1 /* $OpenBSD: umac.c,v 1.16 2017/12/12 15:06:12 naddy Exp $ */ 2 /* ----------------------------------------------------------------------- 3 * 4 * umac.c -- C Implementation UMAC Message Authentication 5 * 6 * Version 0.93b of rfc4418.txt -- 2006 July 18 7 * 8 * For a full description of UMAC message authentication see the UMAC 9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac 10 * Please report bugs and suggestions to the UMAC webpage. 11 * 12 * Copyright (c) 1999-2006 Ted Krovetz 13 * 14 * Permission to use, copy, modify, and distribute this software and 15 * its documentation for any purpose and with or without fee, is hereby 16 * granted provided that the above copyright notice appears in all copies 17 * and in supporting documentation, and that the name of the copyright 18 * holder not be used in advertising or publicity pertaining to 19 * distribution of the software without specific, written prior permission. 20 * 21 * Comments should be directed to Ted Krovetz (tdk@acm.org) 22 * 23 * ---------------------------------------------------------------------- */ 24 25 /* ////////////////////// IMPORTANT NOTES ///////////////////////////////// 26 * 27 * 1) This version does not work properly on messages larger than 16MB 28 * 29 * 2) If you set the switch to use SSE2, then all data must be 16-byte 30 * aligned 31 * 32 * 3) When calling the function umac(), it is assumed that msg is in 33 * a writable buffer of length divisible by 32 bytes. The message itself 34 * does not have to fill the entire buffer, but bytes beyond msg may be 35 * zeroed. 36 * 37 * 4) Three free AES implementations are supported by this implementation of 38 * UMAC. Paulo Barreto's version is in the public domain and can be found 39 * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for 40 * "Barreto"). The only two files needed are rijndael-alg-fst.c and 41 * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU 42 * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It 43 * includes a fast IA-32 assembly version. The OpenSSL crypo library is 44 * the third. 45 * 46 * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes 47 * produced under gcc with optimizations set -O3 or higher. Dunno why. 48 * 49 /////////////////////////////////////////////////////////////////////// */ 50 51 /* ---------------------------------------------------------------------- */ 52 /* --- User Switches ---------------------------------------------------- */ 53 /* ---------------------------------------------------------------------- */ 54 55 #ifndef UMAC_OUTPUT_LEN 56 #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */ 57 #endif 58 /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */ 59 /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */ 60 /* #define SSE2 0 Is SSE2 is available? */ 61 /* #define RUN_TESTS 0 Run basic correctness/speed tests */ 62 /* #define UMAC_AE_SUPPORT 0 Enable auhthenticated encrytion */ 63 64 /* ---------------------------------------------------------------------- */ 65 /* -- Global Includes --------------------------------------------------- */ 66 /* ---------------------------------------------------------------------- */ 67 68 #include <sys/types.h> 69 #include <endian.h> 70 #include <string.h> 71 #include <stdio.h> 72 #include <stdlib.h> 73 #include <stddef.h> 74 75 #include "xmalloc.h" 76 #include "umac.h" 77 #include "misc.h" 78 79 /* ---------------------------------------------------------------------- */ 80 /* --- Primitive Data Types --- */ 81 /* ---------------------------------------------------------------------- */ 82 83 /* The following assumptions may need change on your system */ 84 typedef u_int8_t UINT8; /* 1 byte */ 85 typedef u_int16_t UINT16; /* 2 byte */ 86 typedef u_int32_t UINT32; /* 4 byte */ 87 typedef u_int64_t UINT64; /* 8 bytes */ 88 typedef unsigned int UWORD; /* Register */ 89 90 /* ---------------------------------------------------------------------- */ 91 /* --- Constants -------------------------------------------------------- */ 92 /* ---------------------------------------------------------------------- */ 93 94 #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */ 95 96 /* Message "words" are read from memory in an endian-specific manner. */ 97 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */ 98 /* be set true if the host computer is little-endian. */ 99 100 #if BYTE_ORDER == LITTLE_ENDIAN 101 #define __LITTLE_ENDIAN__ 1 102 #else 103 #define __LITTLE_ENDIAN__ 0 104 #endif 105 106 /* ---------------------------------------------------------------------- */ 107 /* ---------------------------------------------------------------------- */ 108 /* ----- Architecture Specific ------------------------------------------ */ 109 /* ---------------------------------------------------------------------- */ 110 /* ---------------------------------------------------------------------- */ 111 112 113 /* ---------------------------------------------------------------------- */ 114 /* ---------------------------------------------------------------------- */ 115 /* ----- Primitive Routines --------------------------------------------- */ 116 /* ---------------------------------------------------------------------- */ 117 /* ---------------------------------------------------------------------- */ 118 119 120 /* ---------------------------------------------------------------------- */ 121 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */ 122 /* ---------------------------------------------------------------------- */ 123 124 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b))) 125 126 /* ---------------------------------------------------------------------- */ 127 /* --- Endian Conversion --- Forcing assembly on some platforms */ 128 /* ---------------------------------------------------------------------- */ 129 130 /* The following definitions use the above reversal-primitives to do the right 131 * thing on endian specific load and stores. 