variable `fail_stack'. Probably should only 1250 be called from within `PUSH_FAILURE_POINT'. */ 1251 #define PUSH_FAILURE_INT(item) \ 1252 fail_stack.stack[fail_stack.avail++].integer = (item) 1253 1254 /* Push a fail_stack_elt_t value onto the failure stack. 1255 Assumes the variable `fail_stack'. Probably should only 1256 be called from within `PUSH_FAILURE_POINT'. */ 1257 #define PUSH_FAILURE_ELT(item) \ 1258 fail_stack.stack[fail_stack.avail++] = (item) 1259 1260 /* These three POP... operations complement the three PUSH... operations. 1261 All assume that `fail_stack' is nonempty. */ 1262 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer 1263 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer 1264 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail] 1265 1266 /* Used to omit pushing failure point id's when we're not debugging. */ 1267 #ifdef DEBUG 1268 #define DEBUG_PUSH PUSH_FAILURE_INT 1269 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT () 1270 #else 1271 #define DEBUG_PUSH(item) 1272 #define DEBUG_POP(item_addr) 1273 #endif 1274 1275 1276 /* Push the information about the state we will need 1277 if we ever fail back to it. 1278 1279 Requires variables fail_stack, regstart, regend, reg_info, and 1280 num_regs be declared. GROW_FAIL_STACK requires `destination' be 1281 declared. 1282 1283 Does `return FAILURE_CODE' if runs out of memory. */ 1284 1285 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \ 1286 do { \ 1287 char *destination; \ 1288 /* Must be int, so when we don't save any registers, the arithmetic \ 1289 of 0 + -1 isn't done as unsigned. */ \ 1290 int this_reg; \ 1291 \ 1292 DEBUG_STATEMENT (failure_id++); \ 1293 DEBUG_STATEMENT (nfailure_points_pushed++); \ 1294 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \ 1295 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\ 1296 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\ 1297 \ 1298 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \ 1299 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \ 1300 \ 1301 /* Ensure we have enough space allocated for what we will push. */ \ 1302 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \ 1303 { \ 1304 if (!GROW_FAIL_STACK (fail_stack)) \ 1305 return failure_code; \ 1306 \ 1307 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \ 1308 (fail_stack).size); \ 1309 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\ 1310 } \ 1311 \ 1312 /* Push the info, starting with the registers. */ \ 1313 DEBUG_PRINT1 ("\n"); \ 1314 \ 1315 if (1) \ 1316 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \ 1317 this_reg++) \ 1318 { \ 1319 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \ 1320 DEBUG_STATEMENT (num_regs_pushed++); \ 1321 \ 1322 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ 1323 PUSH_FAILURE_POINTER (regstart[this_reg]); \ 1324 \ 1325 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ 1326 PUSH_FAILURE_POINTER (regend[this_reg]); \ 1327 \ 1328 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \ 1329 DEBUG_PRINT2 (" match_null=%d", \ 1330 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \ 1331 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \ 1332 DEBUG_PRINT2 (" matched_something=%d", \ 1333 MATCHED_SOMETHING (reg_info[this_reg])); \ 1334 DEBUG_PRINT2 (" ever_matched=%d", \ 1335 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \ 1336 DEBUG_PRINT1 ("\n"); \ 1337 PUSH_FAILURE_ELT (reg_info[this_reg].word); \ 1338 } \ 1339 \ 1340 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\ 1341 PUSH_FAILURE_INT (lowest_active_reg); \ 1342 \ 1343 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\ 1344 PUSH_FAILURE_INT (highest_active_reg); \ 1345 \ 1346 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \ 1347 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \ 1348 PUSH_FAILURE_POINTER (pattern_place); \ 1349 \ 1350 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \ 1351 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \ 1352 size2); \ 1353 DEBUG_PRINT1 ("'\n"); \ 1354 PUSH_FAILURE_POINTER (string_place); \ 1355 \ 1356 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \ 1357 DEBUG_PUSH (failure_id); \ 1358 } while (0) 1359 1360 /* This is the number of items that are pushed and popped on the stack 1361 for each register. */ 1362 #define NUM_REG_ITEMS 3 1363 1364 /* Individual items aside from the registers. */ 1365 #ifdef DEBUG 1366 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */ 1367 #else 1368 #define NUM_NONREG_ITEMS 4 1369 #endif 1370 1371 /* Estimate the size of data pushed by a typical failure stack entry. 1372 An estimate is all we need, because all we use this for 1373 is to choose a limit for how big to make the failure stack. */ 1374 1375 #define TYPICAL_FAILURE_SIZE 20 1376 1377 /* This is how many items we actually use for a failure point. 1378 It depends on the regexp. */ 1379 #define NUM_FAILURE_ITEMS \ 1380 (((0 \ 1381 ? 0 : highest_active_reg - lowest_active_reg + 1) \ 1382 * NUM_REG_ITEMS) \ 1383 + NUM_NONREG_ITEMS) 1384 1385 /* How many items can still be added to the stack without overflowing it. */ 1386 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail) 1387 1388 1389 /* Pops what PUSH_FAIL_STACK pushes. 1390 1391 We restore into the parameters, all of which should be lvalues: 1392 STR -- the saved data position. 1393 PAT -- the saved pattern position. 1394 LOW_REG, HIGH_REG -- the highest and lowest active registers. 1395 REGSTART, REGEND -- arrays of string positions. 1396 REG_INFO -- array of information about each subexpression. 1397 1398 Also assumes the variables `fail_stack' and (if debugging), `bufp', 1399 `pend', `string1', `size1', `string2', and `size2'. */ 1400 1401 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\ 1402 { \ 1403 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \ 1404 int this_reg; \ 1405 const unsigned char *string_temp; \ 1406 \ 1407 assert (!FAIL_STACK_EMPTY ()); \ 1408 \ 1409 /* Remove failure points and point to how many regs pushed. */ \ 1410 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \ 1411 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \ 1412 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \ 1413 \ 1414 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \ 1415 \ 1416 DEBUG_POP (&failure_id); \ 1417 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \ 1418 \ 1419 /* If the saved string location is NULL, it came from an \ 1420 on_failure_keep_string_jump opcode, and we want to throw away the \ 1421 saved NULL, thus retaining our current position in the string. */ \ 1422 string_temp = POP_FAILURE_POINTER (); \ 1423 if (string_temp != NULL) \ 1424 str = (const char *) string_temp; \ 1425 \ 1426 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \ 1427 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \ 1428 DEBUG_PRINT1 ("'\n"); \ 1429 \ 1430 pat = (unsigned char *) POP_FAILURE_POINTER (); \ 1431 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \ 1432 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \ 1433 \ 1434 /* Restore register info. */ \ 1435 high_reg = (unsigned) POP_FAILURE_INT (); \ 1436 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \ 1437 \ 1438 low_reg = (unsigned) POP_FAILURE_INT (); \ 1439 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \ 1440 \ 1441 if (1) \ 1442 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \ 1443 { \ 1444 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \ 1445 \ 1446 reg_info[this_reg].word = POP_FAILURE_ELT (); \ 1447 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \ 1448 \ 1449 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \ 1450 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ 1451 \ 1452 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \ 1453 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ 1454 } \ 1455 else \ 1456 { \ 1457 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \ 1458 { \ 1459 reg_info[this_reg].word.integer = 0; \ 1460 regend[this_reg] = 0; \ 1461 regstart[this_reg] = 0; \ 1462 } \ 1463 highest_active_reg = high_reg; \ 1464 } \ 1465 \ 1466 set_regs_matched_done = 0; \ 1467 DEBUG_STATEMENT (nfailure_points_popped++); \ 1468 } /* POP_FAILURE_POINT */ 1469 1470 1471 1472 /* Structure for per-register (a.k.a. per-group) information. 1473 Other register information, such as the 1474 starting and ending positions (which are addresses), and the list of 1475 inner groups (which is a bits list) are maintained in separate 1476 variables. 1477 1478 We are making a (strictly speaking) nonportable assumption here: that 1479 the compiler will pack our bit fields into something that fits into 1480 the type of `word', i.e., is something that fits into one item on the 1481 failure stack. */ 1482 1483 typedef union 1484 { 1485 fail_stack_elt_t word; 1486 struct 1487 { 1488 /* This field is one if this group can match the empty string, 1489 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */ 1490 #define MATCH_NULL_UNSET_VALUE 3 1491 unsigned match_null_string_p : 2; 1492 unsigned is_active : 1; 1493 unsigned matched_something : 1; 1494 unsigned ever_matched_something : 1; 1495 } bits; 1496 } register_info_type; 1497 1498 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p) 1499 #define IS_ACTIVE(R) ((R).bits.is_active) 1500 #define MATCHED_SOMETHING(R) ((R).bits.matched_something) 1501 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something) 1502 1503 1504 /* Call this when have matched a real character; it sets `matched' flags 1505 for the subexpressions which we are currently inside. Also records 1506 that those subexprs have matched. */ 1507 #define SET_REGS_MATCHED() \ 1508 do \ 1509 { \ 1510 if (!set_regs_matched_done) \ 1511 { \ 1512 unsigned r; \ 1513 set_regs_matched_done = 1; \ 1514 for (r = lowest_active_reg; r <= highest_active_reg; r++) \ 1515 { \ 1516 MATCHED_SOMETHING (reg_info[r]) \ 1517 = EVER_MATCHED_SOMETHING (reg_info[r]) \ 1518 = 1; \ 1519 } \ 1520 } \ 1521 } \ 1522 while (0) 1523 1524 /* Registers are set to a sentinel when they haven't yet matched. */ 1525 static char reg_unset_dummy; 1526 #define REG_UNSET_VALUE (®_unset_dummy) 1527 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE) 1528 1529 /* Subroutine declarations and macros for regex_compile. */ 1530 1531 static void store_op1 (), store_op2 (); 1532 static void insert_op1 (), insert_op2 (); 1533 static boolean at_begline_loc_p (), at_endline_loc_p (); 1534 static boolean group_in_compile_stack (); 1535 static reg_errcode_t compile_range (); 1536 1537 /* Fetch the next character in the uncompiled pattern---translating it 1538 if necessary. Also cast from a signed character in the constant 1539 string passed to us by the user to an unsigned char that we can use 1540 as an array index (in, e.g., `translate'). */ 1541 #ifndef PATFETCH 1542 #define PATFETCH(c) \ 1543 do {if (p == pend) return REG_EEND; \ 1544 c = (unsigned char) *p++; \ 1545 if (RE_TRANSLATE_P (translate)) c = RE_TRANSLATE (translate, c); \ 1546 } while (0) 1547 #endif 1548 1549 /* Fetch the next character in the uncompiled pattern, with no 1550 translation. */ 1551 #define PATFETCH_RAW(c) \ 1552 do {if (p == pend) return REG_EEND; \ 1553 c = (unsigned char) *p++; \ 1554 } while (0) 1555 1556 /* Go backwards one character in the pattern. */ 1557 #define PATUNFETCH p-- 1558 1559 1560 /* If `translate' is non-null, return translate[D], else just D. We 1561 cast the subscript to translate because some data is declared as 1562 `char *', to avoid warnings when a string constant is passed. But 1563 when we use a character as a subscript we must make it unsigned. */ 1564 #ifndef TRANSLATE 1565 #define TRANSLATE(d) \ 1566 (RE_TRANSLATE_P (translate) \ 1567 ? (unsigned) RE_TRANSLATE (translate, (unsigned) (d)) : (d)) 1568 #endif 1569 1570 1571 /* Macros for outputting the compiled pattern into `buffer'. */ 1572 1573 /* If the buffer isn't allocated when it comes in, use this. */ 1574 #define INIT_BUF_SIZE 32 1575 1576 /* Make sure we have at least N more bytes of space in buffer. */ 1577 #define GET_BUFFER_SPACE(n) \ 1578 while (b - bufp->buffer + (n) > bufp->allocated) \ 1579 EXTEND_BUFFER () 1580 1581 /* Make sure we have one more byte of buffer space and then add C to it. */ 1582 #define BUF_PUSH(c) \ 1583 do { \ 1584 GET_BUFFER_SPACE (1); \ 1585 *b++ = (unsigned char) (c); \ 1586 } while (0) 1587 1588 1589 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */ 1590 #define BUF_PUSH_2(c1, c2) \ 1591 do { \ 1592 GET_BUFFER_SPACE (2); \ 1593 *b++ = (unsigned char) (c1); \ 1594 *b++ = (unsigned char) (c2); \ 1595 } while (0) 1596 1597 1598 /* As with BUF_PUSH_2, except for three bytes. */ 1599 #define BUF_PUSH_3(c1, c2, c3) \ 1600 do { \ 1601 GET_BUFFER_SPACE (3); \ 1602 *b++ = (unsigned char) (c1); \ 1603 *b++ = (unsigned char) (c2); \ 1604 *b++ = (unsigned char) (c3); \ 1605 } while (0) 1606 1607 1608 /* Store a jump with opcode OP at LOC to location TO. We store a 1609 relative address offset by the three bytes the jump itself occupies. */ 1610 #define STORE_JUMP(op, loc, to) \ 1611 store_op1 (op, loc, (to) - (loc) - 3) 1612 1613 /* Likewise, for a two-argument jump. */ 1614 #define STORE_JUMP2(op, loc, to, arg) \ 1615 store_op2 (op, loc, (to) - (loc) - 3, arg) 1616 1617 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */ 1618 #define INSERT_JUMP(op, loc, to) \ 1619 insert_op1 (op, loc, (to) - (loc) - 3, b) 1620 1621 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */ 1622 #define INSERT_JUMP2(op, loc, to, arg) \ 1623 insert_op2 (op, loc, (to) - (loc) - 3, arg, b) 1624 1625 1626 /* This is not an arbitrary limit: the arguments which represent offsets 1627 into the pattern are two bytes long. So if 2^16 bytes turns out to 1628 be too small, many things would have to change. */ 1629 #define MAX_BUF_SIZE (1L << 16) 1630 1631 1632 /* Extend the buffer by twice its current size via realloc and 1633 reset the pointers that pointed into the old block to point to the 1634 correct places in the new one. If extending the buffer results in it 1635 being larger than MAX_BUF_SIZE, then flag memory exhausted. */ 1636 #define EXTEND_BUFFER() \ 1637 do { \ 1638 unsigned char *old_buffer = bufp->buffer; \ 1639 if (bufp->allocated == MAX_BUF_SIZE) \ 1640 return REG_ESIZE; \ 1641 bufp->allocated <<= 1; \ 1642 if (bufp->allocated > MAX_BUF_SIZE) \ 1643 bufp->allocated = MAX_BUF_SIZE; \ 1644 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\ 1645 if (bufp->buffer == NULL) \ 1646 return REG_ESPACE; \ 1647 /* If the buffer moved, move all the pointers into it. */ \ 1648 if (old_buffer != bufp->buffer) \ 1649 { \ 1650 b = (b - old_buffer) + bufp->buffer; \ 1651 begalt = (begalt - old_buffer) + bufp->buffer; \ 1652 if (fixup_alt_jump) \ 1653 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\ 1654 if (laststart) \ 1655 laststart = (laststart - old_buffer) + bufp->buffer; \ 1656 if (pending_exact) \ 1657 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \ 1658 } \ 1659 } while (0) 1660 1661 1662 /* Since we have one byte reserved for the register number argument to 1663 {start,stop}_memory, the maximum number of groups we can report 1664 things about is what fits in that byte. */ 1665 #define MAX_REGNUM 255 1666 1667 /* But patterns can have more than `MAX_REGNUM' registers. We just 1668 ignore the excess. */ 1669 typedef unsigned regnum_t; 1670 1671 1672 /* Macros for the compile stack. */ 1673 1674 /* Since offsets can go either forwards or backwards, this type needs to 1675 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */ 1676 typedef int pattern_offset_t; 1677 1678 typedef struct 1679 { 1680 pattern_offset_t begalt_offset; 1681 pattern_offset_t fixup_alt_jump; 1682 pattern_offset_t inner_group_offset; 1683 pattern_offset_t laststart_offset; 1684 regnum_t regnum; 1685 } compile_stack_elt_t; 1686 1687 1688 typedef struct 1689 { 1690 compile_stack_elt_t *stack; 1691 unsigned size; 1692 unsigned avail; /* Offset of next open position. */ 1693 } compile_stack_type; 1694 1695 1696 #define INIT_COMPILE_STACK_SIZE 32 1697 1698 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0) 1699 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size) 1700 1701 /* The next available element. */ 1702 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail]) 1703 1704 1705 /* Structure to manage work area for range table. */ 1706 struct range_table_work_area 1707 { 1708 int *table; /* actual work area. */ 1709 int allocated; /* allocated size for work area in bytes. */ 1710 int used; /* actually used size in words. */ 1711 }; 1712 1713 /* Make sure that WORK_AREA can hold more N multibyte characters. */ 1714 #define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n) \ 1715 do { \ 1716 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \ 1717 { \ 1718 (work_area).allocated += 16 * sizeof (int); \ 1719 if ((work_area).table) \ 1720 (work_area).table \ 1721 = (int *) realloc ((work_area).table, (work_area).allocated); \ 1722 else \ 1723 (work_area).table \ 1724 = (int *) malloc ((work_area).allocated); \ 1725 if ((work_area).table == 0) \ 1726 FREE_STACK_RETURN (REG_ESPACE); \ 1727 } \ 1728 } while (0) 1729 1730 /* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */ 1731 #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \ 1732 do { \ 1733 EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2); \ 1734 (work_area).table[(work_area).used++] = (range_start); \ 1735 (work_area).table[(work_area).used++] = (range_end); \ 1736 } while (0) 1737 1738 /* Free allocated memory for WORK_AREA. */ 1739 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \ 1740 do { \ 1741 if ((work_area).table) \ 1742 free ((work_area).table); \ 1743 } while (0) 1744 1745 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0) 1746 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used) 1747 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i]) 1748 1749 1750 /* Set the bit for character C in a list. */ 1751 #define SET_LIST_BIT(c) \ 1752 (b[((unsigned char) (c)) / BYTEWIDTH] \ 1753 |= 1 << (((unsigned char) c) % BYTEWIDTH)) 1754 1755 1756 /* Get the next unsigned number in the uncompiled pattern. */ 1757 #define GET_UNSIGNED_NUMBER(num) \ 1758 { if (p != pend) \ 1759 { \ 1760 PATFETCH (c); \ 1761 while (ISDIGIT (c)) \ 1762 { \ 1763 if (num < 0) \ 1764 num = 0; \ 1765 num = num * 10 + c - '0'; \ 1766 if (p == pend) \ 1767 break; \ 1768 PATFETCH (c); \ 1769 } \ 1770 } \ 1771 } 1772 1773 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */ 1774 1775 #define IS_CHAR_CLASS(string) \ 1776 (STREQ (string, "alpha") || STREQ (string, "upper") \ 1777 || STREQ (string, "lower") || STREQ (string, "digit") \ 1778 || STREQ (string, "alnum") || STREQ (string, "xdigit") \ 1779 || STREQ (string, "space") || STREQ (string, "print") \ 1780 || STREQ (string, "punct") || STREQ (string, "graph") \ 1781 || STREQ (string, "cntrl") || STREQ (string, "blank")) 1782 1783 #ifndef MATCH_MAY_ALLOCATE 1784 1785 /* If we cannot allocate large objects within re_match_2_internal, 1786 we make the fail stack and register vectors global. 1787 The fail stack, we grow to the maximum size when a regexp 1788 is compiled. 1789 The register vectors, we adjust in size each time we 1790 compile a regexp, according to the number of registers it needs. */ 1791 1792 static fail_stack_type fail_stack; 1793 1794 /* Size with which the following vectors are currently allocated. 