xref: /openbsd-src/usr.bin/ssh/moduli.c (revision daf88648c0e349d5c02e1504293082072c981640)
1 /* $OpenBSD: moduli.c,v 1.19 2006/11/06 21:25:28 markus Exp $ */
2 /*
3  * Copyright 1994 Phil Karn <karn@qualcomm.com>
4  * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
5  * Copyright 2000 Niels Provos <provos@citi.umich.edu>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * Two-step process to generate safe primes for DHGEX
31  *
32  *  Sieve candidates for "safe" primes,
33  *  suitable for use as Diffie-Hellman moduli;
34  *  that is, where q = (p-1)/2 is also prime.
35  *
36  * First step: generate candidate primes (memory intensive)
37  * Second step: test primes' safety (processor intensive)
38  */
39 
40 #include <sys/types.h>
41 
42 #include <openssl/bn.h>
43 
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <string.h>
47 #include <stdarg.h>
48 #include <time.h>
49 
50 #include "xmalloc.h"
51 #include "log.h"
52 
53 /*
54  * File output defines
55  */
56 
57 /* need line long enough for largest moduli plus headers */
58 #define QLINESIZE		(100+8192)
59 
60 /* Type: decimal.
61  * Specifies the internal structure of the prime modulus.
62  */
63 #define QTYPE_UNKNOWN		(0)
64 #define QTYPE_UNSTRUCTURED	(1)
65 #define QTYPE_SAFE		(2)
66 #define QTYPE_SCHNORR		(3)
67 #define QTYPE_SOPHIE_GERMAIN	(4)
68 #define QTYPE_STRONG		(5)
69 
70 /* Tests: decimal (bit field).
71  * Specifies the methods used in checking for primality.
72  * Usually, more than one test is used.
73  */
74 #define QTEST_UNTESTED		(0x00)
75 #define QTEST_COMPOSITE		(0x01)
76 #define QTEST_SIEVE		(0x02)
77 #define QTEST_MILLER_RABIN	(0x04)
78 #define QTEST_JACOBI		(0x08)
79 #define QTEST_ELLIPTIC		(0x10)
80 
81 /*
82  * Size: decimal.
83  * Specifies the number of the most significant bit (0 to M).
84  * WARNING: internally, usually 1 to N.
85  */
86 #define QSIZE_MINIMUM		(511)
87 
88 /*
89  * Prime sieving defines
90  */
91 
92 /* Constant: assuming 8 bit bytes and 32 bit words */
93 #define SHIFT_BIT	(3)
94 #define SHIFT_BYTE	(2)
95 #define SHIFT_WORD	(SHIFT_BIT+SHIFT_BYTE)
96 #define SHIFT_MEGABYTE	(20)
97 #define SHIFT_MEGAWORD	(SHIFT_MEGABYTE-SHIFT_BYTE)
98 
99 /*
100  * Using virtual memory can cause thrashing.  This should be the largest
101  * number that is supported without a large amount of disk activity --
102  * that would increase the run time from hours to days or weeks!
103  */
104 #define LARGE_MINIMUM	(8UL)	/* megabytes */
105 
106 /*
107  * Do not increase this number beyond the unsigned integer bit size.
108  * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
109  */
110 #define LARGE_MAXIMUM	(127UL)	/* megabytes */
111 
112 /*
113  * Constant: when used with 32-bit integers, the largest sieve prime
114  * has to be less than 2**32.