132 */ 133 134 #if BYTE_ORDER == LITTLE_ENDIAN 135 #define LOAD_UINT32_REVERSED(p) get_u32(p) 136 #define STORE_UINT32_REVERSED(p,v) put_u32(p,v) 137 #else 138 #define LOAD_UINT32_REVERSED(p) get_u32_le(p) 139 #define STORE_UINT32_REVERSED(p,v) put_u32_le(p,v) 140 #endif 141 142 #define LOAD_UINT32_LITTLE(p) (get_u32_le(p)) 143 #define STORE_UINT32_BIG(p,v) put_u32(p, v) 144 145 146 147 /* ---------------------------------------------------------------------- */ 148 /* ---------------------------------------------------------------------- */ 149 /* ----- Begin KDF & PDF Section ---------------------------------------- */ 150 /* ---------------------------------------------------------------------- */ 151 /* ---------------------------------------------------------------------- */ 152 153 /* UMAC uses AES with 16 byte block and key lengths */ 154 #define AES_BLOCK_LEN 16 155 156 #ifdef WITH_OPENSSL 157 #include <openssl/aes.h> 158 typedef AES_KEY aes_int_key[1]; 159 #define aes_encryption(in,out,int_key) \ 160 AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key) 161 #define aes_key_setup(key,int_key) \ 162 AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key) 163 #else 164 #include "rijndael.h" 165 #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6) 166 typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4]; /* AES internal */ 167 #define aes_encryption(in,out,int_key) \ 168 rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out)) 169 #define aes_key_setup(key,int_key) \ 170 rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \ 171 UMAC_KEY_LEN*8) 172 #endif 173 174 /* The user-supplied UMAC key is stretched using AES in a counter 175 * mode to supply all random bits needed by UMAC. The kdf function takes 176 * an AES internal key representation 'key' and writes a stream of 177 * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct 178 * 'ndx' causes a distinct byte stream. 179 */ 180 static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes) 181 { 182 UINT8 in_buf[AES_BLOCK_LEN] = {0}; 183 UINT8 out_buf[AES_BLOCK_LEN]; 184 UINT8 *dst_buf = (UINT8 *)buffer_ptr; 185 int i; 186 187 /* Setup the initial value */ 188 in_buf[AES_BLOCK_LEN-9] = ndx; 189 in_buf[AES_BLOCK_LEN-1] = i = 1; 190 191 while (nbytes >= AES_BLOCK_LEN) { 192 aes_encryption(in_buf, out_buf, key); 193 memcpy(dst_buf,out_buf,AES_BLOCK_LEN); 194 in_buf[AES_BLOCK_LEN-1] = ++i; 195 nbytes -= AES_BLOCK_LEN; 196 dst_buf += AES_BLOCK_LEN; 197 } 198 if (nbytes) { 199 aes_encryption(in_buf, out_buf, key); 200 memcpy(dst_buf,out_buf,nbytes); 201 } 202 explicit_bzero(in_buf, sizeof(in_buf)); 203 explicit_bzero(out_buf, sizeof(out_buf)); 204 } 205 206 /* The final UHASH result is XOR'd with the output of a pseudorandom 207 * function. Here, we use AES to generate random output and 208 * xor the appropriate bytes depending on the last bits of nonce. 209 * This scheme is optimized for sequential, increasing big-endian nonces. 210 */ 211 212 typedef struct { 213 UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */ 214 UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */ 215 aes_int_key prf_key; /* Expanded AES key for PDF */ 216 } pdf_ctx; 217 218 static void pdf_init(pdf_ctx *pc, aes_int_key prf_key) 219 { 220 UINT8 buf[UMAC_KEY_LEN]; 221 222 kdf(buf, prf_key, 0, UMAC_KEY_LEN); 223 aes_key_setup(buf, pc->prf_key); 224 225 /* Initialize pdf and cache */ 226 memset(pc->nonce, 0, sizeof(pc->nonce)); 227 aes_encryption(pc->nonce, pc->cache, pc->prf_key); 228 explicit_bzero(buf, sizeof(buf)); 229 } 230 231 static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8]) 232 { 233 /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes 234 * of the AES output. If last time around we returned the ndx-1st 235 * element, then we may have the result in the cache already. 236 */ 237 238 #if (UMAC_OUTPUT_LEN == 4) 239 #define LOW_BIT_MASK 3 240 #elif (UMAC_OUTPUT_LEN == 8) 241 #define LOW_BIT_MASK 1 242 #elif (UMAC_OUTPUT_LEN > 8) 243 #define LOW_BIT_MASK 0 244 #endif 245 union { 246 UINT8 tmp_nonce_lo[4]; 247 UINT32 align; 248 } t; 249 #if LOW_BIT_MASK != 0 250 int ndx = nonce[7] & LOW_BIT_MASK; 251 #endif 252 *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1]; 253 t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */ 254 255 if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) || 256 (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) ) 257 { 258 ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0]; 259 ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0]; 260 aes_encryption(pc->nonce, pc->cache, pc->prf_key); 261 } 262 263 #if (UMAC_OUTPUT_LEN == 4) 264 *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx]; 265 #elif (UMAC_OUTPUT_LEN == 8) 266 *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx]; 267 #elif (UMAC_OUTPUT_LEN == 12) 268 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; 269 ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2]; 270 #elif (UMAC_OUTPUT_LEN == 16) 271 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; 272 ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1]; 273 #endif 274 } 275 276 /* ---------------------------------------------------------------------- */ 277 /* ---------------------------------------------------------------------- */ 278 /* ----- Begin NH Hash Section ------------------------------------------ */ 279 /* ---------------------------------------------------------------------- */ 280 /* ---------------------------------------------------------------------- */ 281 282 /* The NH-based hash functions used in UMAC are described in the UMAC paper 283 * and specification, both of which can be found at the UMAC website. 