xref: /openbsd-src/sys/uvm/uvm_pdaemon.c (revision 6b5aed99fde41deee73a0fbbb7df53ba9bde89f7)
1*6b5aed99Smpi /*	$OpenBSD: uvm_pdaemon.c,v 1.134 2025/01/25 08:55:52 mpi Exp $	*/
22c932f6fSmiod /*	$NetBSD: uvm_pdaemon.c,v 1.23 2000/08/20 10:24:14 bjh21 Exp $	*/
3cd7ee8acSart 
4cd7ee8acSart /*
5cd7ee8acSart  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6cd7ee8acSart  * Copyright (c) 1991, 1993, The Regents of the University of California.
7cd7ee8acSart  *
8cd7ee8acSart  * All rights reserved.
9cd7ee8acSart  *
10cd7ee8acSart  * This code is derived from software contributed to Berkeley by
11cd7ee8acSart  * The Mach Operating System project at Carnegie-Mellon University.
12cd7ee8acSart  *
13cd7ee8acSart  * Redistribution and use in source and binary forms, with or without
14cd7ee8acSart  * modification, are permitted provided that the following conditions
15cd7ee8acSart  * are met:
16cd7ee8acSart  * 1. Redistributions of source code must retain the above copyright
17cd7ee8acSart  *    notice, this list of conditions and the following disclaimer.
18cd7ee8acSart  * 2. Redistributions in binary form must reproduce the above copyright
19cd7ee8acSart  *    notice, this list of conditions and the following disclaimer in the
20cd7ee8acSart  *    documentation and/or other materials provided with the distribution.
21188f0ea4Sjsg  * 3. Neither the name of the University nor the names of its contributors
22cd7ee8acSart  *    may be used to endorse or promote products derived from this software
23cd7ee8acSart  *    without specific prior written permission.
24cd7ee8acSart  *
25cd7ee8acSart  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26cd7ee8acSart  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27cd7ee8acSart  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28cd7ee8acSart  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29cd7ee8acSart  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30cd7ee8acSart  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31cd7ee8acSart  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32cd7ee8acSart  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33cd7ee8acSart  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34cd7ee8acSart  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35cd7ee8acSart  * SUCH DAMAGE.
36cd7ee8acSart  *
37cd7ee8acSart  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
38cd7ee8acSart  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
39cd7ee8acSart  *
40cd7ee8acSart  *
41cd7ee8acSart  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42cd7ee8acSart  * All rights reserved.
43cd7ee8acSart  *
44cd7ee8acSart  * Permission to use, copy, modify and distribute this software and
45cd7ee8acSart  * its documentation is hereby granted, provided that both the copyright
46cd7ee8acSart  * notice and this permission notice appear in all copies of the
47cd7ee8acSart  * software, derivative works or modified versions, and any portions
48cd7ee8acSart  * thereof, and that both notices appear in supporting documentation.
49cd7ee8acSart  *
50cd7ee8acSart  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51cd7ee8acSart  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52cd7ee8acSart  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53cd7ee8acSart  *
54cd7ee8acSart  * Carnegie Mellon requests users of this software to return to
55cd7ee8acSart  *
56cd7ee8acSart  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57cd7ee8acSart  *  School of Computer Science
58cd7ee8acSart  *  Carnegie Mellon University
59cd7ee8acSart  *  Pittsburgh PA 15213-3890
60cd7ee8acSart  *
61cd7ee8acSart  * any improvements or extensions that they make and grant Carnegie the
62cd7ee8acSart  * rights to redistribute these changes.
63cd7ee8acSart  */
64cd7ee8acSart 
65cd7ee8acSart /*
66cd7ee8acSart  * uvm_pdaemon.c: the page daemon
67cd7ee8acSart  */
68cd7ee8acSart 
69cd7ee8acSart #include <sys/param.h>
70cd7ee8acSart #include <sys/systm.h>
71cd7ee8acSart #include <sys/kernel.h>
72cd7ee8acSart #include <sys/pool.h>
73a97ba27bSbluhm #include <sys/proc.h>
741aa8821bSart #include <sys/buf.h>
7589a666daSart #include <sys/mount.h>
7603d1830dStedu #include <sys/atomic.h>
77cd7ee8acSart 
78f5db0a1cSkettenis #ifdef HIBERNATE
79f5db0a1cSkettenis #include <sys/hibernate.h>
80f5db0a1cSkettenis #endif
81f5db0a1cSkettenis 
82cd7ee8acSart #include <uvm/uvm.h>
83cd7ee8acSart 
84a4e118acSkettenis #include "drm.h"
85a4e118acSkettenis 
86a4e118acSkettenis #if NDRM > 0
87789ce988Smpi extern unsigned long drmbackoff(long);
88a4e118acSkettenis #endif
89a4e118acSkettenis 
90cd7ee8acSart /*
91ca6c2cbfSmickey  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
928a42ed70Sart  * in a pass thru the inactive list when swap is full.  the value should be
938a42ed70Sart  * "small"... if it's too large we'll cycle the active pages thru the inactive
948a42ed70Sart  * queue too quickly to for them to be referenced and avoid being freed.
958a42ed70Sart  */
968a42ed70Sart 
978a42ed70Sart #define UVMPD_NUMDIRTYREACTS 16
988a42ed70Sart 
998a42ed70Sart 
1008a42ed70Sart /*
101cd7ee8acSart  * local prototypes
102cd7ee8acSart  */
103cd7ee8acSart 
104c4141b1cSmpi struct rwlock	*uvmpd_trylockowner(struct vm_page *);
105ab9ceab3Smpi void		uvmpd_scan(struct uvm_pmalloc *, int, int);
106ab9ceab3Smpi int		uvmpd_scan_inactive(struct uvm_pmalloc *, int);
107767e8a65Smpi void		uvmpd_scan_active(struct uvm_pmalloc *, int, int);
108bb34e034Sthib void		uvmpd_tune(void);
109f5db0a1cSkettenis void		uvmpd_drop(struct pglist *);
1105a3e8fe8Smpi int		uvmpd_dropswap(struct vm_page *);
111cd7ee8acSart 
112cd7ee8acSart /*
113cd7ee8acSart  * uvm_wait: wait (sleep) for the page daemon to free some pages
114cd7ee8acSart  *
115cd7ee8acSart  * => should be called with all locks released
116cd7ee8acSart  * => should _not_ be called by the page daemon (to avoid deadlock)
117cd7ee8acSart  */
118cd7ee8acSart 
1194eac0bf0Ssmart void
1202023d591Soga uvm_wait(const char *wmsg)
121cd7ee8acSart {
1224bc97b15Scheloha 	uint64_t timo = INFSLP;
123cd7ee8acSart 
124a97ba27bSbluhm #ifdef DIAGNOSTIC
125a97ba27bSbluhm 	if (curproc == &proc0)
126a97ba27bSbluhm 		panic("%s: cannot sleep for memory during boot", __func__);
127a97ba27bSbluhm #endif
128a97ba27bSbluhm 
129f4cbd454Smpi 	/*
130f4cbd454Smpi 	 * check for page daemon going to sleep (waiting for itself)
131f4cbd454Smpi 	 */
132cd7ee8acSart 	if (curproc == uvm.pagedaemon_proc) {
1330bd995e1Stedu 		printf("uvm_wait emergency bufbackoff\n");
1340b4f309dSmpi 		if (bufbackoff(NULL, 4) >= 4)
1350bd995e1Stedu 			return;
136cd7ee8acSart 		/*
137cd7ee8acSart 		 * now we have a problem: the pagedaemon wants to go to
138cd7ee8acSart 		 * sleep until it frees more memory.   but how can it
139cd7ee8acSart 		 * free more memory if it is asleep?  that is a deadlock.
