1 /* 2 * services/mesh.c - deal with mesh of query states and handle events for that. 3 * 4 * Copyright (c) 2007, NLnet Labs. All rights reserved. 5 * 6 * This software is open source. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * Redistributions of source code must retain the above copyright notice, 13 * this list of conditions and the following disclaimer. 14 * 15 * Redistributions in binary form must reproduce the above copyright notice, 16 * this list of conditions and the following disclaimer in the documentation 17 * and/or other materials provided with the distribution. 18 * 19 * Neither the name of the NLNET LABS nor the names of its contributors may 20 * be used to endorse or promote products derived from this software without 21 * specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 /** 37 * \file 38 * 39 * This file contains functions to assist in dealing with a mesh of 40 * query states. This mesh is supposed to be thread-specific. 41 * It consists of query states (per qname, qtype, qclass) and connections 42 * between query states and the super and subquery states, and replies to 43 * send back to clients. 44 */ 45 #include "config.h" 46 #include "services/mesh.h" 47 #include "services/outbound_list.h" 48 #include "services/cache/dns.h" 49 #include "util/log.h" 50 #include "util/net_help.h" 51 #include "util/module.h" 52 #include "util/regional.h" 53 #include "util/data/msgencode.h" 54 #include "util/timehist.h" 55 #include "util/fptr_wlist.h" 56 #include "util/alloc.h" 57 #include "util/config_file.h" 58 #include "sldns/sbuffer.h" 59 #include "sldns/wire2str.h" 60 #include "services/localzone.h" 61 #include "util/data/dname.h" 62 #include "respip/respip.h" 63 64 /** subtract timers and the values do not overflow or become negative */ 65 static void 66 timeval_subtract(struct timeval* d, const struct timeval* end, const struct timeval* start) 67 { 68 #ifndef S_SPLINT_S 69 time_t end_usec = end->tv_usec; 70 d->tv_sec = end->tv_sec - start->tv_sec; 71 if(end_usec < start->tv_usec) { 72 end_usec += 1000000; 73 d->tv_sec--; 74 } 75 d->tv_usec = end_usec - start->tv_usec; 76 #endif 77 } 78 79 /** add timers and the values do not overflow or become negative */ 80 static void 81 timeval_add(struct timeval* d, const struct timeval* add) 82 { 83 #ifndef S_SPLINT_S 84 d->tv_sec += add->tv_sec; 85 d->tv_usec += add->tv_usec; 86 if(d->tv_usec > 1000000 ) { 87 d->tv_usec -= 1000000; 88 d->tv_sec++; 89 } 90 #endif 91 } 92 93 /** divide sum of timers to get average */ 94 static void 95 timeval_divide(struct timeval* avg, const struct timeval* sum, size_t d) 96 { 97 #ifndef S_SPLINT_S 98 size_t leftover; 99 if(d == 0) { 100 avg->tv_sec = 0; 101 avg->tv_usec = 0; 102 return; 103 } 104 avg->tv_sec = sum->tv_sec / d; 105 avg->tv_usec = sum->tv_usec / d; 106 /* handle fraction from seconds divide */ 107 leftover = sum->tv_sec - avg->tv_sec*d; 108 avg->tv_usec += (leftover*1000000)/d; 109 #endif 110 } 111 112 /** histogram compare of time values */ 113 static int 114 timeval_smaller(const struct timeval* x, const struct timeval* y) 115 { 116 #ifndef S_SPLINT_S 117 if(x->tv_sec < y->tv_sec) 118 return 1; 119 else if(x->tv_sec == y->tv_sec) { 120 if(x->tv_usec <= y->tv_usec) 121 return 1; 122 else return 0; 123 } 124 else return 0; 125 #endif 126 } 127 128 /* 129 * Compare two response-ip client info entries for the purpose of mesh state 130 * compare. It returns 0 if ci_a and ci_b are considered equal; otherwise 131 * 1 or -1 (they mean 'ci_a is larger/smaller than ci_b', respectively, but 132 * in practice it should be only used to mean they are different). 133 * We cannot share the mesh state for two queries if different response-ip 134 * actions can apply in the end, even if those queries are otherwise identical. 135 * For this purpose we compare tag lists and tag action lists; they should be 136 * identical to share the same state. 137 * For tag data, we don't look into the data content, as it can be 138 * expensive; unless tag data are not defined for both or they point to the 139 * exact same data in memory (i.e., they come from the same ACL entry), we 140 * consider these data different. 141 * Likewise, if the client info is associated with views, we don't look into 142 * the views. They are considered different unless they are exactly the same 143 * even if the views only differ in the names. 144 */ 145 static int 146 client_info_compare(const struct respip_client_info* ci_a, 147 const struct respip_client_info* ci_b) 148 { 149 int cmp; 150 151 if(!ci_a && !ci_b) 152 return 0; 153 if(ci_a && !ci_b) 154 return -1; 155 if(!ci_a && ci_b) 156 return 1; 157 if(ci_a->taglen != ci_b->taglen) 158 return (ci_a->taglen < ci_b->taglen) ? -1 : 1; 159 cmp = memcmp(ci_a->taglist, ci_b->taglist, ci_a->taglen); 160 if(cmp != 0) 161 return cmp; 162 if(ci_a->tag_actions_size != ci_b->tag_actions_size) 163 return (ci_a->tag_actions_size < ci_b->tag_actions_size) ? 164 -1 : 1; 165 cmp = memcmp(ci_a->tag_actions, ci_b->tag_actions, 166 ci_a->tag_actions_size); 167 if(cmp != 0) 168 return cmp; 169 if(ci_a->tag_datas != ci_b->tag_datas) 170 return ci_a->tag_datas < ci_b->tag_datas ? -1 : 1; 171 if(ci_a->view != ci_b->view) 172 return ci_a->view < ci_b->view ? -1 : 1; 173 /* For the unbound daemon these should be non-NULL and identical, 174 * but we check that just in case. */ 175 if(ci_a->respip_set != ci_b->respip_set) 176 return ci_a->respip_set < ci_b->respip_set ? -1 : 1; 177 return 0; 178 } 179 180 int 181 mesh_state_compare(const void* ap, const void* bp) 182 { 183 struct mesh_state* a = (struct mesh_state*)ap; 184 struct mesh_state* b = (struct mesh_state*)bp; 185 int cmp; 186 187 if(a->unique < b->unique) 188 return -1; 189 if(a->unique > b->unique) 190 return 1; 191 192 if(a->s.is_priming && !b->s.is_priming) 193 return -1; 194 if(!a->s.is_priming && b->s.is_priming) 195 return 1; 196 197 if(a->s.is_valrec && !b->s.is_valrec) 198 return -1; 199 if(!a->s.is_valrec && b->s.is_valrec) 200 return 1; 201 202 if((a->s.query_flags&BIT_RD) && !(b->s.query_flags&BIT_RD)) 203 return -1; 204 if(!(a->s.query_flags&BIT_RD) && (b->s.query_flags&BIT_RD)) 205 return 1; 206 207 if((a->s.query_flags&BIT_CD) && !(b->s.query_flags&BIT_CD)) 208 return -1; 209 if(!