1 /* udb.c - u(micro) data base. 2 * By W.C.A. Wijngaards 3 * Copyright 2010, NLnet Labs. 4 * BSD, see LICENSE. 5 */ 6 #include "config.h" 7 #include "udb.h" 8 #include <string.h> 9 #include <errno.h> 10 #include <stdio.h> 11 #include <unistd.h> 12 #include <assert.h> 13 #include "lookup3.h" 14 #include "util.h" 15 16 /* mmap and friends */ 17 #include <sys/types.h> 18 #include <sys/stat.h> 19 #include <fcntl.h> 20 #include <sys/mman.h> 21 22 /* for systems without, portable definition, failed-1 and async is a flag */ 23 #ifndef MAP_FAILED 24 #define MAP_FAILED ((void*)-1) 25 #endif 26 #ifndef MS_SYNC 27 #define MS_SYNC 0 28 #endif 29 30 /** move and fixup xl segment */ 31 static void move_xl_segment(void* base, udb_base* udb, udb_void xl, 32 udb_void n, uint64_t sz, uint64_t startseg); 33 /** attempt to compact the data and move free space to the end */ 34 static int udb_alloc_compact(void* base, udb_alloc* alloc); 35 36 /** convert pointer to the data part to a pointer to the base of the chunk */ 37 static udb_void 38 chunk_from_dataptr(udb_void data) 39 { 40 /* we use that sizeof(udb_chunk_d) != sizeof(udb_xl_chunk_d) and 41 * that xl_chunk_d is aligned on x**1024 boundaries. */ 42 udb_void xl = data - sizeof(udb_xl_chunk_d); 43 if( (xl & (UDB_ALLOC_CHUNK_SIZE-1)) == 0) 44 return xl; 45 return data - sizeof(udb_chunk_d); 46 } 47 48 udb_void chunk_from_dataptr_ext(udb_void data) { 49 return chunk_from_dataptr(data); 50 } 51 52 #ifndef NDEBUG 53 /** read last octet from a chunk */ 54 static uint8_t 55 chunk_get_last(void* base, udb_void chunk, int exp) 56 { 57 return *((uint8_t*)UDB_REL(base, chunk+(1<<exp)-1)); 58 } 59 #endif 60 61 /** write last octet of a chunk */ 62 static void 63 chunk_set_last(void* base, udb_void chunk, int exp, uint8_t value) 64 { 65 *((uint8_t*)UDB_REL(base, chunk+(1<<exp)-1)) = value; 66 } 67 68 /** create udb_base from a file descriptor (must be at start of file) */ 69 udb_base* 70 udb_base_create_fd(const char* fname, int fd, udb_walk_relptr_func walkfunc, 71 void* arg) 72 { 73 uint64_t m, fsz; 74 udb_glob_d g; 75 ssize_t r; 76 udb_base* udb = (udb_base*)xalloc_zero(sizeof(*udb)); 77 if(!udb) { 78 log_msg(LOG_ERR, "out of memory"); 79 close(fd); 80 return NULL; 81 } 82 udb->fname = strdup(fname); 83 if(!udb->fname) { 84 log_msg(LOG_ERR, "out of memory"); 85 free(udb); 86 close(fd); 87 return NULL; 88 } 89 udb->walkfunc = walkfunc; 90 udb->walkarg = arg; 91 udb->fd = fd; 92 udb->ram_size = 1024; 93 udb->ram_mask = (int)udb->ram_size - 1; 94 udb->ram_hash = (udb_ptr**)xalloc_array_zero(sizeof(udb_ptr*), 95 udb->ram_size); 96 if(!udb->ram_hash) { 97 free(udb->fname); 98 free(udb); 99 log_msg(LOG_ERR, "out of memory"); 100 close(fd); 101 return NULL; 102 } 103 104 /* read magic */ 105 if((r=read(fd, &m, sizeof(m))) == -1) { 106 log_msg(LOG_ERR, "%s: %s", fname, strerror(errno)); 107 goto fail; 108 } else if(r != (ssize_t)sizeof(m)) { 109 log_msg(LOG_ERR, "%s: file too short", fname); 110 goto fail; 111 } 112 /* TODO : what if bigendian and littleendian file, see magic */ 113 if(m != UDB_MAGIC) { 114 log_msg(LOG_ERR, "%s: wrong type of file", fname); 115 goto fail; 116 } 117 /* read header */ 118 if((r=read(fd, &g, sizeof(g))) == -1) { 119 log_msg(LOG_ERR, "%s: %s\n", fname, strerror(errno)); 120 goto fail; 121 } else if(r != (ssize_t)sizeof(g)) { 122 log_msg(LOG_ERR, "%s: file too short", fname); 123 goto fail; 124 } 125 if(g.version != 0) { 126 log_msg(LOG_ERR, "%s: unknown file version %d", fname, 127 (int)g.version); 128 goto fail; 129 } 130 if(g.hsize < UDB_HEADER_SIZE) { 131 log_msg(LOG_ERR, "%s: header size too small %d", fname, 132 (int)g.hsize); 133 goto fail; 134 } 135 if(g.hsize > UDB_HEADER_SIZE) { 136 log_msg(LOG_WARNING, "%s: header size too large %d", fname, 137 (int)g.hsize); 138 goto fail; 139 } 140 if(g.clean_close != 1) { 141 log_msg(LOG_WARNING, "%s: not cleanly closed %d", fname, 142 (int)g.clean_close); 143 goto fail; 144 } 145 if(g.dirty_alloc != 0) { 146 log_msg(LOG_WARNING, "%s: not cleanly closed (alloc:%d)", fname, 147 (int)g.dirty_alloc); 148 goto fail; 149 } 150 151 /* check file size correctly written, for 4.0.2 nsd.db failure */ 152 fsz = (uint64_t)lseek(fd, (off_t)0, SEEK_END); 153 (void)lseek(fd, (off_t)0, SEEK_SET); 154 if(g.fsize != fsz) { 155 log_msg(LOG_WARNING, "%s: file size %llu but mmap header " 156 "has size %llu", fname, (unsigned long long)fsz, 157 (unsigned long long)g.fsize); 158 goto fail; 159 } 160 161 /* mmap it */ 162 if(g.fsize < UDB_HEADER_SIZE || g.fsize < g.hsize) { 163 log_msg(LOG_ERR, "%s: file too short", fname); 164 goto fail; 165 } 166 if(g.fsize > (uint64_t)400*1024*1024*1024*1024) /* 400 Tb */ { 167 log_msg(LOG_WARNING, "%s: file size too large %llu", 168 fname, (unsigned long long)g.fsize); 169 goto fail; 170 } 171 udb->base_size = (size_t)g.fsize; 172 #ifdef HAVE_MMAP 173 /* note the size_t casts must be there for portability, on some 174 * systems the layout of memory is otherwise broken. */ 175 udb->base = mmap(NULL, (size_t)udb->base_size, 176 (int)PROT_READ|PROT_WRITE, (int)MAP_SHARED, 177 (int)udb->fd, (off_t)0); 178 #else 179 udb->base = MAP_FAILED; errno = ENOSYS; 180 #endif 181 if(udb->base == MAP_FAILED) { 182 udb->base = NULL; 183 log_msg(LOG_ERR, "mmap(size %u) error: %s", 184 (unsigned)udb->base_size, strerror(errno)); 185 fail: 186 close(fd); 187 free(udb->fname); 188 free(udb->ram_hash); 189 free(udb); 190 return NULL; 191 } 192 193 /* init completion */ 194 udb->glob_data = (udb_glob_d*)(udb->base+sizeof(uint64_t)); 195 r = 0; 196 /* cannot be dirty because that is goto fail above */ 197 if(udb->glob_data->dirty_alloc != udb_dirty_clean) 198 r = 1; 199 udb->alloc = udb_alloc_create(udb, (udb_alloc_d*)( 200 (void*)udb->glob_data+sizeof(*udb->glob_data))); 201 if(!udb->alloc) { 202 log_msg(LOG_ERR, "out of memory"); 203 udb_base_free(udb); 204 return NULL; 205 } 206 if(r) { 207 /* and compact now, or resume compacting */ 208 udb_alloc_compact(udb, udb->alloc); 209 udb_base_sync(udb, 1); 210 } 211 udb->glob_data->clean_close = 0; 212 213 return udb; 214 } 215 216 udb_base* udb_base_create_read(const char* fname, udb_walk_relptr_func walkfunc, 217 void* arg) 218 { 219 int fd = open(fname, O_RDWR); 220 if(fd == -1) { 221 log_msg(LOG_ERR, "%s: %s", fname, strerror(errno)); 222 return NULL; 223 } 224 return udb_base_create_fd(fname, fd, walkfunc, arg); 225 } 226 227 /** init new udb_global structure */ 228 static void udb_glob_init_new(udb_glob_d* g) 229 { 230 memset(g, 0, sizeof(*g)); 231 g->hsize = UDB_HEADER_SIZE; 232 g->fsize = UDB_HEADER_SIZE; 233 } 234 235 /** write data to file and check result */ 236 static int 237 write_fdata(const char* fname, int fd, void* data, size_t len) 238 { 239 ssize_t w; 240 if((w=write(fd, data, len)) == -1) { 241 log_msg(LOG_ERR, "%s: %s", fname, strerror(errno)); 242 close(fd); 243 return 0; 244 } else if(w != (ssize_t)len) { 245 log_msg(LOG_ERR, "%s: short write (disk full?)", fname); 246 close(fd); 247 return 0; 248 } 249 return 1; 250 } 251 252 udb_base* udb_base_create_new(const char* fname, udb_walk_relptr_func walkfunc, 253 void* arg) 254 { 255 uint64_t m; 256 udb_glob_d g; 257 udb_alloc_d a; 258 uint64_t endsize = UDB_HEADER_SIZE; 259 uint64_t endexp = 0; 260 int fd = open(fname, O_CREAT|O_RDWR, 0600); 261 if(fd == -1) { 262 log_msg(LOG_ERR, "%s: %s", fname, strerror(errno)); 263 return NULL; 264 } 265 m = UDB_MAGIC; 266 udb_glob_init_new(&g); 267 udb_alloc_init_new(&a); 268 g.clean_close = 1; 269 270 /* write new data to file (closes fd on error) */ 271 if(!write_fdata(fname, fd, &m, sizeof(m))) 272 return NULL; 273 if(!write_fdata(fname, fd, &g, sizeof(g))) 274 return NULL; 275 if(!write_fdata(fname, fd, &a, sizeof(a))) 276 return NULL; 277 if(!write_fdata(fname, fd, &endsize, sizeof(endsize))) 278 return NULL; 279 if(!write_fdata(fname, fd, &endexp, sizeof(endexp))) 280 return NULL; 281 /* rewind to start */ 282 if(lseek(fd, (off_t)0, SEEK_SET) == (off_t)-1) { 283 log_msg(LOG_ERR, "%s: lseek %s", fname, strerror(errno)); 284 close(fd); 285 return NULL; 286 } 287 /* truncate to the right size */ 288 if(ftruncate(fd, (off_t)g.fsize) < 0) { 289 log_msg(LOG_ERR, "%s: ftruncate(%d): %s", fname, 290 (int)g.fsize, strerror(errno)); 291 close(fd); 292 return NULL; 293 } 294 return