xref: /openbsd-src/usr.bin/ssh/moduli.c (revision 46035553bfdd96e63c94e32da0210227ec2e3cf1)
1 /* $OpenBSD: moduli.c,v 1.37 2019/11/15 06:00:20 djm Exp $ */
2 /*
3  * Copyright 1994 Phil Karn <karn@qualcomm.com>
4  * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
5  * Copyright 2000 Niels Provos <provos@citi.umich.edu>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * Two-step process to generate safe primes for DHGEX
31  *
32  *  Sieve candidates for "safe" primes,
33  *  suitable for use as Diffie-Hellman moduli;
34  *  that is, where q = (p-1)/2 is also prime.
35  *
36  * First step: generate candidate primes (memory intensive)
37  * Second step: test primes' safety (processor intensive)
38  */
39 
40 #include <sys/types.h>
41 
42 #include <openssl/bn.h>
43 #include <openssl/dh.h>
44 
45 #include <errno.h>
46 #include <stdio.h>
47 #include <stdlib.h>
48 #include <string.h>
49 #include <stdarg.h>
50 #include <time.h>
51 #include <unistd.h>
52 #include <limits.h>
53 
54 #include "xmalloc.h"
55 #include "dh.h"
56 #include "log.h"
57 #include "misc.h"
58 
59 /*
60  * File output defines
61  */
62 
63 /* need line long enough for largest moduli plus headers */
64 #define QLINESIZE		(100+8192)
65 
66 /*
67  * Size: decimal.
68  * Specifies the number of the most significant bit (0 to M).
69  * WARNING: internally, usually 1 to N.
70  */
71 #define QSIZE_MINIMUM		(511)
72 
73 /*
74  * Prime sieving defines
75  */
76 
77 /* Constant: assuming 8 bit bytes and 32 bit words */
78 #define SHIFT_BIT	(3)
79 #define SHIFT_BYTE	(2)
80 #define SHIFT_WORD	(SHIFT_BIT+SHIFT_BYTE)
81 #define SHIFT_MEGABYTE	(20)
82 #define SHIFT_MEGAWORD	(SHIFT_MEGABYTE-SHIFT_BYTE)
83 
84 /*
85  * Using virtual memory can cause thrashing.  This should be the largest
86  * number that is supported without a large amount of disk activity --
87  * that would increase the run time from hours to days or weeks!
88  */
89 #define LARGE_MINIMUM	(8UL)	/* megabytes */
90 
91 /*
92  * Do not increase this number beyond the unsigned integer bit size.
93  * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
94  */
95 #define LARGE_MAXIMUM	(127UL)	/* megabytes */
96 
97 /*
98  * Constant: when used with 32-bit integers, the largest sieve prime
99  * has to be less than 2**32.
