xref: /openbsd-src/usr.sbin/unbound/validator/val_secalgo.c (revision ae3cb403620ab940fbaabb3055fac045a63d56b7)
1 /*
2  * validator/val_secalgo.c - validator security algorithm functions.
3  *
4  * Copyright (c) 2012, NLnet Labs. All rights reserved.
5  *
6  * This software is open source.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * Redistributions of source code must retain the above copyright notice,
13  * this list of conditions and the following disclaimer.
14  *
15  * Redistributions in binary form must reproduce the above copyright notice,
16  * this list of conditions and the following disclaimer in the documentation
17  * and/or other materials provided with the distribution.
18  *
19  * Neither the name of the NLNET LABS nor the names of its contributors may
20  * be used to endorse or promote products derived from this software without
21  * specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /**
37  * \file
38  *
39  * This file contains helper functions for the validator module.
40  * These functions take raw data buffers, formatted for crypto verification,
41  * and do the library calls (for the crypto library in use).
42  */
43 #include "config.h"
44 /* packed_rrset on top to define enum types (forced by c99 standard) */
45 #include "util/data/packed_rrset.h"
46 #include "validator/val_secalgo.h"
47 #include "validator/val_nsec3.h"
48 #include "util/log.h"
49 #include "sldns/rrdef.h"
50 #include "sldns/keyraw.h"
51 #include "sldns/sbuffer.h"
52 
53 #if !defined(HAVE_SSL) && !defined(HAVE_NSS) && !defined(HAVE_NETTLE)
54 #error "Need crypto library to do digital signature cryptography"
55 #endif
56 
57 /* OpenSSL implementation */
58 #ifdef HAVE_SSL
59 #ifdef HAVE_OPENSSL_ERR_H
60 #include <openssl/err.h>
61 #endif
62 
63 #ifdef HAVE_OPENSSL_RAND_H
64 #include <openssl/rand.h>
65 #endif
66 
67 #ifdef HAVE_OPENSSL_CONF_H
68 #include <openssl/conf.h>
69 #endif
70 
71 #ifdef HAVE_OPENSSL_ENGINE_H
72 #include <openssl/engine.h>
73 #endif
74 
75 /** fake DSA support for unit tests */
76 int fake_dsa = 0;
77 /** fake SHA1 support for unit tests */
78 int fake_sha1 = 0;
79 
80 /* return size of digest if supported, or 0 otherwise */
81 size_t
82 nsec3_hash_algo_size_supported(int id)
83 {
84 	switch(id) {
85 	case NSEC3_HASH_SHA1:
86 		return SHA_DIGEST_LENGTH;
87 	default:
88 		return 0;
89 	}
90 }
91 
92 /* perform nsec3 hash. return false on failure */
93 int
94 secalgo_nsec3_hash(int algo, unsigned char* buf, size_t len,
95         unsigned char* res)
96 {
97 	switch(algo) {
98 	case NSEC3_HASH_SHA1:
99 		(void)SHA1(buf, len, res);
100 		return 1;
101 	default:
102 		return 0;
103 	}
104 }
105 
106 void
107 secalgo_hash_sha256(unsigned char* buf, size_t len, unsigned char* res)
108 {
109 	(void)SHA256(buf, len, res);
110 }
111 
112 /**
113  * Return size of DS digest according to its hash algorithm.
114  * @param algo: DS digest algo.
115  * @return size in bytes of digest, or 0 if not supported.
116  */
117 size_t
118 ds_digest_size_supported(int algo)
119 {
120 	switch(algo) {
121 		case LDNS_SHA1:
122 #if defined(HAVE_EVP_SHA1) && defined(USE_SHA1)
123 			return SHA_DIGEST_LENGTH;
124 #else
125 			if(fake_sha1) return 20;
126 			return 0;
127 #endif
128 #ifdef HAVE_EVP_SHA256
129 		case LDNS_SHA256:
130 			return SHA256_DIGEST_LENGTH;
131 #endif
132 #ifdef USE_GOST
133 		case LDNS_HASH_GOST:
134 			/* we support GOST if it can be loaded */
135 			(void)sldns_key_EVP_load_gost_id();
136 			if(EVP_get_digestbyname("md_gost94"))
137 				return 32;
138 			else	return 0;
139 #endif
140 #ifdef USE_ECDSA
141 		case LDNS_SHA384:
142 			return SHA384_DIGEST_LENGTH;
143 #endif
144 		default: break;
145 	}
146 	return 0;
147 }
148 
149 #ifdef USE_GOST
150 /** Perform GOST hash */
151 static int
152 do_gost94(unsigned char* data, size_t len, unsigned char* dest)
153 {
154 	const EVP_MD* md = EVP_get_digestbyname("md_gost94");
155 	if(!md)
156 		return 0;
157 	return sldns_digest_evp(data, (unsigned int)len, dest, md);
158 }
159 #endif
160 
161 int
162 secalgo_ds_digest(int algo, unsigned char* buf, size_t len,
163 	unsigned char* res)
164 {
165 	switch(algo) {
166 #if defined(HAVE_EVP_SHA1) && defined(USE_SHA1)
167 		case LDNS_SHA1:
168 			(void)SHA1(buf, len, res);
169 			return 1;
170 #endif
171 #ifdef HAVE_EVP_SHA256
172 		case LDNS_SHA256:
173 			(void)SHA256(buf, len, res);
174 			return 1;
175 #endif
176 #ifdef USE_GOST
177 		case LDNS_HASH_GOST:
178 			if(do_gost94(buf, len, res))
179 				return 1;
180 			break;
181 #endif
182 #ifdef USE_ECDSA
183 		case LDNS_SHA384:
184 			(void)SHA384(buf, len, res);
185 			return 1;
186 #endif
187 		default:
188 			verbose(VERB_QUERY, "unknown DS digest algorithm %d",
189 				algo);
190 			break;
191 	}
192 	return 0;
193 }
194 
195 /** return true if DNSKEY algorithm id is supported */
196 int
197 dnskey_algo_id_is_supported(int id)
198 {
199 	switch(id) {
200 	case LDNS_RSAMD5:
201 		/* RFC 6725 deprecates RSAMD5 */
202 		return 0;
203 	case LDNS_DSA:
204 	case LDNS_DSA_NSEC3:
205 #if defined(USE_DSA) && defined(USE_SHA1)
206 		return 1;
207 #else
208 		if(fake_dsa || fake_sha1) return 1;
209 		return 0;
210 #endif
211 
212 	case LDNS_RSASHA1:
213 	case LDNS_RSASHA1_NSEC3:
214 #ifdef USE_SHA1
215 		return 1;
216 #else
217 		if(fake_sha1) return 1;
218 		return 0;
219 #endif
220 
221 #if defined(HAVE_EVP_SHA256) && defined(USE_SHA2)
222 	case LDNS_RSASHA256:
223 #endif
224 #if defined(HAVE_EVP_SHA512) && defined(USE_SHA2)
225 	case LDNS_RSASHA512:
226 #endif
227 #ifdef USE_ECDSA
228 	case LDNS_ECDSAP256SHA256:
229 	case LDNS_ECDSAP384SHA384:
230 #endif
231 #ifdef USE_ED25519
232 	case LDNS_ED25519:
233 #endif
234 #if (defined(HAVE_EVP_SHA256) && defined(USE_SHA2)) || (defined(HAVE_EVP_SHA512) && defined(USE_SHA2)) || defined(USE_ECDSA)
235 		return 1;
236 #endif
237 
238 #ifdef USE_GOST
239 	case LDNS_ECC_GOST:
240 		/* we support GOST if it can be loaded */
241 		return sldns_key_EVP_load_gost_id();
242 #endif
243 	default:
244 		return 0;
245 	}
246 }
247 
248 /**
249  * Output a libcrypto openssl error to the logfile.
250  * @param str: string to add to it.
251  * @param e: the error to output, error number from ERR_get_error().
252  */
253 static void
254 log_crypto_error(const char* str, unsigned long e)
255 {
256 	char buf[128];
257 	/* or use ERR_error_string if ERR_error_string_n is not avail TODO */
258 	ERR_error_string_n(e, buf, sizeof(buf));
259 	/* buf now contains */
260 	/* error:[error code]:[library name]:[function name]:[reason string] */
261 	log_err("%s crypto %s", str, buf);
262 }
263 
264 #ifdef USE_DSA
265 /**
266  * Setup DSA key digest in DER encoding ...
267  * @param sig: input is signature output alloced ptr (unless failure).
268  * 	caller must free alloced ptr if this routine returns true.
269  * @param len: input is initial siglen, output is output len.
270  * @return false on failure.