1795 That is so we can make them bigger as needed, 1796 but never make them smaller. */ 1797 static int regs_allocated_size; 1798 1799 static const char ** regstart, ** regend; 1800 static const char ** old_regstart, ** old_regend; 1801 static const char **best_regstart, **best_regend; 1802 static register_info_type *reg_info; 1803 static const char **reg_dummy; 1804 static register_info_type *reg_info_dummy; 1805 1806 /* Make the register vectors big enough for NUM_REGS registers, 1807 but don't make them smaller. */ 1808 1809 static 1810 regex_grow_registers (num_regs) 1811 int num_regs; 1812 { 1813 if (num_regs > regs_allocated_size) 1814 { 1815 RETALLOC_IF (regstart, num_regs, const char *); 1816 RETALLOC_IF (regend, num_regs, const char *); 1817 RETALLOC_IF (old_regstart, num_regs, const char *); 1818 RETALLOC_IF (old_regend, num_regs, const char *); 1819 RETALLOC_IF (best_regstart, num_regs, const char *); 1820 RETALLOC_IF (best_regend, num_regs, const char *); 1821 RETALLOC_IF (reg_info, num_regs, register_info_type); 1822 RETALLOC_IF (reg_dummy, num_regs, const char *); 1823 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type); 1824 1825 regs_allocated_size = num_regs; 1826 } 1827 } 1828 1829 #endif /* not MATCH_MAY_ALLOCATE */ 1830 1831 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX. 1832 Returns one of error codes defined in `regex.h', or zero for success. 1833 1834 Assumes the `allocated' (and perhaps `buffer') and `translate' 1835 fields are set in BUFP on entry. 1836 1837 If it succeeds, results are put in BUFP (if it returns an error, the 1838 contents of BUFP are undefined): 1839 `buffer' is the compiled pattern; 1840 `syntax' is set to SYNTAX; 1841 `used' is set to the length of the compiled pattern; 1842 `fastmap_accurate' is zero; 1843 `re_nsub' is the number of subexpressions in PATTERN; 1844 `not_bol' and `not_eol' are zero; 1845 1846 The `fastmap' and `newline_anchor' fields are neither 1847 examined nor set. */ 1848 1849 /* Return, freeing storage we allocated. */ 1850 #define FREE_STACK_RETURN(value) \ 1851 do { \ 1852 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \ 1853 free (compile_stack.stack); \ 1854 return value; \ 1855 } while (0) 1856 1857 static reg_errcode_t 1858 regex_compile (pattern, size, syntax, bufp) 1859 const char *pattern; 1860 int size; 1861 reg_syntax_t syntax; 1862 struct re_pattern_buffer *bufp; 1863 { 1864 /* We fetch characters from PATTERN here. Even though PATTERN is 1865 `char *' (i.e., signed), we declare these variables as unsigned, so 1866 they can be reliably used as array indices. */ 1867 register unsigned int c, c1; 1868 1869 /* A random temporary spot in PATTERN. */ 1870 const char *p1; 1871 1872 /* Points to the end of the buffer, where we should append. */ 1873 register unsigned char *b; 1874 1875 /* Keeps track of unclosed groups. */ 1876 compile_stack_type compile_stack; 1877 1878 /* Points to the current (ending) position in the pattern. */ 1879 #ifdef AIX 1880 /* `const' makes AIX compiler fail. */ 1881 char *p = pattern; 1882 #else 1883 const char *p = pattern; 1884 #endif 1885 const char *pend = pattern + size; 1886 1887 /* How to translate the characters in the pattern. */ 1888 RE_TRANSLATE_TYPE translate = bufp->translate; 1889 1890 /* Address of the count-byte of the most recently inserted `exactn' 1891 command. This makes it possible to tell if a new exact-match 1892 character can be added to that command or if the character requires 1893 a new `exactn' command. */ 1894 unsigned char *pending_exact = 0; 1895 1896 /* Address of start of the most recently finished expression. 1897 This tells, e.g., postfix * where to find the start of its 1898 operand. Reset at the beginning of groups and alternatives. */ 1899 unsigned char *laststart = 0; 1900 1901 /* Address of beginning of regexp, or inside of last group. */ 1902 unsigned char *begalt; 1903 1904 /* Place in the uncompiled pattern (i.e., the {) to 1905 which to go back if the interval is invalid. */ 1906 const char *beg_interval; 1907 1908 /* Address of the place where a forward jump should go to the end of 1909 the containing expression. Each alternative of an `or' -- except the 1910 last -- ends with a forward jump of this sort. */ 1911 unsigned char *fixup_alt_jump = 0; 1912 1913 /* Counts open-groups as they are encountered. Remembered for the 1914 matching close-group on the compile stack, so the same register 1915 number is put in the stop_memory as the start_memory. */ 1916 regnum_t regnum = 0; 1917 1918 /* Work area for range table of charset. */ 1919 struct range_table_work_area range_table_work; 1920 1921 #ifdef DEBUG 1922 DEBUG_PRINT1 ("\nCompiling pattern: "); 1923 if (debug) 1924 { 1925 unsigned debug_count; 1926 1927 for (debug_count = 0; debug_count < size; debug_count++) 1928 putchar (pattern[debug_count]); 1929 putchar ('\n'); 1930 } 1931 #endif /* DEBUG */ 1932 1933 /* Initialize the compile stack. */ 1934 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t); 1935 if (compile_stack.stack == NULL) 1936 return REG_ESPACE; 1937 1938 compile_stack.size = INIT_COMPILE_STACK_SIZE; 1939 compile_stack.avail = 0; 1940 1941 range_table_work.table = 0; 1942 range_table_work.allocated = 0; 1943 1944 /* Initialize the pattern buffer. */ 1945 bufp->syntax = syntax; 1946 bufp->fastmap_accurate = 0; 1947 bufp->not_bol = bufp->not_eol = 0; 1948 1949 /* Set `used' to zero, so that if we return an error, the pattern 1950 printer (for debugging) will think there's no pattern. We reset it 1951 at the end. */ 1952 bufp->used = 0; 1953 1954 /* Always count groups, whether or not bufp->no_sub is set. */ 1955 bufp->re_nsub = 0; 1956 1957 #ifdef emacs 1958 /* bufp->multibyte is set before regex_compile is called, so don't alter 1959 it. */ 1960 #else /* not emacs */ 1961 /* Nothing is recognized as a multibyte character. */ 1962 bufp->multibyte = 0; 1963 #endif 1964 1965 #if !defined (emacs) && !defined (SYNTAX_TABLE) 1966 /* Initialize the syntax table. */ 1967 init_syntax_once (); 1968 #endif 1969 1970 if (bufp->allocated == 0) 1971 { 1972 if (bufp->buffer) 1973 { /* If zero allocated, but buffer is non-null, try to realloc 1974 enough space. This loses if buffer's address is bogus, but 1975 that is the user's responsibility. */ 1976 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char); 1977 } 1978 else 1979 { /* Caller did not allocate a buffer. Do it for them. */ 1980 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char); 1981 } 1982 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE); 1983 1984 bufp->allocated = INIT_BUF_SIZE; 1985 } 1986 1987 begalt = b = bufp->buffer; 1988 1989 /* Loop through the uncompiled pattern until we're at the end. */ 1990 while (p != pend) 1991 { 1992 PATFETCH (c); 1993 1994 switch (c) 1995 { 1996 case '^': 1997 { 1998 if ( /* If at start of pattern, it's an operator. */ 1999 p == pattern + 1 2000 /* If context independent, it's an operator. */ 2001 || syntax & RE_CONTEXT_INDEP_ANCHORS 2002 /* Otherwise, depends on what's come before. */ 2003 || at_begline_loc_p (pattern, p, syntax)) 2004 BUF_PUSH (begline); 2005 else 2006 goto normal_char; 2007 } 2008 break; 2009 2010 2011 case '$': 2012 { 2013 if ( /* If at end of pattern, it's an operator. */ 2014 p == pend 2015 /* If context independent, it's an operator. */ 2016 || syntax & RE_CONTEXT_INDEP_ANCHORS 2017 /* Otherwise, depends on what's next. */ 2018 || at_endline_loc_p (p, pend, syntax)) 2019 BUF_PUSH (endline); 2020 else 2021 goto normal_char; 2022 } 2023 break; 2024 2025 2026 case '+': 2027 case '?': 2028 if ((syntax & RE_BK_PLUS_QM) 2029 || (syntax & RE_LIMITED_OPS)) 2030 goto normal_char; 2031 handle_plus: 2032 case '*': 2033 /* If there is no previous pattern... */ 2034 if (!laststart) 2035 { 2036 if (syntax & RE_CONTEXT_INVALID_OPS) 2037 FREE_STACK_RETURN (REG_BADRPT); 2038 else if (!(syntax & RE_CONTEXT_INDEP_OPS)) 2039 goto normal_char; 2040 } 2041 2042 { 2043 /* Are we optimizing this jump? */ 2044 boolean keep_string_p = false; 2045 2046 /* 1 means zero (many) matches is allowed. */ 2047 char zero_times_ok = 0, many_times_ok = 0; 2048 2049 /* If there is a sequence of repetition chars, collapse it 2050 down to just one (the right one). We can't combine 2051 interval operators with these because of, e.g., `a{2}*', 2052 which should only match an even number of `a's. */ 2053 2054 for (;;) 2055 { 2056 zero_times_ok |= c != '+'; 2057 many_times_ok |= c != '?'; 2058 2059 if (p == pend) 2060 break; 2061 2062 PATFETCH (c); 2063 2064 if (c == '*' 2065 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?'))) 2066 ; 2067 2068 else if (syntax & RE_BK_PLUS_QM && c == '\\') 2069 { 2070 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); 2071 2072 PATFETCH (c1); 2073 if (!(c1 == '+' || c1 == '?')) 2074 { 2075 PATUNFETCH; 2076 PATUNFETCH; 2077 break; 2078 } 2079 2080 c = c1; 2081 } 2082 else 2083 { 2084 PATUNFETCH; 2085 break; 2086 } 2087 2088 /* If we get here, we found another repeat character. */ 2089 } 2090 2091 /* Star, etc. applied to an empty pattern is equivalent 2092 to an empty pattern. */ 2093 if (!laststart) 2094 break; 2095 2096 /* Now we know whether or not zero matches is allowed 2097 and also whether or not two or more matches is allowed. */ 2098 if (many_times_ok) 2099 { /* More than one repetition is allowed, so put in at the 2100 end a backward relative jump from `b' to before the next 2101 jump we're going to put in below (which jumps from 2102 laststart to after this jump). 2103 2104 But if we are at the `*' in the exact sequence `.*\n', 2105 insert an unconditional jump backwards to the ., 2106 instead of the beginning of the loop. This way we only 2107 push a failure point once, instead of every time 2108 through the loop. */ 2109 assert (p - 1 > pattern); 2110 2111 /* Allocate the space for the jump. */ 2112 GET_BUFFER_SPACE (3); 2113 2114 /* We know we are not at the first character of the pattern, 2115 because laststart was nonzero. And we've already 2116 incremented `p', by the way, to be the character after 2117 the `*'. Do we have to do something analogous here 2118 for null bytes, because of RE_DOT_NOT_NULL? */ 2119 if (TRANSLATE ((unsigned char)*(p - 2)) == TRANSLATE ('.') 2120 && zero_times_ok 2121 && p < pend 2122 && TRANSLATE ((unsigned char)*p) == TRANSLATE ('\n') 2123 && !(syntax & RE_DOT_NEWLINE)) 2124 { /* We have .*\n. */ 2125 STORE_JUMP (jump, b, laststart); 2126 keep_string_p = true; 2127 } 2128 else 2129 /* Anything else. */ 2130 STORE_JUMP (maybe_pop_jump, b, laststart - 3); 2131 2132 /* We've added more stuff to the buffer. */ 2133 b += 3; 2134 } 2135 2136 /* On failure, jump from laststart to b + 3, which will be the 2137 end of the buffer after this jump is inserted. */ 2138 GET_BUFFER_SPACE (3); 2139 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump 2140 : on_failure_jump, 2141 laststart, b + 3); 2142 pending_exact = 0; 2143 b += 3; 2144 2145 if (!zero_times_ok) 2146 { 2147 /* At least one repetition is required, so insert a 2148 `dummy_failure_jump' before the initial 2149 `on_failure_jump' instruction of the loop. This 2150 effects a skip over that instruction the first time 2151 we hit that loop. */ 2152 GET_BUFFER_SPACE (3); 2153 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6); 2154 b += 3; 2155 } 2156 } 2157 break; 2158 2159 2160 case '.': 2161 laststart = b; 2162 BUF_PUSH (anychar); 2163 break; 2164 2165 2166 case '[': 2167 { 2168 CLEAR_RANGE_TABLE_WORK_USED (range_table_work); 2169 2170 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); 2171 2172 /* Ensure that we have enough space to push a charset: the 2173 opcode, the length count, and the bitset; 34 bytes in all. */ 2174 GET_BUFFER_SPACE (34); 2175 2176 laststart = b; 2177 2178 /* We test `*p == '^' twice, instead of using an if 2179 statement, so we only need one BUF_PUSH. */ 2180 BUF_PUSH (*p == '^' ? charset_not : charset); 2181 if (*p == '^') 2182 p++; 2183 2184 /* Remember the first position in the bracket expression. */ 2185 p1 = p; 2186 2187 /* Push the number of bytes in the bitmap. */ 2188 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH); 2189 2190 /* Clear the whole map. */ 2191 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH); 2192 2193 /* charset_not matches newline according to a syntax bit. */ 2194 if ((re_opcode_t) b[-2] == charset_not 2195 && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) 2196 SET_LIST_BIT ('\n'); 2197 2198 /* Read in characters and ranges, setting map bits. */ 2199 for (;;) 2200 { 2201 int len; 2202 boolean escaped_char = false; 2203 2204 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); 2205 2206 PATFETCH (c); 2207 2208 /* \ might escape characters inside [...] and [^...]. */ 2209 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') 2210 { 2211 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); 2212 2213 PATFETCH (c); 2214 escaped_char = true; 2215 } 2216 else 2217 { 2218 /* Could be the end of the bracket expression. If it's 2219 not (i.e., when the bracket expression is `[]' so 2220 far), the ']' character bit gets set way below. */ 2221 if (c == ']' && p != p1 + 1) 2222 break; 2223 } 2224 2225 /* If C indicates start of multibyte char, get the 2226 actual character code in C, and set the pattern 2227 pointer P to the next character boundary. */ 2228 if (bufp->multibyte && BASE_LEADING_CODE_P (c)) 2229 { 2230 PATUNFETCH; 2231 c = STRING_CHAR_AND_LENGTH (p, pend - p, len); 2232 p += len; 2233 } 2234 /* What should we do for the character which is 2235 greater than 0x7F, but not BASE_LEADING_CODE_P? 2236 XXX */ 2237 2238 /* See if we're at the beginning of a possible character 2239 class. */ 2240 2241 else if (!escaped_char && 2242 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') 2243 { 2244 /* Leave room for the null. */ 2245 char str[CHAR_CLASS_MAX_LENGTH + 1]; 2246 2247 PATFETCH (c); 2248 c1 = 0; 2249 2250 /* If pattern is `[[:'. */ 2251 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); 2252 2253 for (;;) 2254 { 2255 PATFETCH (c); 2256 if (c == ':' || c == ']' || p == pend 2257 || c1 == CHAR_CLASS_MAX_LENGTH) 2258 break; 2259 str[c1++] = c; 2260 } 2261 str[c1] = '\0'; 2262 2263 /* If isn't a word bracketed by `[:' and `:]': 2264 undo the ending character, the letters, and 2265 leave the leading `:' and `[' (but set bits for 2266 them). */ 2267 if (c == ':' && *p == ']') 2268 { 2269 int ch; 2270 boolean is_alnum = STREQ (str, "alnum"); 2271 boolean is_alpha = STREQ (str, "alpha"); 2272 boolean is_blank = STREQ (str, "blank"); 2273 boolean is_cntrl = STREQ (str, "cntrl"); 2274 boolean is_digit = STREQ (str, "digit"); 2275 boolean is_graph = STREQ (str, "graph"); 2276 boolean is_lower = STREQ (str, "lower"); 2277 boolean is_print = STREQ (str, "print"); 2278 boolean is_punct = STREQ (str, "punct"); 2279 boolean is_space = STREQ (str, "space"); 2280 boolean is_upper = STREQ (str, "upper"); 2281 boolean is_xdigit = STREQ (str, "xdigit"); 2282 2283 if (!IS_CHAR_CLASS (str)) 2284 FREE_STACK_RETURN (REG_ECTYPE); 2285 2286 /* Throw away the ] at the end of the character 2287 class. */ 2288 PATFETCH (c); 2289 2290 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); 2291 2292 for (ch = 0; ch < 1 << BYTEWIDTH; ch++) 2293 { 2294 int translated = TRANSLATE (ch); 2295 /* This was split into 3 if's to 2296 avoid an arbitrary limit in some compiler. */ 2297 if ( (is_alnum && ISALNUM (ch)) 2298 || (is_alpha && ISALPHA (ch)) 2299 || (is_blank && ISBLANK (ch)) 2300 || (is_cntrl && ISCNTRL (ch))) 2301 SET_LIST_BIT (translated); 2302 if ( (is_digit && ISDIGIT (ch)) 2303 || (is_graph && ISGRAPH (ch)) 2304 || (is_lower && ISLOWER (ch)) 2305 || (is_print && ISPRINT (ch))) 2306 SET_LIST_BIT (translated); 2307 if ( (is_punct && ISPUNCT (ch)) 2308 || (is_space && ISSPACE (ch)) 2309 || (is_upper && ISUPPER (ch)) 2310 || (is_xdigit && ISXDIGIT (ch))) 2311 SET_LIST_BIT (translated); 2312 } 2313 2314 /* Repeat the loop. */ 2315 continue; 2316 } 2317 else 2318 { 2319 c1++; 2320 while (c1--) 2321 PATUNFETCH; 2322 SET_LIST_BIT ('['); 2323 2324 /* Because the `:' may starts the range, we 2325 can't simply set bit and repeat the loop. 2326 Instead, just set it to C and handle below. */ 2327 c = ':'; 2328 } 2329 } 2330 2331 if (p < pend && p[0] == '-' && p[1] != ']') 2332 { 2333 2334 /* Discard the `-'. */ 2335 PATFETCH (c1); 2336 2337 /* Fetch the character which ends the range. */ 2338 PATFETCH (c1); 2339 if (bufp->multibyte && BASE_LEADING_CODE_P (c1)) 2340 { 2341 PATUNFETCH; 2342 c1 = STRING_CHAR_AND_LENGTH (p, pend - p, len); 2343 p += len; 2344 } 2345 2346 if (SINGLE_BYTE_CHAR_P (c) 2347 && ! SINGLE_BYTE_CHAR_P (c1)) 2348 { 2349 /* Handle a range such as \177-\377 in multibyte mode. 2350 Split that into two ranges,, 2351 the low one ending at 0237, and the high one 2352 starting at ...040. */ 2353 int c1_base = (c1 & ~0177) | 040; 2354 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1); 2355 c1 = 0237; 2356 } 2357 else if (!SAME_CHARSET_P (c, c1)) 2358 FREE_STACK_RETURN (REG_ERANGE); 2359 } 2360 else 2361 /* Range from C to C. */ 2362 c1 = c; 2363 2364 /* Set the range ... */ 2365 if (SINGLE_BYTE_CHAR_P (c)) 2366 /* ... into bitmap. */ 2367 { 2368 unsigned this_char; 2369 int range_start = c, range_end = c1; 2370 2371 /* If the start is after the end, the range is empty. */ 2372 if (range_start > range_end) 2373 { 2374 if (syntax & RE_NO_EMPTY_RANGES) 2375 FREE_STACK_RETURN (REG_ERANGE); 2376 /* Else, repeat the loop. */ 2377 } 2378 else 2379 { 2380 for (this_char = range_start; this_char <= range_end; 2381 this_char++) 2382 SET_LIST_BIT (TRANSLATE (this_char)); 2383 } 2384 } 2385 else 2386 /* ... into range table. */ 2387 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1); 2388 } 2389 2390 /* Discard any (non)matching list bytes that are all 0 at the 2391 end of the map. Decrease the map-length byte too. */ 2392 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0) 2393 b[-1]--; 2394 b += b[-1]; 2395 2396 /* Build real range table from work area. */ 2397 if (RANGE_TABLE_WORK_USED (range_table_work)) 2398 { 2399 int i; 2400 int used = RANGE_TABLE_WORK_USED (range_table_work); 2401 2402 /* Allocate space for COUNT + RANGE_TABLE. Needs two 2403 bytes for COUNT and three bytes for each character. */ 2404 GET_BUFFER_SPACE (2 + used * 3); 2405 2406 /* Indicate the existence of range table. */ 2407 laststart[1] |= 0x80; 2408 2409 STORE_NUMBER_AND_INCR (b, used / 2); 2410 for (i = 0; i < used; i++) 2411 STORE_CHARACTER_AND_INCR 2412 (b, RANGE_TABLE_WORK_ELT (range_table_work, i)); 2413 } 2414 } 2415 break; 2416 2417 2418 case '(': 2419 if (syntax & RE_NO_BK_PARENS) 2420 goto handle_open; 2421 else 2422 goto normal_char; 2423 2424 2425 case ')': 2426 if (syntax & RE_NO_BK_PARENS) 2427 goto handle_close; 2428 else 2429 goto normal_char; 2430 2431 2432 case '\n': 2433 if (syntax & RE_NEWLINE_ALT) 2434 goto handle_alt; 2435 else 2436 goto normal_char; 2437 2438 2439 case '|': 2440 if (syntax & RE_NO_BK_VBAR) 2441 goto handle_alt; 2442 else 2443 goto normal_char; 2444 2445 2446 case '{': 2447 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES) 2448 goto handle_interval; 2449 else 2450 goto normal_char; 2451 2452 2453 case '\\': 2454 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); 2455 2456 /* Do not translate the character after the \, so that we can 2457 distinguish, e.g., \B from \b, even if we normally would 2458 translate, e.g., B to