284 * The interface to this implementation has two 285 * versions, one expects the entire message being hashed to be passed 286 * in a single buffer and returns the hash result immediately. The second 287 * allows the message to be passed in a sequence of buffers. In the 288 * muliple-buffer interface, the client calls the routine nh_update() as 289 * many times as necessary. When there is no more data to be fed to the 290 * hash, the client calls nh_final() which calculates the hash output. 291 * Before beginning another hash calculation the nh_reset() routine 292 * must be called. The single-buffer routine, nh(), is equivalent to 293 * the sequence of calls nh_update() and nh_final(); however it is 294 * optimized and should be prefered whenever the multiple-buffer interface 295 * is not necessary. When using either interface, it is the client's 296 * responsability to pass no more than L1_KEY_LEN bytes per hash result. 297 * 298 * The routine nh_init() initializes the nh_ctx data structure and 299 * must be called once, before any other PDF routine. 300 */ 301 302 /* The "nh_aux" routines do the actual NH hashing work. They 303 * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines 304 * produce output for all STREAMS NH iterations in one call, 305 * allowing the parallel implementation of the streams. 306 */ 307 308 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */ 309 #define L1_KEY_LEN 1024 /* Internal key bytes */ 310 #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */ 311 #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */ 312 #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */ 313 #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */ 314 315 typedef struct { 316 UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */ 317 UINT8 data [HASH_BUF_BYTES]; /* Incoming data buffer */ 318 int next_data_empty; /* Bookeeping variable for data buffer. */ 319 int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorperated. */ 320 UINT64 state[STREAMS]; /* on-line state */ 321 } nh_ctx; 322 323 324 #if (UMAC_OUTPUT_LEN == 4) 325 326 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 327 /* NH hashing primitive. Previous (partial) hash result is loaded and 328 * then stored via hp pointer. The length of the data pointed at by "dp", 329 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key 330 * is expected to be endian compensated in memory at key setup. 331 */ 332 { 333 UINT64 h; 334 UWORD c = dlen / 32; 335 UINT32 *k = (UINT32 *)kp; 336 const UINT32 *d = (const UINT32 *)dp; 337 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 338 UINT32 k0,k1,k2,k3,k4,k5,k6,k7; 339 340 h = *((UINT64 *)hp); 341 do { 342 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 343 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 344 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 345 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 346 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 347 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 348 h += MUL64((k0 + d0), (k4 + d4)); 349 h += MUL64((k1 + d1), (k5 + d5)); 350 h += MUL64((k2 + d2), (k6 + d6)); 351 h += MUL64((k3 + d3), (k7 + d7)); 352 353 d += 8; 354 k += 8; 355 } while (--c); 356 *((UINT64 *)hp) = h; 357 } 358 359 #elif (UMAC_OUTPUT_LEN == 8) 360 361 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 362 /* Same as previous nh_aux, but two streams are handled in one pass, 363 * reading and writing 16 bytes of hash-state per call. 364 */ 365 { 366 UINT64 h1,h2; 367 UWORD c = dlen / 32; 368 UINT32 *k = (UINT32 *)kp; 369 const UINT32 *d = (const UINT32 *)dp; 370 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 371 UINT32 k0,k1,k2,k3,k4,k5,k6,k7, 372 k8,k9,k10,k11; 373 374 h1 = *((UINT64 *)hp); 375 h2 = *((UINT64 *)hp + 1); 376 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 377 do { 378 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 379 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 380 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 381 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 382 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 383 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); 384 385 h1 += MUL64((k0 + d0), (k4 + d4)); 386 h2 += MUL64((k4 + d0), (k8 + d4)); 387 388 h1 += MUL64((k1 + d1), (k5 + d5)); 389 h2 += MUL64((k5 + d1), (k9 + d5)); 390 391 h1 += MUL64((k2 + d2), (k6 + d6)); 392 h2 += MUL64((k6 + d2), (k10 + d6)); 393 394 h1 += MUL64((k3 + d3), (k7 + d7)); 395 h2 += MUL64((k7 + d3), (k11 + d7)); 396 397 k0 = k8; k1 = k9; k2 = k10; k3 = k11; 398 399 d += 8; 400 k += 8; 401 } while (--c); 402 ((UINT64 *)hp)[0] = h1; 403 ((UINT64 *)hp)[1] = h2; 404 } 405 406 #elif (UMAC_OUTPUT_LEN == 12) 407 408 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 409 /* Same as previous nh_aux, but two streams are handled in one pass, 410 * reading and writing 24 bytes of hash-state per call. 411 */ 412 { 413 UINT64 h1,h2,h3; 414 UWORD c = dlen / 32; 415 UINT32 *k = (UINT32 *)kp; 416 const UINT32 *d = (const UINT32 *)dp; 417 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 418 UINT32 k0,k1,k2,k3,k4,k5,k6,k7, 419 k8,k9,k10,k11,k12,k13,k14,k15; 420 421 h1 = *((UINT64 *)hp); 422 h2 = *((UINT64 *)hp + 1); 423 h3 = *((UINT64 *)hp + 2); 424 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 425 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 