xref: /openbsd-src/sys/uvm/uvm_swap.c (revision 46035553bfdd96e63c94e32da0210227ec2e3cf1)
1 /*	$OpenBSD: uvm_swap.c,v 1.148 2020/12/14 13:29:18 mpi Exp $	*/
2 /*	$NetBSD: uvm_swap.c,v 1.40 2000/11/17 11:39:39 mrg Exp $	*/
3 
4 /*
5  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
22  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
23  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
24  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
30  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
31  */
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/buf.h>
36 #include <sys/conf.h>
37 #include <sys/proc.h>
38 #include <sys/namei.h>
39 #include <sys/disklabel.h>
40 #include <sys/errno.h>
41 #include <sys/kernel.h>
42 #include <sys/malloc.h>
43 #include <sys/vnode.h>
44 #include <sys/fcntl.h>
45 #include <sys/extent.h>
46 #include <sys/mount.h>
47 #include <sys/pool.h>
48 #include <sys/syscallargs.h>
49 #include <sys/swap.h>
50 #include <sys/disk.h>
51 #include <sys/task.h>
52 #include <sys/pledge.h>
53 #if defined(NFSCLIENT)
54 #include <sys/socket.h>
55 #include <sys/domain.h>
56 #include <netinet/in.h>
57 #include <nfs/nfsproto.h>
58 #include <nfs/nfsdiskless.h>
59 #endif
60 
61 #include <uvm/uvm.h>
62 #ifdef UVM_SWAP_ENCRYPT
63 #include <uvm/uvm_swap_encrypt.h>
64 #endif
65 
66 #include <sys/specdev.h>
67 
68 #include "vnd.h"
69 
70 /*
71  * uvm_swap.c: manage configuration and i/o to swap space.
72  */
73 
74 /*
75  * swap space is managed in the following way:
76  *
77  * each swap partition or file is described by a "swapdev" structure.
78  * each "swapdev" structure contains a "swapent" structure which contains
79  * information that is passed up to the user (via system calls).
80  *
81  * each swap partition is assigned a "priority" (int) which controls
82  * swap partition usage.
83  *
84  * the system maintains a global data structure describing all swap
85  * partitions/files.   there is a sorted LIST of "swappri" structures
86  * which describe "swapdev"'s at that priority.   this LIST is headed
87  * by the "swap_priority" global var.    each "swappri" contains a
88  * TAILQ of "swapdev" structures at that priority.
89  *
90  * locking:
91  *  - swap_syscall_lock (sleep lock): this lock serializes the swapctl
92  *    system call and prevents the swap priority list from changing
93  *    while we are in the middle of a system call (e.g. SWAP_STATS).
94  *
95  * each swap device has the following info:
96  *  - swap device in use (could be disabled, preventing future use)
97  *  - swap enabled (allows new allocations on swap)
98  *  - map info in /dev/drum
99  *  - vnode pointer
100  * for swap files only:
101  *  - block size
102  *  - max byte count in buffer
103  *  - buffer
104  *  - credentials to use when doing i/o to file
105  *
106  * userland controls and configures swap with the swapctl(2) system call.
107  * the sys_swapctl performs the following operations:
108  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
109  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
110  *	(passed in via "arg") of a size passed in via "misc" ... we load
111  *	the current swap config into the array.
112  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
113  *	priority in "misc", start swapping on it.
114  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
115  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
116  *	"misc")
117  */
118 
119 /*
120  * swapdev: describes a single swap partition/file
121  *
122  * note the following should be true:
123  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
124  * swd_nblks <= swd_mapsize [because mapsize includes disklabel]
125  */
126 struct swapdev {
127 	struct swapent	swd_se;
128 #define	swd_dev		swd_se.se_dev		/* device id */
129 #define	swd_flags	swd_se.se_flags		/* flags:inuse/enable/fake */
130 #define	swd_priority	swd_se.se_priority	/* our priority */
131 #define	swd_inuse	swd_se.se_inuse		/* blocks used */
132 #define	swd_nblks	swd_se.se_nblks		/* total blocks */
133 	char			*swd_path;	/* saved pathname of device */
134 	int			swd_pathlen;	/* length of pathname */
135 	int			swd_npages;	/* #pages we can use */
136 	int			swd_npginuse;	/* #pages in use */
137 	int			swd_npgbad;	/* #pages bad */
138 	int			swd_drumoffset;	/* page0 offset in drum */
139 	int			swd_drumsize;	/* #pages in drum */
140 	struct extent		*swd_ex;	/* extent for this swapdev */
141 	char			swd_exname[12];	/* name of extent above */
142 	struct vnode		*swd_vp;	/* backing vnode */
143 	TAILQ_ENTRY(swapdev)	swd_next;	/* priority tailq */
144 
145 	int			swd_bsize;	/* blocksize (bytes) */
146 	int			swd_maxactive;	/* max active i/o reqs */
147 	int			swd_active;	/* # of active i/o reqs */
148 	struct bufq		swd_bufq;
149 	struct ucred		*swd_cred;	/* cred for file access */
150 #ifdef UVM_SWAP_ENCRYPT
151 #define SWD_KEY_SHIFT		7		/* One key per 0.5 MByte */
152 #define SWD_KEY(x,y)		&((x)->swd_keys[((y) - (x)->swd_drumoffset) >> SWD_KEY_SHIFT])
153 #define	SWD_KEY_SIZE(x)	(((x) + (1 << SWD_KEY_SHIFT) - 1) >> SWD_KEY_SHIFT)
154 
155 #define SWD_DCRYPT_SHIFT	5
156 #define SWD_DCRYPT_BITS		32
157 #define SWD_DCRYPT_MASK		(SWD_DCRYPT_BITS - 1)
158 #define SWD_DCRYPT_OFF(x)	((x) >> SWD_DCRYPT_SHIFT)
159 #define SWD_DCRYPT_BIT(x)	((x) & SWD_DCRYPT_MASK)
160 #define SWD_DCRYPT_SIZE(x)	(SWD_DCRYPT_OFF((x) + SWD_DCRYPT_MASK) * sizeof(u_int32_t))
161 	u_int32_t		*swd_decrypt;	/* bitmap for decryption */
162 	struct swap_key		*swd_keys;	/* keys for different parts */
163 #endif
164 };
165 
166 /*
167  * swap device priority entry; the list is kept sorted on `spi_priority'.
168  */
169 struct swappri {
170 	int			spi_priority;     /* priority */
171 	TAILQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
172 	/* tailq of swapdevs at this priority */
173 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
174 };
175 
176 /*
177  * The following two structures are used to keep track of data transfers
178  * on swap devices associated with regular files.
179  * NOTE: this code is more or less a copy of vnd.c; we use the same
180  * structure names here to ease porting..
181  */
182 struct vndxfer {
183 	struct buf	*vx_bp;		/* Pointer to parent buffer */
184 	struct swapdev	*vx_sdp;
185 	int		vx_error;
186 	int		vx_pending;	/* # of pending aux buffers */
187 	int		vx_flags;
188 #define VX_BUSY		1
189 #define VX_DEAD		2
190 };
191 
192 struct vndbuf {
193 	struct buf	vb_buf;
194 	struct vndxfer	*vb_vnx;
195 	struct task	vb_task;
196 };
197 
198 /*
199  * We keep a of pool vndbuf's and vndxfer structures.
200  */
201 struct pool vndxfer_pool;
202 struct pool vndbuf_pool;
203 
204 
205 /*
206  * local variables
207  */
208 struct extent *swapmap;		/* controls the mapping of /dev/drum */
209 
210 /* list of all active swap devices [by priority] */
211 LIST_HEAD(swap_priority, swappri);
212 struct swap_priority swap_priority;
213 
214 /* locks */
215 struct rwlock swap_syscall_lock = RWLOCK_INITIALIZER("swplk");
216 
217 /*
218  * prototypes
219  */
220 void		 swapdrum_add(struct swapdev *, int);
221 struct swapdev	*swapdrum_getsdp(int);
222 
223 struct swapdev	*swaplist_find(struct vnode *, int);
224 void		 swaplist_insert(struct swapdev *,
225  				     struct swappri *, int);
226 void		 swaplist_trim(void);
227 
228 int swap_on(struct proc *, struct swapdev *);
229 int swap_off(struct proc *, struct swapdev *);
230 
231 void sw_reg_strategy(struct swapdev *, struct buf *, int);
232 void sw_reg_iodone(struct buf *);
233 void sw_reg_iodone_internal(void *);
234 void sw_reg_start(struct swapdev *);
235 
236 int uvm_swap_io(struct vm_page **, int, int, int);
237 
238 void swapmount(void);
239 boolean_t uvm_swap_allocpages(struct vm_page **, int);
240 
241 #ifdef UVM_SWAP_ENCRYPT
242 /* for swap encrypt */
243 void uvm_swap_markdecrypt(struct swapdev *, int, int, int);
244 boolean_t uvm_swap_needdecrypt(struct swapdev *, int);
245 void uvm_swap_initcrypt(struct swapdev *, int);
246 #endif
247 
248 /*
249  * uvm_swap_init: init the swap system data structures and locks
250  *
251  * => called at boot time from init_main.c after the filesystems
252  *	are brought up (which happens after uvm_init())
253  */
254 void
255 uvm_swap_init(void)
256 {
257 	/*
258 	 * first, init the swap list, its counter, and its lock.