b. */ 2459 PATFETCH_RAW (c); 2460 2461 switch (c) 2462 { 2463 case '(': 2464 if (syntax & RE_NO_BK_PARENS) 2465 goto normal_backslash; 2466 2467 handle_open: 2468 bufp->re_nsub++; 2469 regnum++; 2470 2471 if (COMPILE_STACK_FULL) 2472 { 2473 RETALLOC (compile_stack.stack, compile_stack.size << 1, 2474 compile_stack_elt_t); 2475 if (compile_stack.stack == NULL) return REG_ESPACE; 2476 2477 compile_stack.size <<= 1; 2478 } 2479 2480 /* These are the values to restore when we hit end of this 2481 group. They are all relative offsets, so that if the 2482 whole pattern moves because of realloc, they will still 2483 be valid. */ 2484 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer; 2485 COMPILE_STACK_TOP.fixup_alt_jump 2486 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0; 2487 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer; 2488 COMPILE_STACK_TOP.regnum = regnum; 2489 2490 /* We will eventually replace the 0 with the number of 2491 groups inner to this one. But do not push a 2492 start_memory for groups beyond the last one we can 2493 represent in the compiled pattern. */ 2494 if (regnum <= MAX_REGNUM) 2495 { 2496 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2; 2497 BUF_PUSH_3 (start_memory, regnum, 0); 2498 } 2499 2500 compile_stack.avail++; 2501 2502 fixup_alt_jump = 0; 2503 laststart = 0; 2504 begalt = b; 2505 /* If we've reached MAX_REGNUM groups, then this open 2506 won't actually generate any code, so we'll have to 2507 clear pending_exact explicitly. */ 2508 pending_exact = 0; 2509 break; 2510 2511 2512 case ')': 2513 if (syntax & RE_NO_BK_PARENS) goto normal_backslash; 2514 2515 if (COMPILE_STACK_EMPTY) 2516 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) 2517 goto normal_backslash; 2518 else 2519 FREE_STACK_RETURN (REG_ERPAREN); 2520 2521 handle_close: 2522 if (fixup_alt_jump) 2523 { /* Push a dummy failure point at the end of the 2524 alternative for a possible future 2525 `pop_failure_jump' to pop. See comments at 2526 `push_dummy_failure' in `re_match_2'. */ 2527 BUF_PUSH (push_dummy_failure); 2528 2529 /* We allocated space for this jump when we assigned 2530 to `fixup_alt_jump', in the `handle_alt' case below. */ 2531 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1); 2532 } 2533 2534 /* See similar code for backslashed left paren above. */ 2535 if (COMPILE_STACK_EMPTY) 2536 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) 2537 goto normal_char; 2538 else 2539 FREE_STACK_RETURN (REG_ERPAREN); 2540 2541 /* Since we just checked for an empty stack above, this 2542 ``can't happen''. */ 2543 assert (compile_stack.avail != 0); 2544 { 2545 /* We don't just want to restore into `regnum', because 2546 later groups should continue to be numbered higher, 2547 as in `(ab)c(de)' -- the second group is #2. */ 2548 regnum_t this_group_regnum; 2549 2550 compile_stack.avail--; 2551 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset; 2552 fixup_alt_jump 2553 = COMPILE_STACK_TOP.fixup_alt_jump 2554 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1 2555 : 0; 2556 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset; 2557 this_group_regnum = COMPILE_STACK_TOP.regnum; 2558 /* If we've reached MAX_REGNUM groups, then this open 2559 won't actually generate any code, so we'll have to 2560 clear pending_exact explicitly. */ 2561 pending_exact = 0; 2562 2563 /* We're at the end of the group, so now we know how many 2564 groups were inside this one. */ 2565 if (this_group_regnum <= MAX_REGNUM) 2566 { 2567 unsigned char *inner_group_loc 2568 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset; 2569 2570 *inner_group_loc = regnum - this_group_regnum; 2571 BUF_PUSH_3 (stop_memory, this_group_regnum, 2572 regnum - this_group_regnum); 2573 } 2574 } 2575 break; 2576 2577 2578 case '|': /* `\|'. */ 2579 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR) 2580 goto normal_backslash; 2581 handle_alt: 2582 if (syntax & RE_LIMITED_OPS) 2583 goto normal_char; 2584 2585 /* Insert before the previous alternative a jump which 2586 jumps to this alternative if the former fails. */ 2587 GET_BUFFER_SPACE (3); 2588 INSERT_JUMP (on_failure_jump, begalt, b + 6); 2589 pending_exact = 0; 2590 b += 3; 2591 2592 /* The alternative before this one has a jump after it 2593 which gets executed if it gets matched. Adjust that 2594 jump so it will jump to this alternative's analogous 2595 jump (put in below, which in turn will jump to the next 2596 (if any) alternative's such jump, etc.). The last such 2597 jump jumps to the correct final destination. A picture: 2598 _____ _____ 2599 | | | | 2600 | v | v 2601 a | b | c 2602 2603 If we are at `b', then fixup_alt_jump right now points to a 2604 three-byte space after `a'. We'll put in the jump, set 2605 fixup_alt_jump to right after `b', and leave behind three 2606 bytes which we'll fill in when we get to after `c'. */ 2607 2608 if (fixup_alt_jump) 2609 STORE_JUMP (jump_past_alt, fixup_alt_jump, b); 2610 2611 /* Mark and leave space for a jump after this alternative, 2612 to be filled in later either by next alternative or 2613 when know we're at the end of a series of alternatives. */ 2614 fixup_alt_jump = b; 2615 GET_BUFFER_SPACE (3); 2616 b += 3; 2617 2618 laststart = 0; 2619 begalt = b; 2620 break; 2621 2622 2623 case '{': 2624 /* If \{ is a literal. */ 2625 if (!(syntax & RE_INTERVALS) 2626 /* If we're at `\{' and it's not the open-interval 2627 operator. */ 2628 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) 2629 || (p - 2 == pattern && p == pend)) 2630 goto normal_backslash; 2631 2632 handle_interval: 2633 { 2634 /* If got here, then the syntax allows intervals. */ 2635 2636 /* At least (most) this many matches must be made. */ 2637 int lower_bound = -1, upper_bound = -1; 2638 2639 beg_interval = p - 1; 2640 2641 if (p == pend) 2642 { 2643 if (syntax & RE_NO_BK_BRACES) 2644 goto unfetch_interval; 2645 else 2646 FREE_STACK_RETURN (REG_EBRACE); 2647 } 2648 2649 GET_UNSIGNED_NUMBER (lower_bound); 2650 2651 if (c == ',') 2652 { 2653 GET_UNSIGNED_NUMBER (upper_bound); 2654 if (upper_bound < 0) upper_bound = RE_DUP_MAX; 2655 } 2656 else 2657 /* Interval such as `{1}' => match exactly once. */ 2658 upper_bound = lower_bound; 2659 2660 if (lower_bound < 0 || upper_bound > RE_DUP_MAX 2661 || lower_bound > upper_bound) 2662 { 2663 if (syntax & RE_NO_BK_BRACES) 2664 goto unfetch_interval; 2665 else 2666 FREE_STACK_RETURN (REG_BADBR); 2667 } 2668 2669 if (!(syntax & RE_NO_BK_BRACES)) 2670 { 2671 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE); 2672 2673 PATFETCH (c); 2674 } 2675 2676 if (c != '}') 2677 { 2678 if (syntax & RE_NO_BK_BRACES) 2679 goto unfetch_interval; 2680 else 2681 FREE_STACK_RETURN (REG_BADBR); 2682 } 2683 2684 /* We just parsed a valid interval. */ 2685 2686 /* If it's invalid to have no preceding re. */ 2687 if (!laststart) 2688 { 2689 if (syntax & RE_CONTEXT_INVALID_OPS) 2690 FREE_STACK_RETURN (REG_BADRPT); 2691 else if (syntax & RE_CONTEXT_INDEP_OPS) 2692 laststart = b; 2693 else 2694 goto unfetch_interval; 2695 } 2696 2697 /* If the upper bound is zero, don't want to succeed at 2698 all; jump from `laststart' to `b + 3', which will be 2699 the end of the buffer after we insert the jump. */ 2700 if (upper_bound == 0) 2701 { 2702 GET_BUFFER_SPACE (3); 2703 INSERT_JUMP (jump, laststart, b + 3); 2704 b += 3; 2705 } 2706 2707 /* Otherwise, we have a nontrivial interval. When 2708 we're all done, the pattern will look like: 2709 set_number_at <jump count> <upper bound> 2710 set_number_at <succeed_n count> <lower bound> 2711 succeed_n <after jump addr> <succeed_n count> 2712 <body of loop> 2713 jump_n <succeed_n addr> <jump count> 2714 (The upper bound and `jump_n' are omitted if 2715 `upper_bound' is 1, though.) */ 2716 else 2717 { /* If the upper bound is > 1, we need to insert 2718 more at the end of the loop. */ 2719 unsigned nbytes = 10 + (upper_bound > 1) * 10; 2720 2721 GET_BUFFER_SPACE (nbytes); 2722 2723 /* Initialize lower bound of the `succeed_n', even 2724 though it will be set during matching by its 2725 attendant `set_number_at' (inserted next), 2726 because `re_compile_fastmap' needs to know. 2727 Jump to the `jump_n' we might insert below. */ 2728 INSERT_JUMP2 (succeed_n, laststart, 2729 b + 5 + (upper_bound > 1) * 5, 2730 lower_bound); 2731 b += 5; 2732 2733 /* Code to initialize the lower bound. Insert 2734 before the `succeed_n'. The `5' is the last two 2735 bytes of this `set_number_at', plus 3 bytes of 2736 the following `succeed_n'. */ 2737 insert_op2 (set_number_at, laststart, 5, lower_bound, b); 2738 b += 5; 2739 2740 if (upper_bound > 1) 2741 { /* More than one repetition is allowed, so 2742 append a backward jump to the `succeed_n' 2743 that starts this interval. 2744 2745 When we've reached this during matching, 2746 we'll have matched the interval once, so 2747 jump back only `upper_bound - 1' times. */ 2748 STORE_JUMP2 (jump_n, b, laststart + 5, 2749 upper_bound - 1); 2750 b += 5; 2751 2752 /* The location we want to set is the second 2753 parameter of the `jump_n'; that is `b-2' as 2754 an absolute address. `laststart' will be 2755 the `set_number_at' we're about to insert; 2756 `laststart+3' the number to set, the source 2757 for the relative address. But we are 2758 inserting into the middle of the pattern -- 2759 so everything is getting moved up by 5. 2760 Conclusion: (b - 2) - (laststart + 3) + 5, 2761 i.e., b - laststart. 2762 2763 We insert this at the beginning of the loop 2764 so that if we fail during matching, we'll 2765 reinitialize the bounds. */ 2766 insert_op2 (set_number_at, laststart, b - laststart, 2767 upper_bound - 1, b); 2768 b += 5; 2769 } 2770 } 2771 pending_exact = 0; 2772 beg_interval = NULL; 2773 } 2774 break; 2775 2776 unfetch_interval: 2777 /* If an invalid interval, match the characters as literals. */ 2778 assert (beg_interval); 2779 p = beg_interval; 2780 beg_interval = NULL; 2781 2782 /* normal_char and normal_backslash need `c'. */ 2783 PATFETCH (c); 2784 2785 if (!(syntax & RE_NO_BK_BRACES)) 2786 { 2787 if (p > pattern && p[-1] == '\\') 2788 goto normal_backslash; 2789 } 2790 goto normal_char; 2791 2792 #ifdef emacs 2793 /* There is no way to specify the before_dot and after_dot 2794 operators. rms says this is ok. --karl */ 2795 case '=': 2796 BUF_PUSH (at_dot); 2797 break; 2798 2799 case 's': 2800 laststart = b; 2801 PATFETCH (c); 2802 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]); 2803 break; 2804 2805 case 'S': 2806 laststart = b; 2807 PATFETCH (c); 2808 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]); 2809 break; 2810 2811 case 'c': 2812 laststart = b; 2813 PATFETCH_RAW (c); 2814 BUF_PUSH_2 (categoryspec, c); 2815 break; 2816 2817 case 'C': 2818 laststart = b; 2819 PATFETCH_RAW (c); 2820 BUF_PUSH_2 (notcategoryspec, c); 2821 break; 2822 #endif /* emacs */ 2823 2824 2825 case 'w': 2826 laststart = b; 2827 BUF_PUSH (wordchar); 2828 break; 2829 2830 2831 case 'W': 2832 laststart = b; 2833 BUF_PUSH (notwordchar); 2834 break; 2835 2836 2837 case '<': 2838 BUF_PUSH (wordbeg); 2839 break; 2840 2841 case '>': 2842 BUF_PUSH (wordend); 2843 break; 2844 2845 case 'b': 2846 BUF_PUSH (wordbound); 2847 break; 2848 2849 case 'B': 2850 BUF_PUSH (notwordbound); 2851 break; 2852 2853 case '`': 2854 BUF_PUSH (begbuf); 2855 break; 2856 2857 case '\'': 2858 BUF_PUSH (endbuf); 2859 break; 2860 2861 case '1': case '2': case '3': case '4': case '5': 2862 case '6': case '7': case '8': case '9': 2863 if (syntax & RE_NO_BK_REFS) 2864 goto normal_char; 2865 2866 c1 = c - '0'; 2867 2868 if (c1 > regnum) 2869 FREE_STACK_RETURN (REG_ESUBREG); 2870 2871 /* Can't back reference to a subexpression if inside of it. */ 2872 if (group_in_compile_stack (compile_stack, c1)) 2873 goto normal_char; 2874 2875 laststart = b; 2876 BUF_PUSH_2 (duplicate, c1); 2877 break; 2878 2879 2880 case '+': 2881 case '?': 2882 if (syntax & RE_BK_PLUS_QM) 2883 goto handle_plus; 2884 else 2885 goto normal_backslash; 2886 2887 default: 2888 normal_backslash: 2889 /* You might think it would be useful for \ to mean 2890 not to translate; but if we don't translate it 2891 it will never match anything. */ 2892 c = TRANSLATE (c); 2893 goto normal_char; 2894 } 2895 break; 2896 2897 2898 default: 2899 /* Expects the character in `c'. */ 2900 normal_char: 2901 p1 = p - 1; /* P1 points the head of C. */ 2902 #ifdef emacs 2903 if (bufp->multibyte) 2904 { 2905 c = STRING_CHAR (p1, pend - p1); 2906 c = TRANSLATE (c); 2907 /* Set P to the next character boundary. */ 2908 p += MULTIBYTE_FORM_LENGTH (p1, pend - p1) - 1; 2909 } 2910 #endif 2911 /* If no exactn currently being built. */ 2912 if (!pending_exact 2913 2914 /* If last exactn not at current position. */ 2915 || pending_exact + *pending_exact + 1 != b 2916 2917 /* We have only one byte following the exactn for the count. */ 2918 || *pending_exact >= (1 << BYTEWIDTH) - (p - p1) 2919 2920 /* If followed by a repetition operator. */ 2921 || (p != pend && (*p == '*' || *p == '^')) 2922 || ((syntax & RE_BK_PLUS_QM) 2923 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?') 2924 : p != pend && (*p == '+' || *p == '?')) 2925 || ((syntax & RE_INTERVALS) 2926 && ((syntax & RE_NO_BK_BRACES) 2927 ? p != pend && *p == '{' 2928 : p + 1 < pend && p[0] == '\\' && p[1] == '{'))) 2929 { 2930 /* Start building a new exactn. */ 2931 2932 laststart = b; 2933 2934 BUF_PUSH_2 (exactn, 0); 2935 pending_exact = b - 1; 2936 } 2937 2938 #ifdef emacs 2939 if (! SINGLE_BYTE_CHAR_P (c)) 2940 { 2941 unsigned char work[4], *str; 2942 int i = CHAR_STRING (c, work, str); 2943 int j; 2944 for (j = 0; j < i; j++) 2945 { 2946 BUF_PUSH (str[j]); 2947 (*pending_exact)++; 2948 } 2949 } 2950 else 2951 #endif 2952 { 2953 BUF_PUSH (c); 2954 (*pending_exact)++; 2955 } 2956 break; 2957 } /* switch (c) */ 2958 } /* while p != pend */ 2959 2960 2961 /* Through the pattern now. */ 2962 2963 if (fixup_alt_jump) 2964 STORE_JUMP (jump_past_alt, fixup_alt_jump, b); 2965 2966 if (!COMPILE_STACK_EMPTY) 2967 FREE_STACK_RETURN (REG_EPAREN); 2968 2969 /* If we don't want backtracking, force success 2970 the first time we reach the end of the compiled pattern. */ 2971 if (syntax & RE_NO_POSIX_BACKTRACKING) 2972 BUF_PUSH (succeed); 2973 2974 free (compile_stack.stack); 2975 2976 /* We have succeeded; set the length of the buffer. */ 2977 bufp->used = b - bufp->buffer; 2978 2979 #ifdef DEBUG 2980 if (debug) 2981 { 2982 DEBUG_PRINT1 ("\nCompiled pattern: \n"); 2983 print_compiled_pattern (bufp); 2984 } 2985 #endif /* DEBUG */ 2986 2987 #ifndef MATCH_MAY_ALLOCATE 2988 /* Initialize the failure stack to the largest possible stack. This 2989 isn't necessary unless we're trying to avoid calling alloca in 2990 the search and match routines. */ 2991 { 2992 int num_regs = bufp->re_nsub + 1; 2993 2994 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE) 2995 { 2996 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE; 2997 2998 #ifdef emacs 2999 if (! fail_stack.stack) 3000 fail_stack.stack 3001 = (fail_stack_elt_t *) xmalloc (fail_stack.size 3002 * sizeof (fail_stack_elt_t)); 3003 else 3004 fail_stack.stack 3005 = (fail_stack_elt_t *) xrealloc (fail_stack.stack, 3006 (fail_stack.size 3007 * sizeof (fail_stack_elt_t))); 3008 #else /* not emacs */ 3009 if (! fail_stack.stack) 3010 fail_stack.stack 3011 = (fail_stack_elt_t *) malloc (fail_stack.size 3012 * sizeof (fail_stack_elt_t)); 3013 else 3014 fail_stack.stack 3015 = (fail_stack_elt_t *) realloc (fail_stack.stack, 3016 (fail_stack.size 3017 * sizeof (fail_stack_elt_t))); 3018 #endif /* not emacs */ 3019 } 3020 3021 regex_grow_registers (num_regs); 3022 } 3023 #endif /* not MATCH_MAY_ALLOCATE */ 3024 3025 return REG_NOERROR; 3026 } /* regex_compile */ 3027 3028 /* Subroutines for `regex_compile'. */ 3029 3030 /* Store OP at LOC followed by two-byte integer parameter ARG. */ 3031 3032 static void 3033 store_op1 (op, loc, arg) 3034 re_opcode_t op; 3035 unsigned char *loc; 3036 int arg; 3037 { 3038 *loc = (unsigned char) op; 3039 STORE_NUMBER (loc + 1, arg); 3040 } 3041 3042 3043 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */ 3044 3045 static void 3046 store_op2 (op, loc, arg1, arg2) 3047 re_opcode_t op; 3048 unsigned char *loc; 3049 int arg1, arg2; 3050 { 3051 *loc = (unsigned char) op; 3052 STORE_NUMBER (loc + 1, arg1); 3053 STORE_NUMBER (loc + 3, arg2); 3054 } 3055 3056 3057 /* Copy the bytes from LOC to END to open up three bytes of space at LOC 3058 for OP followed by two-byte integer parameter ARG. */ 3059 3060 static void 3061 insert_op1 (op, loc, arg, end) 3062 re_opcode_t op; 3063 unsigned char *loc; 3064 int arg; 3065 unsigned char *end; 3066 { 3067 register unsigned char *pfrom = end; 3068 register unsigned char *pto = end + 3; 3069 3070 while (pfrom != loc) 3071 *--pto = *--pfrom; 3072 3073 store_op1 (op, loc, arg); 3074 } 3075 3076 3077 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */ 3078 3079 static void 3080 insert_op2 (op, loc, arg1, arg2, end) 3081 re_opcode_t op; 3082 unsigned char *loc; 3083 int arg1, arg2; 3084 unsigned char *end; 3085 { 3086 register unsigned char *pfrom = end; 3087 register unsigned char *pto = end + 5; 3088 3089 while (pfrom != loc) 3090 *--pto = *--pfrom; 3091 3092 store_op2 (op, loc, arg1, arg2); 3093 } 3094 3095 3096 /* P points to just after a ^ in PATTERN. Return true if that ^ comes 3097 after an alternative or a begin-subexpression. We assume there is at 3098 least one character before the ^. */ 3099 3100 static boolean 3101 at_begline_loc_p (pattern, p, syntax) 3102 const char *pattern, *p; 3103 reg_syntax_t syntax; 3104 { 3105 const char *prev = p - 2; 3106 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\'; 3107 3108 return 3109 /* After a subexpression? */ 3110 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash)) 3111 /* After an alternative? */ 3112 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash)); 3113 } 3114 3115 3116 /* The dual of at_begline_loc_p. This one is for $. We assume there is 3117 at least one character after the $, i.e., `P < PEND'. */ 3118 3119 static boolean 3120 at_endline_loc_p (p, pend, syntax) 3121 const char *p, *pend; 3122 int syntax; 3123 { 3124 const char *next = p; 3125 boolean next_backslash = *next == '\\'; 3126 const char *next_next = p + 1 < pend ? p + 1 : 0; 3127 3128 return 3129 /* Before a subexpression? */ 3130 (syntax & RE_NO_BK_PARENS ? *next == ')' 3131 : next_backslash && next_next && *next_next == ')') 3132 /* Before an alternative? */ 3133 || (syntax & RE_NO_BK_VBAR ? *next == '|' 3134 : next_backslash && next_next && *next_next == '|'); 3135 } 3136 3137 3138 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and 3139 false if it's not. */ 3140 3141 static boolean 3142 group_in_compile_stack (compile_stack, regnum) 3143 compile_stack_type compile_stack; 3144 regnum_t regnum; 3145 { 3146 int this_element; 3147 3148 for (this_element = compile_stack.avail - 1; 3149 this_element >= 0; 3150 this_element--) 3151 if (compile_stack.stack[this_element].regnum == regnum) 3152 return true; 3153 3154 return false; 3155 } 3156 3157 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in 3158 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible 3159 characters can start a string that matches the pattern. This fastmap 3160 is used by re_search to skip quickly over impossible starting points. 3161 3162 The caller must supply the address of a (1 << BYTEWIDTH)-byte data 3163 area as BUFP->fastmap. 