140cd7ee8acSart 		 * we have two options:
141cd7ee8acSart 		 *  [1] panic now
142cd7ee8acSart 		 *  [2] put a timeout on the sleep, thus causing the
143cd7ee8acSart 		 *      pagedaemon to only pause (rather than sleep forever)
144cd7ee8acSart 		 *
145cd7ee8acSart 		 * note that option [2] will only help us if we get lucky
146cd7ee8acSart 		 * and some other process on the system breaks the deadlock
147cd7ee8acSart 		 * by exiting or freeing memory (thus allowing the pagedaemon
148cd7ee8acSart 		 * to continue).  for now we panic if DEBUG is defined,
149cd7ee8acSart 		 * otherwise we hope for the best with option [2] (better
150cd7ee8acSart 		 * yet, this should never happen in the first place!).
151cd7ee8acSart 		 */
152cd7ee8acSart 
153cd7ee8acSart 		printf("pagedaemon: deadlock detected!\n");
1544bc97b15Scheloha 		timo = MSEC_TO_NSEC(125);	/* set timeout */
155cd7ee8acSart #if defined(DEBUG)
156cd7ee8acSart 		/* DEBUG: panic so we can debug it */
157cd7ee8acSart 		panic("pagedaemon deadlock");
158cd7ee8acSart #endif
159cd7ee8acSart 	}
160cd7ee8acSart 
161d848450cSoga 	uvm_lock_fpageq();
1620800515eSoga 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
1634bc97b15Scheloha 	msleep_nsec(&uvmexp.free, &uvm.fpageqlock, PVM | PNORELOCK, wmsg, timo);
164cd7ee8acSart }
165cd7ee8acSart 
166cd7ee8acSart /*
167cd7ee8acSart  * uvmpd_tune: tune paging parameters
168cd7ee8acSart  */
169bb34e034Sthib void
17089a666daSart uvmpd_tune(void)
171cd7ee8acSart {
172a853522eSmpi 	int val;
173cd7ee8acSart 
174a853522eSmpi 	val = uvmexp.npages / 30;
175cd7ee8acSart 
176cd7ee8acSart 	/* XXX:  what are these values good for? */
177a853522eSmpi 	val = max(val, (16*1024) >> PAGE_SHIFT);
178cd7ee8acSart 
1799956d4a2Sart 	/* Make sure there's always a user page free. */
180a853522eSmpi 	if (val < uvmexp.reserve_kernel + 1)
181a853522eSmpi 		val = uvmexp.reserve_kernel + 1;
182a853522eSmpi 	uvmexp.freemin = val;
1839956d4a2Sart 
184a853522eSmpi 	/* Calculate free target. */
185a853522eSmpi 	val = (uvmexp.freemin * 4) / 3;
186a853522eSmpi 	if (val <= uvmexp.freemin)
187a853522eSmpi 		val = uvmexp.freemin + 1;
188a853522eSmpi 	uvmexp.freetarg = val;
189cd7ee8acSart 
190cd7ee8acSart 	uvmexp.wiredmax = uvmexp.npages / 3;
191cd7ee8acSart }
192cd7ee8acSart 
193cd7ee8acSart /*
194d4c6c9b5Sbeck  * Indicate to the page daemon that a nowait call failed and it should
195d4c6c9b5Sbeck  * recover at least some memory in the most restricted region (assumed
196d4c6c9b5Sbeck  * to be dma_constraint).
197d4c6c9b5Sbeck  */
198ba03bb80Smpi struct uvm_pmalloc nowait_pma;
199d4c6c9b5Sbeck 
200d7bddd8cSmpi static inline int
201d7bddd8cSmpi uvmpd_pma_done(struct uvm_pmalloc *pma)
202d7bddd8cSmpi {
203d7bddd8cSmpi 	if (pma == NULL || (pma->pm_flags & UVM_PMA_FREED))
204d7bddd8cSmpi 		return 1;
205d7bddd8cSmpi 	return 0;
206d7bddd8cSmpi }
207d7bddd8cSmpi 
208d4c6c9b5Sbeck /*
209cd7ee8acSart  * uvm_pageout: the main loop for the pagedaemon
210cd7ee8acSart  */
211cd7ee8acSart void
2129956d4a2Sart uvm_pageout(void *arg)
213cd7ee8acSart {
21490ee2fe0Sbeck 	struct uvm_constraint_range constraint;
21590ee2fe0Sbeck 	struct uvm_pmalloc *pma;
2164e368faeSmpi 	int shortage, inactive_shortage;
217cd7ee8acSart 
21835164244Stedu 	/* ensure correct priority and set paging parameters... */
219cd7ee8acSart 	uvm.pagedaemon_proc = curproc;
220cd7ee8acSart 	(void) spl0();
221cd7ee8acSart 	uvmpd_tune();
222cd7ee8acSart 
223ba03bb80Smpi 	/*
224ba03bb80Smpi 	 * XXX realistically, this is what our nowait callers probably
225ba03bb80Smpi 	 * care about.
226ba03bb80Smpi 	 */
227ba03bb80Smpi 	nowait_pma.pm_constraint = dma_constraint;
228ba03bb80Smpi 	nowait_pma.pm_size = (16 << PAGE_SHIFT); /* XXX */
229ba03bb80Smpi 	nowait_pma.pm_flags = 0;
230ba03bb80Smpi 
2311aa8821bSart 	for (;;) {
2320dd50440Sbeck 		long size;
23390ee2fe0Sbeck 
234d848450cSoga 		uvm_lock_fpageq();
2351df50becSmpi 		if (TAILQ_EMPTY(&uvm.pmr_control.allocs) || uvmexp.paging > 0) {
2362404448fSjsg 			msleep_nsec(&uvm.pagedaemon, &uvm.fpageqlock, PVM,
2372404448fSjsg 			    "pgdaemon", INFSLP);
2381aa8821bSart 			uvmexp.pdwoke++;
23990ee2fe0Sbeck 		}
24090ee2fe0Sbeck 
24190ee2fe0Sbeck 		if ((pma = TAILQ_FIRST(&uvm.pmr_control.allocs)) != NULL) {
24290ee2fe0Sbeck 			pma->pm_flags |= UVM_PMA_BUSY;
24390ee2fe0Sbeck 			constraint = pma->pm_constraint;
244d4c6c9b5Sbeck 		} else {
24590ee2fe0Sbeck 			constraint = no_constraint;
246d4c6c9b5Sbeck 		}
247786a9acfSmpi 		/* How many pages do we need to free during this round? */
2481df50becSmpi 		shortage = uvmexp.freetarg -
2491df50becSmpi 		    (uvmexp.free + uvmexp.paging) + BUFPAGES_DEFICIT;
25090ee2fe0Sbeck 		uvm_unlock_fpageq();
2511aa8821bSart 
252455c70dcSmpi 		/*
253455c70dcSmpi 		 * now lock page queues and recompute inactive count
254455c70dcSmpi 		 */
2551aa8821bSart 		uvm_lock_pageq();
2561aa8821bSart 		uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
2571aa8821bSart 		if (uvmexp.inactarg <= uvmexp.freetarg) {
2581aa8821bSart 			uvmexp.inactarg = uvmexp.freetarg + 1;
2591aa8821bSart 		}
260786a9acfSmpi 		inactive_shortage =
261786a9acfSmpi 			uvmexp.inactarg - uvmexp.inactive - BUFPAGES_INACT;
262a853522eSmpi 		uvm_unlock_pageq();
2631aa8821bSart 
2640dd50440Sbeck 		size = 0;
2650dd50440Sbeck 		if (pma != NULL)
2660dd50440Sbeck 			size += pma->pm_size >> PAGE_SHIFT;
2674e368faeSmpi 		if (shortage > 0)
2684e368faeSmpi 			size += shortage;
269a853522eSmpi 
270767e8a65Smpi 		if (size == 0) {
271767e8a65Smpi 			/*
272767e8a65Smpi 			 * Since the inactive target just got updated
273ab22dc52Smpi 			 * above, both `size' and `inactive_shortage' can
274767e8a65Smpi 			 * be 0.
