xref: /openbsd-src/sys/uvm/uvm_swap.c (revision 25c4e8bd056e974b28f4a0ffd39d76c190a56013)
1 /*	$OpenBSD: uvm_swap.c,v 1.161 2022/07/18 18:02:27 jca Exp $	*/
2 /*	$NetBSD: uvm_swap.c,v 1.40 2000/11/17 11:39:39 mrg Exp $	*/
3 
4 /*
5  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
22  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
23  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
24  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
30  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
31  */
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/buf.h>
36 #include <sys/conf.h>
37 #include <sys/proc.h>
38 #include <sys/namei.h>
39 #include <sys/disklabel.h>
40 #include <sys/errno.h>
41 #include <sys/kernel.h>
42 #include <sys/malloc.h>
43 #include <sys/vnode.h>
44 #include <sys/fcntl.h>
45 #include <sys/extent.h>
46 #include <sys/mount.h>
47 #include <sys/pool.h>
48 #include <sys/syscallargs.h>
49 #include <sys/swap.h>
50 #include <sys/disk.h>
51 #include <sys/task.h>
52 #include <sys/pledge.h>
53 #if defined(NFSCLIENT)
54 #include <sys/socket.h>
55 #include <netinet/in.h>
56 #include <nfs/nfsproto.h>
57 #include <nfs/nfsdiskless.h>
58 #endif
59 
60 #include <uvm/uvm.h>
61 #ifdef UVM_SWAP_ENCRYPT
62 #include <uvm/uvm_swap_encrypt.h>
63 #endif
64 
65 #include <sys/specdev.h>
66 
67 #include "vnd.h"
68 
69 /*
70  * uvm_swap.c: manage configuration and i/o to swap space.
71  */
72 
73 /*
74  * swap space is managed in the following way:
75  *
76  * each swap partition or file is described by a "swapdev" structure.
77  * each "swapdev" structure contains a "swapent" structure which contains
78  * information that is passed up to the user (via system calls).
79  *
80  * each swap partition is assigned a "priority" (int) which controls
81  * swap partition usage.
82  *
83  * the system maintains a global data structure describing all swap
84  * partitions/files.   there is a sorted LIST of "swappri" structures
85  * which describe "swapdev"'s at that priority.   this LIST is headed
86  * by the "swap_priority" global var.    each "swappri" contains a
87  * TAILQ of "swapdev" structures at that priority.
88  *
89  * locking:
90  *  - swap_syscall_lock (sleep lock): this lock serializes the swapctl
91  *    system call and prevents the swap priority list from changing
92  *    while we are in the middle of a system call (e.g. SWAP_STATS).
93  *
94  * each swap device has the following info:
95  *  - swap device in use (could be disabled, preventing future use)
96  *  - swap enabled (allows new allocations on swap)
97  *  - map info in /dev/drum
98  *  - vnode pointer
99  * for swap files only:
100  *  - block size
101  *  - max byte count in buffer
102  *  - buffer
103  *  - credentials to use when doing i/o to file
104  *
105  * userland controls and configures swap with the swapctl(2) system call.
106  * the sys_swapctl performs the following operations:
107  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
108  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
109  *	(passed in via "arg") of a size passed in via "misc" ... we load
110  *	the current swap config into the array.
111  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
112  *	priority in "misc", start swapping on it.
113  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
114  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
115  *	"misc")
116  */
117 
118 /*
119  * swapdev: describes a single swap partition/file
120  *
121  * note the following should be true:
122  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
123  * swd_nblks <= swd_mapsize [because mapsize includes disklabel]
124  */
125 struct swapdev {
126 	struct swapent	swd_se;
127 #define	swd_dev		swd_se.se_dev		/* device id */
128 #define	swd_flags	swd_se.se_flags		/* flags:inuse/enable/fake */
129 #define	swd_priority	swd_se.se_priority	/* our priority */
130 #define	swd_inuse	swd_se.se_inuse		/* blocks used */
131 #define	swd_nblks	swd_se.se_nblks		/* total blocks */
132 	char			*swd_path;	/* saved pathname of device */
133 	int			swd_pathlen;	/* length of pathname */
134 	int			swd_npages;	/* #pages we can use */
135 	int			swd_npginuse;	/* #pages in use */
136 	int			swd_npgbad;	/* #pages bad */
137 	int			swd_drumoffset;	/* page0 offset in drum */
138 	int			swd_drumsize;	/* #pages in drum */
139 	struct extent		*swd_ex;	/* extent for this swapdev */
140 	char			swd_exname[12];	/* name of extent above */
141 	struct vnode		*swd_vp;	/* backing vnode */
142 	TAILQ_ENTRY(swapdev)	swd_next;	/* priority tailq */
143 
144 	int			swd_bsize;	/* blocksize (bytes) */
145 	int			swd_maxactive;	/* max active i/o reqs */
146 	int			swd_active;	/* # of active i/o reqs */
147 	struct bufq		swd_bufq;
148 	struct ucred		*swd_cred;	/* cred for file access */
149 #ifdef UVM_SWAP_ENCRYPT
150 #define SWD_KEY_SHIFT		7		/* One key per 0.5 MByte */
151 #define SWD_KEY(x,y)		&((x)->swd_keys[((y) - (x)->swd_drumoffset) >> SWD_KEY_SHIFT])
152 #define	SWD_KEY_SIZE(x)	(((x) + (1 << SWD_KEY_SHIFT) - 1) >> SWD_KEY_SHIFT)
153 
154 #define SWD_DCRYPT_SHIFT	5
155 #define SWD_DCRYPT_BITS		32
156 #define SWD_DCRYPT_MASK		(SWD_DCRYPT_BITS - 1)
157 #define SWD_DCRYPT_OFF(x)	((x) >> SWD_DCRYPT_SHIFT)
158 #define SWD_DCRYPT_BIT(x)	((x) & SWD_DCRYPT_MASK)
159 #define SWD_DCRYPT_SIZE(x)	(SWD_DCRYPT_OFF((x) + SWD_DCRYPT_MASK) * sizeof(u_int32_t))
160 	u_int32_t		*swd_decrypt;	/* bitmap for decryption */
161 	struct swap_key		*swd_keys;	/* keys for different parts */
162 #endif
163 };
164 
165 /*
166  * swap device priority entry; the list is kept sorted on `spi_priority'.
167  */
168 struct swappri {
169 	int			spi_priority;     /* priority */
170 	TAILQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
171 	/* tailq of swapdevs at this priority */
172 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
173 };
174 
175 /*
176  * The following two structures are used to keep track of data transfers
177  * on swap devices associated with regular files.
178  * NOTE: this code is more or less a copy of vnd.c; we use the same
179  * structure names here to ease porting..
180  */
181 struct vndxfer {
182 	struct buf	*vx_bp;		/* Pointer to parent buffer */
183 	struct swapdev	*vx_sdp;
184 	int		vx_error;
185 	int		vx_pending;	/* # of pending aux buffers */
186 	int		vx_flags;
187 #define VX_BUSY		1
188 #define VX_DEAD		2
189 };
190 
191 struct vndbuf {
192 	struct buf	vb_buf;
193 	struct vndxfer	*vb_vnx;
194 	struct task	vb_task;
195 };
196 
197 /*
198  * We keep a of pool vndbuf's and vndxfer structures.
199  */
200 struct pool vndxfer_pool;
201 struct pool vndbuf_pool;
202 
203 
204 /*
205  * local variables
206  */
207 struct extent *swapmap;		/* controls the mapping of /dev/drum */
208 
209 /* list of all active swap devices [by priority] */
210 LIST_HEAD(swap_priority, swappri);
211 struct swap_priority swap_priority;
212 
213 /* locks */
214 struct rwlock swap_syscall_lock = RWLOCK_INITIALIZER("swplk");
215 
216 struct mutex oommtx = MUTEX_INITIALIZER(IPL_VM);
217 struct vm_page *oompps[SWCLUSTPAGES];
218 int oom = 0;
219 
220 /*
221  * prototypes
222  */
223 void		 swapdrum_add(struct swapdev *, int);
224 struct swapdev	*swapdrum_getsdp(int);
225 
226 struct swapdev	*swaplist_find(struct vnode *, int);
227 void		 swaplist_insert(struct swapdev *,
228  				     struct swappri *, int);
229 void		 swaplist_trim(void);
230 
231 int swap_on(struct proc *, struct swapdev *);
232 int swap_off(struct proc *, struct swapdev *);
233 
234 void sw_reg_strategy(struct swapdev *, struct buf *, int);
235 void sw_reg_iodone(struct buf *);
236 void sw_reg_iodone_internal(void *);
237 void sw_reg_start(struct swapdev *);
238 
239 int uvm_swap_io(struct vm_page **, int, int, int);
240 
241 void swapmount(void);
242 int uvm_swap_allocpages(struct vm_page **, int, int);
243 
244 #ifdef UVM_SWAP_ENCRYPT
245 /* for swap encrypt */
246 void uvm_swap_markdecrypt(struct swapdev *, int, int, int);
247 boolean_t uvm_swap_needdecrypt(struct swapdev *, int);
248 void uvm_swap_initcrypt(struct swapdev *, int);
249 #endif
250 
251 /*
252  * uvm_swap_init: init the swap system data structures and locks
253  *
254  * => called at boot time from init_main.c after the filesystems
255  *	are brought up (which happens after uvm_init())
256  */
257 void
258 uvm_swap_init(void)
259 {
260 	int error;
261 
262 	/*
263 	 * first, init the swap list, its counter, and its lock.