3164 3165 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in 3166 the pattern buffer. 3167 3168 Returns 0 if we succeed, -2 if an internal error. */ 3169 3170 int 3171 re_compile_fastmap (bufp) 3172 struct re_pattern_buffer *bufp; 3173 { 3174 int i, j, k; 3175 #ifdef MATCH_MAY_ALLOCATE 3176 fail_stack_type fail_stack; 3177 #endif 3178 #ifndef REGEX_MALLOC 3179 char *destination; 3180 #endif 3181 /* We don't push any register information onto the failure stack. */ 3182 unsigned num_regs = 0; 3183 3184 register char *fastmap = bufp->fastmap; 3185 unsigned char *pattern = bufp->buffer; 3186 unsigned long size = bufp->used; 3187 unsigned char *p = pattern; 3188 register unsigned char *pend = pattern + size; 3189 3190 /* This holds the pointer to the failure stack, when 3191 it is allocated relocatably. */ 3192 fail_stack_elt_t *failure_stack_ptr; 3193 3194 /* Assume that each path through the pattern can be null until 3195 proven otherwise. We set this false at the bottom of switch 3196 statement, to which we get only if a particular path doesn't 3197 match the empty string. */ 3198 boolean path_can_be_null = true; 3199 3200 /* We aren't doing a `succeed_n' to begin with. */ 3201 boolean succeed_n_p = false; 3202 3203 /* If all elements for base leading-codes in fastmap is set, this 3204 flag is set true. */ 3205 boolean match_any_multibyte_characters = false; 3206 3207 /* Maximum code of simple (single byte) character. */ 3208 int simple_char_max; 3209 3210 assert (fastmap != NULL && p != NULL); 3211 3212 INIT_FAIL_STACK (); 3213 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */ 3214 bufp->fastmap_accurate = 1; /* It will be when we're done. */ 3215 bufp->can_be_null = 0; 3216 3217 while (1) 3218 { 3219 if (p == pend || *p == succeed) 3220 { 3221 /* We have reached the (effective) end of pattern. */ 3222 if (!FAIL_STACK_EMPTY ()) 3223 { 3224 bufp->can_be_null |= path_can_be_null; 3225 3226 /* Reset for next path. */ 3227 path_can_be_null = true; 3228 3229 p = fail_stack.stack[--fail_stack.avail].pointer; 3230 3231 continue; 3232 } 3233 else 3234 break; 3235 } 3236 3237 /* We should never be about to go beyond the end of the pattern. */ 3238 assert (p < pend); 3239 3240 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)) 3241 { 3242 3243 /* I guess the idea here is to simply not bother with a fastmap 3244 if a backreference is used, since it's too hard to figure out 3245 the fastmap for the corresponding group. Setting 3246 `can_be_null' stops `re_search_2' from using the fastmap, so 3247 that is all we do. */ 3248 case duplicate: 3249 bufp->can_be_null = 1; 3250 goto done; 3251 3252 3253 /* Following are the cases which match a character. These end 3254 with `break'. */ 3255 3256 case exactn: 3257 fastmap[p[1]] = 1; 3258 break; 3259 3260 3261 #ifndef emacs 3262 case charset: 3263 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) 3264 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) 3265 fastmap[j] = 1; 3266 break; 3267 3268 3269 case charset_not: 3270 /* Chars beyond end of map must be allowed. */ 3271 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++) 3272 fastmap[j] = 1; 3273 3274 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) 3275 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) 3276 fastmap[j] = 1; 3277 break; 3278 3279 3280 case wordchar: 3281 for (j = 0; j < (1 << BYTEWIDTH); j++) 3282 if (SYNTAX (j) == Sword) 3283 fastmap[j] = 1; 3284 break; 3285 3286 3287 case notwordchar: 3288 for (j = 0; j < (1 << BYTEWIDTH); j++) 3289 if (SYNTAX (j) != Sword) 3290 fastmap[j] = 1; 3291 break; 3292 #else /* emacs */ 3293 case charset: 3294 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++; 3295 j >= 0; j--) 3296 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) 3297 fastmap[j] = 1; 3298 3299 if (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2]) 3300 && match_any_multibyte_characters == false) 3301 { 3302 /* Set fastmap[I] 1 where I is a base leading code of each 3303 multibyte character in the range table. */ 3304 int c, count; 3305 3306 /* Make P points the range table. */ 3307 p += CHARSET_BITMAP_SIZE (&p[-2]); 3308 3309 /* Extract the number of ranges in range table into 3310 COUNT. */ 3311 EXTRACT_NUMBER_AND_INCR (count, p); 3312 for (; count > 0; count--, p += 2 * 3) /* XXX */ 3313 { 3314 /* Extract the start of each range. */ 3315 EXTRACT_CHARACTER (c, p); 3316 j = CHAR_CHARSET (c); 3317 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1; 3318 } 3319 } 3320 break; 3321 3322 3323 case charset_not: 3324 /* Chars beyond end of bitmap are possible matches. 3325 All the single-byte codes can occur in multibyte buffers. 3326 So any that are not listed in the charset 3327 are possible matches, even in multibyte buffers. */ 3328 simple_char_max = (1 << BYTEWIDTH); 3329 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH; 3330 j < simple_char_max; j++) 3331 fastmap[j] = 1; 3332 3333 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++; 3334 j >= 0; j--) 3335 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) 3336 fastmap[j] = 1; 3337 3338 if (bufp->multibyte) 3339 /* Any character set can possibly contain a character 3340 which doesn't match the specified set of characters. */ 3341 { 3342 set_fastmap_for_multibyte_characters: 3343 if (match_any_multibyte_characters == false) 3344 { 3345 for (j = 0x80; j < 0xA0; j++) /* XXX */ 3346 if (BASE_LEADING_CODE_P (j)) 3347 fastmap[j] = 1; 3348 match_any_multibyte_characters = true; 3349 } 3350 } 3351 break; 3352 3353 3354 case wordchar: 3355 /* All the single-byte codes can occur in multibyte buffers, 3356 and they may have word syntax. So do consider them. */ 3357 simple_char_max = (1 << BYTEWIDTH); 3358 for (j = 0; j < simple_char_max; j++) 3359 if (SYNTAX (j) == Sword) 3360 fastmap[j] = 1; 3361 3362 if (bufp->multibyte) 3363 /* Any character set can possibly contain a character 3364 whose syntax is `Sword'. */ 3365 goto set_fastmap_for_multibyte_characters; 3366 break; 3367 3368 3369 case notwordchar: 3370 /* All the single-byte codes can occur in multibyte buffers, 3371 and they may not have word syntax. So do consider them. */ 3372 simple_char_max = (1 << BYTEWIDTH); 3373 for (j = 0; j < simple_char_max; j++) 3374 if (SYNTAX (j) != Sword) 3375 fastmap[j] = 1; 3376 3377 if (bufp->multibyte) 3378 /* Any character set can possibly contain a character 3379 whose syntax is not `Sword'. */ 3380 goto set_fastmap_for_multibyte_characters; 3381 break; 3382 #endif 3383 3384 case anychar: 3385 { 3386 int fastmap_newline = fastmap['\n']; 3387 3388 /* `.' matches anything, except perhaps newline. 3389 Even in a multibyte buffer, it should match any 3390 conceivable byte value for the fastmap. */ 3391 if (bufp->multibyte) 3392 match_any_multibyte_characters = true; 3393 3394 simple_char_max = (1 << BYTEWIDTH); 3395 for (j = 0; j < simple_char_max; j++) 3396 fastmap[j] = 1; 3397 3398 /* ... except perhaps newline. */ 3399 if (!(bufp->syntax & RE_DOT_NEWLINE)) 3400 fastmap['\n'] = fastmap_newline; 3401 3402 /* Return if we have already set `can_be_null'; if we have, 3403 then the fastmap is irrelevant. Something's wrong here. */ 3404 else if (bufp->can_be_null) 3405 goto done; 3406 3407 /* Otherwise, have to check alternative paths. */ 3408 break; 3409 } 3410 3411 #ifdef emacs 3412 case wordbound: 3413 case notwordbound: 3414 case wordbeg: 3415 case wordend: 3416 case notsyntaxspec: 3417 case syntaxspec: 3418 /* This match depends on text properties. These end with 3419 aborting optimizations. */ 3420 bufp->can_be_null = 1; 3421 goto done; 3422 #if 0 3423 k = *p++; 3424 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH); 3425 for (j = 0; j < simple_char_max; j++) 3426 if (SYNTAX (j) == (enum syntaxcode) k) 3427 fastmap[j] = 1; 3428 3429 if (bufp->multibyte) 3430 /* Any character set can possibly contain a character 3431 whose syntax is K. */ 3432 goto set_fastmap_for_multibyte_characters; 3433 break; 3434 3435 case notsyntaxspec: 3436 k = *p++; 3437 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH); 3438 for (j = 0; j < simple_char_max; j++) 3439 if (SYNTAX (j) != (enum syntaxcode) k) 3440 fastmap[j] = 1; 3441 3442 if (bufp->multibyte) 3443 /* Any character set can possibly contain a character 3444 whose syntax is not K. */ 3445 goto set_fastmap_for_multibyte_characters; 3446 break; 3447 #endif 3448 3449 3450 case categoryspec: 3451 k = *p++; 3452 simple_char_max = (1 << BYTEWIDTH); 3453 for (j = 0; j < simple_char_max; j++) 3454 if (CHAR_HAS_CATEGORY (j, k)) 3455 fastmap[j] = 1; 3456 3457 if (bufp->multibyte) 3458 /* Any character set can possibly contain a character 3459 whose category is K. */ 3460 goto set_fastmap_for_multibyte_characters; 3461 break; 3462 3463 3464 case notcategoryspec: 3465 k = *p++; 3466 simple_char_max = (1 << BYTEWIDTH); 3467 for (j = 0; j < simple_char_max; j++) 3468 if (!CHAR_HAS_CATEGORY (j, k)) 3469 fastmap[j] = 1; 3470 3471 if (bufp->multibyte) 3472 /* Any character set can possibly contain a character 3473 whose category is not K. */ 3474 goto set_fastmap_for_multibyte_characters; 3475 break; 3476 3477 /* All cases after this match the empty string. These end with 3478 `continue'. */ 3479 3480 3481 case before_dot: 3482 case at_dot: 3483 case after_dot: 3484 continue; 3485 #endif /* emacs */ 3486 3487 3488 case no_op: 3489 case begline: 3490 case endline: 3491 case begbuf: 3492 case endbuf: 3493 #ifndef emacs 3494 case wordbound: 3495 case notwordbound: 3496 case wordbeg: 3497 case wordend: 3498 #endif 3499 case push_dummy_failure: 3500 continue; 3501 3502 3503 case jump_n: 3504 case pop_failure_jump: 3505 case maybe_pop_jump: 3506 case jump: 3507 case jump_past_alt: 3508 case dummy_failure_jump: 3509 EXTRACT_NUMBER_AND_INCR (j, p); 3510 p += j; 3511 if (j > 0) 3512 continue; 3513 3514 /* Jump backward implies we just went through the body of a 3515 loop and matched nothing. Opcode jumped to should be 3516 `on_failure_jump' or `succeed_n'. Just treat it like an 3517 ordinary jump. For a * loop, it has pushed its failure 3518 point already; if so, discard that as redundant. */ 3519 if ((re_opcode_t) *p != on_failure_jump 3520 && (re_opcode_t) *p != succeed_n) 3521 continue; 3522 3523 p++; 3524 EXTRACT_NUMBER_AND_INCR (j, p); 3525 p += j; 3526 3527 /* If what's on the stack is where we are now, pop it. */ 3528 if (!FAIL_STACK_EMPTY () 3529 && fail_stack.stack[fail_stack.avail - 1].pointer == p) 3530 fail_stack.avail--; 3531 3532 continue; 3533 3534 3535 case on_failure_jump: 3536 case on_failure_keep_string_jump: 3537 handle_on_failure_jump: 3538 EXTRACT_NUMBER_AND_INCR (j, p); 3539 3540 /* For some patterns, e.g., `(a?)?', `p+j' here points to the 3541 end of the pattern. We don't want to push such a point, 3542 since when we restore it above, entering the switch will 3543 increment `p' past the end of the pattern. We don't need 3544 to push such a point since we obviously won't find any more 3545 fastmap entries beyond `pend'. Such a pattern can match 3546 the null string, though. */ 3547 if (p + j < pend) 3548 { 3549 if (!PUSH_PATTERN_OP (p + j, fail_stack)) 3550 { 3551 RESET_FAIL_STACK (); 3552 return -2; 3553 } 3554 } 3555 else 3556 bufp->can_be_null = 1; 3557 3558 if (succeed_n_p) 3559 { 3560 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */ 3561 succeed_n_p = false; 3562 } 3563 3564 continue; 3565 3566 3567 case succeed_n: 3568 /* Get to the number of times to succeed. */ 3569 p += 2; 3570 3571 /* Increment p past the n for when k != 0. */ 3572 EXTRACT_NUMBER_AND_INCR (k, p); 3573 if (k == 0) 3574 { 3575 p -= 4; 3576 succeed_n_p = true; /* Spaghetti code alert. */ 3577 goto handle_on_failure_jump; 3578 } 3579 continue; 3580 3581 3582 case set_number_at: 3583 p += 4; 3584 continue; 3585 3586 3587 case start_memory: 3588 case stop_memory: 3589 p += 2; 3590 continue; 3591 3592 3593 default: 3594 abort (); /* We have listed all the cases. */ 3595 } /* switch *p++ */ 3596 3597 /* Getting here means we have found the possible starting 3598 characters for one path of the pattern -- and that the empty 3599 string does not match. We need not follow this path further. 3600 Instead, look at the next alternative (remembered on the 3601 stack), or quit if no more. The test at the top of the loop 3602 does these things. */ 3603 path_can_be_null = false; 3604 p = pend; 3605 } /* while p */ 3606 3607 /* Set `can_be_null' for the last path (also the first path, if the 3608 pattern is empty). */ 3609 bufp->can_be_null |= path_can_be_null; 3610 3611 done: 3612 RESET_FAIL_STACK (); 3613 return 0; 3614 } /* re_compile_fastmap */ 3615 3616 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and 3617 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use 3618 this memory for recording register information. STARTS and ENDS 3619 must be allocated using the malloc library routine, and must each 3620 be at least NUM_REGS * sizeof (regoff_t) bytes long. 3621 3622 If NUM_REGS == 0, then subsequent matches should allocate their own 3623 register data. 3624 3625 Unless this function is called, the first search or match using 3626 PATTERN_BUFFER will allocate its own register data, without 3627 freeing the old data. */ 3628 3629 void 3630 re_set_registers (bufp, regs, num_regs, starts, ends) 3631 struct re_pattern_buffer *bufp; 3632 struct re_registers *regs; 3633 unsigned num_regs; 3634 regoff_t *starts, *ends; 3635 { 3636 if (num_regs) 3637 { 3638 bufp->regs_allocated = REGS_REALLOCATE; 3639 regs->num_regs = num_regs; 3640 regs->start = starts; 3641 regs->end = ends; 3642 } 3643 else 3644 { 3645 bufp->regs_allocated = REGS_UNALLOCATED; 3646 regs->num_regs = 0; 3647 regs->start = regs->end = (regoff_t *) 0; 3648 } 3649 } 3650 3651 /* Searching routines. */ 3652 3653 /* Like re_search_2, below, but only one string is specified, and 3654 doesn't let you say where to stop matching. */ 3655 3656 int 3657 re_search (bufp, string, size, startpos, range, regs) 3658 struct re_pattern_buffer *bufp; 3659 const char *string; 3660 int size, startpos, range; 3661 struct re_registers *regs; 3662 { 3663 return re_search_2 (bufp, NULL, 0, string, size, startpos, range, 3664 regs, size); 3665 } 3666 3667 /* End address of virtual concatenation of string. */ 3668 #define STOP_ADDR_VSTRING(P) \ 3669 (((P) >= size1 ? string2 + size2 : string1 + size1)) 3670 3671 /* Address of POS in the concatenation of virtual string. */ 3672 #define POS_ADDR_VSTRING(POS) \ 3673 (((POS) >= size1 ? string2 - size1 : string1) + (POS)) 3674 3675 /* Using the compiled pattern in BUFP->buffer, first tries to match the 3676 virtual concatenation of STRING1 and STRING2, starting first at index 3677 STARTPOS, then at STARTPOS + 1, and so on. 3678 3679 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively. 3680 3681 RANGE is how far to scan while trying to match. RANGE = 0 means try 3682 only at STARTPOS; in general, the last start tried is STARTPOS + 3683 RANGE. 3684 3685 In REGS, return the indices of the virtual concatenation of STRING1 3686 and STRING2 that matched the entire BUFP->buffer and its contained 3687 subexpressions. 3688 3689 Do not consider matching one past the index STOP in the virtual 3690 concatenation of STRING1 and STRING2. 3691 3692 We return either the position in the strings at which the match was 3693 found, -1 if no match, or -2 if error (such as failure 3694 stack overflow). */ 3695 3696 int 3697 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop) 3698 struct re_pattern_buffer *bufp; 3699 const char *string1, *string2; 3700 int size1, size2; 3701 int startpos; 3702 int range; 3703 struct re_registers *regs; 3704 int stop; 3705 { 3706 int val; 3707 register char *fastmap = bufp->fastmap; 3708 register RE_TRANSLATE_TYPE translate = bufp->translate; 3709 int total_size = size1 + size2; 3710 int endpos = startpos + range; 3711 int anchored_start = 0; 3712 3713 /* Nonzero if we have to concern multibyte character. */ 3714 int multibyte = bufp->multibyte; 3715 3716 /* Check for out-of-range STARTPOS. */ 3717 if (startpos < 0 || startpos > total_size) 3718 return -1; 3719 3720 /* Fix up RANGE if it might eventually take us outside 3721 the virtual concatenation of STRING1 and STRING2. 3722 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */ 3723 if (endpos < 0) 3724 range = 0 - startpos; 3725 else if (endpos > total_size) 3726 range = total_size - startpos; 3727 3728 /* If the search isn't to be a backwards one, don't waste time in a 3729 search for a pattern anchored at beginning of buffer. */ 3730 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0) 3731 { 3732 if (startpos > 0) 3733 return -1; 3734 else 3735 range = 0; 3736 } 3737 3738 #ifdef emacs 3739 /* In a forward search for something that starts with \=. 3740 don't keep searching past point. */ 3741 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0) 3742 { 3743 range = PT_BYTE - BEGV_BYTE - startpos; 3744 if (range < 0) 3745 return -1; 3746 } 3747 #endif /* emacs */ 3748 3749 /* Update the fastmap now if not correct already. */ 3750 if (fastmap && !bufp->fastmap_accurate) 3751 if (re_compile_fastmap (bufp) == -2) 3752 return -2; 3753 3754 /* See whether the pattern is anchored. */ 3755 if (bufp->buffer[0] == begline) 3756 anchored_start = 1; 3757 3758 #ifdef emacs 3759 gl_state.object = re_match_object; 3760 { 3761 int adjpos = NILP (re_match_object) || BUFFERP (re_match_object); 3762 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (startpos + adjpos); 3763 3764 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1); 3765 } 3766 #endif 3767 3768 /* Loop through the string, looking for a place to start matching. */ 3769 for (;;) 3770 { 3771 /* If the pattern is anchored, 3772 skip quickly past places we cannot match. 