xref: /openbsd-src/usr.bin/ssh/umac.c (revision d1df930ffab53da22f3324c32bed7ac5709915e6)
1 /* $OpenBSD: umac.c,v 1.17 2018/04/10 00:10:49 djm Exp $ */
2 /* -----------------------------------------------------------------------
3  *
4  * umac.c -- C Implementation UMAC Message Authentication
5  *
6  * Version 0.93b of rfc4418.txt -- 2006 July 18
7  *
8  * For a full description of UMAC message authentication see the UMAC
9  * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
10  * Please report bugs and suggestions to the UMAC webpage.
11  *
12  * Copyright (c) 1999-2006 Ted Krovetz
13  *
14  * Permission to use, copy, modify, and distribute this software and
15  * its documentation for any purpose and with or without fee, is hereby
16  * granted provided that the above copyright notice appears in all copies
17  * and in supporting documentation, and that the name of the copyright
18  * holder not be used in advertising or publicity pertaining to
19  * distribution of the software without specific, written prior permission.
20  *
21  * Comments should be directed to Ted Krovetz (tdk@acm.org)
22  *
23  * ---------------------------------------------------------------------- */
24 
25  /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
26   *
27   * 1) This version does not work properly on messages larger than 16MB
28   *
29   * 2) If you set the switch to use SSE2, then all data must be 16-byte
30   *    aligned
31   *
32   * 3) When calling the function umac(), it is assumed that msg is in
33   * a writable buffer of length divisible by 32 bytes. The message itself
34   * does not have to fill the entire buffer, but bytes beyond msg may be
35   * zeroed.
36   *
37   * 4) Three free AES implementations are supported by this implementation of
38   * UMAC. Paulo Barreto's version is in the public domain and can be found
39   * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
40   * "Barreto"). The only two files needed are rijndael-alg-fst.c and
41   * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
42   * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
43   * includes a fast IA-32 assembly version. The OpenSSL crypo library is
44   * the third.
45   *
46   * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
47   * produced under gcc with optimizations set -O3 or higher. Dunno why.
48   *
49   /////////////////////////////////////////////////////////////////////// */
50 
51 /* ---------------------------------------------------------------------- */
52 /* --- User Switches ---------------------------------------------------- */
53 /* ---------------------------------------------------------------------- */
54 
55 #ifndef UMAC_OUTPUT_LEN
56 #define UMAC_OUTPUT_LEN     8  /* Alowable: 4, 8, 12, 16                  */
57 #endif
58 /* #define FORCE_C_ONLY        1  ANSI C and 64-bit integers req'd        */
59 /* #define AES_IMPLEMENTAION   1  1 = OpenSSL, 2 = Barreto, 3 = Gladman   */
60 /* #define SSE2                0  Is SSE2 is available?                   */
61 /* #define RUN_TESTS           0  Run basic correctness/speed tests       */
62 /* #define UMAC_AE_SUPPORT     0  Enable authenticated encryption         */
63 
64 /* ---------------------------------------------------------------------- */
65 /* -- Global Includes --------------------------------------------------- */
66 /* ---------------------------------------------------------------------- */
67 
68 #include <sys/types.h>
69 #include <endian.h>
70 #include <string.h>
71 #include <stdio.h>
72 #include <stdlib.h>
73 #include <stddef.h>
74 
75 #include "xmalloc.h"
76 #include "umac.h"
77 #include "misc.h"
78 
79 /* ---------------------------------------------------------------------- */
80 /* --- Primitive Data Types ---                                           */
81 /* ---------------------------------------------------------------------- */
82 
83 /* The following assumptions may need change on your system */
84 typedef u_int8_t	UINT8;  /* 1 byte   */
85 typedef u_int16_t	UINT16; /* 2 byte   */
86 typedef u_int32_t	UINT32; /* 4 byte   */
87 typedef u_int64_t	UINT64; /* 8 bytes  */
88 typedef unsigned int	UWORD;  /* Register */
89 
90 /* ---------------------------------------------------------------------- */
91 /* --- Constants -------------------------------------------------------- */
92 /* ---------------------------------------------------------------------- */
93 
94 #define UMAC_KEY_LEN           16  /* UMAC takes 16 bytes of external key */
95 
96 /* Message "words" are read from memory in an endian-specific manner.     */
97 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must    */
98 /* be set true if the host computer is little-endian.                     */
99 
100 #if BYTE_ORDER == LITTLE_ENDIAN
101 #define __LITTLE_ENDIAN__ 1
102 #else
103 #define __LITTLE_ENDIAN__ 0
104 #endif
105 
106 /* ---------------------------------------------------------------------- */
107 /* ---------------------------------------------------------------------- */
108 /* ----- Architecture Specific ------------------------------------------ */
109 /* ---------------------------------------------------------------------- */
110 /* ---------------------------------------------------------------------- */
111 
112 
113 /* ---------------------------------------------------------------------- */
114 /* ---------------------------------------------------------------------- */
115 /* ----- Primitive Routines --------------------------------------------- */
116 /* ---------------------------------------------------------------------- */
117 /* ---------------------------------------------------------------------- */
118 
119 
120 /* ---------------------------------------------------------------------- */
121 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
122 /* ---------------------------------------------------------------------- */
123 
124 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
125 
126 /* ---------------------------------------------------------------------- */
127 /* --- Endian Conversion --- Forcing assembly on some platforms           */
128 /* ---------------------------------------------------------------------- */
129 
130 /* The following definitions use the above reversal-primitives to do the right
131  * thing on endian specific load and stores.