udb_base_create_fd(fname, fd, walkfunc, arg); 295 } 296 297 /** shrink the udb base if it has unused space at the end */ 298 static void 299 udb_base_shrink(udb_base* udb, uint64_t nsize) 300 { 301 udb->glob_data->dirty_alloc = udb_dirty_fsize; 302 udb->glob_data->fsize = nsize; 303 /* sync, does not *seem* to be required on Linux, but it is 304 certainly required on OpenBSD. Otherwise changed data is lost. */ 305 #ifdef HAVE_MMAP 306 msync(udb->base, udb->base_size, MS_ASYNC); 307 #endif 308 if(ftruncate(udb->fd, (off_t)nsize) != 0) { 309 log_msg(LOG_ERR, "%s: ftruncate(%u) %s", udb->fname, 310 (unsigned)nsize, strerror(errno)); 311 } 312 udb->glob_data->dirty_alloc = udb_dirty_clean; 313 } 314 315 void udb_base_close(udb_base* udb) 316 { 317 if(!udb) 318 return; 319 if(udb->fd != -1 && udb->base && udb->alloc) { 320 uint64_t nsize = udb->alloc->disk->nextgrow; 321 if(nsize < udb->base_size) 322 udb_base_shrink(udb, nsize); 323 } 324 if(udb->fd != -1) { 325 udb->glob_data->clean_close = 1; 326 close(udb->fd); 327 udb->fd = -1; 328 } 329 if(udb->base) { 330 #ifdef HAVE_MMAP 331 if(munmap(udb->base, udb->base_size) == -1) { 332 log_msg(LOG_ERR, "munmap: %s", strerror(errno)); 333 } 334 #endif 335 udb->base = NULL; 336 } 337 } 338 339 void udb_base_free(udb_base* udb) 340 { 341 if(!udb) 342 return; 343 udb_base_close(udb); 344 udb_alloc_delete(udb->alloc); 345 free(udb->ram_hash); 346 free(udb->fname); 347 free(udb); 348 } 349 350 void udb_base_free_keep_mmap(udb_base* udb) 351 { 352 if(!udb) return; 353 if(udb->fd != -1) { 354 close(udb->fd); 355 udb->fd = -1; 356 } 357 udb->base = NULL; 358 udb_alloc_delete(udb->alloc); 359 free(udb->ram_hash); 360 free(udb->fname); 361 free(udb); 362 } 363 364 void udb_base_sync(udb_base* udb, int wait) 365 { 366 if(!udb) return; 367 #ifdef HAVE_MMAP 368 if(msync(udb->base, udb->base_size, wait?MS_SYNC:MS_ASYNC) != 0) { 369 log_msg(LOG_ERR, "msync(%s) error %s", 370 udb->fname, strerror(errno)); 371 } 372 #else 373 (void)wait; 374 #endif 375 } 376 377 /** hash a chunk pointer */ 378 static uint32_t 379 chunk_hash_ptr(udb_void p) 380 { 381 /* put p into an array of uint32 */ 382 uint32_t h[sizeof(p)/sizeof(uint32_t)]; 383 memcpy(&h, &p, sizeof(h)); 384 return hashword(h, sizeof(p)/sizeof(uint32_t), 0x8763); 385 } 386 387 /** check that the given pointer is on the bucket for the given offset */ 388 int udb_ptr_is_on_bucket(udb_base* udb, udb_ptr* ptr, udb_void to) 389 { 390 uint32_t i = chunk_hash_ptr(to) & udb->ram_mask; 391 udb_ptr* p; 392 assert((size_t)i < udb->ram_size); 393 for(p = udb->ram_hash[i]; p; p=p->next) { 394 if(p == ptr) 395 return 1; 396 } 397 return 0; 398 } 399 400 /** grow the ram array */ 401 static void 402 grow_ram_hash(udb_base* udb, udb_ptr** newhash) 403 { 404 size_t i; 405 size_t osize= udb->ram_size; 406 udb_ptr* p, *np; 407 udb_ptr** oldhash = udb->ram_hash; 408 udb->ram_size *= 2; 409 udb->ram_mask <<= 1; 410 udb->ram_mask |= 1; 411 udb->ram_hash = newhash; 412 /* have to link in every element in the old list into the new list*/ 413 for(i=0; i<osize; i++) { 414 p = oldhash[i]; 415 while(p) { 416 np = p->next; 417 /* link into newhash */ 418 p->prev=NULL; 419 p->next=newhash[chunk_hash_ptr(p->data)&udb->ram_mask]; 420 if(p->next) p->next->prev = p; 421 /* go to next element of oldhash */ 422 p = np; 423 } 424 } 425 free(oldhash); 426 } 427 428 void udb_base_link_ptr(udb_base* udb, udb_ptr* ptr) 429 { 430 uint32_t i = chunk_hash_ptr(ptr->data) & udb->ram_mask; 431 assert((size_t)i < udb->ram_size); 432 #ifdef UDB_CHECK 433 assert(udb_valid_dataptr(udb, ptr->data)); /* must be to whole chunk*/ 434 #endif 435 udb->ram_num++; 436 if(udb->ram_num == udb->ram_size && udb->ram_size<(size_t)0x7fffffff) { 437 /* grow the array, if allocation succeeds */ 438 udb_ptr** newram = (udb_ptr**)xalloc_array_zero( 439 sizeof(udb_ptr*), udb->ram_size*2); 440 if(newram) { 441 grow_ram_hash(udb, newram); 442 } 443 } 444 ptr->prev = NULL; 445 ptr->next = udb->ram_hash[i]; 446 udb->ram_hash[i] = ptr; 447 if(ptr->next) 448 ptr->next->prev = ptr; 449 } 450 451 void udb_base_unlink_ptr(udb_base* udb, udb_ptr* ptr) 452 { 453 assert(ptr->data); 454 #ifdef UDB_CHECK 455 assert(udb_valid_dataptr(udb, ptr->data)); /* ptr must be inited */ 456 assert(udb_ptr_is_on_bucket(udb, ptr, ptr->data)); 457 #endif 458 udb->ram_num--; 459 if(ptr->next) 460 ptr->next->prev = ptr->prev; 461 if(ptr->prev) 462 ptr->prev->next = ptr->next; 463 else { 464 uint32_t i = chunk_hash_ptr(ptr->data) & udb->ram_mask; 465 assert((size_t)i < udb->ram_size); 466 udb->ram_hash[i] = ptr->next; 467 } 468 } 469 470 /** change a set of ram ptrs to a new value */ 471 static void 472 udb_base_ram_ptr_edit(udb_base* udb, udb_void old, udb_void newd) 473 { 474 uint32_t io = chunk_hash_ptr(old) & udb->ram_mask; 475 udb_ptr* p, *np; 476 /* edit them and move them into the new position */ 477 p = udb->ram_hash[io]; 478 while(p) { 479 np = p->next; 480 if(p->data == old) { 481 udb_base_unlink_ptr(udb, p); 482 p->data = newd; 483 udb_base_link_ptr(udb, p); 484 } 485 p = np; 486 } 487 } 488 489 udb_rel_ptr* udb_base_get_userdata(udb_base* udb) 490 { 491 return &udb->glob_data->user_global; 492 } 493 494 void udb_base_set_userdata(udb_base* udb, udb_void user) 495 { 496 #ifdef UDB_CHECK 497 if(user) { assert(udb_valid_dataptr(udb, user)); } 498 #endif 499 udb_rel_ptr_set(udb->base, &udb->glob_data->user_global, user); 500 } 501 502 void udb_base_set_userflags(udb_base* udb, uint8_t v) 503 { 504 udb->glob_data->userflags = v; 505 } 506 507 uint8_t udb_base_get_userflags(udb_base* udb) 508 { 509 return udb->glob_data->userflags; 510 } 511 512 /** re-mmap the udb to specified size */ 513 static void* 514 udb_base_remap(udb_base* udb, udb_alloc* alloc, uint64_t nsize) 515 { 516 #ifdef HAVE_MMAP 517 void* nb; 518 /* for use with valgrind, do not use mremap, but the other version */ 519 #ifdef MREMAP_MAYMOVE 520 nb = mremap(udb->base, udb->base_size, nsize, MREMAP_MAYMOVE); 521 if(nb == MAP_FAILED) { 522 log_msg(LOG_ERR, "mremap(%s, size %u) error %s", 523 udb->fname, (unsigned)nsize, strerror(errno)); 524 return 0; 525 } 526 #else /* !HAVE MREMAP */ 527 /* use munmap-mmap to simulate mremap */ 528 if(munmap(udb->base, udb->base_size) != 0) { 529 log_msg(LOG_ERR, "munmap(%s) error %s", 530 udb->fname, strerror(errno)); 531 } 532 /* provide hint for new location */ 533 /* note the size_t casts must be there for portability, on some 534 * systems the layout of memory is otherwise broken. */ 535 nb = mmap(udb->base, (size_t)nsize, (int)PROT_READ|PROT_WRITE, 536 (int)MAP_SHARED, (int)udb->fd, (off_t)0); 537 /* retry the mmap without basept in case of ENOMEM (FreeBSD8), 538 * the kernel can then try to mmap it at a different location 539 * where more memory is available */ 540 if(nb == MAP_FAILED && errno == ENOMEM) { 541 nb = mmap(NULL, (size_t)nsize, (int)PROT_READ|PROT_WRITE, 542 (int)MAP_SHARED, (int)udb->fd, (off_t)0); 543 } 544 if(nb == MAP_FAILED) { 545 log_msg(LOG_ERR, "mmap(%s, size %u) error %s", 546 udb->fname, (unsigned)nsize, strerror(errno)); 547 udb->base = NULL; 548 return 0; 549 } 550 #endif /* HAVE MREMAP */ 551 if(nb != udb->base) { 552 /* fix up realpointers in udb and alloc */ 553 /* but mremap may have been nice and not move the base */ 554 udb->base = nb; 555 udb->glob_data = (udb_glob_d*)(nb+sizeof(uint64_t)); 556 /* use passed alloc pointer because the udb->alloc may not 557 * be initialized yet */ 558 alloc->disk = (udb_alloc_d*)((void*)udb->glob_data 559 +sizeof(*udb->glob_data)); 560 } 561 udb->base_size = nsize; 562 return nb; 563 #else /* HAVE_MMAP */ 564 (void)udb; (void)alloc; (void)nsize; 565 return NULL; 566 #endif /* HAVE_MMAP */ 567 } 568 569 void 570 udb_base_remap_process(udb_base* udb) 571 { 572 /* assume that fsize is still accessible */ 573 udb_base_remap(udb, udb->alloc, udb->glob_data->fsize); 574 } 575 576 /** grow file to specified size and re-mmap, return new base */ 577 static void* 578 udb_base_grow_and_remap(udb_base* udb, uint64_t nsize) 579 { 580 /* grow file by writing a single zero at that spot, the 581 * rest is filled in with zeroes. */ 582 uint8_t z = 0; 583 ssize_t w; 584 585 assert(nsize > 0); 586 udb->glob_data->dirty_alloc = udb_dirty_fsize; 587 #ifdef HAVE_PWRITE 588 