259 	 * then get a handle on the vnode for /dev/drum by using
260 	 * the its dev_t number ("swapdev", from MD conf.c).
261 	 */
262 	LIST_INIT(&swap_priority);
263 	uvmexp.nswapdev = 0;
264 
265 	if (!swapdev_vp && bdevvp(swapdev, &swapdev_vp))
266 		panic("uvm_swap_init: can't get vnode for swap device");
267 
268 	/*
269 	 * create swap block extent to map /dev/drum. The extent spans
270 	 * 1 to INT_MAX allows 2 gigablocks of swap space.  Note that
271 	 * block 0 is reserved (used to indicate an allocation failure,
272 	 * or no allocation).
273 	 */
274 	swapmap = extent_create("swapmap", 1, INT_MAX,
275 				M_VMSWAP, 0, 0, EX_NOWAIT);
276 	if (swapmap == 0)
277 		panic("uvm_swap_init: extent_create failed");
278 
279 	/* allocate pools for structures used for swapping to files. */
280 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, IPL_BIO, 0,
281 	    "swp vnx", NULL);
282 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, IPL_BIO, 0,
283 	    "swp vnd", NULL);
284 
285 	/* Setup the initial swap partition */
286 	swapmount();
287 }
288 
289 #ifdef UVM_SWAP_ENCRYPT
290 void
291 uvm_swap_initcrypt_all(void)
292 {
293 	struct swapdev *sdp;
294 	struct swappri *spp;
295 	int npages;
296 
297 
298 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
299 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
300 			if (sdp->swd_decrypt == NULL) {
301 				npages = dbtob((uint64_t)sdp->swd_nblks) >>
302 				    PAGE_SHIFT;
303 				uvm_swap_initcrypt(sdp, npages);
304 			}
305 		}
306 	}
307 }
308 
309 void
310 uvm_swap_initcrypt(struct swapdev *sdp, int npages)
311 {
312 	/*
313 	 * keep information if a page needs to be decrypted when we get it
314 	 * from the swap device.
315 	 * We cannot chance a malloc later, if we are doing ASYNC puts,
316 	 * we may not call malloc with M_WAITOK.  This consumes only
317 	 * 8KB memory for a 256MB swap partition.
318 	 */
319 	sdp->swd_decrypt = malloc(SWD_DCRYPT_SIZE(npages), M_VMSWAP,
320 	    M_WAITOK|M_ZERO);
321 	sdp->swd_keys = mallocarray(SWD_KEY_SIZE(npages),
322 	    sizeof(struct swap_key), M_VMSWAP, M_WAITOK|M_ZERO);
323 }
324 
325 #endif /* UVM_SWAP_ENCRYPT */
326 
327 boolean_t
328 uvm_swap_allocpages(struct vm_page **pps, int npages)
329 {
330 	struct pglist	pgl;
331 	int i;
332 	boolean_t fail;
333 
334 	/* Estimate if we will succeed */
335 	uvm_lock_fpageq();
336 
337 	fail = uvmexp.free - npages < uvmexp.reserve_kernel;
338 
339 	uvm_unlock_fpageq();
340 
341 	if (fail)
342 		return FALSE;
343 
344 	TAILQ_INIT(&pgl);
345 	if (uvm_pglistalloc(npages * PAGE_SIZE, dma_constraint.ucr_low,
346 	    dma_constraint.ucr_high, 0, 0, &pgl, npages, UVM_PLA_NOWAIT))
347 		return FALSE;
348 
349 	for (i = 0; i < npages; i++) {
350 		pps[i] = TAILQ_FIRST(&pgl);
351 		/* *sigh* */
352 		atomic_setbits_int(&pps[i]->pg_flags, PG_BUSY);
353 		TAILQ_REMOVE(&pgl, pps[i], pageq);
354 	}
355 
356 	return TRUE;
357 }
358 
359 void
360 uvm_swap_freepages(struct vm_page **pps, int npages)
361 {
362 	int i;
363 
364 	uvm_lock_pageq();
365 	for (i = 0; i < npages; i++)
366 		uvm_pagefree(pps[i]);
367 	uvm_unlock_pageq();
368 }
369 
370 #ifdef UVM_SWAP_ENCRYPT
371 /*
372  * Mark pages on the swap device for later decryption
373  */
374 
375 void
376 uvm_swap_markdecrypt(struct swapdev *sdp, int startslot, int npages,
377     int decrypt)
378 {
379 	int pagestart, i;
380 	int off, bit;
381 
382 	if (!sdp)
383 		return;
384 
385 	pagestart = startslot - sdp->swd_drumoffset;
386 	for (i = 0; i < npages; i++, pagestart++) {
387 		off = SWD_DCRYPT_OFF(pagestart);
388 		bit = SWD_DCRYPT_BIT(pagestart);
389 		if (decrypt)
390 			/* pages read need decryption */
391 			sdp->swd_decrypt[off] |= 1 << bit;
392 		else
393 			/* pages read do not need decryption */
394 			sdp->swd_decrypt[off] &= ~(1 << bit);
395 	}
396 }
397 
398 /*
399  * Check if the page that we got from disk needs to be decrypted
400  */
401 
402 boolean_t
403 uvm_swap_needdecrypt(struct swapdev *sdp, int off)
404 {
405 	if (!sdp)
406 		return FALSE;
407 
408 	off -= sdp->swd_drumoffset;
409 	return sdp->swd_decrypt[SWD_DCRYPT_OFF(off)] & (1 << SWD_DCRYPT_BIT(off)) ?
410 		TRUE : FALSE;
411 }
412 
413 void
414 uvm_swap_finicrypt_all(void)
415 {
416 	struct swapdev *sdp;
417 	struct swappri *spp;
418 	struct swap_key *key;
419 	unsigned int nkeys;
420 
421 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
422 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
423 			if (sdp->swd_decrypt == NULL)
424 				continue;
425 
426 			nkeys = dbtob((uint64_t)sdp->swd_nblks) >> PAGE_SHIFT;
427 			key = sdp->swd_keys + (SWD_KEY_SIZE(nkeys) - 1);
428 			do {
429 				if (key->refcount != 0)
430 					swap_key_delete(key);
431 			} while (key-- != sdp->swd_keys);
432 		}
433 	}
434 }
435 #endif /* UVM_SWAP_ENCRYPT */
436 
437 /*
438  * swaplist functions: functions that operate on the list of swap
439  * devices on the system.
440  */
441 
442 /*
443  * swaplist_insert: insert swap device "sdp" into the global list
444  *
445  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
446  * => caller must provide a newly malloc'd swappri structure (we will
447  *	FREE it if we don't need it... this it to prevent malloc blocking
448  *	here while adding swap)
449  */
450 void
451 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
452 {
453 	struct swappri *spp, *pspp;
454 
455 	/*
456 	 * find entry at or after which to insert the new device.
457 	 */
458 	for (pspp = NULL, spp = LIST_FIRST(&swap_priority); spp != NULL;
459 	     spp = LIST_NEXT(spp, spi_swappri)) {
460 		if (priority <= spp->spi_priority)
461 			break;
462 		pspp = spp;
463 	}
464 
465 	/*
466 	 * new priority?
467 	 */
468 	if (spp == NULL || spp->spi_priority != priority) {
469 		spp = newspp;  /* use newspp! */
470 
471 		spp->spi_priority = priority;
472 		TAILQ_INIT(&spp->spi_swapdev);
473 
474 		if (pspp)
475 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
476 		else
477 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
478 	} else {
479 	  	/* we don't need a new priority structure, free it */
480 		free(newspp, M_VMSWAP, sizeof(*newspp));
481 	}
482 
483 	/*
484 	 * priority found (or created).   now insert on the priority's
485 	 * tailq list and bump the total number of swapdevs.
