1 /* $OpenBSD: moduli.c,v 1.26 2012/07/06 00:41:59 dtucker Exp $ */ 2 /* 3 * Copyright 1994 Phil Karn <karn@qualcomm.com> 4 * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com> 5 * Copyright 2000 Niels Provos <provos@citi.umich.edu> 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * Two-step process to generate safe primes for DHGEX 31 * 32 * Sieve candidates for "safe" primes, 33 * suitable for use as Diffie-Hellman moduli; 34 * that is, where q = (p-1)/2 is also prime. 35 * 36 * First step: generate candidate primes (memory intensive) 37 * Second step: test primes' safety (processor intensive) 38 */ 39 40 #include <sys/param.h> 41 #include <sys/types.h> 42 43 #include <openssl/bn.h> 44 #include <openssl/dh.h> 45 46 #include <errno.h> 47 #include <stdio.h> 48 #include <stdlib.h> 49 #include <string.h> 50 #include <stdarg.h> 51 #include <time.h> 52 #include <unistd.h> 53 54 #include "xmalloc.h" 55 #include "dh.h" 56 #include "log.h" 57 58 /* 59 * File output defines 60 */ 61 62 /* need line long enough for largest moduli plus headers */ 63 #define QLINESIZE (100+8192) 64 65 /* 66 * Size: decimal. 67 * Specifies the number of the most significant bit (0 to M). 68 * WARNING: internally, usually 1 to N. 69 */ 70 #define QSIZE_MINIMUM (511) 71 72 /* 73 * Prime sieving defines 74 */ 75 76 /* Constant: assuming 8 bit bytes and 32 bit words */ 77 #define SHIFT_BIT (3) 78 #define SHIFT_BYTE (2) 79 #define SHIFT_WORD (SHIFT_BIT+SHIFT_BYTE) 80 #define SHIFT_MEGABYTE (20) 81 #define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE) 82 83 /* 84 * Using virtual memory can cause thrashing. This should be the largest 85 * number that is supported without a large amount of disk activity -- 86 * that would increase the run time from hours to days or weeks! 87 */ 88 #define LARGE_MINIMUM (8UL) /* megabytes */ 89 90 /* 91 * Do not increase this number beyond the unsigned integer bit size. 92 * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits). 93 */ 94 #define LARGE_MAXIMUM (127UL) /* megabytes */ 95 96 /* 97 * Constant: when used with 32-bit integers, the largest sieve prime 98 * has to be less than 2**32. 99 */ 100 #define SMALL_MAXIMUM (0xffffffffUL) 101 102 /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */ 103 #define TINY_NUMBER (1UL<<16) 104 105 /* Ensure enough bit space for testing 2*q. */ 106 #define TEST_MAXIMUM (1UL<<16) 107 #define TEST_MINIMUM (QSIZE_MINIMUM + 1) 108 /* real TEST_MINIMUM (1UL << (SHIFT_WORD - TEST_POWER)) */ 109 #define TEST_POWER (3) /* 2**n, n < SHIFT_WORD */ 110 111 /* bit operations on 32-bit words */ 112 #define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31))) 113 #define BIT_SET(a,n) ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31))) 114 #define BIT_TEST(a,n) ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31))) 115 116 /* 117 * Prime testing defines 118 */ 119 120 /* Minimum number of primality tests to perform */ 121 #define TRIAL_MINIMUM (4) 122 123 /* 124 * Sieving data (XXX - move to struct) 125 */ 126 127 /* sieve 2**16 */ 128 static u_int32_t *TinySieve, tinybits; 129 130 /* sieve 2**30 in 2**16 parts */ 131 static u_int32_t *SmallSieve, smallbits, smallbase; 132 133 /* sieve relative to the initial value */ 134 static u_int32_t *LargeSieve, largewords, largetries, largenumbers; 135 static u_int32_t largebits, largememory; /* megabytes */ 136 static BIGNUM *largebase; 137 138 int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *); 139 int prime_test(FILE *, FILE *, u_int32_t, u_int32_t, char *, unsigned long, 140 unsigned long); 141 142 /* 143 * print moduli out in consistent form, 144 */ 145 static int 146 qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries, 147 u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus) 148 { 149 struct tm *gtm; 150 time_t time_now; 151 int res; 152 153 time(&time_now); 154 gtm = gmtime(&time_now); 155 156 res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ", 157 gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday, 158 gtm->tm_hour, gtm->tm_min, gtm->tm_sec, 159 otype, otests, otries, osize, ogenerator); 160 161 if (res < 0) 162 return (-1); 163 164 if (BN_print_fp(ofile, omodulus) < 1) 165 return (-1); 166 167 res = fprintf(ofile, "\n"); 168 fflush(ofile); 169 170 return (res > 0 ? 0 : -1); 171 } 172 173 174 /* 175 ** Sieve p's and q's with small factors 176 */ 177 static void 178 sieve_large(u_int32_t s) 179 { 180 u_int32_t r, u; 181 182 debug3("sieve_large %u", s); 183 largetries++; 184 /* r = largebase mod s */ 185 r = BN_mod_word(largebase, s); 186 if (r == 0) 187 u = 0; /* s divides into largebase exactly */ 188 else 189 u = s - r; /* largebase+u is first entry divisible by s */ 190 191 if (u < largebits * 2) { 192 /* 193 * The sieve omits p's and q's divisible by 2, so ensure that 194 * largebase+u is odd. Then, step through the sieve in 195 * increments of 2*s 196 */ 197 if (u & 0x1) 198 u += s; /* Make largebase+u odd, and u even */ 199 200 /* Mark all multiples of 2*s */ 201 for (u /= 2; u < largebits; u += s) 202 BIT_SET(LargeSieve, u); 203 } 204 205 /* r = p mod s */ 206 r = (2 * r + 1) % s; 207 if (r == 0) 208 u = 0; /* s divides p exactly */ 209 else 210 u = s - r; /* p+u is first entry divisible by s */ 211 212 if (u < largebits * 4) { 213 /* 214 * The sieve omits p's divisible by 4, so ensure that 215 * largebase+u is not. Then, step through the sieve in 216 * increments of 4*s 217 */ 218 while (u & 0x3) { 219 if (SMALL_MAXIMUM - u < s) 220 return; 221 u += s; 222 } 223 224 /* Mark all multiples of 4*s */ 225 for (u /= 4; u < largebits; u += s) 226 BIT_SET(LargeSieve, u); 227 } 228 } 229 230 /* 231 * list candidates for Sophie-Germain primes (where q = (p-1)/2) 232 * to standard output. 233 * The list is checked against small known primes (less than 2**30). 234 */ 235 int 236 gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start) 237 { 238 BIGNUM *q; 239 u_int32_t j, r, s, t; 240 u_int32_t smallwords = TINY_NUMBER >> 6; 241 u_int32_t tinywords = TINY_NUMBER >> 6; 242 time_t time_start, time_stop; 243 u_int32_t i; 244 int ret = 0; 245 246 largememory = memory; 247 248 if (memory != 0 && 249 (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) { 250 error("Invalid memory amount (min %ld, max %ld)", 251 LARGE_MINIMUM, LARGE_MAXIMUM); 252 return (-1); 253 } 254 255 /* 256 * Set power to the length in bits of the prime to be generated. 