if((w=pwrite(udb->fd, &z, sizeof(z), (off_t)(nsize-1))) == -1) { 589 #else 590 if(lseek(udb->fd, (off_t)(nsize-1), SEEK_SET) == -1) { 591 log_msg(LOG_ERR, "fseek %s: %s", udb->fname, strerror(errno)); 592 return 0; 593 } 594 if((w=write(udb->fd, &z, sizeof(z))) == -1) { 595 #endif 596 log_msg(LOG_ERR, "grow(%s, size %u) error %s", 597 udb->fname, (unsigned)nsize, strerror(errno)); 598 return 0; 599 } else if(w != (ssize_t)sizeof(z)) { 600 log_msg(LOG_ERR, "grow(%s, size %u) failed (disk full?)", 601 udb->fname, (unsigned)nsize); 602 return 0; 603 } 604 udb->glob_data->fsize = nsize; 605 udb->glob_data->dirty_alloc = udb_dirty_clean; 606 return udb_base_remap(udb, udb->alloc, nsize); 607 } 608 609 int udb_exp_size(uint64_t a) 610 { 611 /* find enclosing value such that 2**x >= a */ 612 int x = 0; 613 uint64_t i = a; 614 assert(a != 0); 615 616 i --; 617 /* could optimise this with uint8* access, depends on endianness */ 618 /* first whole bytes */ 619 while( (i&(~(uint64_t)0xff)) ) { 620 i >>= 8; 621 x += 8; 622 } 623 /* now details */ 624 while(i) { 625 i >>= 1; 626 x ++; 627 } 628 assert( ((uint64_t)1<<x) >= a); 629 assert( x==0 || ((uint64_t)1<<(x-1)) < a); 630 return x; 631 } 632 633 int udb_exp_offset(uint64_t o) 634 { 635 /* this means measuring the number of 0 bits on the right */ 636 /* so, if exp zero bits then (o&(2**x-1))==0 */ 637 int x = 0; 638 uint64_t i = o; 639 assert(o != 0); 640 /* first whole bytes */ 641 while( (i&(uint64_t)0xff) == 0) { 642 i >>= 8; 643 x += 8; 644 } 645 /* now details */ 646 while( (i&(uint64_t)0x1) == 0) { 647 i >>= 1; 648 x ++; 649 } 650 assert( o % ((uint64_t)1<<x) == 0); 651 assert( o % ((uint64_t)1<<(x+1)) != 0); 652 return x; 653 } 654 655 void udb_alloc_init_new(udb_alloc_d* a) 656 { 657 assert(UDB_HEADER_SIZE % UDB_ALLOC_CHUNK_MINSIZE == 0); 658 memset(a, 0, sizeof(*a)); 659 /* set new allocations after header, as if allocated in a sequence 660 * of minsize allocations */ 661 a->nextgrow = UDB_HEADER_SIZE; 662 } 663 664 /** fsck the file size, false if failed and file is useless */ 665 static int 666 fsck_fsize(udb_base* udb, udb_alloc* alloc) 667 { 668 off_t realsize; 669 log_msg(LOG_WARNING, "udb-fsck %s: file size wrong", udb->fname); 670 realsize = lseek(udb->fd, (off_t)0, SEEK_END); 671 if(realsize == (off_t)-1) { 672 log_msg(LOG_ERR, "lseek(%s): %s", udb->fname, strerror(errno)); 673 return 0; 674 } 675 udb->glob_data->fsize = (uint64_t)realsize; 676 if(!udb_base_remap(udb, alloc, (uint64_t)realsize)) 677 return 0; 678 udb->glob_data->dirty_alloc = udb_dirty_clean; 679 log_msg(LOG_WARNING, "udb-fsck %s: file size fixed (sync)", udb->fname); 680 udb_base_sync(udb, 1); 681 return 1; 682 } 683 684 /** regenerate freelist add a new free chunk, return next todo */ 685 static udb_void 686 regen_free(void* base, udb_void c, int exp, udb_alloc_d* regen) 687 { 688 udb_free_chunk_d* cp = UDB_FREE_CHUNK(c); 689 uint64_t esz = (uint64_t)1<<exp; 690 if(exp < UDB_ALLOC_CHUNK_MINEXP || exp > UDB_ALLOC_CHUNKS_MAX) { 691 return 0; 692 } 693 cp->type = udb_chunk_type_free; 694 cp->flags = 0; 695 chunk_set_last(base, c, exp, (uint8_t)exp); 696 cp->prev = 0; 697 cp->next = regen->free[exp-UDB_ALLOC_CHUNK_MINEXP]; 698 if(cp->next) 699 UDB_FREE_CHUNK(cp->next)->prev = c; 700 regen->stat_free += esz; 701 return c + esz; 702 } 703 704 /** regenerate xl chunk, return next todo */ 705 static udb_void 706 regen_xl(void* base, udb_void c, udb_alloc_d* regen) 707 { 708 udb_xl_chunk_d* cp = UDB_XL_CHUNK(c); 709 uint64_t xlsz = cp->size; 710 if( (xlsz&(UDB_ALLOC_CHUNK_SIZE-1)) != 0) { 711 return 0; 712 } 713 if( (c&(UDB_ALLOC_CHUNK_SIZE-1)) != 0) { 714 return 0; 715 } 716 /* fixup end-size and end-expmarker */ 717 regen->stat_alloc += xlsz; 718 return c + xlsz; 719 } 720 721 /** regenerate data chunk, return next todo */ 722 static udb_void 723 regen_data(void* base, udb_void c, int exp, udb_alloc_d* regen) 724 { 725 uint64_t esz = (uint64_t)1<<exp; 726 if(exp < UDB_ALLOC_CHUNK_MINEXP || exp > UDB_ALLOC_CHUNKS_MAX) { 727 return 0; 728 } 729 chunk_set_last(base, c, exp, (uint8_t)exp); 730 regen->stat_alloc += esz; 731 return c + esz; 732 } 733 734 /** regenerate a relptr structure inside a data segment */ 735 static void 736 regen_relptr_func(void* base, udb_rel_ptr* rp, void* arg) 737 { 738 udb_void* a = (udb_void*)arg; 739 /* ignore 0 pointers */ 740 if(!rp->data) 741 return; 742 743 /* edit relptrs that point to oldmoved to point to newmoved. */ 744 if(rp->data == a[0]) 745 rp->data = a[1]; 746 747 /* regenerate relptr lists, add this item to the relptr list for 748 * the data that it points to */ 749 udb_rel_ptr_link(base, rp, rp->data); 750 } 751 752 /** regenerate the relptrs store in this data segment */ 753 static void 754 regen_its_ptrs(void* base, udb_base* udb, udb_chunk_d* atp, 755 void* data, uint64_t dsz, udb_void rb_old, udb_void rb_new) 756 { 757 udb_void arg[2]; 758 arg[0] = rb_old; arg[1] = rb_new; 759 /* walk through the structs here and put them on their respective 760 * relptr lists */ 761 (*udb->walkfunc)(base, udb->walkarg, atp->type, data, dsz, 762 ®en_relptr_func, arg); 763 764 } 765 766 /** regenerate relptrlists in the file */ 767 static void 768 regen_ptrlist(void* base, udb_base* udb, udb_alloc* alloc, 769 udb_void rb_old, udb_void rb_new) 770 { 771 udb_void at = alloc->udb->glob_data->hsize; 772 /* clear all ptrlist start pointers in the file. */ 773 while(at < alloc->disk->nextgrow) { 774 int exp = (int)UDB_CHUNK(at)->exp; 775 udb_chunk_type tp = (udb_chunk_type)UDB_CHUNK(at)->type; 776 if(exp == UDB_EXP_XL) { 777 UDB_XL_CHUNK(at)->ptrlist = 0; 778 at += UDB_XL_CHUNK(at)->size; 779 } else if(tp == udb_chunk_type_free) { 780 at += (uint64_t)1<<exp; 781 } else { /* data chunk */ 782 UDB_CHUNK(at)->ptrlist = 0; 783 at += (uint64_t)1<<exp; 784 } 785 } 786 /* walk through all relptr structs and put on the right list. */ 787 at = alloc->udb->glob_data->hsize; 788 while(at < alloc->disk->nextgrow) { 789 udb_chunk_d* atp = UDB_CHUNK(at); 790 int exp = (int)atp->exp; 791 udb_chunk_type tp = (udb_chunk_type)atp->type; 792 uint64_t sz = ((exp == UDB_EXP_XL)?UDB_XL_CHUNK(at)->size: 793 (uint64_t)1<<exp); 794 if(exp == UDB_EXP_XL) { 795 assert(at != rb_old); /* should have been freed */ 796 regen_its_ptrs(base, udb, atp, 797 ((void*)atp)+sizeof(udb_xl_chunk_d), 798 sz-sizeof(udb_xl_chunk_d) - sizeof(uint64_t)*2, 799 rb_old, rb_new); 800 at += sz; 801 } else if(tp == udb_chunk_type_free) { 802 at += sz; 803 } else { /* data chunk */ 804 assert(at != rb_old); /* should have been freed */ 805 regen_its_ptrs(base, udb, atp, 806 ((void*)atp)+sizeof(udb_chunk_d), 807 sz-sizeof(udb_chunk_d)-1, rb_old, rb_new); 808 at += sz; 809 } 810 } 811 } 812 813 814 /** mark free elements from ex XL chunk space and later fixups pick that up */ 815 static void 816 rb_mark_free_segs(void* base, udb_void s, uint64_t m) 817 { 818 udb_void q = s + m - UDB_ALLOC_CHUNK_SIZE; 819 /* because of header and alignment we know s >= UDB_ALLOC_CHUNK_SIZE*/ 820 assert(s >= UDB_ALLOC_CHUNK_SIZE); 821 while(q >= s) { 822 UDB_CHUNK(q)->exp = UDB_ALLOC_CHUNKS_MAX; 823 UDB_CHUNK(q)->type = udb_chunk_type_free; 824 q -= UDB_ALLOC_CHUNK_SIZE; 825 } 826 } 827 828 829 /** fsck rollback or rollforward XL move results */ 830 static int 831 fsck_rb_xl(void* base, udb_base* udb, udb_void rb_old, udb_void rb_new, 832 uint64_t rb_size, uint64_t rb_seg) 833 { 834 835 if(rb_old <= rb_new) 836 return 0; /* XL move one way */ 837 if( (rb_size&(UDB_ALLOC_CHUNK_SIZE-1)) != 0) 838 return 0; /* not aligned */ 839 if( (rb_old&(UDB_ALLOC_CHUNK_SIZE-1)) != 0) 840 return 0; /* not aligned */ 841 if( (rb_new&(UDB_ALLOC_CHUNK_SIZE-1)) != 0) 842 return 0; /* not aligned */ 843 if(rb_new + rb_size <= rb_old) { 844 /* not overlapping: resume copy */ 845 memcpy(UDB_CHUNK(rb_new), UDB_CHUNK(rb_old), rb_size); 846 /* and free up old piece(s) */ 847 rb_mark_free_segs(base, rb_old, rb_size); 848 } else { 849 /* overlapping, see what segment we stopped at 850 * and continue there. */ 851 move_xl_segment(base, udb, rb_old, rb_new, rb_size, rb_seg); 852 /* free up old piece(s); from the end of the moved segment, 853 * until the end of the old segment */ 854 rb_mark_free_segs(base, rb_new+rb_size, (rb_old+rb_size)- 855 (rb_new+rb_size)); 856 } 857 /* do not call fix_ptrs, regenptrs