132  */
133 
134 #if BYTE_ORDER == LITTLE_ENDIAN
135 #define LOAD_UINT32_REVERSED(p)		get_u32(p)
136 #define STORE_UINT32_REVERSED(p,v)	put_u32(p,v)
137 #else
138 #define LOAD_UINT32_REVERSED(p)		get_u32_le(p)
139 #define STORE_UINT32_REVERSED(p,v)	put_u32_le(p,v)
140 #endif
141 
142 #define LOAD_UINT32_LITTLE(p)           (get_u32_le(p))
143 #define STORE_UINT32_BIG(p,v)           put_u32(p, v)
144 
145 
146 
147 /* ---------------------------------------------------------------------- */
148 /* ---------------------------------------------------------------------- */
149 /* ----- Begin KDF & PDF Section ---------------------------------------- */
150 /* ---------------------------------------------------------------------- */
151 /* ---------------------------------------------------------------------- */
152 
153 /* UMAC uses AES with 16 byte block and key lengths */
154 #define AES_BLOCK_LEN  16
155 
156 #ifdef WITH_OPENSSL
157 #include <openssl/aes.h>
158 typedef AES_KEY aes_int_key[1];
159 #define aes_encryption(in,out,int_key)                  \
160   AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
161 #define aes_key_setup(key,int_key)                      \
162   AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key)
163 #else
164 #include "rijndael.h"
165 #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6)
166 typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4];	/* AES internal */
167 #define aes_encryption(in,out,int_key) \
168   rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out))
169 #define aes_key_setup(key,int_key) \
170   rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \
171   UMAC_KEY_LEN*8)
172 #endif
173 
174 /* The user-supplied UMAC key is stretched using AES in a counter
175  * mode to supply all random bits needed by UMAC. The kdf function takes
176  * an AES internal key representation 'key' and writes a stream of
177  * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct
178  * 'ndx' causes a distinct byte stream.
179  */
180 static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes)
181 {
182     UINT8 in_buf[AES_BLOCK_LEN] = {0};
183     UINT8 out_buf[AES_BLOCK_LEN];
184     UINT8 *dst_buf = (UINT8 *)buffer_ptr;
185     int i;
186 
187     /* Setup the initial value */
188     in_buf[AES_BLOCK_LEN-9] = ndx;
189     in_buf[AES_BLOCK_LEN-1] = i = 1;
190 
191     while (nbytes >= AES_BLOCK_LEN) {
192         aes_encryption(in_buf, out_buf, key);
193         memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
194         in_buf[AES_BLOCK_LEN-1] = ++i;
195         nbytes -= AES_BLOCK_LEN;
196         dst_buf += AES_BLOCK_LEN;
197     }
198     if (nbytes) {
199         aes_encryption(in_buf, out_buf, key);
200         memcpy(dst_buf,out_buf,nbytes);
201     }
202     explicit_bzero(in_buf, sizeof(in_buf));
203     explicit_bzero(out_buf, sizeof(out_buf));
204 }
205 
206 /* The final UHASH result is XOR'd with the output of a pseudorandom
207  * function. Here, we use AES to generate random output and
208  * xor the appropriate bytes depending on the last bits of nonce.
209  * This scheme is optimized for sequential, increasing big-endian nonces.
210  */
211 
212 typedef struct {
213     UINT8 cache[AES_BLOCK_LEN];  /* Previous AES output is saved      */
214     UINT8 nonce[AES_BLOCK_LEN];  /* The AES input making above cache  */
215     aes_int_key prf_key;         /* Expanded AES key for PDF          */
216 } pdf_ctx;
217 
218 static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
219 {
220     UINT8 buf[UMAC_KEY_LEN];
221 
222     kdf(buf, prf_key, 0, UMAC_KEY_LEN);
223     aes_key_setup(buf, pc->prf_key);
224 
225     /* Initialize pdf and cache */
226     memset(pc->nonce, 0, sizeof(pc->nonce));
227     aes_encryption(pc->nonce, pc->cache, pc->prf_key);
228     explicit_bzero(buf, sizeof(buf));
229 }
230 
231 static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
232 {
233     /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
234      * of the AES output. If last time around we returned the ndx-1st
235      * element, then we may have the result in the cache already.
236      */
237 
238 #if (UMAC_OUTPUT_LEN == 4)
239 #define LOW_BIT_MASK 3
240 #elif (UMAC_OUTPUT_LEN == 8)
241 #define LOW_BIT_MASK 1
242 #elif (UMAC_OUTPUT_LEN > 8)
243 #define LOW_BIT_MASK 0
244 #endif
245     union {
246         UINT8 tmp_nonce_lo[4];
247         UINT32 align;
248     } t;
249 #if LOW_BIT_MASK != 0
250     int ndx = nonce[7] & LOW_BIT_MASK;
251 #endif
252     *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1];
253     t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
254 
255     if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
256          (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
257     {
258         ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0];
259         ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0];
260         aes_encryption(pc->nonce, pc->cache, pc->prf_key);
261     }
262 
263 #if (UMAC_OUTPUT_LEN == 4)
264     *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
265 #elif (UMAC_OUTPUT_LEN == 8)
266     *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
267 #elif (UMAC_OUTPUT_LEN == 12)
268     ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
269     ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
270 #elif (UMAC_OUTPUT_LEN == 16)
271     ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
272     ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
273 #endif
274 }
275 
276 /* ---------------------------------------------------------------------- */
277 /* ---------------------------------------------------------------------- */
278 /* ----- Begin NH Hash Section ------------------------------------------ */
279 /* ---------------------------------------------------------------------- */
280 /* ---------------------------------------------------------------------- */
281 
282 /* The NH-based hash functions used in UMAC are described in the UMAC paper
283  * and specification, both of which can be found at the UMAC website.
284  * The interface to this implementation has two
285  * versions, one expects the entire message being hashed to be passed
286  * in a single buffer and returns the hash result immediately. The second
287  * allows the message to be passed in a sequence of buffers. In the
288  * muliple-buffer interface, the client calls the routine nh_update() as
289  * many times as necessary. When there is no more data to be fed to the
290  * hash, the client calls nh_final() which calculates the hash output.
