xref: /openbsd-src/usr.bin/openssl/speed.c (revision 3374c67d44f9b75b98444cbf63020f777792342e)
1 /* $OpenBSD: speed.c,v 1.29 2022/11/11 17:07:39 joshua Exp $ */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young (eay@cryptsoft.com).
7  * The implementation was written so as to conform with Netscapes SSL.
8  *
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to.  The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15  *
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  *    must display the following acknowledgement:
33  *    "This product includes cryptographic software written by
34  *     Eric Young (eay@cryptsoft.com)"
35  *    The word 'cryptographic' can be left out if the rouines from the library
36  *    being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from
38  *    the apps directory (application code) you must include an acknowledgement:
39  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40  *
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58 /* ====================================================================
59  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
60  *
61  * Portions of the attached software ("Contribution") are developed by
62  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
63  *
64  * The Contribution is licensed pursuant to the OpenSSL open source
65  * license provided above.
66  *
67  * The ECDH and ECDSA speed test software is originally written by
68  * Sumit Gupta of Sun Microsystems Laboratories.
69  *
70  */
71 
72 /* most of this code has been pilfered from my libdes speed.c program */
73 
74 #ifndef OPENSSL_NO_SPEED
75 
76 #define SECONDS		3
77 #define RSA_SECONDS	10
78 #define DSA_SECONDS	10
79 #define ECDSA_SECONDS   10
80 #define ECDH_SECONDS    10
81 
82 #include <math.h>
83 #include <signal.h>
84 #include <stdio.h>
85 #include <stdlib.h>
86 #include <limits.h>
87 #include <string.h>
88 #include <unistd.h>
89 
90 #include "apps.h"
91 
92 #include <openssl/bn.h>
93 #include <openssl/crypto.h>
94 #include <openssl/err.h>
95 #include <openssl/evp.h>
96 #include <openssl/modes.h>
97 #include <openssl/objects.h>
98 #include <openssl/x509.h>
99 
100 #ifndef OPENSSL_NO_AES
101 #include <openssl/aes.h>
102 #endif
103 #ifndef OPENSSL_NO_BF
104 #include <openssl/blowfish.h>
105 #endif
106 #ifndef OPENSSL_NO_CAST
107 #include <openssl/cast.h>
108 #endif
109 #ifndef OPENSSL_NO_CAMELLIA
110 #include <openssl/camellia.h>
111 #endif
112 #ifndef OPENSSL_NO_DES
113 #include <openssl/des.h>
114 #endif
115 #include <openssl/dsa.h>
116 #include <openssl/ecdh.h>
117 #include <openssl/ecdsa.h>
118 #ifndef OPENSSL_NO_HMAC
119 #include <openssl/hmac.h>
120 #endif
121 #ifndef OPENSSL_NO_IDEA
122 #include <openssl/idea.h>
123 #endif
124 #ifndef OPENSSL_NO_MD4
125 #include <openssl/md4.h>
126 #endif
127 #ifndef OPENSSL_NO_MD5
128 #include <openssl/md5.h>
129 #endif
130 #ifndef OPENSSL_NO_RC2
131 #include <openssl/rc2.h>
132 #endif
133 #ifndef OPENSSL_NO_RC4
134 #include <openssl/rc4.h>
135 #endif
136 #include <openssl/rsa.h>
137 #ifndef OPENSSL_NO_RIPEMD
138 #include <openssl/ripemd.h>
139 #endif
140 #ifndef OPENSSL_NO_SHA
141 #include <openssl/sha.h>
142 #endif
143 #ifndef OPENSSL_NO_WHIRLPOOL
144 #include <openssl/whrlpool.h>
145 #endif
146 
147 #include "./testdsa.h"
148 #include "./testrsa.h"
149 
150 #define BUFSIZE	(1024*8+64)
151 int run = 0;
152 
153 static int mr = 0;
154 static int usertime = 1;
155 
156 static double Time_F(int s);
157 static void print_message(const char *s, long num, int length);
158 static void
159 pkey_print_message(const char *str, const char *str2,
160     long num, int bits, int sec);
161 static void print_result(int alg, int run_no, int count, double time_used);
162 static int do_multi(int multi);
163 
164 #define ALGOR_NUM	32
165 #define SIZE_NUM	5
166 #define RSA_NUM		4
167 #define DSA_NUM		3
168 
169 #define EC_NUM       16
170 #define MAX_ECDH_SIZE 256
171 
172 static const char *names[ALGOR_NUM] = {
173 	"md2", "md4", "md5", "hmac(md5)", "sha1", "rmd160",
174 	"rc4", "des cbc", "des ede3", "idea cbc", "seed cbc",
175 	"rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc",
176 	"aes-128 cbc", "aes-192 cbc", "aes-256 cbc",
177 	"camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc",
178 	"evp", "sha256", "sha512", "whirlpool",
179 	"aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash",
180 	"aes-128 gcm", "aes-256 gcm", "chacha20 poly1305",
181 };
182 static double results[ALGOR_NUM][SIZE_NUM];
183 static int lengths[SIZE_NUM] = {16, 64, 256, 1024, 8 * 1024};
184 static double rsa_results[RSA_NUM][2];
185 static double dsa_results[DSA_NUM][2];
186 static double ecdsa_results[EC_NUM][2];
187 static double ecdh_results[EC_NUM][1];
188 
189 static void sig_done(int sig);
190 
191 static void
192 sig_done(int sig)
193 {
194 	signal(SIGALRM, sig_done);
195 	run = 0;
196 }
197 
198 #define START	TM_RESET
199 #define STOP	TM_GET
200 
201 
202 static double
203 Time_F(int s)
204 {
205 	if (usertime)
206 		return app_timer_user(s);
207 	else
208 		return app_timer_real(s);
209 }
210 
211 
212 static const int KDF1_SHA1_len = 20;
213 static void *
214 KDF1_SHA1(const void *in, size_t inlen, void *out, size_t * outlen)
215 {
216 #ifndef OPENSSL_NO_SHA
217 	if (*outlen < SHA_DIGEST_LENGTH)
218 		return NULL;
219 	else
220 		*outlen = SHA_DIGEST_LENGTH;
221 	return SHA1(in, inlen, out);
222 #else
223 	return NULL;
224 #endif				/* OPENSSL_NO_SHA */
225 }
226 
227 int
228 speed_main(int argc, char **argv)
229 {
230 	unsigned char *buf = NULL, *buf2 = NULL;
231 	int mret = 1;
232 	long count = 0, save_count = 0;
233 	int i, j, k;
234 	long rsa_count;
235 	unsigned rsa_num;
236 	unsigned char md[EVP_MAX_MD_SIZE];
237 #ifndef OPENSSL_NO_MD4
238 	unsigned char md4[MD4_DIGEST_LENGTH];
239 #endif
240 #ifndef OPENSSL_NO_MD5
241 	unsigned char md5[MD5_DIGEST_LENGTH];
242 	unsigned char hmac[MD5_DIGEST_LENGTH];
243 #endif
244 #ifndef OPENSSL_NO_SHA
245 	unsigned char sha[SHA_DIGEST_LENGTH];
246 #ifndef OPENSSL_NO_SHA256
247 	unsigned char sha256[SHA256_DIGEST_LENGTH];
248 #endif
249 #ifndef OPENSSL_NO_SHA512
250 	unsigned char sha512[SHA512_DIGEST_LENGTH];
251 #endif
252 #endif
253 #ifndef OPENSSL_NO_WHIRLPOOL
254 	unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH];
255 #endif
256 #ifndef OPENSSL_NO_RIPEMD
257 	unsigned char rmd160[RIPEMD160_DIGEST_LENGTH];
258 #endif
259 #ifndef OPENSSL_NO_RC4
260 	RC4_KEY rc4_ks;
261 #endif
262 #ifndef OPENSSL_NO_RC2
263 	RC2_KEY rc2_ks;
264 #endif
265 #ifndef OPENSSL_NO_IDEA
266 	IDEA_KEY_SCHEDULE idea_ks;
267 #endif
268 #ifndef OPENSSL_NO_BF
269 	BF_KEY bf_ks;
270 #endif
271 #ifndef OPENSSL_NO_CAST
272 	CAST_KEY cast_ks;
273 #endif
274 	static const unsigned char key16[16] =
275 	{0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
276 	0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12};
277 #ifndef OPENSSL_NO_AES
278 	static const unsigned char key24[24] =
279 	{0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
280 		0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
281 	0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34};
282 	static const unsigned char key32[32] =
283 	{0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
284 		0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
285 		0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
286 	0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56};
287 #endif
288 #ifndef OPENSSL_NO_CAMELLIA
289 	static const unsigned char ckey24[24] =
290 	{0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
291 		0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
292 	0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34};
293 	static const unsigned char ckey32[32] =
294 	{0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
295 		0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
296 		0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
297 	0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56};
298 #endif
299 #ifndef OPENSSL_NO_AES
300 #define MAX_BLOCK_SIZE 128
301 #else
302 #define MAX_BLOCK_SIZE 64
303 #endif
304 	unsigned char DES_iv[8];
305 	unsigned char iv[2 * MAX_BLOCK_SIZE / 8];
306 #ifndef OPENSSL_NO_DES
307 	static DES_cblock key = {0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0};
308 	static DES_cblock key2 = {0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12};
309 	static DES_cblock key3 = {0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34};
310 	DES_key_schedule sch;
311 	DES_key_schedule sch2;
312 	DES_key_schedule sch3;
313 #endif
314 #ifndef OPENSSL_NO_AES
315 	AES_KEY aes_ks1, aes_ks2, aes_ks3;
316 #endif
317 #ifndef OPENSSL_NO_CAMELLIA
318 	CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3;
319 #endif
320 #define	D_MD2		0
321 #define	D_MD4		1
322 #define	D_MD5		2
323 #define	D_HMAC		3
324 #define	D_SHA1		4
325 #define D_RMD160	5
326 #define	D_RC4		6
327 #define	D_CBC_DES	7
328 #define	D_EDE3_DES	8
329 #define	D_CBC_IDEA	9
330 #define	D_CBC_SEED	10
331 #define	D_CBC_RC2	11
332 #define	D_CBC_RC5	12
333 #define	D_CBC_BF	13
334 #define	D_CBC_CAST	14
335 #define D_CBC_128_AES	15
336 #define D_CBC_192_AES	16
337 #define D_CBC_256_AES	17
338 #define D_CBC_128_CML   18
339 #define D_CBC_192_CML   19
340 #define D_CBC_256_CML   20
341 #define D_EVP		21
342 #define D_SHA256	22
343 #define D_SHA512	23
344 #define D_WHIRLPOOL	24
345 #define D_IGE_128_AES   25
346 #define D_IGE_192_AES   26
347 #define D_IGE_256_AES   27
348 #define D_GHASH		28
349 #define D_AES_128_GCM	29
350 #define D_AES_256_GCM	30
351 #define D_CHACHA20_POLY1305	31
352 	double d = 0.0;
353 	long c[ALGOR_NUM][SIZE_NUM];
354 #define	R_DSA_512	0
355 #define	R_DSA_1024	1
356 #define	R_DSA_2048	2
357 #define	R_RSA_512	0
358 #define	R_RSA_1024	1
359 #define	R_RSA_2048	2
360 #define	R_RSA_4096	3
361 
362 #define R_EC_P160    0
363 #define R_EC_P192    1
364 #define R_EC_P224    2
365 #define R_EC_P256    3
366 #define R_EC_P384    4
367 #define R_EC_P521    5
368 #define R_EC_K163    6
369 #define R_EC_K233    7
370 #define R_EC_K283    8
371 #define R_EC_K409    9
372 #define R_EC_K571    10
373 #define R_EC_B163    11
374 #define R_EC_B233    12
375 #define R_EC_B283    13
376 #define R_EC_B409    14
377 #define R_EC_B571    15
378 
379 	RSA *rsa_key[RSA_NUM];
380 	long rsa_c[RSA_NUM][2];
381 	static unsigned int rsa_bits[RSA_NUM] = {512, 1024, 2048, 4096};
382 	static unsigned char *rsa_data[RSA_NUM] =
383 	{test512, test1024, test2048, test4096};
384 	static int rsa_data_length[RSA_NUM] = {
385 		sizeof(test512), sizeof(test1024),
386 	sizeof(test2048), sizeof(test4096)};
387 	DSA *dsa_key[DSA_NUM];
388 	long dsa_c[DSA_NUM][2];
389 	static unsigned int dsa_bits[DSA_NUM] = {512, 1024, 2048};
390 #ifndef OPENSSL_NO_EC
391 	/*
392 	 * We only test over the following curves as they are representative,
393 	 * To add tests over more curves, simply add the curve NID and curve
394 	 * name to the following arrays and increase the EC_NUM value
395 	 * accordingly.
