1 /* $NetBSD: loadfile.c,v 1.10 2000/12/03 02:53:04 tsutsui Exp $ */ 2 /* $OpenBSD: loadfile_elf.c,v 1.39 2021/05/04 10:48:51 dv Exp $ */ 3 4 /*- 5 * Copyright (c) 1997 The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 10 * NASA Ames Research Center and by Christos Zoulas. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * Copyright (c) 1992, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * This code is derived from software contributed to Berkeley by 39 * Ralph Campbell. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)boot.c 8.1 (Berkeley) 6/10/93 66 */ 67 68 /* 69 * Copyright (c) 2015 Mike Larkin <mlarkin@openbsd.org> 70 * 71 * Permission to use, copy, modify, and distribute this software for any 72 * purpose with or without fee is hereby granted, provided that the above 73 * copyright notice and this permission notice appear in all copies. 74 * 75 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 76 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 77 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 78 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 79 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 80 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 81 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 82 */ 83 84 #include <sys/param.h> /* PAGE_SIZE PAGE_MASK roundup */ 85 #include <sys/ioctl.h> 86 #include <sys/reboot.h> 87 #include <sys/exec.h> 88 89 #include <elf.h> 90 #include <stdio.h> 91 #include <string.h> 92 #include <errno.h> 93 #include <stdlib.h> 94 #include <unistd.h> 95 #include <fcntl.h> 96 #include <err.h> 97 #include <errno.h> 98 #include <stddef.h> 99 100 #include <machine/vmmvar.h> 101 #include <machine/biosvar.h> 102 #include <machine/segments.h> 103 #include <machine/specialreg.h> 104 #include <machine/pte.h> 105 106 #include "loadfile.h" 107 #include "vmd.h" 108 109 #define LOADADDR(a) ((((u_long)(a)) + offset)&0xfffffff) 110 111 union { 112 Elf32_Ehdr elf32; 113 Elf64_Ehdr elf64; 114 } hdr; 115 116 static void setsegment(struct mem_segment_descriptor *, uint32_t, 117 size_t, int, int, int, int); 118 static int elf32_exec(gzFile, Elf32_Ehdr *, u_long *, int); 119 static int elf64_exec(gzFile, Elf64_Ehdr *, u_long *, int); 120 static size_t create_bios_memmap(struct vm_create_params *, bios_memmap_t *); 121 static uint32_t push_bootargs(bios_memmap_t *, size_t); 122 static size_t push_stack(uint32_t, uint32_t); 123 static void push_gdt(void); 124 static void push_pt_32(void); 125 static void push_pt_64(void); 126 static void marc4random_buf(paddr_t, int); 127 static void mbzero(paddr_t, int); 128 static void mbcopy(void *, paddr_t, int); 129 130 extern char *__progname; 131 extern int vm_id; 132 133 /* 134 * setsegment 135 * 136 * Initializes a segment selector entry with the provided descriptor. 137 * For the purposes of the bootloader mimiced by vmd(8), we only need 138 * memory-type segment descriptor support. 