275767e8a65Smpi 			 */
276767e8a65Smpi 			if (inactive_shortage) {
277767e8a65Smpi 				uvm_lock_pageq();
278767e8a65Smpi 				uvmpd_scan_active(NULL, 0, inactive_shortage);
279767e8a65Smpi 				uvm_unlock_pageq();
280767e8a65Smpi 			}
281767e8a65Smpi 			continue;
282767e8a65Smpi 		}
283767e8a65Smpi 
284767e8a65Smpi 		/* Reclaim pages from the buffer cache if possible. */
285786a9acfSmpi 		shortage -= bufbackoff(&constraint, size * 2);
286a4e118acSkettenis #if NDRM > 0
287786a9acfSmpi 		shortage -= drmbackoff(size * 2);
288a4e118acSkettenis #endif
289786a9acfSmpi 		if (shortage > 0)
290786a9acfSmpi 			shortage -= uvm_pmr_cache_drain();
29182673a18Smpi 
292455c70dcSmpi 		/*
293455c70dcSmpi 		 * scan if needed
294455c70dcSmpi 		 */
295a853522eSmpi 		uvm_lock_pageq();
296d7bddd8cSmpi 		if (!uvmpd_pma_done(pma) ||
297d7bddd8cSmpi 		    (shortage > 0) || (inactive_shortage > 0)) {
298ab9ceab3Smpi 			uvmpd_scan(pma, shortage, inactive_shortage);
2991aa8821bSart 		}
3001aa8821bSart 
3011aa8821bSart 		/*
3021aa8821bSart 		 * if there's any free memory to be had,
3031aa8821bSart 		 * wake up any waiters.
3041aa8821bSart 		 */
305d848450cSoga 		uvm_lock_fpageq();
3061df50becSmpi 		if (uvmexp.free > uvmexp.reserve_kernel || uvmexp.paging == 0) {
3071aa8821bSart 			wakeup(&uvmexp.free);
3081aa8821bSart 		}
30990ee2fe0Sbeck 
31090ee2fe0Sbeck 		if (pma != NULL) {
3114ed81bdbSkettenis 			/*
3124ed81bdbSkettenis 			 * XXX If UVM_PMA_FREED isn't set, no pages
3134ed81bdbSkettenis 			 * were freed.  Should we set UVM_PMA_FAIL in
3144ed81bdbSkettenis 			 * that case?
3154ed81bdbSkettenis 			 */
31690ee2fe0Sbeck 			pma->pm_flags &= ~UVM_PMA_BUSY;
3174ed81bdbSkettenis 			if (pma->pm_flags & UVM_PMA_FREED) {
31890ee2fe0Sbeck 				pma->pm_flags &= ~UVM_PMA_LINKED;
319ba03bb80Smpi 				TAILQ_REMOVE(&uvm.pmr_control.allocs, pma, pmq);
32090ee2fe0Sbeck 				wakeup(pma);
32190ee2fe0Sbeck 			}
3224ed81bdbSkettenis 		}
323d848450cSoga 		uvm_unlock_fpageq();
3241aa8821bSart 
325455c70dcSmpi 		/*
326455c70dcSmpi 		 * scan done.  unlock page queues (the only lock we are holding)
327455c70dcSmpi 		 */
3281aa8821bSart 		uvm_unlock_pageq();
329574e7ffdSblambert 
3309b1ed563Smpi 		sched_pause(yield);
3311aa8821bSart 	}
3321aa8821bSart 	/*NOTREACHED*/
3331aa8821bSart }
3341aa8821bSart 
3351aa8821bSart 
3361aa8821bSart /*
3371aa8821bSart  * uvm_aiodone_daemon:  main loop for the aiodone daemon.
3381aa8821bSart  */
3391aa8821bSart void
3401aa8821bSart uvm_aiodone_daemon(void *arg)
3411aa8821bSart {
3421df50becSmpi 	int s, npages;
3431aa8821bSart 	struct buf *bp, *nbp;
3441aa8821bSart 
345fdcc1051Smiod 	uvm.aiodoned_proc = curproc;
346f3e3a779Smpi 	KERNEL_UNLOCK();
347fdcc1051Smiod 
3481aa8821bSart 	for (;;) {
349cd7ee8acSart 		/*
350fa006b1dSoga 		 * Check for done aio structures. If we've got structures to
351fa006b1dSoga 		 * process, do so. Otherwise sleep while avoiding races.
352cd7ee8acSart 		 */
353fa006b1dSoga 		mtx_enter(&uvm.aiodoned_lock);
354fa006b1dSoga 		while ((bp = TAILQ_FIRST(&uvm.aio_done)) == NULL)
3552404448fSjsg 			msleep_nsec(&uvm.aiodoned, &uvm.aiodoned_lock,
3562404448fSjsg 			    PVM, "aiodoned", INFSLP);
357fa006b1dSoga 		/* Take the list for ourselves. */
3581aa8821bSart 		TAILQ_INIT(&uvm.aio_done);
359fa006b1dSoga 		mtx_leave(&uvm.aiodoned_lock);
360cd7ee8acSart 
36135164244Stedu 		/* process each i/o that's done. */
3621df50becSmpi 		npages = 0;
363f3e3a779Smpi 		KERNEL_LOCK();
3641aa8821bSart 		while (bp != NULL) {
3651aa8821bSart 			if (bp->b_flags & B_PDAEMON) {
3661df50becSmpi 				npages += bp->b_bufsize >> PAGE_SHIFT;
367cd7ee8acSart 			}
3681aa8821bSart 			nbp = TAILQ_NEXT(bp, b_freelist);
36986d3bebfSart 			s = splbio();	/* b_iodone must by called at splbio */
3701aa8821bSart 			(*bp->b_iodone)(bp);
37186d3bebfSart 			splx(s);
3721aa8821bSart 			bp = nbp;
373574e7ffdSblambert 
3749b1ed563Smpi 			sched_pause(yield);
375cd7ee8acSart 		}
376f3e3a779Smpi 		KERNEL_UNLOCK();
3771df50becSmpi 
378fd21a507Sthib 		uvm_lock_fpageq();
3791df50becSmpi 		atomic_sub_int(&uvmexp.paging, npages);
3801df50becSmpi 		wakeup(uvmexp.free <= uvmexp.reserve_kernel ? &uvm.pagedaemon :
3810800515eSoga 		    &uvmexp.free);
382fd21a507Sthib 		uvm_unlock_fpageq();
3831aa8821bSart 	}
384cd7ee8acSart }
385cd7ee8acSart 
386c4141b1cSmpi /*
387c4141b1cSmpi  * uvmpd_trylockowner: trylock the page's owner.
388c4141b1cSmpi  *
389c4141b1cSmpi  * => return the locked rwlock on success.  otherwise, return NULL.
390c4141b1cSmpi  */
391c4141b1cSmpi struct rwlock *
392c4141b1cSmpi uvmpd_trylockowner(struct vm_page *pg)
393c4141b1cSmpi {
394c4141b1cSmpi 
395c4141b1cSmpi 	struct uvm_object *uobj = pg->uobject;
396c4141b1cSmpi 	struct rwlock *slock;
397c4141b1cSmpi 
398c4141b1cSmpi 	if (uobj != NULL) {
399c4141b1cSmpi 		slock = uobj->vmobjlock;
400c4141b1cSmpi 	} else {
401c4141b1cSmpi 		struct vm_anon *anon = pg->uanon;
402c4141b1cSmpi 
403c4141b1cSmpi 		KASSERT(anon != NULL);
404c4141b1cSmpi 		slock = anon->an_lock;
405c4141b1cSmpi 	}
406c4141b1cSmpi 
407c4141b1cSmpi 	if (rw_enter(slock, RW_WRITE|RW_NOSLEEP)) {
408c4141b1cSmpi 		return NULL;
409c4141b1cSmpi 	}
410c4141b1cSmpi 
411c4141b1cSmpi 	return slock;
412c4141b1cSmpi }
413c4141b1cSmpi 
4145ac9535fSmpi /*
4155ac9535fSmpi  * uvmpd_dropswap: free any swap allocated to this page.