291  * Before beginning another hash calculation the nh_reset() routine
292  * must be called. The single-buffer routine, nh(), is equivalent to
293  * the sequence of calls nh_update() and nh_final(); however it is
294  * optimized and should be preferred whenever the multiple-buffer interface
295  * is not necessary. When using either interface, it is the client's
296  * responsibility to pass no more than L1_KEY_LEN bytes per hash result.
297  *
298  * The routine nh_init() initializes the nh_ctx data structure and
299  * must be called once, before any other PDF routine.
300  */
301 
302  /* The "nh_aux" routines do the actual NH hashing work. They
303   * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
304   * produce output for all STREAMS NH iterations in one call,
305   * allowing the parallel implementation of the streams.
306   */
307 
308 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied  */
309 #define L1_KEY_LEN         1024     /* Internal key bytes                 */
310 #define L1_KEY_SHIFT         16     /* Toeplitz key shift between streams */
311 #define L1_PAD_BOUNDARY      32     /* pad message to boundary multiple   */
312 #define ALLOC_BOUNDARY       16     /* Keep buffers aligned to this       */
313 #define HASH_BUF_BYTES       64     /* nh_aux_hb buffer multiple          */
314 
315 typedef struct {
316     UINT8  nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
317     UINT8  data   [HASH_BUF_BYTES];    /* Incoming data buffer           */
318     int next_data_empty;    /* Bookkeeping variable for data buffer.     */
319     int bytes_hashed;       /* Bytes (out of L1_KEY_LEN) incorporated.   */
320     UINT64 state[STREAMS];               /* on-line state     */
321 } nh_ctx;
322 
323 
324 #if (UMAC_OUTPUT_LEN == 4)
325 
326 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
327 /* NH hashing primitive. Previous (partial) hash result is loaded and
328 * then stored via hp pointer. The length of the data pointed at by "dp",
329 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32).  Key
330 * is expected to be endian compensated in memory at key setup.
331 */
332 {
333     UINT64 h;
334     UWORD c = dlen / 32;
335     UINT32 *k = (UINT32 *)kp;
336     const UINT32 *d = (const UINT32 *)dp;
337     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
338     UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
339 
340     h = *((UINT64 *)hp);
341     do {
342         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
343         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
344         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
345         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
346         k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
347         k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
348         h += MUL64((k0 + d0), (k4 + d4));
349         h += MUL64((k1 + d1), (k5 + d5));
350         h += MUL64((k2 + d2), (k6 + d6));
351         h += MUL64((k3 + d3), (k7 + d7));
352 
353         d += 8;
354         k += 8;
355     } while (--c);
356   *((UINT64 *)hp) = h;
357 }
358 
359 #elif (UMAC_OUTPUT_LEN == 8)
360 
361 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
362 /* Same as previous nh_aux, but two streams are handled in one pass,
363  * reading and writing 16 bytes of hash-state per call.
364  */
365 {
366   UINT64 h1,h2;
367   UWORD c = dlen / 32;
368   UINT32 *k = (UINT32 *)kp;
369   const UINT32 *d = (const UINT32 *)dp;
370   UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
371   UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
372         k8,k9,k10,k11;
373 
374   h1 = *((UINT64 *)hp);
375   h2 = *((UINT64 *)hp + 1);
376   k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
377   do {
378     d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
379     d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
380     d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
381     d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
382     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
383     k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
384 
385     h1 += MUL64((k0 + d0), (k4 + d4));
386     h2 += MUL64((k4 + d0), (k8 + d4));
387 
388     h1 += MUL64((k1 + d1), (k5 + d5));
389     h2 += MUL64((k5 + d1), (k9 + d5));
390 
391     h1 += MUL64((k2 + d2), (k6 + d6));
392     h2 += MUL64((k6 + d2), (k10 + d6));
393 
394     h1 += MUL64((k3 + d3), (k7 + d7));
395     h2 += MUL64((k7 + d3), (k11 + d7));
396 
397     k0 = k8; k1 = k9; k2 = k10; k3 = k11;
398 
399     d += 8;
400     k += 8;
401   } while (--c);
402   ((UINT64 *)hp)[0] = h1;
403   ((UINT64 *)hp)[1] = h2;
404 }
405 
406 #elif (UMAC_OUTPUT_LEN == 12)
407 
408 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
409 /* Same as previous nh_aux, but two streams are handled in one pass,
410  * reading and writing 24 bytes of hash-state per call.
411 */
412 {
413     UINT64 h1,h2,h3;
414     UWORD c = dlen / 32;
415     UINT32 *k = (UINT32 *)kp;
416     const UINT32 *d = (const UINT32 *)dp;
417     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
418     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
419         k8,k9,k10,k11,k12,k13,k14,k15;
420 
421     h1 = *((UINT64 *)hp);
422     h2 = *((UINT64 *)hp + 1);
423     h3 = *((UINT64 *)hp + 2);
424     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
425     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
426     do {
427         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
428         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
429         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
430         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
431         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
432         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
433 
434         h1 += MUL64((k0 + d0), (k4 + d4));
435         h2 += MUL64((k4 + d0), (k8 + d4));
436         h3 += MUL64((k8 + d0), (k12 + d4));
437 
438         h1 += MUL64((k1 + d1), (k5 + d5));
439         h2 += MUL64((k5 + d1), (k9 + d5));
440         h3 += MUL64((k9 + d1), (k13 + d5));
441 
442         h1 += MUL64((k2 + d2), (k6 + d6));
443         h2 += MUL64((k6 + d2), (k10 + d6));
444         h3 += MUL64((k10 + d2), (k14 + d6));
445 
446         h1 += MUL64((k3 + d3), (k7 + d7));
447         h2 += MUL64((k7 + d3), (k11 + d7));
448         h3 += MUL64((k11 + d3), (k15 + d7));
449 
450         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
451         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
452 
453         d += 8;
454         k += 8;
455     } while (--c);
456     ((UINT64 *)hp)[0] = h1;
457     ((UINT64 *)hp)[1] = h2;
458     ((UINT64 *)hp)[2] = h3;
459 }
460 
461 #elif (UMAC_OUTPUT_LEN == 16)
462 
463 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
464 /* Same as previous nh_aux, but two streams are handled in one pass,
465  * reading and writing 24 bytes of hash-state per call.