426 do { 427 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 428 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 429 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 430 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 431 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); 432 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); 433 434 h1 += MUL64((k0 + d0), (k4 + d4)); 435 h2 += MUL64((k4 + d0), (k8 + d4)); 436 h3 += MUL64((k8 + d0), (k12 + d4)); 437 438 h1 += MUL64((k1 + d1), (k5 + d5)); 439 h2 += MUL64((k5 + d1), (k9 + d5)); 440 h3 += MUL64((k9 + d1), (k13 + d5)); 441 442 h1 += MUL64((k2 + d2), (k6 + d6)); 443 h2 += MUL64((k6 + d2), (k10 + d6)); 444 h3 += MUL64((k10 + d2), (k14 + d6)); 445 446 h1 += MUL64((k3 + d3), (k7 + d7)); 447 h2 += MUL64((k7 + d3), (k11 + d7)); 448 h3 += MUL64((k11 + d3), (k15 + d7)); 449 450 k0 = k8; k1 = k9; k2 = k10; k3 = k11; 451 k4 = k12; k5 = k13; k6 = k14; k7 = k15; 452 453 d += 8; 454 k += 8; 455 } while (--c); 456 ((UINT64 *)hp)[0] = h1; 457 ((UINT64 *)hp)[1] = h2; 458 ((UINT64 *)hp)[2] = h3; 459 } 460 461 #elif (UMAC_OUTPUT_LEN == 16) 462 463 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 464 /* Same as previous nh_aux, but two streams are handled in one pass, 465 * reading and writing 24 bytes of hash-state per call. 466 */ 467 { 468 UINT64 h1,h2,h3,h4; 469 UWORD c = dlen / 32; 470 UINT32 *k = (UINT32 *)kp; 471 const UINT32 *d = (const UINT32 *)dp; 472 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 473 UINT32 k0,k1,k2,k3,k4,k5,k6,k7, 474 k8,k9,k10,k11,k12,k13,k14,k15, 475 k16,k17,k18,k19; 476 477 h1 = *((UINT64 *)hp); 478 h2 = *((UINT64 *)hp + 1); 479 h3 = *((UINT64 *)hp + 2); 480 h4 = *((UINT64 *)hp + 3); 481 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 482 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 483 do { 484 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 485 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 486 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 487 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 488 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); 489 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); 490 k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19); 491 492 h1 += MUL64((k0 + d0), (k4 + d4)); 493 h2 += MUL64((k4 + d0), (k8 + d4)); 494 h3 += MUL64((k8 + d0), (k12 + d4)); 495 h4 += MUL64((k12 + d0), (k16 + d4)); 496 497 h1 += MUL64((k1 + d1), (k5 + d5)); 498 h2 += MUL64((k5 + d1), (k9 + d5)); 499 h3 += MUL64((k9 + d1), (k13 + d5)); 500 h4 += MUL64((k13 + d1), (k17 + d5)); 501 502 h1 += MUL64((k2 + d2), (k6 + d6)); 503 h2 += MUL64((k6 + d2), (k10 + d6)); 504 h3 += MUL64((k10 + d2), (k14 + d6)); 505 h4 += MUL64((k14 + d2), (k18 + d6)); 506 507 h1 += MUL64((k3 + d3), (k7 + d7)); 508 h2 += MUL64((k7 + d3), (k11 + d7)); 509 h3 += MUL64((k11 + d3), (k15 + d7)); 510 h4 += MUL64((k15 + d3), (k19 + d7)); 511 512 k0 = k8; k1 = k9; k2 = k10; k3 = k11; 513 k4 = k12; k5 = k13; k6 = k14; k7 = k15; 514 k8 = k16; k9 = k17; k10 = k18; k11 = k19; 515 516 d += 8; 517 k += 8; 518 } while (--c); 519 ((UINT64 *)hp)[0] = h1; 520 ((UINT64 *)hp)[1] = h2; 521 ((UINT64 *)hp)[2] = h3; 522 ((UINT64 *)hp)[3] = h4; 523 } 524 525 /* ---------------------------------------------------------------------- */ 526 #endif /* UMAC_OUTPUT_LENGTH */ 527 /* ---------------------------------------------------------------------- */ 528 529 530 /* ---------------------------------------------------------------------- */ 531 532 static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes) 533 /* This function is a wrapper for the primitive NH hash functions. It takes 534 * as argument "hc" the current hash context and a buffer which must be a 535 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset 536 * appropriately according to how much message has been hashed already. 537 */ 538 { 539 UINT8 *key; 540 541 key = hc->nh_key + hc->bytes_hashed; 542 nh_aux(key, buf, hc->state, nbytes); 543 } 544 545 /* ---------------------------------------------------------------------- */ 546 547 #if (__LITTLE_ENDIAN__) 548 static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes) 549 /* We endian convert the keys on little-endian computers to */ 550 /* compensate for the lack of big-endian memory reads during hashing. */ 551 { 552 UWORD iters = num_bytes / bpw; 553 if (bpw == 4) { 554 UINT32 *p = (UINT32 *)buf; 555 do { 556 *p = LOAD_UINT32_REVERSED(p); 557 p++; 558 } while (--iters); 559 } else if (bpw == 8) { 560 UINT32 *p = (UINT32 *)buf; 561 UINT32 t; 562 do { 563 t = LOAD_UINT32_REVERSED(p+1); 564 p[1] = LOAD_UINT32_REVERSED(p); 565 p[0] = t; 566 p += 2; 567 } while (--iters); 568 } 569 } 570 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z)) 571 #else 572 #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */ 573 #endif 574 575 /* ---------------------------------------------------------------------- */ 576 577 static void nh_reset(nh_ctx *hc) 578 /* Reset nh_ctx to ready for hashing of new data */ 579 { 580 hc->bytes_hashed = 0; 581 hc->next_data_empty = 0; 582 hc->state[0] = 0; 583 #if (UMAC_OUTPUT_LEN >= 8) 584 hc->state[1] = 0; 585 #endif 586 #if (UMAC_OUTPUT_LEN >= 12) 587 hc->state[2] = 0; 588 #endif 589 #if (UMAC_OUTPUT_LEN == 16) 590 hc->state[3] = 0; 591 #endif 592 593 } 594 595 /* ---------------------------------------------------------------------- */ 596 597 static void nh_init(nh_ctx *hc, aes_int_key prf_key) 598 /* Generate nh_key, endian convert and reset to be ready for hashing. */ 599 { 600 kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key)); 601 endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key)); 