4165ac9535fSmpi  *
4175ac9535fSmpi  * => called with owner locked.
4185a3e8fe8Smpi  * => return 1 if a page had an associated slot.
4195ac9535fSmpi  */
4205a3e8fe8Smpi int
4215ac9535fSmpi uvmpd_dropswap(struct vm_page *pg)
4225ac9535fSmpi {
4235ac9535fSmpi 	struct vm_anon *anon = pg->uanon;
4245a3e8fe8Smpi 	int slot, result = 0;
4255ac9535fSmpi 
4265ac9535fSmpi 	if ((pg->pg_flags & PQ_ANON) && anon->an_swslot) {
4275ac9535fSmpi 		uvm_swap_free(anon->an_swslot, 1);
4285ac9535fSmpi 		anon->an_swslot = 0;
4295a3e8fe8Smpi 		result = 1;
4305ac9535fSmpi 	} else if (pg->pg_flags & PQ_AOBJ) {
4315a3e8fe8Smpi 		slot = uao_dropswap(pg->uobject, pg->offset >> PAGE_SHIFT);
4325a3e8fe8Smpi 		if (slot)
4335a3e8fe8Smpi 			result = 1;
4345ac9535fSmpi 	}
4355a3e8fe8Smpi 
4365a3e8fe8Smpi 	return result;
4375ac9535fSmpi }
4381aa8821bSart 
439cd7ee8acSart /*
44003c39359Smpi  * Return 1 if the page `p' belongs to the memory range described by
44103c39359Smpi  * 'constraint', 0 otherwise.
44203c39359Smpi  */
44303c39359Smpi static inline int
44403c39359Smpi uvmpd_match_constraint(struct vm_page *p,
44503c39359Smpi     struct uvm_constraint_range *constraint)
44603c39359Smpi {
44703c39359Smpi 	paddr_t paddr;
44803c39359Smpi 
44903c39359Smpi 	paddr = atop(VM_PAGE_TO_PHYS(p));
45003c39359Smpi 	if (paddr >= constraint->ucr_low && paddr < constraint->ucr_high)
45103c39359Smpi 		return 1;
45203c39359Smpi 
45303c39359Smpi 	return 0;
45403c39359Smpi }
45503c39359Smpi 
45603c39359Smpi /*
4571aa8821bSart  * uvmpd_scan_inactive: scan an inactive list for pages to clean or free.
458cd7ee8acSart  *
459cd7ee8acSart  * => called with page queues locked
460cd7ee8acSart  * => we work on meeting our free target by converting inactive pages
461cd7ee8acSart  *    into free pages.
462cd7ee8acSart  * => we handle the building of swap-backed clusters
463cd7ee8acSart  * => we return TRUE if we are exiting because we met our target
464cd7ee8acSart  */
465c1e5f9e3Smpi int
466ab9ceab3Smpi uvmpd_scan_inactive(struct uvm_pmalloc *pma, int shortage)
467cd7ee8acSart {
468c1e5f9e3Smpi 	struct pglist *pglst = &uvm.page_inactive;
4694783fe62Smpi 	int result, freed = 0;
470cd7ee8acSart 	struct vm_page *p, *nextpg;
471cd7ee8acSart 	struct uvm_object *uobj;
4721ff2fd50Smpi 	struct vm_page *pps[SWCLUSTPAGES], **ppsp;
473cd7ee8acSart 	int npages;
4741ff2fd50Smpi 	struct vm_page *swpps[SWCLUSTPAGES]; 	/* XXX: see below */
4750dea91ceSmpi 	struct rwlock *slock;
476cd7ee8acSart 	int swnpages, swcpages;				/* XXX: see below */
4778a42ed70Sart 	int swslot;
478cd7ee8acSart 	struct vm_anon *anon;
479cd7ee8acSart 	boolean_t swap_backed;
480cd7ee8acSart 	vaddr_t start;
4812c932f6fSmiod 	int dirtyreacts;
482cd7ee8acSart 
483cd7ee8acSart 	/*
484cd7ee8acSart 	 * swslot is non-zero if we are building a swap cluster.  we want
485cd7ee8acSart 	 * to stay in the loop while we have a page to scan or we have
486cd7ee8acSart 	 * a swap-cluster to build.
487cd7ee8acSart 	 */
488cd7ee8acSart 	swslot = 0;
489cd7ee8acSart 	swnpages = swcpages = 0;
4908a42ed70Sart 	dirtyreacts = 0;
4915a0e53e3Smpi 	p = NULL;
492cd7ee8acSart 
493ab9ceab3Smpi 	/*
494ab9ceab3Smpi 	 * If a thread is waiting for us to release memory from a specific
495ab9ceab3Smpi 	 * memory range start with the first page on the list that fits in
496ab9ceab3Smpi 	 * it.
497ab9ceab3Smpi 	 */
4985a0e53e3Smpi 	TAILQ_FOREACH(p, pglst, pageq) {
499ab9ceab3Smpi 		if (uvmpd_pma_done(pma) ||
500ab9ceab3Smpi 		    uvmpd_match_constraint(p, &pma->pm_constraint))
5015a0e53e3Smpi 			break;
5025a0e53e3Smpi 	}
5035a0e53e3Smpi 
5045a0e53e3Smpi 	for (; p != NULL || swslot != 0; p = nextpg) {
505cd7ee8acSart 		/*
506cd7ee8acSart 		 * note that p can be NULL iff we have traversed the whole
507cd7ee8acSart 		 * list and need to do one final swap-backed clustered pageout.
508cd7ee8acSart 		 */
509cac1bff1Sart 		uobj = NULL;
510cac1bff1Sart 		anon = NULL;
511cd7ee8acSart 		if (p) {
512cd7ee8acSart 			/*
5130dea91ceSmpi 			 * see if we've met our target
514cd7ee8acSart 			 */
515d7bddd8cSmpi 			if ((uvmpd_pma_done(pma) &&
5164783fe62Smpi 			    (uvmexp.paging >= (shortage - freed))) ||
5178a42ed70Sart 			    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
518cac1bff1Sart 				if (swslot == 0) {
519cd7ee8acSart 					/* exit now if no swap-i/o pending */
520cd7ee8acSart 					break;
521cac1bff1Sart 				}
522cd7ee8acSart 
523cd7ee8acSart 				/* set p to null to signal final swap i/o */
524cd7ee8acSart 				p = NULL;
5250dea91ceSmpi 				nextpg = NULL;
526cd7ee8acSart 			}
527cd7ee8acSart 		}
528cd7ee8acSart 		if (p) {	/* if (we have a new page to consider) */
529cd7ee8acSart 			/*
530cd7ee8acSart 			 * we are below target and have a new page to consider.
531cd7ee8acSart 			 */
532cd7ee8acSart 			uvmexp.pdscans++;
533cac1bff1Sart 			nextpg = TAILQ_NEXT(p, pageq);
534cd7ee8acSart 
535a125353dSmpi 			/*
536a125353dSmpi 			 * If we are not short on memory and only interested
537ab22dc52Smpi 			 * in releasing pages from a given memory range, do not
538a125353dSmpi 			 * bother with other pages.