100  */
101 #define SMALL_MAXIMUM	(0xffffffffUL)
102 
103 /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
104 #define TINY_NUMBER	(1UL<<16)
105 
106 /* Ensure enough bit space for testing 2*q. */
107 #define TEST_MAXIMUM	(1UL<<16)
108 #define TEST_MINIMUM	(QSIZE_MINIMUM + 1)
109 /* real TEST_MINIMUM	(1UL << (SHIFT_WORD - TEST_POWER)) */
110 #define TEST_POWER	(3)	/* 2**n, n < SHIFT_WORD */
111 
112 /* bit operations on 32-bit words */
113 #define BIT_CLEAR(a,n)	((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
114 #define BIT_SET(a,n)	((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
115 #define BIT_TEST(a,n)	((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
116 
117 /*
118  * Prime testing defines
119  */
120 
121 /* Minimum number of primality tests to perform */
122 #define TRIAL_MINIMUM	(4)
123 
124 /*
125  * Sieving data (XXX - move to struct)
126  */
127 
128 /* sieve 2**16 */
129 static u_int32_t *TinySieve, tinybits;
130 
131 /* sieve 2**30 in 2**16 parts */
132 static u_int32_t *SmallSieve, smallbits, smallbase;
133 
134 /* sieve relative to the initial value */
135 static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
136 static u_int32_t largebits, largememory;	/* megabytes */
137 static BIGNUM *largebase;
138 
139 int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
140 int prime_test(FILE *, FILE *, u_int32_t, u_int32_t, char *, unsigned long,
141     unsigned long);
142 
143 /*
144  * print moduli out in consistent form,
145  */
146 static int
147 qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
148     u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
149 {
150 	struct tm *gtm;
151 	time_t time_now;
152 	int res;
153 
154 	time(&time_now);
155 	gtm = gmtime(&time_now);
156 	if (gtm == NULL)
157 		return -1;
158 
159 	res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
160 	    gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
161 	    gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
162 	    otype, otests, otries, osize, ogenerator);
163 
164 	if (res < 0)
165 		return (-1);
166 
167 	if (BN_print_fp(ofile, omodulus) < 1)
168 		return (-1);
169 
170 	res = fprintf(ofile, "\n");
171 	fflush(ofile);
172 
173 	return (res > 0 ? 0 : -1);
174 }
175 
176 
177 /*
178  ** Sieve p's and q's with small factors
179  */
180 static void
181 sieve_large(u_int32_t s)
182 {
183 	u_int32_t r, u;
184 
185 	debug3("sieve_large %u", s);
186 	largetries++;
187 	/* r = largebase mod s */
188 	r = BN_mod_word(largebase, s);
189 	if (r == 0)
190 		u = 0; /* s divides into largebase exactly */
191 	else
192 		u = s - r; /* largebase+u is first entry divisible by s */
193 
194 	if (u < largebits * 2) {
195 		/*
196 		 * The sieve omits p's and q's divisible by 2, so ensure that
197 		 * largebase+u is odd. Then, step through the sieve in
198 		 * increments of 2*s
199 		 */
200 		if (u & 0x1)
201 			u += s; /* Make largebase+u odd, and u even */
202 
203 		/* Mark all multiples of 2*s */
204 		for (u /= 2; u < largebits; u += s)
205 			BIT_SET(LargeSieve, u);
206 	}
207 
208 	/* r = p mod s */
209 	r = (2 * r + 1) % s;
210 	if (r == 0)
211 		u = 0; /* s divides p exactly */
212 	else
213 		u = s - r; /* p+u is first entry divisible by s */
214 
215 	if (u < largebits * 4) {
216 		/*
217 		 * The sieve omits p's divisible by 4, so ensure that
218 		 * largebase+u is not. Then, step through the sieve in
219 		 * increments of 4*s
220 		 */
221 		while (u & 0x3) {
222 			if (SMALL_MAXIMUM - u < s)
223 				return;
224 			u += s;
225 		}
226 
227 		/* Mark all multiples of 4*s */
228 		for (u /= 4; u < largebits; u += s)
229 			BIT_SET(LargeSieve, u);
230 	}
231 }
232 
233 /*
234  * list candidates for Sophie-Germain primes (where q = (p-1)/2)
235  * to standard output.
236  * The list is checked against small known primes (less than 2**30).
237  */
238 int
239 gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
240 {
241 	BIGNUM *q;
242 	u_int32_t j, r, s, t;
243 	u_int32_t smallwords = TINY_NUMBER >> 6;
244 	u_int32_t tinywords = TINY_NUMBER >> 6;
245 	time_t time_start, time_stop;
246 	u_int32_t i;
247 	int ret = 0;
248 
249 	largememory = memory;
250 
251 	if (memory != 0 &&
252 	    (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
253 		error("Invalid memory amount (min %ld, max %ld)",
254 		    LARGE_MINIMUM, LARGE_MAXIMUM);
255 		return (-1);
256 	}
257 
258 	/*
259 	 * Set power to the length in bits of the prime to be generated.