396 	 */
397 	static unsigned int test_curves[EC_NUM] =
398 	{
399 		/* Prime Curves */
400 		NID_secp160r1,
401 		NID_X9_62_prime192v1,
402 		NID_secp224r1,
403 		NID_X9_62_prime256v1,
404 		NID_secp384r1,
405 		NID_secp521r1,
406 		/* Binary Curves */
407 		NID_sect163k1,
408 		NID_sect233k1,
409 		NID_sect283k1,
410 		NID_sect409k1,
411 		NID_sect571k1,
412 		NID_sect163r2,
413 		NID_sect233r1,
414 		NID_sect283r1,
415 		NID_sect409r1,
416 		NID_sect571r1
417 	};
418 	static const char *test_curves_names[EC_NUM] =
419 	{
420 		/* Prime Curves */
421 		"secp160r1",
422 		"nistp192",
423 		"nistp224",
424 		"nistp256",
425 		"nistp384",
426 		"nistp521",
427 		/* Binary Curves */
428 		"nistk163",
429 		"nistk233",
430 		"nistk283",
431 		"nistk409",
432 		"nistk571",
433 		"nistb163",
434 		"nistb233",
435 		"nistb283",
436 		"nistb409",
437 		"nistb571"
438 	};
439 	static int test_curves_bits[EC_NUM] =
440 	{
441 		160, 192, 224, 256, 384, 521,
442 		163, 233, 283, 409, 571,
443 		163, 233, 283, 409, 571
444 	};
445 
446 #endif
447 
448 	unsigned char ecdsasig[256];
449 	unsigned int ecdsasiglen;
450 	EC_KEY *ecdsa[EC_NUM];
451 	long ecdsa_c[EC_NUM][2];
452 
453 	EC_KEY *ecdh_a[EC_NUM], *ecdh_b[EC_NUM];
454 	unsigned char secret_a[MAX_ECDH_SIZE], secret_b[MAX_ECDH_SIZE];
455 	int secret_size_a, secret_size_b;
456 	int ecdh_checks = 0;
457 	int secret_idx = 0;
458 	long ecdh_c[EC_NUM][2];
459 
460 	int rsa_doit[RSA_NUM];
461 	int dsa_doit[DSA_NUM];
462 	int ecdsa_doit[EC_NUM];
463 	int ecdh_doit[EC_NUM];
464 	int doit[ALGOR_NUM];
465 	int pr_header = 0;
466 	const EVP_CIPHER *evp_cipher = NULL;
467 	const EVP_MD *evp_md = NULL;
468 	int decrypt = 0;
469 	int multi = 0;
470 	const char *errstr = NULL;
471 
472 	if (pledge("stdio proc", NULL) == -1) {
473 		perror("pledge");
474 		exit(1);
475 	}
476 
477 	usertime = -1;
478 
479 	memset(results, 0, sizeof(results));
480 	memset(dsa_key, 0, sizeof(dsa_key));
481 	for (i = 0; i < EC_NUM; i++)
482 		ecdsa[i] = NULL;
483 	for (i = 0; i < EC_NUM; i++) {
484 		ecdh_a[i] = NULL;
485 		ecdh_b[i] = NULL;
486 	}
487 
488 	memset(rsa_key, 0, sizeof(rsa_key));
489 	for (i = 0; i < RSA_NUM; i++)
490 		rsa_key[i] = NULL;
491 
492 	if ((buf = malloc(BUFSIZE)) == NULL) {
493 		BIO_printf(bio_err, "out of memory\n");
494 		goto end;
495 	}
496 	if ((buf2 = malloc(BUFSIZE)) == NULL) {
497 		BIO_printf(bio_err, "out of memory\n");
498 		goto end;
499 	}
500 	memset(c, 0, sizeof(c));
501 	memset(DES_iv, 0, sizeof(DES_iv));
502 	memset(iv, 0, sizeof(iv));
503 
504 	for (i = 0; i < ALGOR_NUM; i++)
505 		doit[i] = 0;
506 	for (i = 0; i < RSA_NUM; i++)
507 		rsa_doit[i] = 0;
508 	for (i = 0; i < DSA_NUM; i++)
509 		dsa_doit[i] = 0;
510 	for (i = 0; i < EC_NUM; i++)
511 		ecdsa_doit[i] = 0;
512 	for (i = 0; i < EC_NUM; i++)
513 		ecdh_doit[i] = 0;
514 
515 
516 	j = 0;
517 	argc--;
518 	argv++;
519 	while (argc) {
520 		if ((argc > 0) && (strcmp(*argv, "-elapsed") == 0)) {
521 			usertime = 0;
522 			j--;	/* Otherwise, -elapsed gets confused with an
523 				 * algorithm. */
524 		} else if ((argc > 0) && (strcmp(*argv, "-evp") == 0)) {
525 			argc--;
526 			argv++;
527 			if (argc == 0) {
528 				BIO_printf(bio_err, "no EVP given\n");
529 				goto end;
530 			}
531 			evp_cipher = EVP_get_cipherbyname(*argv);
532 			if (!evp_cipher) {
533 				evp_md = EVP_get_digestbyname(*argv);
534 			}
535 			if (!evp_cipher && !evp_md) {
536 				BIO_printf(bio_err, "%s is an unknown cipher or digest\n", *argv);
537 				goto end;
538 			}
539 			doit[D_EVP] = 1;
540 		} else if (argc > 0 && !strcmp(*argv, "-decrypt")) {
541 			decrypt = 1;
542 			j--;	/* Otherwise, -decrypt gets confused with an
543 				 * algorithm. */
544 		}
545 		else if ((argc > 0) && (strcmp(*argv, "-multi") == 0)) {
546 			argc--;
547 			argv++;
548 			if (argc == 0) {
549 				BIO_printf(bio_err, "no multi count given\n");
550 				goto end;
551 			}
552 			multi = strtonum(argv[0], 1, INT_MAX, &errstr);
553 			if (errstr) {
554 				BIO_printf(bio_err, "bad multi count: %s", errstr);
555 				goto end;
556 			}
557 			j--;	/* Otherwise, -multi gets confused with an
558 				 * algorithm. */
559 		}
560 		else if (argc > 0 && !strcmp(*argv, "-mr")) {
561 			mr = 1;
562 			j--;	/* Otherwise, -mr gets confused with an
563 				 * algorithm. */
564 		} else
565 #ifndef OPENSSL_NO_MD4
566 		if (strcmp(*argv, "md4") == 0)
567 			doit[D_MD4] = 1;
568 		else
569 #endif
570 #ifndef OPENSSL_NO_MD5
571 		if (strcmp(*argv, "md5") == 0)
572 			doit[D_MD5] = 1;
573 		else
574 #endif
575 #ifndef OPENSSL_NO_MD5
576 		if (strcmp(*argv, "hmac") == 0)
577 			doit[D_HMAC] = 1;
578 		else
579 #endif
580 #ifndef OPENSSL_NO_SHA
581 		if (strcmp(*argv, "sha1") == 0)
582 			doit[D_SHA1] = 1;
583 		else if (strcmp(*argv, "sha") == 0)
584 			doit[D_SHA1] = 1,
585 			    doit[D_SHA256] = 1,
586 			    doit[D_SHA512] = 1;
587 		else
588 #ifndef OPENSSL_NO_SHA256
589 		if (strcmp(*argv, "sha256") == 0)
590 			doit[D_SHA256] = 1;
591 		else
592 #endif
593 #ifndef OPENSSL_NO_SHA512
594 		if (strcmp(*argv, "sha512") == 0)
595 			doit[D_SHA512] = 1;
596 		else
597 #endif
598 #endif
599 #ifndef OPENSSL_NO_WHIRLPOOL
600 		if (strcmp(*argv, "whirlpool") == 0)
601 			doit[D_WHIRLPOOL] = 1;
602 		else
603 #endif
604 #ifndef OPENSSL_NO_RIPEMD
605 		if (strcmp(*argv, "ripemd") == 0)
606 			doit[D_RMD160] = 1;
607 		else if (strcmp(*argv, "rmd160") == 0)
608 			doit[D_RMD160] = 1;
609 		else if (strcmp(*argv, "ripemd160") == 0)
610 			doit[D_RMD160] = 1;
611 		else
612 #endif
613 #ifndef OPENSSL_NO_RC4
614 		if (strcmp(*argv, "rc4") == 0)
615 			doit[D_RC4] = 1;
616 		else
617 #endif
618 #ifndef OPENSSL_NO_DES
619 		if (strcmp(*argv, "des-cbc") == 0)
620 			doit[D_CBC_DES] = 1;
621 		else if (strcmp(*argv, "des-ede3") == 0)
622 			doit[D_EDE3_DES] = 1;
623 		else
624 #endif
625 #ifndef OPENSSL_NO_AES
626 		if (strcmp(*argv, "aes-128-cbc") == 0)
627 			doit[D_CBC_128_AES] = 1;
628 		else if (strcmp(*argv, "aes-192-cbc") == 0)
629 			doit[D_CBC_192_AES] = 1;
630 		else if (strcmp(*argv, "aes-256-cbc") == 0)
631 			doit[D_CBC_256_AES] = 1;
632 		else if (strcmp(*argv, "aes-128-ige") == 0)
633 			doit[D_IGE_128_AES] = 1;
634 		else if (strcmp(*argv, "aes-192-ige") == 0)
635 			doit[D_IGE_192_AES] = 1;
636 		else if (strcmp(*argv, "aes-256-ige") == 0)
637 			doit[D_IGE_256_AES] = 1;
638 		else
639 #endif
640 #ifndef OPENSSL_NO_CAMELLIA
641 		if (strcmp(*argv, "camellia-128-cbc") == 0)
642 			doit[D_CBC_128_CML] = 1;
643 		else if (strcmp(*argv, "camellia-192-cbc") == 0)
644 			doit[D_CBC_192_CML] = 1;
645 		else if (strcmp(*argv, "camellia-256-cbc") == 0)
646 			doit[D_CBC_256_CML] = 1;
647 		else
648 #endif
649 #ifndef RSA_NULL
650 		if (strcmp(*argv, "openssl") == 0) {
651 			RSA_set_default_method(RSA_PKCS1_SSLeay());
652 			j--;
653 		} else
654 #endif
655 		if (strcmp(*argv, "dsa512") == 0)
656 			dsa_doit[R_DSA_512] = 2;
657 		else if (strcmp(*argv, "dsa1024") == 0)
658 			dsa_doit[R_DSA_1024] = 2;
659 		else if (strcmp(*argv, "dsa2048") == 0)
660 			dsa_doit[R_DSA_2048] = 2;
661 		else if (strcmp(*argv, "rsa512") == 0)
662 			rsa_doit[R_RSA_512] = 2;
663 		else if (strcmp(*argv, "rsa1024") == 0)
664 			rsa_doit[R_RSA_1024] = 2;
665 		else if (strcmp(*argv, "rsa2048") == 0)
666 			rsa_doit[R_RSA_2048] = 2;
667 		else if (strcmp(*argv, "rsa4096") == 0)
668 			rsa_doit[R_RSA_4096] = 2;
669 		else
670 #ifndef OPENSSL_NO_RC2
671 		if (strcmp(*argv, "rc2-cbc") == 0)
672 			doit[D_CBC_RC2] = 1;
673 		else if (strcmp(*argv, "rc2") == 0)
674 			doit[D_CBC_RC2] = 1;
675 		else
676 #endif
677 #ifndef OPENSSL_NO_IDEA
678 		if (strcmp(*argv, "idea-cbc") == 0)
679 			doit[D_CBC_IDEA] = 1;
680 		else if (strcmp(*argv, "idea") == 0)
681 			doit[D_CBC_IDEA] = 1;
682 		else
683 #endif
684 #ifndef OPENSSL_NO_BF
685 		if (strcmp(*argv, "bf-cbc") == 0)
686 			doit[D_CBC_BF] = 1;
687 		else if (strcmp(*argv, "blowfish") == 0)
688 			doit[D_CBC_BF] = 1;
689 		else if (strcmp(*argv, "bf") == 0)
690 			doit[D_CBC_BF] = 1;
691 		else
692 #endif
693 #ifndef OPENSSL_NO_CAST
694 		if (strcmp(*argv, "cast-cbc") == 0)