does the job */ 858 return 1; 859 } 860 861 /** fsck rollback or rollforward move results */ 862 static int 863 fsck_rb(void* base, udb_void rb_old, udb_void rb_new, uint64_t rb_size, 864 udb_void* make_free) 865 { 866 if( (rb_size&(rb_size-1)) != 0) 867 return 0; /* not powerof2 */ 868 if( (rb_old&(rb_size-1)) != 0) 869 return 0; /* not aligned */ 870 if( (rb_new&(rb_size-1)) != 0) 871 return 0; /* not aligned */ 872 /* resume copy */ 873 memcpy(UDB_CHUNK(rb_new), UDB_CHUNK(rb_old), rb_size); 874 /* do not call fix_ptrs, regenptrs does the job */ 875 /* make sure udb_old is freed */ 876 *make_free = rb_old; 877 return 1; 878 } 879 880 /** fsck the file and salvage, false if failed and file is useless */ 881 static int 882 fsck_file(udb_base* udb, udb_alloc* alloc, int moved) 883 { 884 void* base = udb->base; 885 udb_alloc_d regen; 886 udb_void at = udb->glob_data->hsize; 887 udb_void rb_old = udb->glob_data->rb_old; 888 udb_void rb_new = udb->glob_data->rb_new; 889 udb_void rb_seg = udb->glob_data->rb_seg; 890 udb_void make_free = 0; 891 uint64_t rb_size = udb->glob_data->rb_size; 892 log_msg(LOG_WARNING, "udb-fsck %s: salvaging", udb->fname); 893 /* walk through the file, use the exp values to see what can be 894 * salvaged */ 895 if(moved && rb_old && rb_new && rb_size) { 896 if(rb_old+rb_size <= alloc->disk->nextgrow 897 && rb_new+rb_size <= alloc->disk->nextgrow) { 898 /* we can use the move information to fix up the 899 * duplicate element (or partially moved element) */ 900 if(rb_size > 1024*1024) { 901 /* XL chunk */ 902 if(!fsck_rb_xl(base, udb, rb_old, rb_new, 903 rb_size, rb_seg)) 904 return 0; 905 } else { 906 if(!fsck_rb(base, rb_old, rb_new, rb_size, 907 &make_free)) 908 return 0; 909 } 910 } 911 } 912 913 /* rebuild freelists */ 914 /* recalculate stats in alloc (except 'stat_data') */ 915 /* possibly new end 'nextgrow' value */ 916 memset(®en, 0, sizeof(regen)); 917 regen.nextgrow = alloc->disk->nextgrow; 918 while(at < regen.nextgrow) { 919 /* figure out this chunk */ 920 int exp = (int)UDB_CHUNK(at)->exp; 921 udb_chunk_type tp = (udb_chunk_type)UDB_CHUNK(at)->type; 922 /* consistency check possible here with end-exp */ 923 if(tp == udb_chunk_type_free || at == make_free) { 924 at = regen_free(base, at, exp, ®en); 925 if(!at) return 0; 926 } else if(exp == UDB_EXP_XL) { 927 /* allocated data of XL size */ 928 at = regen_xl(base, at, ®en); 929 if(!at) return 0; 930 } else if(exp >= UDB_ALLOC_CHUNK_MINEXP 931 && exp <= UDB_ALLOC_CHUNKS_MAX) { 932 /* allocated data */ 933 at = regen_data(base, at, exp, ®en); 934 if(!at) return 0; 935 } else { 936 /* garbage; this must be EOF then */ 937 regen.nextgrow = at; 938 break; 939 } 940 } 941 *alloc->disk = regen; 942 943 /* rebuild relptr lists */ 944 regen_ptrlist(base, udb, alloc, rb_old, rb_new); 945 946 log_msg(LOG_WARNING, "udb-fsck %s: salvaged successfully (sync)", 947 udb->fname); 948 udb->glob_data->rb_old = 0; 949 udb->glob_data->rb_new = 0; 950 udb->glob_data->rb_size = 0; 951 udb->glob_data->dirty_alloc = udb_dirty_clean; 952 udb_base_sync(udb, 1); 953 return 1; 954 } 955 956 957 udb_alloc* udb_alloc_create(udb_base* udb, udb_alloc_d* disk) 958 { 959 udb_alloc* alloc = (udb_alloc*)xalloc_zero(sizeof(*alloc)); 960 if(!alloc) 961 return NULL; 962 alloc->udb = udb; 963 alloc->disk = disk; 964 /* see if committed but uncompleted actions need to be done */ 965 /* preserves the alloc state */ 966 if(udb->glob_data->dirty_alloc != udb_dirty_clean) { 967 if(udb->glob_data->dirty_alloc == udb_dirty_fsize) { 968 if(fsck_fsize(udb, alloc)) 969 return alloc; 970 } else if(udb->glob_data->dirty_alloc == udb_dirty_fl) { 971 if(fsck_file(udb, alloc, 0)) 972 return alloc; 973 } else if(udb->glob_data->dirty_alloc == udb_dirty_compact) { 974 if(fsck_file(udb, alloc, 1)) 975 return alloc; 976 } 977 log_msg(LOG_ERR, "error: file allocation dirty (%d)", 978 (int)udb->glob_data->dirty_alloc); 979 free(alloc); 980 return NULL; 981 } 982 return alloc; 983 } 984 985 void udb_alloc_delete(udb_alloc* alloc) 986 { 987 if(!alloc) return; 988 free(alloc); 989 } 990 991 /** unlink this element from its freelist */ 992 static void 993 udb_alloc_unlink_fl(void* base, udb_alloc* alloc, udb_void chunk, int exp) 994 { 995 udb_free_chunk_d* fp = UDB_FREE_CHUNK(chunk); 996 assert(chunk); 997 /* chunk is a free chunk */ 998 assert(fp->exp == (uint8_t)exp); 999 assert(fp->type == udb_chunk_type_free); 1000 assert(chunk_get_last(base, chunk, exp) == (uint8_t)exp); 1001 /* and thus freelist not empty */ 1002 assert(alloc->disk->free[exp-UDB_ALLOC_CHUNK_MINEXP]); 1003 /* unlink */ 1004 if(fp->prev) 1005 UDB_FREE_CHUNK(fp->prev)->next = fp->next; 1006 else alloc->disk->free[exp-UDB_ALLOC_CHUNK_MINEXP] = fp->next; 1007 if(fp->next) 1008 UDB_FREE_CHUNK(fp->next)->prev = fp->prev; 1009 } 1010 1011 /** pop first element off freelist, list may not be empty */ 1012 static udb_void 1013 udb_alloc_pop_fl(void* base, udb_alloc* alloc, int exp) 1014 { 1015 udb_void f = alloc->disk->free[exp-UDB_ALLOC_CHUNK_MINEXP]; 1016 udb_free_chunk_d* fp = UDB_FREE_CHUNK(f); 1017 assert(f); 1018 assert(fp->exp == (uint8_t)exp); 1019 assert(fp->type == udb_chunk_type_free); 1020 assert(chunk_get_last(base, f, exp) == (uint8_t)exp); 1021 alloc->disk->free[exp-UDB_ALLOC_CHUNK_MINEXP] = fp->next; 1022 if(fp->next) { 1023 UDB_FREE_CHUNK(fp->next)->prev = 0; 1024 } 1025 return f; 1026 } 1027 1028 /** push new element onto freelist */ 1029 static void 1030 udb_alloc_push_fl(void* base, udb_alloc* alloc, udb_void f, int exp) 1031 { 1032 udb_free_chunk_d* fp = UDB_FREE_CHUNK(f); 1033 assert(f); 1034 fp->exp = (uint8_t)exp; 1035 fp->type = udb_chunk_type_free; 1036 fp->flags = 0; 1037 fp->prev = 0; 1038 fp->next = alloc->disk->free[exp-UDB_ALLOC_CHUNK_MINEXP]; 1039 if(fp->next) 1040 UDB_FREE_CHUNK(fp->next)->prev = f; 1041 chunk_set_last(base, f, exp, (uint8_t)exp); 1042 alloc->disk->free[exp-UDB_ALLOC_CHUNK_MINEXP] = f; 1043 } 1044 1045 /** push new element onto freelist - do not initialize the elt */ 1046 static void 1047 udb_alloc_push_fl_noinit(void* base, udb_alloc* alloc, udb_void f, int exp) 1048 { 1049 udb_free_chunk_d* fp = UDB_FREE_CHUNK(f); 1050 assert(f); 1051 assert(fp->exp == (uint8_t)exp); 1052 assert(fp->type == udb_chunk_type_free); 1053 assert(chunk_get_last(base, f, exp) == (uint8_t)exp); 1054 fp->prev = 0; 1055 fp->next = alloc->disk->free[exp-UDB_ALLOC_CHUNK_MINEXP]; 1056 if(fp->next) 1057 UDB_FREE_CHUNK(fp->next)->prev = f; 1058 alloc->disk->free[exp-UDB_ALLOC_CHUNK_MINEXP] = f; 1059 } 1060 1061 /** add free chunks at end until specified alignment occurs */ 1062 static void 1063 grow_align(void* base, udb_alloc* alloc, uint64_t esz) 1064 { 1065 while( (alloc->disk->nextgrow & (esz-1)) != 0) { 1066 /* the nextgrow is not a whole multiple of esz. */ 1067 /* grow a free chunk of max allowed size */ 1068 int fexp = udb_exp_offset(alloc->disk->nextgrow); 1069 uint64_t fsz = (uint64_t)1<<fexp; 1070 udb_void f = alloc->disk->nextgrow; 1071 udb_void fn = alloc->disk->nextgrow+fsz; 1072 assert(fn <= alloc->udb->base_size); 1073 alloc->disk->stat_free += fsz; 1074 udb_alloc_push_fl(base, alloc, f, fexp); 1075 /* now increase nextgrow to commit that free chunk */ 1076 alloc->disk->nextgrow = fn; 1077 } 1078 } 1079 1080 /** append chunks at end of memory space to get size exp, return dataptr */ 1081 static udb_void 1082 grow_chunks(void* base, udb_alloc* alloc, size_t sz, int exp) 1083 { 1084 uint64_t esz = (uint64_t)1<<exp; 1085 udb_void ret; 1086 alloc->udb->glob_data->dirty_alloc = udb_dirty_fl; 1087 grow_align(base, alloc, esz); 1088 /* free chunks are grown, grow the one we want to use */ 1089 ret = alloc->disk->nextgrow; 1090 /* take a new alloced chunk into use */ 1091 UDB_CHUNK(ret)->exp = (uint8_t)exp; 1092 UDB_CHUNK(ret)->flags = 0; 1093 UDB_CHUNK(ret)->ptrlist = 0; 1094 UDB_CHUNK(ret)->type = udb_chunk_type_data; 1095 /* store last octet */ 1096 chunk_set_last(base, ret, exp, (uint8_t)exp); 1097 /* update stats */ 1098 alloc->disk->stat_alloc += esz; 1099 alloc->disk->stat_data += sz; 1100 /* now increase nextgrow to commit this newly allocated chunk */ 1101 alloc->disk->nextgrow += esz; 1102 assert(alloc->disk->nextgrow <= alloc->udb->base_size); 1103 alloc->udb->glob_data->dirty_alloc = udb_dirty_clean; 1104 