260 	 * This is changed to 1 less than the desired safe prime moduli p.
261 	 */
262 	if (power > TEST_MAXIMUM) {
263 		error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
264 		return (-1);
265 	} else if (power < TEST_MINIMUM) {
266 		error("Too few bits: %u < %u", power, TEST_MINIMUM);
267 		return (-1);
268 	}
269 	power--; /* decrement before squaring */
270 
271 	/*
272 	 * The density of ordinary primes is on the order of 1/bits, so the
273 	 * density of safe primes should be about (1/bits)**2. Set test range
274 	 * to something well above bits**2 to be reasonably sure (but not
275 	 * guaranteed) of catching at least one safe prime.
276 	 */
277 	largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
278 
279 	/*
280 	 * Need idea of how much memory is available. We don't have to use all
281 	 * of it.
282 	 */
283 	if (largememory > LARGE_MAXIMUM) {
284 		logit("Limited memory: %u MB; limit %lu MB",
285 		    largememory, LARGE_MAXIMUM);
286 		largememory = LARGE_MAXIMUM;
287 	}
288 
289 	if (largewords <= (largememory << SHIFT_MEGAWORD)) {
290 		logit("Increased memory: %u MB; need %u bytes",
291 		    largememory, (largewords << SHIFT_BYTE));
292 		largewords = (largememory << SHIFT_MEGAWORD);
293 	} else if (largememory > 0) {
294 		logit("Decreased memory: %u MB; want %u bytes",
295 		    largememory, (largewords << SHIFT_BYTE));
296 		largewords = (largememory << SHIFT_MEGAWORD);
297 	}
298 
299 	TinySieve = xcalloc(tinywords, sizeof(u_int32_t));
300 	tinybits = tinywords << SHIFT_WORD;
301 
302 	SmallSieve = xcalloc(smallwords, sizeof(u_int32_t));
303 	smallbits = smallwords << SHIFT_WORD;
304 
305 	/*
306 	 * dynamically determine available memory
307 	 */
308 	while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
309 		largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
310 
311 	largebits = largewords << SHIFT_WORD;
312 	largenumbers = largebits * 2;	/* even numbers excluded */
313 
314 	/* validation check: count the number of primes tried */
315 	largetries = 0;
316 	if ((q = BN_new()) == NULL)
317 		fatal("BN_new failed");
318 
319 	/*
320 	 * Generate random starting point for subprime search, or use
321 	 * specified parameter.
322 	 */
323 	if ((largebase = BN_new()) == NULL)
324 		fatal("BN_new failed");
325 	if (start == NULL) {
326 		if (BN_rand(largebase, power, 1, 1) == 0)
327 			fatal("BN_rand failed");
328 	} else {
329 		if (BN_copy(largebase, start) == NULL)
330 			fatal("BN_copy: failed");
331 	}
332 
333 	/* ensure odd */
334 	if (BN_set_bit(largebase, 0) == 0)
335 		fatal("BN_set_bit: failed");
336 
337 	time(&time_start);
338 
339 	logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
340 	    largenumbers, power);
341 	debug2("start point: 0x%s", BN_bn2hex(largebase));
342 
343 	/*
344 	 * TinySieve
345 	 */
346 	for (i = 0; i < tinybits; i++) {
347 		if (BIT_TEST(TinySieve, i))
348 			continue; /* 2*i+3 is composite */
349 
350 		/* The next tiny prime */
351 		t = 2 * i + 3;
352 
353 		/* Mark all multiples of t */
354 		for (j = i + t; j < tinybits; j += t)
355 			BIT_SET(TinySieve, j);
356 
357 		sieve_large(t);
358 	}
359 
360 	/*
361 	 * Start the small block search at the next possible prime. To avoid
362 	 * fencepost errors, the last pass is skipped.