115  */
116 #define SMALL_MAXIMUM	(0xffffffffUL)
117 
118 /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
119 #define TINY_NUMBER	(1UL<<16)
120 
121 /* Ensure enough bit space for testing 2*q. */
122 #define TEST_MAXIMUM	(1UL<<16)
123 #define TEST_MINIMUM	(QSIZE_MINIMUM + 1)
124 /* real TEST_MINIMUM	(1UL << (SHIFT_WORD - TEST_POWER)) */
125 #define TEST_POWER	(3)	/* 2**n, n < SHIFT_WORD */
126 
127 /* bit operations on 32-bit words */
128 #define BIT_CLEAR(a,n)	((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
129 #define BIT_SET(a,n)	((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
130 #define BIT_TEST(a,n)	((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
131 
132 /*
133  * Prime testing defines
134  */
135 
136 /* Minimum number of primality tests to perform */
137 #define TRIAL_MINIMUM	(4)
138 
139 /*
140  * Sieving data (XXX - move to struct)
141  */
142 
143 /* sieve 2**16 */
144 static u_int32_t *TinySieve, tinybits;
145 
146 /* sieve 2**30 in 2**16 parts */
147 static u_int32_t *SmallSieve, smallbits, smallbase;
148 
149 /* sieve relative to the initial value */
150 static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
151 static u_int32_t largebits, largememory;	/* megabytes */
152 static BIGNUM *largebase;
153 
154 int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
155 int prime_test(FILE *, FILE *, u_int32_t, u_int32_t);
156 
157 /*
158  * print moduli out in consistent form,
159  */
160 static int
161 qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
162     u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
163 {
164 	struct tm *gtm;
165 	time_t time_now;
166 	int res;
167 
168 	time(&time_now);
169 	gtm = gmtime(&time_now);
170 
171 	res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
172 	    gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
173 	    gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
174 	    otype, otests, otries, osize, ogenerator);
175 
176 	if (res < 0)
177 		return (-1);
178 
179 	if (BN_print_fp(ofile, omodulus) < 1)
180 		return (-1);
181 
182 	res = fprintf(ofile, "\n");
183 	fflush(ofile);
184 
185 	return (res > 0 ? 0 : -1);
186 }
187 
188 
189 /*
190  ** Sieve p's and q's with small factors
191  */
192 static void
193 sieve_large(u_int32_t s)
194 {
195 	u_int32_t r, u;
196 
197 	debug3("sieve_large %u", s);
198 	largetries++;
199 	/* r = largebase mod s */
200 	r = BN_mod_word(largebase, s);
201 	if (r == 0)
202 		u = 0; /* s divides into largebase exactly */
203 	else
204 		u = s - r; /* largebase+u is first entry divisible by s */
205 
206 	if (u < largebits * 2) {
207 		/*
208 		 * The sieve omits p's and q's divisible by 2, so ensure that
209 		 * largebase+u is odd. Then, step through the sieve in
210 		 * increments of 2*s
211 		 */
212 		if (u & 0x1)
213 			u += s; /* Make largebase+u odd, and u even */
214 
215 		/* Mark all multiples of 2*s */
216 		for (u /= 2; u < largebits; u += s)
217 			BIT_SET(LargeSieve, u);
218 	}
219 
220 	/* r = p mod s */
221 	r = (2 * r + 1) % s;
222 	if (r == 0)
223 		u = 0; /* s divides p exactly */
224 	else
225 		u = s - r; /* p+u is first entry divisible by s */
226 
227 	if (u < largebits * 4) {
228 		/*
229 		 * The sieve omits p's divisible by 4, so ensure that
230 		 * largebase+u is not. Then, step through the sieve in
231 		 * increments of 4*s
232 		 */
233 		while (u & 0x3) {
234 			if (SMALL_MAXIMUM - u < s)
235 				return;
236 			u += s;
237 		}
238 
239 		/* Mark all multiples of 4*s */
240 		for (u /= 4; u < largebits; u += s)
241 			BIT_SET(LargeSieve, u);
242 	}
243 }
244 
245 /*
246  * list candidates for Sophie-Germain primes (where q = (p-1)/2)
247  * to standard output.
248  * The list is checked against small known primes (less than 2**30).
249  */
250 int
251 gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
252 {
253 	BIGNUM *q;
254 	u_int32_t j, r, s, t;
255 	u_int32_t smallwords = TINY_NUMBER >> 6;
256 	u_int32_t tinywords = TINY_NUMBER >> 6;
257 	time_t time_start, time_stop;
258 	u_int32_t i;
259 	int ret = 0;
260 
261 	largememory = memory;
262 
263 	if (memory != 0 &&
264 	    (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
265 		error("Invalid memory amount (min %ld, max %ld)",
266 		    LARGE_MINIMUM, LARGE_MAXIMUM);
267 		return (-1);
268 	}
269 
270 	/*
271 	 * Set power to the length in bits of the prime to be generated.
272 	 * This is changed to 1 less than the desired safe prime moduli p.
273 	 */
274 	if (power > TEST_MAXIMUM) {
275 		error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
276 		return (-1);
277 	} else if (power < TEST_MINIMUM) {
278 		error("Too few bits: %u < %u", power, TEST_MINIMUM);
279 		return (-1);
280 	}
281 	power--; /* decrement before squaring */
282 
283 	/*
284 	 * The density of ordinary primes is on the order of 1/bits, so the
285 	 * density of safe primes should be about (1/bits)**2. Set test range
286 	 * to something well above bits**2 to be reasonably sure (but not
287 	 * guaranteed) of catching at least one safe prime.