264 	 * then get a handle on the vnode for /dev/drum by using
265 	 * the its dev_t number ("swapdev", from MD conf.c).
266 	 */
267 	LIST_INIT(&swap_priority);
268 	uvmexp.nswapdev = 0;
269 
270 	if (!swapdev_vp && bdevvp(swapdev, &swapdev_vp))
271 		panic("uvm_swap_init: can't get vnode for swap device");
272 
273 	/*
274 	 * create swap block extent to map /dev/drum. The extent spans
275 	 * 1 to INT_MAX allows 2 gigablocks of swap space.  Note that
276 	 * block 0 is reserved (used to indicate an allocation failure,
277 	 * or no allocation).
278 	 */
279 	swapmap = extent_create("swapmap", 1, INT_MAX,
280 				M_VMSWAP, 0, 0, EX_NOWAIT);
281 	if (swapmap == 0)
282 		panic("uvm_swap_init: extent_create failed");
283 
284 	/* allocate pools for structures used for swapping to files. */
285 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, IPL_BIO, 0,
286 	    "swp vnx", NULL);
287 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, IPL_BIO, 0,
288 	    "swp vnd", NULL);
289 
290 	/* allocate pages for OOM situations. */
291 	error = uvm_swap_allocpages(oompps, SWCLUSTPAGES, UVM_PLA_NOWAIT);
292 	KASSERT(error == 0);
293 
294 	/* Setup the initial swap partition */
295 	swapmount();
296 }
297 
298 #ifdef UVM_SWAP_ENCRYPT
299 void
300 uvm_swap_initcrypt_all(void)
301 {
302 	struct swapdev *sdp;
303 	struct swappri *spp;
304 	int npages;
305 
306 
307 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
308 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
309 			if (sdp->swd_decrypt == NULL) {
310 				npages = dbtob((uint64_t)sdp->swd_nblks) >>
311 				    PAGE_SHIFT;
312 				uvm_swap_initcrypt(sdp, npages);
313 			}
314 		}
315 	}
316 }
317 
318 void
319 uvm_swap_initcrypt(struct swapdev *sdp, int npages)
320 {
321 	/*
322 	 * keep information if a page needs to be decrypted when we get it
323 	 * from the swap device.
324 	 * We cannot chance a malloc later, if we are doing ASYNC puts,
325 	 * we may not call malloc with M_WAITOK.  This consumes only
326 	 * 8KB memory for a 256MB swap partition.
327 	 */
328 	sdp->swd_decrypt = malloc(SWD_DCRYPT_SIZE(npages), M_VMSWAP,
329 	    M_WAITOK|M_ZERO);
330 	sdp->swd_keys = mallocarray(SWD_KEY_SIZE(npages),
331 	    sizeof(struct swap_key), M_VMSWAP, M_WAITOK|M_ZERO);
332 }
333 
334 #endif /* UVM_SWAP_ENCRYPT */
335 
336 int
337 uvm_swap_allocpages(struct vm_page **pps, int npages, int flags)
338 {
339 	struct pglist	pgl;
340 	int error, i;
341 
342 	KASSERT(npages <= SWCLUSTPAGES);
343 
344 	TAILQ_INIT(&pgl);
345 again:
346 	error = uvm_pglistalloc(npages * PAGE_SIZE, dma_constraint.ucr_low,
347 	    dma_constraint.ucr_high, 0, 0, &pgl, npages, flags);
348 	if (error && (curproc == uvm.pagedaemon_proc)) {
349 		mtx_enter(&oommtx);
350 		if (oom) {
351 			msleep_nsec(&oom, &oommtx, PVM | PNORELOCK,
352 			 "oom", INFSLP);
353 			goto again;
354 		}
355 		oom = 1;
356 		for (i = 0; i < npages; i++) {
357 			pps[i] = oompps[i];
358 			atomic_setbits_int(&pps[i]->pg_flags, PG_BUSY);
359 		}
360 		mtx_leave(&oommtx);
361 		return 0;
362 	}
363 	if (error)
364 		return error;
365 
366 	for (i = 0; i < npages; i++) {
367 		pps[i] = TAILQ_FIRST(&pgl);
368 		/* *sigh* */
369 		atomic_setbits_int(&pps[i]->pg_flags, PG_BUSY);
370 		TAILQ_REMOVE(&pgl, pps[i], pageq);
371 	}
372 
373 	return 0;
374 }
375 
376 void
377 uvm_swap_freepages(struct vm_page **pps, int npages)
378 {
379 	int i;
380 
381 	if (pps[0] == oompps[0]) {
382 		for (i = 0; i < npages; i++)
383 			uvm_pageclean(pps[i]);
384 
385 		mtx_enter(&oommtx);
386 		KASSERT(oom == 1);
387 		oom = 0;
388 		mtx_leave(&oommtx);
389 		wakeup(&oom);
390 		return;
391 	}
392 
393 	uvm_lock_pageq();
394 	for (i = 0; i < npages; i++)
395 		uvm_pagefree(pps[i]);
396 	uvm_unlock_pageq();
397 
398 }
399 
400 #ifdef UVM_SWAP_ENCRYPT
401 /*
402  * Mark pages on the swap device for later decryption
403  */
404 
405 void
406 uvm_swap_markdecrypt(struct swapdev *sdp, int startslot, int npages,
407     int decrypt)
408 {
409 	int pagestart, i;
410 	int off, bit;
411 
412 	if (!sdp)
413 		return;
414 
415 	pagestart = startslot - sdp->swd_drumoffset;
416 	for (i = 0; i < npages; i++, pagestart++) {
417 		off = SWD_DCRYPT_OFF(pagestart);
418 		bit = SWD_DCRYPT_BIT(pagestart);
419 		if (decrypt)
420 			/* pages read need decryption */
421 			sdp->swd_decrypt[off] |= 1 << bit;
422 		else
423 			/* pages read do not need decryption */
424 			sdp->swd_decrypt[off] &= ~(1 << bit);
425 	}
426 }
427 
428 /*
429  * Check if the page that we got from disk needs to be decrypted
430  */
431 
432 boolean_t
433 uvm_swap_needdecrypt(struct swapdev *sdp, int off)
434 {
435 	if (!sdp)
436 		return FALSE;
437 
438 	off -= sdp->swd_drumoffset;
439 	return sdp->swd_decrypt[SWD_DCRYPT_OFF(off)] & (1 << SWD_DCRYPT_BIT(off)) ?
440 		TRUE : FALSE;
441 }
442 
443 void
444 uvm_swap_finicrypt_all(void)
445 {
446 	struct swapdev *sdp;
447 	struct swappri *spp;
448 	struct swap_key *key;
449 	unsigned int nkeys;
450 
451 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
452 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
453 			if (sdp->swd_decrypt == NULL)
454 				continue;
455 
456 			nkeys = dbtob((uint64_t)sdp->swd_nblks) >> PAGE_SHIFT;
457 			key = sdp->swd_keys + (SWD_KEY_SIZE(nkeys) - 1);
458 			do {
459 				if (key->refcount != 0)
460 					swap_key_delete(key);
461 			} while (key-- != sdp->swd_keys);
462 		}
463 	}
464 }
465 #endif /* UVM_SWAP_ENCRYPT */
466 
467 /*
468  * swaplist functions: functions that operate on the list of swap
469  * devices on the system.
470  */
471 
472 /*
473  * swaplist_insert: insert swap device "sdp" into the global list
474  *
475  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
476  * => caller must provide a newly malloc'd swappri structure (we will
477  *	FREE it if we don't need it... this it to prevent malloc blocking
478  *	here while adding swap)
479  */
480 void
481 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
482 {
483 	struct swappri *spp, *pspp;
484 
485 	/*
486 	 * find entry at or after which to insert the new device.