271  */
272 static int
273 setup_dsa_sig(unsigned char** sig, unsigned int* len)
274 {
275 	unsigned char* orig = *sig;
276 	unsigned int origlen = *len;
277 	int newlen;
278 	BIGNUM *R, *S;
279 	DSA_SIG *dsasig;
280 
281 	/* extract the R and S field from the sig buffer */
282 	if(origlen < 1 + 2*SHA_DIGEST_LENGTH)
283 		return 0;
284 	R = BN_new();
285 	if(!R) return 0;
286 	(void) BN_bin2bn(orig + 1, SHA_DIGEST_LENGTH, R);
287 	S = BN_new();
288 	if(!S) return 0;
289 	(void) BN_bin2bn(orig + 21, SHA_DIGEST_LENGTH, S);
290 	dsasig = DSA_SIG_new();
291 	if(!dsasig) return 0;
292 
293 #ifdef HAVE_DSA_SIG_SET0
294 	if(!DSA_SIG_set0(dsasig, R, S)) return 0;
295 #else
296 	dsasig->r = R;
297 	dsasig->s = S;
298 #endif
299 	*sig = NULL;
300 	newlen = i2d_DSA_SIG(dsasig, sig);
301 	if(newlen < 0) {
302 		DSA_SIG_free(dsasig);
303 		free(*sig);
304 		return 0;
305 	}
306 	*len = (unsigned int)newlen;
307 	DSA_SIG_free(dsasig);
308 	return 1;
309 }
310 #endif /* USE_DSA */
311 
312 #ifdef USE_ECDSA
313 /**
314  * Setup the ECDSA signature in its encoding that the library wants.
315  * Converts from plain numbers to ASN formatted.
316  * @param sig: input is signature, output alloced ptr (unless failure).
317  * 	caller must free alloced ptr if this routine returns true.
318  * @param len: input is initial siglen, output is output len.
319  * @return false on failure.
320  */
321 static int
322 setup_ecdsa_sig(unsigned char** sig, unsigned int* len)
323 {
324         /* convert from two BIGNUMs in the rdata buffer, to ASN notation.
325 	 * ASN preable:  30440220 <R 32bytefor256> 0220 <S 32bytefor256>
326 	 * the '20' is the length of that field (=bnsize).
327 i	 * the '44' is the total remaining length.
328 	 * if negative, start with leading zero.
329 	 * if starts with 00s, remove them from the number.
330 	 */
331         uint8_t pre[] = {0x30, 0x44, 0x02, 0x20};
332         int pre_len = 4;
333         uint8_t mid[] = {0x02, 0x20};
334         int mid_len = 2;
335         int raw_sig_len, r_high, s_high, r_rem=0, s_rem=0;
336 	int bnsize = (int)((*len)/2);
337         unsigned char* d = *sig;
338 	uint8_t* p;
339 	/* if too short or not even length, fails */
340 	if(*len < 16 || bnsize*2 != (int)*len)
341 		return 0;
342 
343         /* strip leading zeroes from r (but not last one) */
344         while(r_rem < bnsize-1 && d[r_rem] == 0)
345                 r_rem++;
346         /* strip leading zeroes from s (but not last one) */
347         while(s_rem < bnsize-1 && d[bnsize+s_rem] == 0)
348                 s_rem++;
349 
350         r_high = ((d[0+r_rem]&0x80)?1:0);
351         s_high = ((d[bnsize+s_rem]&0x80)?1:0);
352         raw_sig_len = pre_len + r_high + bnsize - r_rem + mid_len +
353                 s_high + bnsize - s_rem;
354 	*sig = (unsigned char*)malloc((size_t)raw_sig_len);
355 	if(!*sig)
356 		return 0;
357 	p = (uint8_t*)*sig;
358 	p[0] = pre[0];
359 	p[1] = (uint8_t)(raw_sig_len-2);
360 	p[2] = pre[2];
361 	p[3] = (uint8_t)(bnsize + r_high - r_rem);
362 	p += 4;
363 	if(r_high) {
364 		*p = 0;
365 		p += 1;
366 	}
367 	memmove(p, d+r_rem, (size_t)bnsize-r_rem);
368 	p += bnsize-r_rem;
369 	memmove(p, mid, (size_t)mid_len-1);
370 	p += mid_len-1;
371 	*p = (uint8_t)(bnsize + s_high - s_rem);
372 	p += 1;
373         if(s_high) {
374 		*p = 0;
375 		p += 1;
376 	}
377 	memmove(p, d+bnsize+s_rem, (size_t)bnsize-s_rem);
378 	*len = (unsigned int)raw_sig_len;
379 	return 1;
380 }
381 #endif /* USE_ECDSA */
382 
383 #ifdef USE_ECDSA_EVP_WORKAROUND
384 static EVP_MD ecdsa_evp_256_md;
385 static EVP_MD ecdsa_evp_384_md;
386 void ecdsa_evp_workaround_init(void)
387 {
388 	/* openssl before 1.0.0 fixes RSA with the SHA256
389 	 * hash in EVP.  We create one for ecdsa_sha256 */
390 	ecdsa_evp_256_md = *EVP_sha256();
391 	ecdsa_evp_256_md.required_pkey_type[0] = EVP_PKEY_EC;
392 	ecdsa_evp_256_md.verify = (void*)ECDSA_verify;
393 
394 	ecdsa_evp_384_md = *EVP_sha384();
395 	ecdsa_evp_384_md.required_pkey_type[0] = EVP_PKEY_EC;
396 	ecdsa_evp_384_md.verify = (void*)ECDSA_verify;
397 }
398 #endif /* USE_ECDSA_EVP_WORKAROUND */
399 
400 /**
401  * Setup key and digest for verification. Adjust sig if necessary.
402  *
403  * @param algo: key algorithm
404  * @param evp_key: EVP PKEY public key to create.
405  * @param digest_type: digest type to use
406  * @param key: key to setup for.
407  * @param keylen: length of key.
408  * @return false on failure.
409  */
410 static int
411 setup_key_digest(int algo, EVP_PKEY** evp_key, const EVP_MD** digest_type,
412 	unsigned char* key, size_t keylen)
413 {
414 #if defined(USE_DSA) && defined(USE_SHA1)
415 	DSA* dsa;
416 #endif
417 	RSA* rsa;
418 
419 	switch(algo) {
420 #if defined(USE_DSA) && defined(USE_SHA1)
421 		case LDNS_DSA:
422 		case LDNS_DSA_NSEC3:
423 			*evp_key = EVP_PKEY_new();
424 			if(!*evp_key) {
425 				log_err("verify: malloc failure in crypto");
426 				return 0;
427 			}
428 			dsa = sldns_key_buf2dsa_raw(key, keylen);
429 			if(!dsa) {
430 				verbose(VERB_QUERY, "verify: "
431 					"sldns_key_buf2dsa_raw failed");
432 				return 0;
433 			}
434 			if(EVP_PKEY_assign_DSA(*evp_key, dsa) == 0) {
435 				verbose(VERB_QUERY, "verify: "
436 					"EVP_PKEY_assign_DSA failed");
437 				return 0;
438 			}
439 #ifdef HAVE_EVP_DSS1
440 			*digest_type = EVP_dss1();
441 #else
442 			*digest_type = EVP_sha1();
443 #endif
444 
445 			break;
446 #endif /* USE_DSA && USE_SHA1 */
447 
448 #if defined(USE_SHA1) || (defined(HAVE_EVP_SHA256) && defined(USE_SHA2)) || (defined(HAVE_EVP_SHA512) && defined(USE_SHA2))
449 #ifdef USE_SHA1
450 		case LDNS_RSASHA1:
451 		case LDNS_RSASHA1_NSEC3:
452 #endif
453 #if defined(HAVE_EVP_SHA256) && defined(USE_SHA2)
454 		case LDNS_RSASHA256:
455 #endif
456 #if defined(HAVE_EVP_SHA512) && defined(USE_SHA2)
457 		case LDNS_RSASHA512:
458 #endif
459 			*evp_key = EVP_PKEY_new();
460 			if(!*evp_key) {
461 				log_err("verify: malloc failure in crypto");
462 				return 0;
463 			}
464 			rsa = sldns_key_buf2rsa_raw(key, keylen);
465 			if(!rsa) {
466 				verbose(VERB_QUERY, "verify: "
467 					"sldns_key_buf2rsa_raw SHA failed");
468 				return 0;
469 			}
470 			if(EVP_PKEY_assign_RSA(*evp_key, rsa) == 0) {
471 				verbose(VERB_QUERY, "verify: "
472 					"EVP_PKEY_assign_RSA SHA failed");
473 				return 0;
474 			}
475 
476 			/* select SHA version */
477 #if defined(HAVE_EVP_SHA256) && defined(USE_SHA2)
478 			if(algo == LDNS_RSASHA256)
479 				*digest_type = EVP_sha256();
480 			else
481 #endif
482 #if defined(HAVE_EVP_SHA512) && defined(USE_SHA2)
483 				if(algo == LDNS_RSASHA512)
484 				*digest_type = EVP_sha512();
485 			else
486 #endif
487 #ifdef USE_SHA1
488 				*digest_type = EVP_sha1();
489 #else
490 				{ verbose(VERB_QUERY, "no digest available"); return 0; }
491 #endif
492 			break;
493 #endif /* defined(USE_SHA1) || (defined(HAVE_EVP_SHA256) && defined(USE_SHA2)) || (defined(HAVE_EVP_SHA512) && defined(USE_SHA2)) */