257 * This is changed to 1 less than the desired safe prime moduli p. 258 */ 259 if (power > TEST_MAXIMUM) { 260 error("Too many bits: %u > %lu", power, TEST_MAXIMUM); 261 return (-1); 262 } else if (power < TEST_MINIMUM) { 263 error("Too few bits: %u < %u", power, TEST_MINIMUM); 264 return (-1); 265 } 266 power--; /* decrement before squaring */ 267 268 /* 269 * The density of ordinary primes is on the order of 1/bits, so the 270 * density of safe primes should be about (1/bits)**2. Set test range 271 * to something well above bits**2 to be reasonably sure (but not 272 * guaranteed) of catching at least one safe prime. 273 */ 274 largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER)); 275 276 /* 277 * Need idea of how much memory is available. We don't have to use all 278 * of it. 279 */ 280 if (largememory > LARGE_MAXIMUM) { 281 logit("Limited memory: %u MB; limit %lu MB", 282 largememory, LARGE_MAXIMUM); 283 largememory = LARGE_MAXIMUM; 284 } 285 286 if (largewords <= (largememory << SHIFT_MEGAWORD)) { 287 logit("Increased memory: %u MB; need %u bytes", 288 largememory, (largewords << SHIFT_BYTE)); 289 largewords = (largememory << SHIFT_MEGAWORD); 290 } else if (largememory > 0) { 291 logit("Decreased memory: %u MB; want %u bytes", 292 largememory, (largewords << SHIFT_BYTE)); 293 largewords = (largememory << SHIFT_MEGAWORD); 294 } 295 296 TinySieve = xcalloc(tinywords, sizeof(u_int32_t)); 297 tinybits = tinywords << SHIFT_WORD; 298 299 SmallSieve = xcalloc(smallwords, sizeof(u_int32_t)); 300 smallbits = smallwords << SHIFT_WORD; 301 302 /* 303 * dynamically determine available memory 304 */ 305 while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL) 306 largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */ 307 308 largebits = largewords << SHIFT_WORD; 309 largenumbers = largebits * 2; /* even numbers excluded */ 310 311 /* validation check: count the number of primes tried */ 312 largetries = 0; 313 if ((q = BN_new()) == NULL) 314 fatal("BN_new failed"); 315 316 /* 317 * Generate random starting point for subprime search, or use 318 * specified parameter. 319 */ 320 if ((largebase = BN_new()) == NULL) 321 fatal("BN_new failed"); 322 if (start == NULL) { 323 if (BN_rand(largebase, power, 1, 1) == 0) 324 fatal("BN_rand failed"); 325 } else { 326 if (BN_copy(largebase, start) == NULL) 327 fatal("BN_copy: failed"); 328 } 329 330 /* ensure odd */ 331 if (BN_set_bit(largebase, 0) == 0) 332 fatal("BN_set_bit: failed"); 333 334 time(&time_start); 335 336 logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start), 337 largenumbers, power); 338 debug2("start point: 0x%s", BN_bn2hex(largebase)); 339 340 /* 341 * TinySieve 342 */ 343 for (i = 0; i < tinybits; i++) { 344 if (BIT_TEST(TinySieve, i)) 345 continue; /* 2*i+3 is composite */ 346 347 /* The next tiny prime */ 348 t = 2 * i + 3; 349 350 /* Mark all multiples of t */ 351 for (j = i + t; j < tinybits; j += t) 352 BIT_SET(TinySieve, j); 353 354 sieve_large(t); 355 } 356 357 /* 358 * Start the small block search at the next possible prime. To avoid 359 * fencepost errors, the last pass is skipped. 