(a->s.query_flags&BIT_CD) && (b->s.query_flags&BIT_CD)) 210 return 1; 211 212 cmp = query_info_compare(&a->s.qinfo, &b->s.qinfo); 213 if(cmp != 0) 214 return cmp; 215 return client_info_compare(a->s.client_info, b->s.client_info); 216 } 217 218 int 219 mesh_state_ref_compare(const void* ap, const void* bp) 220 { 221 struct mesh_state_ref* a = (struct mesh_state_ref*)ap; 222 struct mesh_state_ref* b = (struct mesh_state_ref*)bp; 223 return mesh_state_compare(a->s, b->s); 224 } 225 226 struct mesh_area* 227 mesh_create(struct module_stack* stack, struct module_env* env) 228 { 229 struct mesh_area* mesh = calloc(1, sizeof(struct mesh_area)); 230 if(!mesh) { 231 log_err("mesh area alloc: out of memory"); 232 return NULL; 233 } 234 mesh->histogram = timehist_setup(); 235 mesh->qbuf_bak = sldns_buffer_new(env->cfg->msg_buffer_size); 236 if(!mesh->histogram || !mesh->qbuf_bak) { 237 free(mesh); 238 log_err("mesh area alloc: out of memory"); 239 return NULL; 240 } 241 mesh->mods = *stack; 242 mesh->env = env; 243 rbtree_init(&mesh->run, &mesh_state_compare); 244 rbtree_init(&mesh->all, &mesh_state_compare); 245 mesh->num_reply_addrs = 0; 246 mesh->num_reply_states = 0; 247 mesh->num_detached_states = 0; 248 mesh->num_forever_states = 0; 249 mesh->stats_jostled = 0; 250 mesh->stats_dropped = 0; 251 mesh->max_reply_states = env->cfg->num_queries_per_thread; 252 mesh->max_forever_states = (mesh->max_reply_states+1)/2; 253 #ifndef S_SPLINT_S 254 mesh->jostle_max.tv_sec = (time_t)(env->cfg->jostle_time / 1000); 255 mesh->jostle_max.tv_usec = (time_t)((env->cfg->jostle_time % 1000) 256 *1000); 257 #endif 258 return mesh; 259 } 260 261 /** help mesh delete delete mesh states */ 262 static void 263 mesh_delete_helper(rbnode_type* n) 264 { 265 struct mesh_state* mstate = (struct mesh_state*)n->key; 266 /* perform a full delete, not only 'cleanup' routine, 267 * because other callbacks expect a clean state in the mesh. 268 * For 're-entrant' calls */ 269 mesh_state_delete(&mstate->s); 270 /* but because these delete the items from the tree, postorder 271 * traversal and rbtree rebalancing do not work together */ 272 } 273 274 void 275 mesh_delete(struct mesh_area* mesh) 276 { 277 if(!mesh) 278 return; 279 /* free all query states */ 280 while(mesh->all.count) 281 mesh_delete_helper(mesh->all.root); 282 timehist_delete(mesh->histogram); 283 sldns_buffer_free(mesh->qbuf_bak); 284 free(mesh); 285 } 286 287 void 288 mesh_delete_all(struct mesh_area* mesh) 289 { 290 /* free all query states */ 291 while(mesh->all.count) 292 mesh_delete_helper(mesh->all.root); 293 mesh->stats_dropped += mesh->num_reply_addrs; 294 /* clear mesh area references */ 295 rbtree_init(&mesh->run, &mesh_state_compare); 296 rbtree_init(&mesh->all, &mesh_state_compare); 297 mesh->num_reply_addrs = 0; 298 mesh->num_reply_states = 0; 299 mesh->num_detached_states = 0; 300 mesh->num_forever_states = 0; 301 mesh->forever_first = NULL; 302 mesh->forever_last = NULL; 303 mesh->jostle_first = NULL; 304 mesh->jostle_last = NULL; 305 } 306 307 int mesh_make_new_space(struct mesh_area* mesh, sldns_buffer* qbuf) 308 { 309 struct mesh_state* m = mesh->jostle_first; 310 /* free space is available */ 311 if(mesh->num_reply_states < mesh->max_reply_states) 312 return 1; 313 /* try to kick out a jostle-list item */ 314 if(m && m->reply_list && m->list_select == mesh_jostle_list) { 315 /* how old is it? */ 316 struct timeval age; 317 timeval_subtract(&age, mesh->env->now_tv, 318 &m->reply_list->start_time); 319 if(timeval_smaller(&mesh->jostle_max, &age)) { 320 /* its a goner */ 321 log_nametypeclass(VERB_ALGO, "query jostled out to " 322 "make space for a new one", 323 m->s.qinfo.qname, m->s.qinfo.qtype, 324 m->s.qinfo.qclass); 325 /* backup the query */ 326 if(qbuf) sldns_buffer_copy(mesh->qbuf_bak, qbuf); 327 /* notify supers */ 328 if(m->super_set.count > 0) { 329 verbose(VERB_ALGO, "notify supers of failure"); 330 m->s.return_msg = NULL; 331 m->s.return_rcode = LDNS_RCODE_SERVFAIL; 332 mesh_walk_supers(mesh, m); 333 } 334 mesh->stats_jostled ++; 335 mesh_state_delete(&m->s); 336 /* restore the query - note that the qinfo ptr to 337 * the querybuffer is then correct again. */ 338 if(qbuf) sldns_buffer_copy(qbuf, mesh->qbuf_bak); 339 return 1; 340 } 341 } 342 /* no space for new item */ 343 return 0; 344 } 345 346 void mesh_new_client(struct mesh_area* mesh, struct query_info* qinfo, 347 struct respip_client_info* cinfo, uint16_t qflags, 348 struct edns_data* edns, struct comm_reply* rep, uint16_t qid) 349 { 350 struct mesh_state* s = NULL; 351 int unique = unique_mesh_state(edns->opt_list, mesh->env); 352 int was_detached = 0; 353 int was_noreply = 0; 354 int added = 0; 355 if(!unique) 356 s = mesh_area_find(mesh, cinfo, qinfo, qflags&(BIT_RD|BIT_CD), 0, 0); 357 /* does this create a new reply state? */ 358 if(!s || s->list_select == mesh_no_list) { 359 if(!mesh_make_new_space(mesh, rep->c->buffer)) { 360 verbose(VERB_ALGO, "Too many queries. dropping " 361 "incoming query."); 362 comm_point_drop_reply(rep); 363 mesh->stats_dropped ++; 364 return; 365 } 366 /* for this new reply state, the reply address is free, 367 * so the limit of reply addresses does not stop reply states*/ 368 } else { 369 /* protect our memory usage from storing reply addresses */ 370 if(mesh->num_reply_addrs > mesh->max_reply_states*16) { 371 verbose(VERB_ALGO, "Too many requests queued. " 372 "dropping incoming query."); 373 mesh->stats_dropped++; 374 comm_point_drop_reply(rep); 375 return; 376 } 377 } 378 /* see if it already exists, if not, create one */ 379 if(!s) { 380 #ifdef UNBOUND_DEBUG 381 struct rbnode_type* n; 382 #endif 383 s = mesh_state_create(mesh->env, qinfo, cinfo, 384 qflags&(BIT_RD|BIT_CD), 0, 0); 385 if(!s) { 386 log_err("mesh_state_create: out of memory; SERVFAIL"); 387 if(!inplace_cb_reply_servfail_call(mesh->env, qinfo, NULL, NULL, 388 LDNS_RCODE_SERVFAIL, edns, mesh->env->scratch)) 389 edns->opt_list = NULL; 390 error_encode(rep->c->buffer, LDNS_RCODE_SERVFAIL, 391 qinfo, qid, qflags, edns); 392 comm_point_send_reply(rep); 393 return; 394 } 395 if(unique) 396 mesh_state_make_unique(s); 397 /* copy the edns options we got from the front */ 398 if(edns->opt_list) { 399 s->s.edns_opts_front_in = edns_opt_copy_region(edns->opt_list, 400 s->s.region); 401 if(!s->s.edns_opts_front_in) { 402 log_err("mesh_state_create: out of memory; SERVFAIL"); 403 if(!inplace_cb_reply_servfail_call(mesh->env, qinfo, NULL, 404 NULL, LDNS_RCODE_SERVFAIL, edns, mesh->env->scratch)) 405 edns->opt_list = NULL; 406 error_encode(rep->c->buffer, LDNS_RCODE_SERVFAIL, 407 qinfo, qid, qflags, edns); 408 comm_point_send_reply(rep); 409 return; 410 } 411 } 412 413 #ifdef UNBOUND_DEBUG 414 n = 415 #else 416 (void) 417 #endif 418 rbtree_insert(&mesh->all, &s->node); 419 log_assert(n != NULL); 420 /* set detached (it is now) */ 421 mesh->num_detached_states++; 422 added = 1; 423 } 424 if(!s->reply_list && !s->cb_list && s->super_set.count == 0) 425 was_detached = 1; 426 if(!s->reply_list && !s->cb_list) 427 was_noreply = 1; 428 /* add reply to s */ 429 if(!mesh_state_add_reply(s, edns, rep, qid, qflags, qinfo)) { 430 log_err("mesh_new_client: out of memory; SERVFAIL"); 431 if(!inplace_cb_reply_servfail_call(mesh->env, qinfo, &s->s, 432 NULL, LDNS_RCODE_SERVFAIL, edns, mesh->env->scratch)) 433 edns->opt_list = NULL; 434 error_encode(rep->c->buffer, LDNS_RCODE_SERVFAIL, 435 qinfo, qid, qflags, edns); 436 comm_point_send_reply(rep); 437 if(added) 438 mesh_state_delete(&s->s); 439 return; 440 } 441 /* update statistics */ 442 if(was_detached) { 443 log_assert(mesh->num_detached_states > 0); 444 mesh->num_detached_states--; 445 } 446 if(was_noreply) { 447 mesh->num_reply_states ++; 448 } 449 mesh->num_reply_addrs++; 450 if(s->list_select == mesh_no_list) { 451 /* move to either the forever or the jostle_list */ 452 if(mesh->num_forever_states < mesh->max_forever_states) { 453 mesh->num_forever_states ++; 454 mesh_list_insert(s, &mesh->forever_first, 455 &mesh->forever_last); 456 s->list_select = mesh_forever_list; 457 } else { 458 mesh_list_insert(s, &mesh->jostle_first, 459 &mesh->jostle_last); 460 s->list_select = mesh_jostle_list; 461 } 462 } 463 if(added) 464 mesh_run(mesh, s, module_event_new, NULL); 465 } 466 467 int 468 mesh_new_callback(struct mesh_area* mesh, struct query_info* qinfo, 469 uint16_t qflags, struct edns_data* edns, sldns_buffer* buf, 470 uint16_t qid, mesh_cb_func_type cb, void* cb_arg) 471 { 472 struct mesh_state* s = NULL; 473 int unique = unique_mesh_state(edns->opt_list, mesh->env); 474 int was_detached = 0; 475 int was_noreply = 0; 476 int added = 0; 477 if(!unique) 478 s = mesh_area_find(mesh, NULL, qinfo, qflags&(BIT_RD|BIT_CD), 0, 0); 479 480 /* there are no limits on the number of callbacks */ 481 482 /* see if it already exists, if not, create one */ 483 if(!s) { 484 #ifdef UNBOUND_DEBUG 485 struct rbnode_type* n; 486 #endif 487 s = mesh_state_create(mesh->env, qinfo, NULL, 488 qflags&(BIT_RD|BIT_CD), 0, 0); 489 if(!s) { 490 return 0; 491 } 492 if(unique) 493 mesh_state_make_unique(s); 494 if(edns->opt_list) { 495 s->s.edns_opts_front_in = edns_opt_copy_region(edns->opt_list, 496 s->s.region); 497 if(!s->s.edns_opts_front_in) { 498 return 0; 499 } 500 } 501 #ifdef UNBOUND_DEBUG 502 n = 503 #else 504 (void) 505 #endif 506 rbtree_insert(&mesh->all, &s->node); 507 log_assert(n != NULL); 508 /* set detached (it is now) */ 509 mesh->num_detached_states++; 510 added = 1; 511 } 512 if(!s->reply_list && !s->cb_list && s->super_set.count == 0) 513 was_detached = 1; 514 if(!s->reply_list && !s->cb_list) 515 was_noreply = 1; 516 /* add reply to s */ 517 if(!mesh_state_add_cb(s, edns, buf, cb, cb_arg, qid, qflags)) { 518 if(added) 519 mesh_state_delete(&s->s); 520 return 0; 521 } 522 /* update statistics */ 523 if(was_detached) { 524 log_assert(mesh->num_detached_states > 0); 525 mesh->num_detached_states--; 526 } 527 if(was_noreply) { 528 mesh->num_reply_states ++; 529 } 530 mesh->num_reply_addrs++; 531 if(added) 532 mesh_run(mesh, s, module_event_new, NULL); 533 return 1; 534 } 535 536 static void mesh_schedule_prefetch(struct mesh_area* mesh, 537 struct query_info* qinfo, uint16_t qflags, time_t leeway, int run); 538 539 void mesh_new_prefetch(struct mesh_area* mesh, struct query_info* qinfo, 540 uint16_t qflags, time_t leeway) 541 { 542 mesh_schedule_prefetch(mesh, qinfo, qflags, leeway, 1); 543 } 544 545 /* Internal backend routine of mesh_new_prefetch(). It takes one additional 546 * parameter, 'run', which controls whether to run the prefetch state 547 * immediately. When this function is called internally 'run' could be 548 * 0 (false), in which case the new state is only made runnable so it 549 * will not be run recursively on top of the current state. */ 550 static void mesh_schedule_prefetch(struct mesh_area* mesh, 551 struct query_info* qinfo, uint16_t qflags, time_t leeway, int run) 552 { 553 struct mesh_state* s = mesh_area_find(mesh, NULL, qinfo, 554 qflags&(BIT_RD|BIT_CD), 0, 0); 555 #ifdef UNBOUND_DEBUG 556 struct rbnode_type* n; 557 #endif 558 /* already exists, and for a different purpose perhaps. 559 * if mesh_no_list, keep it that way. */ 560 if(s) { 561 /* make it ignore the cache from now on */ 562 if(!s->s.blacklist) 563 sock_list_insert(&s->s.blacklist, NULL, 0, s->s.region); 564 if(s->s.prefetch_leeway < leeway) 565 s->s.prefetch_leeway = leeway; 566 return; 567 } 568 if(!mesh_make_new_space(mesh, NULL)) { 569 verbose(VERB_ALGO, "Too many queries. dropped prefetch."); 570 mesh->stats_dropped ++; 571 return; 572 } 573 574 s = mesh_state_create(mesh->env, qinfo, NULL, 575 qflags&(BIT_RD|BIT_CD), 0, 0); 576 if(!s) { 577 log_err("prefetch mesh_state_create: out of memory"); 578 return; 579 } 580 #ifdef UNBOUND_DEBUG 581 n = 582 #else 583 (void) 584 #endif 585 rbtree_insert(&mesh->all, &s->node); 586 log_assert(n != NULL); 587 /* set detached (it is now) */ 588 mesh->num_detached_states++; 589 /* make it ignore the cache */ 590 sock_list_insert(&s->s.blacklist, NULL, 0, s->s.region); 591 s->s.prefetch_leeway = leeway; 592 593 if(s->list_select == mesh_no_list) { 594 /* move to either the forever or the jostle_list */ 595 if(mesh->num_forever_states < mesh->max_forever_states) { 596 mesh->num_forever_states ++; 597 mesh_list_insert(s, &mesh->forever_first, 598 &mesh->forever_last); 599 s->list_select = mesh_forever_list; 600 } else { 601 mesh_list_insert(s, &mesh->jostle_first, 602 &mesh->jostle_last); 603 s->list_select = mesh_jostle_list; 604 } 605 } 606 607 if(!run) { 608 #ifdef UNBOUND_DEBUG 609 n = 610 #else 611 (void) 612 #endif 613 rbtree_insert(&mesh->run, &s->run_node); 614 log_assert(n != NULL); 615 return; 616 } 617 618 mesh_run(mesh, s, module_event_new, NULL); 619 } 620 621 void mesh_report_reply(struct mesh_area* mesh, struct outbound_entry* e, 622 struct comm_reply* reply, int what) 623 { 624 enum module_ev event = module_event_reply; 