494 
495 		case LDNS_RSAMD5:
496 			*evp_key = EVP_PKEY_new();
497 			if(!*evp_key) {
498 				log_err("verify: malloc failure in crypto");
499 				return 0;
500 			}
501 			rsa = sldns_key_buf2rsa_raw(key, keylen);
502 			if(!rsa) {
503 				verbose(VERB_QUERY, "verify: "
504 					"sldns_key_buf2rsa_raw MD5 failed");
505 				return 0;
506 			}
507 			if(EVP_PKEY_assign_RSA(*evp_key, rsa) == 0) {
508 				verbose(VERB_QUERY, "verify: "
509 					"EVP_PKEY_assign_RSA MD5 failed");
510 				return 0;
511 			}
512 			*digest_type = EVP_md5();
513 
514 			break;
515 #ifdef USE_GOST
516 		case LDNS_ECC_GOST:
517 			*evp_key = sldns_gost2pkey_raw(key, keylen);
518 			if(!*evp_key) {
519 				verbose(VERB_QUERY, "verify: "
520 					"sldns_gost2pkey_raw failed");
521 				return 0;
522 			}
523 			*digest_type = EVP_get_digestbyname("md_gost94");
524 			if(!*digest_type) {
525 				verbose(VERB_QUERY, "verify: "
526 					"EVP_getdigest md_gost94 failed");
527 				return 0;
528 			}
529 			break;
530 #endif
531 #ifdef USE_ECDSA
532 		case LDNS_ECDSAP256SHA256:
533 			*evp_key = sldns_ecdsa2pkey_raw(key, keylen,
534 				LDNS_ECDSAP256SHA256);
535 			if(!*evp_key) {
536 				verbose(VERB_QUERY, "verify: "
537 					"sldns_ecdsa2pkey_raw failed");
538 				return 0;
539 			}
540 #ifdef USE_ECDSA_EVP_WORKAROUND
541 			*digest_type = &ecdsa_evp_256_md;
542 #else
543 			*digest_type = EVP_sha256();
544 #endif
545 			break;
546 		case LDNS_ECDSAP384SHA384:
547 			*evp_key = sldns_ecdsa2pkey_raw(key, keylen,
548 				LDNS_ECDSAP384SHA384);
549 			if(!*evp_key) {
550 				verbose(VERB_QUERY, "verify: "
551 					"sldns_ecdsa2pkey_raw failed");
552 				return 0;
553 			}
554 #ifdef USE_ECDSA_EVP_WORKAROUND
555 			*digest_type = &ecdsa_evp_384_md;
556 #else
557 			*digest_type = EVP_sha384();
558 #endif
559 			break;
560 #endif /* USE_ECDSA */
561 #ifdef USE_ED25519
562 		case LDNS_ED25519:
563 			*evp_key = sldns_ed255192pkey_raw(key, keylen);
564 			if(!*evp_key) {
565 				verbose(VERB_QUERY, "verify: "
566 					"sldns_ed255192pkey_raw failed");
567 				return 0;
568 			}
569 			*digest_type = NULL;
570 			break;
571 #endif /* USE_ED25519 */
572 		default:
573 			verbose(VERB_QUERY, "verify: unknown algorithm %d",
574 				algo);
575 			return 0;
576 	}
577 	return 1;
578 }
579 
580 /**
581  * Check a canonical sig+rrset and signature against a dnskey
582  * @param buf: buffer with data to verify, the first rrsig part and the
583  *	canonicalized rrset.
584  * @param algo: DNSKEY algorithm.
585  * @param sigblock: signature rdata field from RRSIG
586  * @param sigblock_len: length of sigblock data.
587  * @param key: public key data from DNSKEY RR.
588  * @param keylen: length of keydata.
589  * @param reason: bogus reason in more detail.
590  * @return secure if verification succeeded, bogus on crypto failure,
591  *	unchecked on format errors and alloc failures.
592  */
593 enum sec_status
594 verify_canonrrset(sldns_buffer* buf, int algo, unsigned char* sigblock,
595 	unsigned int sigblock_len, unsigned char* key, unsigned int keylen,
596 	char** reason)
597 {
598 	const EVP_MD *digest_type;
599 	EVP_MD_CTX* ctx;
600 	int res, dofree = 0, docrypto_free = 0;
601 	EVP_PKEY *evp_key = NULL;
602 
603 #ifndef USE_DSA
604 	if((algo == LDNS_DSA || algo == LDNS_DSA_NSEC3) &&(fake_dsa||fake_sha1))
605 		return sec_status_secure;
606 #endif
607 #ifndef USE_SHA1
608 	if(fake_sha1 && (algo == LDNS_DSA || algo == LDNS_DSA_NSEC3 || algo == LDNS_RSASHA1 || algo == LDNS_RSASHA1_NSEC3))
609 		return sec_status_secure;
610 #endif
611 
612 	if(!setup_key_digest(algo, &evp_key, &digest_type, key, keylen)) {
613 		verbose(VERB_QUERY, "verify: failed to setup key");
614 		*reason = "use of key for crypto failed";
615 		EVP_PKEY_free(evp_key);
616 		return sec_status_bogus;
617 	}
618 #ifdef USE_DSA
619 	/* if it is a DSA signature in bind format, convert to DER format */
620 	if((algo == LDNS_DSA || algo == LDNS_DSA_NSEC3) &&
621 		sigblock_len == 1+2*SHA_DIGEST_LENGTH) {
622 		if(!setup_dsa_sig(&sigblock, &sigblock_len)) {
623 			verbose(VERB_QUERY, "verify: failed to setup DSA sig");
624 			*reason = "use of key for DSA crypto failed";
625 			EVP_PKEY_free(evp_key);
626 			return sec_status_bogus;
627 		}
628 		docrypto_free = 1;
629 	}
630 #endif
631 #if defined(USE_ECDSA) && defined(USE_DSA)
632 	else
633 #endif
634 #ifdef USE_ECDSA
635 	if(algo == LDNS_ECDSAP256SHA256 || algo == LDNS_ECDSAP384SHA384) {
636 		/* EVP uses ASN prefix on sig, which is not in the wire data */
637 		if(!setup_ecdsa_sig(&sigblock, &sigblock_len)) {
638 			verbose(VERB_QUERY, "verify: failed to setup ECDSA sig");
639 			*reason = "use of signature for ECDSA crypto failed";
640 			EVP_PKEY_free(evp_key);
641 			return sec_status_bogus;
642 		}
643 		dofree = 1;
644 	}
645 #endif /* USE_ECDSA */
646 
647 	/* do the signature cryptography work */
648 #ifdef HAVE_EVP_MD_CTX_NEW
649 	ctx = EVP_MD_CTX_new();
650 #else
651 	ctx = (EVP_MD_CTX*)malloc(sizeof(*ctx));
652 	if(ctx) EVP_MD_CTX_init(ctx);
653 #endif
654 	if(!ctx) {
655 		log_err("EVP_MD_CTX_new: malloc failure");
656 		EVP_PKEY_free(evp_key);
657 		if(dofree) free(sigblock);
658 		else if(docrypto_free) OPENSSL_free(sigblock);
659 		return sec_status_unchecked;
660 	}
661 #ifndef HAVE_EVP_DIGESTVERIFY
662 	if(EVP_DigestInit(ctx, digest_type) == 0) {
663 		verbose(VERB_QUERY, "verify: EVP_DigestInit failed");
664 #ifdef HAVE_EVP_MD_CTX_NEW
665 		EVP_MD_CTX_destroy(ctx);
666 #else
667 		EVP_MD_CTX_cleanup(ctx);
668 		free(ctx);
669 #endif
670 		EVP_PKEY_free(evp_key);
671 		if(dofree) free(sigblock);
672 		else if(docrypto_free) OPENSSL_free(sigblock);
673 		return sec_status_unchecked;
674 	}
675 	if(EVP_DigestUpdate(ctx, (unsigned char*)sldns_buffer_begin(buf),
676 		(unsigned int)sldns_buffer_limit(buf)) == 0) {
677 		verbose(VERB_QUERY, "verify: EVP_DigestUpdate failed");
678 #ifdef HAVE_EVP_MD_CTX_NEW
679 		EVP_MD_CTX_destroy(ctx);
680 #else
681 		EVP_MD_CTX_cleanup(ctx);
682 		free(ctx);
683 #endif
684 		EVP_PKEY_free(evp_key);
685 		if(dofree) free(sigblock);
686 		else if(docrypto_free) OPENSSL_free(sigblock);
687 		return sec_status_unchecked;
688 	}
689 
690 	res = EVP_VerifyFinal(ctx, sigblock, sigblock_len, evp_key);
691 #else /* HAVE_EVP_DIGESTVERIFY */
692 	if(EVP_DigestVerifyInit(ctx, NULL, digest_type, NULL, evp_key) == 0) {
693 		verbose(VERB_QUERY, "verify: EVP_DigestVerifyInit failed");
694 #ifdef HAVE_EVP_MD_CTX_NEW
695 		EVP_MD_CTX_destroy(ctx);
696 #else
697 		EVP_MD_CTX_cleanup(ctx);
698 		free(ctx);
699 #endif
700 		EVP_PKEY_free(evp_key);
701 		if(dofree) free(sigblock);
702 		else if(docrypto_free) OPENSSL_free(sigblock);
703 		return sec_status_unchecked;
704 	}
705 	res = EVP_DigestVerify(ctx, sigblock, sigblock_len,
706 		(unsigned char*)sldns_buffer_begin(buf),
707 		sldns_buffer_limit(buf));