return ret + sizeof(udb_chunk_d); /* ptr to data */ 1105 } 1106 1107 /** calculate how much space is necessary to grow for this exp */ 1108 static uint64_t 1109 grow_end_calc(udb_alloc* alloc, int exp) 1110 { 1111 uint64_t sz = (uint64_t)1<<exp; 1112 uint64_t ng = alloc->disk->nextgrow; 1113 uint64_t res; 1114 /* if nextgrow is 2**expness, no extra growth needed, only size */ 1115 if( (ng & (sz-1)) == 0) { 1116 /* sz-1 is like 0xfff, and checks if ng is whole 2**exp */ 1117 return ng+sz; /* must grow exactly 2**exp */ 1118 } 1119 /* grow until 2**expness and then we need 2**exp as well */ 1120 /* so, round ng down to whole sz (basically ng-ng%sz, or ng/sz*sz) 1121 * and then add the sz twice (go up to whole sz, and to allocate) */ 1122 res = (ng & ~(sz-1)) + 2*sz; 1123 return res; 1124 } 1125 1126 /** see if we need to grow more than specified to enable sustained growth */ 1127 static uint64_t 1128 grow_extra_check(udb_alloc* alloc, uint64_t ge) 1129 { 1130 const uint64_t mb = 1024*1024; 1131 uint64_t bsz = alloc->udb->base_size; 1132 if(bsz <= mb) { 1133 /* below 1 Mb, double sizes for exponential growth */ 1134 /* takes about 15 times to grow to 1Mb */ 1135 if(ge < bsz*2) 1136 return bsz*2; 1137 } else { 1138 uint64_t gnow = ge - bsz; 1139 /* above 1Mb, grow at least 1 Mb, or 12.5% of current size, 1140 * in whole megabytes rounded up. */ 1141 uint64_t want = ((bsz / 8) & ~(mb-1)) + mb; 1142 if(gnow < want) 1143 return bsz + want; 1144 } 1145 return ge; 1146 } 1147 1148 /** see if free space is enogh to warrant shrink (while file is open) */ 1149 static int 1150 enough_free(udb_alloc* alloc) 1151 { 1152 if(alloc->udb->base_size <= 2*1024*1024) { 1153 /* below 1 Mb, grown by double size, (so up to 2 mb), 1154 * do not shrink unless we can 1/3 in size */ 1155 if(((size_t)alloc->disk->nextgrow)*3 <= alloc->udb->base_size) 1156 return 1; 1157 } else { 1158 /* grown 12.5%, shrink 25% if possible, at least one mb */ 1159 /* between 1mb and 4mb size, it shrinks by 1mb if possible */ 1160 uint64_t space = alloc->udb->base_size - alloc->disk->nextgrow; 1161 if(space >= 1024*1024 && (space*4 >= alloc->udb->base_size 1162 || alloc->udb->base_size < 4*1024*1024)) 1163 return 1; 1164 } 1165 return 0; 1166 } 1167 1168 /** grow space for a chunk of 2**exp and return dataptr */ 1169 static udb_void 1170 udb_alloc_grow_space(void* base, udb_alloc* alloc, size_t sz, int exp) 1171 { 1172 /* commit the grow action 1173 * - the file grow only changes filesize, but not the nextgrow. 1174 * - taking space after nextgrow into use (as free space), 1175 * is like free-ing a chunk (one at a time). 1176 * - and the last chunk taken into use is like alloc. 1177 */ 1178 /* predict how much free space is needed for this */ 1179 uint64_t grow_end = grow_end_calc(alloc, exp); 1180 assert(alloc->udb->base_size >= alloc->disk->nextgrow); 1181 if(grow_end <= alloc->udb->base_size) { 1182 /* we can do this with the available space */ 1183 return grow_chunks(base, alloc, sz, exp); 1184 } 1185 /* we have to grow the file, re-mmap */ 1186 /* see if we need to grow a little more, to avoid endless grow 1187 * efforts on adding data */ 1188 grow_end = grow_extra_check(alloc, grow_end); 1189 if(!(base=udb_base_grow_and_remap(alloc->udb, grow_end))) { 1190 return 0; /* mmap or write failed (disk or mem full) */ 1191 } 1192 /* we have enough space now */ 1193 assert(grow_end <= alloc->udb->base_size); 1194 assert(alloc->udb->glob_data->fsize == alloc->udb->base_size); 1195 return grow_chunks(base, alloc, sz, exp); 1196 } 1197 1198 /** take XL allocation into use at end of file, return dataptr */ 1199 static udb_void 1200 grow_xl(void* base, udb_alloc* alloc, uint64_t xlsz, uint64_t sz) 1201 { 1202 udb_void ret; 1203 udb_xl_chunk_d* p; 1204 alloc->udb->glob_data->dirty_alloc = udb_dirty_fl; 1205 1206 /* align growth to whole mbs */ 1207 grow_align(base, alloc, UDB_ALLOC_CHUNK_SIZE); 1208 1209 /* grow XL segment */ 1210 ret = alloc->disk->nextgrow; 1211 p = UDB_XL_CHUNK(ret); 1212 p->exp = UDB_EXP_XL; 1213 p->size = xlsz; 1214 p->flags = 0; 1215 p->ptrlist = 0; 1216 p->type = udb_chunk_type_data; 1217 1218 /* also put size and marker at end for compaction */ 1219 *((uint64_t*)(UDB_REL(base, ret+xlsz-sizeof(uint64_t)*2))) = xlsz; 1220 *((uint8_t*)(UDB_REL(base, ret+xlsz-1))) = UDB_EXP_XL; 1221 1222 /* stats */ 1223 alloc->disk->stat_data += sz; 1224 alloc->disk->stat_alloc += xlsz; 1225 /* now increase the nextgrow to commit this xl chunk */ 1226 alloc->disk->nextgrow += xlsz; 1227 alloc->udb->glob_data->dirty_alloc = udb_dirty_clean; 1228 return ret + sizeof(udb_xl_chunk_d); /* data ptr */ 1229 } 1230 1231 /** make space for XL allocation */ 1232 static udb_void 1233 udb_alloc_xl_space(void* base, udb_alloc* alloc, size_t sz) 1234 { 1235 /* allocate whole mbs of space, at end of space */ 1236 uint64_t asz = sz + sizeof(udb_xl_chunk_d) + sizeof(uint64_t)*2; 1237 uint64_t need=(asz+UDB_ALLOC_CHUNK_SIZE-1)&(~(UDB_ALLOC_CHUNK_SIZE-1)); 1238 uint64_t grow_end = grow_end_calc(alloc, UDB_ALLOC_CHUNKS_MAX) + need; 1239 assert(need >= asz); 1240 if(grow_end <= alloc->udb->base_size) { 1241 /* can do this in available space */ 1242 return grow_xl(base, alloc, need, sz); 1243 } 1244 /* have to grow file and re-mmap */ 1245 grow_end = grow_extra_check(alloc, grow_end); 1246 if(!(base=udb_base_grow_and_remap(alloc->udb, grow_end))) { 1247 return 0; /* mmap or write failed (disk or mem full) */ 1248 } 1249 /* we have enough space now */ 1250 assert(grow_end <= alloc->udb->base_size); 1251 assert(alloc->udb->glob_data->fsize == alloc->udb->base_size); 1252 return grow_xl(base, alloc, need, sz); 1253 } 1254 1255 /** divide big(2**e2) into pieces so 2**exp fits */ 1256 static udb_void 1257 udb_alloc_subdivide(void* base, udb_alloc* alloc, udb_void big, int e2, 1258 int exp) 1259 { 1260 int e = e2; 1261 uint64_t sz = (uint64_t)1<<e2; 1262 assert(big && e2 > exp); 1263 /* so the returned piece to use is the first piece, 1264 * offload the later half until it fits */ 1265 do { 1266 sz >>= 1; /* divide size of big by two */ 1267 e--; /* that means its exp is one smaller */ 1268 udb_alloc_push_fl(base, alloc, big+sz, e); 1269 } while(e != exp); 1270 /* exit loop when last pushed is same size as what we want */ 1271 return big; 1272 } 1273 1274 /** returns the exponent size of the chunk needed for data sz */ 1275 static int 1276 udb_alloc_exp_needed(size_t sz) 1277 { 1278 uint64_t asz = sz + sizeof(udb_chunk_d) + 1; 1279 if(asz > UDB_ALLOC_CHUNK_SIZE) { 1280 return UDB_EXP_XL; 1281 } else if(asz <= UDB_ALLOC_CHUNK_MINSIZE) { 1282 return UDB_ALLOC_CHUNK_MINEXP; 1283 } 1284 return udb_exp_size(asz); 1285 } 1286 1287 udb_void udb_alloc_space(udb_alloc* alloc, size_t sz) 1288 { 1289 void* base = alloc->udb->base; 1290 /* calculate actual allocation size */ 1291 int e2, exp = udb_alloc_exp_needed(sz); 1292 if(exp == UDB_EXP_XL) 1293 return udb_alloc_xl_space(base, alloc, sz); 1294 /* see if there is a free chunk of that size exactly */ 1295 if(alloc->disk->free[exp-UDB_ALLOC_CHUNK_MINEXP]) { 1296 /* snip from freelist, udb_chunk_d */ 1297 udb_void ret; 1298 alloc->udb->glob_data->dirty_alloc = udb_dirty_fl; 1299 ret = udb_alloc_pop_fl(base, alloc, exp); 1300 /* use it - size octets already OK */ 1301 UDB_CHUNK(ret)->flags = 0; 1302 UDB_CHUNK(ret)->ptrlist = 0; 1303 UDB_CHUNK(ret)->type = udb_chunk_type_data; 1304 /* update stats */ 1305 alloc->disk->stat_data += sz; 1306 alloc->disk->stat_alloc += (1<<exp); 1307 assert(alloc->disk->stat_free >= (1u<<exp)); 1308 alloc->disk->stat_free -= (1<<exp); 1309 alloc->udb->glob_data->dirty_alloc = udb_dirty_clean; 1310 return ret + sizeof(udb_chunk_d); /* ptr to data */ 1311 } 1312 /* see if we can subdivide a larger chunk */ 1313 for(e2 = exp+1; e2 <= UDB_ALLOC_CHUNKS_MAX; e2++) 1314 if(alloc->disk->free[e2-UDB_ALLOC_CHUNK_MINEXP]) { 1315 udb_void big, ret; /* udb_chunk_d */ 1316 alloc->udb->glob_data->dirty_alloc = udb_dirty_fl; 1317 big = udb_alloc_pop_fl(base, alloc, e2); 1318 /* push other parts onto freelists (needs inited) */ 1319 ret = udb_alloc_subdivide(base, alloc, big, e2, exp); 1320 /* use final part (needs inited) */ 1321 UDB_CHUNK(ret)->exp = (uint8_t)exp; 1322 /* if stop here; the new exp makes smaller free chunk*/ 1323 UDB_CHUNK(ret)->flags = 0; 1324 UDB_CHUNK(ret)->ptrlist = 0; 1325 /* set type to commit data chunk */ 1326 UDB_CHUNK(ret)->type = udb_chunk_type_data; 1327 /* store last octet */ 1328 chunk_set_last(base, ret, exp, (uint8_t)exp); 1329 /* update stats */ 1330 alloc->disk->stat_data += sz; 1331 alloc->disk->stat_alloc += (1<<exp); 1332 assert(alloc->disk->stat_free >= (1u<<exp)); 1333 alloc->disk->stat_free -= (1<<exp); 1334 alloc->udb->glob_data->dirty_alloc = udb_dirty_clean; 1335 return ret + sizeof(udb_chunk_d); /* ptr to data */ 1336 } 1337 /* we need to grow an extra chunk */ 1338 return udb_alloc_grow_space(base, alloc, sz, exp); 1339 } 1340 1341 /** see if there is free space to allocate a chunk into */ 1342 static int 1343 have_free_for(udb_alloc* alloc, int exp) 1344 { 1345 int e2; 1346 if(alloc->disk->free[exp-UDB_ALLOC_CHUNK_MINEXP]) 1347 return exp; 1348 for(e2 = exp+1; e2 <= UDB_ALLOC_CHUNKS_MAX; e2++) 1349 if(alloc->disk->free[e2-UDB_ALLOC_CHUNK_MINEXP]) { 1350 return e2; 1351 } 1352 return 0; 1353 } 1354 1355 /** fix relptr prev and next for moved relptr structures */ 1356 static void 1357 chunk_fix_ptr_each(void* base, udb_rel_ptr* rp, void* arg) 1358 { 1359 udb_void* data = (udb_void*)arg; 1360 udb_void r; 1361 if(!rp->data) 1362 return; 1363 r = UDB_SYSTOREL(base, rp); 1364 if(rp->next) 1365 UDB_REL_PTR(rp->next)->prev = r; 1366 if(rp->prev) 1367 UDB_REL_PTR(rp->prev)->next = r; 1368 else { 1369 /* if this is a pointer to its own chunk, fix it up; 1370 * the data ptr gets set by relptr_edit later. */ 1371 if(rp->data == data[0]) 1372 UDB_CHUNK(data[1])->ptrlist = r; 1373 else UDB_CHUNK(chunk_from_dataptr(rp->data))->ptrlist = r; 1374 } 1375 } 1376 1377 /** fix pointers from and to a moved chunk */ 1378 static void 1379 chunk_fix_ptrs(void* base, udb_base* udb, udb_chunk_d* cp, udb_void data, 1380 uint64_t dsz, udb_void olddata) 1381 { 1382 udb_void d[2]; 1383 d[0] = olddata; 1384 d[1] = data; 1385 (*udb->walkfunc)(base, udb->walkarg, cp->type, UDB_REL(base, data), 1386 dsz, &chunk_fix_ptr_each, d); 1387 udb_rel_ptr_edit(base, cp->ptrlist, data); 1388 udb_base_ram_ptr_edit(udb, olddata, data); 1389 } 1390 1391 /** move an allocated chunk to use a free chunk */ 1392 static void 1393 move_chunk(void* base, udb_alloc* alloc, udb_void f, int exp, uint64_t esz, 1394 int e2) 1395 { 1396 udb_void res = udb_alloc_pop_fl(base, alloc, e2); 1397 udb_chunk_d* rp; 1398 udb_chunk_d* fp; 1399 if(exp != e2) { 1400 /* it is bigger, subdivide it */ 1401 res = udb_alloc_subdivide(base, alloc, res, e2, exp); 1402 } 1403 assert(res != f); 1404 /* setup rollback information */ 1405 alloc->udb->glob_data->rb_old = f; 1406 alloc->udb->glob_data->rb_new = res; 1407 alloc->udb->glob_data->rb_size = esz; 1408 /* take the res, exp into use */ 1409 rp = UDB_CHUNK(res); 1410 fp = UDB_CHUNK(f); 1411 /* copy over the data */ 1412 memcpy(rp, fp, esz); 1413 /* adjust rel ptrs */ 1414 chunk_fix_ptrs(base, alloc->udb, rp, res+sizeof(udb_chunk_d), 1415 esz-sizeof(udb_chunk_d)-1, f+sizeof(udb_chunk_d)); 1416 1417 /* do not freeup the fp; caller does that */ 1418 } 1419 1420 /** unlink several free elements to overwrite with xl chunk */ 1421 static void 1422 free_xl_space(void* base, udb_alloc* alloc, udb_void s, uint64_t m) 1423 { 1424 udb_void q = s + m - UDB_ALLOC_CHUNK_SIZE; 1425 /* because of header and alignment we know s >= UDB_ALLOC_CHUNK_SIZE*/ 1426 assert(s >= UDB_ALLOC_CHUNK_SIZE); 1427 while(q >= s) { 1428 assert(UDB_CHUNK(q)->exp == UDB_ALLOC_CHUNKS_MAX); 1429 assert(UDB_CHUNK(q)->type == udb_chunk_type_free); 1430 udb_alloc_unlink_fl(base, alloc, q, UDB_ALLOC_CHUNKS_MAX); 1431 q -= UDB_ALLOC_CHUNK_SIZE; 1432 } 1433 } 1434 1435 /** move an XL chunk, and keep track of segments for rollback */ 1436 static void 1437 move_xl_segment(void* base, udb_base* udb, udb_void xl, udb_void n, 1438 uint64_t sz, uint64_t startseg) 1439 { 1440 udb_xl_chunk_d* xlp = UDB_XL_CHUNK(xl); 1441 udb_xl_chunk_d* np = UDB_XL_CHUNK(n); 1442 uint64_t amount = xl - n; 1443 assert(n < xl); /* move to compact */ 1444 1445 /* setup move rollback */ 1446 udb->glob_data->rb_old = xl; 1447 udb->glob_data->rb_new = n; 1448 udb->glob_data->rb_size = sz; 1449 1450 /* is it overlapping? */ 1451 if(sz <= amount) { 1452 memcpy(np, xlp, sz); 1453 } else { 1454 /* move and commit per 1M segment to avoid data loss */ 1455 uint64_t seg, maxseg = amount/UDB_ALLOC_CHUNK_SIZE; 1456 for(seg = startseg; seg<maxseg; seg++) { 1457 udb->glob_data->rb_seg = seg; 1458 memcpy(np+seg*UDB_ALLOC_CHUNK_SIZE, 1459 xlp+seg*UDB_ALLOC_CHUNK_SIZE, 1460 UDB_ALLOC_CHUNK_SIZE); 1461 } 1462 1463 } 1464 } 1465 1466 /** move list of XL chunks to the front by the shift amount */ 1467 static void 1468 move_xl_list(void* base, udb_alloc* alloc, udb_void xl_start, uint64_t xl_sz, 1469 uint64_t amount) 1470 { 1471 udb_void xl = xl_start; 1472 assert( (xl_start&(UDB_ALLOC_CHUNK_SIZE-1)) == 0 ); /* aligned */ 1473 assert( (amount&(UDB_ALLOC_CHUNK_SIZE-1)) == 0 ); /* multiples */ 1474 assert( (xl_sz&(UDB_ALLOC_CHUNK_SIZE-1)) == 0 ); /* multiples */ 1475 while(xl < xl_start+xl_sz) { 1476 udb_xl_chunk_d* xlp = UDB_XL_CHUNK(xl); 1477 udb_void n = xl-amount; 1478 uint64_t sz = xlp->size; 1479 assert(xlp->exp == UDB_EXP_XL); 1480 move_xl_segment(base, alloc->udb, xl, n, sz, 0); 1481 chunk_fix_ptrs(base, alloc->udb, UDB_CHUNK(n), 1482 n+sizeof(udb_xl_chunk_d), 1483 sz-sizeof(udb_xl_chunk_d)-sizeof(uint64_t)*2, 1484 xl+sizeof(udb_xl_chunk_d)); 1485 } 1486 alloc->disk->stat_free -= amount; 1487 alloc->disk->nextgrow -= amount; 1488 alloc->udb->glob_data->rb_old = 0; 1489 alloc->udb->glob_data->rb_new = 0; 1490 alloc->udb->glob_data->rb_size = 0; 1491 } 1492 1493 /** see if free chunk can coagulate with another chunk, return other chunk */ 1494 static udb_void 1495 coagulate_possible(void* base, udb_alloc* alloc, udb_void f, int exp, 1496 uint64_t esz) 1497 { 1498 udb_void other = f^esz; 1499 if(exp == UDB_ALLOC_CHUNKS_MAX) 1500 return 0; /* no further merges */ 1501 if(other >= alloc->udb->base_size) 1502 return 0; /* not allocated */ 1503 if(other >= alloc->disk->nextgrow) 1504 return 0; /* not in use */ 1505 if(other < alloc->udb->glob_data->hsize) 1506 return 0; /* cannot merge with header */ 1507 /* the header is also protected by the special exp marker */ 1508 /* see if the other chunk is a free chunk */ 1509 1510 /* check closest marker to avoid large memory churn */ 1511 /* and also it makes XL allocations and header special markers work */ 1512 if(f > other) { 1513 assert(f > 1); /* this is certain because of header */ 1514 if(*((uint8_t*)UDB_REL(base, f-1)) == (uint8_t)exp) { 1515 /* can do it if the other part is a free chunk */ 1516 assert(UDB_FREE_CHUNK(other)->exp == (uint8_t)exp); 1517 if(UDB_CHUNK(other)->type == udb_chunk_type_free) 1518 return other; 1519 } 1520 } else { 1521 if(UDB_CHUNK(other)->exp == (uint8_t)exp) { 1522 /* can do it if the other part is a free chunk */ 1523 assert(chunk_get_last(base, other, exp)==(uint8_t)exp); 1524 if(UDB_CHUNK(other)->type == udb_chunk_type_free) 1525 return other; 1526 } 1527 } 1528 return 0; 1529 } 1530 1531 /** coagulate and then add new free segment, return final free segment */ 1532 static udb_void 1533 coagulate_and_push(void* base, udb_alloc* alloc, udb_void last, int exp, 1534 uint64_t esz) 1535 { 1536 /* new free chunk here, attempt coagulate */ 1537 udb_void other; 1538 while( (other=coagulate_possible(base, alloc, last, exp, esz)) ) { 1539 /* unlink that other chunk */ 1540 udb_alloc_unlink_fl(base, alloc, other, exp); 1541 /* merge up */ 1542 if(other < last) 1543 last = other; 1544 exp++; 1545 esz <<= 1; 1546 } 1547 /* free the final segment */ 1548 udb_alloc_push_fl(base, alloc, last, exp); 1549 return last; 1550 } 1551 1552 /** attempt to compact the data and move free space to the end */ 1553 int 1554 udb_alloc_compact(void* base, udb_alloc* alloc) 1555 { 1556 udb_void last; 1557 int exp, e2; 1558 uint64_t esz; 1559 uint64_t at = alloc->disk->nextgrow; 1560 udb_void xl_start = 0; 1561 uint64_t xl_sz = 0; 1562 if(alloc->udb->inhibit_compact) 1563 return 1; 1564 alloc->udb->useful_compact = 0; 1565 while(at > alloc->udb->glob_data->hsize) { 1566 /* grab last entry */ 1567 exp = (int)*((uint8_t*)UDB_REL(base, at-1)); 1568 if(exp == UDB_EXP_XL) { 1569 /* for XL chunks: 