695 			doit[D_CBC_CAST] = 1;
696 		else if (strcmp(*argv, "cast") == 0)
697 			doit[D_CBC_CAST] = 1;
698 		else if (strcmp(*argv, "cast5") == 0)
699 			doit[D_CBC_CAST] = 1;
700 		else
701 #endif
702 #ifndef OPENSSL_NO_DES
703 		if (strcmp(*argv, "des") == 0) {
704 			doit[D_CBC_DES] = 1;
705 			doit[D_EDE3_DES] = 1;
706 		} else
707 #endif
708 #ifndef OPENSSL_NO_AES
709 		if (strcmp(*argv, "aes") == 0) {
710 			doit[D_CBC_128_AES] = 1;
711 			doit[D_CBC_192_AES] = 1;
712 			doit[D_CBC_256_AES] = 1;
713 		} else if (strcmp(*argv, "ghash") == 0)
714 			doit[D_GHASH] = 1;
715 		else if (strcmp(*argv,"aes-128-gcm") == 0)
716 			doit[D_AES_128_GCM]=1;
717 		else if (strcmp(*argv,"aes-256-gcm") == 0)
718 			doit[D_AES_256_GCM]=1;
719 		else
720 #endif
721 #ifndef OPENSSL_NO_CAMELLIA
722 		if (strcmp(*argv, "camellia") == 0) {
723 			doit[D_CBC_128_CML] = 1;
724 			doit[D_CBC_192_CML] = 1;
725 			doit[D_CBC_256_CML] = 1;
726 		} else
727 #endif
728 #if !defined(OPENSSL_NO_CHACHA) && !defined(OPENSSL_NO_POLY1305)
729 		if (strcmp(*argv,"chacha20-poly1305") == 0)
730 			doit[D_CHACHA20_POLY1305]=1;
731 		else
732 #endif
733 		if (strcmp(*argv, "rsa") == 0) {
734 			rsa_doit[R_RSA_512] = 1;
735 			rsa_doit[R_RSA_1024] = 1;
736 			rsa_doit[R_RSA_2048] = 1;
737 			rsa_doit[R_RSA_4096] = 1;
738 		} else
739 		if (strcmp(*argv, "dsa") == 0) {
740 			dsa_doit[R_DSA_512] = 1;
741 			dsa_doit[R_DSA_1024] = 1;
742 			dsa_doit[R_DSA_2048] = 1;
743 		} else
744 		if (strcmp(*argv, "ecdsap160") == 0)
745 			ecdsa_doit[R_EC_P160] = 2;
746 		else if (strcmp(*argv, "ecdsap192") == 0)
747 			ecdsa_doit[R_EC_P192] = 2;
748 		else if (strcmp(*argv, "ecdsap224") == 0)
749 			ecdsa_doit[R_EC_P224] = 2;
750 		else if (strcmp(*argv, "ecdsap256") == 0)
751 			ecdsa_doit[R_EC_P256] = 2;
752 		else if (strcmp(*argv, "ecdsap384") == 0)
753 			ecdsa_doit[R_EC_P384] = 2;
754 		else if (strcmp(*argv, "ecdsap521") == 0)
755 			ecdsa_doit[R_EC_P521] = 2;
756 		else if (strcmp(*argv, "ecdsak163") == 0)
757 			ecdsa_doit[R_EC_K163] = 2;
758 		else if (strcmp(*argv, "ecdsak233") == 0)
759 			ecdsa_doit[R_EC_K233] = 2;
760 		else if (strcmp(*argv, "ecdsak283") == 0)
761 			ecdsa_doit[R_EC_K283] = 2;
762 		else if (strcmp(*argv, "ecdsak409") == 0)
763 			ecdsa_doit[R_EC_K409] = 2;
764 		else if (strcmp(*argv, "ecdsak571") == 0)
765 			ecdsa_doit[R_EC_K571] = 2;
766 		else if (strcmp(*argv, "ecdsab163") == 0)
767 			ecdsa_doit[R_EC_B163] = 2;
768 		else if (strcmp(*argv, "ecdsab233") == 0)
769 			ecdsa_doit[R_EC_B233] = 2;
770 		else if (strcmp(*argv, "ecdsab283") == 0)
771 			ecdsa_doit[R_EC_B283] = 2;
772 		else if (strcmp(*argv, "ecdsab409") == 0)
773 			ecdsa_doit[R_EC_B409] = 2;
774 		else if (strcmp(*argv, "ecdsab571") == 0)
775 			ecdsa_doit[R_EC_B571] = 2;
776 		else if (strcmp(*argv, "ecdsa") == 0) {
777 			for (i = 0; i < EC_NUM; i++)
778 				ecdsa_doit[i] = 1;
779 		} else
780 		if (strcmp(*argv, "ecdhp160") == 0)
781 			ecdh_doit[R_EC_P160] = 2;
782 		else if (strcmp(*argv, "ecdhp192") == 0)
783 			ecdh_doit[R_EC_P192] = 2;
784 		else if (strcmp(*argv, "ecdhp224") == 0)
785 			ecdh_doit[R_EC_P224] = 2;
786 		else if (strcmp(*argv, "ecdhp256") == 0)
787 			ecdh_doit[R_EC_P256] = 2;
788 		else if (strcmp(*argv, "ecdhp384") == 0)
789 			ecdh_doit[R_EC_P384] = 2;
790 		else if (strcmp(*argv, "ecdhp521") == 0)
791 			ecdh_doit[R_EC_P521] = 2;
792 		else if (strcmp(*argv, "ecdhk163") == 0)
793 			ecdh_doit[R_EC_K163] = 2;
794 		else if (strcmp(*argv, "ecdhk233") == 0)
795 			ecdh_doit[R_EC_K233] = 2;
796 		else if (strcmp(*argv, "ecdhk283") == 0)
797 			ecdh_doit[R_EC_K283] = 2;
798 		else if (strcmp(*argv, "ecdhk409") == 0)
799 			ecdh_doit[R_EC_K409] = 2;
800 		else if (strcmp(*argv, "ecdhk571") == 0)
801 			ecdh_doit[R_EC_K571] = 2;
802 		else if (strcmp(*argv, "ecdhb163") == 0)
803 			ecdh_doit[R_EC_B163] = 2;
804 		else if (strcmp(*argv, "ecdhb233") == 0)
805 			ecdh_doit[R_EC_B233] = 2;
806 		else if (strcmp(*argv, "ecdhb283") == 0)
807 			ecdh_doit[R_EC_B283] = 2;
808 		else if (strcmp(*argv, "ecdhb409") == 0)
809 			ecdh_doit[R_EC_B409] = 2;
810 		else if (strcmp(*argv, "ecdhb571") == 0)
811 			ecdh_doit[R_EC_B571] = 2;
812 		else if (strcmp(*argv, "ecdh") == 0) {
813 			for (i = 0; i < EC_NUM; i++)
814 				ecdh_doit[i] = 1;
815 		} else
816 		{
817 			BIO_printf(bio_err, "Error: bad option or value\n");
818 			BIO_printf(bio_err, "\n");
819 			BIO_printf(bio_err, "Available values:\n");
820 #ifndef OPENSSL_NO_MD4
821 			BIO_printf(bio_err, "md4      ");
822 #endif
823 #ifndef OPENSSL_NO_MD5
824 			BIO_printf(bio_err, "md5      ");
825 #ifndef OPENSSL_NO_HMAC
826 			BIO_printf(bio_err, "hmac     ");
827 #endif
828 #endif
829 #ifndef OPENSSL_NO_SHA1
830 			BIO_printf(bio_err, "sha1     ");
831 #endif
832 #ifndef OPENSSL_NO_SHA256
833 			BIO_printf(bio_err, "sha256   ");
834 #endif
835 #ifndef OPENSSL_NO_SHA512
836 			BIO_printf(bio_err, "sha512   ");
837 #endif
838 #ifndef OPENSSL_NO_WHIRLPOOL
839 			BIO_printf(bio_err, "whirlpool");
840 #endif
841 #ifndef OPENSSL_NO_RIPEMD160
842 			BIO_printf(bio_err, "rmd160");
843 #endif
844 #if !defined(OPENSSL_NO_MD2) || \
845     !defined(OPENSSL_NO_MD4) || !defined(OPENSSL_NO_MD5) || \
846     !defined(OPENSSL_NO_SHA1) || !defined(OPENSSL_NO_RIPEMD160) || \
847     !defined(OPENSSL_NO_WHIRLPOOL)
848 			BIO_printf(bio_err, "\n");
849 #endif
850 
851 #ifndef OPENSSL_NO_IDEA
852 			BIO_printf(bio_err, "idea-cbc ");
853 #endif
854 #ifndef OPENSSL_NO_RC2
855 			BIO_printf(bio_err, "rc2-cbc  ");
856 #endif
857 #ifndef OPENSSL_NO_BF
858 			BIO_printf(bio_err, "bf-cbc   ");
859 #endif
860 #ifndef OPENSSL_NO_DES
861 			BIO_printf(bio_err, "des-cbc  des-ede3\n");
862 #endif
863 #ifndef OPENSSL_NO_AES
864 			BIO_printf(bio_err, "aes-128-cbc aes-192-cbc aes-256-cbc ");
865 			BIO_printf(bio_err, "aes-128-ige aes-192-ige aes-256-ige\n");
866 			BIO_printf(bio_err, "aes-128-gcm aes-256-gcm ");
867 #endif
868 #ifndef OPENSSL_NO_CAMELLIA
869 			BIO_printf(bio_err, "\n");
870 			BIO_printf(bio_err, "camellia-128-cbc camellia-192-cbc camellia-256-cbc ");
871 #endif
872 #ifndef OPENSSL_NO_RC4
873 			BIO_printf(bio_err, "rc4");
874 #endif
875 #if !defined(OPENSSL_NO_CHACHA) && !defined(OPENSSL_NO_POLY1305)
876 			BIO_printf(bio_err," chacha20-poly1305");
877 #endif
878 			BIO_printf(bio_err, "\n");
879 
880 			BIO_printf(bio_err, "rsa512   rsa1024  rsa2048  rsa4096\n");
881 
882 			BIO_printf(bio_err, "dsa512   dsa1024  dsa2048\n");
883 			BIO_printf(bio_err, "ecdsap160 ecdsap192 ecdsap224 ecdsap256 ecdsap384 ecdsap521\n");
884 			BIO_printf(bio_err, "ecdsak163 ecdsak233 ecdsak283 ecdsak409 ecdsak571\n");
885 			BIO_printf(bio_err, "ecdsab163 ecdsab233 ecdsab283 ecdsab409 ecdsab571 ecdsa\n");
886 			BIO_printf(bio_err, "ecdhp160  ecdhp192  ecdhp224  ecdhp256  ecdhp384  ecdhp521\n");
887 			BIO_printf(bio_err, "ecdhk163  ecdhk233  ecdhk283  ecdhk409  ecdhk571\n");
888 			BIO_printf(bio_err, "ecdhb163  ecdhb233  ecdhb283  ecdhb409  ecdhb571  ecdh\n");
889 
890 #ifndef OPENSSL_NO_IDEA
891 			BIO_printf(bio_err, "idea     ");
892 #endif
893 #ifndef OPENSSL_NO_RC2
894 			BIO_printf(bio_err, "rc2      ");
895 #endif
896 #ifndef OPENSSL_NO_DES
897 			BIO_printf(bio_err, "des      ");
898 #endif
899 #ifndef OPENSSL_NO_AES
900 			BIO_printf(bio_err, "aes      ");
901 #endif
902 #ifndef OPENSSL_NO_CAMELLIA
903 			BIO_printf(bio_err, "camellia ");
904 #endif
905 			BIO_printf(bio_err, "rsa      ");
906 #ifndef OPENSSL_NO_BF
907 			BIO_printf(bio_err, "blowfish");
908 #endif
909 #if !defined(OPENSSL_NO_IDEA) || !defined(OPENSSL_NO_SEED) || \
910     !defined(OPENSSL_NO_RC2) || !defined(OPENSSL_NO_DES) || \
911     !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_BF) || \
912     !defined(OPENSSL_NO_AES) || !defined(OPENSSL_NO_CAMELLIA)
913 			BIO_printf(bio_err, "\n");
914 #endif
915 
916 			BIO_printf(bio_err, "\n");
917 			BIO_printf(bio_err, "Available options:\n");
918 			BIO_printf(bio_err, "-elapsed        measure time in real time instead of CPU user time.\n");
919 			BIO_printf(bio_err, "-evp e          use EVP e.\n");