539a125353dSmpi 			 */
540a125353dSmpi 			if (uvmexp.paging >= (shortage - freed) &&
541a125353dSmpi 			    !uvmpd_pma_done(pma) &&
542a125353dSmpi 			    !uvmpd_match_constraint(p, &pma->pm_constraint))
543a125353dSmpi 				continue;
544a125353dSmpi 
545cd7ee8acSart 			anon = p->uanon;
5460dea91ceSmpi 			uobj = p->uobject;
547c4141b1cSmpi 
548c4141b1cSmpi 			/*
549c4141b1cSmpi 			 * first we attempt to lock the object that this page
550c4141b1cSmpi 			 * belongs to.  if our attempt fails we skip on to
551c4141b1cSmpi 			 * the next page (no harm done).  it is important to
552c4141b1cSmpi 			 * "try" locking the object as we are locking in the
553c4141b1cSmpi 			 * wrong order (pageq -> object) and we don't want to
554c4141b1cSmpi 			 * deadlock.
555c4141b1cSmpi 			 */
556c4141b1cSmpi 			slock = uvmpd_trylockowner(p);
557c4141b1cSmpi 			if (slock == NULL) {
5581c92e3afSmpi 				continue;
5591c92e3afSmpi 			}
560c4141b1cSmpi 
56169c04514Smpi 			/*
56269c04514Smpi 			 * move referenced pages back to active queue
56369c04514Smpi 			 * and skip to next page.
56469c04514Smpi 			 */
56569c04514Smpi 			if (pmap_is_referenced(p)) {
56669c04514Smpi 				uvm_pageactivate(p);
5670dea91ceSmpi 				rw_exit(slock);
56869c04514Smpi 				uvmexp.pdreact++;
56969c04514Smpi 				continue;
57069c04514Smpi 			}
571c4141b1cSmpi 
5729662fca4Sart 			if (p->pg_flags & PG_BUSY) {
5730dea91ceSmpi 				rw_exit(slock);
574cd7ee8acSart 				uvmexp.pdbusy++;
575cd7ee8acSart 				continue;
576cd7ee8acSart 			}
577c4141b1cSmpi 
578c4141b1cSmpi 			/* does the page belong to an object? */
579c4141b1cSmpi 			if (uobj != NULL) {
580cd7ee8acSart 				uvmexp.pdobscan++;
581c4141b1cSmpi 			} else {
582c4141b1cSmpi 				KASSERT(anon != NULL);
583c4141b1cSmpi 				uvmexp.pdanscan++;
584cd7ee8acSart 			}
585cd7ee8acSart 
586cd7ee8acSart 			/*
587b8a635f6Stedu 			 * we now have the page queues locked.
5882c932f6fSmiod 			 * the page is not busy.   if the page is clean we
5892c932f6fSmiod 			 * can free it now and continue.
590cd7ee8acSart 			 */
5919662fca4Sart 			if (p->pg_flags & PG_CLEAN) {
59265d6360cSart 				if (p->pg_flags & PQ_SWAPBACKED) {
5938a42ed70Sart 					/* this page now lives only in swap */
594c4a864baSmpi 					atomic_inc_int(&uvmexp.swpgonly);
5958a42ed70Sart 				}
5968a42ed70Sart 
5972c932f6fSmiod 				/* zap all mappings with pmap_page_protect... */
5981e8cdc2eSderaadt 				pmap_page_protect(p, PROT_NONE);
599cd7ee8acSart 				uvm_pagefree(p);
600c1e5f9e3Smpi 				freed++;
601cd7ee8acSart 
602cd7ee8acSart 				if (anon) {
603cac1bff1Sart 
604cd7ee8acSart 					/*
605cd7ee8acSart 					 * an anonymous page can only be clean
606cac1bff1Sart 					 * if it has backing store assigned.
607cd7ee8acSart 					 */
608cac1bff1Sart 
609cac1bff1Sart 					KASSERT(anon->an_swslot != 0);
610cac1bff1Sart 
611cd7ee8acSart 					/* remove from object */
6128d0b5bafSpedro 					anon->an_page = NULL;
613cd7ee8acSart 				}
6140dea91ceSmpi 				rw_exit(slock);
615cd7ee8acSart 				continue;
616cd7ee8acSart 			}
617cd7ee8acSart 
618cd7ee8acSart 			/*
619cd7ee8acSart 			 * this page is dirty, skip it if we'll have met our
620cd7ee8acSart 			 * free target when all the current pageouts complete.
621cd7ee8acSart 			 */
622d7bddd8cSmpi 			if (uvmpd_pma_done(pma) &&
6234783fe62Smpi 			    (uvmexp.paging > (shortage - freed))) {
6240dea91ceSmpi 				rw_exit(slock);
625cd7ee8acSart 				continue;
626cd7ee8acSart 			}
627cd7ee8acSart 
628cd7ee8acSart 			/*
6298a42ed70Sart 			 * this page is dirty, but we can't page it out
6308a42ed70Sart 			 * since all pages in swap are only in swap.
6318a42ed70Sart 			 * reactivate it so that we eventually cycle
6328a42ed70Sart 			 * all pages thru the inactive queue.
6338a42ed70Sart 			 */
634afd3b31eSmpi 			if ((p->pg_flags & PQ_SWAPBACKED) && uvm_swapisfull()) {
6358a42ed70Sart 				dirtyreacts++;
6368a42ed70Sart 				uvm_pageactivate(p);
6370dea91ceSmpi 				rw_exit(slock);
6388a42ed70Sart 				continue;
6398a42ed70Sart 			}
6408a42ed70Sart 
6418a42ed70Sart 			/*
6428a42ed70Sart 			 * if the page is swap-backed and dirty and swap space
6438a42ed70Sart 			 * is full, free any swap allocated to the page
6448a42ed70Sart 			 * so that other pages can be paged out.
6458a42ed70Sart 			 */
646cb3ee63aSmpi 			if ((p->pg_flags & PQ_SWAPBACKED) && uvm_swapisfilled())
6475ac9535fSmpi 				uvmpd_dropswap(p);
6488a42ed70Sart 
6498a42ed70Sart 			/*
650cd7ee8acSart 			 * the page we are looking at is dirty.   we must
651cd7ee8acSart 			 * clean it before it can be freed.  to do this we
652cd7ee8acSart 			 * first mark the page busy so that no one else will
6532c932f6fSmiod 			 * touch the page.   we write protect all the mappings
6542c932f6fSmiod 			 * of the page so that no one touches it while it is
6552c932f6fSmiod 			 * in I/O.
656cd7ee8acSart 			 */
657cd7ee8acSart 
65865d6360cSart 			swap_backed = ((p->pg_flags & PQ_SWAPBACKED) != 0);
65965d6360cSart 			atomic_setbits_int(&p->pg_flags, PG_BUSY);
660cd7ee8acSart 			UVM_PAGE_OWN(p, "scan_inactive");
6611e8cdc2eSderaadt 			pmap_page_protect(p, PROT_READ);
662cd7ee8acSart 			uvmexp.pgswapout++;
663cd7ee8acSart 
664cd7ee8acSart 			/*
665cd7ee8acSart 			 * for swap-backed pages we need to (re)allocate
666cd7ee8acSart 			 * swap space.