3773 We don't bother to treat startpos == 0 specially 3774 because that case doesn't repeat. */ 3775 if (anchored_start && startpos > 0) 3776 { 3777 if (! (bufp->newline_anchor 3778 && ((startpos <= size1 ? string1[startpos - 1] 3779 : string2[startpos - size1 - 1]) 3780 == '\n'))) 3781 goto advance; 3782 } 3783 3784 /* If a fastmap is supplied, skip quickly over characters that 3785 cannot be the start of a match. If the pattern can match the 3786 null string, however, we don't need to skip characters; we want 3787 the first null string. */ 3788 if (fastmap && startpos < total_size && !bufp->can_be_null) 3789 { 3790 register const char *d; 3791 register unsigned int buf_ch; 3792 3793 d = POS_ADDR_VSTRING (startpos); 3794 3795 if (range > 0) /* Searching forwards. */ 3796 { 3797 register int lim = 0; 3798 int irange = range; 3799 3800 if (startpos < size1 && startpos + range >= size1) 3801 lim = range - (size1 - startpos); 3802 3803 /* Written out as an if-else to avoid testing `translate' 3804 inside the loop. */ 3805 if (RE_TRANSLATE_P (translate)) 3806 { 3807 if (multibyte) 3808 while (range > lim) 3809 { 3810 int buf_charlen; 3811 3812 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim, 3813 buf_charlen); 3814 3815 buf_ch = RE_TRANSLATE (translate, buf_ch); 3816 if (buf_ch >= 0400 3817 || fastmap[buf_ch]) 3818 break; 3819 3820 range -= buf_charlen; 3821 d += buf_charlen; 3822 } 3823 else 3824 while (range > lim 3825 && !fastmap[(unsigned char) 3826 RE_TRANSLATE (translate, (unsigned char) *d)]) 3827 { 3828 d++; 3829 range--; 3830 } 3831 } 3832 else 3833 while (range > lim && !fastmap[(unsigned char) *d]) 3834 { 3835 d++; 3836 range--; 3837 } 3838 3839 startpos += irange - range; 3840 } 3841 else /* Searching backwards. */ 3842 { 3843 int room = (size1 == 0 || startpos >= size1 3844 ? size2 + size1 - startpos 3845 : size1 - startpos); 3846 3847 buf_ch = STRING_CHAR (d, room); 3848 if (RE_TRANSLATE_P (translate)) 3849 buf_ch = RE_TRANSLATE (translate, buf_ch); 3850 3851 if (! (buf_ch >= 0400 3852 || fastmap[buf_ch])) 3853 goto advance; 3854 } 3855 } 3856 3857 /* If can't match the null string, and that's all we have left, fail. */ 3858 if (range >= 0 && startpos == total_size && fastmap 3859 && !bufp->can_be_null) 3860 return -1; 3861 3862 val = re_match_2_internal (bufp, string1, size1, string2, size2, 3863 startpos, regs, stop); 3864 #ifndef REGEX_MALLOC 3865 #ifdef C_ALLOCA 3866 alloca (0); 3867 #endif 3868 #endif 3869 3870 if (val >= 0) 3871 return startpos; 3872 3873 if (val == -2) 3874 return -2; 3875 3876 advance: 3877 if (!range) 3878 break; 3879 else if (range > 0) 3880 { 3881 /* Update STARTPOS to the next character boundary. */ 3882 if (multibyte) 3883 { 3884 const unsigned char *p 3885 = (const unsigned char *) POS_ADDR_VSTRING (startpos); 3886 const unsigned char *pend 3887 = (const unsigned char *) STOP_ADDR_VSTRING (startpos); 3888 int len = MULTIBYTE_FORM_LENGTH (p, pend - p); 3889 3890 range -= len; 3891 if (range < 0) 3892 break; 3893 startpos += len; 3894 } 3895 else 3896 { 3897 range--; 3898 startpos++; 3899 } 3900 } 3901 else 3902 { 3903 range++; 3904 startpos--; 3905 3906 /* Update STARTPOS to the previous character boundary. */ 3907 if (multibyte) 3908 { 3909 const unsigned char *p 3910 = (const unsigned char *) POS_ADDR_VSTRING (startpos); 3911 int len = 0; 3912 3913 /* Find the head of multibyte form. */ 3914 while (!CHAR_HEAD_P (*p)) 3915 p--, len++; 3916 3917 /* Adjust it. */ 3918 #if 0 /* XXX */ 3919 if (MULTIBYTE_FORM_LENGTH (p, len + 1) != (len + 1)) 3920 ; 3921 else 3922 #endif 3923 { 3924 range += len; 3925 if (range > 0) 3926 break; 3927 3928 startpos -= len; 3929 } 3930 } 3931 } 3932 } 3933 return -1; 3934 } /* re_search_2 */ 3935 3936 /* Declarations and macros for re_match_2. */ 3937 3938 static int bcmp_translate (); 3939 static boolean alt_match_null_string_p (), 3940 common_op_match_null_string_p (), 3941 group_match_null_string_p (); 3942 3943 /* This converts PTR, a pointer into one of the search strings `string1' 3944 and `string2' into an offset from the beginning of that string. */ 3945 #define POINTER_TO_OFFSET(ptr) \ 3946 (FIRST_STRING_P (ptr) \ 3947 ? ((regoff_t) ((ptr) - string1)) \ 3948 : ((regoff_t) ((ptr) - string2 + size1))) 3949 3950 /* Macros for dealing with the split strings in re_match_2. */ 3951 3952 #define MATCHING_IN_FIRST_STRING (dend == end_match_1) 3953 3954 /* Call before fetching a character with *d. This switches over to 3955 string2 if necessary. */ 3956 #define PREFETCH() \ 3957 while (d == dend) \ 3958 { \ 3959 /* End of string2 => fail. */ \ 3960 if (dend == end_match_2) \ 3961 goto fail; \ 3962 /* End of string1 => advance to string2. */ \ 3963 d = string2; \ 3964 dend = end_match_2; \ 3965 } 3966 3967 3968 /* Test if at very beginning or at very end of the virtual concatenation 3969 of `string1' and `string2'. If only one string, it's `string2'. */ 3970 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2) 3971 #define AT_STRINGS_END(d) ((d) == end2) 3972 3973 3974 /* Test if D points to a character which is word-constituent. We have 3975 two special cases to check for: if past the end of string1, look at 3976 the first character in string2; and if before the beginning of 3977 string2, look at the last character in string1. */ 3978 #define WORDCHAR_P(d) \ 3979 (SYNTAX ((d) == end1 ? *string2 \ 3980 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \ 3981 == Sword) 3982 3983 /* Disabled due to a compiler bug -- see comment at case wordbound */ 3984 3985 /* The comment at case wordbound is following one, but we don't use 3986 AT_WORD_BOUNDARY anymore to support multibyte form. 3987 3988 The DEC Alpha C compiler 3.x generates incorrect code for the 3989 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of 3990 AT_WORD_BOUNDARY, so this code is disabled. Expanding the 3991 macro and introducing temporary variables works around the bug. */ 3992 3993 #if 0 3994 /* Test if the character before D and the one at D differ with respect 3995 to being word-constituent. */ 3996 #define AT_WORD_BOUNDARY(d) \ 3997 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \ 3998 || WORDCHAR_P (d - 1) != WORDCHAR_P (d)) 3999 #endif 4000 4001 /* Free everything we malloc. */ 4002 #ifdef MATCH_MAY_ALLOCATE 4003 #define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else 4004 #define FREE_VARIABLES() \ 4005 do { \ 4006 REGEX_FREE_STACK (fail_stack.stack); \ 4007 FREE_VAR (regstart); \ 4008 FREE_VAR (regend); \ 4009 FREE_VAR (old_regstart); \ 4010 FREE_VAR (old_regend); \ 4011 FREE_VAR (best_regstart); \ 4012 FREE_VAR (best_regend); \ 4013 FREE_VAR (reg_info); \ 4014 FREE_VAR (reg_dummy); \ 4015 FREE_VAR (reg_info_dummy); \ 4016 } while (0) 4017 #else 4018 #define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */ 4019 #endif /* not MATCH_MAY_ALLOCATE */ 4020 4021 /* These values must meet several constraints. They must not be valid 4022 register values; since we have a limit of 255 registers (because 4023 we use only one byte in the pattern for the register number), we can 4024 use numbers larger than 255. They must differ by 1, because of 4025 NUM_FAILURE_ITEMS above. And the value for the lowest register must 4026 be larger than the value for the highest register, so we do not try 4027 to actually save any registers when none are active. */ 4028 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH) 4029 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1) 4030 4031 /* Matching routines. */ 4032 4033 #ifndef emacs /* Emacs never uses this. */ 4034 /* re_match is like re_match_2 except it takes only a single string. */ 4035 4036 int 4037 re_match (bufp, string, size, pos, regs) 4038 struct re_pattern_buffer *bufp; 4039 const char *string; 4040 int size, pos; 4041 struct re_registers *regs; 4042 { 4043 int result = re_match_2_internal (bufp, NULL, 0, string, size, 4044 pos, regs, size); 4045 #ifndef REGEX_MALLOC /* CVS */ 4046 #ifdef C_ALLOCA /* CVS */ 4047 alloca (0); 4048 #endif /* CVS */ 4049 #endif /* CVS */ 4050 return result; 4051 } 4052 #endif /* not emacs */ 4053 4054 #ifdef emacs 4055 /* In Emacs, this is the string or buffer in which we 4056 are matching. It is used for looking up syntax properties. */ 4057 Lisp_Object re_match_object; 4058 #endif 4059 4060 /* re_match_2 matches the compiled pattern in BUFP against the 4061 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 4062 and SIZE2, respectively). We start matching at POS, and stop 4063 matching at STOP. 4064 4065 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we 4066 store offsets for the substring each group matched in REGS. See the 4067 documentation for exactly how many groups we fill. 4068 4069 We return -1 if no match, -2 if an internal error (such as the 4070 failure stack overflowing). Otherwise, we return the length of the 4071 matched substring. */ 4072 4073 int 4074 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop) 4075 struct re_pattern_buffer *bufp; 4076 const char *string1, *string2; 4077 int size1, size2; 4078 int pos; 4079 struct re_registers *regs; 4080 int stop; 4081 { 4082 int result; 4083 4084 #ifdef emacs 4085 int charpos; 4086 int adjpos = NILP (re_match_object) || BUFFERP (re_match_object); 4087 gl_state.object = re_match_object; 4088 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos + adjpos); 4089 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1); 4090 #endif 4091 4092 result = re_match_2_internal (bufp, string1, size1, string2, size2, 4093 pos, regs, stop); 4094 #ifndef REGEX_MALLOC /* CVS */ 4095 #ifdef C_ALLOCA /* CVS */ 4096 alloca (0); 4097 #endif /* CVS */ 4098 #endif /* CVS */ 4099 return result; 4100 } 4101 4102 /* This is a separate function so that we can force an alloca cleanup 4103 afterwards. */ 4104 static int 4105 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop) 4106 struct re_pattern_buffer *bufp; 4107 const char *string1, *string2; 4108 int size1, size2; 4109 int pos; 4110 struct re_registers *regs; 4111 int stop; 4112 { 4113 /* General temporaries. */ 4114 int mcnt; 4115 unsigned char *p1; 4116 4117 /* Just past the end of the corresponding string. */ 4118 const char *end1, *end2; 4119 4120 /* Pointers into string1 and string2, just past the last characters in 4121 each to consider matching. */ 4122 const char *end_match_1, *end_match_2; 4123 4124 /* Where we are in the data, and the end of the current string. */ 4125 const char *d, *dend; 4126 4127 /* Where we are in the pattern, and the end of the pattern. */ 4128 unsigned char *p = bufp->buffer; 4129 register unsigned char *pend = p + bufp->used; 4130 4131 /* Mark the opcode just after a start_memory, so we can test for an 4132 empty subpattern when we get to the stop_memory. */ 4133 unsigned char *just_past_start_mem = 0; 4134 4135 /* We use this to map every character in the string. */ 4136 RE_TRANSLATE_TYPE translate = bufp->translate; 4137 4138 /* Nonzero if we have to concern multibyte character. */ 4139 int multibyte = bufp->multibyte; 4140 4141 /* Failure point stack. Each place that can handle a failure further 4142 down the line pushes a failure point on this stack. It consists of 4143 restart, regend, and reg_info for all registers corresponding to 4144 the subexpressions we're currently inside, plus the number of such 4145 registers, and, finally, two char *'s. The first char * is where 4146 to resume scanning the pattern; the second one is where to resume 4147 scanning the strings. If the latter is zero, the failure point is 4148 a ``dummy''; if a failure happens and the failure point is a dummy, 4149 it gets discarded and the next next one is tried. */ 4150 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ 4151 fail_stack_type fail_stack; 4152 #endif 4153 #ifdef DEBUG 4154 static unsigned failure_id = 0; 4155 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0; 4156 #endif 4157 4158 /* This holds the pointer to the failure stack, when 4159 it is allocated relocatably. */ 4160 fail_stack_elt_t *failure_stack_ptr; 4161 4162 /* We fill all the registers internally, independent of what we 4163 return, for use in backreferences. The number here includes 4164 an element for register zero. */ 4165 unsigned num_regs = bufp->re_nsub + 1; 4166 4167 /* The currently active registers. */ 4168 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG; 4169 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG; 4170 4171 /* Information on the contents of registers. These are pointers into 4172 the input strings; they record just what was matched (on this 4173 attempt) by a subexpression part of the pattern, that is, the 4174 regnum-th regstart pointer points to where in the pattern we began 4175 matching and the regnum-th regend points to right after where we 4176 stopped matching the regnum-th subexpression. (The zeroth register 4177 keeps track of what the whole pattern matches.) */ 4178 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ 4179 const char **regstart, **regend; 4180 #endif 4181 4182 /* If a group that's operated upon by a repetition operator fails to 4183 match anything, then the register for its start will need to be 4184 restored because it will have been set to wherever in the string we 4185 are when we last see its open-group operator. Similarly for a 4186 register's end. */ 4187 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ 4188 const char **old_regstart, **old_regend; 4189 #endif 4190 4191 /* The is_active field of reg_info helps us keep track of which (possibly 4192 nested) subexpressions we are currently in. The matched_something 4193 field of reg_info[reg_num] helps us tell whether or not we have 4194 matched any of the pattern so far this time through the reg_num-th 4195 subexpression. These two fields get reset each time through any 4196 loop their register is in. */ 4197 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ 4198 register_info_type *reg_info; 4199 #endif 4200 4201 /* The following record the register info as found in the above 4202 variables when we find a match better than any we've seen before. 4203 This happens as we backtrack through the failure points, which in 4204 turn happens only if we have not yet matched the entire string. */ 4205 unsigned best_regs_set = false; 4206 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ 4207 const char **best_regstart, **best_regend; 4208 #endif 4209 4210 /* Logically, this is `best_regend[0]'. But we don't want to have to 4211 allocate space for that if we're not allocating space for anything 4212 else (see below). Also, we never need info about register 0 for 4213 any of the other register vectors, and it seems rather a kludge to 4214 treat `best_regend' differently than the rest. So we keep track of 4215 the end of the best match so far in a separate variable. We 4216 initialize this to NULL so that when we backtrack the first time 4217 and need to test it, it's not garbage. */ 4218 const char *match_end = NULL; 4219 4220 /* This helps SET_REGS_MATCHED avoid doing redundant work. */ 4221 int set_regs_matched_done = 0; 4222 4223 /* Used when we pop values we don't care about. */ 4224 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ 4225 const char **reg_dummy; 4226 register_info_type *reg_info_dummy; 4227 #endif 4228 4229 #ifdef DEBUG 4230 /* Counts the total number of registers pushed. */ 4231 unsigned num_regs_pushed = 0; 4232 #endif 4233 4234 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n"); 4235 4236 INIT_FAIL_STACK (); 4237 4238 #ifdef MATCH_MAY_ALLOCATE 4239 /* Do not bother to initialize all the register variables if there are 4240 no groups in the pattern, as it takes a fair amount of time. If 4241 there are groups, we include space for register 0 (the whole 4242 pattern), even though we never use it, since it simplifies the 4243 array indexing. We should fix this. */ 4244 if (bufp->re_nsub) 4245 { 4246 regstart = REGEX_TALLOC (num_regs, const char *); 4247 regend = REGEX_TALLOC (num_regs, const char *); 4248 old_regstart = REGEX_TALLOC (num_regs, const char *); 4249 old_regend = REGEX_TALLOC (num_regs, const char *); 4250 best_regstart = REGEX_TALLOC (num_regs, const char *); 4251 best_regend = REGEX_TALLOC (num_regs, const char *); 4252 reg_info = REGEX_TALLOC (num_regs, register_info_type); 4253 reg_dummy = REGEX_TALLOC (num_regs, const char *); 4254 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type); 4255 4256 if (!(regstart && regend && old_regstart && old_regend && reg_info 4257 && best_regstart && best_regend && reg_dummy && reg_info_dummy)) 4258 { 4259 FREE_VARIABLES (); 4260 return -2; 4261 } 4262 } 4263 else 4264 { 4265 /* We must initialize all our variables to NULL, so that 4266 `FREE_VARIABLES' doesn't try to free them. */ 4267 regstart = regend = old_regstart = old_regend = best_regstart 4268 = best_regend = reg_dummy = NULL; 4269 reg_info = reg_info_dummy = (register_info_type *) NULL; 4270 } 4271 #endif /* MATCH_MAY_ALLOCATE */ 4272 4273 /* The starting position is bogus. */ 4274 if (pos < 0 || pos > size1 + size2) 4275 { 4276 FREE_VARIABLES (); 4277 return -1; 4278 } 4279 4280 /* Initialize subexpression text positions to -1 to mark ones that no 4281 start_memory/stop_memory has been seen for. Also initialize the 4282 register information struct. */ 4283 for (mcnt = 1; mcnt < num_regs; mcnt++) 4284 { 4285 regstart[mcnt] = regend[mcnt] 4286 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE; 4287 4288 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE; 4289 IS_ACTIVE (reg_info[mcnt]) = 0; 4290 MATCHED_SOMETHING (reg_info[mcnt]) = 0; 4291 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0; 4292 } 4293 4294 /* We move `string1' into `string2' if the latter's empty -- but not if 4295 `string1' is null. */ 4296 if (size2 == 0 && string1 != NULL) 4297 { 4298 string2 = string1; 4299 size2 = size1; 4300 string1 = 0; 4301 size1 = 0; 4302 } 4303 end1 = string1 + size1; 4304 end2 = string2 + size2; 4305 4306 /* Compute where to stop matching, within the two strings. */ 4307 if (stop <= size1) 4308 { 4309 end_match_1 = string1 + stop; 4310 end_match_2 = string2; 4311 } 4312 else 4313 { 4314 end_match_1 = end1; 4315 end_match_2 = string2 + stop - size1; 4316 } 4317 4318 /* `p' scans through the pattern as `d' scans through the data. 4319 `dend' is the end of the input string that `d' points within. `d' 4320 is advanced into the following input string whenever necessary, but 4321 this happens before fetching; therefore, at the beginning of the 4322 loop, `d' can be pointing at the end of a string, but it cannot 4323 equal `string2'. */ 4324 if (size1 > 0 && pos <= size1) 4325 { 4326 d = string1 + pos; 4327 dend = end_match_1; 4328 } 4329 else 4330 { 4331 d = string2 + pos - size1; 4332 dend = end_match_2; 4333 } 4334 4335 DEBUG_PRINT1 ("The compiled pattern is: "); 4336 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend); 4337 DEBUG_PRINT1 ("The string to match is: `"); 4338 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2); 4339 DEBUG_PRINT1 ("'\n"); 4340 4341 /* This loops over pattern commands. It exits by returning from the 4342 function if the match is complete, or it drops through if the match 4343 fails at this starting point in the input data. */ 4344 for (;;) 4345 { 4346 DEBUG_PRINT2 ("\n0x%x: ", p); 4347 4348 if (p == pend) 4349 { /* End of pattern means we might have succeeded. */ 4350 DEBUG_PRINT1 ("end of pattern ... "); 4351 4352 /* If we haven't matched the entire string, and we want the 4353 longest match, try backtracking. */ 4354 if (d != end_match_2) 4355 { 4356 /* 1 if this match ends in the same string (string1 or string2) 4357 as the best previous match. */ 4358 boolean same_str_p = (FIRST_STRING_P (match_end) 4359 == MATCHING_IN_FIRST_STRING); 4360 /* 1 if this match is the best seen so far. */ 4361 boolean best_match_p; 4362 4363 /* AIX compiler got confused when this was combined 4364 with the previous declaration. */ 4365 if (same_str_p) 4366 best_match_p = d > match_end; 4367 else 4368 best_match_p = !MATCHING_IN_FIRST_STRING; 4369 4370 DEBUG_PRINT1 ("backtracking.\n"); 4371 4372 if (!FAIL_STACK_EMPTY ()) 4373 { /* More failure points to try. */ 4374 4375 /* If exceeds best match so far, save it. */ 4376 if (!best_regs_set || best_match_p) 4377 { 4378 best_regs_set = true; 4379 match_end = d; 4380 4381 DEBUG_PRINT1 ("\nSAVING match as best so far.\n"); 4382 4383 for (mcnt = 1; mcnt < num_regs; mcnt++) 4384 { 4385 best_regstart[mcnt] = regstart[mcnt]; 4386 best_regend[mcnt] = regend[mcnt]; 4387 } 4388 } 4389 goto fail; 4390 } 4391 4392 /* If no failure points, don't restore garbage. And if 4393 last match is real best match, don't restore second 4394 best one. */ 4395 else if (best_regs_set && !best_match_p) 4396 { 4397 restore_best_regs: 4398 /* Restore best match. It may happen that `dend == 4399 end_match_1' while the restored d is in string2. 4400 For example, the pattern `x.*y.*z' against the 4401 strings `x-' and `y-z-', if the two strings are 4402 not consecutive in memory. */ 4403 DEBUG_PRINT1 ("Restoring best registers.