602 nh_reset(hc); 603 } 604 605 /* ---------------------------------------------------------------------- */ 606 607 static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes) 608 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */ 609 /* even multiple of HASH_BUF_BYTES. */ 610 { 611 UINT32 i,j; 612 613 j = hc->next_data_empty; 614 if ((j + nbytes) >= HASH_BUF_BYTES) { 615 if (j) { 616 i = HASH_BUF_BYTES - j; 617 memcpy(hc->data+j, buf, i); 618 nh_transform(hc,hc->data,HASH_BUF_BYTES); 619 nbytes -= i; 620 buf += i; 621 hc->bytes_hashed += HASH_BUF_BYTES; 622 } 623 if (nbytes >= HASH_BUF_BYTES) { 624 i = nbytes & ~(HASH_BUF_BYTES - 1); 625 nh_transform(hc, buf, i); 626 nbytes -= i; 627 buf += i; 628 hc->bytes_hashed += i; 629 } 630 j = 0; 631 } 632 memcpy(hc->data + j, buf, nbytes); 633 hc->next_data_empty = j + nbytes; 634 } 635 636 /* ---------------------------------------------------------------------- */ 637 638 static void zero_pad(UINT8 *p, int nbytes) 639 { 640 /* Write "nbytes" of zeroes, beginning at "p" */ 641 if (nbytes >= (int)sizeof(UWORD)) { 642 while ((ptrdiff_t)p % sizeof(UWORD)) { 643 *p = 0; 644 nbytes--; 645 p++; 646 } 647 while (nbytes >= (int)sizeof(UWORD)) { 648 *(UWORD *)p = 0; 649 nbytes -= sizeof(UWORD); 650 p += sizeof(UWORD); 651 } 652 } 653 while (nbytes) { 654 *p = 0; 655 nbytes--; 656 p++; 657 } 658 } 659 660 /* ---------------------------------------------------------------------- */ 661 662 static void nh_final(nh_ctx *hc, UINT8 *result) 663 /* After passing some number of data buffers to nh_update() for integration 664 * into an NH context, nh_final is called to produce a hash result. If any 665 * bytes are in the buffer hc->data, incorporate them into the 666 * NH context. Finally, add into the NH accumulation "state" the total number 667 * of bits hashed. The resulting numbers are written to the buffer "result". 668 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated. 669 */ 670 { 671 int nh_len, nbits; 672 673 if (hc->next_data_empty != 0) { 674 nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) & 675 ~(L1_PAD_BOUNDARY - 1)); 676 zero_pad(hc->data + hc->next_data_empty, 677 nh_len - hc->next_data_empty); 678 nh_transform(hc, hc->data, nh_len); 679 hc->bytes_hashed += hc->next_data_empty; 680 } else if (hc->bytes_hashed == 0) { 681 nh_len = L1_PAD_BOUNDARY; 682 zero_pad(hc->data, L1_PAD_BOUNDARY); 683 nh_transform(hc, hc->data, nh_len); 684 } 685 686 nbits = (hc->bytes_hashed << 3); 687 ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits; 688 #if (UMAC_OUTPUT_LEN >= 8) 689 ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits; 690 #endif 691 #if (UMAC_OUTPUT_LEN >= 12) 692 ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits; 693 #endif 694 #if (UMAC_OUTPUT_LEN == 16) 695 ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits; 696 #endif 697 nh_reset(hc); 698 } 699 700 /* ---------------------------------------------------------------------- */ 701 702 static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len, 703 UINT32 unpadded_len, UINT8 *result) 704 /* All-in-one nh_update() and nh_final() equivalent. 705 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is 706 * well aligned 707 */ 708 { 709 UINT32 nbits; 710 711 /* Initialize the hash state */ 712 nbits = (unpadded_len << 3); 713 714 ((UINT64 *)result)[0] = nbits; 715 #if (UMAC_OUTPUT_LEN >= 8) 716 ((UINT64 *)result)[1] = nbits; 717 #endif 718 #if (UMAC_OUTPUT_LEN >= 12) 719 ((UINT64 *)result)[2] = nbits; 720 #endif 721 #if (UMAC_OUTPUT_LEN == 16) 722 ((UINT64 *)result)[3] = nbits; 723 #endif 724 725 nh_aux(hc->nh_key, buf, result, padded_len); 726 } 727 728 /* ---------------------------------------------------------------------- */ 729 /* ---------------------------------------------------------------------- */ 730 /* ----- Begin UHASH Section -------------------------------------------- */ 731 /* ---------------------------------------------------------------------- */ 732 /* ---------------------------------------------------------------------- */ 733 734 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first 735 * hashed by NH. The NH output is then hashed by a polynomial-hash layer 736 * unless the initial data to be hashed is short. After the polynomial- 737 * layer, an inner-product hash is used to produce the final UHASH output. 738 * 739 * UHASH provides two interfaces, one all-at-once and another where data 740 * buffers are presented sequentially. In the sequential interface, the 741 * UHASH client calls the routine uhash_update() as many times as necessary. 742 * When there is no more data to be fed to UHASH, the client calls 743 * uhash_final() which 744 * calculates the UHASH output. Before beginning another UHASH calculation 745 * the uhash_reset() routine must be called. The all-at-once UHASH routine, 746 * uhash(), is equivalent to the sequence of calls uhash_update() and 747 * uhash_final(); however it is optimized and should be 748 * used whenever the sequential interface is not necessary. 749 * 750 * The routine uhash_init() initializes the uhash_ctx data structure and 751 * must be called once, before any other UHASH routine. 