486 	 */
487 	sdp->swd_priority = priority;
488 	TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
489 	uvmexp.nswapdev++;
490 }
491 
492 /*
493  * swaplist_find: find and optionally remove a swap device from the
494  *	global list.
495  *
496  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
497  * => we return the swapdev we found (and removed)
498  */
499 struct swapdev *
500 swaplist_find(struct vnode *vp, boolean_t remove)
501 {
502 	struct swapdev *sdp;
503 	struct swappri *spp;
504 
505 	/*
506 	 * search the lists for the requested vp
507 	 */
508 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
509 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
510 			if (sdp->swd_vp != vp)
511 				continue;
512 			if (remove) {
513 				TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
514 				uvmexp.nswapdev--;
515 			}
516 			return (sdp);
517 		}
518 	}
519 	return (NULL);
520 }
521 
522 
523 /*
524  * swaplist_trim: scan priority list for empty priority entries and kill
525  *	them.
526  *
527  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
528  */
529 void
530 swaplist_trim(void)
531 {
532 	struct swappri *spp, *nextspp;
533 
534 	LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
535 		if (!TAILQ_EMPTY(&spp->spi_swapdev))
536 			continue;
537 		LIST_REMOVE(spp, spi_swappri);
538 		free(spp, M_VMSWAP, sizeof(*spp));
539 	}
540 }
541 
542 /*
543  * swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area.
544  *
545  * => caller must hold swap_syscall_lock
546  * => uvm.swap_data_lock should be unlocked (we may sleep)
547  */
548 void
549 swapdrum_add(struct swapdev *sdp, int npages)
550 {
551 	u_long result;
552 
553 	if (extent_alloc(swapmap, npages, EX_NOALIGN, 0, EX_NOBOUNDARY,
554 	    EX_WAITOK, &result))
555 		panic("swapdrum_add");
556 
557 	sdp->swd_drumoffset = result;
558 	sdp->swd_drumsize = npages;
559 }
560 
561 /*
562  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
563  *	to the "swapdev" that maps that section of the drum.
564  *
565  * => each swapdev takes one big contig chunk of the drum
566  * => caller must hold uvm.swap_data_lock
567  */
568 struct swapdev *
569 swapdrum_getsdp(int pgno)
570 {
571 	struct swapdev *sdp;
572 	struct swappri *spp;
573 
574 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
575 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
576 			if (pgno >= sdp->swd_drumoffset &&
577 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
578 				return sdp;
579 			}
580 		}
581 	}
582 	return NULL;
583 }
584 
585 
586 /*
587  * sys_swapctl: main entry point for swapctl(2) system call
588  * 	[with two helper functions: swap_on and swap_off]
589  */
590 int
591 sys_swapctl(struct proc *p, void *v, register_t *retval)
592 {
593 	struct sys_swapctl_args /* {
594 		syscallarg(int) cmd;
595 		syscallarg(void *) arg;
596 		syscallarg(int) misc;
597 	} */ *uap = (struct sys_swapctl_args *)v;
598 	struct vnode *vp;
599 	struct nameidata nd;
600 	struct swappri *spp;
601 	struct swapdev *sdp;
602 	struct swapent *sep;
603 	char	userpath[MAXPATHLEN];
604 	size_t	len;
605 	int	count, error, misc;
606 	int	priority;
607 
608 	misc = SCARG(uap, misc);
609 
610 	/*
611 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
612 	 */
613 	rw_enter_write(&swap_syscall_lock);
614 
615 	/*
616 	 * we handle the non-priv NSWAP and STATS request first.
617 	 *
618 	 * SWAP_NSWAP: return number of config'd swap devices
619 	 * [can also be obtained with uvmexp sysctl]
620 	 */
621 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
622 		*retval = uvmexp.nswapdev;
623 		error = 0;
624 		goto out;
625 	}
626 
627 	/*
628 	 * SWAP_STATS: get stats on current # of configured swap devs
629 	 *
630 	 * note that the swap_priority list can't change as long
631 	 * as we are holding the swap_syscall_lock.  we don't want
632 	 * to grab the uvm.swap_data_lock because we may fault&sleep during
633 	 * copyout() and we don't want to be holding that lock then!
634 	 */
635 	if (SCARG(uap, cmd) == SWAP_STATS) {
636 		sep = (struct swapent *)SCARG(uap, arg);
637 		count = 0;
638 
639 		LIST_FOREACH(spp, &swap_priority, spi_swappri) {
640 			TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
641 				if (count >= misc)
642 					continue;
643 
644 				sdp->swd_inuse =
645 				    btodb((u_int64_t)sdp->swd_npginuse <<
646 				    PAGE_SHIFT);
647 				error = copyout(&sdp->swd_se, sep,
648 				    sizeof(struct swapent));
649 				if (error)
650 					goto out;
651 
652 				/* now copy out the path if necessary */
653 				error = copyoutstr(sdp->swd_path,
654 				    sep->se_path, sizeof(sep->se_path), NULL);
655 				if (error)
656 					goto out;
657 
658 				count++;
659 				sep++;
660 			}
661 		}
662 
663 		*retval = count;
664 		error = 0;
665 		goto out;
666 	}
667 
668 	/* all other requests require superuser privs.   verify. */
669 	if ((error = suser(p)) || (error = pledge_swapctl(p)))
670 		goto out;
671 
672 	/*
673 	 * at this point we expect a path name in arg.   we will
674 	 * use namei() to gain a vnode reference (vref), and lock
675 	 * the vnode (VOP_LOCK).
676 	 */
677 	error = copyinstr(SCARG(uap, arg), userpath, sizeof(userpath), &len);
678 	if (error)
679 		goto out;
680 	disk_map(userpath, userpath, sizeof(userpath), DM_OPENBLCK);
681 	NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, UIO_SYSSPACE, userpath, p);
682 	if ((error = namei(&nd)))
683 		goto out;
684 	vp = nd.ni_vp;
685 	/* note: "vp" is referenced and locked */
686 
687 	error = 0;		/* assume no error */
688 	switch(SCARG(uap, cmd)) {
689 	case SWAP_DUMPDEV:
690 		if (vp->v_type != VBLK) {
691 			error = ENOTBLK;
692 			break;
693 		}
694 		dumpdev = vp->v_rdev;
695 		break;
696 	case SWAP_CTL:
697 		/*
698 		 * get new priority, remove old entry (if any) and then
699 		 * reinsert it in the correct place.  finally, prune out
700 		 * any empty priority structures.
701 		 */
702 		priority = SCARG(uap, misc);
703 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
704 		if ((sdp = swaplist_find(vp, 1)) == NULL) {
705 			error = ENOENT;
706 		} else {
707 			swaplist_insert(sdp, spp, priority);
708 			swaplist_trim();
709 		}
710 		if (error)
711 			free(spp, M_VMSWAP, sizeof(*spp));
712 		break;
713 	case SWAP_ON:
714 		/*
715 		 * If the device is a regular file, make sure the filesystem
716 		 * can be used for swapping.
717 		 */
718 		if (vp->v_type == VREG &&
719 		    (vp->v_mount->mnt_flag & MNT_SWAPPABLE) == 0) {
720 			error = ENOTSUP;
721 			break;
722 		}
723 
724 		/*
725 		 * check for duplicates.   if none found, then insert a
726 		 * dummy entry on the list to prevent someone else from
727 		 * trying to enable this device while we are working on
728 		 * it.
729 		 */
730 		priority = SCARG(uap, misc);
731 		if ((sdp = swaplist_find(vp, 0)) != NULL) {
732 			error = EBUSY;
733 			break;
734 		}
735 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK|M_ZERO);
736 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
737 		sdp->swd_flags = SWF_FAKE;	/* placeholder only */
738 		sdp->swd_vp = vp;
739 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
740 
741 		/*
742 		 * XXX Is NFS elaboration necessary?
743 		 */
744 		if (vp->v_type == VREG) {
745 			sdp->swd_cred = crdup(p->p_ucred);
746 		}
747 
748 		swaplist_insert(sdp, spp, priority);
749 
750 		sdp->swd_pathlen = len;
751 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
752 		strlcpy(sdp->swd_path, userpath, len);
753 
754 		/*
755 		 * we've now got a FAKE placeholder in the swap list.
756 		 * now attempt to enable swap on it.  if we fail, undo
757 		 * what we've done and kill the fake entry we just inserted.