466 */
467 {
468     UINT64 h1,h2,h3,h4;
469     UWORD c = dlen / 32;
470     UINT32 *k = (UINT32 *)kp;
471     const UINT32 *d = (const UINT32 *)dp;
472     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
473     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
474         k8,k9,k10,k11,k12,k13,k14,k15,
475         k16,k17,k18,k19;
476 
477     h1 = *((UINT64 *)hp);
478     h2 = *((UINT64 *)hp + 1);
479     h3 = *((UINT64 *)hp + 2);
480     h4 = *((UINT64 *)hp + 3);
481     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
482     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
483     do {
484         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
485         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
486         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
487         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
488         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
489         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
490         k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
491 
492         h1 += MUL64((k0 + d0), (k4 + d4));
493         h2 += MUL64((k4 + d0), (k8 + d4));
494         h3 += MUL64((k8 + d0), (k12 + d4));
495         h4 += MUL64((k12 + d0), (k16 + d4));
496 
497         h1 += MUL64((k1 + d1), (k5 + d5));
498         h2 += MUL64((k5 + d1), (k9 + d5));
499         h3 += MUL64((k9 + d1), (k13 + d5));
500         h4 += MUL64((k13 + d1), (k17 + d5));
501 
502         h1 += MUL64((k2 + d2), (k6 + d6));
503         h2 += MUL64((k6 + d2), (k10 + d6));
504         h3 += MUL64((k10 + d2), (k14 + d6));
505         h4 += MUL64((k14 + d2), (k18 + d6));
506 
507         h1 += MUL64((k3 + d3), (k7 + d7));
508         h2 += MUL64((k7 + d3), (k11 + d7));
509         h3 += MUL64((k11 + d3), (k15 + d7));
510         h4 += MUL64((k15 + d3), (k19 + d7));
511 
512         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
513         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
514         k8 = k16; k9 = k17; k10 = k18; k11 = k19;
515 
516         d += 8;
517         k += 8;
518     } while (--c);
519     ((UINT64 *)hp)[0] = h1;
520     ((UINT64 *)hp)[1] = h2;
521     ((UINT64 *)hp)[2] = h3;
522     ((UINT64 *)hp)[3] = h4;
523 }
524 
525 /* ---------------------------------------------------------------------- */
526 #endif  /* UMAC_OUTPUT_LENGTH */
527 /* ---------------------------------------------------------------------- */
528 
529 
530 /* ---------------------------------------------------------------------- */
531 
532 static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
533 /* This function is a wrapper for the primitive NH hash functions. It takes
534  * as argument "hc" the current hash context and a buffer which must be a
535  * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
536  * appropriately according to how much message has been hashed already.
537  */
538 {
539     UINT8 *key;
540 
541     key = hc->nh_key + hc->bytes_hashed;
542     nh_aux(key, buf, hc->state, nbytes);
543 }
544 
545 /* ---------------------------------------------------------------------- */
546 
547 #if (__LITTLE_ENDIAN__)
548 static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
549 /* We endian convert the keys on little-endian computers to               */
550 /* compensate for the lack of big-endian memory reads during hashing.     */
551 {
552     UWORD iters = num_bytes / bpw;
553     if (bpw == 4) {
554         UINT32 *p = (UINT32 *)buf;
555         do {
556             *p = LOAD_UINT32_REVERSED(p);
557             p++;
558         } while (--iters);
559     } else if (bpw == 8) {
560         UINT32 *p = (UINT32 *)buf;
561         UINT32 t;
562         do {
563             t = LOAD_UINT32_REVERSED(p+1);
564             p[1] = LOAD_UINT32_REVERSED(p);
565             p[0] = t;
566             p += 2;
567         } while (--iters);
568     }
569 }
570 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
571 #else
572 #define endian_convert_if_le(x,y,z) do{}while(0)  /* Do nothing */
573 #endif
574 
575 /* ---------------------------------------------------------------------- */
576 
577 static void nh_reset(nh_ctx *hc)
578 /* Reset nh_ctx to ready for hashing of new data */
579 {
580     hc->bytes_hashed = 0;
581     hc->next_data_empty = 0;
582     hc->state[0] = 0;
583 #if (UMAC_OUTPUT_LEN >= 8)
584     hc->state[1] = 0;
585 #endif
586 #if (UMAC_OUTPUT_LEN >= 12)
587     hc->state[2] = 0;
588 #endif
589 #if (UMAC_OUTPUT_LEN == 16)
590     hc->state[3] = 0;
591 #endif
592 
593 }
594 
595 /* ---------------------------------------------------------------------- */
596 
597 static void nh_init(nh_ctx *hc, aes_int_key prf_key)
598 /* Generate nh_key, endian convert and reset to be ready for hashing.   */
599 {
600     kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
601     endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
602     nh_reset(hc);
603 }
604 
605 /* ---------------------------------------------------------------------- */
606 
607 static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
608 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an    */
609 /* even multiple of HASH_BUF_BYTES.                                       */
610 {
611     UINT32 i,j;
612 
613     j = hc->next_data_empty;
614     if ((j + nbytes) >= HASH_BUF_BYTES) {