\n"); 4404 4405 d = match_end; 4406 dend = ((d >= string1 && d <= end1) 4407 ? end_match_1 : end_match_2); 4408 4409 for (mcnt = 1; mcnt < num_regs; mcnt++) 4410 { 4411 regstart[mcnt] = best_regstart[mcnt]; 4412 regend[mcnt] = best_regend[mcnt]; 4413 } 4414 } 4415 } /* d != end_match_2 */ 4416 4417 succeed_label: 4418 DEBUG_PRINT1 ("Accepting match.\n"); 4419 4420 /* If caller wants register contents data back, do it. */ 4421 if (regs && !bufp->no_sub) 4422 { 4423 /* Have the register data arrays been allocated? */ 4424 if (bufp->regs_allocated == REGS_UNALLOCATED) 4425 { /* No. So allocate them with malloc. We need one 4426 extra element beyond `num_regs' for the `-1' marker 4427 GNU code uses. */ 4428 regs->num_regs = MAX (RE_NREGS, num_regs + 1); 4429 regs->start = TALLOC (regs->num_regs, regoff_t); 4430 regs->end = TALLOC (regs->num_regs, regoff_t); 4431 if (regs->start == NULL || regs->end == NULL) 4432 { 4433 FREE_VARIABLES (); 4434 return -2; 4435 } 4436 bufp->regs_allocated = REGS_REALLOCATE; 4437 } 4438 else if (bufp->regs_allocated == REGS_REALLOCATE) 4439 { /* Yes. If we need more elements than were already 4440 allocated, reallocate them. If we need fewer, just 4441 leave it alone. */ 4442 if (regs->num_regs < num_regs + 1) 4443 { 4444 regs->num_regs = num_regs + 1; 4445 RETALLOC (regs->start, regs->num_regs, regoff_t); 4446 RETALLOC (regs->end, regs->num_regs, regoff_t); 4447 if (regs->start == NULL || regs->end == NULL) 4448 { 4449 FREE_VARIABLES (); 4450 return -2; 4451 } 4452 } 4453 } 4454 else 4455 { 4456 /* These braces fend off a "empty body in an else-statement" 4457 warning under GCC when assert expands to nothing. */ 4458 assert (bufp->regs_allocated == REGS_FIXED); 4459 } 4460 4461 /* Convert the pointer data in `regstart' and `regend' to 4462 indices. Register zero has to be set differently, 4463 since we haven't kept track of any info for it. */ 4464 if (regs->num_regs > 0) 4465 { 4466 regs->start[0] = pos; 4467 regs->end[0] = (MATCHING_IN_FIRST_STRING 4468 ? ((regoff_t) (d - string1)) 4469 : ((regoff_t) (d - string2 + size1))); 4470 } 4471 4472 /* Go through the first `min (num_regs, regs->num_regs)' 4473 registers, since that is all we initialized. */ 4474 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++) 4475 { 4476 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt])) 4477 regs->start[mcnt] = regs->end[mcnt] = -1; 4478 else 4479 { 4480 regs->start[mcnt] 4481 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]); 4482 regs->end[mcnt] 4483 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]); 4484 } 4485 } 4486 4487 /* If the regs structure we return has more elements than 4488 were in the pattern, set the extra elements to -1. If 4489 we (re)allocated the registers, this is the case, 4490 because we always allocate enough to have at least one 4491 -1 at the end. */ 4492 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++) 4493 regs->start[mcnt] = regs->end[mcnt] = -1; 4494 } /* regs && !bufp->no_sub */ 4495 4496 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n", 4497 nfailure_points_pushed, nfailure_points_popped, 4498 nfailure_points_pushed - nfailure_points_popped); 4499 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed); 4500 4501 mcnt = d - pos - (MATCHING_IN_FIRST_STRING 4502 ? string1 4503 : string2 - size1); 4504 4505 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt); 4506 4507 FREE_VARIABLES (); 4508 return mcnt; 4509 } 4510 4511 /* Otherwise match next pattern command. */ 4512 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)) 4513 { 4514 /* Ignore these. Used to ignore the n of succeed_n's which 4515 currently have n == 0. */ 4516 case no_op: 4517 DEBUG_PRINT1 ("EXECUTING no_op.\n"); 4518 break; 4519 4520 case succeed: 4521 DEBUG_PRINT1 ("EXECUTING succeed.\n"); 4522 goto succeed_label; 4523 4524 /* Match the next n pattern characters exactly. The following 4525 byte in the pattern defines n, and the n bytes after that 4526 are the characters to match. */ 4527 case exactn: 4528 mcnt = *p++; 4529 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt); 4530 4531 /* This is written out as an if-else so we don't waste time 4532 testing `translate' inside the loop. */ 4533 if (RE_TRANSLATE_P (translate)) 4534 { 4535 #ifdef emacs 4536 if (multibyte) 4537 do 4538 { 4539 int pat_charlen, buf_charlen; 4540 unsigned int pat_ch, buf_ch; 4541 4542 PREFETCH (); 4543 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen); 4544 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen); 4545 4546 if (RE_TRANSLATE (translate, buf_ch) 4547 != pat_ch) 4548 goto fail; 4549 4550 p += pat_charlen; 4551 d += buf_charlen; 4552 mcnt -= pat_charlen; 4553 } 4554 while (mcnt > 0); 4555 else 4556 #endif /* not emacs */ 4557 do 4558 { 4559 PREFETCH (); 4560 if ((unsigned char) RE_TRANSLATE (translate, (unsigned char) *d) 4561 != (unsigned char) *p++) 4562 goto fail; 4563 d++; 4564 } 4565 while (--mcnt); 4566 } 4567 else 4568 { 4569 do 4570 { 4571 PREFETCH (); 4572 if (*d++ != (char) *p++) goto fail; 4573 } 4574 while (--mcnt); 4575 } 4576 SET_REGS_MATCHED (); 4577 break; 4578 4579 4580 /* Match any character except possibly a newline or a null. */ 4581 case anychar: 4582 { 4583 int buf_charlen; 4584 unsigned int buf_ch; 4585 4586 DEBUG_PRINT1 ("EXECUTING anychar.\n"); 4587 4588 PREFETCH (); 4589 4590 #ifdef emacs 4591 if (multibyte) 4592 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen); 4593 else 4594 #endif /* not emacs */ 4595 { 4596 buf_ch = (unsigned char) *d; 4597 buf_charlen = 1; 4598 } 4599 4600 buf_ch = TRANSLATE (buf_ch); 4601 4602 if ((!(bufp->syntax & RE_DOT_NEWLINE) 4603 && buf_ch == '\n') 4604 || ((bufp->syntax & RE_DOT_NOT_NULL) 4605 && buf_ch == '\000')) 4606 goto fail; 4607 4608 SET_REGS_MATCHED (); 4609 DEBUG_PRINT2 (" Matched `%d'.\n", *d); 4610 d += buf_charlen; 4611 } 4612 break; 4613 4614 4615 case charset: 4616 case charset_not: 4617 { 4618 register unsigned int c; 4619 boolean not = (re_opcode_t) *(p - 1) == charset_not; 4620 int len; 4621 4622 /* Start of actual range_table, or end of bitmap if there is no 4623 range table. */ 4624 unsigned char *range_table; 4625 4626 /* Nonzero if there is range table. */ 4627 int range_table_exists; 4628 4629 /* Number of ranges of range table. Not in bytes. */ 4630 int count; 4631 4632 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : ""); 4633 4634 PREFETCH (); 4635 c = (unsigned char) *d; 4636 4637 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */ 4638 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]); 4639 if (range_table_exists) 4640 EXTRACT_NUMBER_AND_INCR (count, range_table); 4641 else 4642 count = 0; 4643 4644 if (multibyte && BASE_LEADING_CODE_P (c)) 4645 c = STRING_CHAR_AND_LENGTH (d, dend - d, len); 4646 4647 if (SINGLE_BYTE_CHAR_P (c)) 4648 { /* Lookup bitmap. */ 4649 c = TRANSLATE (c); /* The character to match. */ 4650 len = 1; 4651 4652 /* Cast to `unsigned' instead of `unsigned char' in 4653 case the bit list is a full 32 bytes long. */ 4654 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH) 4655 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) 4656 not = !not; 4657 } 4658 else if (range_table_exists) 4659 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count); 4660 4661 p = CHARSET_RANGE_TABLE_END (range_table, count); 4662 4663 if (!not) goto fail; 4664 4665 SET_REGS_MATCHED (); 4666 d += len; 4667 break; 4668 } 4669 4670 4671 /* The beginning of a group is represented by start_memory. 4672 The arguments are the register number in the next byte, and the 4673 number of groups inner to this one in the next. The text 4674 matched within the group is recorded (in the internal 4675 registers data structure) under the register number. */ 4676 case start_memory: 4677 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]); 4678 4679 /* Find out if this group can match the empty string. */ 4680 p1 = p; /* To send to group_match_null_string_p. */ 4681 4682 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE) 4683 REG_MATCH_NULL_STRING_P (reg_info[*p]) 4684 = group_match_null_string_p (&p1, pend, reg_info); 4685 4686 /* Save the position in the string where we were the last time 4687 we were at this open-group operator in case the group is 4688 operated upon by a repetition operator, e.g., with `(a*)*b' 4689 against `ab'; then we want to ignore where we are now in 4690 the string in case this attempt to match fails. */ 4691 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) 4692 ? REG_UNSET (regstart[*p]) ? d : regstart[*p] 4693 : regstart[*p]; 4694 DEBUG_PRINT2 (" old_regstart: %d\n", 4695 POINTER_TO_OFFSET (old_regstart[*p])); 4696 4697 regstart[*p] = d; 4698 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p])); 4699 4700 IS_ACTIVE (reg_info[*p]) = 1; 4701 MATCHED_SOMETHING (reg_info[*p]) = 0; 4702 4703 /* Clear this whenever we change the register activity status. */ 4704 set_regs_matched_done = 0; 4705 4706 /* This is the new highest active register. */ 4707 highest_active_reg = *p; 4708 4709 /* If nothing was active before, this is the new lowest active 4710 register. */ 4711 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) 4712 lowest_active_reg = *p; 4713 4714 /* Move past the register number and inner group count. */ 4715 p += 2; 4716 just_past_start_mem = p; 4717 4718 break; 4719 4720 4721 /* The stop_memory opcode represents the end of a group. Its 4722 arguments are the same as start_memory's: the register 4723 number, and the number of inner groups. */ 4724 case stop_memory: 4725 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]); 4726 4727 /* We need to save the string position the last time we were at 4728 this close-group operator in case the group is operated 4729 upon by a repetition operator, e.g., with `((a*)*(b*)*)*' 4730 against `aba'; then we want to ignore where we are now in 4731 the string in case this attempt to match fails. */ 4732 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) 4733 ? REG_UNSET (regend[*p]) ? d : regend[*p] 4734 : regend[*p]; 4735 DEBUG_PRINT2 (" old_regend: %d\n", 4736 POINTER_TO_OFFSET (old_regend[*p])); 4737 4738 regend[*p] = d; 4739 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p])); 4740 4741 /* This register isn't active anymore. */ 4742 IS_ACTIVE (reg_info[*p]) = 0; 4743 4744 /* Clear this whenever we change the register activity status. */ 4745 set_regs_matched_done = 0; 4746 4747 /* If this was the only register active, nothing is active 4748 anymore. */ 4749 if (lowest_active_reg == highest_active_reg) 4750 { 4751 lowest_active_reg = NO_LOWEST_ACTIVE_REG; 4752 highest_active_reg = NO_HIGHEST_ACTIVE_REG; 4753 } 4754 else 4755 { /* We must scan for the new highest active register, since 4756 it isn't necessarily one less than now: consider 4757 (a(b)c(d(e)f)g). When group 3 ends, after the f), the 4758 new highest active register is 1. */ 4759 unsigned char r = *p - 1; 4760 while (r > 0 && !IS_ACTIVE (reg_info[r])) 4761 r--; 4762 4763 /* If we end up at register zero, that means that we saved 4764 the registers as the result of an `on_failure_jump', not 4765 a `start_memory', and we jumped to past the innermost 4766 `stop_memory'. For example, in ((.)*) we save 4767 registers 1 and 2 as a result of the *, but when we pop 4768 back to the second ), we are at the stop_memory 1. 4769 Thus, nothing is active. */ 4770 if (r == 0) 4771 { 4772 lowest_active_reg = NO_LOWEST_ACTIVE_REG; 4773 highest_active_reg = NO_HIGHEST_ACTIVE_REG; 4774 } 4775 else 4776 highest_active_reg = r; 4777 } 4778 4779 /* If just failed to match something this time around with a 4780 group that's operated on by a repetition operator, try to 4781 force exit from the ``loop'', and restore the register 4782 information for this group that we had before trying this 4783 last match. */ 4784 if ((!MATCHED_SOMETHING (reg_info[*p]) 4785 || just_past_start_mem == p - 1) 4786 && (p + 2) < pend) 4787 { 4788 boolean is_a_jump_n = false; 4789 4790 p1 = p + 2; 4791 mcnt = 0; 4792 switch ((re_opcode_t) *p1++) 4793 { 4794 case jump_n: 4795 is_a_jump_n = true; 4796 case pop_failure_jump: 4797 case maybe_pop_jump: 4798 case jump: 4799 case dummy_failure_jump: 4800 EXTRACT_NUMBER_AND_INCR (mcnt, p1); 4801 if (is_a_jump_n) 4802 p1 += 2; 4803 break; 4804 4805 default: 4806 /* do nothing */ ; 4807 } 4808 p1 += mcnt; 4809 4810 /* If the next operation is a jump backwards in the pattern 4811 to an on_failure_jump right before the start_memory 4812 corresponding to this stop_memory, exit from the loop 4813 by forcing a failure after pushing on the stack the 4814 on_failure_jump's jump in the pattern, and d. */ 4815 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump 4816 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) 4817 { 4818 /* If this group ever matched anything, then restore 4819 what its registers were before trying this last 4820 failed match, e.g., with `(a*)*b' against `ab' for 4821 regstart[1], and, e.g., with `((a*)*(b*)*)*' 4822 against `aba' for regend[3]. 4823 4824 Also restore the registers for inner groups for, 4825 e.g., `((a*)(b*))*' against `aba' (register 3 would 4826 otherwise get trashed). */ 4827 4828 if (EVER_MATCHED_SOMETHING (reg_info[*p])) 4829 { 4830 unsigned r; 4831 4832 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0; 4833 4834 /* Restore this and inner groups' (if any) registers. */ 4835 for (r = *p; r < *p + *(p + 1); r++) 4836 { 4837 regstart[r] = old_regstart[r]; 4838 4839 /* xx why this test? */ 4840 if (old_regend[r] >= regstart[r]) 4841 regend[r] = old_regend[r]; 4842 } 4843 } 4844 p1++; 4845 EXTRACT_NUMBER_AND_INCR (mcnt, p1); 4846 PUSH_FAILURE_POINT (p1 + mcnt, d, -2); 4847 4848 goto fail; 4849 } 4850 } 4851 4852 /* Move past the register number and the inner group count. */ 4853 p += 2; 4854 break; 4855 4856 4857 /* \<digit> has been turned into a `duplicate' command which is 4858 followed by the numeric value of <digit> as the register number. */ 4859 case duplicate: 4860 { 4861 register const char *d2, *dend2; 4862 int regno = *p++; /* Get which register to match against. */ 4863 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno); 4864 4865 /* Can't back reference a group which we've never matched. */ 4866 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno])) 4867 goto fail; 4868 4869 /* Where in input to try to start matching. */ 4870 d2 = regstart[regno]; 4871 4872 /* Where to stop matching; if both the place to start and 4873 the place to stop matching are in the same string, then 4874 set to the place to stop, otherwise, for now have to use 4875 the end of the first string. */ 4876 4877 dend2 = ((FIRST_STRING_P (regstart[regno]) 4878 == FIRST_STRING_P (regend[regno])) 4879 ? regend[regno] : end_match_1); 4880 for (;;) 4881 { 4882 /* If necessary, advance to next segment in register 4883 contents. */ 4884 while (d2 == dend2) 4885 { 4886 if (dend2 == end_match_2) break; 4887 if (dend2 == regend[regno]) break; 4888 4889 /* End of string1 => advance to string2. */ 4890 d2 = string2; 4891 dend2 = regend[regno]; 4892 } 4893 /* At end of register contents => success */ 4894 if (d2 == dend2) break; 4895 4896 /* If necessary, advance to next segment in data. */ 4897 PREFETCH (); 4898 4899 /* How many characters left in this segment to match. */ 4900 mcnt = dend - d; 4901 4902 /* Want how many consecutive characters we can match in 4903 one shot, so, if necessary, adjust the count. */ 4904 if (mcnt > dend2 - d2) 4905 mcnt = dend2 - d2; 4906 4907 /* Compare that many; failure if mismatch, else move 4908 past them. */ 4909 if (RE_TRANSLATE_P (translate) 4910 ? bcmp_translate (d, d2, mcnt, translate) 4911 : bcmp (d, d2, mcnt)) 4912 goto fail; 4913 d += mcnt, d2 += mcnt; 4914 4915 /* Do this because we've match some characters. */ 4916 SET_REGS_MATCHED (); 4917 } 4918 } 4919 break; 4920 4921 4922 /* begline matches the empty string at the beginning of the string 4923 (unless `not_bol' is set in `bufp'), and, if 4924 `newline_anchor' is set, after newlines. */ 4925 case begline: 4926 DEBUG_PRINT1 ("EXECUTING begline.\n"); 4927 4928 if (AT_STRINGS_BEG (d)) 4929 { 4930 if (!bufp->not_bol) break; 4931 } 4932 else if (d[-1] == '\n' && bufp->newline_anchor) 4933 { 4934 break; 4935 } 4936 /* In all other cases, we fail. */ 4937 goto fail; 4938 4939 4940 /* endline is the dual of begline. */ 4941 case endline: 4942 DEBUG_PRINT1 ("EXECUTING endline.\n"); 4943 4944 if (AT_STRINGS_END (d)) 4945 { 4946 if (!bufp->not_eol) break; 4947 } 4948 4949 /* We have to ``prefetch'' the next character. */ 4950 else if ((d == end1 ? *string2 : *d) == '\n' 4951 && bufp->newline_anchor) 4952 { 4953 break; 4954 } 4955 goto fail; 4956 4957 4958 /* Match at the very beginning of the data. */ 4959 case begbuf: 4960 DEBUG_PRINT1 ("EXECUTING begbuf.\n"); 4961 if (AT_STRINGS_BEG (d)) 4962 break; 4963 goto fail; 4964 4965 4966 /* Match at the very end of the data. */ 4967 case endbuf: 4968 DEBUG_PRINT1 ("EXECUTING endbuf.\n"); 4969 if (AT_STRINGS_END (d)) 4970 break; 4971 goto fail; 4972 4973 4974 /* on_failure_keep_string_jump is used to optimize `.*\n'. It 4975 pushes NULL as the value for the string on the stack. Then 4976 `pop_failure_point' will keep the current value for the 4977 string, instead of restoring it. To see why, consider 4978 matching `foo\nbar' against `.*\n'. The .* matches the foo; 4979 then the . fails against the \n. But the next thing we want 4980 to do is match the \n against the \n; if we restored the 4981 string value, we would be back at the foo. 4982 4983 Because this is used only in specific cases, we don't need to 4984 check all the things that `on_failure_jump' does, to make 4985 sure the right things get saved on the stack. Hence we don't 4986 share its code. The only reason to push anything on the 4987 stack at all is that otherwise we would have to change 4988 `anychar's code to do something besides goto fail in this 4989 case; that seems worse than this. */ 4990 case on_failure_keep_string_jump: 4991 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump"); 4992 4993 EXTRACT_NUMBER_AND_INCR (mcnt, p); 4994 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt); 4995 4996 PUSH_FAILURE_POINT (p + mcnt, NULL, -2); 4997 break; 4998 4999 5000 /* Uses of on_failure_jump: 5001 5002 Each alternative starts with an on_failure_jump that points 5003 to the beginning of the next alternative. Each alternative 5004 except the last ends with a jump that in effect jumps past 5005 the rest of the alternatives. (They really jump to the 5006 ending jump of the following alternative, because tensioning 5007 these jumps is a hassle.) 5008 5009 Repeats start with an on_failure_jump that points past both 5010 the repetition text and either the following jump or 5011 pop_failure_jump back to this on_failure_jump. */ 5012 case on_failure_jump: 5013 on_failure: 5014 DEBUG_PRINT1 ("EXECUTING on_failure_jump"); 5015 5016 #if defined (WINDOWSNT) && defined (emacs) 5017 QUIT; 5018 #endif 5019 5020 EXTRACT_NUMBER_AND_INCR (mcnt, p); 5021 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt); 5022 5023 /* If this on_failure_jump comes right before a group (i.e., 5024 the original * applied to a group), save the information 5025 for that group and all inner ones, so that if we fail back 5026 to this point, the group's information will be correct. 