758 		 * if swap_on is a success, it will clear the SWF_FAKE flag
759 		 */
760 
761 		if ((error = swap_on(p, sdp)) != 0) {
762 			(void) swaplist_find(vp, 1);  /* kill fake entry */
763 			swaplist_trim();
764 			if (vp->v_type == VREG) {
765 				crfree(sdp->swd_cred);
766 			}
767 			free(sdp->swd_path, M_VMSWAP, sdp->swd_pathlen);
768 			free(sdp, M_VMSWAP, sizeof(*sdp));
769 			break;
770 		}
771 		break;
772 	case SWAP_OFF:
773 		if ((sdp = swaplist_find(vp, 0)) == NULL) {
774 			error = ENXIO;
775 			break;
776 		}
777 
778 		/*
779 		 * If a device isn't in use or enabled, we
780 		 * can't stop swapping from it (again).
781 		 */
782 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
783 			error = EBUSY;
784 			break;
785 		}
786 
787 		/*
788 		 * do the real work.
789 		 */
790 		error = swap_off(p, sdp);
791 		break;
792 	default:
793 		error = EINVAL;
794 	}
795 
796 	/* done!  release the ref gained by namei() and unlock. */
797 	vput(vp);
798 
799 out:
800 	rw_exit_write(&swap_syscall_lock);
801 
802 	return (error);
803 }
804 
805 /*
806  * swap_on: attempt to enable a swapdev for swapping.   note that the
807  *	swapdev is already on the global list, but disabled (marked
808  *	SWF_FAKE).
809  *
810  * => we avoid the start of the disk (to protect disk labels)
811  * => caller should leave uvm.swap_data_lock unlocked, we may lock it
812  *	if needed.
813  */
814 int
815 swap_on(struct proc *p, struct swapdev *sdp)
816 {
817 	static int count = 0;	/* static */
818 	struct vnode *vp;
819 	int error, npages, nblocks, size;
820 	long addr;
821 	struct vattr va;
822 #if defined(NFSCLIENT)
823 	extern const struct vops nfs_vops;
824 #endif /* defined(NFSCLIENT) */
825 	dev_t dev;
826 
827 	/*
828 	 * we want to enable swapping on sdp.   the swd_vp contains
829 	 * the vnode we want (locked and ref'd), and the swd_dev
830 	 * contains the dev_t of the file, if it a block device.
831 	 */
832 
833 	vp = sdp->swd_vp;
834 	dev = sdp->swd_dev;
835 
836 #if NVND > 0
837 	/* no swapping to vnds. */
838 	if (bdevsw[major(dev)].d_strategy == vndstrategy)
839 		return (EOPNOTSUPP);
840 #endif
841 
842 	/*
843 	 * open the swap file (mostly useful for block device files to
844 	 * let device driver know what is up).
845 	 *
846 	 * we skip the open/close for root on swap because the root
847 	 * has already been opened when root was mounted (mountroot).
848 	 */
849 	if (vp != rootvp) {
850 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
851 			return (error);
852 	}
853 
854 	/* XXX this only works for block devices */
855 	/*
856 	 * we now need to determine the size of the swap area.   for
857 	 * block specials we can call the d_psize function.
858 	 * for normal files, we must stat [get attrs].
859 	 *
860 	 * we put the result in nblks.
861 	 * for normal files, we also want the filesystem block size
862 	 * (which we get with statfs).
863 	 */
864 	switch (vp->v_type) {
865 	case VBLK:
866 		if (bdevsw[major(dev)].d_psize == 0 ||
867 		    (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
868 			error = ENXIO;
869 			goto bad;
870 		}
871 		break;
872 
873 	case VREG:
874 		if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
875 			goto bad;
876 		nblocks = (int)btodb(va.va_size);
877 		if ((error =
878 		     VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
879 			goto bad;
880 
881 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
882 		/*
883 		 * limit the max # of outstanding I/O requests we issue
884 		 * at any one time.   take it easy on NFS servers.
885 		 */
886 #if defined(NFSCLIENT)
887 		if (vp->v_op == &nfs_vops)
888 			sdp->swd_maxactive = 2; /* XXX */
889 		else
890 #endif /* defined(NFSCLIENT) */
891 			sdp->swd_maxactive = 8; /* XXX */
892 		bufq_init(&sdp->swd_bufq, BUFQ_FIFO);
893 		break;
894 
895 	default:
896 		error = ENXIO;
897 		goto bad;
898 	}
899 
900 	/*
901 	 * save nblocks in a safe place and convert to pages.
902 	 */
903 
904 	sdp->swd_nblks = nblocks;
905 	npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
906 
907 	/*
908 	 * for block special files, we want to make sure that leave
909 	 * the disklabel and bootblocks alone, so we arrange to skip
910 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
911 	 * note that because of this the "size" can be less than the
912 	 * actual number of blocks on the device.
913 	 */
914 	if (vp->v_type == VBLK) {
915 		/* we use pages 1 to (size - 1) [inclusive] */
916 		size = npages - 1;
917 		addr = 1;
918 	} else {
919 		/* we use pages 0 to (size - 1) [inclusive] */
920 		size = npages;
921 		addr = 0;
922 	}
923 
924 	/*
925 	 * make sure we have enough blocks for a reasonable sized swap
926 	 * area.   we want at least one page.
927 	 */
928 
929 	if (size < 1) {
930 		error = EINVAL;
931 		goto bad;
932 	}
933 
934 	/*
935 	 * now we need to allocate an extent to manage this swap device
936 	 */
937 	snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
938 	    count++);
939 
940 	/* note that extent_create's 3rd arg is inclusive, thus "- 1" */
941 	sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
942 				    0, 0, EX_WAITOK);
943 	/* allocate the `saved' region from the extent so it won't be used */
944 	if (addr) {
945 		if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
946 			panic("disklabel reserve");
947 		/* XXX: is extent synchronized with swd_npginuse? */
948 	}
949 #ifdef HIBERNATE
950 	/*
951 	 * Lock down the last region of primary disk swap, in case
952 	 * hibernate needs to place a signature there.
953 	 */
954 	if (dev == swdevt[0].sw_dev && vp->v_type == VBLK && size > 3 ) {
955 		if (extent_alloc_region(sdp->swd_ex,
956 		    npages - 1 - 1, 1, EX_WAITOK))
957 			panic("hibernate reserve");
958 		/* XXX: is extent synchronized with swd_npginuse? */
959 	}
960 #endif
961 
962 	/* add a ref to vp to reflect usage as a swap device. */
963 	vref(vp);
964 
965 #ifdef UVM_SWAP_ENCRYPT
966 	if (uvm_doswapencrypt)
967 		uvm_swap_initcrypt(sdp, npages);
968 #endif
969 	/* now add the new swapdev to the drum and enable. */
970 	swapdrum_add(sdp, npages);
971 	sdp->swd_npages = size;
972 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
973 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
974 	uvmexp.swpages += size;
975 	return (0);
976 
977 bad:
978 	/* failure: close device if necessary and return error. */
979 	if (vp != rootvp)
980 		(void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
981 	return (error);
982 }
983 
984 /*
985  * swap_off: stop swapping on swapdev
986  *
987  * => swap data should be locked, we will unlock.
988  */
989 int
990 swap_off(struct proc *p, struct swapdev *sdp)
991 {
992 	int error = 0;
993 
994 	/* disable the swap area being removed */
995 	sdp->swd_flags &= ~SWF_ENABLE;
996 
997 	/*
998 	 * the idea is to find all the pages that are paged out to this
999 	 * device, and page them all in.  in uvm, swap-backed pageable
1000 	 * memory can take two forms: aobjs and anons.  call the
1001 	 * swapoff hook for each subsystem to bring in pages.
1002 	 */
1003 
1004 	if (uao_swap_off(sdp->swd_drumoffset,
1005 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1006 	    amap_swap_off(sdp->swd_drumoffset,
1007 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
1008 
1009 		error = ENOMEM;
1010 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1011 		error = EBUSY;
1012 	}
1013 
1014 	if (error) {
1015 		sdp->swd_flags |= SWF_ENABLE;
1016 		return (error);
1017 	}
1018 
1019 	/*
1020 	 * done with the vnode and saved creds.
1021 	 * drop our ref on the vnode before calling VOP_CLOSE()
1022 	 * so that spec_close() can tell if this is the last close.
1023 	 */
1024 	if (sdp->swd_vp->v_type == VREG) {
1025 		crfree(sdp->swd_cred);
1026 	}
1027 	vrele(sdp->swd_vp);
1028 	if (sdp->swd_vp != rootvp) {
1029 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1030 	}
1031 
1032 	uvmexp.swpages -= sdp->swd_npages;
1033 
1034 	if (swaplist_find(sdp->swd_vp, 1) == NULL)
1035 		panic("swap_off: swapdev not in list");
1036 	swaplist_trim();
1037 
1038 	/*
1039 	 * free all resources!