615         if (j) {
616             i = HASH_BUF_BYTES - j;
617             memcpy(hc->data+j, buf, i);
618             nh_transform(hc,hc->data,HASH_BUF_BYTES);
619             nbytes -= i;
620             buf += i;
621             hc->bytes_hashed += HASH_BUF_BYTES;
622         }
623         if (nbytes >= HASH_BUF_BYTES) {
624             i = nbytes & ~(HASH_BUF_BYTES - 1);
625             nh_transform(hc, buf, i);
626             nbytes -= i;
627             buf += i;
628             hc->bytes_hashed += i;
629         }
630         j = 0;
631     }
632     memcpy(hc->data + j, buf, nbytes);
633     hc->next_data_empty = j + nbytes;
634 }
635 
636 /* ---------------------------------------------------------------------- */
637 
638 static void zero_pad(UINT8 *p, int nbytes)
639 {
640 /* Write "nbytes" of zeroes, beginning at "p" */
641     if (nbytes >= (int)sizeof(UWORD)) {
642         while ((ptrdiff_t)p % sizeof(UWORD)) {
643             *p = 0;
644             nbytes--;
645             p++;
646         }
647         while (nbytes >= (int)sizeof(UWORD)) {
648             *(UWORD *)p = 0;
649             nbytes -= sizeof(UWORD);
650             p += sizeof(UWORD);
651         }
652     }
653     while (nbytes) {
654         *p = 0;
655         nbytes--;
656         p++;
657     }
658 }
659 
660 /* ---------------------------------------------------------------------- */
661 
662 static void nh_final(nh_ctx *hc, UINT8 *result)
663 /* After passing some number of data buffers to nh_update() for integration
664  * into an NH context, nh_final is called to produce a hash result. If any
665  * bytes are in the buffer hc->data, incorporate them into the
666  * NH context. Finally, add into the NH accumulation "state" the total number
667  * of bits hashed. The resulting numbers are written to the buffer "result".
668  * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
669  */
670 {
671     int nh_len, nbits;
672 
673     if (hc->next_data_empty != 0) {
674         nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
675                                                 ~(L1_PAD_BOUNDARY - 1));
676         zero_pad(hc->data + hc->next_data_empty,
677                                           nh_len - hc->next_data_empty);
678         nh_transform(hc, hc->data, nh_len);
679         hc->bytes_hashed += hc->next_data_empty;
680     } else if (hc->bytes_hashed == 0) {
681 	nh_len = L1_PAD_BOUNDARY;
682         zero_pad(hc->data, L1_PAD_BOUNDARY);
683         nh_transform(hc, hc->data, nh_len);
684     }
685 
686     nbits = (hc->bytes_hashed << 3);
687     ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
688 #if (UMAC_OUTPUT_LEN >= 8)
689     ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
690 #endif
691 #if (UMAC_OUTPUT_LEN >= 12)
692     ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
693 #endif
694 #if (UMAC_OUTPUT_LEN == 16)
695     ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
696 #endif
697     nh_reset(hc);
698 }
699 
700 /* ---------------------------------------------------------------------- */
701 
702 static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
703                UINT32 unpadded_len, UINT8 *result)
704 /* All-in-one nh_update() and nh_final() equivalent.
705  * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
706  * well aligned
707  */
708 {
709     UINT32 nbits;
710 
711     /* Initialize the hash state */
712     nbits = (unpadded_len << 3);
713 
714     ((UINT64 *)result)[0] = nbits;
715 #if (UMAC_OUTPUT_LEN >= 8)
716     ((UINT64 *)result)[1] = nbits;
717 #endif
718 #if (UMAC_OUTPUT_LEN >= 12)
719     ((UINT64 *)result)[2] = nbits;
720 #endif
721 #if (UMAC_OUTPUT_LEN == 16)
722     ((UINT64 *)result)[3] = nbits;
723 #endif
724 
725     nh_aux(hc->nh_key, buf, result, padded_len);
726 }
727 
728 /* ---------------------------------------------------------------------- */
729 /* ---------------------------------------------------------------------- */
730 /* ----- Begin UHASH Section -------------------------------------------- */
731 /* ---------------------------------------------------------------------- */
732 /* ---------------------------------------------------------------------- */
733 
734 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first
735  * hashed by NH. The NH output is then hashed by a polynomial-hash layer
736  * unless the initial data to be hashed is short. After the polynomial-
737  * layer, an inner-product hash is used to produce the final UHASH output.
738  *
739  * UHASH provides two interfaces, one all-at-once and another where data
740  * buffers are presented sequentially. In the sequential interface, the
741  * UHASH client calls the routine uhash_update() as many times as necessary.
742  * When there is no more data to be fed to UHASH, the client calls
743  * uhash_final() which
744  * calculates the UHASH output. Before beginning another UHASH calculation
745  * the uhash_reset() routine must be called. The all-at-once UHASH routine,
746  * uhash(), is equivalent to the sequence of calls uhash_update() and
747  * uhash_final(); however it is optimized and should be
748  * used whenever the sequential interface is not necessary.
749  *
750  * The routine uhash_init() initializes the uhash_ctx data structure and
751  * must be called once, before any other UHASH routine.