920 			BIO_printf(bio_err, "-decrypt        time decryption instead of encryption (only EVP).\n");
921 			BIO_printf(bio_err, "-mr             produce machine readable output.\n");
922 			BIO_printf(bio_err, "-multi n        run n benchmarks in parallel.\n");
923 			goto end;
924 		}
925 		argc--;
926 		argv++;
927 		j++;
928 	}
929 
930 	if (multi && do_multi(multi))
931 		goto show_res;
932 
933 	if (j == 0) {
934 		for (i = 0; i < ALGOR_NUM; i++) {
935 			if (i != D_EVP)
936 				doit[i] = 1;
937 		}
938 		for (i = 0; i < RSA_NUM; i++)
939 			rsa_doit[i] = 1;
940 		for (i = 0; i < DSA_NUM; i++)
941 			dsa_doit[i] = 1;
942 		for (i = 0; i < EC_NUM; i++)
943 			ecdsa_doit[i] = 1;
944 		for (i = 0; i < EC_NUM; i++)
945 			ecdh_doit[i] = 1;
946 	}
947 	for (i = 0; i < ALGOR_NUM; i++)
948 		if (doit[i])
949 			pr_header++;
950 
951 	if (usertime == 0 && !mr)
952 		BIO_printf(bio_err, "You have chosen to measure elapsed time instead of user CPU time.\n");
953 
954 	for (i = 0; i < RSA_NUM; i++) {
955 		const unsigned char *p;
956 
957 		p = rsa_data[i];
958 		rsa_key[i] = d2i_RSAPrivateKey(NULL, &p, rsa_data_length[i]);
959 		if (rsa_key[i] == NULL) {
960 			BIO_printf(bio_err, "internal error loading RSA key number %d\n", i);
961 			goto end;
962 		}
963 	}
964 
965 	dsa_key[0] = get_dsa512();
966 	dsa_key[1] = get_dsa1024();
967 	dsa_key[2] = get_dsa2048();
968 
969 #ifndef OPENSSL_NO_DES
970 	DES_set_key_unchecked(&key, &sch);
971 	DES_set_key_unchecked(&key2, &sch2);
972 	DES_set_key_unchecked(&key3, &sch3);
973 #endif
974 #ifndef OPENSSL_NO_AES
975 	AES_set_encrypt_key(key16, 128, &aes_ks1);
976 	AES_set_encrypt_key(key24, 192, &aes_ks2);
977 	AES_set_encrypt_key(key32, 256, &aes_ks3);
978 #endif
979 #ifndef OPENSSL_NO_CAMELLIA
980 	Camellia_set_key(key16, 128, &camellia_ks1);
981 	Camellia_set_key(ckey24, 192, &camellia_ks2);
982 	Camellia_set_key(ckey32, 256, &camellia_ks3);
983 #endif
984 #ifndef OPENSSL_NO_IDEA
985 	idea_set_encrypt_key(key16, &idea_ks);
986 #endif
987 #ifndef OPENSSL_NO_RC4
988 	RC4_set_key(&rc4_ks, 16, key16);
989 #endif
990 #ifndef OPENSSL_NO_RC2
991 	RC2_set_key(&rc2_ks, 16, key16, 128);
992 #endif
993 #ifndef OPENSSL_NO_BF
994 	BF_set_key(&bf_ks, 16, key16);
995 #endif
996 #ifndef OPENSSL_NO_CAST
997 	CAST_set_key(&cast_ks, 16, key16);
998 #endif
999 	memset(rsa_c, 0, sizeof(rsa_c));
1000 #define COND(c)	(run && count<0x7fffffff)
1001 #define COUNT(d) (count)
1002 	signal(SIGALRM, sig_done);
1003 
1004 #ifndef OPENSSL_NO_MD4
1005 	if (doit[D_MD4]) {
1006 		for (j = 0; j < SIZE_NUM; j++) {
1007 			print_message(names[D_MD4], c[D_MD4][j], lengths[j]);
1008 			Time_F(START);
1009 			for (count = 0, run = 1; COND(c[D_MD4][j]); count++)
1010 				EVP_Digest(&(buf[0]), (unsigned long) lengths[j], &(md4[0]), NULL, EVP_md4(), NULL);
1011 			d = Time_F(STOP);
1012 			print_result(D_MD4, j, count, d);
1013 		}
1014 	}
1015 #endif
1016 
1017 #ifndef OPENSSL_NO_MD5
1018 	if (doit[D_MD5]) {
1019 		for (j = 0; j < SIZE_NUM; j++) {
1020 			print_message(names[D_MD5], c[D_MD5][j], lengths[j]);
1021 			Time_F(START);
1022 			for (count = 0, run = 1; COND(c[D_MD5][j]); count++)
1023 				EVP_Digest(&(buf[0]), (unsigned long) lengths[j], &(md5[0]), NULL, EVP_get_digestbyname("md5"), NULL);
1024 			d = Time_F(STOP);
1025 			print_result(D_MD5, j, count, d);
1026 		}
1027 	}
1028 #endif
1029 
1030 #if !defined(OPENSSL_NO_MD5) && !defined(OPENSSL_NO_HMAC)
1031 	if (doit[D_HMAC]) {
1032 		HMAC_CTX *hctx;
1033 
1034 		if ((hctx = HMAC_CTX_new()) == NULL) {
1035 			BIO_printf(bio_err, "Failed to allocate HMAC context.\n");
1036 			goto end;
1037 		}
1038 
1039 		HMAC_Init_ex(hctx, (unsigned char *) "This is a key...",
1040 		    16, EVP_md5(), NULL);
1041 
1042 		for (j = 0; j < SIZE_NUM; j++) {
1043 			print_message(names[D_HMAC], c[D_HMAC][j], lengths[j]);
1044 			Time_F(START);
1045 			for (count = 0, run = 1; COND(c[D_HMAC][j]); count++) {
1046 				if (!HMAC_Init_ex(hctx, NULL, 0, NULL, NULL)) {
1047 					HMAC_CTX_free(hctx);
1048 					goto end;
1049 				}
1050 				if (!HMAC_Update(hctx, buf, lengths[j])) {
1051 					HMAC_CTX_free(hctx);
1052 					goto end;
1053 				}
1054 				if (!HMAC_Final(hctx, &(hmac[0]), NULL)) {
1055 					HMAC_CTX_free(hctx);
1056 					goto end;
1057 				}
1058 			}
1059 			d = Time_F(STOP);
1060 			print_result(D_HMAC, j, count, d);
1061 		}
1062 		HMAC_CTX_free(hctx);
1063 	}
1064 #endif
1065 #ifndef OPENSSL_NO_SHA
1066 	if (doit[D_SHA1]) {
1067 		for (j = 0; j < SIZE_NUM; j++) {
1068 			print_message(names[D_SHA1], c[D_SHA1][j], lengths[j]);
1069 			Time_F(START);
1070 			for (count = 0, run = 1; COND(c[D_SHA1][j]); count++)
1071 				EVP_Digest(buf, (unsigned long) lengths[j], &(sha[0]), NULL, EVP_sha1(), NULL);
1072 			d = Time_F(STOP);
1073 			print_result(D_SHA1, j, count, d);
1074 		}
1075 	}
1076 #ifndef OPENSSL_NO_SHA256
1077 	if (doit[D_SHA256]) {
1078 		for (j = 0; j < SIZE_NUM; j++) {
1079 			print_message(names[D_SHA256], c[D_SHA256][j], lengths[j]);
1080 			Time_F(START);
1081 			for (count = 0, run = 1; COND(c[D_SHA256][j]); count++)
1082 				SHA256(buf, lengths[j], sha256);
1083 			d = Time_F(STOP);
1084 			print_result(D_SHA256, j, count, d);
1085 		}
1086 	}
1087 #endif
1088 
1089 #ifndef OPENSSL_NO_SHA512
1090 	if (doit[D_SHA512]) {
1091 		for (j = 0; j < SIZE_NUM; j++) {
1092 			print_message(names[D_SHA512], c[D_SHA512][j], lengths[j]);
1093 			Time_F(START);
1094 			for (count = 0, run = 1; COND(c[D_SHA512][j]); count++)
1095 				SHA512(buf, lengths[j], sha512);
1096 			d = Time_F(STOP);
1097 			print_result(D_SHA512, j, count, d);
1098 		}
1099 	}
1100 #endif
1101 #endif
1102 
1103 #ifndef OPENSSL_NO_WHIRLPOOL
1104 	if (doit[D_WHIRLPOOL]) {
1105 		for (j = 0; j < SIZE_NUM; j++) {
1106 			print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][j], lengths[j]);
1107 			Time_F(START);
1108 			for (count = 0, run = 1; COND(c[D_WHIRLPOOL][j]); count++)
1109 				WHIRLPOOL(buf, lengths[j], whirlpool);
1110 			d = Time_F(STOP);
1111 			print_result(D_WHIRLPOOL, j, count, d);
1112 		}
1113 	}
1114 #endif
1115 
1116 #ifndef OPENSSL_NO_RIPEMD
1117 	if (doit[D_RMD160]) {
1118 		for (j = 0; j < SIZE_NUM; j++) {
1119 			print_message(names[D_RMD160], c[D_RMD160][j], lengths[j]);
1120 			Time_F(START);
1121 			for (count = 0, run = 1; COND(c[D_RMD160][j]); count++)
1122 				EVP_Digest(buf, (unsigned long) lengths[j], &(rmd160[0]), NULL, EVP_ripemd160(), NULL);
1123 			d = Time_F(STOP);
1124 			print_result(D_RMD160, j, count, d);
1125 		}
1126 	}
1127 #endif
1128 #ifndef OPENSSL_NO_RC4
1129 	if (doit[D_RC4]) {
1130 		for (j = 0; j < SIZE_NUM; j++) {
1131 			print_message(names[D_RC4], c[D_RC4][j], lengths[j]);
1132 			Time_F(START);
1133 			for (count = 0, run = 1; COND(c[D_RC4][j]); count++)
1134 				RC4(&rc4_ks, (unsigned int) lengths[j],
1135 				    buf, buf);
1136 			d = Time_F(STOP);
1137 			print_result(D_RC4, j, count, d);
1138 		}
1139 	}
1140 #endif
1141 #ifndef OPENSSL_NO_DES
1142 	if (doit[D_CBC_DES]) {
1143 		for (j = 0; j < SIZE_NUM; j++) {
1144 			print_message(names[D_CBC_DES], c[D_CBC_DES][j], lengths[j]);
1145 			Time_F(START);
1146 			for (count = 0, run = 1; COND(c[D_CBC_DES][j]); count++)
1147 				DES_ncbc_encrypt(buf, buf, lengths[j], &sch,
1148 				    &DES_iv, DES_ENCRYPT);
1149 			d = Time_F(STOP);
1150 			print_result(D_CBC_DES, j, count, d);
1151 		}
1152 	}
1153 	if (doit[D_EDE3_DES]) {
1154 		for (j = 0; j < SIZE_NUM; j++) {
1155 			print_message(names[D_EDE3_DES], c[D_EDE3_DES][j], lengths[j]);
1156 			Time_F(START);
1157 			for (count = 0, run = 1; COND(c[D_EDE3_DES][j]); count++)
1158 				DES_ede3_cbc_encrypt(buf, buf, lengths[j],
1159 				    &sch, &sch2, &sch3,
1160 				    &DES_iv, DES_ENCRYPT);
1161 			d = Time_F(STOP);
1162 			print_result(D_EDE3_DES, j, count, d);
1163 		}
1164 	}
1165 #endif
1166 #ifndef OPENSSL_NO_AES
1167 	if (doit[D_CBC_128_AES]) {
1168 		for (j = 0; j < SIZE_NUM; j++) {
1169 			print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][j], lengths[j]);
1170 			Time_F(START);
1171 			for (count = 0, run = 1; COND(c[D_CBC_128_AES][j]); count++)
1172 				AES_cbc_encrypt(buf, buf,