487 	 */
488 	pspp = NULL;
489 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
490 		if (priority <= spp->spi_priority)
491 			break;
492 		pspp = spp;
493 	}
494 
495 	/*
496 	 * new priority?
497 	 */
498 	if (spp == NULL || spp->spi_priority != priority) {
499 		spp = newspp;  /* use newspp! */
500 
501 		spp->spi_priority = priority;
502 		TAILQ_INIT(&spp->spi_swapdev);
503 
504 		if (pspp)
505 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
506 		else
507 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
508 	} else {
509 	  	/* we don't need a new priority structure, free it */
510 		free(newspp, M_VMSWAP, sizeof(*newspp));
511 	}
512 
513 	/*
514 	 * priority found (or created).   now insert on the priority's
515 	 * tailq list and bump the total number of swapdevs.
516 	 */
517 	sdp->swd_priority = priority;
518 	TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
519 	uvmexp.nswapdev++;
520 }
521 
522 /*
523  * swaplist_find: find and optionally remove a swap device from the
524  *	global list.
525  *
526  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
527  * => we return the swapdev we found (and removed)
528  */
529 struct swapdev *
530 swaplist_find(struct vnode *vp, boolean_t remove)
531 {
532 	struct swapdev *sdp;
533 	struct swappri *spp;
534 
535 	/*
536 	 * search the lists for the requested vp
537 	 */
538 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
539 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
540 			if (sdp->swd_vp != vp)
541 				continue;
542 			if (remove) {
543 				TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
544 				uvmexp.nswapdev--;
545 			}
546 			return (sdp);
547 		}
548 	}
549 	return (NULL);
550 }
551 
552 
553 /*
554  * swaplist_trim: scan priority list for empty priority entries and kill
555  *	them.
556  *
557  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
558  */
559 void
560 swaplist_trim(void)
561 {
562 	struct swappri *spp, *nextspp;
563 
564 	LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
565 		if (!TAILQ_EMPTY(&spp->spi_swapdev))
566 			continue;
567 		LIST_REMOVE(spp, spi_swappri);
568 		free(spp, M_VMSWAP, sizeof(*spp));
569 	}
570 }
571 
572 /*
573  * swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area.
574  *
575  * => caller must hold swap_syscall_lock
576  * => uvm.swap_data_lock should be unlocked (we may sleep)
577  */
578 void
579 swapdrum_add(struct swapdev *sdp, int npages)
580 {
581 	u_long result;
582 
583 	if (extent_alloc(swapmap, npages, EX_NOALIGN, 0, EX_NOBOUNDARY,
584 	    EX_WAITOK, &result))
585 		panic("swapdrum_add");
586 
587 	sdp->swd_drumoffset = result;
588 	sdp->swd_drumsize = npages;
589 }
590 
591 /*
592  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
593  *	to the "swapdev" that maps that section of the drum.
594  *
595  * => each swapdev takes one big contig chunk of the drum
596  * => caller must hold uvm.swap_data_lock
597  */
598 struct swapdev *
599 swapdrum_getsdp(int pgno)
600 {
601 	struct swapdev *sdp;
602 	struct swappri *spp;
603 
604 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
605 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
606 			if (pgno >= sdp->swd_drumoffset &&
607 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
608 				return sdp;
609 			}
610 		}
611 	}
612 	return NULL;
613 }
614 
615 
616 /*
617  * sys_swapctl: main entry point for swapctl(2) system call
618  * 	[with two helper functions: swap_on and swap_off]
619  */
620 int
621 sys_swapctl(struct proc *p, void *v, register_t *retval)
622 {
623 	struct sys_swapctl_args /* {
624 		syscallarg(int) cmd;
625 		syscallarg(void *) arg;
626 		syscallarg(int) misc;
627 	} */ *uap = (struct sys_swapctl_args *)v;
628 	struct vnode *vp;
629 	struct nameidata nd;
630 	struct swappri *spp;
631 	struct swapdev *sdp;
632 	struct swapent *sep;
633 	char	userpath[MAXPATHLEN];
634 	size_t	len;
635 	int	count, error, misc;
636 	int	priority;
637 
638 	misc = SCARG(uap, misc);
639 
640 	if ((error = pledge_swapctl(p, SCARG(uap, cmd))))
641 		return error;
642 
643 	/*
644 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
645 	 */
646 	rw_enter_write(&swap_syscall_lock);
647 
648 	/*
649 	 * we handle the non-priv NSWAP and STATS request first.
650 	 *
651 	 * SWAP_NSWAP: return number of config'd swap devices
652 	 * [can also be obtained with uvmexp sysctl]
653 	 */
654 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
655 		*retval = uvmexp.nswapdev;
656 		error = 0;
657 		goto out;
658 	}
659 
660 	/*
661 	 * SWAP_STATS: get stats on current # of configured swap devs
662 	 *
663 	 * note that the swap_priority list can't change as long
664 	 * as we are holding the swap_syscall_lock.  we don't want
665 	 * to grab the uvm.swap_data_lock because we may fault&sleep during
666 	 * copyout() and we don't want to be holding that lock then!
667 	 */
668 	if (SCARG(uap, cmd) == SWAP_STATS) {
669 		sep = (struct swapent *)SCARG(uap, arg);
670 		count = 0;
671 
672 		LIST_FOREACH(spp, &swap_priority, spi_swappri) {
673 			TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
674 				if (count >= misc)
675 					continue;
676 
677 				sdp->swd_inuse =
678 				    btodb((u_int64_t)sdp->swd_npginuse <<
679 				    PAGE_SHIFT);
680 				error = copyout(&sdp->swd_se, sep,
681 				    sizeof(struct swapent));
682 				if (error)
683 					goto out;
684 
685 				/* now copy out the path if necessary */
686 				error = copyoutstr(sdp->swd_path,
687 				    sep->se_path, sizeof(sep->se_path), NULL);
688 				if (error)
689 					goto out;
690 
691 				count++;
692 				sep++;
693 			}
694 		}
695 
696 		*retval = count;
697 		error = 0;
698 		goto out;
699 	}
700 
701 	/* all other requests require superuser privs.   verify. */
702 	if ((error = suser(p)))
703 		goto out;
704 
705 	/*
706 	 * at this point we expect a path name in arg.   we will
707 	 * use namei() to gain a vnode reference (vref), and lock
708 	 * the vnode (VOP_LOCK).
709 	 */
710 	error = copyinstr(SCARG(uap, arg), userpath, sizeof(userpath), &len);
711 	if (error)
712 		goto out;
713 	disk_map(userpath, userpath, sizeof(userpath), DM_OPENBLCK);
714 	NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, UIO_SYSSPACE, userpath, p);
715 	if ((error = namei(&nd)))
716 		goto out;
717 	vp = nd.ni_vp;
718 	/* note: "vp" is referenced and locked */
719 
720 	error = 0;		/* assume no error */
721 	switch(SCARG(uap, cmd)) {
722 	case SWAP_DUMPDEV:
723 		if (vp->v_type != VBLK) {
724 			error = ENOTBLK;
725 			break;
726 		}
727 		dumpdev = vp->v_rdev;
728 		break;
729 	case SWAP_CTL:
730 		/*
731 		 * get new priority, remove old entry (if any) and then
732 		 * reinsert it in the correct place.  finally, prune out
733 		 * any empty priority structures.
734 		 */
735 		priority = SCARG(uap, misc);
736 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
737 		if ((sdp = swaplist_find(vp, 1)) == NULL) {
738 			error = ENOENT;
739 		} else {
740 			swaplist_insert(sdp, spp, priority);
741 			swaplist_trim();
742 		}
743 		if (error)
744 			free(spp, M_VMSWAP, sizeof(*spp));
745 		break;
746 	case SWAP_ON:
747 		/*
748 		 * If the device is a regular file, make sure the filesystem
749 		 * can be used for swapping.
750 		 */
751 		if (vp->v_type == VREG &&
752 		    (vp->v_mount->mnt_flag & MNT_SWAPPABLE) == 0) {
753 			error = ENOTSUP;
754 			break;
755 		}
756 
757 		/*
758 		 * check for duplicates.   if none found, then insert a
759 		 * dummy entry on the list to prevent someone else from
760 		 * trying to enable this device while we are working on
761 		 * it.
762 		 */
763 		priority = SCARG(uap, misc);
764 		if ((sdp = swaplist_find(vp, 0)) != NULL) {
765 			error = EBUSY;
766 			break;
767 		}
768 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK|M_ZERO);
769 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
770 		sdp->swd_flags = SWF_FAKE;	/* placeholder only */
771 		sdp->swd_vp = vp;
772 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
773 
774 		/*
775 		 * XXX Is NFS elaboration necessary?