752  */
753 
754 /* ---------------------------------------------------------------------- */
755 /* ----- Constants and uhash_ctx ---------------------------------------- */
756 /* ---------------------------------------------------------------------- */
757 
758 /* ---------------------------------------------------------------------- */
759 /* ----- Poly hash and Inner-Product hash Constants --------------------- */
760 /* ---------------------------------------------------------------------- */
761 
762 /* Primes and masks */
763 #define p36    ((UINT64)0x0000000FFFFFFFFBull)              /* 2^36 -  5 */
764 #define p64    ((UINT64)0xFFFFFFFFFFFFFFC5ull)              /* 2^64 - 59 */
765 #define m36    ((UINT64)0x0000000FFFFFFFFFull)  /* The low 36 of 64 bits */
766 
767 
768 /* ---------------------------------------------------------------------- */
769 
770 typedef struct uhash_ctx {
771     nh_ctx hash;                          /* Hash context for L1 NH hash  */
772     UINT64 poly_key_8[STREAMS];           /* p64 poly keys                */
773     UINT64 poly_accum[STREAMS];           /* poly hash result             */
774     UINT64 ip_keys[STREAMS*4];            /* Inner-product keys           */
775     UINT32 ip_trans[STREAMS];             /* Inner-product translation    */
776     UINT32 msg_len;                       /* Total length of data passed  */
777                                           /* to uhash */
778 } uhash_ctx;
779 typedef struct uhash_ctx *uhash_ctx_t;
780 
781 /* ---------------------------------------------------------------------- */
782 
783 
784 /* The polynomial hashes use Horner's rule to evaluate a polynomial one
785  * word at a time. As described in the specification, poly32 and poly64
786  * require keys from special domains. The following implementations exploit
787  * the special domains to avoid overflow. The results are not guaranteed to
788  * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
789  * patches any errant values.
790  */
791 
792 static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
793 {
794     UINT32 key_hi = (UINT32)(key >> 32),
795            key_lo = (UINT32)key,
796            cur_hi = (UINT32)(cur >> 32),
797            cur_lo = (UINT32)cur,
798            x_lo,
799            x_hi;
800     UINT64 X,T,res;
801 
802     X =  MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
803     x_lo = (UINT32)X;
804     x_hi = (UINT32)(X >> 32);
805 
806     res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
807 
808     T = ((UINT64)x_lo << 32);
809     res += T;
810     if (res < T)
811         res += 59;
812 
813     res += data;
814     if (res < data)
815         res += 59;
816 
817     return res;
818 }
819 
820 
821 /* Although UMAC is specified to use a ramped polynomial hash scheme, this
822  * implementation does not handle all ramp levels. Because we don't handle
823  * the ramp up to p128 modulus in this implementation, we are limited to
824  * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
825  * bytes input to UMAC per tag, ie. 16MB).
826  */
827 static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
828 {
829     int i;
830     UINT64 *data=(UINT64*)data_in;
831 
832     for (i = 0; i < STREAMS; i++) {
833         if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
834             hc->poly_accum[i] = poly64(hc->poly_accum[i],
835                                        hc->poly_key_8[i], p64 - 1);
836             hc->poly_accum[i] = poly64(hc->poly_accum[i],
837                                        hc->poly_key_8[i], (data[i] - 59));
838         } else {
839             hc->poly_accum[i] = poly64(hc->poly_accum[i],
840                                        hc->poly_key_8[i], data[i]);
841         }
842     }
843 }
844 
845 
846 /* ---------------------------------------------------------------------- */
847 
848 
849 /* The final step in UHASH is an inner-product hash. The poly hash
850  * produces a result not necessarily WORD_LEN bytes long. The inner-
851  * product hash breaks the polyhash output into 16-bit chunks and
852  * multiplies each with a 36 bit key.
853  */
854 
855 static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
856 {
857     t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
858     t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
859     t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
860     t = t + ipkp[3] * (UINT64)(UINT16)(data);
861 
862     return t;
863 }
864 
865 static UINT32 ip_reduce_p36(UINT64 t)
866 {
867 /* Divisionless modular reduction */
868     UINT64 ret;
869 
870     ret = (t & m36) + 5 * (t >> 36);
871     if (ret >= p36)
872         ret -= p36;
873 
874     /* return least significant 32 bits */
875     return (UINT32)(ret);
876 }
877 
878 
879 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
880  * the polyhash stage is skipped and ip_short is applied directly to the
881  * NH output.
882  */
883 static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
884 {
885     UINT64 t;
886     UINT64 *nhp = (UINT64 *)nh_res;
887 
888     t  = ip_aux(0,ahc->ip_keys, nhp[0]);
889     STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
890 #if (UMAC_OUTPUT_LEN >= 8)
891     t  = ip_aux(0,ahc->ip_keys+4, nhp[1]);
892     STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
893 #endif
894 #if (UMAC_OUTPUT_LEN >= 12)
895     t  = ip_aux(0,ahc->ip_keys+8, nhp[2]);
896     STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
897 #endif
898 #if (UMAC_OUTPUT_LEN == 16)
899     t  = ip_aux(0,ahc->ip_keys+12, nhp[3]);
900     STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
901 #endif
902 }
903 
904 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
905  * the polyhash stage is not skipped and ip_long is applied to the
906  * polyhash output.
907  */
908 static void ip_long(uhash_ctx_t ahc, u_char *res)
909 {
910     int i;
911     UINT64 t;
912 
913     for (i = 0; i < STREAMS; i++) {
914         /* fix polyhash output not in Z_p64 */
915         if (ahc->poly_accum[i] >= p64)
916             ahc->poly_accum[i] -= p64;
917         t  = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
918         STORE_UINT32_BIG((UINT32 *)res+i,
919                          ip_reduce_p36(t) ^ ahc->ip_trans[i]);
920     }
921 }
922 
923 
924 /* ---------------------------------------------------------------------- */
925 
926 /* ---------------------------------------------------------------------- */
927 
928 /* Reset uhash context for next hash session */
929 static int uhash_reset(uhash_ctx_t pc)
930 {
931     nh_reset(&pc->hash);
932     pc->msg_len = 0;
933     pc->poly_accum[0] = 1;
934 #if (UMAC_OUTPUT_LEN >= 8)
935     pc->poly_accum[1] = 1;
936 #endif
937 #if (UMAC_OUTPUT_LEN >= 12)
938     pc->poly_accum[2] = 1;
939 #endif
940 #if (UMAC_OUTPUT_LEN == 16)
941     pc->poly_accum[3] = 1;
942 #endif
943     return 1;
944 }
945 
946 /* ---------------------------------------------------------------------- */
947 
948 /* Given a pointer to the internal key needed by kdf() and a uhash context,
949  * initialize the NH context and generate keys needed for poly and inner-
950  * product hashing. All keys are endian adjusted in memory so that native
951  * loads cause correct keys to be in registers during calculation.