667cd7ee8acSart 			 */
668cd7ee8acSart 			if (swap_backed) {
66935164244Stedu 				/* free old swap slot (if any) */
6705ac9535fSmpi 				uvmpd_dropswap(p);
671cd7ee8acSart 
67235164244Stedu 				/* start new cluster (if necessary) */
6731aa8821bSart 				if (swslot == 0) {
6741ff2fd50Smpi 					swnpages = SWCLUSTPAGES;
675cd7ee8acSart 					swslot = uvm_swap_alloc(&swnpages,
676cd7ee8acSart 					    TRUE);
677cd7ee8acSart 					if (swslot == 0) {
678cd7ee8acSart 						/* no swap?  give up! */
67965d6360cSart 						atomic_clearbits_int(
68065d6360cSart 						    &p->pg_flags,
68165d6360cSart 						    PG_BUSY);
682cd7ee8acSart 						UVM_PAGE_OWN(p, NULL);
6830dea91ceSmpi 						rw_exit(slock);
684cd7ee8acSart 						continue;
685cd7ee8acSart 					}
686cd7ee8acSart 					swcpages = 0;	/* cluster is empty */
687cd7ee8acSart 				}
688cd7ee8acSart 
68935164244Stedu 				/* add block to cluster */
6901414b0faSart 				swpps[swcpages] = p;
6911414b0faSart 				if (anon)
692cd7ee8acSart 					anon->an_swslot = swslot + swcpages;
6931414b0faSart 				else
6941414b0faSart 					uao_set_swslot(uobj,
695cd7ee8acSart 					    p->offset >> PAGE_SHIFT,
696cd7ee8acSart 					    swslot + swcpages);
697cd7ee8acSart 				swcpages++;
698aec078ecSmpi 				rw_exit(slock);
699aec078ecSmpi 
700aec078ecSmpi 				/* cluster not full yet? */
701aec078ecSmpi 				if (swcpages < swnpages)
702aec078ecSmpi 					continue;
703cd7ee8acSart 			}
704cd7ee8acSart 		} else {
705cd7ee8acSart 			/* if p == NULL we must be doing a last swap i/o */
706cd7ee8acSart 			swap_backed = TRUE;
707cd7ee8acSart 		}
708cd7ee8acSart 
709cd7ee8acSart 		/*
710cd7ee8acSart 		 * now consider doing the pageout.
711cd7ee8acSart 		 *
712cd7ee8acSart 		 * for swap-backed pages, we do the pageout if we have either
713cd7ee8acSart 		 * filled the cluster (in which case (swnpages == swcpages) or
714cd7ee8acSart 		 * run out of pages (p == NULL).
715cd7ee8acSart 		 *
716cd7ee8acSart 		 * for object pages, we always do the pageout.
717cd7ee8acSart 		 */
7181aa8821bSart 		if (swap_backed) {
719cd7ee8acSart 			/* starting I/O now... set up for it */
720cd7ee8acSart 			npages = swcpages;
721cd7ee8acSart 			ppsp = swpps;
722cd7ee8acSart 			/* for swap-backed pages only */
723cd7ee8acSart 			start = (vaddr_t) swslot;
724cd7ee8acSart 
725cd7ee8acSart 			/* if this is final pageout we could have a few
726cd7ee8acSart 			 * extra swap blocks */
727cd7ee8acSart 			if (swcpages < swnpages) {
728cd7ee8acSart 				uvm_swap_free(swslot + swcpages,
729cd7ee8acSart 				    (swnpages - swcpages));
730cd7ee8acSart 			}
731cd7ee8acSart 		} else {
732cd7ee8acSart 			/* normal object pageout */
733cd7ee8acSart 			ppsp = pps;
734cd7ee8acSart 			npages = sizeof(pps) / sizeof(struct vm_page *);
735cd7ee8acSart 			/* not looked at because PGO_ALLPAGES is set */
736cd7ee8acSart 			start = 0;
737cd7ee8acSart 		}
738cd7ee8acSart 
739cd7ee8acSart 		/*
740cd7ee8acSart 		 * now do the pageout.
741cd7ee8acSart 		 *
742cd7ee8acSart 		 * for swap_backed pages we have already built the cluster.
743cd7ee8acSart 		 * for !swap_backed pages, uvm_pager_put will call the object's
744cd7ee8acSart 		 * "make put cluster" function to build a cluster on our behalf.
745cd7ee8acSart 		 *
746cd7ee8acSart 		 * we pass the PGO_PDFREECLUST flag to uvm_pager_put to instruct
747cd7ee8acSart 		 * it to free the cluster pages for us on a successful I/O (it
748cd7ee8acSart 		 * always does this for un-successful I/O requests).  this
749cd7ee8acSart 		 * allows us to do clustered pageout without having to deal
750cd7ee8acSart 		 * with cluster pages at this level.
751cd7ee8acSart 		 *
752cd7ee8acSart 		 * note locking semantics of uvm_pager_put with PGO_PDFREECLUST:
753b8a635f6Stedu 		 *  IN: locked: page queues
754b8a635f6Stedu 		 * OUT: locked:
755b8a635f6Stedu 		 *     !locked: pageqs
756cd7ee8acSart 		 */
757cd7ee8acSart 
758cd7ee8acSart 		uvmexp.pdpageouts++;
7591aa8821bSart 		result = uvm_pager_put(swap_backed ? NULL : uobj, p,
760cd7ee8acSart 		    &ppsp, &npages, PGO_ALLPAGES|PGO_PDFREECLUST, start, 0);
761cd7ee8acSart 
762cd7ee8acSart 		/*
763cd7ee8acSart 		 * if we did i/o to swap, zero swslot to indicate that we are
764cd7ee8acSart 		 * no longer building a swap-backed cluster.
765cd7ee8acSart 		 */
766cd7ee8acSart 
767cd7ee8acSart 		if (swap_backed)
768cd7ee8acSart 			swslot = 0;		/* done with this cluster */
769cd7ee8acSart 
770cd7ee8acSart 		/*
7711414b0faSart 		 * first, we check for VM_PAGER_PEND which means that the
7721414b0faSart 		 * async I/O is in progress and the async I/O done routine
7731414b0faSart 		 * will clean up after us.   in this case we move on to the
7741414b0faSart 		 * next page.
7751414b0faSart 		 *
7761414b0faSart 		 * there is a very remote chance that the pending async i/o can
7771414b0faSart 		 * finish _before_ we get here.   if that happens, our page "p"
7781414b0faSart 		 * may no longer be on the inactive queue.   so we verify this
7791414b0faSart 		 * when determining the next page (starting over at the head if
7801414b0faSart 		 * we've lost our inactive page).
781cd7ee8acSart 		 */
782cd7ee8acSart 
7831414b0faSart 		if (result == VM_PAGER_PEND) {
7841df50becSmpi 			atomic_add_int(&uvmexp.paging, npages);
7851414b0faSart 			uvm_lock_pageq();
786cd7ee8acSart 			uvmexp.pdpending++;
787cd7ee8acSart 			if (p) {
78865d6360cSart 				if (p->pg_flags & PQ_INACTIVE)
7891aa8821bSart 					nextpg = TAILQ_NEXT(p, pageq);
790cd7ee8acSart 				else
7911aa8821bSart 					nextpg = TAILQ_FIRST(pglst);
792cd7ee8acSart 			} else {
7931aa8821bSart 				nextpg = NULL;
794cd7ee8acSart 			}
7951414b0faSart 			continue;
7961414b0faSart 		}
7971414b0faSart 
79835164244Stedu 		/* clean up "p" if we have one */
7991414b0faSart 		if (p) {
8001414b0faSart 			/*
8011414b0faSart 			 * the I/O request to "p" is done and uvm_pager_put
8021414b0faSart 			 * has freed any cluster pages it may have allocated
8031414b0faSart 			 * during I/O.  all that is left for us to do is
8041414b0faSart 			 * clean up page "p" (which is still PG_BUSY).
8051414b0faSart 			 *
8061414b0faSart 			 * our result could be one of the following:
8071414b0faSart 			 *   VM_PAGER_OK: successful pageout
8081414b0faSart 			 *
8091414b0faSart 			 *   VM_PAGER_AGAIN: tmp resource shortage, we skip
8101414b0faSart 			 *     to next page
8111414b0faSart 			 *   VM_PAGER_{FAIL,ERROR,BAD}: an error.   we
8121414b0faSart 			 *     "reactivate" page to get it out of the way (it
8131414b0faSart 			 *     will eventually drift back into the inactive
8141414b0faSart 			 *     queue for a retry).