363 	 */
364 	for (smallbase = TINY_NUMBER + 3;
365 	    smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
366 	    smallbase += TINY_NUMBER) {
367 		for (i = 0; i < tinybits; i++) {
368 			if (BIT_TEST(TinySieve, i))
369 				continue; /* 2*i+3 is composite */
370 
371 			/* The next tiny prime */
372 			t = 2 * i + 3;
373 			r = smallbase % t;
374 
375 			if (r == 0) {
376 				s = 0; /* t divides into smallbase exactly */
377 			} else {
378 				/* smallbase+s is first entry divisible by t */
379 				s = t - r;
380 			}
381 
382 			/*
383 			 * The sieve omits even numbers, so ensure that
384 			 * smallbase+s is odd. Then, step through the sieve
385 			 * in increments of 2*t
386 			 */
387 			if (s & 1)
388 				s += t; /* Make smallbase+s odd, and s even */
389 
390 			/* Mark all multiples of 2*t */
391 			for (s /= 2; s < smallbits; s += t)
392 				BIT_SET(SmallSieve, s);
393 		}
394 
395 		/*
396 		 * SmallSieve
397 		 */
398 		for (i = 0; i < smallbits; i++) {
399 			if (BIT_TEST(SmallSieve, i))
400 				continue; /* 2*i+smallbase is composite */
401 
402 			/* The next small prime */
403 			sieve_large((2 * i) + smallbase);
404 		}
405 
406 		memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
407 	}
408 
409 	time(&time_stop);
410 
411 	logit("%.24s Sieved with %u small primes in %lld seconds",
412 	    ctime(&time_stop), largetries, (long long)(time_stop - time_start));
413 
414 	for (j = r = 0; j < largebits; j++) {
415 		if (BIT_TEST(LargeSieve, j))
416 			continue; /* Definitely composite, skip */
417 
418 		debug2("test q = largebase+%u", 2 * j);
419 		if (BN_set_word(q, 2 * j) == 0)
420 			fatal("BN_set_word failed");
421 		if (BN_add(q, q, largebase) == 0)
422 			fatal("BN_add failed");
423 		if (qfileout(out, MODULI_TYPE_SOPHIE_GERMAIN,
424 		    MODULI_TESTS_SIEVE, largetries,
425 		    (power - 1) /* MSB */, (0), q) == -1) {
426 			ret = -1;
427 			break;
428 		}
429 
430 		r++; /* count q */
431 	}
432 
433 	time(&time_stop);
434 
435 	free(LargeSieve);
436 	free(SmallSieve);
437 	free(TinySieve);
438 
439 	logit("%.24s Found %u candidates", ctime(&time_stop), r);
440 
441 	return (ret);
442 }
443 
444 static void
445 write_checkpoint(char *cpfile, u_int32_t lineno)
446 {
447 	FILE *fp;
448 	char tmp[PATH_MAX];
449 	int r;
450 
451 	r = snprintf(tmp, sizeof(tmp), "%s.XXXXXXXXXX", cpfile);
452 	if (r < 0 || r >= PATH_MAX) {
453 		logit("write_checkpoint: temp pathname too long");
454 		return;
455 	}
456 	if ((r = mkstemp(tmp)) == -1) {
457 		logit("mkstemp(%s): %s", tmp, strerror(errno));
458 		return;
459 	}
460 	if ((fp = fdopen(r, "w")) == NULL) {
461 		logit("write_checkpoint: fdopen: %s", strerror(errno));
462 		unlink(tmp);
463 		close(r);
464 		return;
465 	}
466 	if (fprintf(fp, "%lu\n", (unsigned long)lineno) > 0 && fclose(fp) == 0
467 	    && rename(tmp, cpfile) == 0)
468 		debug3("wrote checkpoint line %lu to '%s'",
469 		    (unsigned long)lineno, cpfile);
470 	else
471 		logit("failed to write to checkpoint file '%s': %s", cpfile,
472 		    strerror(errno));
473 }
474 
475 static unsigned long
476 read_checkpoint(char *cpfile)
477 {
478 	FILE *fp;