776 		 */
777 		if (vp->v_type == VREG) {
778 			sdp->swd_cred = crdup(p->p_ucred);
779 		}
780 
781 		swaplist_insert(sdp, spp, priority);
782 
783 		sdp->swd_pathlen = len;
784 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
785 		strlcpy(sdp->swd_path, userpath, len);
786 
787 		/*
788 		 * we've now got a FAKE placeholder in the swap list.
789 		 * now attempt to enable swap on it.  if we fail, undo
790 		 * what we've done and kill the fake entry we just inserted.
791 		 * if swap_on is a success, it will clear the SWF_FAKE flag
792 		 */
793 
794 		if ((error = swap_on(p, sdp)) != 0) {
795 			(void) swaplist_find(vp, 1);  /* kill fake entry */
796 			swaplist_trim();
797 			if (vp->v_type == VREG) {
798 				crfree(sdp->swd_cred);
799 			}
800 			free(sdp->swd_path, M_VMSWAP, sdp->swd_pathlen);
801 			free(sdp, M_VMSWAP, sizeof(*sdp));
802 			break;
803 		}
804 		break;
805 	case SWAP_OFF:
806 		if ((sdp = swaplist_find(vp, 0)) == NULL) {
807 			error = ENXIO;
808 			break;
809 		}
810 
811 		/*
812 		 * If a device isn't in use or enabled, we
813 		 * can't stop swapping from it (again).
814 		 */
815 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
816 			error = EBUSY;
817 			break;
818 		}
819 
820 		/*
821 		 * do the real work.
822 		 */
823 		error = swap_off(p, sdp);
824 		break;
825 	default:
826 		error = EINVAL;
827 	}
828 
829 	/* done!  release the ref gained by namei() and unlock. */
830 	vput(vp);
831 
832 out:
833 	rw_exit_write(&swap_syscall_lock);
834 
835 	return (error);
836 }
837 
838 /*
839  * swap_on: attempt to enable a swapdev for swapping.   note that the
840  *	swapdev is already on the global list, but disabled (marked
841  *	SWF_FAKE).
842  *
843  * => we avoid the start of the disk (to protect disk labels)
844  * => caller should leave uvm.swap_data_lock unlocked, we may lock it
845  *	if needed.
846  */
847 int
848 swap_on(struct proc *p, struct swapdev *sdp)
849 {
850 	static int count = 0;	/* static */
851 	struct vnode *vp;
852 	int error, npages, nblocks, size;
853 	long addr;
854 	struct vattr va;
855 #if defined(NFSCLIENT)
856 	extern const struct vops nfs_vops;
857 #endif /* defined(NFSCLIENT) */
858 	dev_t dev;
859 
860 	/*
861 	 * we want to enable swapping on sdp.   the swd_vp contains
862 	 * the vnode we want (locked and ref'd), and the swd_dev
863 	 * contains the dev_t of the file, if it a block device.
864 	 */
865 
866 	vp = sdp->swd_vp;
867 	dev = sdp->swd_dev;
868 
869 #if NVND > 0
870 	/* no swapping to vnds. */
871 	if (bdevsw[major(dev)].d_strategy == vndstrategy)
872 		return (EOPNOTSUPP);
873 #endif
874 
875 	/*
876 	 * open the swap file (mostly useful for block device files to
877 	 * let device driver know what is up).
878 	 *
879 	 * we skip the open/close for root on swap because the root
880 	 * has already been opened when root was mounted (mountroot).
881 	 */
882 	if (vp != rootvp) {
883 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
884 			return (error);
885 	}
886 
887 	/* XXX this only works for block devices */
888 	/*
889 	 * we now need to determine the size of the swap area.   for
890 	 * block specials we can call the d_psize function.
891 	 * for normal files, we must stat [get attrs].
892 	 *
893 	 * we put the result in nblks.
894 	 * for normal files, we also want the filesystem block size
895 	 * (which we get with statfs).
896 	 */
897 	switch (vp->v_type) {
898 	case VBLK:
899 		if (bdevsw[major(dev)].d_psize == 0 ||
900 		    (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
901 			error = ENXIO;
902 			goto bad;
903 		}
904 		break;
905 
906 	case VREG:
907 		if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
908 			goto bad;
909 		nblocks = (int)btodb(va.va_size);
910 		if ((error =
911 		     VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
912 			goto bad;
913 
914 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
915 		/*
916 		 * limit the max # of outstanding I/O requests we issue
917 		 * at any one time.   take it easy on NFS servers.
918 		 */
919 #if defined(NFSCLIENT)
920 		if (vp->v_op == &nfs_vops)
921 			sdp->swd_maxactive = 2; /* XXX */
922 		else
923 #endif /* defined(NFSCLIENT) */
924 			sdp->swd_maxactive = 8; /* XXX */
925 		bufq_init(&sdp->swd_bufq, BUFQ_FIFO);
926 		break;
927 
928 	default:
929 		error = ENXIO;
930 		goto bad;
931 	}
932 
933 	/*
934 	 * save nblocks in a safe place and convert to pages.
935 	 */
936 
937 	sdp->swd_nblks = nblocks;
938 	npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
939 
940 	/*
941 	 * for block special files, we want to make sure that leave
942 	 * the disklabel and bootblocks alone, so we arrange to skip
943 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
944 	 * note that because of this the "size" can be less than the
945 	 * actual number of blocks on the device.
946 	 */
947 	if (vp->v_type == VBLK) {
948 		/* we use pages 1 to (size - 1) [inclusive] */
949 		size = npages - 1;
950 		addr = 1;
951 	} else {
952 		/* we use pages 0 to (size - 1) [inclusive] */
953 		size = npages;
954 		addr = 0;
955 	}
956 
957 	/*
958 	 * make sure we have enough blocks for a reasonable sized swap
959 	 * area.   we want at least one page.
960 	 */
961 
962 	if (size < 1) {
963 		error = EINVAL;
964 		goto bad;
965 	}
966 
967 	/*
968 	 * now we need to allocate an extent to manage this swap device
969 	 */
970 	snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
971 	    count++);
972 
973 	/* note that extent_create's 3rd arg is inclusive, thus "- 1" */
974 	sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
975 				    0, 0, EX_WAITOK);
976 	/* allocate the `saved' region from the extent so it won't be used */
977 	if (addr) {
978 		if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
979 			panic("disklabel reserve");
980 		/* XXX: is extent synchronized with swd_npginuse? */
981 	}
982 #ifdef HIBERNATE
983 	/*
984 	 * Lock down the last region of primary disk swap, in case
985 	 * hibernate needs to place a signature there.
986 	 */
987 	if (dev == swdevt[0].sw_dev && vp->v_type == VBLK && size > 3 ) {
988 		if (extent_alloc_region(sdp->swd_ex,
989 		    npages - 1 - 1, 1, EX_WAITOK))
990 			panic("hibernate reserve");
991 		/* XXX: is extent synchronized with swd_npginuse? */
992 	}
993 #endif
994 
995 	/* add a ref to vp to reflect usage as a swap device. */
996 	vref(vp);
997 
998 #ifdef UVM_SWAP_ENCRYPT
999 	if (uvm_doswapencrypt)
1000 		uvm_swap_initcrypt(sdp, npages);
1001 #endif
1002 	/* now add the new swapdev to the drum and enable. */
1003 	swapdrum_add(sdp, npages);
1004 	sdp->swd_npages = size;
1005 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
1006 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1007 	uvmexp.swpages += size;
1008 	return (0);
1009 
1010 bad:
1011 	/* failure: close device if necessary and return error. */
1012 	if (vp != rootvp)
1013 		(void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
1014 	return (error);
1015 }
1016 
1017 /*
1018  * swap_off: stop swapping on swapdev
1019  *
1020  * => swap data should be locked, we will unlock.
1021  */
1022 int
1023 swap_off(struct proc *p, struct swapdev *sdp)
1024 {
1025 	int error = 0;
1026 
1027 	/* disable the swap area being removed */
1028 	sdp->swd_flags &= ~SWF_ENABLE;
1029 
1030 	/*
1031 	 * the idea is to find all the pages that are paged out to this
1032 	 * device, and page them all in.  in uvm, swap-backed pageable
1033 	 * memory can take two forms: aobjs and anons.  call the
1034 	 * swapoff hook for each subsystem to bring in pages.
1035 	 */
1036 
1037 	if (uao_swap_off(sdp->swd_drumoffset,
1038 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1039 	    amap_swap_off(sdp->swd_drumoffset,
1040 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
1041 
1042 		error = ENOMEM;
1043 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1044 		error = EBUSY;
1045 	}
1046 
1047 	if (error) {
1048 		sdp->swd_flags |= SWF_ENABLE;
1049 		return (error);
1050 	}
1051 
1052 	/*
1053 	 * done with the vnode and saved creds.
