17dd7cddfSDavid du Colombier /* Copyright (C) 1990, 1993, 1994, 1996, 1998 Aladdin Enterprises. All rights reserved. 27dd7cddfSDavid du Colombier 3*593dc095SDavid du Colombier This software is provided AS-IS with no warranty, either express or 4*593dc095SDavid du Colombier implied. 57dd7cddfSDavid du Colombier 6*593dc095SDavid du Colombier This software is distributed under license and may not be copied, 7*593dc095SDavid du Colombier modified or distributed except as expressly authorized under the terms 8*593dc095SDavid du Colombier of the license contained in the file LICENSE in this distribution. 97dd7cddfSDavid du Colombier 10*593dc095SDavid du Colombier For more information about licensing, please refer to 11*593dc095SDavid du Colombier http://www.ghostscript.com/licensing/. For information on 12*593dc095SDavid du Colombier commercial licensing, go to http://www.artifex.com/licensing/ or 13*593dc095SDavid du Colombier contact Artifex Software, Inc., 101 Lucas Valley Road #110, 14*593dc095SDavid du Colombier San Rafael, CA 94903, U.S.A., +1(415)492-9861. 157dd7cddfSDavid du Colombier */ 167dd7cddfSDavid du Colombier 177dd7cddfSDavid du Colombier #ifndef gxarith_INCLUDED 187dd7cddfSDavid du Colombier # define gxarith_INCLUDED 197dd7cddfSDavid du Colombier 20*593dc095SDavid du Colombier /* $Id: gxarith.h,v 1.5 2002/06/16 08:45:43 lpd Exp $ */ 217dd7cddfSDavid du Colombier /* Arithmetic macros for Ghostscript library */ 227dd7cddfSDavid du Colombier 237dd7cddfSDavid du Colombier /* Define an in-line abs function, good for any signed numeric type. */ 247dd7cddfSDavid du Colombier #define any_abs(x) ((x) < 0 ? -(x) : (x)) 257dd7cddfSDavid du Colombier 267dd7cddfSDavid du Colombier /* Compute M modulo N. Requires N > 0; guarantees 0 <= imod(M,N) < N, */ 277dd7cddfSDavid du Colombier /* regardless of the whims of the % operator for negative operands. */ 28*593dc095SDavid du Colombier int imod(int m, int n); 297dd7cddfSDavid du Colombier 307dd7cddfSDavid du Colombier /* Compute the GCD of two integers. */ 31*593dc095SDavid du Colombier int igcd(int x, int y); 327dd7cddfSDavid du Colombier 337dd7cddfSDavid du Colombier /* 347dd7cddfSDavid du Colombier * Given A, B, and M, compute X such that A*X = B mod M, 0 < X < M. 357dd7cddfSDavid du Colombier * Requires: M > 0, 0 < A < M, 0 < B < M, gcd(A, M) | gcd(A, B). 367dd7cddfSDavid du Colombier */ 37*593dc095SDavid du Colombier int idivmod(int a, int b, int m); 387dd7cddfSDavid du Colombier 397dd7cddfSDavid du Colombier /* 407dd7cddfSDavid du Colombier * Compute floor(log2(N)). Requires N > 0. 417dd7cddfSDavid du Colombier */ 42*593dc095SDavid du Colombier int ilog2(int n); 437dd7cddfSDavid du Colombier 447dd7cddfSDavid du Colombier /* Test whether an integral value fits in a given number of bits. */ 457dd7cddfSDavid du Colombier /* This works for all integral types. */ 467dd7cddfSDavid du Colombier #define fits_in_bits(i, n)\ 477dd7cddfSDavid du Colombier (sizeof(i) <= sizeof(int) ? fits_in_ubits((i) + (1 << ((n) - 1)), (n) + 1) :\ 487dd7cddfSDavid du Colombier fits_in_ubits((i) + (1L << ((n) - 1)), (n) + 1)) 497dd7cddfSDavid du Colombier #define fits_in_ubits(i, n) (((i) >> (n)) == 0) 507dd7cddfSDavid du Colombier 517dd7cddfSDavid du Colombier /* 527dd7cddfSDavid du Colombier * There are some floating point operations that can be implemented 537dd7cddfSDavid du Colombier * very efficiently on machines that have no floating point hardware, 547dd7cddfSDavid du Colombier * assuming IEEE representation and no range overflows. 557dd7cddfSDavid du Colombier * We define straightforward versions of them here, and alternate versions 567dd7cddfSDavid du Colombier * for no-floating-point machines in gxfarith.h. 577dd7cddfSDavid du Colombier */ 587dd7cddfSDavid du Colombier /* Test floating point values against constants. */ 597dd7cddfSDavid du Colombier #define is_fzero(f) ((f) == 0.0) 607dd7cddfSDavid du Colombier #define is_fzero2(f1,f2) ((f1) == 0.0 && (f2) == 0.0) 617dd7cddfSDavid du Colombier #define is_fneg(f) ((f) < 0.0) 627dd7cddfSDavid du Colombier #define is_fge1(f) ((f) >= 1.0) 637dd7cddfSDavid du Colombier /* Test whether a floating point value fits in a given number of bits. */ 647dd7cddfSDavid du Colombier #define f_fits_in_bits(f, n)\ 657dd7cddfSDavid du Colombier ((f) >= -2.0 * (1L << ((n) - 2)) && (f) < 2.0 * (1L << ((n) - 2))) 667dd7cddfSDavid du Colombier #define f_fits_in_ubits(f, n)\ 677dd7cddfSDavid du Colombier ((f) >= 0 && (f) < 4.0 * (1L << ((n) - 2))) 687dd7cddfSDavid du Colombier 697dd7cddfSDavid du Colombier /* 707dd7cddfSDavid du Colombier * Define a macro for computing log2(n), where n=1,2,4,...,128. 717dd7cddfSDavid du Colombier * Because some compilers limit the total size of a statement, 727dd7cddfSDavid du Colombier * this macro must only mention n once. The macro should really 737dd7cddfSDavid du Colombier * only be used with compile-time constant arguments, but it will work 747dd7cddfSDavid du Colombier * even if n is an expression computed at run-time. 757dd7cddfSDavid du Colombier */ 767dd7cddfSDavid du Colombier #define small_exact_log2(n)\ 777dd7cddfSDavid du Colombier ((uint)(05637042010L >> ((((n) % 11) - 1) * 3)) & 7) 787dd7cddfSDavid du Colombier 797dd7cddfSDavid du Colombier /* 807dd7cddfSDavid du Colombier * The following doesn't give rise to a macro, but is used in several 817dd7cddfSDavid du Colombier * places in Ghostscript. We observe that if M = 2^n-1 and V < M^2, 827dd7cddfSDavid du Colombier * then the quotient Q and remainder R can be computed as: 837dd7cddfSDavid du Colombier * Q = V / M = (V + (V >> n) + 1) >> n; 847dd7cddfSDavid du Colombier * R = V % M = (V + (V / M)) & M = V - (Q << n) + Q. 857dd7cddfSDavid du Colombier */ 867dd7cddfSDavid du Colombier 877dd7cddfSDavid du Colombier #endif /* gxarith_INCLUDED */ 88