625 e->qstate->reply = reply; 626 if(what != NETEVENT_NOERROR) { 627 event = module_event_noreply; 628 if(what == NETEVENT_CAPSFAIL) 629 event = module_event_capsfail; 630 } 631 mesh_run(mesh, e->qstate->mesh_info, event, e); 632 } 633 634 struct mesh_state* 635 mesh_state_create(struct module_env* env, struct query_info* qinfo, 636 struct respip_client_info* cinfo, uint16_t qflags, int prime, 637 int valrec) 638 { 639 struct regional* region = alloc_reg_obtain(env->alloc); 640 struct mesh_state* mstate; 641 int i; 642 if(!region) 643 return NULL; 644 mstate = (struct mesh_state*)regional_alloc(region, 645 sizeof(struct mesh_state)); 646 if(!mstate) { 647 alloc_reg_release(env->alloc, region); 648 return NULL; 649 } 650 memset(mstate, 0, sizeof(*mstate)); 651 mstate->node = *RBTREE_NULL; 652 mstate->run_node = *RBTREE_NULL; 653 mstate->node.key = mstate; 654 mstate->run_node.key = mstate; 655 mstate->reply_list = NULL; 656 mstate->list_select = mesh_no_list; 657 mstate->replies_sent = 0; 658 rbtree_init(&mstate->super_set, &mesh_state_ref_compare); 659 rbtree_init(&mstate->sub_set, &mesh_state_ref_compare); 660 mstate->num_activated = 0; 661 mstate->unique = NULL; 662 /* init module qstate */ 663 mstate->s.qinfo.qtype = qinfo->qtype; 664 mstate->s.qinfo.qclass = qinfo->qclass; 665 mstate->s.qinfo.local_alias = NULL; 666 mstate->s.qinfo.qname_len = qinfo->qname_len; 667 mstate->s.qinfo.qname = regional_alloc_init(region, qinfo->qname, 668 qinfo->qname_len); 669 if(!mstate->s.qinfo.qname) { 670 alloc_reg_release(env->alloc, region); 671 return NULL; 672 } 673 if(cinfo) { 674 mstate->s.client_info = regional_alloc_init(region, cinfo, 675 sizeof(*cinfo)); 676 if(!mstate->s.client_info) { 677 alloc_reg_release(env->alloc, region); 678 return NULL; 679 } 680 } 681 /* remove all weird bits from qflags */ 682 mstate->s.query_flags = (qflags & (BIT_RD|BIT_CD)); 683 mstate->s.is_priming = prime; 684 mstate->s.is_valrec = valrec; 685 mstate->s.reply = NULL; 686 mstate->s.region = region; 687 mstate->s.curmod = 0; 688 mstate->s.return_msg = 0; 689 mstate->s.return_rcode = LDNS_RCODE_NOERROR; 690 mstate->s.env = env; 691 mstate->s.mesh_info = mstate; 692 mstate->s.prefetch_leeway = 0; 693 mstate->s.no_cache_lookup = 0; 694 mstate->s.no_cache_store = 0; 695 mstate->s.need_refetch = 0; 696 697 /* init modules */ 698 for(i=0; i<env->mesh->mods.num; i++) { 699 mstate->s.minfo[i] = NULL; 700 mstate->s.ext_state[i] = module_state_initial; 701 } 702 /* init edns option lists */ 703 mstate->s.edns_opts_front_in = NULL; 704 mstate->s.edns_opts_back_out = NULL; 705 mstate->s.edns_opts_back_in = NULL; 706 mstate->s.edns_opts_front_out = NULL; 707 708 return mstate; 709 } 710 711 int 712 mesh_state_is_unique(struct mesh_state* mstate) 713 { 714 return mstate->unique != NULL; 715 } 716 717 void 718 mesh_state_make_unique(struct mesh_state* mstate) 719 { 720 mstate->unique = mstate; 721 } 722 723 void 724 mesh_state_cleanup(struct mesh_state* mstate) 725 { 726 struct mesh_area* mesh; 727 int i; 728 if(!mstate) 729 return; 730 mesh = mstate->s.env->mesh; 731 /* drop unsent replies */ 732 if(!mstate->replies_sent) { 733 struct mesh_reply* rep; 734 struct mesh_cb* cb; 735 for(rep=mstate->reply_list; rep; rep=rep->next) { 736 comm_point_drop_reply(&rep->query_reply); 737 mesh->num_reply_addrs--; 738 } 739 for(cb=mstate->cb_list; cb; cb=cb->next) { 740 fptr_ok(fptr_whitelist_mesh_cb(cb->cb)); 741 (*cb->cb)(cb->cb_arg, LDNS_RCODE_SERVFAIL, NULL, 742 sec_status_unchecked, NULL); 743 mesh->num_reply_addrs--; 744 } 745 } 746 747 /* de-init modules */ 748 for(i=0; i<mesh->mods.num; i++) { 749 fptr_ok(fptr_whitelist_mod_clear(mesh->mods.mod[i]->clear)); 750 (*mesh->mods.mod[i]->clear)(&mstate->s, i); 751 mstate->s.minfo[i] = NULL; 752 mstate->s.ext_state[i] = module_finished; 753 } 754 alloc_reg_release(mstate->s.env->alloc, mstate->s.region); 755 } 756 757 void 758 mesh_state_delete(struct module_qstate* qstate) 759 { 760 struct mesh_area* mesh; 761 struct mesh_state_ref* super, ref; 762 struct mesh_state* mstate; 763 if(!qstate) 764 return; 765 mstate = qstate->mesh_info; 766 mesh = mstate->s.env->mesh; 767 mesh_detach_subs(&mstate->s); 768 if(mstate->list_select == mesh_forever_list) { 769 mesh->num_forever_states --; 770 mesh_list_remove(mstate, &mesh->forever_first, 771 &mesh->forever_last); 772 } else if(mstate->list_select == mesh_jostle_list) { 773 mesh_list_remove(mstate, &mesh->jostle_first, 774 &mesh->jostle_last); 775 } 776 if(!mstate->reply_list && !mstate->cb_list 777 && mstate->super_set.count == 0) { 778 log_assert(mesh->num_detached_states > 0); 779 mesh->num_detached_states--; 780 } 781 if(mstate->reply_list || mstate->cb_list) { 782 log_assert(mesh->num_reply_states > 0); 783 mesh->num_reply_states--; 784 } 785 ref.node.key = &ref; 786 ref.s = mstate; 787 RBTREE_FOR(super, struct mesh_state_ref*, &mstate->super_set) { 788 (void)rbtree_delete(&super->s->sub_set, &ref); 789 } 790 (void)rbtree_delete(&mesh->run, mstate); 791 (void)rbtree_delete(&mesh->all, mstate); 792 mesh_state_cleanup(mstate); 793 } 794 795 /** helper recursive rbtree find routine */ 796 static int 797 find_in_subsub(struct mesh_state* m, struct mesh_state* tofind, size_t *c) 798 { 799 struct mesh_state_ref* r; 800 if((*c)++ > MESH_MAX_SUBSUB) 801 return 1; 802 RBTREE_FOR(r, struct mesh_state_ref*, &m->sub_set) { 803 if(r->s == tofind || find_in_subsub(r->s, tofind, c)) 804 return 1; 805 } 806 return 0; 807 } 808 809 /** find cycle for already looked up mesh_state */ 810 static int 811 mesh_detect_cycle_found(struct module_qstate* qstate, struct mesh_state* dep_m) 812 { 813 struct mesh_state* cyc_m = qstate->mesh_info; 814 size_t counter = 0; 815 if(!dep_m) 816 return 0; 817 if(dep_m == cyc_m || find_in_subsub(dep_m, cyc_m, &counter)) { 818 if(counter > MESH_MAX_SUBSUB) 819 return 2; 820 return 1; 821 } 822 return 0; 823 } 824 825 void mesh_detach_subs(struct module_qstate* qstate) 826 { 827 struct mesh_area* mesh = qstate->env->mesh; 828 struct mesh_state_ref* ref, lookup; 829 #ifdef UNBOUND_DEBUG 830 struct rbnode_type* n; 831 #endif 832 lookup.node.key = &lookup; 833 lookup.s = qstate->mesh_info; 834 RBTREE_FOR(ref, struct mesh_state_ref*, &qstate->mesh_info->sub_set) { 835 #ifdef UNBOUND_DEBUG 836 n = 837 #else 838 (void) 839 #endif 840 rbtree_delete(&ref->s->super_set, &lookup); 841 log_assert(n != NULL); /* must have been present */ 842 if(!ref->s->reply_list && !ref->s->cb_list 843 && ref->s->super_set.count == 0) { 844 mesh->num_detached_states++; 845 log_assert(mesh->num_detached_states + 846 mesh->num_reply_states <= mesh->all.count); 847 } 848 } 849 rbtree_init(&qstate->mesh_info->sub_set, &mesh_state_ref_compare); 850 } 851 852 int mesh_add_sub(struct module_qstate* qstate, struct query_info* qinfo, 853 uint16_t qflags, int prime, int valrec, struct module_qstate** newq, 854 struct mesh_state** sub) 855 { 856 /* find it, if not, create it */ 857 struct mesh_area* mesh = qstate->env->mesh; 858 *sub = mesh_area_find(mesh, NULL, qinfo, qflags, 859 prime, valrec); 860 if(mesh_detect_cycle_found(qstate, *sub)) { 861 verbose(VERB_ALGO, "attach failed, cycle detected"); 862 return 0; 863 } 864 if(!