288 	 */
289 	largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
290 
291 	/*
292 	 * Need idea of how much memory is available. We don't have to use all
293 	 * of it.
294 	 */
295 	if (largememory > LARGE_MAXIMUM) {
296 		logit("Limited memory: %u MB; limit %lu MB",
297 		    largememory, LARGE_MAXIMUM);
298 		largememory = LARGE_MAXIMUM;
299 	}
300 
301 	if (largewords <= (largememory << SHIFT_MEGAWORD)) {
302 		logit("Increased memory: %u MB; need %u bytes",
303 		    largememory, (largewords << SHIFT_BYTE));
304 		largewords = (largememory << SHIFT_MEGAWORD);
305 	} else if (largememory > 0) {
306 		logit("Decreased memory: %u MB; want %u bytes",
307 		    largememory, (largewords << SHIFT_BYTE));
308 		largewords = (largememory << SHIFT_MEGAWORD);
309 	}
310 
311 	TinySieve = xcalloc(tinywords, sizeof(u_int32_t));
312 	tinybits = tinywords << SHIFT_WORD;
313 
314 	SmallSieve = xcalloc(smallwords, sizeof(u_int32_t));
315 	smallbits = smallwords << SHIFT_WORD;
316 
317 	/*
318 	 * dynamically determine available memory
319 	 */
320 	while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
321 		largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
322 
323 	largebits = largewords << SHIFT_WORD;
324 	largenumbers = largebits * 2;	/* even numbers excluded */
325 
326 	/* validation check: count the number of primes tried */
327 	largetries = 0;
328 	if ((q = BN_new()) == NULL)
329 		fatal("BN_new failed");
330 
331 	/*
332 	 * Generate random starting point for subprime search, or use
333 	 * specified parameter.
334 	 */
335 	if ((largebase = BN_new()) == NULL)
336 		fatal("BN_new failed");
337 	if (start == NULL) {
338 		if (BN_rand(largebase, power, 1, 1) == 0)
339 			fatal("BN_rand failed");
340 	} else {
341 		if (BN_copy(largebase, start) == NULL)
342 			fatal("BN_copy: failed");
343 	}
344 
345 	/* ensure odd */
346 	if (BN_set_bit(largebase, 0) == 0)
347 		fatal("BN_set_bit: failed");
348 
349 	time(&time_start);
350 
351 	logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
352 	    largenumbers, power);
353 	debug2("start point: 0x%s", BN_bn2hex(largebase));
354 
355 	/*
356 	 * TinySieve
357 	 */
358 	for (i = 0; i < tinybits; i++) {
359 		if (BIT_TEST(TinySieve, i))
360 			continue; /* 2*i+3 is composite */
361 
362 		/* The next tiny prime */
363 		t = 2 * i + 3;
364 
365 		/* Mark all multiples of t */
366 		for (j = i + t; j < tinybits; j += t)
367 			BIT_SET(TinySieve, j);
368 
369 		sieve_large(t);
370 	}
371 
372 	/*
373 	 * Start the small block search at the next possible prime. To avoid
374 	 * fencepost errors, the last pass is skipped.