752 */ 753 754 /* ---------------------------------------------------------------------- */ 755 /* ----- Constants and uhash_ctx ---------------------------------------- */ 756 /* ---------------------------------------------------------------------- */ 757 758 /* ---------------------------------------------------------------------- */ 759 /* ----- Poly hash and Inner-Product hash Constants --------------------- */ 760 /* ---------------------------------------------------------------------- */ 761 762 /* Primes and masks */ 763 #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */ 764 #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */ 765 #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */ 766 767 768 /* ---------------------------------------------------------------------- */ 769 770 typedef struct uhash_ctx { 771 nh_ctx hash; /* Hash context for L1 NH hash */ 772 UINT64 poly_key_8[STREAMS]; /* p64 poly keys */ 773 UINT64 poly_accum[STREAMS]; /* poly hash result */ 774 UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */ 775 UINT32 ip_trans[STREAMS]; /* Inner-product translation */ 776 UINT32 msg_len; /* Total length of data passed */ 777 /* to uhash */ 778 } uhash_ctx; 779 typedef struct uhash_ctx *uhash_ctx_t; 780 781 /* ---------------------------------------------------------------------- */ 782 783 784 /* The polynomial hashes use Horner's rule to evaluate a polynomial one 785 * word at a time. As described in the specification, poly32 and poly64 786 * require keys from special domains. The following implementations exploit 787 * the special domains to avoid overflow. The results are not guaranteed to 788 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation 789 * patches any errant values. 790 */ 791 792 static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data) 793 { 794 UINT32 key_hi = (UINT32)(key >> 32), 795 key_lo = (UINT32)key, 796 cur_hi = (UINT32)(cur >> 32), 797 cur_lo = (UINT32)cur, 798 x_lo, 799 x_hi; 800 UINT64 X,T,res; 801 802 X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo); 803 x_lo = (UINT32)X; 804 x_hi = (UINT32)(X >> 32); 805 806 res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo); 807 808 T = ((UINT64)x_lo << 32); 809 res += T; 810 if (res < T) 811 res += 59; 812 813 res += data; 814 if (res < data) 815 res += 59; 816 817 return res; 818 } 819 820 821 /* Although UMAC is specified to use a ramped polynomial hash scheme, this 822 * implementation does not handle all ramp levels. Because we don't handle 823 * the ramp up to p128 modulus in this implementation, we are limited to 824 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24 825 * bytes input to UMAC per tag, ie. 16MB). 826 */ 827 static void poly_hash(uhash_ctx_t hc, UINT32 data_in[]) 828 { 829 int i; 830 UINT64 *data=(UINT64*)data_in; 831 832 for (i = 0; i < STREAMS; i++) { 833 if ((UINT32)(data[i] >> 32) == 0xfffffffful) { 834 hc->poly_accum[i] = poly64(hc->poly_accum[i], 835 hc->poly_key_8[i], p64 - 1); 836 hc->poly_accum[i] = poly64(hc->poly_accum[i], 837 hc->poly_key_8[i], (data[i] - 59)); 838 } else { 839 hc->poly_accum[i] = poly64(hc->poly_accum[i], 840 hc->poly_key_8[i], data[i]); 841 } 842 } 843 } 844 845 846 /* ---------------------------------------------------------------------- */ 847 848 849 /* The final step in UHASH is an inner-product hash. The poly hash 850 * produces a result not neccesarily WORD_LEN bytes long. The inner- 851 * product hash breaks the polyhash output into 16-bit chunks and 852 * multiplies each with a 36 bit key. 853 */ 854 855 static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data) 856 { 857 t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48); 858 t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32); 859 t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16); 860 t = t + ipkp[3] * (UINT64)(UINT16)(data); 861 862 return t; 863 } 864 865 static UINT32 ip_reduce_p36(UINT64 t) 866 { 867 /* Divisionless modular reduction */ 868 UINT64 ret; 869 870 ret = (t & m36) + 5 * (t >> 36); 871 if (ret >= p36) 872 ret -= p36; 873 874 /* return least significant 32 bits */ 875 return (UINT32)(ret); 876 } 877 878 879 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then 880 * the polyhash stage is skipped and ip_short is applied directly to the 881 * NH output. 882 */ 883 static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res) 884 { 885 UINT64 t; 886 UINT64 *nhp = (UINT64 *)nh_res; 887 888 t = ip_aux(0,ahc->ip_keys, nhp[0]); 889 STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]); 890 #if (UMAC_OUTPUT_LEN >= 8) 891 t = ip_aux(0,ahc->ip_keys+4, nhp[1]); 892 STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]); 893 #endif 894 #if (UMAC_OUTPUT_LEN >= 12) 895 t = ip_aux(0,ahc->ip_keys+8, nhp[2]); 896 STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]); 897 #endif 898 #if (UMAC_OUTPUT_LEN == 16) 899 t = ip_aux(0,ahc->ip_keys+12, nhp[3]); 900 STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]); 901 #endif 902 } 903 904 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then 905 * the polyhash stage is not skipped and ip_long is applied to the 906 * polyhash output. 907 */ 908 static void ip_long(uhash_ctx_t ahc, u_char *res) 909 { 910 int i; 911 UINT64 t; 912 913 for (i = 0; i < STREAMS; i++) { 914 /* fix polyhash output not in Z_p64 */ 915 if (ahc->poly_accum[i] >= p64) 916 ahc->poly_accum[i] -= p64; 917 t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]); 918 STORE_UINT32_BIG((UINT32 *)res+i, 919 ip_reduce_p36(t) ^ ahc->ip_trans[i]); 920 } 921 } 922 923 924 /* ---------------------------------------------------------------------- */ 925 926 /* ---------------------------------------------------------------------- */ 927 928 /* Reset uhash context for next hash session */ 929 static int uhash_reset(uhash_ctx_t pc) 930 { 931 nh_reset(&pc->hash); 932 pc->msg_len = 0; 933 pc->poly_accum[0] = 1; 934 #if (UMAC_OUTPUT_LEN >= 8) 935 pc->poly_accum[1] = 1; 936 #endif 937 #if (UMAC_OUTPUT_LEN >= 12) 938 pc->poly_accum[2] = 1; 939 #endif 940 #if (UMAC_OUTPUT_LEN == 16) 941 pc->poly_accum[3] = 1; 942 #endif 943 return 1; 944 } 945 946 /* ---------------------------------------------------------------------- */ 947 948 /* Given a pointer to the internal key needed by kdf() and a uhash context, 949 * initialize the NH context and generate keys needed for poly and inner- 950 * product hashing. All keys are endian adjusted in memory so that native 951 * loads cause correct keys to be in registers during calculation. 