1054 	 * drop our ref on the vnode before calling VOP_CLOSE()
1055 	 * so that spec_close() can tell if this is the last close.
1056 	 */
1057 	if (sdp->swd_vp->v_type == VREG) {
1058 		crfree(sdp->swd_cred);
1059 	}
1060 	vrele(sdp->swd_vp);
1061 	if (sdp->swd_vp != rootvp) {
1062 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1063 	}
1064 
1065 	uvmexp.swpages -= sdp->swd_npages;
1066 
1067 	if (swaplist_find(sdp->swd_vp, 1) == NULL)
1068 		panic("swap_off: swapdev not in list");
1069 	swaplist_trim();
1070 
1071 	/*
1072 	 * free all resources!
1073 	 */
1074 	extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1075 		    EX_WAITOK);
1076 	extent_destroy(sdp->swd_ex);
1077 	/* free sdp->swd_path ? */
1078 	free(sdp, M_VMSWAP, sizeof(*sdp));
1079 	return (0);
1080 }
1081 
1082 /*
1083  * /dev/drum interface and i/o functions
1084  */
1085 
1086 /*
1087  * swstrategy: perform I/O on the drum
1088  *
1089  * => we must map the i/o request from the drum to the correct swapdev.
1090  */
1091 void
1092 swstrategy(struct buf *bp)
1093 {
1094 	struct swapdev *sdp;
1095 	int s, pageno, bn;
1096 
1097 	/*
1098 	 * convert block number to swapdev.   note that swapdev can't
1099 	 * be yanked out from under us because we are holding resources
1100 	 * in it (i.e. the blocks we are doing I/O on).
1101 	 */
1102 	pageno = dbtob((u_int64_t)bp->b_blkno) >> PAGE_SHIFT;
1103 	sdp = swapdrum_getsdp(pageno);
1104 	if (sdp == NULL) {
1105 		bp->b_error = EINVAL;
1106 		bp->b_flags |= B_ERROR;
1107 		s = splbio();
1108 		biodone(bp);
1109 		splx(s);
1110 		return;
1111 	}
1112 
1113 	/* convert drum page number to block number on this swapdev. */
1114 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
1115 	bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1116 
1117 	/*
1118 	 * for block devices we finish up here.
1119 	 * for regular files we have to do more work which we delegate
1120 	 * to sw_reg_strategy().
1121 	 */
1122 	switch (sdp->swd_vp->v_type) {
1123 	default:
1124 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1125 	case VBLK:
1126 		/*
1127 		 * must convert "bp" from an I/O on /dev/drum to an I/O
1128 		 * on the swapdev (sdp).
1129 		 */
1130 		s = splbio();
1131 		buf_replacevnode(bp, sdp->swd_vp);
1132 
1133 		bp->b_blkno = bn;
1134       		splx(s);
1135 		VOP_STRATEGY(bp->b_vp, bp);
1136 		return;
1137 	case VREG:
1138 		/* delegate to sw_reg_strategy function. */
1139 		sw_reg_strategy(sdp, bp, bn);
1140 		return;
1141 	}
1142 	/* NOTREACHED */
1143 }
1144 
1145 /*
1146  * sw_reg_strategy: handle swap i/o to regular files
1147  */
1148 void
1149 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1150 {
1151 	struct vnode	*vp;
1152 	struct vndxfer	*vnx;
1153 	daddr_t	nbn;
1154 	caddr_t		addr;
1155 	off_t		byteoff;
1156 	int		s, off, nra, error, sz, resid;
1157 
1158 	/*
1159 	 * allocate a vndxfer head for this transfer and point it to
1160 	 * our buffer.
1161 	 */
1162 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1163 	vnx->vx_flags = VX_BUSY;
1164 	vnx->vx_error = 0;
1165 	vnx->vx_pending = 0;
1166 	vnx->vx_bp = bp;
1167 	vnx->vx_sdp = sdp;
1168 
1169 	/*
1170 	 * setup for main loop where we read filesystem blocks into
1171 	 * our buffer.
1172 	 */
1173 	error = 0;
1174 	bp->b_resid = bp->b_bcount;	/* nothing transferred yet! */
1175 	addr = bp->b_data;		/* current position in buffer */
1176 	byteoff = dbtob((u_int64_t)bn);
1177 
1178 	for (resid = bp->b_resid; resid; resid -= sz) {
1179 		struct vndbuf	*nbp;
1180 		/*
1181 		 * translate byteoffset into block number.  return values:
1182 		 *   vp = vnode of underlying device
1183 		 *  nbn = new block number (on underlying vnode dev)
1184 		 *  nra = num blocks we can read-ahead (excludes requested
1185 		 *	block)
1186 		 */
1187 		nra = 0;
1188 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1189 				 	&vp, &nbn, &nra);
1190 
1191 		if (error == 0 && nbn == -1) {
1192 			/*
1193 			 * this used to just set error, but that doesn't
1194 			 * do the right thing.  Instead, it causes random
1195 			 * memory errors.  The panic() should remain until
1196 			 * this condition doesn't destabilize the system.
1197 			 */
1198 #if 1
1199 			panic("sw_reg_strategy: swap to sparse file");
1200 #else
1201 			error = EIO;	/* failure */
1202 #endif
1203 		}
1204 
1205 		/*
1206 		 * punt if there was an error or a hole in the file.
1207 		 * we must wait for any i/o ops we have already started
1208 		 * to finish before returning.
1209 		 *
1210 		 * XXX we could deal with holes here but it would be
1211 		 * a hassle (in the write case).
1212 		 */
1213 		if (error) {
1214 			s = splbio();
1215 			vnx->vx_error = error;	/* pass error up */
1216 			goto out;
1217 		}
1218 
1219 		/*
1220 		 * compute the size ("sz") of this transfer (in bytes).
1221 		 */
1222 		off = byteoff % sdp->swd_bsize;
1223 		sz = (1 + nra) * sdp->swd_bsize - off;
1224 		if (sz > resid)
1225 			sz = resid;
1226 
1227 		/*
1228 		 * now get a buf structure.   note that the vb_buf is
1229 		 * at the front of the nbp structure so that you can
1230 		 * cast pointers between the two structure easily.
1231 		 */
1232 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1233 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
1234 		nbp->vb_buf.b_bcount   = sz;
1235 		nbp->vb_buf.b_bufsize  = sz;
1236 		nbp->vb_buf.b_error    = 0;
1237 		nbp->vb_buf.b_data     = addr;
1238 		nbp->vb_buf.b_bq       = NULL;
1239 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
1240 		nbp->vb_buf.b_proc     = bp->b_proc;
1241 		nbp->vb_buf.b_iodone   = sw_reg_iodone;
1242 		nbp->vb_buf.b_vp       = NULLVP;
1243 		nbp->vb_buf.b_vnbufs.le_next = NOLIST;
1244 		LIST_INIT(&nbp->vb_buf.b_dep);
1245 
1246 		/*
1247 		 * set b_dirtyoff/end and b_validoff/end.   this is
1248 		 * required by the NFS client code (otherwise it will
1249 		 * just discard our I/O request).