1040 	 */
1041 	extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1042 		    EX_WAITOK);
1043 	extent_destroy(sdp->swd_ex);
1044 	/* free sdp->swd_path ? */
1045 	free(sdp, M_VMSWAP, sizeof(*sdp));
1046 	return (0);
1047 }
1048 
1049 /*
1050  * /dev/drum interface and i/o functions
1051  */
1052 
1053 /*
1054  * swstrategy: perform I/O on the drum
1055  *
1056  * => we must map the i/o request from the drum to the correct swapdev.
1057  */
1058 void
1059 swstrategy(struct buf *bp)
1060 {
1061 	struct swapdev *sdp;
1062 	int s, pageno, bn;
1063 
1064 	/*
1065 	 * convert block number to swapdev.   note that swapdev can't
1066 	 * be yanked out from under us because we are holding resources
1067 	 * in it (i.e. the blocks we are doing I/O on).
1068 	 */
1069 	pageno = dbtob((u_int64_t)bp->b_blkno) >> PAGE_SHIFT;
1070 	sdp = swapdrum_getsdp(pageno);
1071 	if (sdp == NULL) {
1072 		bp->b_error = EINVAL;
1073 		bp->b_flags |= B_ERROR;
1074 		s = splbio();
1075 		biodone(bp);
1076 		splx(s);
1077 		return;
1078 	}
1079 
1080 	/* convert drum page number to block number on this swapdev. */
1081 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
1082 	bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1083 
1084 	/*
1085 	 * for block devices we finish up here.
1086 	 * for regular files we have to do more work which we delegate
1087 	 * to sw_reg_strategy().
1088 	 */
1089 	switch (sdp->swd_vp->v_type) {
1090 	default:
1091 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1092 	case VBLK:
1093 		/*
1094 		 * must convert "bp" from an I/O on /dev/drum to an I/O
1095 		 * on the swapdev (sdp).
1096 		 */
1097 		s = splbio();
1098 		buf_replacevnode(bp, sdp->swd_vp);
1099 
1100 		bp->b_blkno = bn;
1101       		splx(s);
1102 		VOP_STRATEGY(bp);
1103 		return;
1104 	case VREG:
1105 		/* delegate to sw_reg_strategy function. */
1106 		sw_reg_strategy(sdp, bp, bn);
1107 		return;
1108 	}
1109 	/* NOTREACHED */
1110 }
1111 
1112 /*
1113  * sw_reg_strategy: handle swap i/o to regular files
1114  */
1115 void
1116 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1117 {
1118 	struct vnode	*vp;
1119 	struct vndxfer	*vnx;
1120 	daddr_t	nbn;
1121 	caddr_t		addr;
1122 	off_t		byteoff;
1123 	int		s, off, nra, error, sz, resid;
1124 
1125 	/*
1126 	 * allocate a vndxfer head for this transfer and point it to
1127 	 * our buffer.
1128 	 */
1129 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1130 	vnx->vx_flags = VX_BUSY;
1131 	vnx->vx_error = 0;
1132 	vnx->vx_pending = 0;
1133 	vnx->vx_bp = bp;
1134 	vnx->vx_sdp = sdp;
1135 
1136 	/*
1137 	 * setup for main loop where we read filesystem blocks into
1138 	 * our buffer.
1139 	 */
1140 	error = 0;
1141 	bp->b_resid = bp->b_bcount;	/* nothing transferred yet! */
1142 	addr = bp->b_data;		/* current position in buffer */
1143 	byteoff = dbtob((u_int64_t)bn);
1144 
1145 	for (resid = bp->b_resid; resid; resid -= sz) {
1146 		struct vndbuf	*nbp;
1147 		/*
1148 		 * translate byteoffset into block number.  return values:
1149 		 *   vp = vnode of underlying device
1150 		 *  nbn = new block number (on underlying vnode dev)
1151 		 *  nra = num blocks we can read-ahead (excludes requested
1152 		 *	block)
1153 		 */
1154 		nra = 0;
1155 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1156 				 	&vp, &nbn, &nra);
1157 
1158 		if (error == 0 && nbn == -1) {
1159 			/*
1160 			 * this used to just set error, but that doesn't
1161 			 * do the right thing.  Instead, it causes random
1162 			 * memory errors.  The panic() should remain until
1163 			 * this condition doesn't destabilize the system.
1164 			 */
1165 #if 1
1166 			panic("sw_reg_strategy: swap to sparse file");
1167 #else
1168 			error = EIO;	/* failure */
1169 #endif
1170 		}
1171 
1172 		/*
1173 		 * punt if there was an error or a hole in the file.
1174 		 * we must wait for any i/o ops we have already started
1175 		 * to finish before returning.
1176 		 *
1177 		 * XXX we could deal with holes here but it would be
1178 		 * a hassle (in the write case).
1179 		 */
1180 		if (error) {
1181 			s = splbio();
1182 			vnx->vx_error = error;	/* pass error up */
1183 			goto out;
1184 		}
1185 
1186 		/*
1187 		 * compute the size ("sz") of this transfer (in bytes).
1188 		 */
1189 		off = byteoff % sdp->swd_bsize;
1190 		sz = (1 + nra) * sdp->swd_bsize - off;
1191 		if (sz > resid)
1192 			sz = resid;
1193 
1194 		/*
1195 		 * now get a buf structure.   note that the vb_buf is
1196 		 * at the front of the nbp structure so that you can
1197 		 * cast pointers between the two structure easily.
1198 		 */
1199 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1200 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
1201 		nbp->vb_buf.b_bcount   = sz;
1202 		nbp->vb_buf.b_bufsize  = sz;
1203 		nbp->vb_buf.b_error    = 0;
1204 		nbp->vb_buf.b_data     = addr;
1205 		nbp->vb_buf.b_bq       = NULL;
1206 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
1207 		nbp->vb_buf.b_proc     = bp->b_proc;
1208 		nbp->vb_buf.b_iodone   = sw_reg_iodone;
1209 		nbp->vb_buf.b_vp       = NULLVP;
1210 		nbp->vb_buf.b_vnbufs.le_next = NOLIST;
1211 		LIST_INIT(&nbp->vb_buf.b_dep);
1212 
1213 		/*
1214 		 * set b_dirtyoff/end and b_validoff/end.   this is
1215 		 * required by the NFS client code (otherwise it will
1216 		 * just discard our I/O request).
1217 		 */
1218 		if (bp->b_dirtyend == 0) {
1219 			nbp->vb_buf.b_dirtyoff = 0;
1220 			nbp->vb_buf.b_dirtyend = sz;
1221 		} else {
1222 			nbp->vb_buf.b_dirtyoff =
1223 			    max(0, bp->b_dirtyoff - (bp->b_bcount-resid));
1224 			nbp->vb_buf.b_dirtyend =
1225 			    min(sz,
1226 				max(0, bp->b_dirtyend - (bp->b_bcount-resid)));
1227 		}
1228 		if (bp->b_validend == 0) {
1229 			nbp->vb_buf.b_validoff = 0;
1230 			nbp->vb_buf.b_validend = sz;
1231 		} else {
1232 			nbp->vb_buf.b_validoff =
1233 			    max(0, bp->b_validoff - (bp->b_bcount-resid));
1234 			nbp->vb_buf.b_validend =
1235 			    min(sz,
1236 				max(0, bp->b_validend - (bp->b_bcount-resid)));
1237 		}
1238 
1239 		/* patch it back to the vnx */
1240 		nbp->vb_vnx = vnx;
1241 		task_set(&nbp->vb_task, sw_reg_iodone_internal, nbp);
1242 
1243 		s = splbio();
1244 		if (vnx->vx_error != 0) {
1245 			pool_put(&vndbuf_pool, nbp);
1246 			goto out;
1247 		}
1248 		vnx->vx_pending++;
1249 
1250 		/* assoc new buffer with underlying vnode */
1251 		bgetvp(vp, &nbp->vb_buf);
1252 
1253 		/* start I/O if we are not over our limit */
1254 		bufq_queue(&sdp->swd_bufq, &nbp->vb_buf);
1255 		sw_reg_start(sdp);
1256 		splx(s);
1257 
1258 		/*
1259 		 * advance to the next I/O
1260 		 */
1261 		byteoff += sz;
1262 		addr += sz;
1263 	}
1264 
1265 	s = splbio();
1266 
1267 out: /* Arrive here at splbio */
1268 	vnx->vx_flags &= ~VX_BUSY;
1269 	if (vnx->vx_pending == 0) {
1270 		if (vnx->vx_error != 0) {
1271 			bp->b_error = vnx->vx_error;
1272 			bp->b_flags |= B_ERROR;
1273 		}
1274 		pool_put(&vndxfer_pool, vnx);
1275 		biodone(bp);
1276 	}
1277 	splx(s);
1278 }
1279 
1280 /* sw_reg_start: start an I/O request on the requested swapdev. */
1281 void
1282 sw_reg_start(struct swapdev *sdp)
1283 {
1284 	struct buf	*bp;
1285 
1286 	/* XXX: recursion control */
1287 	if ((sdp->swd_flags & SWF_BUSY) != 0)
1288 		return;
1289 
1290 	sdp->swd_flags |= SWF_BUSY;
1291 
1292 	while (sdp->swd_active < sdp->swd_maxactive) {
1293 		bp = bufq_dequeue(&sdp->swd_bufq);
1294 		if (bp == NULL)
1295 			break;
1296 
1297 		sdp->swd_active++;
1298 
1299 		if ((bp->b_flags & B_READ) == 0)
1300 			bp->b_vp->v_numoutput++;
1301 
1302 		VOP_STRATEGY(bp);
1303 	}
1304 	sdp->swd_flags &= ~SWF_BUSY;
1305 }
1306 
1307 /*
1308  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1309  *
1310  * => note that we can recover the vndbuf struct by casting the buf ptr
1311  *
1312  * XXX:
1313  * We only put this onto a taskq here, because of the maxactive game since
1314  * it basically requires us to call back into VOP_STRATEGY() (where we must
1315  * be able to sleep) via sw_reg_start().