*sub) { 865 #ifdef UNBOUND_DEBUG 866 struct rbnode_type* n; 867 #endif 868 /* create a new one */ 869 *sub = mesh_state_create(qstate->env, qinfo, NULL, qflags, prime, 870 valrec); 871 if(!*sub) { 872 log_err("mesh_attach_sub: out of memory"); 873 return 0; 874 } 875 #ifdef UNBOUND_DEBUG 876 n = 877 #else 878 (void) 879 #endif 880 rbtree_insert(&mesh->all, &(*sub)->node); 881 log_assert(n != NULL); 882 /* set detached (it is now) */ 883 mesh->num_detached_states++; 884 /* set new query state to run */ 885 #ifdef UNBOUND_DEBUG 886 n = 887 #else 888 (void) 889 #endif 890 rbtree_insert(&mesh->run, &(*sub)->run_node); 891 log_assert(n != NULL); 892 *newq = &(*sub)->s; 893 } else 894 *newq = NULL; 895 return 1; 896 } 897 898 int mesh_attach_sub(struct module_qstate* qstate, struct query_info* qinfo, 899 uint16_t qflags, int prime, int valrec, struct module_qstate** newq) 900 { 901 struct mesh_area* mesh = qstate->env->mesh; 902 struct mesh_state* sub = NULL; 903 int was_detached; 904 if(!mesh_add_sub(qstate, qinfo, qflags, prime, valrec, newq, &sub)) 905 return 0; 906 was_detached = (sub->super_set.count == 0); 907 if(!mesh_state_attachment(qstate->mesh_info, sub)) 908 return 0; 909 /* if it was a duplicate attachment, the count was not zero before */ 910 if(!sub->reply_list && !sub->cb_list && was_detached && 911 sub->super_set.count == 1) { 912 /* it used to be detached, before this one got added */ 913 log_assert(mesh->num_detached_states > 0); 914 mesh->num_detached_states--; 915 } 916 /* *newq will be run when inited after the current module stops */ 917 return 1; 918 } 919 920 int mesh_state_attachment(struct mesh_state* super, struct mesh_state* sub) 921 { 922 #ifdef UNBOUND_DEBUG 923 struct rbnode_type* n; 924 #endif 925 struct mesh_state_ref* subref; /* points to sub, inserted in super */ 926 struct mesh_state_ref* superref; /* points to super, inserted in sub */ 927 if( !(subref = regional_alloc(super->s.region, 928 sizeof(struct mesh_state_ref))) || 929 !(superref = regional_alloc(sub->s.region, 930 sizeof(struct mesh_state_ref))) ) { 931 log_err("mesh_state_attachment: out of memory"); 932 return 0; 933 } 934 superref->node.key = superref; 935 superref->s = super; 936 subref->node.key = subref; 937 subref->s = sub; 938 if(!rbtree_insert(&sub->super_set, &superref->node)) { 939 /* this should not happen, iterator and validator do not 940 * attach subqueries that are identical. */ 941 /* already attached, we are done, nothing todo. 942 * since superref and subref already allocated in region, 943 * we cannot free them */ 944 return 1; 945 } 946 #ifdef UNBOUND_DEBUG 947 n = 948 #else 949 (void) 950 #endif 951 rbtree_insert(&super->sub_set, &subref->node); 952 log_assert(n != NULL); /* we checked above if statement, the reverse 953 administration should not fail now, unless they are out of sync */ 954 return 1; 955 } 956 957 /** 958 * callback results to mesh cb entry 959 * @param m: mesh state to send it for. 960 * @param rcode: if not 0, error code. 961 * @param rep: reply to send (or NULL if rcode is set). 962 * @param r: callback entry 963 */ 964 static void 965 mesh_do_callback(struct mesh_state* m, int rcode, struct reply_info* rep, 966 struct mesh_cb* r) 967 { 968 int secure; 969 char* reason = NULL; 970 /* bogus messages are not made into servfail, sec_status passed 971 * to the callback function */ 972 if(rep && rep->security == sec_status_secure) 973 secure = 1; 974 else secure = 0; 975 if(!rep && rcode == LDNS_RCODE_NOERROR) 976 rcode = LDNS_RCODE_SERVFAIL; 977 if(!rcode && rep->security == sec_status_bogus) { 978 if(!(reason = errinf_to_str(&m->s))) 979 rcode = LDNS_RCODE_SERVFAIL; 980 } 981 /* send the reply */ 982 if(rcode) { 983 if(rcode == LDNS_RCODE_SERVFAIL) { 984 if(!inplace_cb_reply_servfail_call(m->s.env, &m->s.qinfo, &m->s, 985 rep, rcode, &r->edns, m->s.region)) 986 r->edns.opt_list = NULL; 987 } else { 988 if(!inplace_cb_reply_call(m->s.env, &m->s.qinfo, &m->s, rep, rcode, 989 &r->edns, m->s.region)) 990 r->edns.opt_list = NULL; 991 } 992 fptr_ok(fptr_whitelist_mesh_cb(r->cb)); 993 (*r->cb)(r->cb_arg, rcode, r->buf, sec_status_unchecked, NULL); 994 } else { 995 size_t udp_size = r->edns.udp_size; 996 sldns_buffer_clear(r->buf); 997 r->edns.edns_version = EDNS_ADVERTISED_VERSION; 998 r->edns.udp_size = EDNS_ADVERTISED_SIZE; 999 r->edns.ext_rcode = 0; 1000 r->edns.bits &= EDNS_DO; 1001 1002 if(!inplace_cb_reply_call(m->s.env, &m->s.qinfo, &m->s, rep, 1003 LDNS_RCODE_NOERROR, &r->edns, m->s.region) || 1004 !reply_info_answer_encode(&m->s.qinfo, rep, r->qid, 1005 r->qflags, r->buf, 0, 1, 1006 m->s.env->scratch, udp_size, &r->edns, 1007 (int)(r->edns.bits & EDNS_DO), secure)) 1008 { 1009 fptr_ok(fptr_whitelist_mesh_cb(r->cb)); 1010 (*r->cb)(r->cb_arg, LDNS_RCODE_SERVFAIL, r->buf, 1011 sec_status_unchecked, NULL); 1012 } else { 1013 fptr_ok(fptr_whitelist_mesh_cb(r->cb)); 1014 (*r->cb)(r->cb_arg, LDNS_RCODE_NOERROR, r->buf, 1015 rep->security, reason); 1016 } 1017 } 1018 free(reason); 1019 m->s.env->mesh->num_reply_addrs--; 1020 } 1021 1022 /** 1023 * Send reply to mesh reply entry 1024 * @param m: mesh state to send it for. 1025 * @param rcode: if not 0, error code. 1026 * @param rep: reply to send (or NULL if rcode is set). 1027 * @param r: reply entry 1028 * @param prev: previous reply, already has its answer encoded in buffer. 1029 */ 1030 static void 1031 mesh_send_reply(struct mesh_state* m, int rcode, struct reply_info* rep, 1032 struct mesh_reply* r, struct mesh_reply* prev) 1033 { 1034 struct timeval end_time; 1035 struct timeval duration; 1036 int secure; 1037 /* Copy the client's EDNS for later restore, to make sure the edns 1038 * compare is with the correct edns options. */ 1039 struct edns_data edns_bak = r->edns; 1040 /* examine security status */ 1041 if(m->s.env->need_to_validate && (!