5027 For example, in \(a*\)*\1, we need the preceding group, 5028 and in \(zz\(a*\)b*\)\2, we need the inner group. */ 5029 5030 /* We can't use `p' to check ahead because we push 5031 a failure point to `p + mcnt' after we do this. */ 5032 p1 = p; 5033 5034 /* We need to skip no_op's before we look for the 5035 start_memory in case this on_failure_jump is happening as 5036 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1 5037 against aba. */ 5038 while (p1 < pend && (re_opcode_t) *p1 == no_op) 5039 p1++; 5040 5041 if (p1 < pend && (re_opcode_t) *p1 == start_memory) 5042 { 5043 /* We have a new highest active register now. This will 5044 get reset at the start_memory we are about to get to, 5045 but we will have saved all the registers relevant to 5046 this repetition op, as described above. */ 5047 highest_active_reg = *(p1 + 1) + *(p1 + 2); 5048 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) 5049 lowest_active_reg = *(p1 + 1); 5050 } 5051 5052 DEBUG_PRINT1 (":\n"); 5053 PUSH_FAILURE_POINT (p + mcnt, d, -2); 5054 break; 5055 5056 5057 /* A smart repeat ends with `maybe_pop_jump'. 5058 We change it to either `pop_failure_jump' or `jump'. */ 5059 case maybe_pop_jump: 5060 #if defined (WINDOWSNT) && defined (emacs) 5061 QUIT; 5062 #endif 5063 EXTRACT_NUMBER_AND_INCR (mcnt, p); 5064 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt); 5065 { 5066 register unsigned char *p2 = p; 5067 5068 /* Compare the beginning of the repeat with what in the 5069 pattern follows its end. If we can establish that there 5070 is nothing that they would both match, i.e., that we 5071 would have to backtrack because of (as in, e.g., `a*a') 5072 then we can change to pop_failure_jump, because we'll 5073 never have to backtrack. 5074 5075 This is not true in the case of alternatives: in 5076 `(a|ab)*' we do need to backtrack to the `ab' alternative 5077 (e.g., if the string was `ab'). But instead of trying to 5078 detect that here, the alternative has put on a dummy 5079 failure point which is what we will end up popping. */ 5080 5081 /* Skip over open/close-group commands. 5082 If what follows this loop is a ...+ construct, 5083 look at what begins its body, since we will have to 5084 match at least one of that. */ 5085 while (1) 5086 { 5087 if (p2 + 2 < pend 5088 && ((re_opcode_t) *p2 == stop_memory 5089 || (re_opcode_t) *p2 == start_memory)) 5090 p2 += 3; 5091 else if (p2 + 6 < pend 5092 && (re_opcode_t) *p2 == dummy_failure_jump) 5093 p2 += 6; 5094 else 5095 break; 5096 } 5097 5098 p1 = p + mcnt; 5099 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding 5100 to the `maybe_finalize_jump' of this case. Examine what 5101 follows. */ 5102 5103 /* If we're at the end of the pattern, we can change. */ 5104 if (p2 == pend) 5105 { 5106 /* Consider what happens when matching ":\(.*\)" 5107 against ":/". I don't really understand this code 5108 yet. */ 5109 p[-3] = (unsigned char) pop_failure_jump; 5110 DEBUG_PRINT1 5111 (" End of pattern: change to `pop_failure_jump'.\n"); 5112 } 5113 5114 else if ((re_opcode_t) *p2 == exactn 5115 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline)) 5116 { 5117 register unsigned int c 5118 = *p2 == (unsigned char) endline ? '\n' : p2[2]; 5119 5120 if ((re_opcode_t) p1[3] == exactn) 5121 { 5122 if (!(multibyte /* && (c != '\n') */ 5123 && BASE_LEADING_CODE_P (c)) 5124 ? c != p1[5] 5125 : (STRING_CHAR (&p2[2], pend - &p2[2]) 5126 != STRING_CHAR (&p1[5], pend - &p1[5]))) 5127 { 5128 p[-3] = (unsigned char) pop_failure_jump; 5129 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", 5130 c, p1[5]); 5131 } 5132 } 5133 5134 else if ((re_opcode_t) p1[3] == charset 5135 || (re_opcode_t) p1[3] == charset_not) 5136 { 5137 int not = (re_opcode_t) p1[3] == charset_not; 5138 5139 if (multibyte /* && (c != '\n') */ 5140 && BASE_LEADING_CODE_P (c)) 5141 c = STRING_CHAR (&p2[2], pend - &p2[2]); 5142 5143 /* Test if C is listed in charset (or charset_not) 5144 at `&p1[3]'. */ 5145 if (SINGLE_BYTE_CHAR_P (c)) 5146 { 5147 if (c < CHARSET_BITMAP_SIZE (&p1[3]) * BYTEWIDTH 5148 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) 5149 not = !not; 5150 } 5151 else if (CHARSET_RANGE_TABLE_EXISTS_P (&p1[3])) 5152 CHARSET_LOOKUP_RANGE_TABLE (not, c, &p1[3]); 5153 5154 /* `not' is equal to 1 if c would match, which means 5155 that we can't change to pop_failure_jump. */ 5156 if (!not) 5157 { 5158 p[-3] = (unsigned char) pop_failure_jump; 5159 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); 5160 } 5161 } 5162 } 5163 else if ((re_opcode_t) *p2 == charset) 5164 { 5165 if ((re_opcode_t) p1[3] == exactn) 5166 { 5167 register unsigned int c = p1[5]; 5168 int not = 0; 5169 5170 if (multibyte && BASE_LEADING_CODE_P (c)) 5171 c = STRING_CHAR (&p1[5], pend - &p1[5]); 5172 5173 /* Test if C is listed in charset at `p2'. */ 5174 if (SINGLE_BYTE_CHAR_P (c)) 5175 { 5176 if (c < CHARSET_BITMAP_SIZE (p2) * BYTEWIDTH 5177 && (p2[2 + c / BYTEWIDTH] 5178 & (1 << (c % BYTEWIDTH)))) 5179 not = !not; 5180 } 5181 else if (CHARSET_RANGE_TABLE_EXISTS_P (p2)) 5182 CHARSET_LOOKUP_RANGE_TABLE (not, c, p2); 5183 5184 if (!not) 5185 { 5186 p[-3] = (unsigned char) pop_failure_jump; 5187 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); 5188 } 5189 } 5190 5191 /* It is hard to list up all the character in charset 5192 P2 if it includes multibyte character. Give up in 5193 such case. */ 5194 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2)) 5195 { 5196 /* Now, we are sure that P2 has no range table. 5197 So, for the size of bitmap in P2, `p2[1]' is 5198 enough. But P1 may have range table, so the 5199 size of bitmap table of P1 is extracted by 5200 using macro `CHARSET_BITMAP_SIZE'. 5201 5202 Since we know that all the character listed in 5203 P2 is ASCII, it is enough to test only bitmap 5204 table of P1. */ 5205 5206 if ((re_opcode_t) p1[3] == charset_not) 5207 { 5208 int idx; 5209 /* We win if the charset_not inside the loop lists 5210 every character listed in the charset after. */ 5211 for (idx = 0; idx < (int) p2[1]; idx++) 5212 if (! (p2[2 + idx] == 0 5213 || (idx < CHARSET_BITMAP_SIZE (&p1[3]) 5214 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0)))) 5215 break; 5216 5217 if (idx == p2[1]) 5218 { 5219 p[-3] = (unsigned char) pop_failure_jump; 5220 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); 5221 } 5222 } 5223 else if ((re_opcode_t) p1[3] == charset) 5224 { 5225 int idx; 5226 /* We win if the charset inside the loop 5227 has no overlap with the one after the loop. */ 5228 for (idx = 0; 5229 (idx < (int) p2[1] 5230 && idx < CHARSET_BITMAP_SIZE (&p1[3])); 5231 idx++) 5232 if ((p2[2 + idx] & p1[5 + idx]) != 0) 5233 break; 5234 5235 if (idx == p2[1] 5236 || idx == CHARSET_BITMAP_SIZE (&p1[3])) 5237 { 5238 p[-3] = (unsigned char) pop_failure_jump; 5239 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); 5240 } 5241 } 5242 } 5243 } 5244 } 5245 p -= 2; /* Point at relative address again. */ 5246 if ((re_opcode_t) p[-1] != pop_failure_jump) 5247 { 5248 p[-1] = (unsigned char) jump; 5249 DEBUG_PRINT1 (" Match => jump.\n"); 5250 goto unconditional_jump; 5251 } 5252 /* Note fall through. */ 5253 5254 5255 /* The end of a simple repeat has a pop_failure_jump back to 5256 its matching on_failure_jump, where the latter will push a 5257 failure point. The pop_failure_jump takes off failure 5258 points put on by this pop_failure_jump's matching 5259 on_failure_jump; we got through the pattern to here from the 5260 matching on_failure_jump, so didn't fail. */ 5261 case pop_failure_jump: 5262 { 5263 /* We need to pass separate storage for the lowest and 5264 highest registers, even though we don't care about the 5265 actual values. Otherwise, we will restore only one 5266 register from the stack, since lowest will == highest in 5267 `pop_failure_point'. */ 5268 unsigned dummy_low_reg, dummy_high_reg; 5269 unsigned char *pdummy; 5270 const char *sdummy; 5271 5272 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n"); 5273 POP_FAILURE_POINT (sdummy, pdummy, 5274 dummy_low_reg, dummy_high_reg, 5275 reg_dummy, reg_dummy, reg_info_dummy); 5276 } 5277 /* Note fall through. */ 5278 5279 5280 /* Unconditionally jump (without popping any failure points). */ 5281 case jump: 5282 unconditional_jump: 5283 #if defined (WINDOWSNT) && defined (emacs) 5284 QUIT; 5285 #endif 5286 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */ 5287 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt); 5288 p += mcnt; /* Do the jump. */ 5289 DEBUG_PRINT2 ("(to 0x%x).\n", p); 5290 break; 5291 5292 5293 /* We need this opcode so we can detect where alternatives end 5294 in `group_match_null_string_p' et al. */ 5295 case jump_past_alt: 5296 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n"); 5297 goto unconditional_jump; 5298 5299 5300 /* Normally, the on_failure_jump pushes a failure point, which 5301 then gets popped at pop_failure_jump. We will end up at 5302 pop_failure_jump, also, and with a pattern of, say, `a+', we 5303 are skipping over the on_failure_jump, so we have to push 5304 something meaningless for pop_failure_jump to pop. */ 5305 case dummy_failure_jump: 5306 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n"); 5307 /* It doesn't matter what we push for the string here. What 5308 the code at `fail' tests is the value for the pattern. */ 5309 PUSH_FAILURE_POINT (0, 0, -2); 5310 goto unconditional_jump; 5311 5312 5313 /* At the end of an alternative, we need to push a dummy failure 5314 point in case we are followed by a `pop_failure_jump', because 5315 we don't want the failure point for the alternative to be 5316 popped. For example, matching `(a|ab)*' against `aab' 5317 requires that we match the `ab' alternative. */ 5318 case push_dummy_failure: 5319 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n"); 5320 /* See comments just above at `dummy_failure_jump' about the 5321 two zeroes. */ 5322 PUSH_FAILURE_POINT (0, 0, -2); 5323 break; 5324 5325 /* Have to succeed matching what follows at least n times. 5326 After that, handle like `on_failure_jump'. */ 5327 case succeed_n: 5328 EXTRACT_NUMBER (mcnt, p + 2); 5329 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt); 5330 5331 assert (mcnt >= 0); 5332 /* Originally, this is how many times we HAVE to succeed. */ 5333 if (mcnt > 0) 5334 { 5335 mcnt--; 5336 p += 2; 5337 STORE_NUMBER_AND_INCR (p, mcnt); 5338 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt); 5339 } 5340 else if (mcnt == 0) 5341 { 5342 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2); 5343 p[2] = (unsigned char) no_op; 5344 p[3] = (unsigned char) no_op; 5345 goto on_failure; 5346 } 5347 break; 5348 5349 case jump_n: 5350 EXTRACT_NUMBER (mcnt, p + 2); 5351 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt); 5352 5353 /* Originally, this is how many times we CAN jump. */ 5354 if (mcnt) 5355 { 5356 mcnt--; 5357 STORE_NUMBER (p + 2, mcnt); 5358 goto unconditional_jump; 5359 } 5360 /* If don't have to jump any more, skip over the rest of command. */ 5361 else 5362 p += 4; 5363 break; 5364 5365 case set_number_at: 5366 { 5367 DEBUG_PRINT1 ("EXECUTING set_number_at.\n"); 5368 5369 EXTRACT_NUMBER_AND_INCR (mcnt, p); 5370 p1 = p + mcnt; 5371 EXTRACT_NUMBER_AND_INCR (mcnt, p); 5372 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt); 5373 STORE_NUMBER (p1, mcnt); 5374 break; 5375 } 5376 5377 case wordbound: 5378 DEBUG_PRINT1 ("EXECUTING wordbound.\n"); 5379 5380 /* We SUCCEED in one of the following cases: */ 5381 5382 /* Case 1: D is at the beginning or the end of string. */ 5383 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)) 5384 break; 5385 else 5386 { 5387 /* C1 is the character before D, S1 is the syntax of C1, C2 5388 is the character at D, and S2 is the syntax of C2. */ 5389 int c1, c2, s1, s2; 5390 int pos1 = PTR_TO_OFFSET (d - 1); 5391 int charpos; 5392 5393 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2); 5394 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2); 5395 #ifdef emacs 5396 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1); 5397 UPDATE_SYNTAX_TABLE (charpos); 5398 #endif 5399 s1 = SYNTAX (c1); 5400 #ifdef emacs 5401 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1); 5402 #endif 5403 s2 = SYNTAX (c2); 5404 5405 if (/* Case 2: Only one of S1 and S2 is Sword. */ 5406 ((s1 == Sword) != (s2 == Sword)) 5407 /* Case 3: Both of S1 and S2 are Sword, and macro 5408 WORD_BOUNDARY_P (C1, C2) returns nonzero. */ 5409 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2))) 5410 break; 5411 } 5412 goto fail; 5413 5414 case notwordbound: 5415 DEBUG_PRINT1 ("EXECUTING notwordbound.\n"); 5416 5417 /* We FAIL in one of the following cases: */ 5418 5419 /* Case 1: D is at the beginning or the end of string. */ 5420 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)) 5421 goto fail; 5422 else 5423 { 5424 /* C1 is the character before D, S1 is the syntax of C1, C2 5425 is the character at D, and S2 is the syntax of C2. */ 5426 int c1, c2, s1, s2; 5427 int pos1 = PTR_TO_OFFSET (d - 1); 5428 int charpos; 5429 5430 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2); 5431 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2); 5432 #ifdef emacs 5433 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1); 5434 UPDATE_SYNTAX_TABLE (charpos); 5435 #endif 5436 s1 = SYNTAX (c1); 5437 #ifdef emacs 5438 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1); 5439 #endif 5440 s2 = SYNTAX (c2); 5441 5442 if (/* Case 2: Only one of S1 and S2 is Sword. */ 5443 ((s1 == Sword) != (s2 == Sword)) 5444 /* Case 3: Both of S1 and S2 are Sword, and macro 5445 WORD_BOUNDARY_P (C1, C2) returns nonzero. */ 5446 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2))) 5447 goto fail; 5448 } 5449 break; 5450 5451 case wordbeg: 5452 DEBUG_PRINT1 ("EXECUTING wordbeg.\n"); 5453 5454 /* We FAIL in one of the following cases: */ 5455 5456 /* Case 1: D is at the end of string. */ 5457 if (AT_STRINGS_END (d)) 5458 goto fail; 5459 else 5460 { 5461 /* C1 is the character before D, S1 is the syntax of C1, C2 5462 is the character at D, and S2 is the syntax of C2. */ 5463 int c1, c2, s1, s2; 5464 int pos1 = PTR_TO_OFFSET (d); 5465 int charpos; 5466 5467 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2); 5468 #ifdef emacs 5469 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1); 5470 UPDATE_SYNTAX_TABLE (charpos); 5471 #endif 5472 s2 = SYNTAX (c2); 5473 5474 /* Case 2: S2 is not Sword. */ 5475 if (s2 != Sword) 5476 goto fail; 5477 5478 /* Case 3: D is not at the beginning of string ... */ 5479 if (!AT_STRINGS_BEG (d)) 5480 { 5481 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2); 5482 #ifdef emacs 5483 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1); 5484 #endif 5485 s1 = SYNTAX (c1); 5486 5487 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2) 5488 returns 0. */ 5489 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2)) 5490 goto fail; 5491 } 5492 } 5493 break; 5494 5495 case wordend: 5496 DEBUG_PRINT1 ("EXECUTING wordend.\n"); 5497 5498 /* We FAIL in one of the following cases: */ 5499 5500 /* Case 1: D is at the beginning of string. */ 5501 if (AT_STRINGS_BEG (d)) 5502 goto fail; 5503 else 5504 { 5505 /* C1 is the character before D, S1 is the syntax of C1, C2 5506 is the character at D, and S2 is the syntax of C2. */ 5507 int c1, c2, s1, s2; 5508 int pos1 = PTR_TO_OFFSET (d); 5509 int charpos; 5510 5511 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2); 5512 #ifdef emacs 5513 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1 - 1); 5514 UPDATE_SYNTAX_TABLE (charpos); 5515 #endif 5516 s1 = SYNTAX (c1); 5517 5518 /* Case 2: S1 is not Sword. */ 5519 if (s1 != Sword) 5520 goto fail; 5521 5522 /* Case 3: D is not at the end of string ... */ 5523 if (!AT_STRINGS_END (d)) 5524 { 5525 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2); 5526 #ifdef emacs 5527 UPDATE_SYNTAX_TABLE_FORWARD (charpos); 5528 #endif 5529 s2 = SYNTAX (c2); 5530 5531 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2) 5532 returns 0. */ 5533 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2)) 5534 goto fail; 5535 } 5536 } 5537 break; 5538 5539 #ifdef emacs 5540 case before_dot: 5541 DEBUG_PRINT1 ("EXECUTING before_dot.\n"); 5542 if (PTR_BYTE_POS ((unsigned char *) d) >= PT_BYTE) 5543 goto fail; 5544 break; 5545 5546 case at_dot: 5547 DEBUG_PRINT1 ("EXECUTING at_dot.\n"); 5548 if (PTR_BYTE_POS ((unsigned char *) d) != PT_BYTE) 5549 goto fail; 5550 break; 5551 5552 case after_dot: 5553 DEBUG_PRINT1 ("EXECUTING after_dot.\n"); 5554 if (PTR_BYTE_POS ((unsigned char *) d) <= PT_BYTE) 5555 goto fail; 5556 break; 5557 5558 case syntaxspec: 5559 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt); 5560 mcnt = *p++; 5561 goto matchsyntax; 5562 5563 case wordchar: 5564 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n"); 5565 mcnt = (int) Sword; 5566 matchsyntax: 5567 PREFETCH (); 5568 #ifdef emacs 5569 { 5570 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (PTR_TO_OFFSET (d)); 5571 UPDATE_SYNTAX_TABLE (pos1); 5572 } 5573 #endif 5574 { 5575 int c, len; 5576 5577 if (multibyte) 5578 /* we must concern about multibyte form, ... */ 5579 c = STRING_CHAR_AND_LENGTH (d, dend - d, len); 5580 else 5581 /* everything should be handled as ASCII, even though it 5582 looks like multibyte form. */ 5583 c = *d, len = 1; 5584 5585 if (SYNTAX (c) != (enum syntaxcode) mcnt) 5586 goto fail; 5587 d += len; 5588 } 5589 SET_REGS_MATCHED (); 5590 break; 5591 5592 case notsyntaxspec: 5593 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt); 5594 mcnt = *p++; 5595 goto matchnotsyntax; 5596 5597 case notwordchar: 5598 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n"); 5599 mcnt = (int) Sword; 5600 matchnotsyntax: 5601 PREFETCH (); 5602 #ifdef emacs 5603 { 5604 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (PTR_TO_OFFSET (d)); 5605 UPDATE_SYNTAX_TABLE (pos1); 5606 } 5607 #endif 5608 { 5609 int c, len; 5610 5611 if (multibyte) 5612 c = STRING_CHAR_AND_LENGTH (d, dend - d, len); 5613 else 5614 c = *d, len = 1; 5615 5616 if (SYNTAX (c) == (enum syntaxcode) mcnt) 5617 goto fail; 5618 d += len; 5619 } 5620 SET_REGS_MATCHED (); 5621 break; 5622 5623 case categoryspec: 5624 DEBUG_PRINT2 ("EXECUTING categoryspec %d.\n", *p); 5625 mcnt = *p++; 5626 PREFETCH (); 5627 { 5628 int c, len; 5629 5630 if (multibyte) 5631 c = STRING_CHAR_AND_LENGTH (d, dend - d, len); 5632 else 5633 c = *d, len = 1; 5634 5635 if (!CHAR_HAS_CATEGORY (c, mcnt)) 5636 goto fail; 5637 d += len; 5638 } 5639 SET_REGS_MATCHED (); 5640 break; 5641 5642 case notcategoryspec: 5643 DEBUG_PRINT2 ("EXECUTING notcategoryspec %d.