360 */ 361 for (smallbase = TINY_NUMBER + 3; 362 smallbase < (SMALL_MAXIMUM - TINY_NUMBER); 363 smallbase += TINY_NUMBER) { 364 for (i = 0; i < tinybits; i++) { 365 if (BIT_TEST(TinySieve, i)) 366 continue; /* 2*i+3 is composite */ 367 368 /* The next tiny prime */ 369 t = 2 * i + 3; 370 r = smallbase % t; 371 372 if (r == 0) { 373 s = 0; /* t divides into smallbase exactly */ 374 } else { 375 /* smallbase+s is first entry divisible by t */ 376 s = t - r; 377 } 378 379 /* 380 * The sieve omits even numbers, so ensure that 381 * smallbase+s is odd. Then, step through the sieve 382 * in increments of 2*t 383 */ 384 if (s & 1) 385 s += t; /* Make smallbase+s odd, and s even */ 386 387 /* Mark all multiples of 2*t */ 388 for (s /= 2; s < smallbits; s += t) 389 BIT_SET(SmallSieve, s); 390 } 391 392 /* 393 * SmallSieve 394 */ 395 for (i = 0; i < smallbits; i++) { 396 if (BIT_TEST(SmallSieve, i)) 397 continue; /* 2*i+smallbase is composite */ 398 399 /* The next small prime */ 400 sieve_large((2 * i) + smallbase); 401 } 402 403 memset(SmallSieve, 0, smallwords << SHIFT_BYTE); 404 } 405 406 time(&time_stop); 407 408 logit("%.24s Sieved with %u small primes in %ld seconds", 409 ctime(&time_stop), largetries, (long) (time_stop - time_start)); 410 411 for (j = r = 0; j < largebits; j++) { 412 if (BIT_TEST(LargeSieve, j)) 413 continue; /* Definitely composite, skip */ 414 415 debug2("test q = largebase+%u", 2 * j); 416 if (BN_set_word(q, 2 * j) == 0) 417 fatal("BN_set_word failed"); 418 if (BN_add(q, q, largebase) == 0) 419 fatal("BN_add failed"); 420 if (qfileout(out, MODULI_TYPE_SOPHIE_GERMAIN, 421 MODULI_TESTS_SIEVE, largetries, 422 (power - 1) /* MSB */, (0), q) == -1) { 423 ret = -1; 424 break; 425 } 426 427 r++; /* count q */ 428 } 429 430 time(&time_stop); 431 432 xfree(LargeSieve); 433 xfree(SmallSieve); 434 xfree(TinySieve); 435 436 logit("%.24s Found %u candidates", ctime(&time_stop), r); 437 438 return (ret); 439 } 440 441 static void 442 write_checkpoint(char *cpfile, u_int32_t lineno) 443 { 444 FILE *fp; 445 char tmp[MAXPATHLEN]; 446 int r; 447 448 r = snprintf(tmp, sizeof(tmp), "%s.XXXXXXXXXX", cpfile); 449 if (r == -1 || r >= MAXPATHLEN) { 450 logit("write_checkpoint: temp pathname too long"); 451 return; 452 } 453 if ((r = mkstemp(tmp)) == -1) { 454 logit("mkstemp(%s): %s", tmp, strerror(errno)); 455 return; 456 } 457 if ((fp = fdopen(r, "w")) == NULL) { 458 logit("write_checkpoint: fdopen: %s", strerror(errno)); 459 close(r); 460 return; 461 } 462 if (fprintf(fp, "%lu\n", (unsigned long)lineno) > 0 && fclose(fp) == 0 463 && rename(tmp, cpfile) == 0) 464 debug3("wrote checkpoint line %lu to '%s'", 465 (unsigned long)lineno, cpfile); 466 else 467 logit("failed to write to checkpoint file '%s': %s", cpfile, 468 strerror(errno)); 469 } 470 471 static unsigned long 472 read_checkpoint(char *cpfile) 473 { 474 FILE *fp; 475 unsigned long lineno = 0; 476 477 if ((fp = fopen(cpfile, "r")) == NULL) 478 return 0; 479 if (fscanf(fp, "%lu\n", &lineno) < 1) 480 logit("Failed to load checkpoint from '%s'", cpfile); 481 else 482 logit("Loaded checkpoint from '%s' line %lu", cpfile, lineno); 