479 	unsigned long lineno = 0;
480 
481 	if ((fp = fopen(cpfile, "r")) == NULL)
482 		return 0;
483 	if (fscanf(fp, "%lu\n", &lineno) < 1)
484 		logit("Failed to load checkpoint from '%s'", cpfile);
485 	else
486 		logit("Loaded checkpoint from '%s' line %lu", cpfile, lineno);
487 	fclose(fp);
488 	return lineno;
489 }
490 
491 static unsigned long
492 count_lines(FILE *f)
493 {
494 	unsigned long count = 0;
495 	char lp[QLINESIZE + 1];
496 
497 	if (fseek(f, 0, SEEK_SET) != 0) {
498 		debug("input file is not seekable");
499 		return ULONG_MAX;
500 	}
501 	while (fgets(lp, QLINESIZE + 1, f) != NULL)
502 		count++;
503 	rewind(f);
504 	debug("input file has %lu lines", count);
505 	return count;
506 }
507 
508 static char *
509 fmt_time(time_t seconds)
510 {
511 	int day, hr, min;
512 	static char buf[128];
513 
514 	min = (seconds / 60) % 60;
515 	hr = (seconds / 60 / 60) % 24;
516 	day = seconds / 60 / 60 / 24;
517 	if (day > 0)
518 		snprintf(buf, sizeof buf, "%dd %d:%02d", day, hr, min);
519 	else
520 		snprintf(buf, sizeof buf, "%d:%02d", hr, min);
521 	return buf;
522 }
523 
524 static void
525 print_progress(unsigned long start_lineno, unsigned long current_lineno,
526     unsigned long end_lineno)
527 {
528 	static time_t time_start, time_prev;
529 	time_t time_now, elapsed;
530 	unsigned long num_to_process, processed, remaining, percent, eta;
531 	double time_per_line;
532 	char *eta_str;
533 
534 	time_now = monotime();
535 	if (time_start == 0) {
536 		time_start = time_prev = time_now;
537 		return;
538 	}
539 	/* print progress after 1m then once per 5m */
540 	if (time_now - time_prev < 5 * 60)
541 		return;
542 	time_prev = time_now;
543 	elapsed = time_now - time_start;
544 	processed = current_lineno - start_lineno;
545 	remaining = end_lineno - current_lineno;
546 	num_to_process = end_lineno - start_lineno;
547 	time_per_line = (double)elapsed / processed;
548 	/* if we don't know how many we're processing just report count+time */
549 	time(&time_now);
550 	if (end_lineno == ULONG_MAX) {
551 		logit("%.24s processed %lu in %s", ctime(&time_now),
552 		    processed, fmt_time(elapsed));
553 		return;
554 	}
555 	percent = 100 * processed / num_to_process;
556 	eta = time_per_line * remaining;
557 	eta_str = xstrdup(fmt_time(eta));
558 	logit("%.24s processed %lu of %lu (%lu%%) in %s, ETA %s",
559 	    ctime(&time_now), processed, num_to_process, percent,
560 	    fmt_time(elapsed), eta_str);
561 	free(eta_str);
562 }
563 
564 /*
565  * perform a Miller-Rabin primality test
566  * on the list of candidates
567  * (checking both q and p)
568  * The result is a list of so-call "safe" primes
569  */
570 int
571 prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted,
572     char *checkpoint_file, unsigned long start_lineno, unsigned long num_lines)
573 {
574 	BIGNUM *q, *p, *a;
575 	char *cp, *lp;
576 	u_int32_t count_in = 0, count_out = 0, count_possible = 0;
577 	u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
578 	unsigned long last_processed = 0, end_lineno;
579 	time_t time_start, time_stop;
580 	int res, is_prime;
581 
582 	if (trials < TRIAL_MINIMUM) {