1570 * - inspect the size of the XLchunklist at end 1571 * - attempt to compact in front of of XLchunklist 1572 */ 1573 uint64_t xlsz = *((uint64_t*)UDB_REL(base, 1574 at-sizeof(uint64_t)*2)); 1575 udb_void xl = at-xlsz; 1576 #ifndef NDEBUG 1577 udb_xl_chunk_d* xlp = UDB_XL_CHUNK(xl); 1578 assert(xlp->exp == UDB_EXP_XL); 1579 assert(xlp->type != udb_chunk_type_free); 1580 #endif 1581 /* got thesegment add to the xl chunk list */ 1582 if(xl_start != 0 && xl+xlsz != xl_start) { 1583 /* nonadjoining XL part, but they are aligned, 1584 * so the space in between is whole Mbs, 1585 * shift the later part(s) and continue */ 1586 uint64_t m = xl_start - (xl+xlsz); 1587 assert(xl_start > xl+xlsz); 1588 alloc->udb->glob_data->dirty_alloc = udb_dirty_compact; 1589 free_xl_space(base, alloc, xl+xlsz, m); 1590 move_xl_list(base, alloc, xl_start, xl_sz, m); 1591 alloc->udb->glob_data->dirty_alloc = udb_dirty_clean; 1592 } 1593 xl_start = xl; 1594 xl_sz += xlsz; 1595 at = xl; 1596 continue; 1597 /* end of XL if */ 1598 } else if(exp < UDB_ALLOC_CHUNK_MINEXP 1599 || exp > UDB_ALLOC_CHUNKS_MAX) 1600 break; /* special chunk or garbage */ 1601 esz = (uint64_t)1<<exp; 1602 last = at - esz; 1603 assert(UDB_CHUNK(last)->exp == (uint8_t)exp); 1604 if(UDB_CHUNK(last)->type == udb_chunk_type_free) { 1605 /* if xlstart continue looking to move stuff, but do 1606 * not unlink this free segment */ 1607 if(!xl_start) { 1608 /* it is a free chunk, remove it */ 1609 alloc->udb->glob_data->dirty_alloc = udb_dirty_fl; 1610 udb_alloc_unlink_fl(base, alloc, last, exp); 1611 alloc->disk->stat_free -= esz; 1612 alloc->disk->nextgrow = last; 1613 alloc->udb->glob_data->dirty_alloc = udb_dirty_clean; 1614 /* and continue at this point */ 1615 } 1616 at = last; 1617 } else if( (e2=have_free_for(alloc, exp)) ) { 1618 /* last entry can be allocated in free chunks 1619 * move it to its new position, adjust rel_ptrs */ 1620 alloc->udb->glob_data->dirty_alloc = udb_dirty_compact; 1621 move_chunk(base, alloc, last, exp, esz, e2); 1622 if(xl_start) { 1623 last = coagulate_and_push(base, alloc, 1624 last, exp, esz); 1625 } else { 1626 /* shorten usage */ 1627 alloc->disk->stat_free -= esz; 1628 alloc->disk->nextgrow = last; 1629 } 1630 alloc->udb->glob_data->rb_old = 0; 1631 alloc->udb->glob_data->rb_new = 0; 1632 alloc->udb->glob_data->rb_size = 0; 1633 alloc->udb->glob_data->dirty_alloc = udb_dirty_clean; 1634 /* and continue in front of it */ 1635 at = last; 1636 } else { 1637 /* cannot compact this block, stop compacting */ 1638 break; 1639 } 1640 /* if that worked, repeat it */ 1641 } 1642 /* if we passed xl chunks, see if XL-chunklist can move */ 1643 if(xl_start) { 1644 /* calculate free space in front of the XLchunklist. */ 1645 /* has to be whole mbs of free space */ 1646 /* if so, we can move the XL chunks. Move them all back 1647 * by the new free space. */ 1648 /* this compacts very well, but the XL chunks can be moved 1649 * multiple times; worst case for every mb freed a huge sized 1650 * xlchunklist gets moved. */ 1651 /* free space must be, since aligned and coagulated, in 1652 * chunks of a whole MB */ 1653 udb_void at = xl_start; 1654 uint64_t m = 0; 1655 while(*((uint8_t*)UDB_REL(base, at-1))==UDB_ALLOC_CHUNKS_MAX){ 1656 udb_void chunk = at - UDB_ALLOC_CHUNK_SIZE; 1657 if(UDB_CHUNK(chunk)->type != udb_chunk_type_free) 1658 break; 1659 assert(UDB_CHUNK(chunk)->exp==UDB_ALLOC_CHUNKS_MAX); 1660 m += UDB_ALLOC_CHUNK_SIZE; 1661 at = chunk; 1662 } 1663 if(m != 0) { 1664 assert(at+m == xl_start); 1665 alloc->udb->glob_data->dirty_alloc = udb_dirty_compact; 1666 free_xl_space(base, alloc, at, m); 1667 move_xl_list(base, alloc, xl_start, xl_sz, m); 1668 alloc->udb->glob_data->dirty_alloc = udb_dirty_clean; 1669 } 1670 } 1671 1672 /* if enough free, shrink the file; re-mmap */ 1673 if(enough_free(alloc)) { 1674 uint64_t nsize = alloc->disk->nextgrow; 1675 udb_base_shrink(alloc->udb, nsize); 1676 if(!udb_base_remap(alloc->udb, alloc, nsize)) 1677 return 0; 1678 } 1679 return 1; 1680 } 1681 1682 int 1683 udb_compact(udb_base* udb) 1684 { 1685 if(!udb) return 1; 1686 if(!udb->useful_compact) return 1; 1687 DEBUG(DEBUG_DBACCESS, 1, (LOG_INFO, "Compacting database...")); 1688 return udb_alloc_compact(udb->base, udb->alloc); 1689 } 1690 1691 void udb_compact_inhibited(udb_base* udb, int inhibit) 1692 { 1693 if(!udb) return; 1694 udb->inhibit_compact = inhibit; 1695 } 1696 1697 #ifdef UDB_CHECK 1698 /** check that rptrs are really zero before free */ 1699 void udb_check_rptr_zero(void* base, udb_rel_ptr* p, void* arg) 1700 { 1701 (void)base; 1702 (void)arg; 1703 assert(p->data == 0); 1704 } 1705 #endif /* UDB_CHECK */ 1706 1707 /** free XL chunk as multiples of CHUNK_SIZE free segments */ 1708 static void 1709 udb_free_xl(void* base, udb_alloc* alloc, udb_void f, udb_xl_chunk_d* fp, 1710 size_t sz) 1711 { 1712 uint64_t xlsz = fp->size; 1713 uint64_t c; 1714 /* lightweight check for buffer overflow in xl data */ 1715 assert(*((uint64_t*)(UDB_REL(base, f+xlsz-sizeof(uint64_t)*2)))==xlsz); 1716 assert(*((uint8_t*)(UDB_REL(base, f+xlsz-1))) == UDB_EXP_XL); 1717 assert( (xlsz & (UDB_ALLOC_CHUNK_SIZE-1)) == 0 ); /* whole mbs */ 1718 assert( (f & (UDB_ALLOC_CHUNK_SIZE-1)) == 0 ); /* aligned */ 1719 #ifdef UDB_CHECK 1720 /* check that relptrs in this chunk have been zeroed */ 1721 (*alloc->udb->walkfunc)(base, alloc->udb->walkarg, fp->type, 1722 UDB_REL(base, f+sizeof(udb_xl_chunk_d)), xlsz, 1723 &udb_check_rptr_zero, NULL); 1724 #endif 1725 alloc->udb->glob_data->dirty_alloc = udb_dirty_fl; 1726 /* update stats */ 1727 alloc->disk->stat_data -= sz; 1728 alloc->disk->stat_alloc -= xlsz; 1729 alloc->disk->stat_free += xlsz; 1730 /* walk in reverse, so the front blocks go first on the list */ 1731 c = f + xlsz - UDB_ALLOC_CHUNK_SIZE; 1732 /* because of header and alignment we know f >= UDB_ALLOC_CHUNK_SIZE*/ 1733 assert(f >= UDB_ALLOC_CHUNK_SIZE); 1734 while(c >= f) { 1735 /* free a block of CHUNK_SIZE (1 Mb) */ 1736 udb_alloc_push_fl(base, alloc, c, UDB_ALLOC_CHUNKS_MAX); 1737 c -= UDB_ALLOC_CHUNK_SIZE; 1738 } 1739 alloc->udb->glob_data->dirty_alloc = udb_dirty_clean; 1740 } 1741 1742 int udb_alloc_free(udb_alloc* alloc, udb_void r, size_t sz) 1743 { 1744 void* base; 1745 /* lookup chunk ptr */ 1746 udb_void f; 1747 udb_chunk_d* fp; 1748 uint64_t esz; 1749 int exp; 1750 udb_void other; 1751 int coagulated = 0; 1752 if(!r) 1753 return 1; /* free(NULL) does nothing */ 1754 1755 /* lookup size of chunk */ 1756 base = alloc->udb->base; 1757 /* fails for XL blocks */ 1758 f = chunk_from_dataptr(r); 1759 fp = UDB_CHUNK(f); 1760 assert(fp->type != udb_chunk_type_free); 1761 1762 /* see if it has a ptrlist, if so: trouble, the list is not properly 1763 * cleaned up. (although you can imagine a wholesale delete where 1764 * it does not matter) */ 1765 assert(fp->ptrlist == 0); 1766 1767 /* set ptrlist to 0 to stop relptr from using it, robustness. */ 1768 fp->ptrlist = 0; 1769 1770 if(fp->exp == UDB_EXP_XL) { 1771 udb_free_xl(base, alloc, f, (udb_xl_chunk_d*)fp, sz); 1772 /* compact */ 1773 if(alloc->udb->inhibit_compact) { 1774 alloc->udb->useful_compact = 1; 1775 return 1; 1776 } 1777 return udb_alloc_compact(base, alloc); 1778 } 1779 /* it is a regular chunk of 2**exp size */ 1780 exp = (int)fp->exp; 1781 esz = (uint64_t)1<<exp; 1782 /* light check for e.g. buffer overflow of the data */ 1783 assert(sz < esz); 1784 assert(chunk_get_last(base, f, exp) == (uint8_t)exp); 1785 #ifdef UDB_CHECK 1786 /* check that relptrs in this chunk have been zeroed */ 1787 (*alloc->udb->walkfunc)(base, alloc->udb->walkarg, fp->type, 1788 UDB_REL(base, r), esz, &udb_check_rptr_zero, NULL); 1789 #endif 1790 1791 /* update the stats */ 1792 alloc->udb->glob_data->dirty_alloc = udb_dirty_fl; 1793 alloc->disk->stat_data -= sz; 1794 alloc->disk->stat_free += esz; 1795 alloc->disk->stat_alloc -= esz; 1796 1797 /* if it can be merged with other free chunks, do so */ 1798 while( (other=coagulate_possible(base, alloc, f, exp, esz)) ) { 1799 coagulated = 1; 1800 /* unlink that other chunk and expand it (it has same size) */ 1801 udb_alloc_unlink_fl(base, alloc, other, exp); 1802 /* merge up */ 1803 if(other < f) 1804 f = other; 1805 exp++; 1806 esz <<= 1; 1807 } 1808 if(coagulated) { 1809 /* put big free chunk