(r->qflags&BIT_CD) || 1042 m->s.env->cfg->ignore_cd) && rep && 1043 rep->security <= sec_status_bogus) { 1044 rcode = LDNS_RCODE_SERVFAIL; 1045 if(m->s.env->cfg->stat_extended) 1046 m->s.env->mesh->ans_bogus++; 1047 } 1048 if(rep && rep->security == sec_status_secure) 1049 secure = 1; 1050 else secure = 0; 1051 if(!rep && rcode == LDNS_RCODE_NOERROR) 1052 rcode = LDNS_RCODE_SERVFAIL; 1053 /* send the reply */ 1054 /* We don't reuse the encoded answer if either the previous or current 1055 * response has a local alias. We could compare the alias records 1056 * and still reuse the previous answer if they are the same, but that 1057 * would be complicated and error prone for the relatively minor case. 1058 * So we err on the side of safety. */ 1059 if(prev && prev->qflags == r->qflags && 1060 !prev->local_alias && !r->local_alias && 1061 prev->edns.edns_present == r->edns.edns_present && 1062 prev->edns.bits == r->edns.bits && 1063 prev->edns.udp_size == r->edns.udp_size && 1064 edns_opt_list_compare(prev->edns.opt_list, r->edns.opt_list) 1065 == 0) { 1066 /* if the previous reply is identical to this one, fix ID */ 1067 if(prev->query_reply.c->buffer != r->query_reply.c->buffer) 1068 sldns_buffer_copy(r->query_reply.c->buffer, 1069 prev->query_reply.c->buffer); 1070 sldns_buffer_write_at(r->query_reply.c->buffer, 0, 1071 &r->qid, sizeof(uint16_t)); 1072 sldns_buffer_write_at(r->query_reply.c->buffer, 12, 1073 r->qname, m->s.qinfo.qname_len); 1074 comm_point_send_reply(&r->query_reply); 1075 } else if(rcode) { 1076 m->s.qinfo.qname = r->qname; 1077 m->s.qinfo.local_alias = r->local_alias; 1078 if(rcode == LDNS_RCODE_SERVFAIL) { 1079 if(!inplace_cb_reply_servfail_call(m->s.env, &m->s.qinfo, &m->s, 1080 rep, rcode, &r->edns, m->s.region)) 1081 r->edns.opt_list = NULL; 1082 } else { 1083 if(!inplace_cb_reply_call(m->s.env, &m->s.qinfo, &m->s, rep, rcode, 1084 &r->edns, m->s.region)) 1085 r->edns.opt_list = NULL; 1086 } 1087 error_encode(r->query_reply.c->buffer, rcode, &m->s.qinfo, 1088 r->qid, r->qflags, &r->edns); 1089 comm_point_send_reply(&r->query_reply); 1090 } else { 1091 size_t udp_size = r->edns.udp_size; 1092 r->edns.edns_version = EDNS_ADVERTISED_VERSION; 1093 r->edns.udp_size = EDNS_ADVERTISED_SIZE; 1094 r->edns.ext_rcode = 0; 1095 r->edns.bits &= EDNS_DO; 1096 m->s.qinfo.qname = r->qname; 1097 m->s.qinfo.local_alias = r->local_alias; 1098 if(!inplace_cb_reply_call(m->s.env, &m->s.qinfo, &m->s, rep, 1099 LDNS_RCODE_NOERROR, &r->edns, m->s.region) || 1100 !reply_info_answer_encode(&m->s.qinfo, rep, r->qid, 1101 r->qflags, r->query_reply.c->buffer, 0, 1, 1102 m->s.env->scratch, udp_size, &r->edns, 1103 (int)(r->edns.bits & EDNS_DO), secure)) 1104 { 1105 if(!inplace_cb_reply_servfail_call(m->s.env, &m->s.qinfo, &m->s, 1106 rep, LDNS_RCODE_SERVFAIL, &r->edns, m->s.region)) 1107 r->edns.opt_list = NULL; 1108 error_encode(r->query_reply.c->buffer, 1109 LDNS_RCODE_SERVFAIL, &m->s.qinfo, r->qid, 1110 r->qflags, &r->edns); 1111 } 1112 r->edns = edns_bak; 1113 comm_point_send_reply(&r->query_reply); 1114 } 1115 /* account */ 1116 m->s.env->mesh->num_reply_addrs--; 1117 end_time = *m->s.env->now_tv; 1118 timeval_subtract(&duration, &end_time, &r->start_time); 1119 verbose(VERB_ALGO, "query took " ARG_LL "d.%6.6d sec", 1120 (long long)duration.tv_sec, (int)duration.tv_usec); 1121 m->s.env->mesh->replies_sent++; 1122 timeval_add(&m->s.env->mesh->replies_sum_wait, &duration); 1123 timehist_insert(m->s.env->mesh->histogram, &duration); 1124 if(m->s.env->cfg->stat_extended) { 1125 uint16_t rc = FLAGS_GET_RCODE(sldns_buffer_read_u16_at(r-> 1126 query_reply.c->buffer, 2)); 1127 if(secure) m->s.env->mesh->ans_secure++; 1128 m->s.env->mesh->ans_rcode[ rc ] ++; 1129 if(rc == 0 && LDNS_ANCOUNT(sldns_buffer_begin(r-> 1130 query_reply.c->buffer)) == 0) 1131 m->s.env->mesh->ans_nodata++; 1132 } 1133 /* Log reply sent */ 1134 if(m->s.env->cfg->log_replies) { 1135 log_reply_info(0, &m->s.qinfo, &r->query_reply.addr, 1136 r->query_reply.addrlen, duration, 0, 1137 r->query_reply.c->buffer); 1138 } 1139 } 1140 1141 void mesh_query_done(struct mesh_state* mstate) 1142 { 1143 struct mesh_reply* r; 1144 struct mesh_reply* prev = NULL; 1145 struct mesh_cb* c; 1146 struct reply_info* rep = (mstate->s.return_msg? 1147 mstate->s.return_msg->rep:NULL); 1148 for(r = mstate->reply_list; r; r = r->next) { 1149 /* if a response-ip address block has been stored the 1150 * information should be logged for each client. */ 1151 if(mstate->s.respip_action_info && 1152 mstate->s.respip_action_info->addrinfo) { 1153 respip_inform_print(mstate->s.respip_action_info->addrinfo, 1154 r->qname, mstate->s.qinfo.qtype, 1155 mstate->s.qinfo.qclass, r->local_alias, 1156 &r->query_reply); 1157 } 1158 1159 /* if this query is determined to be dropped during the 1160 * mesh processing, this is the point to take that action. */ 1161 if(mstate->s.is_drop) 1162 comm_point_drop_reply(&r->query_reply); 1163 else { 1164 mesh_send_reply(mstate, mstate->s.return_rcode, rep, 1165 r, prev); 1166 prev = r; 1167 } 1168 } 1169 mstate->replies_sent = 1; 1170 for(c = mstate->cb_list; c; c = c->next) { 1171 mesh_do_callback(mstate, mstate->s.return_rcode, rep, c); 1172 } 1173 } 1174 1175 void mesh_walk_supers(struct mesh_area* mesh, struct mesh_state* mstate) 1176 { 1177 struct mesh_state_ref* ref; 1178 RBTREE_FOR(ref, struct mesh_state_ref*, &mstate->super_set) 1179 { 1180 /* make super runnable */ 1181 (void)rbtree_insert(&mesh->run, &ref->s->run_node); 1182 /* callback the function to inform super of result */ 1183 fptr_ok(fptr_whitelist_mod_inform_super( 1184 mesh->mods.mod[ref->s->s.curmod]->inform_super)); 1185 (*mesh->mods.mod[ref->s->s.curmod]->inform_super)(&mstate->s, 1186 ref->s->s.curmod, &ref->s->s); 1187 } 1188 } 1189 1190 struct mesh_state* mesh_area_find(struct mesh_area* mesh, 1191 struct respip_client_info* cinfo, struct query_info* qinfo, 1192 uint16_t qflags, int prime, int valrec) 1193 { 1194 struct mesh_state key; 1195 struct mesh_state* result; 1196 1197 key.node.key = &key; 1198 key.s.is_priming = prime; 1199 key.s.is_valrec = valrec; 1200 key.s.qinfo = *qinfo; 1201 key.s.query_flags = qflags; 1202 /* We are searching for a similar mesh state when we DO want to 1203 * aggregate the state. Thus unique is set to NULL. (default when we 1204 * desire aggregation).