139 * 140 * This function was copied from machdep.c 141 * 142 * Parameters: 143 * sd: Address of the entry to initialize 144 * base: base of the segment 145 * limit: limit of the segment 146 * type: type of the segment 147 * dpl: privilege level of the egment 148 * def32: default 16/32 bit size of the segment 149 * gran: granularity of the segment (byte/page) 150 */ 151 static void 152 setsegment(struct mem_segment_descriptor *sd, uint32_t base, size_t limit, 153 int type, int dpl, int def32, int gran) 154 { 155 sd->sd_lolimit = (int)limit; 156 sd->sd_lobase = (int)base; 157 sd->sd_type = type; 158 sd->sd_dpl = dpl; 159 sd->sd_p = 1; 160 sd->sd_hilimit = (int)limit >> 16; 161 sd->sd_avl = 0; 162 sd->sd_long = 0; 163 sd->sd_def32 = def32; 164 sd->sd_gran = gran; 165 sd->sd_hibase = (int)base >> 24; 166 } 167 168 /* 169 * push_gdt 170 * 171 * Allocates and populates a page in the guest phys memory space to hold 172 * the boot-time GDT. Since vmd(8) is acting as the bootloader, we need to 173 * create the same GDT that a real bootloader would have created. 174 * This is loaded into the guest phys RAM space at address GDT_PAGE. 175 */ 176 static void 177 push_gdt(void) 178 { 179 uint8_t gdtpage[PAGE_SIZE]; 180 struct mem_segment_descriptor *sd; 181 182 memset(&gdtpage, 0, sizeof(gdtpage)); 183 184 sd = (struct mem_segment_descriptor *)&gdtpage; 185 186 /* 187 * Create three segment descriptors: 188 * 189 * GDT[0] : null desriptor. "Created" via memset above. 190 * GDT[1] (selector @ 0x8): Executable segment, for CS 191 * GDT[2] (selector @ 0x10): RW Data segment, for DS/ES/SS 192 */ 193 setsegment(&sd[1], 0, 0xffffffff, SDT_MEMERA, SEL_KPL, 1, 1); 194 setsegment(&sd[2], 0, 0xffffffff, SDT_MEMRWA, SEL_KPL, 1, 1); 195 196 write_mem(GDT_PAGE, gdtpage, PAGE_SIZE); 197 } 198 199 /* 200 * push_pt_32 201 * 202 * Create an identity-mapped page directory hierarchy mapping the first 203 * 4GB of physical memory. This is used during bootstrapping i386 VMs on 204 * CPUs without unrestricted guest capability. 205 */ 206 static void 207 push_pt_32(void) 208 { 209 uint32_t ptes[1024], i; 210 211 memset(ptes, 0, sizeof(ptes)); 212 for (i = 0 ; i < 1024; i++) { 213 ptes[i] = PG_V | PG_RW | PG_u | PG_PS | ((4096 * 1024) * i); 214 } 215 write_mem(PML3_PAGE, ptes, PAGE_SIZE); 216 } 217 218 /* 219 * push_pt_64 220 * 221 * Create an identity-mapped page directory hierarchy mapping the first 222 * 1GB of physical memory. This is used during bootstrapping 64 bit VMs on 223 * CPUs without unrestricted guest capability. 224 */ 225 static void 226 push_pt_64(void) 227 { 228 uint64_t ptes[512], i; 229 230 /* PDPDE0 - first 1GB */ 231 memset(ptes, 0, sizeof(ptes)); 232 ptes[0] = PG_V | PML3_PAGE; 233 write_mem(PML4_PAGE, ptes, PAGE_SIZE); 234 235 /* PDE0 - first 1GB */ 236 memset(ptes, 0, sizeof(ptes)); 237 ptes[0] = PG_V | PG_RW | PG_u | PML2_PAGE; 238 write_mem(PML3_PAGE, ptes, PAGE_SIZE); 239 240 /* First 1GB (in 2MB pages) */ 241 memset(ptes, 0, sizeof(ptes)); 242 for (i = 0 ; i < 512; i++) { 243 ptes[i] = PG_V | PG_RW | PG_u | PG_PS | ((2048 * 1024) * i); 244 } 245 write_mem(PML2_PAGE, ptes, PAGE_SIZE); 246 } 247 248 /* 249 * loadfile_elf 250 * 251 * Loads an ELF kernel to it's defined load address in the guest VM. 252 * The kernel is loaded to its defined start point as set in the ELF header. 253 * 254 * Parameters: 255 * fp: file of a kernel file to load 256 * vcp: the VM create parameters, holding the exact memory map 257 * (out) vrs: register state to set on init for this kernel 258 * bootdev: the optional non-default boot device 259 * howto: optional boot flags for the kernel 260 * 261 * Return values: 262 * 0 if successful 263 * various error codes returned from gzread(3) or loadelf functions 264 */ 265 int 266 loadfile_elf(gzFile fp, struct vm_create_params *vcp, 267 struct vcpu_reg_state *vrs) 268 { 269 int r, is_i386 = 0; 270 uint32_t bootargsz; 271 size_t n, stacksize; 272 u_long marks[MARK_MAX]; 273 bios_memmap_t memmap[VMM_MAX_MEM_RANGES + 1]; 274 275 if ((r = gzread(fp, &hdr, sizeof(hdr))) != sizeof(hdr)) 276 return 1; 277 278 memset(&marks, 0, sizeof(marks)); 279 if (memcmp(hdr.elf32.e_ident, ELFMAG, SELFMAG) == 0 && 280 hdr.elf32.e_ident[EI_CLASS] == ELFCLASS32) { 281 r = elf32_exec(fp, &hdr.elf32, marks, LOAD_ALL); 282 is_i386 = 1; 283 } else if (memcmp(hdr.elf64.e_ident, ELFMAG, SELFMAG) == 0 && 284 hdr.elf64.e_ident[EI_CLASS] == ELFCLASS64) { 285 r = elf64_exec(fp, &hdr.elf64, marks, LOAD_ALL); 286 } else 287 errno = ENOEXEC; 288 289 if (r) 290 return (r); 291 292 push_gdt(); 293 294 if (is_i386) { 295 push_pt_32(); 296 /* Reconfigure the default flat-64 register set for 32 bit */ 297 vrs->vrs_crs[VCPU_REGS_CR3] = PML3_PAGE; 298 vrs->vrs_crs[VCPU_REGS_CR4] = CR4_PSE; 299 vrs->vrs_msrs[VCPU_REGS_EFER] = 0ULL; 300 } 301 else 302 push_pt_64(); 303 304 n = create_bios_memmap(vcp, memmap); 305 bootargsz = push_bootargs(memmap, n); 306 stacksize = push_stack(bootargsz, marks[MARK_END]); 307 308 vrs->vrs_gprs[VCPU_REGS_RIP] = (uint64_t)marks[MARK_ENTRY]; 309 vrs->vrs_gprs[VCPU_REGS_RSP] = (uint64_t)(STACK_PAGE + PAGE_SIZE) - stacksize; 310 vrs->vrs_gdtr.vsi_base = GDT_PAGE; 311 312 log_debug("%s: loaded ELF kernel", __func__); 313 314 return (0); 315 } 316 317 /* 318 * create_bios_memmap 319 * 320 * Construct a memory map as returned by the BIOS INT 0x15, e820 routine. 321 * 322 * Parameters: 323 * vcp: the VM create parameters, containing the memory map passed to vmm(4) 324 * memmap (out): the BIOS memory map 325 * 326 * Return values: 327 * Number of bios_memmap_t entries, including the terminating nul-entry. 328 */ 329 static size_t 330 create_bios_memmap(struct vm_create_params *vcp, bios_memmap_t *memmap) 331 { 332 size_t i, n = 0, sz; 333 paddr_t gpa; 334 struct vm_mem_range *vmr; 335 336 for (i = 0; i < vcp->vcp_nmemranges; i++) { 337 vmr = &vcp->vcp_memranges[i]; 338 gpa = vmr->vmr_gpa; 339 sz = vmr->vmr_size; 340 341 /* 342 * Make sure that we do not mark the ROM/video RAM area in the 343 * low memory as physcal memory available to the kernel. 344 */ 345 if (gpa < 0x100000 && gpa + sz > LOWMEM_KB * 1024) { 346 if (gpa >= LOWMEM_KB * 1024) 347 sz = 0; 348 else 349 sz = LOWMEM_KB * 1024 - gpa; 350 } 351 352 if (sz != 0) { 353 memmap[n].addr = gpa; 354 memmap[n].size = sz; 355 memmap[n].type = 0x1; /* Type 1 : Normal memory */ 356 n++; 357 } 358 } 359 360 /* Null mem map entry to denote the end of the ranges */ 361 memmap[n].addr = 0x0; 362 memmap[n].size = 0x0; 363 memmap[n].type = 0x0; 364 n++; 365 366 return (n); 367 } 368 369 /* 370 * push_bootargs 371 * 372 * Creates the boot arguments page in the guest address space. 373 * Since vmd(8) is acting as the bootloader, we need to create the same boot 374 * arguments page that a real bootloader would have created. This is loaded 375 * into the guest phys RAM space at address BOOTARGS_PAGE. 376 * 377 * Parameters: 378 * memmap: the BIOS memory map 379 * n: number of entries in memmap 380 * 381 * Return values: 382 * The size of the bootargs 383 */ 384 static uint32_t 385 push_bootargs(bios_memmap_t *memmap, size_t n) 386 { 387 uint32_t memmap_sz, consdev_sz, i; 388 bios_consdev_t consdev; 389 uint32_t ba[1024]; 390 391 memmap_sz = 3 * sizeof(int) + n * sizeof(bios_memmap_t); 392 ba[0] = 