1316  */
1317 void
1318 sw_reg_iodone(struct buf *bp)
1319 {
1320 	struct vndbuf *vbp = (struct vndbuf *)bp;
1321 	task_add(systq, &vbp->vb_task);
1322 }
1323 
1324 void
1325 sw_reg_iodone_internal(void *xvbp)
1326 {
1327 	struct vndbuf *vbp = xvbp;
1328 	struct vndxfer *vnx = vbp->vb_vnx;
1329 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
1330 	struct swapdev	*sdp = vnx->vx_sdp;
1331 	int resid, s;
1332 
1333 	s = splbio();
1334 
1335 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1336 	pbp->b_resid -= resid;
1337 	vnx->vx_pending--;
1338 
1339 	/* pass error upward */
1340 	if (vbp->vb_buf.b_error)
1341 		vnx->vx_error = vbp->vb_buf.b_error;
1342 
1343 	/* disassociate this buffer from the vnode (if any). */
1344 	if (vbp->vb_buf.b_vp != NULL) {
1345 		brelvp(&vbp->vb_buf);
1346 	}
1347 
1348 	/* kill vbp structure */
1349 	pool_put(&vndbuf_pool, vbp);
1350 
1351 	/*
1352 	 * wrap up this transaction if it has run to completion or, in
1353 	 * case of an error, when all auxiliary buffers have returned.
1354 	 */
1355 	if (vnx->vx_error != 0) {
1356 		/* pass error upward */
1357 		pbp->b_flags |= B_ERROR;
1358 		pbp->b_error = vnx->vx_error;
1359 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1360 			pool_put(&vndxfer_pool, vnx);
1361 			biodone(pbp);
1362 		}
1363 	} else if (pbp->b_resid == 0) {
1364 		KASSERT(vnx->vx_pending == 0);
1365 		if ((vnx->vx_flags & VX_BUSY) == 0) {
1366 			pool_put(&vndxfer_pool, vnx);
1367 			biodone(pbp);
1368 		}
1369 	}
1370 
1371 	/*
1372 	 * done!   start next swapdev I/O if one is pending
1373 	 */
1374 	sdp->swd_active--;
1375 	sw_reg_start(sdp);
1376 	splx(s);
1377 }
1378 
1379 
1380 /*
1381  * uvm_swap_alloc: allocate space on swap
1382  *
1383  * => allocation is done "round robin" down the priority list, as we
1384  *	allocate in a priority we "rotate" the tail queue.
1385  * => space can be freed with uvm_swap_free
1386  * => we return the page slot number in /dev/drum (0 == invalid slot)
1387  * => we lock uvm.swap_data_lock
1388  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1389  */
1390 int
1391 uvm_swap_alloc(int *nslots, boolean_t lessok)
1392 {
1393 	struct swapdev *sdp;
1394 	struct swappri *spp;
1395 	u_long	result;
1396 
1397 	/*
1398 	 * no swap devices configured yet?   definite failure.
1399 	 */
1400 	if (uvmexp.nswapdev < 1)
1401 		return 0;
1402 
1403 	/*
1404 	 * lock data lock, convert slots into blocks, and enter loop
1405 	 */
1406 	KERNEL_ASSERT_LOCKED();
1407 ReTry:	/* XXXMRG */
1408 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1409 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1410 			/* if it's not enabled, then we can't swap from it */
1411 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
1412 				continue;
1413 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1414 				continue;
1415 			if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN, 0,
1416 					 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1417 					 &result) != 0) {
1418 				continue;
1419 			}
1420 
1421 			/*
1422 			 * successful allocation!  now rotate the tailq.
1423 			 */
1424 			TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1425 			TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1426 			sdp->swd_npginuse += *nslots;
1427 			uvmexp.swpginuse += *nslots;
1428 			/* done!  return drum slot number */
1429 			return(result + sdp->swd_drumoffset);
1430 		}
1431 	}
1432 
1433 	/* XXXMRG: BEGIN HACK */
1434 	if (*nslots > 1 && lessok) {
1435 		*nslots = 1;
1436 		goto ReTry;	/* XXXMRG: ugh!  extent should support this for us */
1437 	}
1438 	/* XXXMRG: END HACK */
1439 
1440 	return 0;		/* failed */
1441 }
1442 
1443 /*
1444  * uvm_swapisfull: return true if all of available swap is allocated
1445  * and in use.
1446  */
1447 int
1448 uvm_swapisfull(void)
1449 {
1450 	int result;
1451 
1452 	KERNEL_LOCK();
1453 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1454 	result = (uvmexp.swpgonly == uvmexp.swpages);
1455 	KERNEL_UNLOCK();
1456 
1457 	return result;
1458 }
1459 
1460 /*
1461  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1462  *
1463  * => we lock uvm.swap_data_lock
1464  */
1465 void
1466 uvm_swap_markbad(int startslot, int nslots)
1467 {
1468 	struct swapdev *sdp;
1469 
1470 	KERNEL_LOCK();
1471 	sdp = swapdrum_getsdp(startslot);
1472 	if (sdp != NULL) {
1473 		/*
1474 		 * we just keep track of how many pages have been marked bad
1475 		 * in this device, to make everything add up in swap_off().
1476 		 * we assume here that the range of slots will all be within
1477 		 * one swap device.
1478 		 */
1479 		sdp->swd_npgbad += nslots;
1480 	}
1481 	KERNEL_UNLOCK();
1482 }
1483 
1484 /*
1485  * uvm_swap_free: free swap slots
1486  *
1487  * => this can be all or part of an allocation made by uvm_swap_alloc
1488  * => we lock uvm.swap_data_lock
1489  */
1490 void
1491 uvm_swap_free(int startslot, int nslots)
1492 {
1493 	struct swapdev *sdp;
1494 
1495 	/*
1496 	 * ignore attempts to free the "bad" slot.
1497 	 */
1498 
1499 	if (startslot == SWSLOT_BAD) {
1500 		return;
1501 	}
1502 
1503 	/*
1504 	 * convert drum slot offset back to sdp, free the blocks
1505 	 * in the extent, and return.   must hold pri lock to do
1506 	 * lookup and access the extent.