708 #endif
709 #ifdef HAVE_EVP_MD_CTX_NEW
710 	EVP_MD_CTX_destroy(ctx);
711 #else
712 	EVP_MD_CTX_cleanup(ctx);
713 	free(ctx);
714 #endif
715 	EVP_PKEY_free(evp_key);
716 
717 	if(dofree) free(sigblock);
718 	else if(docrypto_free) OPENSSL_free(sigblock);
719 
720 	if(res == 1) {
721 		return sec_status_secure;
722 	} else if(res == 0) {
723 		verbose(VERB_QUERY, "verify: signature mismatch");
724 		*reason = "signature crypto failed";
725 		return sec_status_bogus;
726 	}
727 
728 	log_crypto_error("verify:", ERR_get_error());
729 	return sec_status_unchecked;
730 }
731 
732 /**************************************************/
733 #elif defined(HAVE_NSS)
734 /* libnss implementation */
735 /* nss3 */
736 #include "sechash.h"
737 #include "pk11pub.h"
738 #include "keyhi.h"
739 #include "secerr.h"
740 #include "cryptohi.h"
741 /* nspr4 */
742 #include "prerror.h"
743 
744 /* return size of digest if supported, or 0 otherwise */
745 size_t
746 nsec3_hash_algo_size_supported(int id)
747 {
748 	switch(id) {
749 	case NSEC3_HASH_SHA1:
750 		return SHA1_LENGTH;
751 	default:
752 		return 0;
753 	}
754 }
755 
756 /* perform nsec3 hash. return false on failure */
757 int
758 secalgo_nsec3_hash(int algo, unsigned char* buf, size_t len,
759         unsigned char* res)
760 {
761 	switch(algo) {
762 	case NSEC3_HASH_SHA1:
763 		(void)HASH_HashBuf(HASH_AlgSHA1, res, buf, (unsigned long)len);
764 		return 1;
765 	default:
766 		return 0;
767 	}
768 }
769 
770 void
771 secalgo_hash_sha256(unsigned char* buf, size_t len, unsigned char* res)
772 {
773 	(void)HASH_HashBuf(HASH_AlgSHA256, res, buf, (unsigned long)len);
774 }
775 
776 size_t
777 ds_digest_size_supported(int algo)
778 {
779 	/* uses libNSS */
780 	switch(algo) {
781 #ifdef USE_SHA1
782 		case LDNS_SHA1:
783 			return SHA1_LENGTH;
784 #endif
785 #ifdef USE_SHA2
786 		case LDNS_SHA256:
787 			return SHA256_LENGTH;
788 #endif
789 #ifdef USE_ECDSA
790 		case LDNS_SHA384:
791 			return SHA384_LENGTH;
792 #endif
793 		/* GOST not supported in NSS */
794 		case LDNS_HASH_GOST:
795 		default: break;
796 	}
797 	return 0;
798 }
799 
800 int
801 secalgo_ds_digest(int algo, unsigned char* buf, size_t len,
802 	unsigned char* res)
803 {
804 	/* uses libNSS */
805 	switch(algo) {
806 #ifdef USE_SHA1
807 		case LDNS_SHA1:
808 			return HASH_HashBuf(HASH_AlgSHA1, res, buf, len)
809 				== SECSuccess;
810 #endif
811 #if defined(USE_SHA2)
812 		case LDNS_SHA256:
813 			return HASH_HashBuf(HASH_AlgSHA256, res, buf, len)
814 				== SECSuccess;
815 #endif
816 #ifdef USE_ECDSA
817 		case LDNS_SHA384:
818 			return HASH_HashBuf(HASH_AlgSHA384, res, buf, len)
819 				== SECSuccess;
820 #endif
821 		case LDNS_HASH_GOST:
822 		default:
823 			verbose(VERB_QUERY, "unknown DS digest algorithm %d",
824 				algo);
825 			break;
826 	}
827 	return 0;
828 }
829 
830 int
831 dnskey_algo_id_is_supported(int id)
832 {
833 	/* uses libNSS */
834 	switch(id) {
835 	case LDNS_RSAMD5:
836 		/* RFC 6725 deprecates RSAMD5 */
837 		return 0;
838 #if defined(USE_SHA1) || defined(USE_SHA2)
839 #if defined(USE_DSA) && defined(USE_SHA1)
840 	case LDNS_DSA:
841 	case LDNS_DSA_NSEC3:
842 #endif
843 #ifdef USE_SHA1
844 	case LDNS_RSASHA1:
845 	case LDNS_RSASHA1_NSEC3:
846 #endif
847 #ifdef USE_SHA2
848 	case LDNS_RSASHA256:
849 #endif
850 #ifdef USE_SHA2
851 	case LDNS_RSASHA512:
852 #endif
853 		return 1;
854 #endif /* SHA1 or SHA2 */
855 
856 #ifdef USE_ECDSA
857 	case LDNS_ECDSAP256SHA256:
858 	case LDNS_ECDSAP384SHA384:
859 		return PK11_TokenExists(CKM_ECDSA);
860 #endif
861 	case LDNS_ECC_GOST:
862 	default:
863 		return 0;
864 	}
865 }
866 
867 /* return a new public key for NSS */
868 static SECKEYPublicKey* nss_key_create(KeyType ktype)
869 {
870 	SECKEYPublicKey* key;
871 	PLArenaPool* arena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE);
872 	if(!arena) {
873 		log_err("out of memory, PORT_NewArena failed");
874 		return NULL;
875 	}
876 	key = PORT_ArenaZNew(arena, SECKEYPublicKey);
877 	if(!key) {
878 		log_err("out of memory, PORT_ArenaZNew failed");
879 		PORT_FreeArena(arena, PR_FALSE);
880 		return NULL;
881 	}
882 	key->arena = arena;
883 	key->keyType = ktype;
884 	key->pkcs11Slot = NULL;
885 	key->pkcs11ID = CK_INVALID_HANDLE;
886 	return key;
887 }
888 
889 static SECKEYPublicKey* nss_buf2ecdsa(unsigned char* key, size_t len, int algo)
890 {
891 	SECKEYPublicKey* pk;
892 	SECItem pub = {siBuffer, NULL, 0};
893 	SECItem params = {siBuffer, NULL, 0};
894 	static unsigned char param256[] = {
895 		/* OBJECTIDENTIFIER 1.2.840.10045.3.1.7 (P-256)
896 		 * {iso(1) member-body(2) us(840) ansi-x962(10045) curves(3) prime(1) prime256v1(7)} */
897 		0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07
898 	};
899 	static unsigned char param384[] = {
900 		/* OBJECTIDENTIFIER 1.3.132.0.34 (P-384)
901 		 * {iso(1) identified-organization(3) certicom(132) curve(0) ansip384r1(34)} */
902 		0x06, 0x05, 0x2b, 0x81, 0x04, 0x00, 0x22
903 	};
904 	unsigned char buf[256+2]; /* sufficient for 2*384/8+1 */
905 
906 	/* check length, which uncompressed must be 2 bignums */
907 	if(algo == LDNS_ECDSAP256SHA256) {
908 		if(len != 2*256/8) return NULL;
909 		/* ECCurve_X9_62_PRIME_256V1 */
910 	} else if(algo == LDNS_ECDSAP384SHA384) {
911 		if(len != 2*384/8) return NULL;
912 		/* ECCurve_X9_62_PRIME_384R1 */
913 	} else    return NULL;
914 
915 	buf[0] = 0x04; /* POINT_FORM_UNCOMPRESSED */
916 	memmove(buf+1, key, len);
917 	pub.data = buf;
918 	pub.len = len+1;
919 	if(algo == LDNS_ECDSAP256SHA256) {
920 		params.data = param256;
921 		params.len = sizeof(param256);
922 	} else {
923 		params.data = param384;
924 		params.len = sizeof(param384);
925 	}
926 
927 	pk = nss_key_create(ecKey);
928 	if(!pk)
929 		return NULL;
930 	pk->u.ec.size = (len/2)*8;
931 	if(SECITEM_CopyItem(pk->arena, &pk->u.ec.publicValue, &pub)) {
932 		SECKEY_DestroyPublicKey(pk);
933 		return NULL;
934 	}
935 	if(SECITEM_CopyItem(pk->arena, &pk->u.ec.DEREncodedParams, &params)) {
936 		SECKEY_DestroyPublicKey(pk);
937 		return NULL;
938 	}
939 
940 	return pk;
941 }
942 
943 static SECKEYPublicKey* nss_buf2dsa(unsigned char* key, size_t len)
944 {
945 	SECKEYPublicKey* pk;
946 	uint8_t T;
947 	uint16_t length;
948 	uint16_t offset;
949 	SECItem Q = {siBuffer, NULL, 0};
950 	SECItem P = {siBuffer, NULL, 0};
951 	SECItem G = {siBuffer, NULL, 0};
952 	SECItem Y = {siBuffer, NULL, 0};
953 
954 	if(len == 0)
955 		return NULL;
956 	T = (uint8_t)key[0];
957 	length = (64 + T * 8);
958 	offset = 1;
959 
960 	if (T > 8) {
961 		return NULL;
962 	}
963 	if(len < (size_t)1 + SHA1_LENGTH + 3*length)
964 		return NULL;
965 
966 	Q.data = key+offset;
967 	Q.len = SHA1_LENGTH;
968 	offset += SHA1_LENGTH;
969 
970 	P.data = key+offset;
971 	P.len = length;
972 	offset += length;
973 
974 	G.data = key+offset;
975 	G.len = length;
976 	offset += length;
977 
978 	Y.data = key+offset;