\n", *p); 5644 mcnt = *p++; 5645 PREFETCH (); 5646 { 5647 int c, len; 5648 5649 if (multibyte) 5650 c = STRING_CHAR_AND_LENGTH (d, dend - d, len); 5651 else 5652 c = *d, len = 1; 5653 5654 if (CHAR_HAS_CATEGORY (c, mcnt)) 5655 goto fail; 5656 d += len; 5657 } 5658 SET_REGS_MATCHED (); 5659 break; 5660 5661 #else /* not emacs */ 5662 case wordchar: 5663 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n"); 5664 PREFETCH (); 5665 if (!WORDCHAR_P (d)) 5666 goto fail; 5667 SET_REGS_MATCHED (); 5668 d++; 5669 break; 5670 5671 case notwordchar: 5672 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n"); 5673 PREFETCH (); 5674 if (WORDCHAR_P (d)) 5675 goto fail; 5676 SET_REGS_MATCHED (); 5677 d++; 5678 break; 5679 #endif /* not emacs */ 5680 5681 default: 5682 abort (); 5683 } 5684 continue; /* Successfully executed one pattern command; keep going. */ 5685 5686 5687 /* We goto here if a matching operation fails. */ 5688 fail: 5689 #if defined (WINDOWSNT) && defined (emacs) 5690 QUIT; 5691 #endif 5692 if (!FAIL_STACK_EMPTY ()) 5693 { /* A restart point is known. Restore to that state. */ 5694 DEBUG_PRINT1 ("\nFAIL:\n"); 5695 POP_FAILURE_POINT (d, p, 5696 lowest_active_reg, highest_active_reg, 5697 regstart, regend, reg_info); 5698 5699 /* If this failure point is a dummy, try the next one. */ 5700 if (!p) 5701 goto fail; 5702 5703 /* If we failed to the end of the pattern, don't examine *p. */ 5704 assert (p <= pend); 5705 if (p < pend) 5706 { 5707 boolean is_a_jump_n = false; 5708 5709 /* If failed to a backwards jump that's part of a repetition 5710 loop, need to pop this failure point and use the next one. */ 5711 switch ((re_opcode_t) *p) 5712 { 5713 case jump_n: 5714 is_a_jump_n = true; 5715 case maybe_pop_jump: 5716 case pop_failure_jump: 5717 case jump: 5718 p1 = p + 1; 5719 EXTRACT_NUMBER_AND_INCR (mcnt, p1); 5720 p1 += mcnt; 5721 5722 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n) 5723 || (!is_a_jump_n 5724 && (re_opcode_t) *p1 == on_failure_jump)) 5725 goto fail; 5726 break; 5727 default: 5728 /* do nothing */ ; 5729 } 5730 } 5731 5732 if (d >= string1 && d <= end1) 5733 dend = end_match_1; 5734 } 5735 else 5736 break; /* Matching at this starting point really fails. */ 5737 } /* for (;;) */ 5738 5739 if (best_regs_set) 5740 goto restore_best_regs; 5741 5742 FREE_VARIABLES (); 5743 5744 return -1; /* Failure to match. */ 5745 } /* re_match_2 */ 5746 5747 /* Subroutine definitions for re_match_2. */ 5748 5749 5750 /* We are passed P pointing to a register number after a start_memory. 5751 5752 Return true if the pattern up to the corresponding stop_memory can 5753 match the empty string, and false otherwise. 5754 5755 If we find the matching stop_memory, sets P to point to one past its number. 5756 Otherwise, sets P to an undefined byte less than or equal to END. 5757 5758 We don't handle duplicates properly (yet). */ 5759 5760 static boolean 5761 group_match_null_string_p (p, end, reg_info) 5762 unsigned char **p, *end; 5763 register_info_type *reg_info; 5764 { 5765 int mcnt; 5766 /* Point to after the args to the start_memory. */ 5767 unsigned char *p1 = *p + 2; 5768 5769 while (p1 < end) 5770 { 5771 /* Skip over opcodes that can match nothing, and return true or 5772 false, as appropriate, when we get to one that can't, or to the 5773 matching stop_memory. */ 5774 5775 switch ((re_opcode_t) *p1) 5776 { 5777 /* Could be either a loop or a series of alternatives. */ 5778 case on_failure_jump: 5779 p1++; 5780 EXTRACT_NUMBER_AND_INCR (mcnt, p1); 5781 5782 /* If the next operation is not a jump backwards in the 5783 pattern. */ 5784 5785 if (mcnt >= 0) 5786 { 5787 /* Go through the on_failure_jumps of the alternatives, 5788 seeing if any of the alternatives cannot match nothing. 5789 The last alternative starts with only a jump, 5790 whereas the rest start with on_failure_jump and end 5791 with a jump, e.g., here is the pattern for `a|b|c': 5792 5793 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6 5794 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3 5795 /exactn/1/c 5796 5797 So, we have to first go through the first (n-1) 5798 alternatives and then deal with the last one separately. */ 5799 5800 5801 /* Deal with the first (n-1) alternatives, which start 5802 with an on_failure_jump (see above) that jumps to right 5803 past a jump_past_alt. */ 5804 5805 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt) 5806 { 5807 /* `mcnt' holds how many bytes long the alternative 5808 is, including the ending `jump_past_alt' and 5809 its number. */ 5810 5811 if (!alt_match_null_string_p (p1, p1 + mcnt - 3, 5812 reg_info)) 5813 return false; 5814 5815 /* Move to right after this alternative, including the 5816 jump_past_alt. */ 5817 p1 += mcnt; 5818 5819 /* Break if it's the beginning of an n-th alternative 5820 that doesn't begin with an on_failure_jump. */ 5821 if ((re_opcode_t) *p1 != on_failure_jump) 5822 break; 5823 5824 /* Still have to check that it's not an n-th 5825 alternative that starts with an on_failure_jump. */ 5826 p1++; 5827 EXTRACT_NUMBER_AND_INCR (mcnt, p1); 5828 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt) 5829 { 5830 /* Get to the beginning of the n-th alternative. */ 5831 p1 -= 3; 5832 break; 5833 } 5834 } 5835 5836 /* Deal with the last alternative: go back and get number 5837 of the `jump_past_alt' just before it. `mcnt' contains 5838 the length of the alternative. */ 5839 EXTRACT_NUMBER (mcnt, p1 - 2); 5840 5841 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info)) 5842 return false; 5843 5844 p1 += mcnt; /* Get past the n-th alternative. */ 5845 } /* if mcnt > 0 */ 5846 break; 5847 5848 5849 case stop_memory: 5850 assert (p1[1] == **p); 5851 *p = p1 + 2; 5852 return true; 5853 5854 5855 default: 5856 if (!common_op_match_null_string_p (&p1, end, reg_info)) 5857 return false; 5858 } 5859 } /* while p1 < end */ 5860 5861 return false; 5862 } /* group_match_null_string_p */ 5863 5864 5865 /* Similar to group_match_null_string_p, but doesn't deal with alternatives: 5866 It expects P to be the first byte of a single alternative and END one 5867 byte past the last. The alternative can contain groups. */ 5868 5869 static boolean 5870 alt_match_null_string_p (p, end, reg_info) 5871 unsigned char *p, *end; 5872 register_info_type *reg_info; 5873 { 5874 int mcnt; 5875 unsigned char *p1 = p; 5876 5877 while (p1 < end) 5878 { 5879 /* Skip over opcodes that can match nothing, and break when we get 5880 to one that can't. */ 5881 5882 switch ((re_opcode_t) *p1) 5883 { 5884 /* It's a loop. */ 5885 case on_failure_jump: 5886 p1++; 5887 EXTRACT_NUMBER_AND_INCR (mcnt, p1); 5888 p1 += mcnt; 5889 break; 5890 5891 default: 5892 if (!common_op_match_null_string_p (&p1, end, reg_info)) 5893 return false; 5894 } 5895 } /* while p1 < end */ 5896 5897 return true; 5898 } /* alt_match_null_string_p */ 5899 5900 5901 /* Deals with the ops common to group_match_null_string_p and 5902 alt_match_null_string_p. 5903 5904 Sets P to one after the op and its arguments, if any. */ 5905 5906 static boolean 5907 common_op_match_null_string_p (p, end, reg_info) 5908 unsigned char **p, *end; 5909 register_info_type *reg_info; 5910 { 5911 int mcnt; 5912 boolean ret; 5913 int reg_no; 5914 unsigned char *p1 = *p; 5915 5916 switch ((re_opcode_t) *p1++) 5917 { 5918 case no_op: 5919 case begline: 5920 case endline: 5921 case begbuf: 5922 case endbuf: 5923 case wordbeg: 5924 case wordend: 5925 case wordbound: 5926 case notwordbound: 5927 #ifdef emacs 5928 case before_dot: 5929 case at_dot: 5930 case after_dot: 5931 #endif 5932 break; 5933 5934 case start_memory: 5935 reg_no = *p1; 5936 assert (reg_no > 0 && reg_no <= MAX_REGNUM); 5937 ret = group_match_null_string_p (&p1, end, reg_info); 5938 5939 /* Have to set this here in case we're checking a group which 5940 contains a group and a back reference to it. */ 5941 5942 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE) 5943 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret; 5944 5945 if (!ret) 5946 return false; 5947 break; 5948 5949 /* If this is an optimized succeed_n for zero times, make the jump. */ 5950 case jump: 5951 EXTRACT_NUMBER_AND_INCR (mcnt, p1); 5952 if (mcnt >= 0) 5953 p1 += mcnt; 5954 else 5955 return false; 5956 break; 5957 5958 case succeed_n: 5959 /* Get to the number of times to succeed. */ 5960 p1 += 2; 5961 EXTRACT_NUMBER_AND_INCR (mcnt, p1); 5962 5963 if (mcnt == 0) 5964 { 5965 p1 -= 4; 5966 EXTRACT_NUMBER_AND_INCR (mcnt, p1); 5967 p1 += mcnt; 5968 } 5969 else 5970 return false; 5971 break; 5972 5973 case duplicate: 5974 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1])) 5975 return false; 5976 break; 5977 5978 case set_number_at: 5979 p1 += 4; 5980 5981 default: 5982 /* All other opcodes mean we cannot match the empty string. */ 5983 return false; 5984 } 5985 5986 *p = p1; 5987 return true; 5988 } /* common_op_match_null_string_p */ 5989 5990 5991 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN 5992 bytes; nonzero otherwise. */ 5993 5994 static int 5995 bcmp_translate (s1, s2, len, translate) 5996 unsigned char *s1, *s2; 5997 register int len; 5998 RE_TRANSLATE_TYPE translate; 5999 { 6000 register unsigned char *p1 = s1, *p2 = s2; 6001 unsigned char *p1_end = s1 + len; 6002 unsigned char *p2_end = s2 + len; 6003 6004 while (p1 != p1_end && p2 != p2_end) 6005 { 6006 int p1_charlen, p2_charlen; 6007 int p1_ch, p2_ch; 6008 6009 p1_ch = STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen); 6010 p2_ch = STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen); 6011 6012 if (RE_TRANSLATE (translate, p1_ch) 6013 != RE_TRANSLATE (translate, p2_ch)) 6014 return 1; 6015 6016 p1 += p1_charlen, p2 += p2_charlen; 6017 } 6018 6019 if (p1 != p1_end || p2 != p2_end) 6020 return 1; 6021 6022 return 0; 6023 } 6024 6025 /* Entry points for GNU code. */ 6026 6027 /* re_compile_pattern is the GNU regular expression compiler: it 6028 compiles PATTERN (of length SIZE) and puts the result in BUFP. 6029 Returns 0 if the pattern was valid, otherwise an error string. 6030 6031 Assumes the `allocated' (and perhaps `buffer') and `translate' fields 6032 are set in BUFP on entry. 6033 6034 We call regex_compile to do the actual compilation. */ 6035 6036 const char * 6037 re_compile_pattern (pattern, length, bufp) 6038 const char *pattern; 6039 int length; 6040 struct re_pattern_buffer *bufp; 6041 { 6042 reg_errcode_t ret; 6043 6044 /* GNU code is written to assume at least RE_NREGS registers will be set 6045 (and at least one extra will be -1). */ 6046 bufp->regs_allocated = REGS_UNALLOCATED; 6047 6048 /* And GNU code determines whether or not to get register information 6049 by passing null for the REGS argument to re_match, etc., not by 6050 setting no_sub. */ 6051 bufp->no_sub = 0; 6052 6053 /* Match anchors at newline. */ 6054 bufp->newline_anchor = 1; 6055 6056 ret = regex_compile (pattern, length, re_syntax_options, bufp); 6057 6058 if (!ret) 6059 return NULL; 6060 return gettext (re_error_msgid[(int) ret]); 6061 } 6062 6063 /* Entry points compatible with 4.2 BSD regex library. We don't define 6064 them unless specifically requested. */ 6065 6066 #if defined (_REGEX_RE_COMP) || defined (_LIBC) 6067 6068 /* BSD has one and only one pattern buffer. */ 6069 static struct re_pattern_buffer re_comp_buf; 6070 6071 char * 6072 #ifdef _LIBC 6073 /* Make these definitions weak in libc, so POSIX programs can redefine 6074 these names if they don't use our functions, and still use 6075 regcomp/regexec below without link errors. */ 6076 weak_function 6077 #endif 6078 re_comp (s) 6079 const char *s; 6080 { 6081 reg_errcode_t ret; 6082 6083 if (!s) 6084 { 6085 if (!re_comp_buf.buffer) 6086 return gettext ("No previous regular expression"); 6087 return 0; 6088 } 6089 6090 if (!re_comp_buf.buffer) 6091 { 6092 re_comp_buf.buffer = (unsigned char *) malloc (200); 6093 if (re_comp_buf.buffer == NULL) 6094 /* CVS: Yes, we're discarding `const' here if !HAVE_LIBINTL. */ 6095 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]); 6096 re_comp_buf.allocated = 200; 6097 6098 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH); 6099 if (re_comp_buf.fastmap == NULL) 6100 /* CVS: Yes, we're discarding `const' here if !HAVE_LIBINTL. */ 6101 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]); 6102 } 6103 6104 /* Since `re_exec' always passes NULL for the `regs' argument, we 6105 don't need to initialize the pattern buffer fields which affect it. */ 6106 6107 /* Match anchors at newlines. */ 6108 re_comp_buf.newline_anchor = 1; 6109 6110 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf); 6111 6112 if (!ret) 6113 return NULL; 6114 6115 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */ 6116 return (char *) gettext (re_error_msgid[(int) ret]); 6117 } 6118 6119 6120 int 6121 #ifdef _LIBC 6122 weak_function 6123 #endif 6124 re_exec (s) 6125 const char *s; 6126 { 6127 const int len = strlen (s); 6128 return 6129 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0); 6130 } 6131 #endif /* _REGEX_RE_COMP */ 6132 6133 /* POSIX.2 functions. Don't define these for Emacs. */ 6134 6135 #ifndef emacs 6136 6137 /* regcomp takes a regular expression as a string and compiles it. 6138 6139 PREG is a regex_t *. We do not expect any fields to be initialized, 6140 since POSIX says we shouldn't. Thus, we set 6141 6142 `buffer' to the compiled pattern; 6143 `used' to the length of the compiled pattern; 6144 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the 6145 REG_EXTENDED bit in CFLAGS is set; otherwise, to 6146 RE_SYNTAX_POSIX_BASIC; 6147 `newline_anchor' to REG_NEWLINE being set in CFLAGS; 6148 `fastmap' and `fastmap_accurate' to zero; 6149 `re_nsub' to the number of subexpressions in PATTERN. 6150 6151 PATTERN is the address of the pattern string. 6152 6153 CFLAGS is a series of bits which affect compilation. 6154 6155 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we 6156 use POSIX basic syntax. 6157 6158 If REG_NEWLINE is set, then . and [^...] don't match newline. 6159 Also, regexec will try a match beginning after every newline. 6160 6161 If REG_ICASE is set, then we considers upper- and lowercase 6162 versions of letters to be equivalent when matching. 6163 6164 If REG_NOSUB is set, then when PREG is passed to regexec, that 6165 routine will report only success or failure, and nothing about the 6166 registers. 6167 6168 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for 6169 the return codes and their meanings.) */ 6170 6171 int 6172 regcomp (preg, pattern, cflags) 6173 regex_t *preg; 6174 const char *pattern; 6175 int cflags; 6176 { 6177 reg_errcode_t ret; 6178 unsigned syntax 6179 = (cflags & REG_EXTENDED) ? 6180 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC; 6181 6182 /* regex_compile will allocate the space for the compiled pattern. */ 6183 preg->buffer = 0; 6184 preg->allocated = 0; 6185 preg->used = 0; 6186 6187 /* Don't bother to use a fastmap when searching. This simplifies the 6188 REG_NEWLINE case: if we used a fastmap, we'd have to put all the 6189 characters after newlines into the fastmap. This way, we just try 6190 every character. */ 6191 preg->fastmap = 0; 6192 6193 if (cflags & REG_ICASE) 6194 { 6195 unsigned i; 6196 6197 preg->translate 6198 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE 6199 * sizeof (*(RE_TRANSLATE_TYPE)0)); 6200 if (preg->translate == NULL) 6201 return (int) REG_ESPACE; 6202 6203 /* Map uppercase characters to corresponding lowercase ones. */ 6204 for (i = 0; i < CHAR_SET_SIZE; i++) 6205 preg->translate[i] = ISUPPER (i) ? tolower (i) : i; 6206 } 6207 else 6208 preg->translate = NULL; 6209 6210 /* If REG_NEWLINE is set, newlines are treated differently. */ 6211 if (cflags & REG_NEWLINE) 6212 { /* REG_NEWLINE implies neither . nor [^...] match newline. */ 6213 syntax &= ~RE_DOT_NEWLINE; 6214 syntax |= RE_HAT_LISTS_NOT_NEWLINE; 6215 /* It also changes the matching behavior. */ 6216 preg->newline_anchor = 1; 6217 } 6218 else 6219 preg->newline_anchor = 0; 6220 6221 preg->no_sub = !!(cflags & REG_NOSUB); 6222 6223 /* POSIX says a null character in the pattern terminates it, so we 6224 can use strlen here in compiling the pattern. */ 6225 ret = regex_compile (pattern, strlen (pattern), syntax, preg); 6226 6227 /* POSIX doesn't distinguish between an unmatched open-group and an 6228 unmatched close-group: both are REG_EPAREN. */ 6229 if (ret == REG_ERPAREN) ret = REG_EPAREN; 6230 6231 return (int) ret; 6232 } 6233 6234 6235 /* regexec searches for a given pattern, specified by PREG, in the 6236 string STRING. 6237 6238 If NMATCH is zero or REG_NOSUB was set in the cflags argument to 6239 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at 6240 least NMATCH elements, and we set them to the offsets of the 6241 corresponding matched substrings. 6242 6243 EFLAGS specifies `execution flags' which affect matching: if 6244 REG_NOTBOL is set, then ^ does not match at the beginning of the 6245 string; if REG_NOTEOL is set, then $ does not match at the end. 6246 6247 We return 0 if we find a match and REG_NOMATCH if not. */ 6248 6249 int 6250 regexec (preg, string, nmatch, pmatch, eflags) 6251 const regex_t *preg; 6252 const char *string; 6253 size_t nmatch; 6254 regmatch_t pmatch[]; 6255 int eflags; 6256 { 6257 int ret; 6258 struct re_registers regs; 6259 regex_t private_preg; 6260 int len = strlen (string); 6261 boolean want_reg_info = !preg->no_sub && nmatch > 0; 6262 6263 private_preg = *preg; 6264 6265 private_preg.not_bol = !!(eflags & REG_NOTBOL); 6266 private_preg.not_eol = !!(eflags & REG_NOTEOL); 6267 6268 /* The user has told us exactly how many registers to return 6269 information about, via `nmatch'. We have to pass that on to the 6270 matching routines. */ 6271 private_preg.regs_allocated = REGS_FIXED; 6272 6273 if (want_reg_info) 6274 { 6275 regs.num_regs = nmatch; 6276 regs.start = TALLOC (nmatch, regoff_t); 6277 regs.end = TALLOC (nmatch, regoff_t); 6278 if (regs.start == NULL || regs.end == NULL) 6279 return (int) REG_NOMATCH; 6280 } 6281 6282 /* Perform the searching operation. */ 6283 ret = re_search (&private_preg, string, len, 6284 /* start: */ 0, /* range: */ len, 6285 want_reg_info ? ®s : (struct re_registers *) 0); 6286 6287 /* Copy the register information to the POSIX structure. */ 6288 if (want_reg_info) 6289 { 6290 if (ret >= 0) 6291 { 6292 unsigned r; 6293 6294 for (r = 0; r < nmatch; r++) 6295 { 6296 pmatch[r].rm_so = regs.start[r]; 6297 pmatch[r].rm_eo = regs.end[r]; 6298 } 6299 } 6300 6301 /* If we needed the temporary register info, free the space now. */ 6302 free (regs.start); 6303 free (regs.end); 6304 } 6305 6306 /* We want zero return to mean success, unlike `re_search'. */ 6307 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH; 6308 } 6309 6310 6311 /* Returns a message corresponding to an error code, ERRCODE, returned 6312 from either regcomp or regexec. We don't use PREG here. */ 6313 6314 size_t 6315 regerror (errcode, preg, errbuf, errbuf_size) 6316 int errcode; 6317 const regex_t *preg; 6318 char *errbuf; 6319 size_t errbuf_size; 6320 { 6321 const char *msg; 6322 size_t msg_size; 6323 6324 if (errcode < 0 6325 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0]))) 6326 /* Only error codes returned by the rest of the code should be passed 6327 to this routine. If we are given anything else, or if other regex 6328 code generates an invalid error code, then the program has a bug. 6329 Dump core so we can fix it. */ 6330 abort (); 6331 6332 msg = gettext (re_error_msgid[errcode]); 6333 6334 msg_size = strlen (msg) + 1; /* Includes the null. */ 6335 6336 if (errbuf_size != 0) 6337 { 6338 if (msg_size > errbuf_size) 6339 { 6340 strncpy (errbuf, msg, errbuf_size - 1); 6341 errbuf[errbuf_size - 1] = 0; 6342 } 6343 else 6344 strcpy (errbuf, msg); 6345 } 6346 6347 return msg_size; 6348 } 6349 6350 6351 /* Free dynamically allocated space used by PREG. */ 6352 6353 void 6354 regfree (preg) 6355 regex_t *preg; 6356 { 6357 if (preg->buffer != NULL) 6358 free (preg->buffer); 6359 preg->buffer = NULL; 6360 6361 preg->allocated = 0; 6362 preg->used = 0; 6363 6364 if (preg->fastmap != NULL) 6365 free (preg->fastmap); 6366 preg->fastmap = NULL; 6367 preg->fastmap_accurate = 0; 6368 6369 if (preg->translate != NULL) 6370 free (preg->translate); 6371 preg->translate = NULL; 6372 } 6373 6374 #endif /* not emacs */ 6375