1173 				    (unsigned long) lengths[j], &aes_ks1,
1174 				    iv, AES_ENCRYPT);
1175 			d = Time_F(STOP);
1176 			print_result(D_CBC_128_AES, j, count, d);
1177 		}
1178 	}
1179 	if (doit[D_CBC_192_AES]) {
1180 		for (j = 0; j < SIZE_NUM; j++) {
1181 			print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][j], lengths[j]);
1182 			Time_F(START);
1183 			for (count = 0, run = 1; COND(c[D_CBC_192_AES][j]); count++)
1184 				AES_cbc_encrypt(buf, buf,
1185 				    (unsigned long) lengths[j], &aes_ks2,
1186 				    iv, AES_ENCRYPT);
1187 			d = Time_F(STOP);
1188 			print_result(D_CBC_192_AES, j, count, d);
1189 		}
1190 	}
1191 	if (doit[D_CBC_256_AES]) {
1192 		for (j = 0; j < SIZE_NUM; j++) {
1193 			print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][j], lengths[j]);
1194 			Time_F(START);
1195 			for (count = 0, run = 1; COND(c[D_CBC_256_AES][j]); count++)
1196 				AES_cbc_encrypt(buf, buf,
1197 				    (unsigned long) lengths[j], &aes_ks3,
1198 				    iv, AES_ENCRYPT);
1199 			d = Time_F(STOP);
1200 			print_result(D_CBC_256_AES, j, count, d);
1201 		}
1202 	}
1203 	if (doit[D_IGE_128_AES]) {
1204 		for (j = 0; j < SIZE_NUM; j++) {
1205 			print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][j], lengths[j]);
1206 			Time_F(START);
1207 			for (count = 0, run = 1; COND(c[D_IGE_128_AES][j]); count++)
1208 				AES_ige_encrypt(buf, buf2,
1209 				    (unsigned long) lengths[j], &aes_ks1,
1210 				    iv, AES_ENCRYPT);
1211 			d = Time_F(STOP);
1212 			print_result(D_IGE_128_AES, j, count, d);
1213 		}
1214 	}
1215 	if (doit[D_IGE_192_AES]) {
1216 		for (j = 0; j < SIZE_NUM; j++) {
1217 			print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][j], lengths[j]);
1218 			Time_F(START);
1219 			for (count = 0, run = 1; COND(c[D_IGE_192_AES][j]); count++)
1220 				AES_ige_encrypt(buf, buf2,
1221 				    (unsigned long) lengths[j], &aes_ks2,
1222 				    iv, AES_ENCRYPT);
1223 			d = Time_F(STOP);
1224 			print_result(D_IGE_192_AES, j, count, d);
1225 		}
1226 	}
1227 	if (doit[D_IGE_256_AES]) {
1228 		for (j = 0; j < SIZE_NUM; j++) {
1229 			print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][j], lengths[j]);
1230 			Time_F(START);
1231 			for (count = 0, run = 1; COND(c[D_IGE_256_AES][j]); count++)
1232 				AES_ige_encrypt(buf, buf2,
1233 				    (unsigned long) lengths[j], &aes_ks3,
1234 				    iv, AES_ENCRYPT);
1235 			d = Time_F(STOP);
1236 			print_result(D_IGE_256_AES, j, count, d);
1237 		}
1238 	}
1239 	if (doit[D_GHASH]) {
1240 		GCM128_CONTEXT *ctx = CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt);
1241 		CRYPTO_gcm128_setiv(ctx, (unsigned char *) "0123456789ab", 12);
1242 
1243 		for (j = 0; j < SIZE_NUM; j++) {
1244 			print_message(names[D_GHASH], c[D_GHASH][j], lengths[j]);
1245 			Time_F(START);
1246 			for (count = 0, run = 1; COND(c[D_GHASH][j]); count++)
1247 				CRYPTO_gcm128_aad(ctx, buf, lengths[j]);
1248 			d = Time_F(STOP);
1249 			print_result(D_GHASH, j, count, d);
1250 		}
1251 		CRYPTO_gcm128_release(ctx);
1252 	}
1253 	if (doit[D_AES_128_GCM]) {
1254 		const EVP_AEAD *aead = EVP_aead_aes_128_gcm();
1255 		static const unsigned char nonce[32] = {0};
1256 		size_t buf_len, nonce_len;
1257 		EVP_AEAD_CTX *ctx;
1258 
1259 		if ((ctx = EVP_AEAD_CTX_new()) == NULL) {
1260 			BIO_printf(bio_err,
1261 			    "Failed to allocate aead context.\n");
1262 			goto end;
1263 		}
1264 
1265 		EVP_AEAD_CTX_init(ctx, aead, key32, EVP_AEAD_key_length(aead),
1266 		    EVP_AEAD_DEFAULT_TAG_LENGTH, NULL);
1267 		nonce_len = EVP_AEAD_nonce_length(aead);
1268 
1269 		for (j = 0; j < SIZE_NUM; j++) {
1270 			print_message(names[D_AES_128_GCM],c[D_AES_128_GCM][j],lengths[j]);
1271 			Time_F(START);
1272 			for (count = 0, run = 1; COND(c[D_AES_128_GCM][j]); count++)
1273 				EVP_AEAD_CTX_seal(ctx, buf, &buf_len, BUFSIZE, nonce,
1274 				    nonce_len, buf, lengths[j], NULL, 0);
1275 			d=Time_F(STOP);
1276 			print_result(D_AES_128_GCM,j,count,d);
1277 		}
1278 		EVP_AEAD_CTX_free(ctx);
1279 	}
1280 
1281 	if (doit[D_AES_256_GCM]) {
1282 		const EVP_AEAD *aead = EVP_aead_aes_256_gcm();
1283 		static const unsigned char nonce[32] = {0};
1284 		size_t buf_len, nonce_len;
1285 		EVP_AEAD_CTX *ctx;
1286 
1287 		if ((ctx = EVP_AEAD_CTX_new()) == NULL) {
1288 			BIO_printf(bio_err,
1289 			    "Failed to allocate aead context.\n");
1290 			goto end;
1291 		}
1292 
1293 		EVP_AEAD_CTX_init(ctx, aead, key32, EVP_AEAD_key_length(aead),
1294 		EVP_AEAD_DEFAULT_TAG_LENGTH, NULL);
1295 		nonce_len = EVP_AEAD_nonce_length(aead);
1296 
1297 		for (j = 0; j < SIZE_NUM; j++) {
1298 			print_message(names[D_AES_256_GCM],c[D_AES_256_GCM][j],lengths[j]);
1299 			Time_F(START);
1300 			for (count = 0, run = 1; COND(c[D_AES_256_GCM][j]); count++)
1301 				EVP_AEAD_CTX_seal(ctx, buf, &buf_len, BUFSIZE, nonce,
1302 				    nonce_len, buf, lengths[j], NULL, 0);
1303 			d=Time_F(STOP);
1304 			print_result(D_AES_256_GCM, j, count, d);
1305 		}
1306 		EVP_AEAD_CTX_free(ctx);
1307 	}
1308 #endif
1309 #if !defined(OPENSSL_NO_CHACHA) && !defined(OPENSSL_NO_POLY1305)
1310 	if (doit[D_CHACHA20_POLY1305]) {
1311 		const EVP_AEAD *aead = EVP_aead_chacha20_poly1305();
1312 		static const unsigned char nonce[32] = {0};
1313 		size_t buf_len, nonce_len;
1314 		EVP_AEAD_CTX *ctx;
1315 
1316 		if ((ctx = EVP_AEAD_CTX_new()) == NULL) {
1317 			BIO_printf(bio_err,
1318 			    "Failed to allocate aead context.\n");
1319 			goto end;
1320 		}
1321 
1322 		EVP_AEAD_CTX_init(ctx, aead, key32, EVP_AEAD_key_length(aead),
1323 		    EVP_AEAD_DEFAULT_TAG_LENGTH, NULL);
1324 		nonce_len = EVP_AEAD_nonce_length(aead);
1325 
1326 		for (j = 0; j < SIZE_NUM; j++) {
1327 			print_message(names[D_CHACHA20_POLY1305],
1328 			    c[D_CHACHA20_POLY1305][j], lengths[j]);
1329 			Time_F(START);
1330 			for (count = 0, run = 1; COND(c[D_CHACHA20_POLY1305][j]); count++)
1331 				EVP_AEAD_CTX_seal(ctx, buf, &buf_len, BUFSIZE, nonce,
1332 				    nonce_len, buf, lengths[j], NULL, 0);
1333 			d=Time_F(STOP);
1334 			print_result(D_CHACHA20_POLY1305, j, count, d);
1335 		}
1336 		EVP_AEAD_CTX_free(ctx);
1337 	}
1338 #endif
1339 #ifndef OPENSSL_NO_CAMELLIA
1340 	if (doit[D_CBC_128_CML]) {
1341 		for (j = 0; j < SIZE_NUM; j++) {
1342 			print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][j], lengths[j]);
1343 			Time_F(START);
1344 			for (count = 0, run = 1; COND(c[D_CBC_128_CML][j]); count++)
1345 				Camellia_cbc_encrypt(buf, buf,
1346 				    (unsigned long) lengths[j], &camellia_ks1,
1347 				    iv, CAMELLIA_ENCRYPT);
1348 			d = Time_F(STOP);
1349 			print_result(D_CBC_128_CML, j, count, d);
1350 		}
1351 	}
1352 	if (doit[D_CBC_192_CML]) {
1353 		for (j = 0; j < SIZE_NUM; j++) {
1354 			print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][j], lengths[j]);
1355 			Time_F(START);
1356 			for (count = 0, run = 1; COND(c[D_CBC_192_CML][j]); count++)
1357 				Camellia_cbc_encrypt(buf, buf,
1358 				    (unsigned long) lengths[j], &camellia_ks2,
1359 				    iv, CAMELLIA_ENCRYPT);
1360 			d = Time_F(STOP);
1361 			print_result(D_CBC_192_CML, j, count, d);
1362 		}
1363 	}
1364 	if (doit[D_CBC_256_CML]) {
1365 		for (j = 0; j < SIZE_NUM; j++) {
1366 			print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][j], lengths[j]);
1367 			Time_F(START);
1368 			for (count = 0, run = 1; COND(c[D_CBC_256_CML][j]); count++)
1369 				Camellia_cbc_encrypt(buf, buf,
1370 				    (unsigned long) lengths[j], &camellia_ks3,
1371 				    iv, CAMELLIA_ENCRYPT);
1372 			d = Time_F(STOP);
1373 			print_result(D_CBC_256_CML, j, count, d);
1374 		}
1375 	}
1376 #endif
1377 #ifndef OPENSSL_NO_IDEA
1378 	if (doit[D_CBC_IDEA]) {
1379 		for (j = 0; j < SIZE_NUM; j++) {
1380 			print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][j], lengths[j]);
1381 			Time_F(START);
1382 			for (count = 0, run = 1; COND(c[D_CBC_IDEA][j]); count++)
1383 				idea_cbc_encrypt(buf, buf,
1384 				    (unsigned long) lengths[j], &idea_ks,
1385 				    iv, IDEA_ENCRYPT);
1386 			d = Time_F(STOP);
1387 			print_result(D_CBC_IDEA, j, count, d);
1388 		}
1389 	}
1390 #endif