583 		error("Minimum primality trials is %d", TRIAL_MINIMUM);
584 		return (-1);
585 	}
586 
587 	if (num_lines == 0)
588 		end_lineno = count_lines(in);
589 	else
590 		end_lineno = start_lineno + num_lines;
591 
592 	time(&time_start);
593 
594 	if ((p = BN_new()) == NULL)
595 		fatal("BN_new failed");
596 	if ((q = BN_new()) == NULL)
597 		fatal("BN_new failed");
598 
599 	debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
600 	    ctime(&time_start), trials, generator_wanted);
601 
602 	if (checkpoint_file != NULL)
603 		last_processed = read_checkpoint(checkpoint_file);
604 	last_processed = start_lineno = MAXIMUM(last_processed, start_lineno);
605 	if (end_lineno == ULONG_MAX)
606 		debug("process from line %lu from pipe", last_processed);
607 	else
608 		debug("process from line %lu to line %lu", last_processed,
609 		    end_lineno);
610 
611 	res = 0;
612 	lp = xmalloc(QLINESIZE + 1);
613 	while (fgets(lp, QLINESIZE + 1, in) != NULL && count_in < end_lineno) {
614 		count_in++;
615 		if (count_in <= last_processed) {
616 			debug3("skipping line %u, before checkpoint or "
617 			    "specified start line", count_in);
618 			continue;
619 		}
620 		if (checkpoint_file != NULL)
621 			write_checkpoint(checkpoint_file, count_in);
622 		print_progress(start_lineno, count_in, end_lineno);
623 		if (strlen(lp) < 14 || *lp == '!' || *lp == '#') {
624 			debug2("%10u: comment or short line", count_in);
625 			continue;
626 		}
627 
628 		/* XXX - fragile parser */
629 		/* time */
630 		cp = &lp[14];	/* (skip) */
631 
632 		/* type */
633 		in_type = strtoul(cp, &cp, 10);
634 
635 		/* tests */
636 		in_tests = strtoul(cp, &cp, 10);
637 
638 		if (in_tests & MODULI_TESTS_COMPOSITE) {
639 			debug2("%10u: known composite", count_in);
640 			continue;
641 		}
642 
643 		/* tries */
644 		in_tries = strtoul(cp, &cp, 10);
645 
646 		/* size (most significant bit) */
647 		in_size = strtoul(cp, &cp, 10);
648 
649 		/* generator (hex) */
650 		generator_known = strtoul(cp, &cp, 16);
651 
652 		/* Skip white space */
653 		cp += strspn(cp, " ");
654 
655 		/* modulus (hex) */
656 		switch (in_type) {
657 		case MODULI_TYPE_SOPHIE_GERMAIN:
658 			debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
659 			a = q;
660 			if (BN_hex2bn(&a, cp) == 0)
661 				fatal("BN_hex2bn failed");
662 			/* p = 2*q + 1 */
663 			if (BN_lshift(p, q, 1) == 0)
664 				fatal("BN_lshift failed");
665 			if (BN_add_word(p, 1) == 0)
666 				fatal("BN_add_word failed");
667 			in_size += 1;
668 			generator_known = 0;
669 			break;
670 		case MODULI_TYPE_UNSTRUCTURED:
671 		case MODULI_TYPE_SAFE:
672 		case MODULI_TYPE_SCHNORR:
673 		case MODULI_TYPE_STRONG:
674 		case MODULI_TYPE_UNKNOWN:
675 			debug2("%10u: (%u)", count_in, in_type);
676 			a = p;
677 			if (BN_hex2bn(&a, cp) == 0)
678 				fatal("BN_hex2bn failed");
679 			/* q = (p-1) / 2 */
680 			if (BN_rshift(q, p, 1) == 0)
681 				fatal("BN_rshift failed");
682 			break;
683 		default:
684 			debug2("Unknown prime type");
685 			break;
686 		}
687 
688 		/*
689 		 * due to earlier inconsistencies in interpretation, check
690 		 * the proposed bit size.