979 	Y.len = length;
980 	offset += length;
981 
982 	pk = nss_key_create(dsaKey);
983 	if(!pk)
984 		return NULL;
985 	if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.params.prime, &P)) {
986 		SECKEY_DestroyPublicKey(pk);
987 		return NULL;
988 	}
989 	if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.params.subPrime, &Q)) {
990 		SECKEY_DestroyPublicKey(pk);
991 		return NULL;
992 	}
993 	if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.params.base, &G)) {
994 		SECKEY_DestroyPublicKey(pk);
995 		return NULL;
996 	}
997 	if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.publicValue, &Y)) {
998 		SECKEY_DestroyPublicKey(pk);
999 		return NULL;
1000 	}
1001 	return pk;
1002 }
1003 
1004 static SECKEYPublicKey* nss_buf2rsa(unsigned char* key, size_t len)
1005 {
1006 	SECKEYPublicKey* pk;
1007 	uint16_t exp;
1008 	uint16_t offset;
1009 	uint16_t int16;
1010 	SECItem modulus = {siBuffer, NULL, 0};
1011 	SECItem exponent = {siBuffer, NULL, 0};
1012 	if(len == 0)
1013 		return NULL;
1014 	if(key[0] == 0) {
1015 		if(len < 3)
1016 			return NULL;
1017 		/* the exponent is too large so it's places further */
1018 		memmove(&int16, key+1, 2);
1019 		exp = ntohs(int16);
1020 		offset = 3;
1021 	} else {
1022 		exp = key[0];
1023 		offset = 1;
1024 	}
1025 
1026 	/* key length at least one */
1027 	if(len < (size_t)offset + exp + 1)
1028 		return NULL;
1029 
1030 	exponent.data = key+offset;
1031 	exponent.len = exp;
1032 	offset += exp;
1033 	modulus.data = key+offset;
1034 	modulus.len = (len - offset);
1035 
1036 	pk = nss_key_create(rsaKey);
1037 	if(!pk)
1038 		return NULL;
1039 	if(SECITEM_CopyItem(pk->arena, &pk->u.rsa.modulus, &modulus)) {
1040 		SECKEY_DestroyPublicKey(pk);
1041 		return NULL;
1042 	}
1043 	if(SECITEM_CopyItem(pk->arena, &pk->u.rsa.publicExponent, &exponent)) {
1044 		SECKEY_DestroyPublicKey(pk);
1045 		return NULL;
1046 	}
1047 	return pk;
1048 }
1049 
1050 /**
1051  * Setup key and digest for verification. Adjust sig if necessary.
1052  *
1053  * @param algo: key algorithm
1054  * @param evp_key: EVP PKEY public key to create.
1055  * @param digest_type: digest type to use
1056  * @param key: key to setup for.
1057  * @param keylen: length of key.
1058  * @param prefix: if returned, the ASN prefix for the hashblob.
1059  * @param prefixlen: length of the prefix.
1060  * @return false on failure.
1061  */
1062 static int
1063 nss_setup_key_digest(int algo, SECKEYPublicKey** pubkey, HASH_HashType* htype,
1064 	unsigned char* key, size_t keylen, unsigned char** prefix,
1065 	size_t* prefixlen)
1066 {
1067 	/* uses libNSS */
1068 
1069 	/* hash prefix for md5, RFC2537 */
1070 	static unsigned char p_md5[] = {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a,
1071 	0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10};
1072 	/* hash prefix to prepend to hash output, from RFC3110 */
1073 	static unsigned char p_sha1[] = {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B,
1074 		0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14};
1075 	/* from RFC5702 */
1076 	static unsigned char p_sha256[] = {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60,
1077 	0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20};
1078 	static unsigned char p_sha512[] = {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60,
1079 	0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40};
1080 	/* from RFC6234 */
1081 	/* for future RSASHA384 ..
1082 	static unsigned char p_sha384[] = {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60,
1083 	0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30};
1084 	*/
1085 
1086 	switch(algo) {
1087 
1088 #if defined(USE_SHA1) || defined(USE_SHA2)
1089 #if defined(USE_DSA) && defined(USE_SHA1)
1090 		case LDNS_DSA:
1091 		case LDNS_DSA_NSEC3:
1092 			*pubkey = nss_buf2dsa(key, keylen);
1093 			if(!*pubkey) {
1094 				log_err("verify: malloc failure in crypto");
1095 				return 0;
1096 			}
1097 			*htype = HASH_AlgSHA1;
1098 			/* no prefix for DSA verification */
1099 			break;
1100 #endif
1101 #ifdef USE_SHA1
1102 		case LDNS_RSASHA1:
1103 		case LDNS_RSASHA1_NSEC3:
1104 #endif
1105 #ifdef USE_SHA2
1106 		case LDNS_RSASHA256:
1107 #endif
1108 #ifdef USE_SHA2
1109 		case LDNS_RSASHA512:
1110 #endif
1111 			*pubkey = nss_buf2rsa(key, keylen);
1112 			if(!*pubkey) {
1113 				log_err("verify: malloc failure in crypto");
1114 				return 0;
1115 			}
1116 			/* select SHA version */
1117 #ifdef USE_SHA2
1118 			if(algo == LDNS_RSASHA256) {
1119 				*htype = HASH_AlgSHA256;
1120 				*prefix = p_sha256;
1121 				*prefixlen = sizeof(p_sha256);
1122 			} else
1123 #endif
1124 #ifdef USE_SHA2
1125 				if(algo == LDNS_RSASHA512) {
1126 				*htype = HASH_AlgSHA512;
1127 				*prefix = p_sha512;
1128 				*prefixlen = sizeof(p_sha512);
1129 			} else
1130 #endif
1131 #ifdef USE_SHA1
1132 			{
1133 				*htype = HASH_AlgSHA1;
1134 				*prefix = p_sha1;
1135 				*prefixlen = sizeof(p_sha1);
1136 			}
1137 #else
1138 			{
1139 				verbose(VERB_QUERY, "verify: no digest algo");
1140 				return 0;
1141 			}
1142 #endif
1143 
1144 			break;
1145 #endif /* SHA1 or SHA2 */
1146 
1147 		case LDNS_RSAMD5:
1148 			*pubkey = nss_buf2rsa(key, keylen);
1149 			if(!*pubkey) {
1150 				log_err("verify: malloc failure in crypto");
1151 				return 0;
1152 			}
1153 			*htype = HASH_AlgMD5;
1154 			*prefix = p_md5;
1155 			*prefixlen = sizeof(p_md5);
1156 
1157 			break;
1158 #ifdef USE_ECDSA
1159 		case LDNS_ECDSAP256SHA256:
1160 			*pubkey = nss_buf2ecdsa(key, keylen,
1161 				LDNS_ECDSAP256SHA256);
1162 			if(!*pubkey) {
1163 				log_err("verify: malloc failure in crypto");
1164 				return 0;
1165 			}
1166 			*htype = HASH_AlgSHA256;
1167 			/* no prefix for DSA verification */
1168 			break;
1169 		case LDNS_ECDSAP384SHA384:
1170 			*pubkey = nss_buf2ecdsa(key, keylen,
1171 				LDNS_ECDSAP384SHA384);
1172 			if(!*pubkey) {
1173 				log_err("verify: malloc failure in crypto");
1174 				return 0;
1175 			}
1176 			*htype = HASH_AlgSHA384;
1177 			/* no prefix for DSA verification */
1178 			break;
1179 #endif /* USE_ECDSA */
1180 		case LDNS_ECC_GOST:
1181 		default:
1182 			verbose(VERB_QUERY, "verify: unknown algorithm %d",
1183 				algo);
1184 			return 0;
1185 	}
1186 	return 1;
1187 }
1188 
1189 /**
1190  * Check a canonical sig+rrset and signature against a dnskey
1191  * @param buf: buffer with data to verify, the first rrsig part and the
1192  *	canonicalized rrset.
1193  * @param algo: DNSKEY algorithm.
1194  * @param sigblock: signature rdata field from RRSIG
1195  * @param sigblock_len: length of sigblock data.
1196  * @param key: public key data from DNSKEY RR.
1197  * @param keylen: length of keydata.
1198  * @param reason: bogus reason in more detail.
1199  * @return secure if verification succeeded, bogus on crypto failure,
1200  *	unchecked on format errors and alloc failures.