483 fclose(fp); 484 return lineno; 485 } 486 487 /* 488 * perform a Miller-Rabin primality test 489 * on the list of candidates 490 * (checking both q and p) 491 * The result is a list of so-call "safe" primes 492 */ 493 int 494 prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted, 495 char *checkpoint_file, unsigned long start_lineno, unsigned long num_lines) 496 { 497 BIGNUM *q, *p, *a; 498 BN_CTX *ctx; 499 char *cp, *lp; 500 u_int32_t count_in = 0, count_out = 0, count_possible = 0; 501 u_int32_t generator_known, in_tests, in_tries, in_type, in_size; 502 unsigned long last_processed = 0, end_lineno; 503 time_t time_start, time_stop; 504 int res; 505 506 if (trials < TRIAL_MINIMUM) { 507 error("Minimum primality trials is %d", TRIAL_MINIMUM); 508 return (-1); 509 } 510 511 time(&time_start); 512 513 if ((p = BN_new()) == NULL) 514 fatal("BN_new failed"); 515 if ((q = BN_new()) == NULL) 516 fatal("BN_new failed"); 517 if ((ctx = BN_CTX_new()) == NULL) 518 fatal("BN_CTX_new failed"); 519 520 debug2("%.24s Final %u Miller-Rabin trials (%x generator)", 521 ctime(&time_start), trials, generator_wanted); 522 523 if (checkpoint_file != NULL) 524 last_processed = read_checkpoint(checkpoint_file); 525 if (start_lineno > last_processed) 526 last_processed = start_lineno; 527 if (num_lines == 0) 528 end_lineno = ULONG_MAX; 529 else 530 end_lineno = last_processed + num_lines; 531 debug2("process line %lu to line %lu", last_processed, end_lineno); 532 533 res = 0; 534 lp = xmalloc(QLINESIZE + 1); 535 while (fgets(lp, QLINESIZE + 1, in) != NULL && count_in < end_lineno) { 536 count_in++; 537 if (checkpoint_file != NULL) { 538 if (count_in <= last_processed) { 539 debug3("skipping line %u, before checkpoint", 540 count_in); 541 continue; 542 } 543 write_checkpoint(checkpoint_file, count_in); 544 } 545 if (strlen(lp) < 14 || *lp == '!' || *lp == '#') { 546 debug2("%10u: comment or short line", count_in); 547 continue; 548 } 549 550 /* XXX - fragile parser */ 551 /* time */ 552 cp = &lp[14]; /* (skip) */ 553 554 /* type */ 555 in_type = strtoul(cp, &cp, 10); 556 557 /* tests */ 558 in_tests = strtoul(cp, &cp, 10); 559 560 if (in_tests & MODULI_TESTS_COMPOSITE) { 561 debug2("%10u: known composite", count_in); 562 continue; 563 } 564 565 /* tries */ 566 in_tries = strtoul(cp, &cp, 10); 567 568 /* size (most significant bit) */ 569 in_size = strtoul(cp, &cp, 10); 570 571 /* generator (hex) */ 572 generator_known = strtoul(cp, &cp, 16); 573 574 /* Skip white space */ 575 cp += strspn(cp, " "); 576 577 /* modulus (hex) */ 578 switch (in_type) { 579 case MODULI_TYPE_SOPHIE_GERMAIN: 580 debug2("%10u: (%u) Sophie-Germain", count_in, in_type); 581 a = q; 582 if (BN_hex2bn(&a, cp) == 0) 583 fatal("BN_hex2bn failed"); 584 /* p = 2*q + 1 */ 585 if (BN_lshift(p, q, 1) == 0) 586 fatal("BN_lshift failed"); 587 if (BN_add_word(p, 1) == 0) 588 fatal("BN_add_word failed"); 589 in_size += 1; 590 generator_known = 0; 591 break; 592 case MODULI_TYPE_UNSTRUCTURED: 593 case MODULI_TYPE_SAFE: 594 case MODULI_TYPE_SCHNORR: 595 case MODULI_TYPE_STRONG: 596 case MODULI_TYPE_UNKNOWN: 597 debug2("%10u: (%u)", count_in, in_type); 598 a = p; 