into freelist, and init it */ 1810 udb_alloc_push_fl(base, alloc, f, exp); 1811 } else { 1812 /* we do not need to touch the last-exp-byte, which may save 1813 * a reference to that page of memory */ 1814 fp->type = udb_chunk_type_free; 1815 fp->flags = 0; 1816 udb_alloc_push_fl_noinit(base, alloc, f, exp); 1817 } 1818 alloc->udb->glob_data->dirty_alloc = udb_dirty_clean; 1819 /* compact */ 1820 if(alloc->udb->inhibit_compact) { 1821 alloc->udb->useful_compact = 1; 1822 return 1; 1823 } 1824 return udb_alloc_compact(base, alloc); 1825 } 1826 1827 udb_void udb_alloc_init(udb_alloc* alloc, void* d, size_t sz) 1828 { 1829 /* could be faster maybe, if grown? */ 1830 udb_void r = udb_alloc_space(alloc, sz); 1831 if(!r) return r; 1832 memcpy(UDB_REL(alloc->udb->base, r), d, sz); 1833 return r; 1834 } 1835 1836 udb_void udb_alloc_realloc(udb_alloc* alloc, udb_void r, size_t osz, size_t sz) 1837 { 1838 void* base = alloc->udb->base; 1839 udb_void c, n, newd; 1840 udb_chunk_d* cp, *np; 1841 uint64_t avail; 1842 uint8_t cp_type; 1843 /* emulate some posix realloc stuff */ 1844 if(r == 0) 1845 return udb_alloc_space(alloc, sz); 1846 if(sz == 0) { 1847 if(!udb_alloc_free(alloc, r, osz)) 1848 log_msg(LOG_ERR, "udb_alloc_realloc: free failed"); 1849 return 0; 1850 } 1851 c = chunk_from_dataptr(r); 1852 cp = UDB_CHUNK(c); 1853 cp_type = cp->type; 1854 if(cp->exp == UDB_EXP_XL) { 1855 avail = UDB_XL_CHUNK(c)->size - sizeof(udb_xl_chunk_d) 1856 - sizeof(uint64_t)*2; 1857 } else { 1858 avail = ((uint64_t)1<<cp->exp) - sizeof(udb_chunk_d) - 1; 1859 } 1860 if(sz <= avail) 1861 return r; 1862 /* reallocate it, and copy */ 1863 newd = udb_alloc_space(alloc, sz); 1864 if(!newd) return 0; 1865 /* re-base after alloc, since re-mmap may have happened */ 1866 base = alloc->udb->base; 1867 cp = NULL; /* may be invalid now, robustness */ 1868 n = chunk_from_dataptr(newd); 1869 np = UDB_CHUNK(n); 1870 np->type = cp_type; 1871 memcpy(UDB_REL(base, newd), UDB_REL(base, r), osz); 1872 /* fixup ptrs */ 1873 chunk_fix_ptrs(base, alloc->udb, np, newd, osz, r); 1874 1875 if(!udb_alloc_free(alloc, r, osz)) 1876 log_msg(LOG_ERR, "udb_alloc_realloc: free failed"); 1877 return newd; 1878 } 1879 1880 int udb_alloc_grow(udb_alloc* alloc, size_t sz, size_t num) 1881 { 1882 const uint64_t mb = 1024*1024; 1883 int exp = udb_alloc_exp_needed(sz); 1884 uint64_t esz; 1885 uint64_t want; 1886 if(exp == UDB_EXP_XL) 1887 esz = (sz&(mb-1))+mb; 1888 else esz = (uint64_t)1<<exp; 1889 /* we need grow_end_calc to take into account alignment */ 1890 want = grow_end_calc(alloc, exp) + esz*(num-1); 1891 assert(want >= alloc->udb->base_size); 1892 if(!udb_base_grow_and_remap(alloc->udb, want)) { 1893 log_msg(LOG_ERR, "failed to grow the specified amount"); 1894 return 0; 1895 } 1896 return 1; 1897 } 1898 1899 void udb_alloc_set_type(udb_alloc* alloc, udb_void r, udb_chunk_type tp) 1900 { 1901 void* base = alloc->udb->base; 1902 udb_void f = chunk_from_dataptr(r); 1903 udb_chunk_d* fp = UDB_CHUNK(f); 1904 /* not the 'free' type, that must be set by allocation routines */ 1905 assert(fp->type != udb_chunk_type_free); 1906 assert(tp != udb_chunk_type_free); 1907 fp->type = tp; 1908 } 1909 1910 int udb_valid_offset(udb_base* udb, udb_void to, size_t destsize) 1911 { 1912 /* pointers are not valid before the header-size or after the 1913 * used-region of the mmap */ 1914 return ( (to+destsize) <= udb->base_size && 1915 to >= (udb->glob_data->hsize-2*sizeof(udb_rel_ptr)) && 1916 (to+destsize) <= udb->alloc->disk->nextgrow); 1917 } 1918 1919 int udb_valid_dataptr(udb_base* udb, udb_void to) 1920 { 1921 void* base = udb->base; 1922 udb_void ch; 1923 int exp; 1924 uint64_t esz; 1925 /* our data chunks are aligned and at least 8 bytes */ 1926 if(!udb_valid_offset(udb, to, sizeof(uint64_t))) 1927 return 0; 1928 /* get the chunk pointer */ 1929 ch = chunk_from_dataptr(to); 1930 if(!udb_valid_offset(udb, ch, sizeof(udb_chunk_d))) 1931 return 0; 1932 /* check its size */ 1933 exp = UDB_CHUNK(ch)->exp; 1934 if(exp == UDB_EXP_XL) { 1935 /* check XL chunk */ 1936 uint64_t xlsz; 1937 if(!udb_valid_offset(udb, ch, sizeof(udb_xl_chunk_d))) 1938 return 0; 1939 xlsz = UDB_XL_CHUNK(ch)->size; 1940 if(!udb_valid_offset(udb, ch+xlsz-1, 1)) 1941 return 0; 1942 if(*((uint8_t*)UDB_REL(base, ch+xlsz-1)) != UDB_EXP_XL) 1943 return 0; 1944 if(*((uint64_t*)UDB_REL(base, ch+xlsz-sizeof(uint64_t)*2)) 1945 != xlsz) 1946 return 0; 1947 return 1; 1948 } 1949 /* check if regular chunk has matching end byte */ 1950 if(exp < UDB_ALLOC_CHUNK_MINEXP || exp > UDB_ALLOC_CHUNKS_MAX) 1951 return 0; /* cannot be a valid chunk */ 1952 esz = 1<<exp; 1953 if(!udb_valid_offset(udb, ch+esz-1, 1)) 1954 return 0; 1955 if(*((uint8_t*)UDB_REL(base, ch+esz-1)) != exp) 1956 return 0; 1957 return 1; 1958 } 1959 1960 int udb_valid_rptr(udb_base* udb, udb_void rptr, udb_void to) 1961 { 1962 void* base = udb->base; 1963 udb_void p; 1964 if(!udb_valid_offset(udb, rptr, sizeof(udb_rel_ptr))) 1965 return 0; 1966 if(!udb_valid_dataptr(udb, to)) 1967 return 0; 1968 p = UDB_CHUNK(chunk_from_dataptr(to))->ptrlist; 1969 while(p) { 1970 if(!udb_valid_offset(udb, p, sizeof(udb_rel_ptr))) 1971 return 0; 1972 if(p == rptr) 1973 return 1; 1974 p = UDB_REL_PTR(p)->next; 1975 } 1976 return 0; 1977 } 1978 1979 void udb_rel_ptr_init(udb_rel_ptr* ptr) 1980 { 1981 memset(ptr, 0, sizeof(*ptr)); 1982 } 1983 1984 void udb_rel_ptr_unlink(void* base, udb_rel_ptr* ptr) 1985 { 1986 if(!ptr->data) 1987 return; 1988 if(ptr->prev) { 1989 UDB_REL_PTR(ptr->prev)->next = ptr->next; 1990 } else { 1991 UDB_CHUNK(chunk_from_dataptr(ptr->data))->ptrlist = ptr->next; 1992 } 1993 if(ptr->next) { 1994 UDB_REL_PTR(ptr->next)->prev = ptr->prev; 1995 } 1996 } 1997 1998 void udb_rel_ptr_link(void* base, udb_rel_ptr* ptr, udb_void to) 1999 { 2000 udb_chunk_d* chunk = UDB_CHUNK(chunk_from_dataptr(to)); 2001 ptr->prev = 0; 2002 ptr->next = chunk->ptrlist; 2003 if(ptr->next) 2004 UDB_REL_PTR(ptr->next)->prev = UDB_SYSTOREL(base, ptr); 2005 chunk->ptrlist = UDB_SYSTOREL(base, ptr); 2006 ptr->data = to; 2007 } 2008 2009 void udb_rel_ptr_set(void* base, udb_rel_ptr* ptr, udb_void to) 2010 { 2011 assert(to == 0 || to > 64); 2012 udb_rel_ptr_unlink(base, ptr); 2013 if(to) 2014 udb_rel_ptr_link(base, ptr, to); 2015 else ptr->data = to; 2016 } 2017 2018 void udb_rel_ptr_edit(void* base, udb_void list, udb_void to) 2019 { 2020 udb_void p = list; 2021 while(p) { 2022 UDB_REL_PTR(p)->data = to; 2023 p = UDB_REL_PTR(p)->next; 2024 } 2025 } 2026 2027 #ifdef UDB_CHECK 2028 /** check that all pointers are validly chained */ 2029 static void 2030 udb_check_ptrs_valid(udb_base* udb) 2031 { 2032 size_t i; 2033 udb_ptr* p, *prev; 2034 for(i=0; i<udb->ram_size; i++) { 2035 prev = NULL; 2036 for(p=udb->ram_hash[i]; p; p=p->next) { 2037 assert(p->prev == prev); 2038 assert((size_t)(chunk_hash_ptr(p->data)&udb->ram_mask) 2039 == i); 2040 assert(p->base == &udb->base); 2041 prev = p; 2042 } 2043 } 2044 } 2045 #endif /* UDB_CHECK */ 2046 2047 void udb_ptr_init(udb_ptr* ptr, udb_base* udb) 2048 { 2049 #ifdef UDB_CHECK 2050 udb_check_ptrs_valid(udb); /* previous ptrs have been unlinked */ 2051 #endif 2052 memset(ptr, 0, sizeof(*ptr)); 2053 ptr->base = &udb->base; 2054 } 2055 2056 void udb_ptr_set(udb_ptr* ptr, udb_base* udb, udb_void newval) 2057 { 2058 assert(newval == 0 || newval > 64); 2059 if(ptr->data) 2060 udb_base_unlink_ptr(udb, ptr); 2061 ptr->data = newval; 2062 if(newval) 2063 udb_base_link_ptr(udb, ptr); 2064 } 2065 2066 int udb_ptr_alloc_space(udb_ptr* ptr, udb_base* udb, udb_chunk_type type, 2067 size_t sz) 2068 { 2069 udb_void r; 2070 r = udb_alloc_space(udb->alloc, sz); 2071 if(!r) return 0; 2072 udb_alloc_set_type(udb->alloc, r, type); 2073 udb_ptr_init(ptr, udb); 2074 udb_ptr_set(ptr, udb, r); 2075 return 1; 2076 } 2077 2078 void udb_ptr_free_space(udb_ptr* ptr, udb_base* udb, size_t sz) 2079 { 2080 if(ptr->data) { 2081 udb_void d = ptr->data; 2082 udb_ptr_set(ptr, udb, 0); 2083 udb_alloc_free(udb->alloc, d, sz); 2084 } 2085 } 2086 2087 udb_chunk_type udb_ptr_get_type(udb_ptr* ptr) 2088 { 2089 udb_void f; 2090 if(!ptr || ptr->data == 0) return udb_chunk_type_internal; /* something bad*/ 2091 f = chunk_from_dataptr(ptr->data); 2092 return ((udb_chunk_d*)UDB_REL(*ptr->base, f))->type; 2093 } 2094