8151414b0faSart 			 *   VM_PAGER_UNLOCK: should never see this as it is
8161414b0faSart 			 *     only valid for "get" operations
8171414b0faSart 			 */
8181414b0faSart 
8191414b0faSart 			/* relock p's object: page queues not lock yet, so
8201414b0faSart 			 * no need for "try" */
8211414b0faSart 
8221c92e3afSmpi 			/* !swap_backed case: already locked... */
8231c92e3afSmpi 			if (swap_backed) {
8240dea91ceSmpi 				rw_enter(slock, RW_WRITE);
8251c92e3afSmpi 			}
8261c92e3afSmpi 
8272c932f6fSmiod #ifdef DIAGNOSTIC
8282c932f6fSmiod 			if (result == VM_PAGER_UNLOCK)
8292c932f6fSmiod 				panic("pagedaemon: pageout returned "
8302c932f6fSmiod 				    "invalid 'unlock' code");
8312c932f6fSmiod #endif
8322c932f6fSmiod 
8331414b0faSart 			/* handle PG_WANTED now */
8349662fca4Sart 			if (p->pg_flags & PG_WANTED)
8351414b0faSart 				wakeup(p);
8361414b0faSart 
83765d6360cSart 			atomic_clearbits_int(&p->pg_flags, PG_BUSY|PG_WANTED);
8381414b0faSart 			UVM_PAGE_OWN(p, NULL);
8391414b0faSart 
8400b0fe1a1Soga 			/* released during I/O? Can only happen for anons */
8419662fca4Sart 			if (p->pg_flags & PG_RELEASED) {
8420b0fe1a1Soga 				KASSERT(anon != NULL);
84384325188Soga 				/*
84484325188Soga 				 * remove page so we can get nextpg,
84584325188Soga 				 * also zero out anon so we don't use
84684325188Soga 				 * it after the free.
84784325188Soga 				 */
8488d0b5bafSpedro 				anon->an_page = NULL;
84984325188Soga 				p->uanon = NULL;
8501414b0faSart 
8511414b0faSart 				uvm_anfree(anon);	/* kills anon */
8521e8cdc2eSderaadt 				pmap_page_protect(p, PROT_NONE);
8531414b0faSart 				anon = NULL;
8541414b0faSart 				uvm_lock_pageq();
8551414b0faSart 				nextpg = TAILQ_NEXT(p, pageq);
8561414b0faSart 				/* free released page */
8571414b0faSart 				uvm_pagefree(p);
8581414b0faSart 			} else {	/* page was not released during I/O */
8591414b0faSart 				uvm_lock_pageq();
8601414b0faSart 				nextpg = TAILQ_NEXT(p, pageq);
8611414b0faSart 				if (result != VM_PAGER_OK) {
8621414b0faSart 					/* pageout was a failure... */
8631414b0faSart 					if (result != VM_PAGER_AGAIN)
8641414b0faSart 						uvm_pageactivate(p);
8651414b0faSart 					pmap_clear_reference(p);
8661414b0faSart 				} else {
8671414b0faSart 					/* pageout was a success... */
8681414b0faSart 					pmap_clear_reference(p);
8691414b0faSart 					pmap_clear_modify(p);
87065d6360cSart 					atomic_setbits_int(&p->pg_flags,
87165d6360cSart 					    PG_CLEAN);
8721414b0faSart 				}
8731414b0faSart 			}
8741414b0faSart 
8751414b0faSart 			/*
8761414b0faSart 			 * drop object lock (if there is an object left).   do
8771414b0faSart 			 * a safety check of nextpg to make sure it is on the
8781414b0faSart 			 * inactive queue (it should be since PG_BUSY pages on
8791414b0faSart 			 * the inactive queue can't be re-queued [note: not
8801414b0faSart 			 * true for active queue]).
8811414b0faSart 			 */
8820dea91ceSmpi 			rw_exit(slock);
8831414b0faSart 
88449b3ab21Soga 			if (nextpg && (nextpg->pg_flags & PQ_INACTIVE) == 0) {
88549b3ab21Soga 				nextpg = TAILQ_FIRST(pglst);	/* reload! */
88649b3ab21Soga 			}
8871414b0faSart 		} else {
8881414b0faSart 			/*
8891414b0faSart 			 * if p is null in this loop, make sure it stays null
8901414b0faSart 			 * in the next loop.
8911414b0faSart 			 */
8921414b0faSart 			nextpg = NULL;
8931414b0faSart 
8941414b0faSart 			/*
8951414b0faSart 			 * lock page queues here just so they're always locked
8961414b0faSart 			 * at the end of the loop.
8971414b0faSart 			 */
8981414b0faSart 			uvm_lock_pageq();
8991414b0faSart 		}
9001aa8821bSart 	}
901c1e5f9e3Smpi 
902c1e5f9e3Smpi 	return freed;
903cd7ee8acSart }
904cd7ee8acSart 
905cd7ee8acSart /*
906cd7ee8acSart  * uvmpd_scan: scan the page queues and attempt to meet our targets.
907cd7ee8acSart  *
908cd7ee8acSart  * => called with pageq's locked
909cd7ee8acSart  */
910cd7ee8acSart 
911cd7ee8acSart void
912ab9ceab3Smpi uvmpd_scan(struct uvm_pmalloc *pma, int shortage, int inactive_shortage)
913cd7ee8acSart {
9144e368faeSmpi 	int swap_shortage, pages_freed;
915cd7ee8acSart 
916d21d8ab4Smpi 	MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
917d21d8ab4Smpi 
918cd7ee8acSart 	uvmexp.pdrevs++;		/* counter */
919cd7ee8acSart 
920cd7ee8acSart 
921f88a4ea9Smiod #ifdef __HAVE_PMAP_COLLECT
922cd7ee8acSart 	/*
923cd7ee8acSart 	 * swap out some processes if we are below our free target.
924cd7ee8acSart 	 * we need to unlock the page queues for this.
925cd7ee8acSart 	 */
9264e368faeSmpi 	if (shortage > 0) {
927cd7ee8acSart 		uvmexp.pdswout++;
928cd7ee8acSart 		uvm_unlock_pageq();
9294e368faeSmpi 		shortage -= uvm_swapout_threads();
930cd7ee8acSart 		uvm_lock_pageq();
931cd7ee8acSart 	}
932cd7ee8acSart #endif
933cd7ee8acSart 
934cd7ee8acSart 	/*
935cd7ee8acSart 	 * now we want to work on meeting our targets.   first we work on our
936cd7ee8acSart 	 * free target by converting inactive pages into free pages.  then
937cd7ee8acSart 	 * we work on meeting our inactive target by converting active pages
938cd7ee8acSart 	 * to inactive ones.
939cd7ee8acSart 	 */
940ab9ceab3Smpi 	pages_freed = uvmpd_scan_inactive(pma, shortage);
941c1e5f9e3Smpi 	uvmexp.pdfreed += pages_freed;
9424e368faeSmpi 	shortage -= pages_freed;
943cd7ee8acSart 
944cd7ee8acSart 	/*
945cd7ee8acSart 	 * we have done the scan to get free pages.   now we work on meeting
946cd7ee8acSart 	 * our inactive target.
947779ee49fSmpi 	 *
9488a42ed70Sart 	 * detect if we're not going to be able to page anything out
9498a42ed70Sart 	 * until we free some swap resources from active pages.