*/ 1205 key.unique = NULL; 1206 key.s.client_info = cinfo; 1207 1208 result = (struct mesh_state*)rbtree_search(&mesh->all, &key); 1209 return result; 1210 } 1211 1212 int mesh_state_add_cb(struct mesh_state* s, struct edns_data* edns, 1213 sldns_buffer* buf, mesh_cb_func_type cb, void* cb_arg, 1214 uint16_t qid, uint16_t qflags) 1215 { 1216 struct mesh_cb* r = regional_alloc(s->s.region, 1217 sizeof(struct mesh_cb)); 1218 if(!r) 1219 return 0; 1220 r->buf = buf; 1221 log_assert(fptr_whitelist_mesh_cb(cb)); /* early failure ifmissing*/ 1222 r->cb = cb; 1223 r->cb_arg = cb_arg; 1224 r->edns = *edns; 1225 if(edns->opt_list) { 1226 r->edns.opt_list = edns_opt_copy_region(edns->opt_list, 1227 s->s.region); 1228 if(!r->edns.opt_list) 1229 return 0; 1230 } 1231 r->qid = qid; 1232 r->qflags = qflags; 1233 r->next = s->cb_list; 1234 s->cb_list = r; 1235 return 1; 1236 1237 } 1238 1239 int mesh_state_add_reply(struct mesh_state* s, struct edns_data* edns, 1240 struct comm_reply* rep, uint16_t qid, uint16_t qflags, 1241 const struct query_info* qinfo) 1242 { 1243 struct mesh_reply* r = regional_alloc(s->s.region, 1244 sizeof(struct mesh_reply)); 1245 if(!r) 1246 return 0; 1247 r->query_reply = *rep; 1248 r->edns = *edns; 1249 if(edns->opt_list) { 1250 r->edns.opt_list = edns_opt_copy_region(edns->opt_list, 1251 s->s.region); 1252 if(!r->edns.opt_list) 1253 return 0; 1254 } 1255 r->qid = qid; 1256 r->qflags = qflags; 1257 r->start_time = *s->s.env->now_tv; 1258 r->next = s->reply_list; 1259 r->qname = regional_alloc_init(s->s.region, qinfo->qname, 1260 s->s.qinfo.qname_len); 1261 if(!r->qname) 1262 return 0; 1263 1264 /* Data related to local alias stored in 'qinfo' (if any) is ephemeral 1265 * and can be different for different original queries (even if the 1266 * replaced query name is the same). So we need to make a deep copy 1267 * and store the copy for each reply info. */ 1268 if(qinfo->local_alias) { 1269 struct packed_rrset_data* d; 1270 struct packed_rrset_data* dsrc; 1271 r->local_alias = regional_alloc_zero(s->s.region, 1272 sizeof(*qinfo->local_alias)); 1273 if(!r->local_alias) 1274 return 0; 1275 r->local_alias->rrset = regional_alloc_init(s->s.region, 1276 qinfo->local_alias->rrset, 1277 sizeof(*qinfo->local_alias->rrset)); 1278 if(!r->local_alias->rrset) 1279 return 0; 1280 dsrc = qinfo->local_alias->rrset->entry.data; 1281 1282 /* In the current implementation, a local alias must be 1283 * a single CNAME RR (see worker_handle_request()). */ 1284 log_assert(!qinfo->local_alias->next && dsrc->count == 1 && 1285 qinfo->local_alias->rrset->rk.type == 1286 htons(LDNS_RR_TYPE_CNAME)); 1287 /* Technically, we should make a local copy for the owner 1288 * name of the RRset, but in the case of the first (and 1289 * currently only) local alias RRset, the owner name should 1290 * point to the qname of the corresponding query, which should 1291 * be valid throughout the lifetime of this mesh_reply. So 1292 * we can skip copying. */ 1293 log_assert(qinfo->local_alias->rrset->rk.dname == 1294 sldns_buffer_at(rep->c->buffer, LDNS_HEADER_SIZE)); 1295 1296 d = regional_alloc_init(s->s.region, dsrc, 1297 sizeof(struct packed_rrset_data) 1298 + sizeof(size_t) + sizeof(uint8_t*) + sizeof(time_t)); 1299 if(!d) 1300 return 0; 1301 r->local_alias->rrset->entry.data = d; 1302 d->rr_len = (size_t*)((uint8_t*)d + 1303 sizeof(struct packed_rrset_data)); 1304 d->rr_data = (uint8_t**)&(d->rr_len[1]); 1305 d->rr_ttl = (time_t*)&(d->rr_data[1]); 1306 d->rr_len[0] = dsrc->rr_len[0]; 1307 d->rr_ttl[0] = dsrc->rr_ttl[0]; 1308 d->rr_data[0] = regional_alloc_init(s->s.region, 1309 dsrc->rr_data[0], d->rr_len[0]); 1310 if(!d->rr_data[0]) 1311 return 0; 1312 } else 1313 r->local_alias = NULL; 1314 1315 s->reply_list = r; 1316 return 1; 1317 } 1318 1319 /* Extract the query info and flags from 'mstate' into '*qinfop' and '*qflags'. 1320 * Since this is only used for internal refetch of otherwise-expired answer, 1321 * we simply ignore the rare failure mode when memory allocation fails. */ 1322 static void 1323 mesh_copy_qinfo(struct mesh_state* mstate, struct query_info** qinfop, 1324 uint16_t* qflags) 1325 { 1326 struct regional* region = mstate->s.env->scratch; 1327 struct query_info* qinfo; 1328 1329 qinfo = regional_alloc_init(region, &mstate->s.qinfo, sizeof(*qinfo)); 1330 if(!qinfo) 1331 return; 1332 qinfo->qname = regional_alloc_init(region, qinfo->qname, 1333 qinfo->qname_len); 1334 if(!qinfo->qname) 1335 return; 1336 *qinfop = qinfo; 1337 *qflags = mstate->s.query_flags; 1338 } 1339 1340 /** 1341 * Continue processing the mesh state at another module. 1342 * Handles module to modules transfer of control. 1343 * Handles module finished. 1344 * @param mesh: the mesh area. 1345 * @param mstate: currently active mesh state. 1346 * Deleted if finished, calls _done and _supers to 1347 * send replies to clients and inform other mesh states. 1348 * This in turn may create additional runnable mesh states. 1349 * @param s: state at which the current module exited. 1350 * @param ev: the event sent to the module. 1351 * returned is the event to send to the next module. 1352 * @return true if continue processing at the new module. 1353 * false if not continued processing is needed. 1354 */ 1355 static int 1356 mesh_continue(struct mesh_area* mesh, struct mesh_state* mstate, 1357 enum module_ext_state s, enum module_ev* ev) 1358 { 1359 mstate->num_activated++; 1360 if(mstate->num_activated > MESH_MAX_ACTIVATION) { 1361 /* module is looping. Stop it. */ 1362 log_err("internal error: looping module (%s) stopped", 1363 mesh->mods.mod[mstate->s.curmod]->name); 1364 log_query_info(VERB_QUERY, "pass error for qstate", 1365 &mstate->s.qinfo); 1366 s = module_error; 1367 } 1368 if(s == module_wait_module || s == module_restart_next) { 1369 /* start next module */ 1370 mstate->s.curmod++; 1371 if(mesh->mods.num == mstate->s.curmod) { 1372 log_err("Cannot pass to next module; at last module"); 1373 log_query_info(VERB_QUERY, "pass error for qstate", 1374 &mstate->s.qinfo); 1375 mstate->s.curmod--; 1376 return mesh_continue(mesh, mstate, module_error, ev); 1377 } 1378 if(s == module_restart_next) { 1379 int curmod = mstate->s.curmod; 1380 for(; mstate->s.curmod < mesh->mods.num; 1381 mstate->s.curmod++) { 1382 fptr_ok(fptr_whitelist_mod_clear( 1383 mesh->mods.mod[mstate->s.curmod]->clear)); 1384 (*mesh->mods.mod[mstate->s.curmod]->clear) 1385 (&mstate->s, mstate->s.curmod); 1386 mstate->s.minfo[mstate->s.curmod] = NULL; 1387 } 1388 mstate->s.curmod = curmod; 1389 } 1390 *ev = module_event_pass; 1391 return 1; 1392 } 1393 if(s == module_wait_subquery && mstate->sub_set.count == 0) { 1394 log_err("module cannot wait for subquery, subquery list empty"); 1395 log_query_info(VERB_QUERY, "pass error for qstate", 1396 &mstate->s.qinfo); 1397 s = module_error; 1398 } 1399 if(s == module_error && mstate->s.return_rcode == LDNS_RCODE_NOERROR) { 1400 /* error is bad, handle pass back up below */ 1401 mstate->s.return_rcode = LDNS_RCODE_SERVFAIL; 1402 } 1403 if(s == module_error) { 1404 mesh_query_done(mstate); 1405 mesh_walk_supers(mesh, mstate); 1406 mesh_state_delete(&mstate->s); 1407 return 0; 1408 } 1409 if(s == module_finished) { 1410 if(mstate->s.curmod == 0) { 1411 struct query_info* qinfo = NULL; 1412 uint16_t qflags; 1413 1414 mesh_query_done(mstate); 1415 mesh_walk_supers(mesh, mstate); 1416 1417 /* If the answer to the query needs to be refetched 1418 * from an external DNS server, we'll need to schedule 1419 * a prefetch after removing the current state, so 1420 * we need to make a copy of the query info here. */ 1421 if(mstate->s.need_refetch) 1422 mesh_copy_qinfo(mstate, &qinfo, &qflags); 1423 1424 mesh_state_delete(&mstate->s); 1425 if(qinfo) { 1426 mesh_schedule_prefetch(mesh, qinfo, qflags, 1427 0, 1); 1428 } 1429 return 0; 1430 } 1431 /* pass along the locus of control */ 1432 mstate->s.curmod --; 1433 *ev = module_event_moddone; 1434 return 1; 1435 } 1436 return 0; 1437 } 1438 1439 void mesh_run(struct mesh_area* mesh, struct mesh_state* mstate, 1440 enum module_ev ev, struct outbound_entry* e) 1441 { 1442 enum module_ext_state s; 1443 verbose(VERB_ALGO, "mesh_run: start"); 1444 while(mstate) { 1445 /* run the module */ 1446 fptr_ok(fptr_whitelist_mod_operate( 1447 mesh->mods.mod[mstate->s.curmod]->operate)); 1448 (*mesh->mods.mod[mstate->s.curmod]->operate) 1449 (&mstate->s, ev, mstate->s.curmod, e); 1450 1451 /* examine results */ 1452 mstate->s.reply = NULL; 1453 regional_free_all(mstate->s.env->scratch); 1454 s = mstate->s.ext_state[mstate->s.curmod]; 1455 verbose(VERB_ALGO, "mesh_run: %s module exit state is %s", 1456 mesh->mods.mod[mstate->s.curmod]->name, strextstate(s)); 1457 e = NULL; 1458 if(mesh_continue(mesh, mstate, s, &ev)) 1459 continue; 1460 1461 /* run more modules */ 1462 ev = module_event_pass; 1463 if(mesh->run.count > 0) { 1464 /* pop random element off the runnable tree */ 1465 mstate = (struct mesh_state*)mesh->run.root->key; 1466 (void)rbtree_delete(&mesh->run, mstate); 1467 } else mstate = NULL; 1468 } 1469 if(verbosity >= VERB_ALGO) { 1470 mesh_stats(mesh, "mesh_run: end"); 1471 mesh_log_list(mesh); 1472 } 1473 } 1474 1475 void 1476 mesh_log_list(struct mesh_area* mesh) 1477 { 1478 char buf[30]; 1479 struct mesh_state* m; 1480 int num = 0; 1481 RBTREE_FOR(m, struct mesh_state*, &mesh->all) { 1482 snprintf(buf, sizeof(buf), "%d%s%s%s%s%s%s mod%d %s%s", 1483 num++, (m->s.is_priming)?"p":"", /* prime */ 1484 (m->s.is_valrec)?"v":"", /* prime */ 1485 (m->s.query_flags&BIT_RD)?"RD":"", 1486 (m->s.query_flags&BIT_CD)?"CD":"", 1487 (m->super_set.count==0)?"d":"", /* detached */ 1488 (m->sub_set.count!=0)?"c":"", /* children */ 1489 m->s.curmod, (m->reply_list)?"rep":"", /*hasreply*/ 1490 (m->cb_list)?"cb":"" /* callbacks */ 1491 ); 1492 log_query_info(VERB_ALGO, buf, &m->s.qinfo); 1493 } 1494 } 1495 1496 void 1497 mesh_stats(struct mesh_area* mesh, const char* str) 1498 { 1499 verbose(VERB_DETAIL, "%s %u recursion states (%u with reply, " 1500 "%u detached), %u waiting replies, %u recursion replies " 1501 "sent, %d replies dropped, %d states jostled out", 1502 str, (unsigned)mesh->all.count, 1503 (unsigned)mesh->num_reply_states, 1504 (unsigned)mesh->num_detached_states, 1505 (unsigned)mesh->num_reply_addrs, 1506 (unsigned)mesh->replies_sent, 1507 (unsigned)mesh->stats_dropped, 1508 (unsigned)mesh->stats_jostled); 1509 if(mesh->replies_sent > 0) { 1510 struct timeval avg; 1511 timeval_divide(&avg, &mesh->replies_sum_wait, 1512 mesh->replies_sent); 1513 log_info("average recursion processing time " 1514 ARG_LL "d.%6.6d sec", 1515 (long long)avg.tv_sec, (int)avg.tv_usec); 1516 log_info("histogram of recursion processing times"); 1517 timehist_log(mesh->histogram, "recursions"); 1518 } 1519 } 1520 1521 void 1522 mesh_stats_clear(struct mesh_area* mesh) 1523 { 1524 if(!mesh) 1525 return; 1526 mesh->replies_sent = 0; 1527 mesh->replies_sum_wait.tv_sec = 0; 1528 mesh->replies_sum_wait.tv_usec = 0; 1529 mesh->stats_jostled = 0; 1530 mesh->stats_dropped = 0; 1531 timehist_clear(mesh->histogram); 1532 mesh->ans_secure = 0; 1533 mesh->ans_bogus = 0; 1534 memset(&mesh->ans_rcode[0], 0, sizeof(size_t)*16); 1535 mesh->ans_nodata = 0; 1536 } 1537 1538 size_t 1539 mesh_get_mem(struct mesh_area* mesh) 1540 { 1541 struct mesh_state* m; 1542 size_t s = sizeof(*mesh) + sizeof(struct timehist) + 1543 sizeof(struct th_buck)*mesh->histogram->num + 1544 sizeof(sldns_buffer) + sldns_buffer_capacity(mesh->qbuf_bak); 1545 RBTREE_FOR(m, struct mesh_state*, &mesh->all) { 1546 /* all, including m itself allocated in qstate region */ 1547 s += regional_get_mem(m->s.region); 1548 } 1549 return s; 1550 } 1551 1552 int 1553 mesh_detect_cycle(struct module_qstate* qstate, struct query_info* qinfo, 1554 uint16_t flags, int prime, int valrec) 1555 { 1556 struct mesh_area* mesh = qstate->env->mesh; 1557 struct mesh_state* dep_m = NULL; 1558 if(!mesh_state_is_unique(qstate->mesh_info)) 1559 dep_m = mesh_area_find(mesh, NULL, qinfo, flags, prime, valrec); 1560 return mesh_detect_cycle_found(qstate, dep_m); 1561 } 1562 1563 void mesh_list_insert(struct mesh_state* m, struct mesh_state** fp, 1564 struct mesh_state** lp) 1565 { 1566 /* insert as last element */ 1567 m->prev = *lp; 1568 m->next = NULL; 1569 if(*lp) 1570 (*lp)->next = m; 1571 else *fp = m; 1572 *lp = m; 1573 } 1574 1575 void mesh_list_remove(struct mesh_state* m, struct mesh_state** fp, 1576 struct mesh_state** lp) 1577 { 1578 if(m->next) 1579 m->next->prev = m->prev; 1580 else *lp = m->prev; 1581 if(m->prev) 1582 m->prev->next = m->next; 1583 else *fp = m->next; 1584 } 1585