375 	 */
376 	for (smallbase = TINY_NUMBER + 3;
377 	    smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
378 	    smallbase += TINY_NUMBER) {
379 		for (i = 0; i < tinybits; i++) {
380 			if (BIT_TEST(TinySieve, i))
381 				continue; /* 2*i+3 is composite */
382 
383 			/* The next tiny prime */
384 			t = 2 * i + 3;
385 			r = smallbase % t;
386 
387 			if (r == 0) {
388 				s = 0; /* t divides into smallbase exactly */
389 			} else {
390 				/* smallbase+s is first entry divisible by t */
391 				s = t - r;
392 			}
393 
394 			/*
395 			 * The sieve omits even numbers, so ensure that
396 			 * smallbase+s is odd. Then, step through the sieve
397 			 * in increments of 2*t
398 			 */
399 			if (s & 1)
400 				s += t; /* Make smallbase+s odd, and s even */
401 
402 			/* Mark all multiples of 2*t */
403 			for (s /= 2; s < smallbits; s += t)
404 				BIT_SET(SmallSieve, s);
405 		}
406 
407 		/*
408 		 * SmallSieve
409 		 */
410 		for (i = 0; i < smallbits; i++) {
411 			if (BIT_TEST(SmallSieve, i))
412 				continue; /* 2*i+smallbase is composite */
413 
414 			/* The next small prime */
415 			sieve_large((2 * i) + smallbase);
416 		}
417 
418 		memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
419 	}
420 
421 	time(&time_stop);
422 
423 	logit("%.24s Sieved with %u small primes in %ld seconds",
424 	    ctime(&time_stop), largetries, (long) (time_stop - time_start));
425 
426 	for (j = r = 0; j < largebits; j++) {
427 		if (BIT_TEST(LargeSieve, j))
428 			continue; /* Definitely composite, skip */
429 
430 		debug2("test q = largebase+%u", 2 * j);
431 		if (BN_set_word(q, 2 * j) == 0)
432 			fatal("BN_set_word failed");
433 		if (BN_add(q, q, largebase) == 0)
434 			fatal("BN_add failed");
435 		if (qfileout(out, QTYPE_SOPHIE_GERMAIN, QTEST_SIEVE,
436 		    largetries, (power - 1) /* MSB */, (0), q) == -1) {
437 			ret = -1;
438 			break;
439 		}
440 
441 		r++; /* count q */
442 	}
443 
444 	time(&time_stop);
445 
446 	xfree(LargeSieve);
447 	xfree(SmallSieve);
448 	xfree(TinySieve);
449 
450 	logit("%.24s Found %u candidates", ctime(&time_stop), r);
451 
452 	return (ret);
453 }
454 
455 /*
456  * perform a Miller-Rabin primality test
457  * on the list of candidates
458  * (checking both q and p)
459  * The result is a list of so-call "safe" primes
460  */
461 int
462 prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted)
463 {
464 	BIGNUM *q, *p, *a;
465 	BN_CTX *ctx;
466 	char *cp, *lp;
467 	u_int32_t count_in = 0, count_out = 0, count_possible = 0;
468 	u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
469 	time_t time_start, time_stop;
470 	int res;
471 
472 	if (trials < TRIAL_MINIMUM) {
473 		error("Minimum primality trials is %d", TRIAL_MINIMUM);
474 		return (-1);
475 	}
476 
477 	time(&time_start);
478 
479 	if ((p = BN_new()) == NULL)
480 		fatal("BN_new failed");
481 	if ((q = BN_new()) == NULL)
482 		fatal("BN_new failed");
483 	if ((ctx = BN_CTX_new()) == NULL)
484 		fatal("BN_CTX_new failed");
485 
486 	debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
487 	    ctime(&time_start), trials, generator_wanted);
488 
489 	res = 0;
490 	lp = xmalloc(QLINESIZE + 1);
491 	while (fgets(lp, QLINESIZE, in) != NULL) {
492 		int ll = strlen(lp);
493 
494 		count_in++;
495 		if (ll < 14 || *lp == '!' || *lp == '#') {
496 			debug2("%10u: comment or short line", count_in);
497 			continue;
498 		}
499 
500 		/* XXX - fragile parser */
501 		/* time */
502 		cp = &lp[14];	/* (skip) */
503 
504 		/* type */
505 		in_type = strtoul(cp, &cp, 10);
506 
507 		/* tests */
508 		in_tests = strtoul(cp, &cp, 10);
509 
510 		if (in_tests & QTEST_COMPOSITE) {
511 			debug2("%10u: known composite", count_in);
512 			continue;
513 		}
514 
515 		/* tries */
516 		in_tries = strtoul(cp, &cp, 10);
517 
518 		/* size (most significant bit) */
519 		in_size = strtoul(cp, &cp, 10);
520 
521 		/* generator (hex) */
522 		generator_known = strtoul(cp, &cp, 16);
523 
524 		/* Skip white space */
525 		cp += strspn(cp, " ");
526 
527 		/* modulus (hex) */
528 		switch (in_type) {
529 		case QTYPE_SOPHIE_GERMAIN:
530 			debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
531 			a = q;
532 			if (BN_hex2bn(&a, cp) == 0)
533 				fatal("BN_hex2bn failed");
534 			/* p = 2*q + 1 */
535 			if (BN_lshift(p, q, 1) == 0)
536 				fatal("BN_lshift failed");
537 			if (BN_add_word(p, 1) == 0)
538 				fatal("BN_add_word failed");
539 			in_size += 1;
540 			generator_known = 0;
541 			break;
542 		case QTYPE_UNSTRUCTURED:
543 		case QTYPE_SAFE:
544 		case QTYPE_SCHNORR:
545 		case QTYPE_STRONG:
546 		case QTYPE_UNKNOWN:
547 			debug2("%10u: (%u)", count_in, in_type);
548 			a = p;
549 			if (BN_hex2bn(&a, cp) == 0)
550 				fatal("BN_hex2bn failed");
551 			/* q = (p-1) / 2 */
552 			if (BN_rshift(q, p, 1) == 0)
553 				fatal("BN_rshift failed");
554 			break;
555 		default:
556 			debug2("Unknown prime type");
557 			break;
558 		}
559 
560 		/*
561 		 * due to earlier inconsistencies in interpretation, check
562 		 * the proposed bit size.