0x0; /* memory map */ 393 ba[1] = memmap_sz; 394 ba[2] = memmap_sz; /* next */ 395 memcpy(&ba[3], memmap, n * sizeof(bios_memmap_t)); 396 i = memmap_sz / sizeof(int); 397 398 /* Serial console device, COM1 @ 0x3f8 */ 399 consdev.consdev = makedev(8, 0); /* com1 @ 0x3f8 */ 400 consdev.conspeed = 115200; 401 consdev.consaddr = 0x3f8; 402 consdev.consfreq = 0; 403 404 consdev_sz = 3 * sizeof(int) + sizeof(bios_consdev_t); 405 ba[i] = 0x5; /* consdev */ 406 ba[i + 1] = consdev_sz; 407 ba[i + 2] = consdev_sz; 408 memcpy(&ba[i + 3], &consdev, sizeof(bios_consdev_t)); 409 i += consdev_sz / sizeof(int); 410 411 ba[i++] = 0xFFFFFFFF; /* BOOTARG_END */ 412 413 write_mem(BOOTARGS_PAGE, ba, PAGE_SIZE); 414 415 return (i * sizeof(int)); 416 } 417 418 /* 419 * push_stack 420 * 421 * Creates the boot stack page in the guest address space. When using a real 422 * bootloader, the stack will be prepared using the following format before 423 * transitioning to kernel start, so vmd(8) needs to mimic the same stack 424 * layout. The stack content is pushed to the guest phys RAM at address 425 * STACK_PAGE. The bootloader operates in 32 bit mode; each stack entry is 426 * 4 bytes. 427 * 428 * Stack Layout: (TOS == Top Of Stack) 429 * TOS location of boot arguments page 430 * TOS - 0x4 size of the content in the boot arguments page 431 * TOS - 0x8 size of low memory (biosbasemem: kernel uses BIOS map only if 0) 432 * TOS - 0xc size of high memory (biosextmem, not used by kernel at all) 433 * TOS - 0x10 kernel 'end' symbol value 434 * TOS - 0x14 version of bootarg API 435 * 436 * Parameters: 437 * bootargsz: size of boot arguments 438 * end: kernel 'end' symbol value 439 * bootdev: the optional non-default boot device 440 * howto: optional boot flags for the kernel 441 * 442 * Return values: 443 * size of the stack 444 */ 445 static size_t 446 push_stack(uint32_t bootargsz, uint32_t end) 447 { 448 uint32_t stack[1024]; 449 uint16_t loc; 450 451 memset(&stack, 0, sizeof(stack)); 452 loc = 1024; 453 454 stack[--loc] = BOOTARGS_PAGE; 455 stack[--loc] = bootargsz; 456 stack[--loc] = 0; /* biosbasemem */ 457 stack[--loc] = 0; /* biosextmem */ 458 stack[--loc] = end; 459 stack[--loc] = 0x0e; 460 stack[--loc] = MAKEBOOTDEV(0x4, 0, 0, 0, 0); /* bootdev: sd0a */ 461 stack[--loc] = 0; 462 463 write_mem(STACK_PAGE, &stack, PAGE_SIZE); 464 465 return (1024 - (loc - 1)) * sizeof(uint32_t); 466 } 467 468 /* 469 * mread 470 * 471 * Reads 'sz' bytes from the file whose descriptor is provided in 'fd' 472 * into the guest address space at paddr 'addr'. 473 * 474 * Parameters: 475 * fp: kernel image file to read from. 476 * addr: guest paddr_t to load to 477 * sz: number of bytes to load 478 * 479 * Return values: 480 * returns 'sz' if successful, or 0 otherwise. 481 */ 482 size_t 483 mread(gzFile fp, paddr_t addr, size_t sz) 484 { 485 const char *errstr = NULL; 486 int errnum = 0; 487 size_t ct; 488 size_t i, rd, osz; 489 char buf[PAGE_SIZE]; 490 491 /* 492 * break up the 'sz' bytes into PAGE_SIZE chunks for use with 493 * write_mem 494 */ 495 ct = 0; 496 rd = 0; 497 osz = sz; 498 if ((addr & PAGE_MASK) != 0) { 499 memset(buf, 0, sizeof(buf)); 500 if (sz > PAGE_SIZE) 501 ct = PAGE_SIZE - (addr & PAGE_MASK); 502 else 503 ct = sz; 504 505 if ((size_t)gzread(fp, buf, ct) != ct) { 506 errstr = gzerror(fp, &errnum); 507 if (errnum == Z_ERRNO) 508 errnum = errno; 509 log_warnx("%s: error %d in