9508a42ed70Sart 	 */
9518a42ed70Sart 	swap_shortage = 0;
9524e368faeSmpi 	if ((shortage > 0) && uvm_swapisfilled() && !uvm_swapisfull() &&
9538a42ed70Sart 	    pages_freed == 0) {
9544e368faeSmpi 		swap_shortage = shortage;
9558a42ed70Sart 	}
9568a42ed70Sart 
957767e8a65Smpi 	uvmpd_scan_active(pma, swap_shortage, inactive_shortage);
958767e8a65Smpi }
959767e8a65Smpi 
960767e8a65Smpi void
961767e8a65Smpi uvmpd_scan_active(struct uvm_pmalloc *pma, int swap_shortage,
962767e8a65Smpi     int inactive_shortage)
963767e8a65Smpi {
964767e8a65Smpi 	struct vm_page *p, *nextpg;
965767e8a65Smpi 	struct rwlock *slock;
966767e8a65Smpi 
967767e8a65Smpi 	MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
968767e8a65Smpi 
9698a42ed70Sart 	for (p = TAILQ_FIRST(&uvm.page_active);
9708a42ed70Sart 	     p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
9718a42ed70Sart 	     p = nextpg) {
9721aa8821bSart 		nextpg = TAILQ_NEXT(p, pageq);
973609704bbSmpi 		if (p->pg_flags & PG_BUSY) {
974b8a635f6Stedu 			continue;
975609704bbSmpi 		}
976cd7ee8acSart 
977609704bbSmpi 		/*
978a125353dSmpi 		 * If we couldn't release enough pages from a given memory
979a125353dSmpi 		 * range try to deactivate them first...
980a125353dSmpi 		 *
981a125353dSmpi 		 * ...unless we are low on swap slots, in such case we are
982a125353dSmpi 		 * probably OOM and want to release swap resources as quickly
983a125353dSmpi 		 * as possible.
9842d45b4c2Smpi 		 */
985a125353dSmpi 		if (inactive_shortage > 0 && swap_shortage == 0 &&
986a125353dSmpi 		    !uvmpd_pma_done(pma) &&
987ab9ceab3Smpi 		    !uvmpd_match_constraint(p, &pma->pm_constraint))
9882d45b4c2Smpi 			continue;
9892d45b4c2Smpi 
9902d45b4c2Smpi 		/*
991609704bbSmpi 		 * lock the page's owner.
992609704bbSmpi 		 */
993c4141b1cSmpi 		slock = uvmpd_trylockowner(p);
994c4141b1cSmpi 		if (slock == NULL) {
9951c92e3afSmpi 			continue;
996609704bbSmpi 		}
997609704bbSmpi 
998609704bbSmpi 		/*
999609704bbSmpi 		 * skip this page if it's busy.
1000609704bbSmpi 		 */
1001609704bbSmpi 		if ((p->pg_flags & PG_BUSY) != 0) {
1002609704bbSmpi 			rw_exit(slock);
100369c04514Smpi 			continue;
100469c04514Smpi 		}
1005cd7ee8acSart 
10068a42ed70Sart 		/*
10078a42ed70Sart 		 * if there's a shortage of swap, free any swap allocated
10088a42ed70Sart 		 * to this page so that other pages can be paged out.
10098a42ed70Sart 		 */
10108a42ed70Sart 		if (swap_shortage > 0) {
10115a3e8fe8Smpi 			if (uvmpd_dropswap(p)) {
101265d6360cSart 				atomic_clearbits_int(&p->pg_flags, PG_CLEAN);
10138a42ed70Sart 				swap_shortage--;
10148a42ed70Sart 			}
10158a42ed70Sart 		}
10168a42ed70Sart 
10178a42ed70Sart 		/*
10182c932f6fSmiod 		 * deactivate this page if there's a shortage of
10192c932f6fSmiod 		 * inactive pages.
10208a42ed70Sart 		 */
10212c932f6fSmiod 		if (inactive_shortage > 0) {
1022cd7ee8acSart 			/* no need to check wire_count as pg is "active" */
1023cd7ee8acSart 			uvm_pagedeactivate(p);
1024cd7ee8acSart 			uvmexp.pddeact++;
10258a42ed70Sart 			inactive_shortage--;
1026cd7ee8acSart 		}
1027609704bbSmpi 
1028609704bbSmpi 		/*
1029609704bbSmpi 		 * we're done with this page.
1030609704bbSmpi 		 */
1031609704bbSmpi 		rw_exit(slock);
1032cd7ee8acSart 	}
1033cd7ee8acSart }
1034f5db0a1cSkettenis 
1035f5db0a1cSkettenis #ifdef HIBERNATE
1036f5db0a1cSkettenis 
1037f5db0a1cSkettenis /*
1038f5db0a1cSkettenis  * uvmpd_drop: drop clean pages from list
1039f5db0a1cSkettenis  */
1040f5db0a1cSkettenis void
1041f5db0a1cSkettenis uvmpd_drop(struct pglist *pglst)
1042f5db0a1cSkettenis {
1043f5db0a1cSkettenis 	struct vm_page *p, *nextpg;
1044f5db0a1cSkettenis 
1045f5db0a1cSkettenis 	for (p = TAILQ_FIRST(pglst); p != NULL; p = nextpg) {
1046f5db0a1cSkettenis 		nextpg = TAILQ_NEXT(p, pageq);
1047f5db0a1cSkettenis 
1048f5db0a1cSkettenis 		if (p->pg_flags & PQ_ANON || p->uobject == NULL)
1049f5db0a1cSkettenis 			continue;
1050f5db0a1cSkettenis 
1051f5db0a1cSkettenis 		if (p->pg_flags & PG_BUSY)
1052f5db0a1cSkettenis 			continue;
1053f5db0a1cSkettenis 
1054f5db0a1cSkettenis 		if (p->pg_flags & PG_CLEAN) {
105569c04514Smpi 			struct uvm_object * uobj = p->uobject;
105669c04514Smpi 
105769c04514Smpi 			rw_enter(uobj->vmobjlock, RW_WRITE);
105869c04514Smpi 			uvm_lock_pageq();
1059f5db0a1cSkettenis 			/*
1060f5db0a1cSkettenis 			 * we now have the page queues locked.
1061f5db0a1cSkettenis 			 * the page is not busy.   if the page is clean we
1062f5db0a1cSkettenis 			 * can free it now and continue.
1063f5db0a1cSkettenis 			 */
1064f5db0a1cSkettenis 			if (p->pg_flags & PG_CLEAN) {
1065f5db0a1cSkettenis 				if (p->pg_flags & PQ_SWAPBACKED) {
1066f5db0a1cSkettenis 					/* this page now lives only in swap */
1067c4a864baSmpi 					atomic_inc_int(&uvmexp.swpgonly);
1068f5db0a1cSkettenis 				}
1069f5db0a1cSkettenis 
1070f5db0a1cSkettenis 				/* zap all mappings with pmap_page_protect... */
10711e8cdc2eSderaadt 				pmap_page_protect(p, PROT_NONE);
1072f5db0a1cSkettenis 				uvm_pagefree(p);
1073f5db0a1cSkettenis 			}
107469c04514Smpi 			uvm_unlock_pageq();
107569c04514Smpi 			rw_exit(uobj->vmobjlock);
1076f5db0a1cSkettenis 		}
1077f5db0a1cSkettenis 	}
1078f5db0a1cSkettenis }
1079f5db0a1cSkettenis 
1080f5db0a1cSkettenis void
1081f5db0a1cSkettenis uvmpd_hibernate(void)
1082f5db0a1cSkettenis {
1083c4e40561Smpi 	uvmpd_drop(&uvm.page_inactive);
1084f5db0a1cSkettenis 	uvmpd_drop(&uvm.page_active);
1085f5db0a1cSkettenis }
1086f5db0a1cSkettenis 
1087f5db0a1cSkettenis #endif
1088