1391 #ifndef OPENSSL_NO_RC2
1392 	if (doit[D_CBC_RC2]) {
1393 		for (j = 0; j < SIZE_NUM; j++) {
1394 			print_message(names[D_CBC_RC2], c[D_CBC_RC2][j], lengths[j]);
1395 			Time_F(START);
1396 			for (count = 0, run = 1; COND(c[D_CBC_RC2][j]); count++)
1397 				RC2_cbc_encrypt(buf, buf,
1398 				    (unsigned long) lengths[j], &rc2_ks,
1399 				    iv, RC2_ENCRYPT);
1400 			d = Time_F(STOP);
1401 			print_result(D_CBC_RC2, j, count, d);
1402 		}
1403 	}
1404 #endif
1405 #ifndef OPENSSL_NO_BF
1406 	if (doit[D_CBC_BF]) {
1407 		for (j = 0; j < SIZE_NUM; j++) {
1408 			print_message(names[D_CBC_BF], c[D_CBC_BF][j], lengths[j]);
1409 			Time_F(START);
1410 			for (count = 0, run = 1; COND(c[D_CBC_BF][j]); count++)
1411 				BF_cbc_encrypt(buf, buf,
1412 				    (unsigned long) lengths[j], &bf_ks,
1413 				    iv, BF_ENCRYPT);
1414 			d = Time_F(STOP);
1415 			print_result(D_CBC_BF, j, count, d);
1416 		}
1417 	}
1418 #endif
1419 #ifndef OPENSSL_NO_CAST
1420 	if (doit[D_CBC_CAST]) {
1421 		for (j = 0; j < SIZE_NUM; j++) {
1422 			print_message(names[D_CBC_CAST], c[D_CBC_CAST][j], lengths[j]);
1423 			Time_F(START);
1424 			for (count = 0, run = 1; COND(c[D_CBC_CAST][j]); count++)
1425 				CAST_cbc_encrypt(buf, buf,
1426 				    (unsigned long) lengths[j], &cast_ks,
1427 				    iv, CAST_ENCRYPT);
1428 			d = Time_F(STOP);
1429 			print_result(D_CBC_CAST, j, count, d);
1430 		}
1431 	}
1432 #endif
1433 
1434 	if (doit[D_EVP]) {
1435 		for (j = 0; j < SIZE_NUM; j++) {
1436 			if (evp_cipher) {
1437 				EVP_CIPHER_CTX *ctx;
1438 				int outl;
1439 
1440 				names[D_EVP] =
1441 				    OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher));
1442 				/*
1443 				 * -O3 -fschedule-insns messes up an
1444 				 * optimization here!  names[D_EVP] somehow
1445 				 * becomes NULL
1446 				 */
1447 				print_message(names[D_EVP], save_count,
1448 				    lengths[j]);
1449 
1450 				if ((ctx = EVP_CIPHER_CTX_new()) == NULL) {
1451 					BIO_printf(bio_err, "Failed to "
1452 					    "allocate cipher context.\n");
1453 					goto end;
1454 				}
1455 				if (decrypt)
1456 					EVP_DecryptInit_ex(ctx, evp_cipher, NULL, key16, iv);
1457 				else
1458 					EVP_EncryptInit_ex(ctx, evp_cipher, NULL, key16, iv);
1459 				EVP_CIPHER_CTX_set_padding(ctx, 0);
1460 
1461 				Time_F(START);
1462 				if (decrypt)
1463 					for (count = 0, run = 1; COND(save_count * 4 * lengths[0] / lengths[j]); count++)
1464 						EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[j]);
1465 				else
1466 					for (count = 0, run = 1; COND(save_count * 4 * lengths[0] / lengths[j]); count++)
1467 						EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[j]);
1468 				if (decrypt)
1469 					EVP_DecryptFinal_ex(ctx, buf, &outl);
1470 				else
1471 					EVP_EncryptFinal_ex(ctx, buf, &outl);
1472 				d = Time_F(STOP);
1473 				EVP_CIPHER_CTX_free(ctx);
1474 			}
1475 			if (evp_md) {
1476 				names[D_EVP] = OBJ_nid2ln(EVP_MD_type(evp_md));
1477 				print_message(names[D_EVP], save_count,
1478 				    lengths[j]);
1479 
1480 				Time_F(START);
1481 				for (count = 0, run = 1; COND(save_count * 4 * lengths[0] / lengths[j]); count++)
1482 					EVP_Digest(buf, lengths[j], &(md[0]), NULL, evp_md, NULL);
1483 
1484 				d = Time_F(STOP);
1485 			}
1486 			print_result(D_EVP, j, count, d);
1487 		}
1488 	}
1489 	arc4random_buf(buf, 36);
1490 	for (j = 0; j < RSA_NUM; j++) {
1491 		int ret;
1492 		if (!rsa_doit[j])
1493 			continue;
1494 		ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, &rsa_num, rsa_key[j]);
1495 		if (ret == 0) {
1496 			BIO_printf(bio_err, "RSA sign failure.  No RSA sign will be done.\n");
1497 			ERR_print_errors(bio_err);
1498 			rsa_count = 1;
1499 		} else {
1500 			pkey_print_message("private", "rsa",
1501 			    rsa_c[j][0], rsa_bits[j],
1502 			    RSA_SECONDS);
1503 /*			RSA_blinding_on(rsa_key[j],NULL); */
1504 			Time_F(START);
1505 			for (count = 0, run = 1; COND(rsa_c[j][0]); count++) {
1506 				ret = RSA_sign(NID_md5_sha1, buf, 36, buf2,
1507 				    &rsa_num, rsa_key[j]);
1508 				if (ret == 0) {
1509 					BIO_printf(bio_err,
1510 					    "RSA sign failure\n");
1511 					ERR_print_errors(bio_err);
1512 					count = 1;
1513 					break;
1514 				}
1515 			}
1516 			d = Time_F(STOP);
1517 			BIO_printf(bio_err, mr ? "+R1:%ld:%d:%.2f\n"
1518 			    : "%ld %d bit private RSA's in %.2fs\n",
1519 			    count, rsa_bits[j], d);
1520 			rsa_results[j][0] = d / (double) count;
1521 			rsa_count = count;
1522 		}
1523 
1524 		ret = RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[j]);
1525 		if (ret <= 0) {
1526 			BIO_printf(bio_err, "RSA verify failure.  No RSA verify will be done.\n");
1527 			ERR_print_errors(bio_err);
1528 			rsa_doit[j] = 0;
1529 		} else {
1530 			pkey_print_message("public", "rsa",
1531 			    rsa_c[j][1], rsa_bits[j],
1532 			    RSA_SECONDS);
1533 			Time_F(START);
1534 			for (count = 0, run = 1; COND(rsa_c[j][1]); count++) {
1535 				ret = RSA_verify(NID_md5_sha1, buf, 36, buf2,
1536 				    rsa_num, rsa_key[j]);
1537 				if (ret <= 0) {
1538 					BIO_printf(bio_err,
1539 					    "RSA verify failure\n");
1540 					ERR_print_errors(bio_err);
1541 					count = 1;
1542 					break;
1543 				}
1544 			}
1545 			d = Time_F(STOP);
1546 			BIO_printf(bio_err, mr ? "+R2:%ld:%d:%.2f\n"
1547 			    : "%ld %d bit public RSA's in %.2fs\n",
1548 			    count, rsa_bits[j], d);
1549 			rsa_results[j][1] = d / (double) count;
1550 		}
1551 
1552 		if (rsa_count <= 1) {
1553 			/* if longer than 10s, don't do any more */
1554 			for (j++; j < RSA_NUM; j++)
1555 				rsa_doit[j] = 0;
1556 		}
1557 	}
1558 
1559 	arc4random_buf(buf, 20);
1560 	for (j = 0; j < DSA_NUM; j++) {
1561 		unsigned int kk;
1562 		int ret;
1563 
1564 		if (!dsa_doit[j])
1565 			continue;
1566 /*		DSA_generate_key(dsa_key[j]); */
1567 /*		DSA_sign_setup(dsa_key[j],NULL); */
1568 		ret = DSA_sign(EVP_PKEY_DSA, buf, 20, buf2,
1569 		    &kk, dsa_key[j]);
1570 		if (ret == 0) {
1571 			BIO_printf(bio_err, "DSA sign failure.  No DSA sign will be done.\n");
1572 			ERR_print_errors(bio_err);
1573 			rsa_count = 1;
1574 		} else {
1575 			pkey_print_message("sign", "dsa",
1576 			    dsa_c[j][0], dsa_bits[j],
1577 			    DSA_SECONDS);
1578 			Time_F(START);
1579 			for (count = 0, run = 1; COND(dsa_c[j][0]); count++) {
1580 				ret = DSA_sign(EVP_PKEY_DSA, buf, 20, buf2,
1581 				    &kk, dsa_key[j]);
1582 				if (ret == 0) {
1583 					BIO_printf(bio_err,
1584 					    "DSA sign failure\n");
1585 					ERR_print_errors(bio_err);
1586 					count = 1;
1587 					break;
1588 				}
1589 			}
1590 			d = Time_F(STOP);
1591 			BIO_printf(bio_err, mr ? "+R3:%ld:%d:%.2f\n"
1592 			    : "%ld %d bit DSA signs in %.2fs\n",
1593 			    count, dsa_bits[j], d);
1594 			dsa_results[j][0] = d / (double) count;
1595 			rsa_count = count;
1596 		}
1597 
1598 		ret = DSA_verify(EVP_PKEY_DSA, buf, 20, buf2,
1599 		    kk, dsa_key[j]);
1600 		if (ret <= 0) {
1601 			BIO_printf(bio_err, "DSA verify failure.  No DSA verify will be done.\n");
1602 			ERR_print_errors(bio_err);
1603 			dsa_doit[j] = 0;
1604 		} else {
1605 			pkey_print_message("verify", "dsa",
1606 			    dsa_c[j][1], dsa_bits[j],
1607 			    DSA_SECONDS);
1608 			Time_F(START);
1609 			for (count = 0, run = 1; COND(dsa_c[j][1]); count++) {
1610 				ret = DSA_verify(EVP_PKEY_DSA, buf, 20, buf2,
1611 				    kk, dsa_key[j]);
1612 				if (ret <= 0) {
1613 					BIO_printf(bio_err,
1614 					    "DSA verify failure\n");
1615 					ERR_print_errors(bio_err);
1616 					count = 1;
1617 					break;
1618 				}
1619 			}
1620 			d = Time_F(STOP);
1621 			BIO_printf(bio_err, mr ? "+R4:%ld:%d:%.2f\n"
1622 			    : "%ld %d bit DSA verify in %.2fs\n",
1623 			    count, dsa_bits[j], d);
1624 			dsa_results[j][1] = d / (double) count;
1625 		}
1626 
1627 		if (rsa_count <= 1) {
1628 			/* if longer than 10s, don't do any more */
1629 			for (j++; j < DSA_NUM; j++)
1630 				dsa_doit[j] = 0;
1631 		}
1632 	}
1633 
1634 	for (j = 0; j < EC_NUM; j++) {
1635 		int ret;
1636 
1637 		if (!ecdsa_doit[j])
1638 			continue;	/* Ignore Curve */