1507 	 */
1508 	KERNEL_LOCK();
1509 	sdp = swapdrum_getsdp(startslot);
1510 	KASSERT(uvmexp.nswapdev >= 1);
1511 	KASSERT(sdp != NULL);
1512 	KASSERT(sdp->swd_npginuse >= nslots);
1513 	if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1514 			EX_MALLOCOK|EX_NOWAIT) != 0) {
1515 		printf("warning: resource shortage: %d pages of swap lost\n",
1516 			nslots);
1517 	}
1518 
1519 	sdp->swd_npginuse -= nslots;
1520 	uvmexp.swpginuse -= nslots;
1521 #ifdef UVM_SWAP_ENCRYPT
1522 	{
1523 		int i;
1524 		if (swap_encrypt_initialized) {
1525 			/* Dereference keys */
1526 			for (i = 0; i < nslots; i++)
1527 				if (uvm_swap_needdecrypt(sdp, startslot + i)) {
1528 					struct swap_key *key;
1529 
1530 					key = SWD_KEY(sdp, startslot + i);
1531 					if (key->refcount != 0)
1532 						SWAP_KEY_PUT(sdp, key);
1533 				}
1534 
1535 			/* Mark range as not decrypt */
1536 			uvm_swap_markdecrypt(sdp, startslot, nslots, 0);
1537 		}
1538 	}
1539 #endif /* UVM_SWAP_ENCRYPT */
1540 	KERNEL_UNLOCK();
1541 }
1542 
1543 /*
1544  * uvm_swap_put: put any number of pages into a contig place on swap
1545  *
1546  * => can be sync or async
1547  */
1548 int
1549 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1550 {
1551 	int	result;
1552 
1553 	result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1554 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1555 
1556 	return (result);
1557 }
1558 
1559 /*
1560  * uvm_swap_get: get a single page from swap
1561  *
1562  * => usually a sync op (from fault)
1563  */
1564 int
1565 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1566 {
1567 	int	result;
1568 
1569 	uvmexp.nswget++;
1570 	KASSERT(flags & PGO_SYNCIO);
1571 	if (swslot == SWSLOT_BAD) {
1572 		return VM_PAGER_ERROR;
1573 	}
1574 
1575 	KERNEL_LOCK();
1576 	/* this page is (about to be) no longer only in swap. */
1577 	uvmexp.swpgonly--;
1578 
1579 	result = uvm_swap_io(&page, swslot, 1, B_READ |
1580 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1581 
1582 	if (result != VM_PAGER_OK && result != VM_PAGER_PEND) {
1583 		/* oops, the read failed so it really is still only in swap. */
1584 		uvmexp.swpgonly++;
1585 	}
1586 	KERNEL_UNLOCK();
1587 	return (result);
1588 }
1589 
1590 /*
1591  * uvm_swap_io: do an i/o operation to swap
1592  */
1593 
1594 int
1595 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1596 {
1597 	daddr_t startblk;
1598 	struct	buf *bp;
1599 	vaddr_t kva;
1600 	int	result, s, mapinflags, pflag, bounce = 0, i;
1601 	boolean_t write, async;
1602 	vaddr_t bouncekva;
1603 	struct vm_page *tpps[MAXBSIZE >> PAGE_SHIFT];
1604 #ifdef UVM_SWAP_ENCRYPT
1605 	struct swapdev *sdp;
1606 	int	encrypt = 0;
1607 #endif
1608 
1609 	KERNEL_ASSERT_LOCKED();
1610 
1611 	write = (flags & B_READ) == 0;
1612 	async = (flags & B_ASYNC) != 0;
1613 
1614 	/* convert starting drum slot to block number */
1615 	startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
1616 
1617 	/*
1618 	 * first, map the pages into the kernel (XXX: currently required
1619 	 * by buffer system).
1620 	 */
1621 	mapinflags = !write ? UVMPAGER_MAPIN_READ : UVMPAGER_MAPIN_WRITE;
1622 	if (!async)
1623 		mapinflags |= UVMPAGER_MAPIN_WAITOK;
1624 	kva = uvm_pagermapin(pps, npages, mapinflags);
1625 	if (kva == 0)
1626 		return (VM_PAGER_AGAIN);
1627 
1628 #ifdef UVM_SWAP_ENCRYPT
1629 	if (write) {
1630 		/*
1631 		 * Check if we need to do swap encryption on old pages.
1632 		 * Later we need a different scheme, that swap encrypts
1633 		 * all pages of a process that had at least one page swap
1634 		 * encrypted.  Then we might not need to copy all pages
1635 		 * in the cluster, and avoid the memory overheard in
1636 		 * swapping.
1637 		 */
1638 		if (uvm_doswapencrypt)
1639 			encrypt = 1;
1640 	}
1641 
1642 	if (swap_encrypt_initialized || encrypt) {
1643 		/*
1644 		 * we need to know the swap device that we are swapping to/from
1645 		 * to see if the pages need to be marked for decryption or
1646 		 * actually need to be decrypted.
1647 		 * XXX - does this information stay the same over the whole
1648 		 * execution of this function?
1649 		 */
1650 		sdp = swapdrum_getsdp(startslot);
1651 	}
1652 
1653 	/*
1654 	 * Check that we are dma capable for read (write always bounces
1655 	 * through the swapencrypt anyway...
1656 	 */
1657 	if (write && encrypt) {
1658 		bounce = 1; /* bounce through swapencrypt always */
1659 	} else {
1660 #else
1661 	{
1662 #endif
1663 
1664 		for (i = 0; i < npages; i++) {
1665 			if (VM_PAGE_TO_PHYS(pps[i]) < dma_constraint.ucr_low ||
1666 			   VM_PAGE_TO_PHYS(pps[i]) > dma_constraint.ucr_high) {
1667 				bounce = 1;
1668 				break;
1669 			}
1670 		}
1671 	}
1672 
1673 	if (bounce)  {
1674 		int swmapflags;
1675 
1676 		/* We always need write access. */
1677 		swmapflags = UVMPAGER_MAPIN_READ;
1678 		if (!async)
1679 			swmapflags |= UVMPAGER_MAPIN_WAITOK;
1680 
1681 		if (!uvm_swap_allocpages(tpps, npages)) {
1682 			uvm_pagermapout(kva, npages);
1683 			return (VM_PAGER_AGAIN);
1684 		}
1685 
1686 		bouncekva = uvm_pagermapin(tpps, npages, swmapflags);
1687 		if (bouncekva == 0) {
1688 			uvm_pagermapout(kva, npages);
1689 			uvm_swap_freepages(tpps, npages);
1690 			return (VM_PAGER_AGAIN);
1691 		}
1692 	}
1693 
1694 	/* encrypt to swap */
1695 	if (write && bounce) {
1696 		int i, opages;
1697 		caddr_t src, dst;
1698 		u_int64_t block;
1699 
1700 		src = (caddr_t) kva;
1701 		dst = (caddr_t) bouncekva;
1702 		block = startblk;
1703 		for (i = 0; i < npages; i++) {
1704 #ifdef UVM_SWAP_ENCRYPT
1705 			struct swap_key *key;
1706 
1707 			if (encrypt) {
1708 				key = SWD_KEY(sdp, startslot + i);
1709 				SWAP_KEY_GET(sdp, key);	/* add reference */
1710 
1711 				swap_encrypt(key, src, dst, block, PAGE_SIZE);
1712 				block += btodb(PAGE_SIZE);
1713 			} else {
1714 #else
1715 			{
1716 #endif /* UVM_SWAP_ENCRYPT */
1717 				memcpy(dst, src, PAGE_SIZE);
1718 			}
1719 			/* this just tells async callbacks to free */
1720 			atomic_setbits_int(&tpps[i]->pg_flags, PQ_ENCRYPT);
1721 			src += PAGE_SIZE;
1722 			dst += PAGE_SIZE;
1723 		}
1724 
1725 		uvm_pagermapout(kva, npages);
1726 
1727 		/* dispose of pages we dont use anymore */
1728 		opages = npages;
1729 		uvm_pager_dropcluster(NULL, NULL, pps, &opages,
1730 				      PGO_PDFREECLUST);
1731 
1732 		kva = bouncekva;
1733 	}
1734 
1735 	/*
1736 	 * now allocate a buf for the i/o.
1737 	 * [make sure we don't put the pagedaemon to sleep...]
1738 	 */
1739 	pflag = (async || curproc == uvm.pagedaemon_proc) ? PR_NOWAIT :
1740 	    PR_WAITOK;
1741 	bp = pool_get(&bufpool, pflag | PR_ZERO);
1742 
1743 	/*
1744 	 * if we failed to get a swapbuf, return "try again"
1745 	 */
1746 	if (bp == NULL) {
1747 		if (write && bounce) {
1748 #ifdef UVM_SWAP_ENCRYPT
1749 			int i;
1750 
1751 			/* swap encrypt needs cleanup */
1752 			if (encrypt)
1753 				for (i = 0; i < npages; i++)
1754 					SWAP_KEY_PUT(sdp, SWD_KEY(sdp,
1755 					    startslot + i));
1756 #endif
1757 
1758 			uvm_pagermapout(kva, npages);
1759 			uvm_swap_freepages(tpps, npages);
1760 		}
1761 		return (VM_PAGER_AGAIN);
1762 	}
1763 
1764 	/*
1765 	 * prevent ASYNC reads.
1766 	 * uvm_swap_io is only called from uvm_swap_get, uvm_swap_get
1767 	 * assumes that all gets are SYNCIO.  Just make sure here.
1768 	 * XXXARTUBC - might not be true anymore.