1201  */
1202 enum sec_status
1203 verify_canonrrset(sldns_buffer* buf, int algo, unsigned char* sigblock,
1204 	unsigned int sigblock_len, unsigned char* key, unsigned int keylen,
1205 	char** reason)
1206 {
1207 	/* uses libNSS */
1208 	/* large enough for the different hashes */
1209 	unsigned char hash[HASH_LENGTH_MAX];
1210 	unsigned char hash2[HASH_LENGTH_MAX*2];
1211 	HASH_HashType htype = 0;
1212 	SECKEYPublicKey* pubkey = NULL;
1213 	SECItem secsig = {siBuffer, sigblock, sigblock_len};
1214 	SECItem sechash = {siBuffer, hash, 0};
1215 	SECStatus res;
1216 	unsigned char* prefix = NULL; /* prefix for hash, RFC3110, RFC5702 */
1217 	size_t prefixlen = 0;
1218 	int err;
1219 
1220 	if(!nss_setup_key_digest(algo, &pubkey, &htype, key, keylen,
1221 		&prefix, &prefixlen)) {
1222 		verbose(VERB_QUERY, "verify: failed to setup key");
1223 		*reason = "use of key for crypto failed";
1224 		SECKEY_DestroyPublicKey(pubkey);
1225 		return sec_status_bogus;
1226 	}
1227 
1228 #if defined(USE_DSA) && defined(USE_SHA1)
1229 	/* need to convert DSA, ECDSA signatures? */
1230 	if((algo == LDNS_DSA || algo == LDNS_DSA_NSEC3)) {
1231 		if(sigblock_len == 1+2*SHA1_LENGTH) {
1232 			secsig.data ++;
1233 			secsig.len --;
1234 		} else {
1235 			SECItem* p = DSAU_DecodeDerSig(&secsig);
1236 			if(!p) {
1237 				verbose(VERB_QUERY, "verify: failed DER decode");
1238 				*reason = "signature DER decode failed";
1239 				SECKEY_DestroyPublicKey(pubkey);
1240 				return sec_status_bogus;
1241 			}
1242 			if(SECITEM_CopyItem(pubkey->arena, &secsig, p)) {
1243 				log_err("alloc failure in DER decode");
1244 				SECKEY_DestroyPublicKey(pubkey);
1245 				SECITEM_FreeItem(p, PR_TRUE);
1246 				return sec_status_unchecked;
1247 			}
1248 			SECITEM_FreeItem(p, PR_TRUE);
1249 		}
1250 	}
1251 #endif /* USE_DSA */
1252 
1253 	/* do the signature cryptography work */
1254 	/* hash the data */
1255 	sechash.len = HASH_ResultLen(htype);
1256 	if(sechash.len > sizeof(hash)) {
1257 		verbose(VERB_QUERY, "verify: hash too large for buffer");
1258 		SECKEY_DestroyPublicKey(pubkey);
1259 		return sec_status_unchecked;
1260 	}
1261 	if(HASH_HashBuf(htype, hash, (unsigned char*)sldns_buffer_begin(buf),
1262 		(unsigned int)sldns_buffer_limit(buf)) != SECSuccess) {
1263 		verbose(VERB_QUERY, "verify: HASH_HashBuf failed");
1264 		SECKEY_DestroyPublicKey(pubkey);
1265 		return sec_status_unchecked;
1266 	}
1267 	if(prefix) {
1268 		int hashlen = sechash.len;
1269 		if(prefixlen+hashlen > sizeof(hash2)) {
1270 			verbose(VERB_QUERY, "verify: hashprefix too large");
1271 			SECKEY_DestroyPublicKey(pubkey);
1272 			return sec_status_unchecked;
1273 		}
1274 		sechash.data = hash2;
1275 		sechash.len = prefixlen+hashlen;
1276 		memcpy(sechash.data, prefix, prefixlen);
1277 		memmove(sechash.data+prefixlen, hash, hashlen);
1278 	}
1279 
1280 	/* verify the signature */
1281 	res = PK11_Verify(pubkey, &secsig, &sechash, NULL /*wincx*/);
1282 	SECKEY_DestroyPublicKey(pubkey);
1283 
1284 	if(res == SECSuccess) {
1285 		return sec_status_secure;
1286 	}
1287 	err = PORT_GetError();
1288 	if(err != SEC_ERROR_BAD_SIGNATURE) {
1289 		/* failed to verify */
1290 		verbose(VERB_QUERY, "verify: PK11_Verify failed: %s",
1291 			PORT_ErrorToString(err));
1292 		/* if it is not supported, like ECC is removed, we get,
1293 		 * SEC_ERROR_NO_MODULE */
1294 		if(err == SEC_ERROR_NO_MODULE)
1295 			return sec_status_unchecked;
1296 		/* but other errors are commonly returned
1297 		 * for a bad signature from NSS.  Thus we return bogus,
1298 		 * not unchecked */
1299 		*reason = "signature crypto failed";
1300 		return sec_status_bogus;
1301 	}
1302 	verbose(VERB_QUERY, "verify: signature mismatch: %s",
1303 		PORT_ErrorToString(err));
1304 	*reason = "signature crypto failed";
1305 	return sec_status_bogus;
1306 }
1307 
1308 #elif defined(HAVE_NETTLE)
1309 
1310 #include "sha.h"
1311 #include "bignum.h"
1312 #include "macros.h"
1313 #include "rsa.h"
1314 #include "dsa.h"
1315 #ifdef HAVE_NETTLE_DSA_COMPAT_H
1316 #include "dsa-compat.h"
1317 #endif
1318 #include "asn1.h"
1319 #ifdef USE_ECDSA
1320 #include "ecdsa.h"
1321 #include "ecc-curve.h"
1322 #endif
1323 #ifdef HAVE_NETTLE_EDDSA_H
1324 #include "eddsa.h"
1325 #endif
1326 
1327 static int
1328 _digest_nettle(int algo, uint8_t* buf, size_t len,
1329 	unsigned char* res)
1330 {
1331 	switch(algo) {
1332 		case SHA1_DIGEST_SIZE:
1333 		{
1334 			struct sha1_ctx ctx;
1335 			sha1_init(&ctx);
1336 			sha1_update(&ctx, len, buf);
1337 			sha1_digest(&ctx, SHA1_DIGEST_SIZE, res);
1338 			return 1;
1339 		}
1340 		case SHA256_DIGEST_SIZE:
1341 		{
1342 			struct sha256_ctx ctx;
1343 			sha256_init(&ctx);
1344 			sha256_update(&ctx, len, buf);
1345 			sha256_digest(&ctx, SHA256_DIGEST_SIZE, res);
1346 			return 1;
1347 		}
1348 		case SHA384_DIGEST_SIZE:
1349 		{
1350 			struct sha384_ctx ctx;
1351 			sha384_init(&ctx);
1352 			sha384_update(&ctx, len, buf);
1353 			sha384_digest(&ctx, SHA384_DIGEST_SIZE, res);
1354 			return 1;
1355 		}
1356 		case SHA512_DIGEST_SIZE:
1357 		{
1358 			struct sha512_ctx ctx;
1359 			sha512_init(&ctx);
1360 			sha512_update(&ctx, len, buf);
1361 			sha512_digest(&ctx, SHA512_DIGEST_SIZE, res);
1362 			return 1;
1363 		}
1364 		default:
1365 			break;
1366 	}
1367 	return 0;
1368 }
1369 
1370 /* return size of digest if supported, or 0 otherwise */
1371 size_t
1372 nsec3_hash_algo_size_supported(int id)
1373 {
1374 	switch(id) {
1375 	case NSEC3_HASH_SHA1:
1376 		return SHA1_DIGEST_SIZE;
1377 	default:
1378 		return 0;
1379 	}
1380 }
1381 
1382 /* perform nsec3 hash. return false on failure */
1383 int
1384 secalgo_nsec3_hash(int algo, unsigned char* buf, size_t len,
1385         unsigned char* res)
1386 {
1387 	switch(algo) {
1388 	case NSEC3_HASH_SHA1:
1389 		return _digest_nettle(SHA1_DIGEST_SIZE, (uint8_t*)buf, len,
1390 			res);
1391 	default:
1392 		return 0;
1393 	}
1394 }
1395 
1396 void
1397 secalgo_hash_sha256(unsigned char* buf, size_t len, unsigned char* res)
1398 {
1399 	_digest_nettle(SHA256_DIGEST_SIZE, (uint8_t*)buf, len, res);
1400 }
1401 
1402 /**
1403  * Return size of DS digest according to its hash algorithm.
1404  * @param algo: DS digest algo.
1405  * @return size in bytes of digest, or 0 if not supported.