mread, %s", __progname, 510 errnum, errstr); 511 return (0); 512 } 513 rd += ct; 514 515 if (write_mem(addr, buf, ct)) 516 return (0); 517 518 addr += ct; 519 } 520 521 sz = sz - ct; 522 523 if (sz == 0) 524 return (osz); 525 526 for (i = 0; i < sz; i += PAGE_SIZE, addr += PAGE_SIZE) { 527 memset(buf, 0, sizeof(buf)); 528 if (i + PAGE_SIZE > sz) 529 ct = sz - i; 530 else 531 ct = PAGE_SIZE; 532 533 if ((size_t)gzread(fp, buf, ct) != ct) { 534 errstr = gzerror(fp, &errnum); 535 if (errnum == Z_ERRNO) 536 errnum = errno; 537 log_warnx("%s: error %d in mread, %s", __progname, 538 errnum, errstr); 539 return (0); 540 } 541 rd += ct; 542 543 if (write_mem(addr, buf, ct)) 544 return (0); 545 } 546 547 return (osz); 548 } 549 550 /* 551 * marc4random_buf 552 * 553 * load 'sz' bytes of random data into the guest address space at paddr 554 * 'addr'. 555 * 556 * Parameters: 557 * addr: guest paddr_t to load random bytes into 558 * sz: number of random bytes to load 559 * 560 * Return values: 561 * nothing 562 */ 563 static void 564 marc4random_buf(paddr_t addr, int sz) 565 { 566 int i, ct; 567 char buf[PAGE_SIZE]; 568 569 /* 570 * break up the 'sz' bytes into PAGE_SIZE chunks for use with 571 * write_mem 572 */ 573 ct = 0; 574 if (addr % PAGE_SIZE != 0) { 575 memset(buf, 0, sizeof(buf)); 576 ct = PAGE_SIZE - (addr % PAGE_SIZE); 577 578 arc4random_buf(buf, ct); 579 580 if (write_mem(addr, buf, ct)) 581 return; 582 583 addr += ct; 584 } 585 586 for (i = 0; i < sz; i+= PAGE_SIZE, addr += PAGE_SIZE) { 587 memset(buf, 0, sizeof(buf)); 588 if (i + PAGE_SIZE > sz) 589 ct = sz - i; 590 else 591 ct = PAGE_SIZE; 592 593 arc4random_buf(buf, ct); 594 595 if (write_mem(addr, buf, ct)) 596 return; 597 } 598 } 599 600 /* 601 * mbzero 602 * 603 * load 'sz' bytes of zeros into the guest address space at paddr 604 * 'addr'. 605 * 606 * Parameters: 607 * addr: guest paddr_t to zero 608 * sz: number of zero bytes to store 609 * 610 * Return values: 611 * nothing 612 */ 613 static void 614 mbzero(paddr_t addr, int sz) 615 { 616 if (write_mem(addr, NULL, sz)) 617 return; 618 } 619 620 /* 621 * mbcopy 622 * 623 * copies 'sz' bytes from buffer 'src' to guest paddr 'dst'. 624 * 625 * Parameters: 626 * src: source buffer to copy from 627 * dst: destination guest paddr_t to copy to 628 * sz: number of bytes to copy 629 * 630 * Return values: 631 * nothing 632 */ 633 static void 634 mbcopy(void *src, paddr_t dst, int sz) 635 { 636 write_mem(dst, src, sz); 637 } 638 639 /* 640 * elf64_exec 641 * 642 * Load the kernel indicated by 'fp' into the guest physical memory 643 * space, at the addresses defined in the ELF header. 644 * 645 * This function is used for 64 bit kernels. 646 * 647 * Parameters: 648 * fp: kernel image file to load 649 * elf: ELF header of the kernel 650 * marks: array to store the offsets of various kernel structures 651 * (start, bss, etc) 652 * flags: flag value to indicate which section(s) to load (usually 653 * LOAD_ALL) 654 * 655 * Return values: 656 * 0 if successful 657 * 1 if unsuccessful 658 */ 659 static int 660 elf64_exec(gzFile fp, Elf64_Ehdr *elf, u_long *marks, int flags) 661 { 662 Elf64_Shdr *shp; 663 Elf64_Phdr *phdr; 664 Elf64_Off off; 665 int i; 666 size_t sz; 667 int first; 668 int havesyms; 669 paddr_t minp = ~0, maxp = 0, pos = 0; 670 paddr_t offset = marks[MARK_START], shpp, elfp; 671 672 sz = elf->e_phnum * sizeof(Elf64_Phdr); 673 phdr = malloc(sz); 674 675 if (gzseek(fp, (off_t)elf->e_phoff, SEEK_SET) == -1) { 676 free(phdr); 677 return 1; 678 } 679 680 if ((size_t)gzread(fp, phdr, sz) != sz) { 681 free(phdr); 682 return 1; 683 } 684 685 for (first = 1, i = 0; i < elf->e_phnum; i++) { 686 if (phdr[i].p_type == PT_OPENBSD_RANDOMIZE) { 687 int m; 688 689 /* Fill segment if asked for. */ 690 if (flags & LOAD_RANDOM) { 691 for (pos = 0; pos < phdr[i].p_filesz; 692 pos += m) { 693 m = phdr[i].p_filesz - pos; 694 marc4random_buf(phdr[i].p_paddr + pos, 695 m); 696 } 697 } 698 if (flags & (LOAD_RANDOM | COUNT_RANDOM)) { 699 marks[MARK_RANDOM] = LOADADDR(phdr[i].p_paddr); 700 marks[MARK_ERANDOM] = 701 marks[MARK_RANDOM] + phdr[i].p_filesz; 702 } 703 continue; 704 } 705 706 if (phdr[i].p_type != PT_LOAD || 707 (phdr[i].p_flags & (PF_W|PF_R|PF_X)) == 0) 708 continue; 709 710 #define IS_TEXT(p) (p.p_flags & PF_X) 711 #define IS_DATA(p) ((p.p_flags & PF_X) == 0) 712 #define IS_BSS(p) (p.p_filesz < p.p_memsz) 713 /* 714 * XXX: Assume first address is lowest 715 */ 716 if ((IS_TEXT(phdr[i]) && (flags & LOAD_TEXT)) || 717 (IS_DATA(phdr[i]) && (flags & LOAD_DATA))) { 718 719 /* Read in segment. */ 720 if (gzseek(fp, (off_t)phdr[i].p_offset, 721 SEEK_SET) == -1) { 722 free(phdr); 723 return 1; 724 } 725 if (mread(fp, phdr[i].p_paddr, phdr[i].p_filesz) != 726 phdr[i].p_filesz) { 727 free(phdr); 728 return 1; 729 } 730 731 first = 0; 732 } 733 734 if ((IS_TEXT(phdr[i]) && (flags & (LOAD_TEXT | COUNT_TEXT))) || 735 (IS_DATA(phdr[i]) && (flags & (LOAD_DATA | COUNT_TEXT)))) { 736 pos = phdr[i].p_paddr; 737 if (minp > pos) 738 minp = pos; 739 pos += phdr[i].p_filesz; 740 if (maxp < pos) 741 maxp = pos; 742 } 743 744 /* Zero out BSS. */ 745 if (IS_BSS(phdr[i]) && (flags & LOAD_BSS)) { 746 mbzero((phdr[i].p_paddr + phdr[i].p_filesz), 747 phdr[i].p_memsz - phdr[i].p_filesz); 748 } 749 if (IS_BSS(phdr[i]) && (flags & (LOAD_BSS|COUNT_BSS))) { 750 pos += phdr[i].p_memsz - phdr[i].p_filesz; 751 if (maxp < pos) 752 maxp = pos; 753 } 754 } 755 free(phdr); 756 757 /* 758 * Copy the ELF and section headers. 759 */ 760 elfp = maxp = roundup(maxp, sizeof(Elf64_Addr)); 761 if (flags & (LOAD_HDR | COUNT_HDR)) 762 maxp += sizeof(Elf64_Ehdr); 763 764 if (flags & (LOAD_SYM | COUNT_SYM)) { 765 if (gzseek(fp, (off_t)elf->e_shoff, SEEK_SET) == -1) { 766 warn("gzseek section headers"); 767 return 1; 768 } 769 sz = elf->e_shnum * sizeof(Elf64_Shdr); 770 shp = malloc(sz); 771 772 if ((size_t)gzread(fp, shp, sz) != sz) { 773 free(shp); 774 return 1; 775 } 776 777 shpp = maxp; 778 maxp += roundup(sz, sizeof(Elf64_Addr)); 779 780 size_t shstrsz = shp[elf->e_shstrndx].sh_size; 781 char *shstr = malloc(shstrsz); 782 if (gzseek(fp, (off_t)shp[elf->e_shstrndx].sh_offset, 783 SEEK_SET) == -1) { 784 free(shstr); 785 free(shp); 786 return 1; 787 } 788 if ((size_t)gzread(fp, shstr, shstrsz) != shstrsz) { 789 free(shstr); 790 free(shp); 791 return 1; 792 } 793 794 /* 795 * Now load the symbol sections themselves. Make sure the 796 * sections are aligned. Don't bother with string tables if 797 * there are no symbol sections. 