1639 		ecdsa[j] = EC_KEY_new_by_curve_name(test_curves[j]);
1640 		if (ecdsa[j] == NULL) {
1641 			BIO_printf(bio_err, "ECDSA failure.\n");
1642 			ERR_print_errors(bio_err);
1643 			rsa_count = 1;
1644 		} else {
1645 			EC_KEY_precompute_mult(ecdsa[j], NULL);
1646 
1647 			/* Perform ECDSA signature test */
1648 			EC_KEY_generate_key(ecdsa[j]);
1649 			ret = ECDSA_sign(0, buf, 20, ecdsasig,
1650 			    &ecdsasiglen, ecdsa[j]);
1651 			if (ret == 0) {
1652 				BIO_printf(bio_err, "ECDSA sign failure.  No ECDSA sign will be done.\n");
1653 				ERR_print_errors(bio_err);
1654 				rsa_count = 1;
1655 			} else {
1656 				pkey_print_message("sign", "ecdsa",
1657 				    ecdsa_c[j][0],
1658 				    test_curves_bits[j],
1659 				    ECDSA_SECONDS);
1660 
1661 				Time_F(START);
1662 				for (count = 0, run = 1; COND(ecdsa_c[j][0]);
1663 				    count++) {
1664 					ret = ECDSA_sign(0, buf, 20,
1665 					    ecdsasig, &ecdsasiglen,
1666 					    ecdsa[j]);
1667 					if (ret == 0) {
1668 						BIO_printf(bio_err, "ECDSA sign failure\n");
1669 						ERR_print_errors(bio_err);
1670 						count = 1;
1671 						break;
1672 					}
1673 				}
1674 				d = Time_F(STOP);
1675 
1676 				BIO_printf(bio_err, mr ? "+R5:%ld:%d:%.2f\n" :
1677 				    "%ld %d bit ECDSA signs in %.2fs \n",
1678 				    count, test_curves_bits[j], d);
1679 				ecdsa_results[j][0] = d / (double) count;
1680 				rsa_count = count;
1681 			}
1682 
1683 			/* Perform ECDSA verification test */
1684 			ret = ECDSA_verify(0, buf, 20, ecdsasig,
1685 			    ecdsasiglen, ecdsa[j]);
1686 			if (ret != 1) {
1687 				BIO_printf(bio_err, "ECDSA verify failure.  No ECDSA verify will be done.\n");
1688 				ERR_print_errors(bio_err);
1689 				ecdsa_doit[j] = 0;
1690 			} else {
1691 				pkey_print_message("verify", "ecdsa",
1692 				    ecdsa_c[j][1],
1693 				    test_curves_bits[j],
1694 				    ECDSA_SECONDS);
1695 				Time_F(START);
1696 				for (count = 0, run = 1; COND(ecdsa_c[j][1]); count++) {
1697 					ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[j]);
1698 					if (ret != 1) {
1699 						BIO_printf(bio_err, "ECDSA verify failure\n");
1700 						ERR_print_errors(bio_err);
1701 						count = 1;
1702 						break;
1703 					}
1704 				}
1705 				d = Time_F(STOP);
1706 				BIO_printf(bio_err, mr ? "+R6:%ld:%d:%.2f\n"
1707 				    : "%ld %d bit ECDSA verify in %.2fs\n",
1708 				    count, test_curves_bits[j], d);
1709 				ecdsa_results[j][1] = d / (double) count;
1710 			}
1711 
1712 			if (rsa_count <= 1) {
1713 				/* if longer than 10s, don't do any more */
1714 				for (j++; j < EC_NUM; j++)
1715 					ecdsa_doit[j] = 0;
1716 			}
1717 		}
1718 	}
1719 
1720 	for (j = 0; j < EC_NUM; j++) {
1721 		if (!ecdh_doit[j])
1722 			continue;
1723 		ecdh_a[j] = EC_KEY_new_by_curve_name(test_curves[j]);
1724 		ecdh_b[j] = EC_KEY_new_by_curve_name(test_curves[j]);
1725 		if ((ecdh_a[j] == NULL) || (ecdh_b[j] == NULL)) {
1726 			BIO_printf(bio_err, "ECDH failure.\n");
1727 			ERR_print_errors(bio_err);
1728 			rsa_count = 1;
1729 		} else {
1730 			/* generate two ECDH key pairs */
1731 			if (!EC_KEY_generate_key(ecdh_a[j]) ||
1732 			    !EC_KEY_generate_key(ecdh_b[j])) {
1733 				BIO_printf(bio_err, "ECDH key generation failure.\n");
1734 				ERR_print_errors(bio_err);
1735 				rsa_count = 1;
1736 			} else {
1737 				/*
1738 				 * If field size is not more than 24 octets,
1739 				 * then use SHA-1 hash of result; otherwise,
1740 				 * use result (see section 4.8 of
1741 				 * draft-ietf-tls-ecc-03.txt).
1742 				 */
1743 				int field_size, outlen;
1744 				void *(*kdf) (const void *in, size_t inlen, void *out, size_t * xoutlen);
1745 				field_size = EC_GROUP_get_degree(EC_KEY_get0_group(ecdh_a[j]));
1746 				if (field_size <= 24 * 8) {
1747 					outlen = KDF1_SHA1_len;
1748 					kdf = KDF1_SHA1;
1749 				} else {
1750 					outlen = (field_size + 7) / 8;
1751 					kdf = NULL;
1752 				}
1753 				secret_size_a = ECDH_compute_key(secret_a, outlen,
1754 				    EC_KEY_get0_public_key(ecdh_b[j]),
1755 				    ecdh_a[j], kdf);
1756 				secret_size_b = ECDH_compute_key(secret_b, outlen,
1757 				    EC_KEY_get0_public_key(ecdh_a[j]),
1758 				    ecdh_b[j], kdf);
1759 				if (secret_size_a != secret_size_b)
1760 					ecdh_checks = 0;
1761 				else
1762 					ecdh_checks = 1;
1763 
1764 				for (secret_idx = 0;
1765 				    (secret_idx < secret_size_a)
1766 				    && (ecdh_checks == 1);
1767 				    secret_idx++) {
1768 					if (secret_a[secret_idx] != secret_b[secret_idx])
1769 						ecdh_checks = 0;
1770 				}
1771 
1772 				if (ecdh_checks == 0) {
1773 					BIO_printf(bio_err,
1774 					    "ECDH computations don't match.\n");
1775 					ERR_print_errors(bio_err);
1776 					rsa_count = 1;
1777 				} else {
1778 					pkey_print_message("", "ecdh",
1779 					    ecdh_c[j][0],
1780 					    test_curves_bits[j],
1781 					    ECDH_SECONDS);
1782 					Time_F(START);
1783 					for (count = 0, run = 1;
1784 					     COND(ecdh_c[j][0]); count++) {
1785 						ECDH_compute_key(secret_a,
1786 						    outlen,
1787 						    EC_KEY_get0_public_key(ecdh_b[j]),
1788 						    ecdh_a[j], kdf);
1789 					}
1790 					d = Time_F(STOP);
1791 					BIO_printf(bio_err, mr
1792 					    ? "+R7:%ld:%d:%.2f\n"
1793 					    : "%ld %d-bit ECDH ops in %.2fs\n",
1794 					    count, test_curves_bits[j], d);
1795 					ecdh_results[j][0] = d / (double) count;
1796 					rsa_count = count;
1797 				}
1798 			}
1799 		}
1800 
1801 
1802 		if (rsa_count <= 1) {
1803 			/* if longer than 10s, don't do any more */
1804 			for (j++; j < EC_NUM; j++)
1805 				ecdh_doit[j] = 0;
1806 		}
1807 	}
1808 show_res:
1809 	if (!mr) {
1810 		fprintf(stdout, "%s\n", SSLeay_version(SSLEAY_VERSION));
1811 		fprintf(stdout, "%s\n", SSLeay_version(SSLEAY_BUILT_ON));
1812 		printf("options:");
1813 		printf("%s ", BN_options());
1814 #ifndef OPENSSL_NO_RC4
1815 		printf("%s ", RC4_options());
1816 #endif
1817 #ifndef OPENSSL_NO_DES
1818 		printf("%s ", DES_options());
1819 #endif
1820 #ifndef OPENSSL_NO_AES
1821 		printf("%s ", AES_options());
1822 #endif
1823 #ifndef OPENSSL_NO_IDEA
1824 		printf("%s ", idea_options());
1825 #endif
1826 #ifndef OPENSSL_NO_BF
1827 		printf("%s ", BF_options());
1828 #endif
1829 		fprintf(stdout, "\n%s\n", SSLeay_version(SSLEAY_CFLAGS));
1830 	}
1831 	if (pr_header) {
1832 		if (mr)
1833 			fprintf(stdout, "+H");
1834 		else {
1835 			fprintf(stdout, "The 'numbers' are in 1000s of bytes per second processed.\n");
1836 			fprintf(stdout, "type        ");
1837 		}
1838 		for (j = 0; j < SIZE_NUM; j++)
1839 			fprintf(stdout, mr ? ":%d" : "%7d bytes", lengths[j]);
1840 		fprintf(stdout, "\n");
1841 	}
1842 	for (k = 0; k < ALGOR_NUM; k++) {
1843 		if (!doit[k])
1844 			continue;
1845 		if (mr)
1846 			fprintf(stdout, "+F:%d:%s", k, names[k]);
1847 		else
1848 			fprintf(stdout, "%-13s", names[k]);
1849 		for (j = 0; j < SIZE_NUM; j++) {
1850 			if (results[k][j] > 10000 && !mr)
1851 				fprintf(stdout, " %11.2fk", results[k][j] / 1e3);
1852 			else
1853 				fprintf(stdout, mr ? ":%.2f" : " %11.2f ", results[k][j]);
1854 		}
1855 		fprintf(stdout, "\n");
1856 	}
1857 	j = 1;
1858 	for (k = 0; k < RSA_NUM; k++) {
1859 		if (!rsa_doit[k])
1860 			continue;
1861 		if (j && !mr) {
1862 			printf("%18ssign    verify    sign/s verify/s\n", " ");
1863 			j = 0;
1864 		}
1865 		if (mr)
1866 			fprintf(stdout, "+F2:%u:%u:%f:%f\n",
1867 			    k, rsa_bits[k], rsa_results[k][0],
1868 			    rsa_results[k][1]);
1869 		else
1870 			fprintf(stdout, "rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
1871 			    rsa_bits[k], rsa_results[k][0], rsa_results[k][1],
1872 			    1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1]);
1873 	}
1874 	j = 1;
1875 	for (k = 0; k < DSA_NUM; k++) {
1876 		if (!dsa_doit[k])
1877 			continue;
1878 		if (j && !mr) {
1879 			printf("%18ssign    verify    sign/s verify/s\n", " ");
1880 			j = 0;
1881 		}
1882 		if (mr)
1883 			fprintf(stdout, "+F3:%u:%u:%f:%f\n",
1884 			    k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]);
1885 		else
1886 			fprintf(stdout, "dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