952 */ 953 static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key) 954 { 955 int i; 956 UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)]; 957 958 /* Zero the entire uhash context */ 959 memset(ahc, 0, sizeof(uhash_ctx)); 960 961 /* Initialize the L1 hash */ 962 nh_init(&ahc->hash, prf_key); 963 964 /* Setup L2 hash variables */ 965 kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */ 966 for (i = 0; i < STREAMS; i++) { 967 /* Fill keys from the buffer, skipping bytes in the buffer not 968 * used by this implementation. Endian reverse the keys if on a 969 * little-endian computer. 970 */ 971 memcpy(ahc->poly_key_8+i, buf+24*i, 8); 972 endian_convert_if_le(ahc->poly_key_8+i, 8, 8); 973 /* Mask the 64-bit keys to their special domain */ 974 ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu; 975 ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */ 976 } 977 978 /* Setup L3-1 hash variables */ 979 kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */ 980 for (i = 0; i < STREAMS; i++) 981 memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64), 982 4*sizeof(UINT64)); 983 endian_convert_if_le(ahc->ip_keys, sizeof(UINT64), 984 sizeof(ahc->ip_keys)); 985 for (i = 0; i < STREAMS*4; i++) 986 ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */ 987 988 /* Setup L3-2 hash variables */ 989 /* Fill buffer with index 4 key */ 990 kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32)); 991 endian_convert_if_le(ahc->ip_trans, sizeof(UINT32), 992 STREAMS * sizeof(UINT32)); 993 explicit_bzero(buf, sizeof(buf)); 994 } 995 996 /* ---------------------------------------------------------------------- */ 997 998 #if 0 999 static uhash_ctx_t uhash_alloc(u_char key[]) 1000 { 1001 /* Allocate memory and force to a 16-byte boundary. */ 1002 uhash_ctx_t ctx; 1003 u_char bytes_to_add; 1004 aes_int_key prf_key; 1005 1006 ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY); 1007 if (ctx) { 1008 if (ALLOC_BOUNDARY) { 1009 bytes_to_add = ALLOC_BOUNDARY - 1010 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1)); 1011 ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add); 1012 *((u_char *)ctx - 1) = bytes_to_add; 1013 } 1014 aes_key_setup(key,prf_key); 1015 uhash_init(ctx, prf_key); 1016 } 1017 return (ctx); 1018 } 1019 #endif 1020 1021 /* ---------------------------------------------------------------------- */ 1022 1023 #if 0 1024 static int uhash_free(uhash_ctx_t ctx) 1025 { 1026 /* Free memory allocated by uhash_alloc */ 1027 u_char bytes_to_sub; 1028 1029 if (ctx) { 1030 if (ALLOC_BOUNDARY) { 1031 bytes_to_sub = *((u_char *)ctx - 1); 1032 ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub); 1033 } 1034 free(ctx); 1035 } 1036 return (1); 1037 } 1038 #endif 1039 /* ---------------------------------------------------------------------- */ 1040 1041 static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len) 1042 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and 1043 * hash each one with NH, calling the polyhash on each NH output. 1044 */ 1045 { 1046 UWORD bytes_hashed, bytes_remaining; 1047 UINT64 result_buf[STREAMS]; 1048 UINT8 *nh_result = (UINT8 *)&result_buf; 1049 1050 if (ctx->msg_len + len <= L1_KEY_LEN) { 1051 nh_update(&ctx->hash, (const UINT8 *)input, len); 1052 ctx->msg_len += len; 1053 } else { 1054 1055 bytes_hashed = ctx->msg_len % L1_KEY_LEN; 1056 if (ctx->msg_len == L1_KEY_LEN) 1057 bytes_hashed = L1_KEY_LEN; 1058 1059 if (bytes_hashed + len >= L1_KEY_LEN) { 1060 1061 /* If some bytes have been passed to the hash function */ 1062 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */ 1063 /* bytes to complete the current nh_block. */ 1064 if (bytes_hashed) { 1065 bytes_remaining = (L1_KEY_LEN - bytes_hashed); 1066 nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining); 1067 nh_final(&ctx->hash, nh_result); 1068 ctx->msg_len += bytes_remaining; 1069 poly_hash(ctx,(UINT32 *)nh_result); 1070 len -= bytes_remaining; 1071 input += bytes_remaining; 1072 } 1073 1074 /* Hash directly from input stream if enough bytes */ 1075 while (len >= L1_KEY_LEN) { 1076 nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN, 1077 L1_KEY_LEN, nh_result); 1078 ctx->msg_len += L1_KEY_LEN; 1079 len -= L1_KEY_LEN; 1080 input += L1_KEY_LEN; 1081 poly_hash(ctx,(UINT32 *)nh_result); 1082 } 1083 } 1084 1085 /* pass remaining < L1_KEY_LEN bytes of input data to NH */ 1086 if (len) { 1087 nh_update(&ctx->hash, (const UINT8 *)input, len); 1088 ctx->msg_len += len; 1089 } 1090 } 1091 1092 return (1); 1093 } 1094 1095 /* ---------------------------------------------------------------------- */ 1096 1097 static int uhash_final(uhash_ctx_t ctx, u_char *res) 1098 /* Incorporate any pending data, pad, and generate tag */ 1099 { 1100 UINT64 result_buf[STREAMS]; 1101 UINT8 *nh_result = (UINT8 *)&result_buf; 1102 1103 if (ctx->msg_len > L1_KEY_LEN) { 1104 if (ctx->msg_len % L1_KEY_LEN) { 1105 nh_final(&ctx->hash, nh_result); 1106 poly_hash(ctx,(UINT32 *)nh_result); 1107 } 1108 ip_long(ctx, res); 1109 } else { 1110 nh_final(&ctx->hash, nh_result); 1111 ip_short(ctx,nh_result, res); 1112 } 1113 uhash_reset(ctx); 1114 return (1); 1115 } 1116 1117 /* ---------------------------------------------------------------------- */ 1118 1119 #if 0 1120 static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res) 1121 /* assumes that msg is in a writable buffer of length divisible by */ 1122 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */ 1123 { 1124 UINT8 nh_result[STREAMS*sizeof(UINT64)]; 1125 UINT32 nh_len; 1126 int extra_zeroes_needed; 1127 1128 /* If the message to be hashed is no longer than L1_HASH_LEN, we skip 1129 * the polyhash. 