1406  */
1407 size_t
1408 ds_digest_size_supported(int algo)
1409 {
1410 	switch(algo) {
1411 		case LDNS_SHA1:
1412 #ifdef USE_SHA1
1413 			return SHA1_DIGEST_SIZE;
1414 #else
1415 			if(fake_sha1) return 20;
1416 			return 0;
1417 #endif
1418 #ifdef USE_SHA2
1419 		case LDNS_SHA256:
1420 			return SHA256_DIGEST_SIZE;
1421 #endif
1422 #ifdef USE_ECDSA
1423 		case LDNS_SHA384:
1424 			return SHA384_DIGEST_SIZE;
1425 #endif
1426 		/* GOST not supported */
1427 		case LDNS_HASH_GOST:
1428 		default:
1429 			break;
1430 	}
1431 	return 0;
1432 }
1433 
1434 int
1435 secalgo_ds_digest(int algo, unsigned char* buf, size_t len,
1436 	unsigned char* res)
1437 {
1438 	switch(algo) {
1439 #ifdef USE_SHA1
1440 		case LDNS_SHA1:
1441 			return _digest_nettle(SHA1_DIGEST_SIZE, buf, len, res);
1442 #endif
1443 #if defined(USE_SHA2)
1444 		case LDNS_SHA256:
1445 			return _digest_nettle(SHA256_DIGEST_SIZE, buf, len, res);
1446 #endif
1447 #ifdef USE_ECDSA
1448 		case LDNS_SHA384:
1449 			return _digest_nettle(SHA384_DIGEST_SIZE, buf, len, res);
1450 
1451 #endif
1452 		case LDNS_HASH_GOST:
1453 		default:
1454 			verbose(VERB_QUERY, "unknown DS digest algorithm %d",
1455 				algo);
1456 			break;
1457 	}
1458 	return 0;
1459 }
1460 
1461 int
1462 dnskey_algo_id_is_supported(int id)
1463 {
1464 	/* uses libnettle */
1465 	switch(id) {
1466 #if defined(USE_DSA) && defined(USE_SHA1)
1467 	case LDNS_DSA:
1468 	case LDNS_DSA_NSEC3:
1469 #endif
1470 #ifdef USE_SHA1
1471 	case LDNS_RSASHA1:
1472 	case LDNS_RSASHA1_NSEC3:
1473 #endif
1474 #ifdef USE_SHA2
1475 	case LDNS_RSASHA256:
1476 	case LDNS_RSASHA512:
1477 #endif
1478 #ifdef USE_ECDSA
1479 	case LDNS_ECDSAP256SHA256:
1480 	case LDNS_ECDSAP384SHA384:
1481 #endif
1482 		return 1;
1483 #ifdef USE_ED25519
1484 	case LDNS_ED25519:
1485 		return 1;
1486 #endif
1487 	case LDNS_RSAMD5: /* RFC 6725 deprecates RSAMD5 */
1488 	case LDNS_ECC_GOST:
1489 	default:
1490 		return 0;
1491 	}
1492 }
1493 
1494 #if defined(USE_DSA) && defined(USE_SHA1)
1495 static char *
1496 _verify_nettle_dsa(sldns_buffer* buf, unsigned char* sigblock,
1497 	unsigned int sigblock_len, unsigned char* key, unsigned int keylen)
1498 {
1499 	uint8_t digest[SHA1_DIGEST_SIZE];
1500 	uint8_t key_t_value;
1501 	int res = 0;
1502 	size_t offset;
1503 	struct dsa_public_key pubkey;
1504 	struct dsa_signature signature;
1505 	unsigned int expected_len;
1506 
1507 	/* Extract DSA signature from the record */
1508 	nettle_dsa_signature_init(&signature);
1509 	/* Signature length: 41 bytes - RFC 2536 sec. 3 */
1510 	if(sigblock_len == 41) {
1511 		if(key[0] != sigblock[0])
1512 			return "invalid T value in DSA signature or pubkey";
1513 		nettle_mpz_set_str_256_u(signature.r, 20, sigblock+1);
1514 		nettle_mpz_set_str_256_u(signature.s, 20, sigblock+1+20);
1515 	} else {
1516 		/* DER encoded, decode the ASN1 notated R and S bignums */
1517 		/* SEQUENCE { r INTEGER, s INTEGER } */
1518 		struct asn1_der_iterator i, seq;
1519 		if(asn1_der_iterator_first(&i, sigblock_len,
1520 			(uint8_t*)sigblock) != ASN1_ITERATOR_CONSTRUCTED
1521 			|| i.type != ASN1_SEQUENCE)
1522 			return "malformed DER encoded DSA signature";
1523 		/* decode this element of i using the seq iterator */
1524 		if(asn1_der_decode_constructed(&i, &seq) !=
1525 			ASN1_ITERATOR_PRIMITIVE || seq.type != ASN1_INTEGER)
1526 			return "malformed DER encoded DSA signature";
1527 		if(!asn1_der_get_bignum(&seq, signature.r, 20*8))
1528 			return "malformed DER encoded DSA signature";
1529 		if(asn1_der_iterator_next(&seq) != ASN1_ITERATOR_PRIMITIVE
1530 			|| seq.type != ASN1_INTEGER)
1531 			return "malformed DER encoded DSA signature";
1532 		if(!asn1_der_get_bignum(&seq, signature.s, 20*8))
1533 			return "malformed DER encoded DSA signature";
1534 		if(asn1_der_iterator_next(&i) != ASN1_ITERATOR_END)
1535 			return "malformed DER encoded DSA signature";
1536 	}
1537 
1538 	/* Validate T values constraints - RFC 2536 sec. 2 & sec. 3 */
1539 	key_t_value = key[0];
1540 	if (key_t_value > 8) {
1541 		return "invalid T value in DSA pubkey";
1542 	}
1543 
1544 	/* Pubkey minimum length: 21 bytes - RFC 2536 sec. 2 */
1545 	if (keylen < 21) {
1546 		return "DSA pubkey too short";
1547 	}
1548 
1549 	expected_len =   1 +		/* T */
1550 		        20 +		/* Q */
1551 		       (64 + key_t_value*8) +	/* P */
1552 		       (64 + key_t_value*8) +	/* G */
1553 		       (64 + key_t_value*8);	/* Y */
1554 	if (keylen != expected_len ) {
1555 		return "invalid DSA pubkey length";
1556 	}
1557 
1558 	/* Extract DSA pubkey from the record */
1559 	nettle_dsa_public_key_init(&pubkey);
1560 	offset = 1;
1561 	nettle_mpz_set_str_256_u(pubkey.q, 20, key+offset);
1562 	offset += 20;
1563 	nettle_mpz_set_str_256_u(pubkey.p, (64 + key_t_value*8), key+offset);
1564 	offset += (64 + key_t_value*8);
1565 	nettle_mpz_set_str_256_u(pubkey.g, (64 + key_t_value*8), key+offset);
1566 	offset += (64 + key_t_value*8);
1567 	nettle_mpz_set_str_256_u(pubkey.y, (64 + key_t_value*8), key+offset);
1568 
1569 	/* Digest content of "buf" and verify its DSA signature in "sigblock"*/
1570 	res = _digest_nettle(SHA1_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
1571 						(unsigned int)sldns_buffer_limit(buf), (unsigned char*)digest);
1572 	res &= dsa_sha1_verify_digest(&pubkey, digest, &signature);
1573 
1574 	/* Clear and return */
1575 	nettle_dsa_signature_clear(&signature);
1576 	nettle_dsa_public_key_clear(&pubkey);
1577 	if (!res)
1578 		return "DSA signature verification failed";
1579 	else
1580 		return NULL;
1581 }
1582 #endif /* USE_DSA */
1583 
1584 static char *
1585 _verify_nettle_rsa(sldns_buffer* buf, unsigned int digest_size, char* sigblock,
1586 	unsigned int sigblock_len, uint8_t* key, unsigned int keylen)
1587 {
1588 	uint16_t exp_len = 0;
1589 	size_t exp_offset = 0, mod_offset = 0;
1590 	struct rsa_public_key pubkey;
1591 	mpz_t signature;
1592 	int res = 0;
1593 
1594 	/* RSA pubkey parsing as per RFC 3110 sec. 2 */
1595 	if( keylen <= 1) {
1596 		return "null RSA key";
1597 	}
1598 	if (key[0] != 0) {
1599 		/* 1-byte length */
1600 		exp_len = key[0];
1601 		exp_offset = 1;
1602 	} else {
1603 		/* 1-byte NUL + 2-bytes exponent length */
1604 		if (keylen < 3) {
1605 			return "incorrect RSA key length";
1606 		}
1607 		exp_len = READ_UINT16(key+1);
1608 		if (exp_len == 0)
1609 			return "null RSA exponent length";
1610 		exp_offset = 3;
1611 	}
1612 	/* Check that we are not over-running input length */
1613 	if (keylen < exp_offset + exp_len + 1) {
1614 		return "RSA key content shorter than expected";
1615 	}
1616 	mod_offset = exp_offset + exp_len;
1617 	nettle_rsa_public_key_init(&pubkey);
1618 	pubkey.size = keylen - mod_offset;
1619 	nettle_mpz_set_str_256_u(pubkey.e, exp_len, &key[exp_offset]);
1620 	nettle_mpz_set_str_256_u(pubkey.n, pubkey.size, &key[mod_offset]);
1621 
1622 	/* Digest content of "buf" and verify its RSA signature in "sigblock"*/
1623 	nettle_mpz_init_set_str_256_u(signature, sigblock_len, (uint8_t*)sigblock);
1624 	switch (digest_size) {
1625 		case SHA1_DIGEST_SIZE:
1626 		{
1627 			uint8_t digest[SHA1_DIGEST_SIZE];
1628 			res = _digest_nettle(SHA1_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
1629 						(unsigned int)sldns_buffer_limit(buf), (unsigned char*)digest);
1630 			res &= rsa_sha1_verify_digest(&pubkey, digest, signature);
1631 			break;
1632 		}
