xref: /plan9-contrib/sys/src/cmd/map/libmap/gilbert.c (revision 219b2ee8daee37f4aad58d63f21287faa8e4ffdc)
1 #include "map.h"
2 
3 int
4 Xgilbert(struct place *p, double *x, double *y)
5 {
6 /* the interesting part - map the sphere onto a hemisphere */
7 	struct place q;
8 	q.nlat.s = tan(0.5*(p->nlat.l));
9 	if(q.nlat.s > 1) q.nlat.s = 1;
10 	if(q.nlat.s < -1) q.nlat.s = -1;
11 	q.nlat.c = sqrt(1 - q.nlat.s*q.nlat.s);
12 	q.wlon.l = p->wlon.l/2;
13 	sincos(&q.wlon);
14 /* the dull part: present the hemisphere orthogrpahically */
15 	*y = q.nlat.s;
16 	*x = -q.wlon.s*q.nlat.c;
17 	return(1);
18 }
19 
20 proj
21 gilbert(void)
22 {
23 	return(Xgilbert);
24 }
25 
26 /* derivation of the interesting part:
27    map the sphere onto the plane by stereographic projection;
28    map the plane onto a half plane by sqrt;
29    map the half plane back to the sphere by stereographic
30    projection
31 
32    n,w are original lat and lon
33    r is stereographic radius
34    primes are transformed versions
35 
36    r = cos(n)/(1+sin(n))
37    r' = sqrt(r) = cos(n')/(1+sin(n'))
38 
39    r'^2 = (1-sin(n')^2)/(1+sin(n')^2) = cos(n)/(1+sin(n))
40 
41    this is a linear equation for sin n', with solution
42 
43    sin n' = (1+sin(n)-cos(n))/(1+sin(n)+cos(n))
44 
45    use standard formula: tan x/2 = (1-cos x)/sin x = sin x/(1+cos x)
46    to show that the right side of the last equation is tan(n/2)
47 */
48 
49 
50