1250 		 */
1251 		if (bp->b_dirtyend == 0) {
1252 			nbp->vb_buf.b_dirtyoff = 0;
1253 			nbp->vb_buf.b_dirtyend = sz;
1254 		} else {
1255 			nbp->vb_buf.b_dirtyoff =
1256 			    max(0, bp->b_dirtyoff - (bp->b_bcount-resid));
1257 			nbp->vb_buf.b_dirtyend =
1258 			    min(sz,
1259 				max(0, bp->b_dirtyend - (bp->b_bcount-resid)));
1260 		}
1261 		if (bp->b_validend == 0) {
1262 			nbp->vb_buf.b_validoff = 0;
1263 			nbp->vb_buf.b_validend = sz;
1264 		} else {
1265 			nbp->vb_buf.b_validoff =
1266 			    max(0, bp->b_validoff - (bp->b_bcount-resid));
1267 			nbp->vb_buf.b_validend =
1268 			    min(sz,
1269 				max(0, bp->b_validend - (bp->b_bcount-resid)));
1270 		}
1271 
1272 		/* patch it back to the vnx */
1273 		nbp->vb_vnx = vnx;
1274 		task_set(&nbp->vb_task, sw_reg_iodone_internal, nbp);
1275 
1276 		s = splbio();
1277 		if (vnx->vx_error != 0) {
1278 			pool_put(&vndbuf_pool, nbp);
1279 			goto out;
1280 		}
1281 		vnx->vx_pending++;
1282 
1283 		/* assoc new buffer with underlying vnode */
1284 		bgetvp(vp, &nbp->vb_buf);
1285 
1286 		/* start I/O if we are not over our limit */
1287 		bufq_queue(&sdp->swd_bufq, &nbp->vb_buf);
1288 		sw_reg_start(sdp);
1289 		splx(s);
1290 
1291 		/*
1292 		 * advance to the next I/O
1293 		 */
1294 		byteoff += sz;
1295 		addr += sz;
1296 	}
1297 
1298 	s = splbio();
1299 
1300 out: /* Arrive here at splbio */
1301 	vnx->vx_flags &= ~VX_BUSY;
1302 	if (vnx->vx_pending == 0) {
1303 		if (vnx->vx_error != 0) {
1304 			bp->b_error = vnx->vx_error;
1305 			bp->b_flags |= B_ERROR;
1306 		}
1307 		pool_put(&vndxfer_pool, vnx);
1308 		biodone(bp);
1309 	}
1310 	splx(s);
1311 }
1312 
1313 /* sw_reg_start: start an I/O request on the requested swapdev. */
1314 void
1315 sw_reg_start(struct swapdev *sdp)
1316 {
1317 	struct buf	*bp;
1318 
1319 	/* XXX: recursion control */
1320 	if ((sdp->swd_flags & SWF_BUSY) != 0)
1321 		return;
1322 
1323 	sdp->swd_flags |= SWF_BUSY;
1324 
1325 	while (sdp->swd_active < sdp->swd_maxactive) {
1326 		bp = bufq_dequeue(&sdp->swd_bufq);
1327 		if (bp == NULL)
1328 			break;
1329 
1330 		sdp->swd_active++;
1331 
1332 		if ((bp->b_flags & B_READ) == 0)
1333 			bp->b_vp->v_numoutput++;
1334 
1335 		VOP_STRATEGY(bp->b_vp, bp);
1336 	}
1337 	sdp->swd_flags &= ~SWF_BUSY;
1338 }
1339 
1340 /*
1341  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1342  *
1343  * => note that we can recover the vndbuf struct by casting the buf ptr
1344  *
1345  * XXX:
1346  * We only put this onto a taskq here, because of the maxactive game since
1347  * it basically requires us to call back into VOP_STRATEGY() (where we must
1348  * be able to sleep) via sw_reg_start().
1349  */
1350 void
1351 sw_reg_iodone(struct buf *bp)
1352 {
1353 	struct vndbuf *vbp = (struct vndbuf *)bp;
1354 	task_add(systq, &vbp->vb_task);
1355 }
1356 
1357 void
1358 sw_reg_iodone_internal(void *xvbp)
1359 {
1360 	struct vndbuf *vbp = xvbp;
1361 	struct vndxfer *vnx = vbp->vb_vnx;
1362 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
1363 	struct swapdev	*sdp = vnx->vx_sdp;
1364 	int resid, s;
1365 
1366 	s = splbio();
1367 
1368 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1369 	pbp->b_resid -= resid;
1370 	vnx->vx_pending--;
1371 
1372 	/* pass error upward */
1373 	if (vbp->vb_buf.b_error)
1374 		vnx->vx_error = vbp->vb_buf.b_error;
1375 
1376 	/* disassociate this buffer from the vnode (if any). */
1377 	if (vbp->vb_buf.b_vp != NULL) {
1378 		brelvp(&vbp->vb_buf);
1379 	}
1380 
1381 	/* kill vbp structure */
1382 	pool_put(&vndbuf_pool, vbp);
1383 
1384 	/*
1385 	 * wrap up this transaction if it has run to completion or, in
1386 	 * case of an error, when all auxiliary buffers have returned.
1387 	 */
1388 	if (vnx->vx_error != 0) {
1389 		/* pass error upward */
1390 		pbp->b_flags |= B_ERROR;
1391 		pbp->b_error = vnx->vx_error;
1392 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1393 			pool_put(&vndxfer_pool, vnx);
1394 			biodone(pbp);
1395 		}
1396 	} else if (pbp->b_resid == 0) {
1397 		KASSERT(vnx->vx_pending == 0);
1398 		if ((vnx->vx_flags & VX_BUSY) == 0) {
1399 			pool_put(&vndxfer_pool, vnx);
1400 			biodone(pbp);
1401 		}
1402 	}
1403 
1404 	/*
1405 	 * done!   start next swapdev I/O if one is pending
1406 	 */
1407 	sdp->swd_active--;
1408 	sw_reg_start(sdp);
1409 	splx(s);
1410 }
1411 
1412 
1413 /*
1414  * uvm_swap_alloc: allocate space on swap
1415  *
1416  * => allocation is done "round robin" down the priority list, as we
1417  *	allocate in a priority we "rotate" the tail queue.
1418  * => space can be freed with uvm_swap_free
1419  * => we return the page slot number in /dev/drum (0 == invalid slot)
1420  * => we lock uvm.swap_data_lock
1421  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1422  */
1423 int
1424 uvm_swap_alloc(int *nslots, boolean_t lessok)
1425 {
1426 	struct swapdev *sdp;
1427 	struct swappri *spp;
1428 	u_long	result;
1429 
1430 	/*
1431 	 * no swap devices configured yet?   definite failure.
1432 	 */
1433 	if (uvmexp.nswapdev < 1)
1434 		return 0;
1435 
1436 	/*
1437 	 * lock data lock, convert slots into blocks, and enter loop
1438 	 */
1439 	KERNEL_ASSERT_LOCKED();
1440 ReTry:	/* XXXMRG */
1441 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1442 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1443 			/* if it's not enabled, then we can't swap from it */
1444 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
1445 				continue;
1446 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1447 				continue;
1448 			if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN, 0,
1449 					 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1450 					 &result) != 0) {
1451 				continue;
1452 			}
1453 
1454 			/*
1455 			 * successful allocation!  now rotate the tailq.
1456 			 */
1457 			TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1458 			TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1459 			sdp->swd_npginuse += *nslots;
1460 			uvmexp.swpginuse += *nslots;
1461 			/* done!  return drum slot number */
1462 			return result + sdp->swd_drumoffset;
1463 		}
1464 	}
1465 
1466 	/* XXXMRG: BEGIN HACK */
1467 	if (*nslots > 1 && lessok) {
1468 		*nslots = 1;
1469 		goto ReTry;	/* XXXMRG: ugh!  extent should support this for us */
1470 	}
1471 	/* XXXMRG: END HACK */
1472 
1473 	return 0;		/* failed */
1474 }
1475 
1476 /*
1477  * uvm_swapisfull: return true if all of available swap is allocated
1478  * and in use.
1479  */
1480 int
1481 uvm_swapisfull(void)
1482 {
1483 	int result;
1484 
1485 	KERNEL_LOCK();
1486 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1487 	result = (uvmexp.swpgonly == uvmexp.swpages);
1488 	KERNEL_UNLOCK();
1489 
1490 	return result;
1491 }
1492 
1493 /*
1494  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1495  *
1496  * => we lock uvm.swap_data_lock
1497  */
1498 void
1499 uvm_swap_markbad(int startslot, int nslots)
1500 {
1501 	struct swapdev *sdp;
1502 
1503 	KERNEL_LOCK();
1504 	sdp = swapdrum_getsdp(startslot);
1505 	if (sdp != NULL) {
1506 		/*
1507 		 * we just keep track of how many pages have been marked bad
1508 		 * in this device, to make everything add up in swap_off().
1509 		 * we assume here that the range of slots will all be within
1510 		 * one swap device.
1511 		 */
1512 		sdp->swd_npgbad += nslots;
1513 	}
1514 	KERNEL_UNLOCK();
1515 }
1516 
1517 /*
1518  * uvm_swap_free: free swap slots
1519  *
1520  * => this can be all or part of an allocation made by uvm_swap_alloc
1521  * => we lock uvm.swap_data_lock
1522  */
1523 void
1524 uvm_swap_free(int startslot, int nslots)
1525 {
1526 	struct swapdev *sdp;
1527 
1528 	/*
1529 	 * ignore attempts to free the "bad" slot.
1530 	 */
1531 
1532 	if (startslot == SWSLOT_BAD) {
1533 		return;
1534 	}
1535 
1536 	/*
1537 	 * convert drum slot offset back to sdp, free the blocks
1538 	 * in the extent, and return.   must hold pri lock to do
1539 	 * lookup and access the extent.