691 		 */
692 		if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
693 			debug2("%10u: bit size %u mismatch", count_in, in_size);
694 			continue;
695 		}
696 		if (in_size < QSIZE_MINIMUM) {
697 			debug2("%10u: bit size %u too short", count_in, in_size);
698 			continue;
699 		}
700 
701 		if (in_tests & MODULI_TESTS_MILLER_RABIN)
702 			in_tries += trials;
703 		else
704 			in_tries = trials;
705 
706 		/*
707 		 * guess unknown generator
708 		 */
709 		if (generator_known == 0) {
710 			if (BN_mod_word(p, 24) == 11)
711 				generator_known = 2;
712 			else {
713 				u_int32_t r = BN_mod_word(p, 10);
714 
715 				if (r == 3 || r == 7)
716 					generator_known = 5;
717 			}
718 		}
719 		/*
720 		 * skip tests when desired generator doesn't match
721 		 */
722 		if (generator_wanted > 0 &&
723 		    generator_wanted != generator_known) {
724 			debug2("%10u: generator %d != %d",
725 			    count_in, generator_known, generator_wanted);
726 			continue;
727 		}
728 
729 		/*
730 		 * Primes with no known generator are useless for DH, so
731 		 * skip those.
732 		 */
733 		if (generator_known == 0) {
734 			debug2("%10u: no known generator", count_in);
735 			continue;
736 		}
737 
738 		count_possible++;
739 
740 		/*
741 		 * The (1/4)^N performance bound on Miller-Rabin is
742 		 * extremely pessimistic, so don't spend a lot of time
743 		 * really verifying that q is prime until after we know
744 		 * that p is also prime. A single pass will weed out the
745 		 * vast majority of composite q's.
746 		 */
747 		is_prime = BN_is_prime_ex(q, 1, NULL, NULL);
748 		if (is_prime < 0)
749 			fatal("BN_is_prime_ex failed");
750 		if (is_prime == 0) {
751 			debug("%10u: q failed first possible prime test",
752 			    count_in);
753 			continue;
754 		}
755 
756 		/*
757 		 * q is possibly prime, so go ahead and really make sure
758 		 * that p is prime. If it is, then we can go back and do
759 		 * the same for q. If p is composite, chances are that
760 		 * will show up on the first Rabin-Miller iteration so it
761 		 * doesn't hurt to specify a high iteration count.
762 		 */
763 		is_prime = BN_is_prime_ex(p, trials, NULL, NULL);
764 		if (is_prime < 0)
765 			fatal("BN_is_prime_ex failed");
766 		if (is_prime == 0) {
767 			debug("%10u: p is not prime", count_in);
768 			continue;
769 		}
770 		debug("%10u: p is almost certainly prime", count_in);
771 
772 		/* recheck q more rigorously */
773 		is_prime = BN_is_prime_ex(q, trials - 1, NULL, NULL);
774 		if (is_prime < 0)
775 			fatal("BN_is_prime_ex failed");
776 		if (is_prime == 0) {
777 			debug("%10u: q is not prime", count_in);
778 			continue;
779 		}
780 		debug("%10u: q is almost certainly prime", count_in);
781 
782 		if (qfileout(out, MODULI_TYPE_SAFE,
783 		    in_tests | MODULI_TESTS_MILLER_RABIN,
784 		    in_tries, in_size, generator_known, p)) {
785 			res = -1;
786 			break;
787 		}
788 
789 		count_out++;
790 	}
791 
792 	time(&time_stop);
793 	free(lp);
794 	BN_free(p);
795 	BN_free(q);
796 
797 	if (checkpoint_file != NULL)
798 		unlink(checkpoint_file);
799 
800 	logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
801 	    ctime(&time_stop), count_out, count_possible,
802 	    (long) (time_stop - time_start));
803 
804 	return (res);
805 }
806