952  */
953 static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
954 {
955     int i;
956     UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
957 
958     /* Zero the entire uhash context */
959     memset(ahc, 0, sizeof(uhash_ctx));
960 
961     /* Initialize the L1 hash */
962     nh_init(&ahc->hash, prf_key);
963 
964     /* Setup L2 hash variables */
965     kdf(buf, prf_key, 2, sizeof(buf));    /* Fill buffer with index 1 key */
966     for (i = 0; i < STREAMS; i++) {
967         /* Fill keys from the buffer, skipping bytes in the buffer not
968          * used by this implementation. Endian reverse the keys if on a
969          * little-endian computer.
970          */
971         memcpy(ahc->poly_key_8+i, buf+24*i, 8);
972         endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
973         /* Mask the 64-bit keys to their special domain */
974         ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
975         ahc->poly_accum[i] = 1;  /* Our polyhash prepends a non-zero word */
976     }
977 
978     /* Setup L3-1 hash variables */
979     kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
980     for (i = 0; i < STREAMS; i++)
981           memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
982                                                  4*sizeof(UINT64));
983     endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
984                                                   sizeof(ahc->ip_keys));
985     for (i = 0; i < STREAMS*4; i++)
986         ahc->ip_keys[i] %= p36;  /* Bring into Z_p36 */
987 
988     /* Setup L3-2 hash variables    */
989     /* Fill buffer with index 4 key */
990     kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
991     endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
992                          STREAMS * sizeof(UINT32));
993     explicit_bzero(buf, sizeof(buf));
994 }
995 
996 /* ---------------------------------------------------------------------- */
997 
998 #if 0
999 static uhash_ctx_t uhash_alloc(u_char key[])
1000 {
1001 /* Allocate memory and force to a 16-byte boundary. */
1002     uhash_ctx_t ctx;
1003     u_char bytes_to_add;
1004     aes_int_key prf_key;
1005 
1006     ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
1007     if (ctx) {
1008         if (ALLOC_BOUNDARY) {
1009             bytes_to_add = ALLOC_BOUNDARY -
1010                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
1011             ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1012             *((u_char *)ctx - 1) = bytes_to_add;
1013         }
1014         aes_key_setup(key,prf_key);
1015         uhash_init(ctx, prf_key);
1016     }
1017     return (ctx);
1018 }
1019 #endif
1020 
1021 /* ---------------------------------------------------------------------- */
1022 
1023 #if 0
1024 static int uhash_free(uhash_ctx_t ctx)
1025 {
1026 /* Free memory allocated by uhash_alloc */
1027     u_char bytes_to_sub;
1028 
1029     if (ctx) {
1030         if (ALLOC_BOUNDARY) {
1031             bytes_to_sub = *((u_char *)ctx - 1);
1032             ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1033         }
1034         free(ctx);
1035     }
1036     return (1);
1037 }
1038 #endif
1039 /* ---------------------------------------------------------------------- */
1040 
1041 static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
1042 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1043  * hash each one with NH, calling the polyhash on each NH output.
1044  */
1045 {
1046     UWORD bytes_hashed, bytes_remaining;
1047     UINT64 result_buf[STREAMS];
1048     UINT8 *nh_result = (UINT8 *)&result_buf;
1049 
1050     if (ctx->msg_len + len <= L1_KEY_LEN) {
1051         nh_update(&ctx->hash, (const UINT8 *)input, len);
1052         ctx->msg_len += len;
1053     } else {
1054 
1055          bytes_hashed = ctx->msg_len % L1_KEY_LEN;
1056          if (ctx->msg_len == L1_KEY_LEN)
1057              bytes_hashed = L1_KEY_LEN;
1058 
1059          if (bytes_hashed + len >= L1_KEY_LEN) {
1060 
1061              /* If some bytes have been passed to the hash function      */
1062              /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1063              /* bytes to complete the current nh_block.                  */
1064              if (bytes_hashed) {
1065                  bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1066                  nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining);
1067                  nh_final(&ctx->hash, nh_result);
1068                  ctx->msg_len += bytes_remaining;
1069                  poly_hash(ctx,(UINT32 *)nh_result);
1070                  len -= bytes_remaining;
1071                  input += bytes_remaining;
1072              }
1073 
1074              /* Hash directly from input stream if enough bytes */
1075              while (len >= L1_KEY_LEN) {
1076                  nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN,
1077                                    L1_KEY_LEN, nh_result);
1078                  ctx->msg_len += L1_KEY_LEN;
1079                  len -= L1_KEY_LEN;
1080                  input += L1_KEY_LEN;
1081                  poly_hash(ctx,(UINT32 *)nh_result);
1082              }
1083          }
1084 
1085          /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1086          if (len) {
1087              nh_update(&ctx->hash, (const UINT8 *)input, len);
1088              ctx->msg_len += len;
1089          }
1090      }
1091 
1092     return (1);
1093 }
1094 
1095 /* ---------------------------------------------------------------------- */
1096 
1097 static int uhash_final(uhash_ctx_t ctx, u_char *res)
1098 /* Incorporate any pending data, pad, and generate tag */
1099 {
1100     UINT64 result_buf[STREAMS];
1101     UINT8 *nh_result = (UINT8 *)&result_buf;
1102 
1103     if (ctx->msg_len > L1_KEY_LEN) {
1104         if (ctx->msg_len % L1_KEY_LEN) {
1105             nh_final(&ctx->hash, nh_result);
1106             poly_hash(ctx,(UINT32 *)nh_result);
1107         }
1108         ip_long(ctx, res);
1109     } else {
1110         nh_final(&ctx->hash, nh_result);
1111         ip_short(ctx,nh_result, res);
1112     }
1113     uhash_reset(ctx);
1114     return (1);
1115 }
1116 
1117 /* ---------------------------------------------------------------------- */
1118 
1119 #if 0
1120 static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1121 /* assumes that msg is in a writable buffer of length divisible by */
1122 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed.           */
1123 {
1124     UINT8 nh_result[STREAMS*sizeof(UINT64)];
1125     UINT32 nh_len;
1126     int extra_zeroes_needed;
1127 
1128     /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1129      * the polyhash.