1540 	 */
1541 	KERNEL_LOCK();
1542 	sdp = swapdrum_getsdp(startslot);
1543 	KASSERT(uvmexp.nswapdev >= 1);
1544 	KASSERT(sdp != NULL);
1545 	KASSERT(sdp->swd_npginuse >= nslots);
1546 	if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1547 			EX_MALLOCOK|EX_NOWAIT) != 0) {
1548 		printf("warning: resource shortage: %d pages of swap lost\n",
1549 			nslots);
1550 	}
1551 
1552 	sdp->swd_npginuse -= nslots;
1553 	uvmexp.swpginuse -= nslots;
1554 #ifdef UVM_SWAP_ENCRYPT
1555 	{
1556 		int i;
1557 		if (swap_encrypt_initialized) {
1558 			/* Dereference keys */
1559 			for (i = 0; i < nslots; i++)
1560 				if (uvm_swap_needdecrypt(sdp, startslot + i)) {
1561 					struct swap_key *key;
1562 
1563 					key = SWD_KEY(sdp, startslot + i);
1564 					if (key->refcount != 0)
1565 						SWAP_KEY_PUT(sdp, key);
1566 				}
1567 
1568 			/* Mark range as not decrypt */
1569 			uvm_swap_markdecrypt(sdp, startslot, nslots, 0);
1570 		}
1571 	}
1572 #endif /* UVM_SWAP_ENCRYPT */
1573 	KERNEL_UNLOCK();
1574 }
1575 
1576 /*
1577  * uvm_swap_put: put any number of pages into a contig place on swap
1578  *
1579  * => can be sync or async
1580  */
1581 int
1582 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1583 {
1584 	int	result;
1585 
1586 	result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1587 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1588 
1589 	return (result);
1590 }
1591 
1592 /*
1593  * uvm_swap_get: get a single page from swap
1594  *
1595  * => usually a sync op (from fault)
1596  */
1597 int
1598 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1599 {
1600 	int	result;
1601 
1602 	uvmexp.nswget++;
1603 	KASSERT(flags & PGO_SYNCIO);
1604 	if (swslot == SWSLOT_BAD) {
1605 		return VM_PAGER_ERROR;
1606 	}
1607 
1608 	KERNEL_LOCK();
1609 	result = uvm_swap_io(&page, swslot, 1, B_READ);
1610 	KERNEL_UNLOCK();
1611 
1612 	if (result == VM_PAGER_OK || result == VM_PAGER_PEND) {
1613 		/*
1614 		 * this page is no longer only in swap.
1615 		 */
1616 		atomic_dec_int(&uvmexp.swpgonly);
1617 	}
1618 	return (result);
1619 }
1620 
1621 /*
1622  * uvm_swap_io: do an i/o operation to swap
1623  */
1624 
1625 int
1626 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1627 {
1628 	daddr_t startblk;
1629 	struct	buf *bp;
1630 	vaddr_t kva;
1631 	int	result, s, mapinflags, pflag, bounce = 0, i;
1632 	boolean_t write, async;
1633 	vaddr_t bouncekva;
1634 	struct vm_page *tpps[SWCLUSTPAGES];
1635 	int pdaemon = (curproc == uvm.pagedaemon_proc);
1636 #ifdef UVM_SWAP_ENCRYPT
1637 	struct swapdev *sdp;
1638 	int	encrypt = 0;
1639 #endif
1640 
1641 	KERNEL_ASSERT_LOCKED();
1642 
1643 	write = (flags & B_READ) == 0;
1644 	async = (flags & B_ASYNC) != 0;
1645 
1646 	/* convert starting drum slot to block number */
1647 	startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
1648 
1649 	pflag = (async || pdaemon) ? PR_NOWAIT : PR_WAITOK;
1650 	bp = pool_get(&bufpool, pflag | PR_ZERO);
1651 	if (bp == NULL)
1652 		return (VM_PAGER_AGAIN);
1653 
1654 	/*
1655 	 * map the pages into the kernel (XXX: currently required
1656 	 * by buffer system).
1657 	 */
1658 	mapinflags = !write ? UVMPAGER_MAPIN_READ : UVMPAGER_MAPIN_WRITE;
1659 	if (!async)
1660 		mapinflags |= UVMPAGER_MAPIN_WAITOK;
1661 	kva = uvm_pagermapin(pps, npages, mapinflags);
1662 	if (kva == 0) {
1663 		pool_put(&bufpool, bp);
1664 		return (VM_PAGER_AGAIN);
1665 	}
1666 
1667 #ifdef UVM_SWAP_ENCRYPT
1668 	if (write) {
1669 		/*
1670 		 * Check if we need to do swap encryption on old pages.
1671 		 * Later we need a different scheme, that swap encrypts
1672 		 * all pages of a process that had at least one page swap
1673 		 * encrypted.  Then we might not need to copy all pages
1674 		 * in the cluster, and avoid the memory overheard in
1675 		 * swapping.
1676 		 */
1677 		if (uvm_doswapencrypt)
1678 			encrypt = 1;
1679 	}
1680 
1681 	if (swap_encrypt_initialized || encrypt) {
1682 		/*
1683 		 * we need to know the swap device that we are swapping to/from
1684 		 * to see if the pages need to be marked for decryption or
1685 		 * actually need to be decrypted.
1686 		 * XXX - does this information stay the same over the whole
1687 		 * execution of this function?
1688 		 */
1689 		sdp = swapdrum_getsdp(startslot);
1690 	}
1691 
1692 	/*
1693 	 * Check that we are dma capable for read (write always bounces
1694 	 * through the swapencrypt anyway...
1695 	 */
1696 	if (write && encrypt) {
1697 		bounce = 1; /* bounce through swapencrypt always */
1698 	} else {
1699 #else
1700 	{
1701 #endif
1702 
1703 		for (i = 0; i < npages; i++) {
1704 			if (VM_PAGE_TO_PHYS(pps[i]) < dma_constraint.ucr_low ||
1705 			   VM_PAGE_TO_PHYS(pps[i]) > dma_constraint.ucr_high) {
1706 				bounce = 1;
1707 				break;
1708 			}
1709 		}
1710 	}
1711 
1712 	if (bounce)  {
1713 		int swmapflags, plaflags;
1714 
1715 		/* We always need write access. */
1716 		swmapflags = UVMPAGER_MAPIN_READ;
1717 		plaflags = UVM_PLA_NOWAIT;
1718 		if (!async) {
1719 			swmapflags |= UVMPAGER_MAPIN_WAITOK;
1720 			plaflags = UVM_PLA_WAITOK;
1721 		}
1722 		if (uvm_swap_allocpages(tpps, npages, plaflags)) {
1723 			pool_put(&bufpool, bp);
1724 			uvm_pagermapout(kva, npages);
1725 			return (VM_PAGER_AGAIN);
1726 		}
1727 
1728 		bouncekva = uvm_pagermapin(tpps, npages, swmapflags);
1729 		if (bouncekva == 0) {
1730 			pool_put(&bufpool, bp);
1731 			uvm_pagermapout(kva, npages);
1732 			uvm_swap_freepages(tpps, npages);
1733 			return (VM_PAGER_AGAIN);
1734 		}
1735 	}
1736 
1737 	/* encrypt to swap */
1738 	if (write && bounce) {
1739 		int i, opages;
1740 		caddr_t src, dst;
1741 		u_int64_t block;
1742 
1743 		src = (caddr_t) kva;
1744 		dst = (caddr_t) bouncekva;
1745 		block = startblk;
1746 		for (i = 0; i < npages; i++) {
1747 #ifdef UVM_SWAP_ENCRYPT
1748 			struct swap_key *key;
1749 
1750 			if (encrypt) {
1751 				key = SWD_KEY(sdp, startslot + i);
1752 				SWAP_KEY_GET(sdp, key);	/* add reference */
1753 
1754 				swap_encrypt(key, src, dst, block, PAGE_SIZE);
1755 				block += btodb(PAGE_SIZE);
1756 			} else {
1757 #else
1758 			{
1759 #endif /* UVM_SWAP_ENCRYPT */
1760 				memcpy(dst, src, PAGE_SIZE);
1761 			}
1762 			/* this just tells async callbacks to free */
1763 			atomic_setbits_int(&tpps[i]->pg_flags, PQ_ENCRYPT);
1764 			src += PAGE_SIZE;
1765 			dst += PAGE_SIZE;
1766 		}
1767 
1768 		uvm_pagermapout(kva, npages);
1769 
1770 		/* dispose of pages we dont use anymore */
1771 		opages = npages;
1772 		uvm_pager_dropcluster(NULL, NULL, pps, &opages,
1773 				      PGO_PDFREECLUST);
1774 
1775 		kva = bouncekva;
1776 	}
1777 
1778 	/*
1779 	 * prevent ASYNC reads.
1780 	 * uvm_swap_io is only called from uvm_swap_get, uvm_swap_get
1781 	 * assumes that all gets are SYNCIO.  Just make sure here.
1782 	 * XXXARTUBC - might not be true anymore.