1633 		case SHA256_DIGEST_SIZE:
1634 		{
1635 			uint8_t digest[SHA256_DIGEST_SIZE];
1636 			res = _digest_nettle(SHA256_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
1637 						(unsigned int)sldns_buffer_limit(buf), (unsigned char*)digest);
1638 			res &= rsa_sha256_verify_digest(&pubkey, digest, signature);
1639 			break;
1640 		}
1641 		case SHA512_DIGEST_SIZE:
1642 		{
1643 			uint8_t digest[SHA512_DIGEST_SIZE];
1644 			res = _digest_nettle(SHA512_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
1645 						(unsigned int)sldns_buffer_limit(buf), (unsigned char*)digest);
1646 			res &= rsa_sha512_verify_digest(&pubkey, digest, signature);
1647 			break;
1648 		}
1649 		default:
1650 			break;
1651 	}
1652 
1653 	/* Clear and return */
1654 	nettle_rsa_public_key_clear(&pubkey);
1655 	mpz_clear(signature);
1656 	if (!res) {
1657 		return "RSA signature verification failed";
1658 	} else {
1659 		return NULL;
1660 	}
1661 }
1662 
1663 #ifdef USE_ECDSA
1664 static char *
1665 _verify_nettle_ecdsa(sldns_buffer* buf, unsigned int digest_size, unsigned char* sigblock,
1666 	unsigned int sigblock_len, unsigned char* key, unsigned int keylen)
1667 {
1668 	int res = 0;
1669 	struct ecc_point pubkey;
1670 	struct dsa_signature signature;
1671 
1672 	/* Always matched strength, as per RFC 6605 sec. 1 */
1673 	if (sigblock_len != 2*digest_size || keylen != 2*digest_size) {
1674 		return "wrong ECDSA signature length";
1675 	}
1676 
1677 	/* Parse ECDSA signature as per RFC 6605 sec. 4 */
1678 	nettle_dsa_signature_init(&signature);
1679 	switch (digest_size) {
1680 		case SHA256_DIGEST_SIZE:
1681 		{
1682 			uint8_t digest[SHA256_DIGEST_SIZE];
1683 			mpz_t x, y;
1684 			nettle_ecc_point_init(&pubkey, &nettle_secp_256r1);
1685 			nettle_mpz_init_set_str_256_u(x, SHA256_DIGEST_SIZE, key);
1686 			nettle_mpz_init_set_str_256_u(y, SHA256_DIGEST_SIZE, key+SHA256_DIGEST_SIZE);
1687 			nettle_mpz_set_str_256_u(signature.r, SHA256_DIGEST_SIZE, sigblock);
1688 			nettle_mpz_set_str_256_u(signature.s, SHA256_DIGEST_SIZE, sigblock+SHA256_DIGEST_SIZE);
1689 			res = _digest_nettle(SHA256_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
1690 						(unsigned int)sldns_buffer_limit(buf), (unsigned char*)digest);
1691 			res &= nettle_ecc_point_set(&pubkey, x, y);
1692 			res &= nettle_ecdsa_verify (&pubkey, SHA256_DIGEST_SIZE, digest, &signature);
1693 			mpz_clear(x);
1694 			mpz_clear(y);
1695 			break;
1696 		}
1697 		case SHA384_DIGEST_SIZE:
1698 		{
1699 			uint8_t digest[SHA384_DIGEST_SIZE];
1700 			mpz_t x, y;
1701 			nettle_ecc_point_init(&pubkey, &nettle_secp_384r1);
1702 			nettle_mpz_init_set_str_256_u(x, SHA384_DIGEST_SIZE, key);
1703 			nettle_mpz_init_set_str_256_u(y, SHA384_DIGEST_SIZE, key+SHA384_DIGEST_SIZE);
1704 			nettle_mpz_set_str_256_u(signature.r, SHA384_DIGEST_SIZE, sigblock);
1705 			nettle_mpz_set_str_256_u(signature.s, SHA384_DIGEST_SIZE, sigblock+SHA384_DIGEST_SIZE);
1706 			res = _digest_nettle(SHA384_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
1707 						(unsigned int)sldns_buffer_limit(buf), (unsigned char*)digest);
1708 			res &= nettle_ecc_point_set(&pubkey, x, y);
1709 			res &= nettle_ecdsa_verify (&pubkey, SHA384_DIGEST_SIZE, digest, &signature);
1710 			mpz_clear(x);
1711 			mpz_clear(y);
1712 			nettle_ecc_point_clear(&pubkey);
1713 			break;
1714 		}
1715 		default:
1716 			return "unknown ECDSA algorithm";
1717 	}
1718 
1719 	/* Clear and return */
1720 	nettle_dsa_signature_clear(&signature);
1721 	if (!res)
1722 		return "ECDSA signature verification failed";
1723 	else
1724 		return NULL;
1725 }
1726 #endif
1727 
1728 #ifdef USE_ED25519
1729 static char *
1730 _verify_nettle_ed25519(sldns_buffer* buf, unsigned char* sigblock,
1731 	unsigned int sigblock_len, unsigned char* key, unsigned int keylen)
1732 {
1733 	int res = 0;
1734 
1735 	if(sigblock_len != ED25519_SIGNATURE_SIZE) {
1736 		return "wrong ED25519 signature length";
1737 	}
1738 	if(keylen != ED25519_KEY_SIZE) {
1739 		return "wrong ED25519 key length";
1740 	}
1741 
1742 	res = ed25519_sha512_verify((uint8_t*)key, sldns_buffer_limit(buf),
1743 		sldns_buffer_begin(buf), (uint8_t*)sigblock);
1744 
1745 	if (!res)
1746 		return "ED25519 signature verification failed";
1747 	else
1748 		return NULL;
1749 }
1750 #endif
1751 
1752 /**
1753  * Check a canonical sig+rrset and signature against a dnskey
1754  * @param buf: buffer with data to verify, the first rrsig part and the
1755  *	canonicalized rrset.
1756  * @param algo: DNSKEY algorithm.
1757  * @param sigblock: signature rdata field from RRSIG
1758  * @param sigblock_len: length of sigblock data.
1759  * @param key: public key data from DNSKEY RR.
1760  * @param keylen: length of keydata.
1761  * @param reason: bogus reason in more detail.
1762  * @return secure if verification succeeded, bogus on crypto failure,
1763  *	unchecked on format errors and alloc failures.
1764  */
1765 enum sec_status
1766 verify_canonrrset(sldns_buffer* buf, int algo, unsigned char* sigblock,
1767 	unsigned int sigblock_len, unsigned char* key, unsigned int keylen,
1768 	char** reason)
1769 {
1770 	unsigned int digest_size = 0;
1771 
1772 	if (sigblock_len == 0 || keylen == 0) {
1773 		*reason = "null signature";
1774 		return sec_status_bogus;
1775 	}
1776 
1777 	switch(algo) {
1778 #if defined(USE_DSA) && defined(USE_SHA1)
1779 	case LDNS_DSA:
1780 	case LDNS_DSA_NSEC3:
1781 		*reason = _verify_nettle_dsa(buf, sigblock, sigblock_len, key, keylen);
1782 		if (*reason != NULL)
1783 			return sec_status_bogus;
1784 		else
1785 			return sec_status_secure;
1786 #endif /* USE_DSA */
1787 
1788 #ifdef USE_SHA1
1789 	case LDNS_RSASHA1:
1790 	case LDNS_RSASHA1_NSEC3:
1791 		digest_size = (digest_size ? digest_size : SHA1_DIGEST_SIZE);
1792 #endif
1793 		/* double fallthrough annotation to please gcc parser */
1794 		/* fallthrough */
1795 #ifdef USE_SHA2
1796 		/* fallthrough */
1797 	case LDNS_RSASHA256:
1798 		digest_size = (digest_size ? digest_size : SHA256_DIGEST_SIZE);
1799 		/* fallthrough */
1800 	case LDNS_RSASHA512:
1801 		digest_size = (digest_size ? digest_size : SHA512_DIGEST_SIZE);
1802 
1803 #endif
1804 		*reason = _verify_nettle_rsa(buf, digest_size, (char*)sigblock,
1805 						sigblock_len, key, keylen);
1806 		if (*reason != NULL)
1807 			return sec_status_bogus;
1808 		else
1809 			return sec_status_secure;
1810 
1811 #ifdef USE_ECDSA
1812 	case LDNS_ECDSAP256SHA256:
1813 		digest_size = (digest_size ? digest_size : SHA256_DIGEST_SIZE);
1814 		/* fallthrough */
1815 	case LDNS_ECDSAP384SHA384:
1816 		digest_size = (digest_size ? digest_size : SHA384_DIGEST_SIZE);
1817 		*reason = _verify_nettle_ecdsa(buf, digest_size, sigblock,
1818 						sigblock_len, key, keylen);
1819 		if (*reason != NULL)
1820 			return sec_status_bogus;
1821 		else
1822 			return sec_status_secure;
1823 #endif
1824 #ifdef USE_ED25519
1825 	case LDNS_ED25519:
1826 		*reason = _verify_nettle_ed25519(buf, sigblock, sigblock_len,
1827 			key, keylen);
1828 		if (*reason != NULL)
1829 			return sec_status_bogus;
1830 		else
1831 			return sec_status_secure;
1832 #endif
1833 	case LDNS_RSAMD5:
1834 	case LDNS_ECC_GOST:
1835 	default:
1836 		*reason = "unable to verify signature, unknown algorithm";
1837 		return sec_status_bogus;
1838 	}
1839 }
1840 
1841 #endif /* HAVE_SSL or HAVE_NSS or HAVE_NETTLE */
1842