1769 	 */
1770 	if (!write) {
1771 		flags &= ~B_ASYNC;
1772 		async = 0;
1773 	}
1774 
1775 	/*
1776 	 * fill in the bp.   we currently route our i/o through
1777 	 * /dev/drum's vnode [swapdev_vp].
1778 	 */
1779 	bp->b_flags = B_BUSY | B_NOCACHE | B_RAW | (flags & (B_READ|B_ASYNC));
1780 	bp->b_proc = &proc0;	/* XXX */
1781 	bp->b_vnbufs.le_next = NOLIST;
1782 	if (bounce)
1783 		bp->b_data = (caddr_t)bouncekva;
1784 	else
1785 		bp->b_data = (caddr_t)kva;
1786 	bp->b_bq = NULL;
1787 	bp->b_blkno = startblk;
1788 	LIST_INIT(&bp->b_dep);
1789 	s = splbio();
1790 	bp->b_vp = NULL;
1791 	buf_replacevnode(bp, swapdev_vp);
1792 	splx(s);
1793 	bp->b_bufsize = bp->b_bcount = (long)npages << PAGE_SHIFT;
1794 
1795 	/*
1796 	 * for pageouts we must set "dirtyoff" [NFS client code needs it].
1797 	 * and we bump v_numoutput (counter of number of active outputs).
1798 	 */
1799 	if (write) {
1800 		bp->b_dirtyoff = 0;
1801 		bp->b_dirtyend = npages << PAGE_SHIFT;
1802 #ifdef UVM_SWAP_ENCRYPT
1803 		/* mark the pages in the drum for decryption */
1804 		if (swap_encrypt_initialized)
1805 			uvm_swap_markdecrypt(sdp, startslot, npages, encrypt);
1806 #endif
1807 		s = splbio();
1808 		swapdev_vp->v_numoutput++;
1809 		splx(s);
1810 	}
1811 
1812 	/* for async ops we must set up the iodone handler. */
1813 	if (async) {
1814 		bp->b_flags |= B_CALL | (curproc == uvm.pagedaemon_proc ?
1815 					 B_PDAEMON : 0);
1816 		bp->b_iodone = uvm_aio_biodone;
1817 	}
1818 
1819 	/* now we start the I/O, and if async, return. */
1820 	VOP_STRATEGY(bp);
1821 	if (async)
1822 		return (VM_PAGER_PEND);
1823 
1824 	/* must be sync i/o.   wait for it to finish */
1825 	(void) biowait(bp);
1826 	result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK;
1827 
1828 	/* decrypt swap */
1829 	if (!write && !(bp->b_flags & B_ERROR)) {
1830 		int i;
1831 		caddr_t data = (caddr_t)kva;
1832 		caddr_t dst = (caddr_t)kva;
1833 		u_int64_t block = startblk;
1834 
1835 		if (bounce)
1836 			data = (caddr_t)bouncekva;
1837 
1838 		for (i = 0; i < npages; i++) {
1839 #ifdef UVM_SWAP_ENCRYPT
1840 			struct swap_key *key;
1841 
1842 			/* Check if we need to decrypt */
1843 			if (swap_encrypt_initialized &&
1844 			    uvm_swap_needdecrypt(sdp, startslot + i)) {
1845 				key = SWD_KEY(sdp, startslot + i);
1846 				if (key->refcount == 0) {
1847 					result = VM_PAGER_ERROR;
1848 					break;
1849 				}
1850 				swap_decrypt(key, data, dst, block, PAGE_SIZE);
1851 			} else if (bounce) {
1852 #else
1853 			if (bounce) {
1854 #endif
1855 				memcpy(dst, data, PAGE_SIZE);
1856 			}
1857 			data += PAGE_SIZE;
1858 			dst += PAGE_SIZE;
1859 			block += btodb(PAGE_SIZE);
1860 		}
1861 		if (bounce)
1862 			uvm_pagermapout(bouncekva, npages);
1863 	}
1864 	/* kill the pager mapping */
1865 	uvm_pagermapout(kva, npages);
1866 
1867 	/*  Not anymore needed, free after encryption/bouncing */
1868 	if (!write && bounce)
1869 		uvm_swap_freepages(tpps, npages);
1870 
1871 	/* now dispose of the buf */
1872 	s = splbio();
1873 	if (bp->b_vp)
1874 		brelvp(bp);
1875 
1876 	if (write && bp->b_vp)
1877 		vwakeup(bp->b_vp);
1878 	pool_put(&bufpool, bp);
1879 	splx(s);
1880 
1881 	/* finally return. */
1882 	return (result);
1883 }
1884 
1885 void
1886 swapmount(void)
1887 {
1888 	struct swapdev *sdp;
1889 	struct swappri *spp;
1890 	struct vnode *vp;
1891 	dev_t swap_dev = swdevt[0].sw_dev;
1892 	char *nam;
1893 	char path[MNAMELEN + 1];
1894 
1895 	/*
1896 	 * No locking here since we happen to know that we will just be called
1897 	 * once before any other process has forked.
1898 	 */
1899 	if (swap_dev == NODEV)
1900 		return;
1901 
1902 #if defined(NFSCLIENT)
1903 	if (swap_dev == NETDEV) {
1904 		extern struct nfs_diskless nfs_diskless;
1905 
1906 		snprintf(path, sizeof(path), "%s",
1907 		    nfs_diskless.nd_swap.ndm_host);
1908 		vp = nfs_diskless.sw_vp;
1909 		goto gotit;
1910 	} else
1911 #endif
1912 	if (bdevvp(swap_dev, &vp))
1913 		return;
1914 
1915 	/* Construct a potential path to swap */
1916 	if ((nam = findblkname(major(swap_dev))))
1917 		snprintf(path, sizeof(path), "/dev/%s%d%c", nam,
1918 		    DISKUNIT(swap_dev), 'a' + DISKPART(swap_dev));
1919 	else
1920 		snprintf(path, sizeof(path), "blkdev0x%x",
1921 		    swap_dev);
1922 
1923 #if defined(NFSCLIENT)
1924 gotit:
1925 #endif
1926 	sdp = malloc(sizeof(*sdp), M_VMSWAP, M_WAITOK|M_ZERO);
1927 	spp = malloc(sizeof(*spp), M_VMSWAP, M_WAITOK);
1928 
1929 	sdp->swd_flags = SWF_FAKE;
1930 	sdp->swd_dev = swap_dev;
1931 
1932 	sdp->swd_pathlen = strlen(path) + 1;
1933 	sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK | M_ZERO);
1934 	strlcpy(sdp->swd_path, path, sdp->swd_pathlen);
1935 
1936 	sdp->swd_vp = vp;
1937 
1938 	swaplist_insert(sdp, spp, 0);
1939 
1940 	if (swap_on(curproc, sdp)) {
1941 		swaplist_find(vp, 1);
1942 		swaplist_trim();
1943 		vput(sdp->swd_vp);
1944 		free(sdp->swd_path, M_VMSWAP, sdp->swd_pathlen);
1945 		free(sdp, M_VMSWAP, sizeof(*sdp));
1946 		return;
1947 	}
1948 }
1949 
1950 #ifdef HIBERNATE
1951 int
1952 uvm_hibswap(dev_t dev, u_long *sp, u_long *ep)
1953 {
1954 	struct swapdev *sdp, *swd = NULL;
1955 	struct swappri *spp;
1956 	struct extent_region *exr, *exrn;
1957 	u_long start = 0, end = 0, size = 0;
1958 
1959 	/* no swap devices configured yet? */
1960 	if (uvmexp.nswapdev < 1 || dev != swdevt[0].sw_dev)
1961 		return (1);
1962 
1963 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1964 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1965 			if (sdp->swd_dev == dev)
1966 				swd = sdp;
1967 		}
1968 	}
1969 
1970 	if (swd == NULL || (swd->swd_flags & SWF_ENABLE) == 0)
1971 		return (1);
1972 
1973 	LIST_FOREACH(exr, &swd->swd_ex->ex_regions, er_link) {
1974 		u_long gapstart, gapend, gapsize;
1975 
1976 		gapstart = exr->er_end + 1;
1977 		exrn = LIST_NEXT(exr, er_link);
1978 		if (!exrn)
1979 			break;
1980 		gapend = exrn->er_start - 1;
1981 		gapsize = gapend - gapstart;
1982 		if (gapsize > size) {
1983 			start = gapstart;
1984 			end = gapend;
1985 			size = gapsize;
1986 		}
1987 	}
1988 
1989 	if (size) {
1990 		*sp = start;
1991 		*ep = end;
1992 		return (0);
1993 	}
1994 	return (1);
1995 }
1996 #endif /* HIBERNATE */
1997