1783 	 */
1784 	if (!write) {
1785 		flags &= ~B_ASYNC;
1786 		async = 0;
1787 	}
1788 
1789 	/*
1790 	 * fill in the bp.   we currently route our i/o through
1791 	 * /dev/drum's vnode [swapdev_vp].
1792 	 */
1793 	bp->b_flags = B_BUSY | B_NOCACHE | B_RAW | (flags & (B_READ|B_ASYNC));
1794 	bp->b_proc = &proc0;	/* XXX */
1795 	bp->b_vnbufs.le_next = NOLIST;
1796 	if (bounce)
1797 		bp->b_data = (caddr_t)bouncekva;
1798 	else
1799 		bp->b_data = (caddr_t)kva;
1800 	bp->b_bq = NULL;
1801 	bp->b_blkno = startblk;
1802 	LIST_INIT(&bp->b_dep);
1803 	s = splbio();
1804 	bp->b_vp = NULL;
1805 	buf_replacevnode(bp, swapdev_vp);
1806 	splx(s);
1807 	bp->b_bufsize = bp->b_bcount = (long)npages << PAGE_SHIFT;
1808 
1809 	/*
1810 	 * for pageouts we must set "dirtyoff" [NFS client code needs it].
1811 	 * and we bump v_numoutput (counter of number of active outputs).
1812 	 */
1813 	if (write) {
1814 		bp->b_dirtyoff = 0;
1815 		bp->b_dirtyend = npages << PAGE_SHIFT;
1816 #ifdef UVM_SWAP_ENCRYPT
1817 		/* mark the pages in the drum for decryption */
1818 		if (swap_encrypt_initialized)
1819 			uvm_swap_markdecrypt(sdp, startslot, npages, encrypt);
1820 #endif
1821 		s = splbio();
1822 		swapdev_vp->v_numoutput++;
1823 		splx(s);
1824 	}
1825 
1826 	/* for async ops we must set up the iodone handler. */
1827 	if (async) {
1828 		bp->b_flags |= B_CALL | (pdaemon ? B_PDAEMON : 0);
1829 		bp->b_iodone = uvm_aio_biodone;
1830 	}
1831 
1832 	/* now we start the I/O, and if async, return. */
1833 	VOP_STRATEGY(bp->b_vp, bp);
1834 	if (async)
1835 		return (VM_PAGER_PEND);
1836 
1837 	/* must be sync i/o.   wait for it to finish */
1838 	(void) biowait(bp);
1839 	result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK;
1840 
1841 	/* decrypt swap */
1842 	if (!write && !(bp->b_flags & B_ERROR)) {
1843 		int i;
1844 		caddr_t data = (caddr_t)kva;
1845 		caddr_t dst = (caddr_t)kva;
1846 		u_int64_t block = startblk;
1847 
1848 		if (bounce)
1849 			data = (caddr_t)bouncekva;
1850 
1851 		for (i = 0; i < npages; i++) {
1852 #ifdef UVM_SWAP_ENCRYPT
1853 			struct swap_key *key;
1854 
1855 			/* Check if we need to decrypt */
1856 			if (swap_encrypt_initialized &&
1857 			    uvm_swap_needdecrypt(sdp, startslot + i)) {
1858 				key = SWD_KEY(sdp, startslot + i);
1859 				if (key->refcount == 0) {
1860 					result = VM_PAGER_ERROR;
1861 					break;
1862 				}
1863 				swap_decrypt(key, data, dst, block, PAGE_SIZE);
1864 			} else if (bounce) {
1865 #else
1866 			if (bounce) {
1867 #endif
1868 				memcpy(dst, data, PAGE_SIZE);
1869 			}
1870 			data += PAGE_SIZE;
1871 			dst += PAGE_SIZE;
1872 			block += btodb(PAGE_SIZE);
1873 		}
1874 		if (bounce)
1875 			uvm_pagermapout(bouncekva, npages);
1876 	}
1877 	/* kill the pager mapping */
1878 	uvm_pagermapout(kva, npages);
1879 
1880 	/*  Not anymore needed, free after encryption/bouncing */
1881 	if (!write && bounce)
1882 		uvm_swap_freepages(tpps, npages);
1883 
1884 	/* now dispose of the buf */
1885 	s = splbio();
1886 	if (bp->b_vp)
1887 		brelvp(bp);
1888 
1889 	if (write && bp->b_vp)
1890 		vwakeup(bp->b_vp);
1891 	pool_put(&bufpool, bp);
1892 	splx(s);
1893 
1894 	/* finally return. */
1895 	return (result);
1896 }
1897 
1898 void
1899 swapmount(void)
1900 {
1901 	struct swapdev *sdp;
1902 	struct swappri *spp;
1903 	struct vnode *vp;
1904 	dev_t swap_dev = swdevt[0].sw_dev;
1905 	char *nam;
1906 	char path[MNAMELEN + 1];
1907 
1908 	/*
1909 	 * No locking here since we happen to know that we will just be called
1910 	 * once before any other process has forked.
1911 	 */
1912 	if (swap_dev == NODEV)
1913 		return;
1914 
1915 #if defined(NFSCLIENT)
1916 	if (swap_dev == NETDEV) {
1917 		extern struct nfs_diskless nfs_diskless;
1918 
1919 		snprintf(path, sizeof(path), "%s",
1920 		    nfs_diskless.nd_swap.ndm_host);
1921 		vp = nfs_diskless.sw_vp;
1922 		goto gotit;
1923 	} else
1924 #endif
1925 	if (bdevvp(swap_dev, &vp))
1926 		return;
1927 
1928 	/* Construct a potential path to swap */
1929 	if ((nam = findblkname(major(swap_dev))))
1930 		snprintf(path, sizeof(path), "/dev/%s%d%c", nam,
1931 		    DISKUNIT(swap_dev), 'a' + DISKPART(swap_dev));
1932 	else
1933 		snprintf(path, sizeof(path), "blkdev0x%x",
1934 		    swap_dev);
1935 
1936 #if defined(NFSCLIENT)
1937 gotit:
1938 #endif
1939 	sdp = malloc(sizeof(*sdp), M_VMSWAP, M_WAITOK|M_ZERO);
1940 	spp = malloc(sizeof(*spp), M_VMSWAP, M_WAITOK);
1941 
1942 	sdp->swd_flags = SWF_FAKE;
1943 	sdp->swd_dev = swap_dev;
1944 
1945 	sdp->swd_pathlen = strlen(path) + 1;
1946 	sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK | M_ZERO);
1947 	strlcpy(sdp->swd_path, path, sdp->swd_pathlen);
1948 
1949 	sdp->swd_vp = vp;
1950 
1951 	swaplist_insert(sdp, spp, 0);
1952 
1953 	if (swap_on(curproc, sdp)) {
1954 		swaplist_find(vp, 1);
1955 		swaplist_trim();
1956 		vput(sdp->swd_vp);
1957 		free(sdp->swd_path, M_VMSWAP, sdp->swd_pathlen);
1958 		free(sdp, M_VMSWAP, sizeof(*sdp));
1959 		return;
1960 	}
1961 }
1962 
1963 #ifdef HIBERNATE
1964 int
1965 uvm_hibswap(dev_t dev, u_long *sp, u_long *ep)
1966 {
1967 	struct swapdev *sdp, *swd = NULL;
1968 	struct swappri *spp;
1969 	struct extent_region *exr, *exrn;
1970 	u_long start = 0, end = 0, size = 0;
1971 
1972 	/* no swap devices configured yet? */
1973 	if (uvmexp.nswapdev < 1 || dev != swdevt[0].sw_dev)
1974 		return (1);
1975 
1976 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1977 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1978 			if (sdp->swd_dev == dev)
1979 				swd = sdp;
1980 		}
1981 	}
1982 
1983 	if (swd == NULL || (swd->swd_flags & SWF_ENABLE) == 0)
1984 		return (1);
1985 
1986 	LIST_FOREACH(exr, &swd->swd_ex->ex_regions, er_link) {
1987 		u_long gapstart, gapend, gapsize;
1988 
1989 		gapstart = exr->er_end + 1;
1990 		exrn = LIST_NEXT(exr, er_link);
1991 		if (!exrn)
1992 			break;
1993 		gapend = exrn->er_start - 1;
1994 		gapsize = gapend - gapstart;
1995 		if (gapsize > size) {
1996 			start = gapstart;
1997 			end = gapend;
1998 			size = gapsize;
1999 		}
2000 	}
2001 
2002 	if (size) {
2003 		*sp = start;
2004 		*ep = end;
2005 		return (0);
2006 	}
2007 	return (1);
2008 }
2009 #endif /* HIBERNATE */
2010