798 */ 799 off = roundup((sizeof(Elf64_Ehdr) + sz), sizeof(Elf64_Addr)); 800 801 for (havesyms = i = 0; i < elf->e_shnum; i++) 802 if (shp[i].sh_type == SHT_SYMTAB) 803 havesyms = 1; 804 805 for (first = 1, i = 0; i < elf->e_shnum; i++) { 806 if (shp[i].sh_type == SHT_SYMTAB || 807 shp[i].sh_type == SHT_STRTAB || 808 !strcmp(shstr + shp[i].sh_name, ".debug_line") || 809 !strcmp(shstr + shp[i].sh_name, ELF_CTF)) { 810 if (havesyms && (flags & LOAD_SYM)) { 811 if (gzseek(fp, (off_t)shp[i].sh_offset, 812 SEEK_SET) == -1) { 813 free(shstr); 814 free(shp); 815 return 1; 816 } 817 if (mread(fp, maxp, 818 shp[i].sh_size) != shp[i].sh_size) { 819 free(shstr); 820 free(shp); 821 return 1; 822 } 823 } 824 maxp += roundup(shp[i].sh_size, 825 sizeof(Elf64_Addr)); 826 shp[i].sh_offset = off; 827 shp[i].sh_flags |= SHF_ALLOC; 828 off += roundup(shp[i].sh_size, 829 sizeof(Elf64_Addr)); 830 first = 0; 831 } 832 } 833 if (flags & LOAD_SYM) { 834 mbcopy(shp, shpp, sz); 835 } 836 free(shstr); 837 free(shp); 838 } 839 840 /* 841 * Frob the copied ELF header to give information relative 842 * to elfp. 843 */ 844 if (flags & LOAD_HDR) { 845 elf->e_phoff = 0; 846 elf->e_shoff = sizeof(Elf64_Ehdr); 847 elf->e_phentsize = 0; 848 elf->e_phnum = 0; 849 mbcopy(elf, elfp, sizeof(*elf)); 850 } 851 852 marks[MARK_START] = LOADADDR(minp); 853 marks[MARK_ENTRY] = LOADADDR(elf->e_entry); 854 marks[MARK_NSYM] = 1; /* XXX: Kernel needs >= 0 */ 855 marks[MARK_SYM] = LOADADDR(elfp); 856 marks[MARK_END] = LOADADDR(maxp); 857 858 return 0; 859 } 860 861 /* 862 * elf32_exec 863 * 864 * Load the kernel indicated by 'fp' into the guest physical memory 865 * space, at the addresses defined in the ELF header. 866 * 867 * This function is used for 32 bit kernels. 868 * 869 * Parameters: 870 * fp: kernel image file to load 871 * elf: ELF header of the kernel 872 * marks: array to store the offsets of various kernel structures 873 * (start, bss, etc) 874 * flags: flag value to indicate which section(s) to load (usually 875 * LOAD_ALL) 876 * 877 * Return values: 878 * 0 if successful 879 * 1 if unsuccessful 880 */ 881 static int 882 elf32_exec(gzFile fp, Elf32_Ehdr *elf, u_long *marks, int flags) 883 { 884 Elf32_Shdr *shp; 885 Elf32_Phdr *phdr; 886 Elf32_Off off; 887 int i; 888 size_t sz; 889 int first; 890 int havesyms; 891 paddr_t minp = ~0, maxp = 0, pos = 0; 892 paddr_t offset = marks[MARK_START], shpp, elfp; 893 894 sz = elf->e_phnum * sizeof(Elf32_Phdr); 895 phdr = malloc(sz); 896 897 if (gzseek(fp, (off_t)elf->e_phoff, SEEK_SET) == -1) { 898 free(phdr); 899 return 1; 900 } 901 902 if ((size_t)gzread(fp, phdr, sz) != sz) { 903 free(phdr); 904 return 1; 905 } 906 907 for (first = 1, i = 0; i < elf->e_phnum; i++) { 908 if (phdr[i].p_type == PT_OPENBSD_RANDOMIZE) { 909 int m; 910 911 /* Fill segment if asked for. */ 912 if (flags & LOAD_RANDOM) { 913 for (pos = 0; pos < phdr[i].p_filesz; 914 pos += m) { 915 m = phdr[i].p_filesz - pos; 916 marc4random_buf(phdr[i].p_paddr + pos, 917 m); 918 } 919 } 920 if (flags & (LOAD_RANDOM | COUNT_RANDOM)) { 921 marks[MARK_RANDOM] = LOADADDR(phdr[i].p_paddr); 922 marks[MARK_ERANDOM] = 923 marks[MARK_RANDOM] + phdr[i].p_filesz; 924 } 925 continue; 926 } 927 928 if (phdr[i].p_type != PT_LOAD || 929 (phdr[i].p_flags & (PF_W|PF_R|PF_X)) == 0) 930 continue; 931 932 #define IS_TEXT(p) (p.p_flags & PF_X) 933 #define IS_DATA(p) ((p.p_flags & PF_X) == 0) 934 #define IS_BSS(p) (p.p_filesz < p.p_memsz) 935 /* 936 * XXX: Assume first address is lowest 937 */ 938 if ((IS_TEXT(phdr[i]) && (flags & LOAD_TEXT)) || 939 (IS_DATA(phdr[i]) && (flags & LOAD_DATA))) { 940 941 /* Read in segment. */ 942 if (gzseek(fp, (off_t)phdr[i].p_offset, 943 SEEK_SET) == -1) { 944 free(phdr); 945 