1130 */ 1131 if (len <= L1_KEY_LEN) { 1132 if (len == 0) /* If zero length messages will not */ 1133 nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */ 1134 else 1135 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); 1136 extra_zeroes_needed = nh_len - len; 1137 zero_pad((UINT8 *)msg + len, extra_zeroes_needed); 1138 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); 1139 ip_short(ahc,nh_result, res); 1140 } else { 1141 /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH 1142 * output to poly_hash(). 1143 */ 1144 do { 1145 nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result); 1146 poly_hash(ahc,(UINT32 *)nh_result); 1147 len -= L1_KEY_LEN; 1148 msg += L1_KEY_LEN; 1149 } while (len >= L1_KEY_LEN); 1150 if (len) { 1151 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); 1152 extra_zeroes_needed = nh_len - len; 1153 zero_pad((UINT8 *)msg + len, extra_zeroes_needed); 1154 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); 1155 poly_hash(ahc,(UINT32 *)nh_result); 1156 } 1157 1158 ip_long(ahc, res); 1159 } 1160 1161 uhash_reset(ahc); 1162 return 1; 1163 } 1164 #endif 1165 1166 /* ---------------------------------------------------------------------- */ 1167 /* ---------------------------------------------------------------------- */ 1168 /* ----- Begin UMAC Section --------------------------------------------- */ 1169 /* ---------------------------------------------------------------------- */ 1170 /* ---------------------------------------------------------------------- */ 1171 1172 /* The UMAC interface has two interfaces, an all-at-once interface where 1173 * the entire message to be authenticated is passed to UMAC in one buffer, 1174 * and a sequential interface where the message is presented a little at a 1175 * time. The all-at-once is more optimaized than the sequential version and 1176 * should be preferred when the sequential interface is not required. 1177 */ 1178 struct umac_ctx { 1179 uhash_ctx hash; /* Hash function for message compression */ 1180 pdf_ctx pdf; /* PDF for hashed output */ 1181 void *free_ptr; /* Address to free this struct via */ 1182 } umac_ctx; 1183 1184 /* ---------------------------------------------------------------------- */ 1185 1186 #if 0 1187 int umac_reset(struct umac_ctx *ctx) 1188 /* Reset the hash function to begin a new authentication. */ 1189 { 1190 uhash_reset(&ctx->hash); 1191 return (1); 1192 } 1193 #endif 1194 1195 /* ---------------------------------------------------------------------- */ 1196 1197 int umac_delete(struct umac_ctx *ctx) 1198 /* Deallocate the ctx structure */ 1199 { 1200 if (ctx) { 1201 if (ALLOC_BOUNDARY) 1202 ctx = (struct umac_ctx *)ctx->free_ptr; 1203 explicit_bzero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY); 1204 free(ctx); 1205 } 1206 return (1); 1207 } 1208 1209 /* ---------------------------------------------------------------------- */ 1210 1211 struct umac_ctx *umac_new(const u_char key[]) 1212 /* Dynamically allocate a umac_ctx struct, initialize variables, 1213 * generate subkeys from key. Align to 16-byte boundary. 1214 */ 1215 { 1216 struct umac_ctx *ctx, *octx; 1217 size_t bytes_to_add; 1218 aes_int_key prf_key; 1219 1220 octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY); 1221 if (ctx) { 1222 if (ALLOC_BOUNDARY) { 1223 bytes_to_add = ALLOC_BOUNDARY - 1224 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1)); 1225 ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add); 1226 } 1227 ctx->free_ptr = octx; 1228 aes_key_setup(key, prf_key); 1229 pdf_init(&ctx->pdf, prf_key); 1230 uhash_init(&ctx->hash, prf_key); 1231 explicit_bzero(prf_key, sizeof(prf_key)); 1232 } 1233 1234 return (ctx); 1235 } 1236 1237 /* ---------------------------------------------------------------------- */ 1238 1239 int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8]) 1240 /* Incorporate any pending data, pad, and generate tag */ 1241 { 1242 uhash_final(&ctx->hash, (u_char *)tag); 1243 pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag); 1244 1245 return (1); 1246 } 1247 1248 /* ---------------------------------------------------------------------- */ 1249 1250 int umac_update(struct umac_ctx *ctx, const u_char *input, long len) 1251 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */ 1252 /* hash each one, calling the PDF on the hashed output whenever the hash- */ 1253 /* output buffer is full. */ 1254 { 1255 uhash_update(&ctx->hash, input, len); 1256 return (1); 1257 } 1258 1259 /* ---------------------------------------------------------------------- */ 1260 1261 #if 0 1262 int umac(struct umac_ctx *ctx, u_char *input, 1263 long len, u_char tag[], 1264 u_char nonce[8]) 1265 /* All-in-one version simply calls umac_update() and umac_final(). */ 1266 { 1267 uhash(&ctx->hash, input, len, (u_char *)tag); 1268 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag); 1269 1270 return (1); 1271 } 1272 #endif 1273 1274 /* ---------------------------------------------------------------------- */ 1275 /* ---------------------------------------------------------------------- */ 1276 /* ----- End UMAC Section ----------------------------------------------- */ 1277 /* ---------------------------------------------------------------------- */ 1278 /* ---------------------------------------------------------------------- */ 1279