563 		 */
564 		if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
565 			debug2("%10u: bit size %u mismatch", count_in, in_size);
566 			continue;
567 		}
568 		if (in_size < QSIZE_MINIMUM) {
569 			debug2("%10u: bit size %u too short", count_in, in_size);
570 			continue;
571 		}
572 
573 		if (in_tests & QTEST_MILLER_RABIN)
574 			in_tries += trials;
575 		else
576 			in_tries = trials;
577 
578 		/*
579 		 * guess unknown generator
580 		 */
581 		if (generator_known == 0) {
582 			if (BN_mod_word(p, 24) == 11)
583 				generator_known = 2;
584 			else if (BN_mod_word(p, 12) == 5)
585 				generator_known = 3;
586 			else {
587 				u_int32_t r = BN_mod_word(p, 10);
588 
589 				if (r == 3 || r == 7)
590 					generator_known = 5;
591 			}
592 		}
593 		/*
594 		 * skip tests when desired generator doesn't match
595 		 */
596 		if (generator_wanted > 0 &&
597 		    generator_wanted != generator_known) {
598 			debug2("%10u: generator %d != %d",
599 			    count_in, generator_known, generator_wanted);
600 			continue;
601 		}
602 
603 		/*
604 		 * Primes with no known generator are useless for DH, so
605 		 * skip those.
606 		 */
607 		if (generator_known == 0) {
608 			debug2("%10u: no known generator", count_in);
609 			continue;
610 		}
611 
612 		count_possible++;
613 
614 		/*
615 		 * The (1/4)^N performance bound on Miller-Rabin is
616 		 * extremely pessimistic, so don't spend a lot of time
617 		 * really verifying that q is prime until after we know
618 		 * that p is also prime. A single pass will weed out the
619 		 * vast majority of composite q's.
620 		 */
621 		if (BN_is_prime(q, 1, NULL, ctx, NULL) <= 0) {
622 			debug("%10u: q failed first possible prime test",
623 			    count_in);
624 			continue;
625 		}
626 
627 		/*
628 		 * q is possibly prime, so go ahead and really make sure
629 		 * that p is prime. If it is, then we can go back and do
630 		 * the same for q. If p is composite, chances are that
631 		 * will show up on the first Rabin-Miller iteration so it
632 		 * doesn't hurt to specify a high iteration count.
633 		 */
634 		if (!BN_is_prime(p, trials, NULL, ctx, NULL)) {
635 			debug("%10u: p is not prime", count_in);
636 			continue;
637 		}
638 		debug("%10u: p is almost certainly prime", count_in);
639 
640 		/* recheck q more rigorously */
641 		if (!BN_is_prime(q, trials - 1, NULL, ctx, NULL)) {
642 			debug("%10u: q is not prime", count_in);
643 			continue;
644 		}
645 		debug("%10u: q is almost certainly prime", count_in);
646 
647 		if (qfileout(out, QTYPE_SAFE, (in_tests | QTEST_MILLER_RABIN),
648 		    in_tries, in_size, generator_known, p)) {
649 			res = -1;
650 			break;
651 		}
652 
653 		count_out++;
654 	}
655 
656 	time(&time_stop);
657 	xfree(lp);
658 	BN_free(p);
659 	BN_free(q);
660 	BN_CTX_free(ctx);
661 
662 	logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
663 	    ctime(&time_stop), count_out, count_possible,
664 	    (long) (time_stop - time_start));
665 
666 	return (res);
667 }
668