1130      */
1131     if (len <= L1_KEY_LEN) {
1132 	if (len == 0)                  /* If zero length messages will not */
1133 		nh_len = L1_PAD_BOUNDARY;  /* be seen, comment out this case   */
1134 	else
1135 		nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1136         extra_zeroes_needed = nh_len - len;
1137         zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1138         nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1139         ip_short(ahc,nh_result, res);
1140     } else {
1141         /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1142          * output to poly_hash().
1143          */
1144         do {
1145             nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
1146             poly_hash(ahc,(UINT32 *)nh_result);
1147             len -= L1_KEY_LEN;
1148             msg += L1_KEY_LEN;
1149         } while (len >= L1_KEY_LEN);
1150         if (len) {
1151             nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1152             extra_zeroes_needed = nh_len - len;
1153             zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1154             nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1155             poly_hash(ahc,(UINT32 *)nh_result);
1156         }
1157 
1158         ip_long(ahc, res);
1159     }
1160 
1161     uhash_reset(ahc);
1162     return 1;
1163 }
1164 #endif
1165 
1166 /* ---------------------------------------------------------------------- */
1167 /* ---------------------------------------------------------------------- */
1168 /* ----- Begin UMAC Section --------------------------------------------- */
1169 /* ---------------------------------------------------------------------- */
1170 /* ---------------------------------------------------------------------- */
1171 
1172 /* The UMAC interface has two interfaces, an all-at-once interface where
1173  * the entire message to be authenticated is passed to UMAC in one buffer,
1174  * and a sequential interface where the message is presented a little at a
1175  * time. The all-at-once is more optimaized than the sequential version and
1176  * should be preferred when the sequential interface is not required.
1177  */
1178 struct umac_ctx {
1179     uhash_ctx hash;          /* Hash function for message compression    */
1180     pdf_ctx pdf;             /* PDF for hashed output                    */
1181     void *free_ptr;          /* Address to free this struct via          */
1182 } umac_ctx;
1183 
1184 /* ---------------------------------------------------------------------- */
1185 
1186 #if 0
1187 int umac_reset(struct umac_ctx *ctx)
1188 /* Reset the hash function to begin a new authentication.        */
1189 {
1190     uhash_reset(&ctx->hash);
1191     return (1);
1192 }
1193 #endif
1194 
1195 /* ---------------------------------------------------------------------- */
1196 
1197 int umac_delete(struct umac_ctx *ctx)
1198 /* Deallocate the ctx structure */
1199 {
1200     if (ctx) {
1201         if (ALLOC_BOUNDARY)
1202             ctx = (struct umac_ctx *)ctx->free_ptr;
1203         explicit_bzero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY);
1204         free(ctx);
1205     }
1206     return (1);
1207 }
1208 
1209 /* ---------------------------------------------------------------------- */
1210 
1211 struct umac_ctx *umac_new(const u_char key[])
1212 /* Dynamically allocate a umac_ctx struct, initialize variables,
1213  * generate subkeys from key. Align to 16-byte boundary.
1214  */
1215 {
1216     struct umac_ctx *ctx, *octx;
1217     size_t bytes_to_add;
1218     aes_int_key prf_key;
1219 
1220     octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);
1221     if (ctx) {
1222         if (ALLOC_BOUNDARY) {
1223             bytes_to_add = ALLOC_BOUNDARY -
1224                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
1225             ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
1226         }
1227         ctx->free_ptr = octx;
1228         aes_key_setup(key, prf_key);
1229         pdf_init(&ctx->pdf, prf_key);
1230         uhash_init(&ctx->hash, prf_key);
1231         explicit_bzero(prf_key, sizeof(prf_key));
1232     }
1233 
1234     return (ctx);
1235 }
1236 
1237 /* ---------------------------------------------------------------------- */
1238 
1239 int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])
1240 /* Incorporate any pending data, pad, and generate tag */
1241 {
1242     uhash_final(&ctx->hash, (u_char *)tag);
1243     pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
1244 
1245     return (1);
1246 }
1247 
1248 /* ---------------------------------------------------------------------- */
1249 
1250 int umac_update(struct umac_ctx *ctx, const u_char *input, long len)
1251 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and   */
1252 /* hash each one, calling the PDF on the hashed output whenever the hash- */
1253 /* output buffer is full.                                                 */
1254 {
1255     uhash_update(&ctx->hash, input, len);
1256     return (1);
1257 }
1258 
1259 /* ---------------------------------------------------------------------- */
1260 
1261 #if 0
1262 int umac(struct umac_ctx *ctx, u_char *input,
1263          long len, u_char tag[],
1264          u_char nonce[8])
1265 /* All-in-one version simply calls umac_update() and umac_final().        */
1266 {
1267     uhash(&ctx->hash, input, len, (u_char *)tag);
1268     pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1269 
1270     return (1);
1271 }
1272 #endif
1273 
1274 /* ---------------------------------------------------------------------- */
1275 /* ---------------------------------------------------------------------- */
1276 /* ----- End UMAC Section ----------------------------------------------- */
1277 /* ---------------------------------------------------------------------- */
1278 /* ---------------------------------------------------------------------- */
1279