1887 			    dsa_bits[k], dsa_results[k][0], dsa_results[k][1],
1888 			    1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1]);
1889 	}
1890 	j = 1;
1891 	for (k = 0; k < EC_NUM; k++) {
1892 		if (!ecdsa_doit[k])
1893 			continue;
1894 		if (j && !mr) {
1895 			printf("%30ssign    verify    sign/s verify/s\n", " ");
1896 			j = 0;
1897 		}
1898 		if (mr)
1899 			fprintf(stdout, "+F4:%u:%u:%f:%f\n",
1900 			    k, test_curves_bits[k],
1901 			    ecdsa_results[k][0], ecdsa_results[k][1]);
1902 		else
1903 			fprintf(stdout,
1904 			    "%4u bit ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
1905 			    test_curves_bits[k],
1906 			    test_curves_names[k],
1907 			    ecdsa_results[k][0], ecdsa_results[k][1],
1908 			    1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1]);
1909 	}
1910 
1911 
1912 	j = 1;
1913 	for (k = 0; k < EC_NUM; k++) {
1914 		if (!ecdh_doit[k])
1915 			continue;
1916 		if (j && !mr) {
1917 			printf("%30sop      op/s\n", " ");
1918 			j = 0;
1919 		}
1920 		if (mr)
1921 			fprintf(stdout, "+F5:%u:%u:%f:%f\n",
1922 			    k, test_curves_bits[k],
1923 			    ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
1924 
1925 		else
1926 			fprintf(stdout, "%4u bit ecdh (%s) %8.4fs %8.1f\n",
1927 			    test_curves_bits[k],
1928 			    test_curves_names[k],
1929 			    ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
1930 	}
1931 
1932 	mret = 0;
1933 
1934  end:
1935 	ERR_print_errors(bio_err);
1936 	free(buf);
1937 	free(buf2);
1938 	for (i = 0; i < RSA_NUM; i++)
1939 		if (rsa_key[i] != NULL)
1940 			RSA_free(rsa_key[i]);
1941 	for (i = 0; i < DSA_NUM; i++)
1942 		if (dsa_key[i] != NULL)
1943 			DSA_free(dsa_key[i]);
1944 
1945 	for (i = 0; i < EC_NUM; i++)
1946 		if (ecdsa[i] != NULL)
1947 			EC_KEY_free(ecdsa[i]);
1948 	for (i = 0; i < EC_NUM; i++) {
1949 		if (ecdh_a[i] != NULL)
1950 			EC_KEY_free(ecdh_a[i]);
1951 		if (ecdh_b[i] != NULL)
1952 			EC_KEY_free(ecdh_b[i]);
1953 	}
1954 
1955 
1956 	return (mret);
1957 }
1958 
1959 static void
1960 print_message(const char *s, long num, int length)
1961 {
1962 	BIO_printf(bio_err, mr ? "+DT:%s:%d:%d\n"
1963 	    : "Doing %s for %ds on %d size blocks: ", s, SECONDS, length);
1964 	(void) BIO_flush(bio_err);
1965 	alarm(SECONDS);
1966 }
1967 
1968 static void
1969 pkey_print_message(const char *str, const char *str2, long num,
1970     int bits, int tm)
1971 {
1972 	BIO_printf(bio_err, mr ? "+DTP:%d:%s:%s:%d\n"
1973 	    : "Doing %d bit %s %s's for %ds: ", bits, str, str2, tm);
1974 	(void) BIO_flush(bio_err);
1975 	alarm(tm);
1976 }
1977 
1978 static void
1979 print_result(int alg, int run_no, int count, double time_used)
1980 {
1981 	BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n"
1982 	    : "%d %s's in %.2fs\n", count, names[alg], time_used);
1983 	results[alg][run_no] = ((double) count) / time_used * lengths[run_no];
1984 }
1985 
1986 static char *
1987 sstrsep(char **string, const char *delim)
1988 {
1989 	char isdelim[256];
1990 	char *token = *string;
1991 
1992 	if (**string == 0)
1993 		return NULL;
1994 
1995 	memset(isdelim, 0, sizeof isdelim);
1996 	isdelim[0] = 1;
1997 
1998 	while (*delim) {
1999 		isdelim[(unsigned char) (*delim)] = 1;
2000 		delim++;
2001 	}
2002 
2003 	while (!isdelim[(unsigned char) (**string)]) {
2004 		(*string)++;
2005 	}
2006 
2007 	if (**string) {
2008 		**string = 0;
2009 		(*string)++;
2010 	}
2011 	return token;
2012 }
2013 
2014 static int
2015 do_multi(int multi)
2016 {
2017 	int n;
2018 	int fd[2];
2019 	int *fds;
2020 	static char sep[] = ":";
2021 	const char *errstr = NULL;
2022 
2023 	fds = reallocarray(NULL, multi, sizeof *fds);
2024 	if (fds == NULL) {
2025 		fprintf(stderr, "reallocarray failure\n");
2026 		exit(1);
2027 	}
2028 	for (n = 0; n < multi; ++n) {
2029 		if (pipe(fd) == -1) {
2030 			fprintf(stderr, "pipe failure\n");
2031 			exit(1);
2032 		}
2033 		fflush(stdout);
2034 		fflush(stderr);
2035 		if (fork()) {
2036 			close(fd[1]);
2037 			fds[n] = fd[0];
2038 		} else {
2039 			close(fd[0]);
2040 			close(1);
2041 			if (dup(fd[1]) == -1) {
2042 				fprintf(stderr, "dup failed\n");
2043 				exit(1);
2044 			}
2045 			close(fd[1]);
2046 			mr = 1;
2047 			usertime = 0;
2048 			free(fds);
2049 			return 0;
2050 		}
2051 		printf("Forked child %d\n", n);
2052 	}
2053 
2054 	/* for now, assume the pipe is long enough to take all the output */
2055 	for (n = 0; n < multi; ++n) {
2056 		FILE *f;
2057 		char buf[1024];
2058 		char *p;
2059 
2060 		f = fdopen(fds[n], "r");
2061 		while (fgets(buf, sizeof buf, f)) {
2062 			p = strchr(buf, '\n');
2063 			if (p)
2064 				*p = '\0';
2065 			if (buf[0] != '+') {
2066 				fprintf(stderr, "Don't understand line '%s' from child %d\n",
2067 				    buf, n);
2068 				continue;
2069 			}
2070 			printf("Got: %s from %d\n", buf, n);
2071 			if (!strncmp(buf, "+F:", 3)) {
2072 				int alg;
2073 				int j;
2074 
2075 				p = buf + 3;
2076 				alg = strtonum(sstrsep(&p, sep),
2077 				    0, ALGOR_NUM - 1, &errstr);
2078 				sstrsep(&p, sep);
2079 				for (j = 0; j < SIZE_NUM; ++j)
2080 					results[alg][j] += atof(sstrsep(&p, sep));
2081 			} else if (!strncmp(buf, "+F2:", 4)) {
2082 				int k;
2083 				double d;
2084 
2085 				p = buf + 4;
2086 				k = strtonum(sstrsep(&p, sep),
2087 				    0, ALGOR_NUM - 1, &errstr);
2088 				sstrsep(&p, sep);
2089 
2090 				d = atof(sstrsep(&p, sep));
2091 				if (n)
2092 					rsa_results[k][0] = 1 / (1 / rsa_results[k][0] + 1 / d);
2093 				else
2094 					rsa_results[k][0] = d;
2095 
2096 				d = atof(sstrsep(&p, sep));
2097 				if (n)
2098 					rsa_results[k][1] = 1 / (1 / rsa_results[k][1] + 1 / d);
2099 				else
2100 					rsa_results[k][1] = d;
2101 			} else if (!strncmp(buf, "+F2:", 4)) {
2102 				int k;
2103 				double d;
2104 
2105 				p = buf + 4;
2106 				k = strtonum(sstrsep(&p, sep),
2107 				    0, ALGOR_NUM - 1, &errstr);
2108 				sstrsep(&p, sep);
2109 
2110 				d = atof(sstrsep(&p, sep));
2111 				if (n)
2112 					rsa_results[k][0] = 1 / (1 / rsa_results[k][0] + 1 / d);
2113 				else
2114 					rsa_results[k][0] = d;
2115 
2116 				d = atof(sstrsep(&p, sep));
2117 				if (n)
2118 					rsa_results[k][1] = 1 / (1 / rsa_results[k][1] + 1 / d);
2119 				else
2120 					rsa_results[k][1] = d;
2121 			}
2122 			else if (!strncmp(buf, "+F3:", 4)) {
2123 				int k;
2124 				double d;
2125 
2126 				p = buf + 4;
2127 				k = strtonum(sstrsep(&p, sep),
2128 				    0, ALGOR_NUM - 1, &errstr);
2129 				sstrsep(&p, sep);
2130 
2131 				d = atof(sstrsep(&p, sep));
2132 				if (n)
2133 					dsa_results[k][0] = 1 / (1 / dsa_results[k][0] + 1 / d);
2134 				else
2135 					dsa_results[k][0] = d;
2136 
2137 				d = atof(sstrsep(&p, sep));
2138 				if (n)
2139 					dsa_results[k][1] = 1 / (1 / dsa_results[k][1] + 1 / d);
2140 				else
2141 					dsa_results[k][1] = d;
2142 			}
2143 			else if (!strncmp(buf, "+F4:", 4)) {
2144 				int k;
2145 				double d;
2146 
2147 				p = buf + 4;
2148 				k = strtonum(sstrsep(&p, sep),
2149 				    0, ALGOR_NUM - 1, &errstr);
2150 				sstrsep(&p, sep);
2151 
2152 				d = atof(sstrsep(&p, sep));
2153 				if (n)
2154 					ecdsa_results[k][0] = 1 / (1 / ecdsa_results[k][0] + 1 / d);
2155 				else
2156 					ecdsa_results[k][0] = d;
2157 
2158 				d = atof(sstrsep(&p, sep));
2159 				if (n)
2160 					ecdsa_results[k][1] = 1 / (1 / ecdsa_results[k][1] + 1 / d);
2161 				else
2162 					ecdsa_results[k][1] = d;
2163 			}
2164 
2165 			else if (!strncmp(buf, "+F5:", 4)) {
2166 				int k;
2167 				double d;
2168 
2169 				p = buf + 4;
2170 				k = strtonum(sstrsep(&p, sep),
2171 				    0, ALGOR_NUM - 1, &errstr);
2172 				sstrsep(&p, sep);
2173 
2174 				d = atof(sstrsep(&p, sep));
2175 				if (n)
2176 					ecdh_results[k][0] = 1 / (1 / ecdh_results[k][0] + 1 / d);
2177 				else
2178 					ecdh_results[k][0] = d;
2179 
2180 			}
2181 
2182 			else if (!strncmp(buf, "+H:", 3)) {
2183 			} else
2184 				fprintf(stderr, "Unknown type '%s' from child %d\n", buf, n);
2185 		}
2186 
2187 		fclose(f);
2188 	}
2189 	free(fds);
2190 	return 1;
2191 }
2192 #endif
2193