return 1; 946 } 947 if (mread(fp, phdr[i].p_paddr, phdr[i].p_filesz) != 948 phdr[i].p_filesz) { 949 free(phdr); 950 return 1; 951 } 952 953 first = 0; 954 } 955 956 if ((IS_TEXT(phdr[i]) && (flags & (LOAD_TEXT | COUNT_TEXT))) || 957 (IS_DATA(phdr[i]) && (flags & (LOAD_DATA | COUNT_TEXT)))) { 958 pos = phdr[i].p_paddr; 959 if (minp > pos) 960 minp = pos; 961 pos += phdr[i].p_filesz; 962 if (maxp < pos) 963 maxp = pos; 964 } 965 966 /* Zero out BSS. */ 967 if (IS_BSS(phdr[i]) && (flags & LOAD_BSS)) { 968 mbzero((phdr[i].p_paddr + phdr[i].p_filesz), 969 phdr[i].p_memsz - phdr[i].p_filesz); 970 } 971 if (IS_BSS(phdr[i]) && (flags & (LOAD_BSS|COUNT_BSS))) { 972 pos += phdr[i].p_memsz - phdr[i].p_filesz; 973 if (maxp < pos) 974 maxp = pos; 975 } 976 } 977 free(phdr); 978 979 /* 980 * Copy the ELF and section headers. 981 */ 982 elfp = maxp = roundup(maxp, sizeof(Elf32_Addr)); 983 if (flags & (LOAD_HDR | COUNT_HDR)) 984 maxp += sizeof(Elf32_Ehdr); 985 986 if (flags & (LOAD_SYM | COUNT_SYM)) { 987 if (gzseek(fp, (off_t)elf->e_shoff, SEEK_SET) == -1) { 988 warn("lseek section headers"); 989 return 1; 990 } 991 sz = elf->e_shnum * sizeof(Elf32_Shdr); 992 shp = malloc(sz); 993 994 if ((size_t)gzread(fp, shp, sz) != sz) { 995 free(shp); 996 return 1; 997 } 998 999 shpp = maxp; 1000 maxp += roundup(sz, sizeof(Elf32_Addr)); 1001 1002 size_t shstrsz = shp[elf->e_shstrndx].sh_size; 1003 char *shstr = malloc(shstrsz); 1004 if (gzseek(fp, (off_t)shp[elf->e_shstrndx].sh_offset, 1005 SEEK_SET) == -1) { 1006 free(shstr); 1007 free(shp); 1008 return 1; 1009 } 1010 if ((size_t)gzread(fp, shstr, shstrsz) != shstrsz) { 1011 free(shstr); 1012 free(shp); 1013 return 1; 1014 } 1015 1016 /* 1017 * Now load the symbol sections themselves. Make sure the 1018 * sections are aligned. Don't bother with string tables if 1019 * there are no symbol sections. 1020 */ 1021 off = roundup((sizeof(Elf32_Ehdr) + sz), sizeof(Elf32_Addr)); 1022 1023 for (havesyms = i = 0; i < elf->e_shnum; i++) 1024 if (shp[i].sh_type == SHT_SYMTAB) 1025 havesyms = 1; 1026 1027 for (first = 1, i = 0; i < elf->e_shnum; i++) { 1028 if (shp[i].sh_type == SHT_SYMTAB || 1029 shp[i].sh_type == SHT_STRTAB || 1030 !strcmp(shstr + shp[i].sh_name, ".debug_line")) { 1031 if (havesyms && (flags & LOAD_SYM)) { 1032 if (gzseek(fp, (off_t)shp[i].sh_offset, 1033 SEEK_SET) == -1) { 1034 free(shstr); 1035 free(shp); 1036 return 1; 1037 } 1038 if (mread(fp, maxp, 1039 shp[i].sh_size) != shp[i].sh_size) { 1040 free(shstr); 1041 free(shp); 1042 return 1; 1043 } 1044 } 1045 maxp += roundup(shp[i].sh_size, 1046 sizeof(Elf32_Addr)); 1047 shp[i].sh_offset = off; 1048 shp[i].sh_flags |= SHF_ALLOC; 1049 off += roundup(shp[i].sh_size, 1050 sizeof(Elf32_Addr)); 1051 first = 0; 1052 } 1053 } 1054 if (flags & LOAD_SYM) { 1055 mbcopy(shp, shpp, sz); 1056 } 1057 free(shstr); 1058 free(shp); 1059 } 1060 1061 /* 1062 * Frob the copied ELF header to give information relative 1063 * to elfp. 1064 */ 1065 if (flags & LOAD_HDR) { 1066 elf->e_phoff = 0; 1067 elf->e_shoff = sizeof(Elf32_Ehdr); 1068 elf->e_phentsize = 0; 1069 elf->e_phnum = 0; 1070 mbcopy(elf, elfp, sizeof(*elf)); 1071 } 1072 1073 marks[MARK_START] = LOADADDR(minp); 1074 marks[MARK_ENTRY] = LOADADDR(elf->e_entry); 1075 marks[MARK_NSYM] = 1; /* XXX: Kernel needs >= 0 */ 1076 marks[MARK_SYM] = LOADADDR(elfp); 1077 marks[MARK_END] = LOADADDR(maxp); 1078 1079 return 0; 1080 } 1081