599 if (BN_hex2bn(&a, cp) == 0) 600 fatal("BN_hex2bn failed"); 601 /* q = (p-1) / 2 */ 602 if (BN_rshift(q, p, 1) == 0) 603 fatal("BN_rshift failed"); 604 break; 605 default: 606 debug2("Unknown prime type"); 607 break; 608 } 609 610 /* 611 * due to earlier inconsistencies in interpretation, check 612 * the proposed bit size. 613 */ 614 if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) { 615 debug2("%10u: bit size %u mismatch", count_in, in_size); 616 continue; 617 } 618 if (in_size < QSIZE_MINIMUM) { 619 debug2("%10u: bit size %u too short", count_in, in_size); 620 continue; 621 } 622 623 if (in_tests & MODULI_TESTS_MILLER_RABIN) 624 in_tries += trials; 625 else 626 in_tries = trials; 627 628 /* 629 * guess unknown generator 630 */ 631 if (generator_known == 0) { 632 if (BN_mod_word(p, 24) == 11) 633 generator_known = 2; 634 else if (BN_mod_word(p, 12) == 5) 635 generator_known = 3; 636 else { 637 u_int32_t r = BN_mod_word(p, 10); 638 639 if (r == 3 || r == 7) 640 generator_known = 5; 641 } 642 } 643 /* 644 * skip tests when desired generator doesn't match 645 */ 646 if (generator_wanted > 0 && 647 generator_wanted != generator_known) { 648 debug2("%10u: generator %d != %d", 649 count_in, generator_known, generator_wanted); 650 continue; 651 } 652 653 /* 654 * Primes with no known generator are useless for DH, so 655 * skip those. 656 */ 657 if (generator_known == 0) { 658 debug2("%10u: no known generator", count_in); 659 continue; 660 } 661 662 count_possible++; 663 664 /* 665 * The (1/4)^N performance bound on Miller-Rabin is 666 * extremely pessimistic, so don't spend a lot of time 667 * really verifying that q is prime until after we know 668 * that p is also prime. A single pass will weed out the 669 * vast majority of composite q's. 670 */ 671 if (BN_is_prime_ex(q, 1, ctx, NULL) <= 0) { 672 debug("%10u: q failed first possible prime test", 673 count_in); 674 continue; 675 } 676 677 /* 678 * q is possibly prime, so go ahead and really make sure 679 * that p is prime. If it is, then we can go back and do 680 * the same for q. If p is composite, chances are that 681 * will show up on the first Rabin-Miller iteration so it 682 * doesn't hurt to specify a high iteration count. 683 */ 684 if (!BN_is_prime_ex(p, trials, ctx, NULL)) { 685 debug("%10u: p is not prime", count_in); 686 continue; 687 } 688 debug("%10u: p is almost certainly prime", count_in); 689 690 /* recheck q more rigorously */ 691 if (!BN_is_prime_ex(q, trials - 1, ctx, NULL)) { 692 debug("%10u: q is not prime", count_in); 693 continue; 694 } 695 debug("%10u: q is almost certainly prime", count_in); 696 697 if (qfileout(out, MODULI_TYPE_SAFE, 698 in_tests | MODULI_TESTS_MILLER_RABIN, 699 in_tries, in_size, generator_known, p)) { 700 res = -1; 701 break; 702 } 703 704 count_out++; 705 } 706 707 time(&time_stop); 708 xfree(lp); 709 BN_free(p); 710 BN_free(q); 711 BN_CTX_free(ctx); 712 713 if (checkpoint_file != NULL) 714 unlink(checkpoint_file); 715 716 logit("%.24s Found %u safe primes of %u candidates in %ld seconds", 717 ctime(&time_stop), count_out, count_possible, 718 (long) (time_stop - time_start)); 719 720 return (res); 721 } 722