xref: /openbsd-src/sys/uvm/uvm_page.c (revision c1a45aed656e7d5627c30c92421893a76f370ccb)
1 /*	$OpenBSD: uvm_page.c,v 1.163 2022/03/12 12:34:22 mpi Exp $	*/
2 /*	$NetBSD: uvm_page.c,v 1.44 2000/11/27 08:40:04 chs Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * Copyright (c) 1991, 1993, The Regents of the University of California.
7  *
8  * All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
38  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 
65 /*
66  * uvm_page.c: page ops.
67  */
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/sched.h>
72 #include <sys/vnode.h>
73 #include <sys/mount.h>
74 #include <sys/proc.h>
75 #include <sys/smr.h>
76 
77 #include <uvm/uvm.h>
78 
79 /*
80  * for object trees
81  */
82 RBT_GENERATE(uvm_objtree, vm_page, objt, uvm_pagecmp);
83 
84 int
85 uvm_pagecmp(const struct vm_page *a, const struct vm_page *b)
86 {
87 	return a->offset < b->offset ? -1 : a->offset > b->offset;
88 }
89 
90 /*
91  * global vars... XXXCDC: move to uvm. structure.
92  */
93 /*
94  * physical memory config is stored in vm_physmem.
95  */
96 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
97 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
98 
99 /*
100  * Some supported CPUs in a given architecture don't support all
101  * of the things necessary to do idle page zero'ing efficiently.
102  * We therefore provide a way to disable it from machdep code here.
103  */
104 
105 /*
106  * local variables
107  */
108 /*
109  * these variables record the values returned by vm_page_bootstrap,
110  * for debugging purposes.  The implementation of uvm_pageboot_alloc
111  * and pmap_startup here also uses them internally.
112  */
113 static vaddr_t      virtual_space_start;
114 static vaddr_t      virtual_space_end;
115 
116 /*
117  * local prototypes
118  */
119 static void uvm_pageinsert(struct vm_page *);
120 static void uvm_pageremove(struct vm_page *);
121 int uvm_page_owner_locked_p(struct vm_page *);
122 
123 /*
124  * inline functions
125  */
126 /*
127  * uvm_pageinsert: insert a page in the object
128  *
129  * => caller must lock object
130  * => call should have already set pg's object and offset pointers
131  *    and bumped the version counter
132  */
133 inline static void
134 uvm_pageinsert(struct vm_page *pg)
135 {
136 	struct vm_page	*dupe;
137 
138 	KASSERT(UVM_OBJ_IS_DUMMY(pg->uobject) ||
139 	    rw_write_held(pg->uobject->vmobjlock));
140 	KASSERT((pg->pg_flags & PG_TABLED) == 0);
141 
142 	dupe = RBT_INSERT(uvm_objtree, &pg->uobject->memt, pg);
143 	/* not allowed to insert over another page */
144 	KASSERT(dupe == NULL);
145 	atomic_setbits_int(&pg->pg_flags, PG_TABLED);
146 	pg->uobject->uo_npages++;
147 }
148 
149 /*
150  * uvm_page_remove: remove page from object
151  *
152  * => caller must lock object
153  */
154 static inline void
155 uvm_pageremove(struct vm_page *pg)
156 {
157 	KASSERT(UVM_OBJ_IS_DUMMY(pg->uobject) ||
158 	    rw_write_held(pg->uobject->vmobjlock));
159 	KASSERT(pg->pg_flags & PG_TABLED);
160 
161 	RBT_REMOVE(uvm_objtree, &pg->uobject->memt, pg);
162 
163 	atomic_clearbits_int(&pg->pg_flags, PG_TABLED);
164 	pg->uobject->uo_npages--;
165 	pg->uobject = NULL;
166 	pg->pg_version++;
167 }
168 
169 /*
170  * uvm_page_init: init the page system.   called from uvm_init().
171  *
172  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
173  */
174 void
175 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
176 {
177 	vsize_t freepages, pagecount, n;
178 	vm_page_t pagearray, curpg;
179 	int lcv, i;
180 	paddr_t paddr, pgno;
181 	struct vm_physseg *seg;
182 
183 	/*
184 	 * init the page queues and page queue locks
185 	 */
186 
187 	TAILQ_INIT(&uvm.page_active);
188 	TAILQ_INIT(&uvm.page_inactive_swp);
189 	TAILQ_INIT(&uvm.page_inactive_obj);
190 	mtx_init(&uvm.pageqlock, IPL_VM);
191 	mtx_init(&uvm.fpageqlock, IPL_VM);
192 	uvm_pmr_init();
193 
194 	/*
195 	 * allocate vm_page structures.
196 	 */
197 
198 	/*
199 	 * sanity check:
200 	 * before calling this function the MD code is expected to register
201 	 * some free RAM with the uvm_page_physload() function.   our job
202 	 * now is to allocate vm_page structures for this memory.
203 	 */
204 
205 	if (vm_nphysseg == 0)
206 		panic("uvm_page_bootstrap: no memory pre-allocated");
207 
208 	/*
209 	 * first calculate the number of free pages...
210 	 *
211 	 * note that we use start/end rather than avail_start/avail_end.
212 	 * this allows us to allocate extra vm_page structures in case we
213 	 * want to return some memory to the pool after booting.
214 	 */
215 
216 	freepages = 0;
217 	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
218 		freepages += (seg->end - seg->start);
219 
220 	/*
221 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
222 	 * use.   for each page of memory we use we need a vm_page structure.
223 	 * thus, the total number of pages we can use is the total size of
224 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
225 	 * structure.   we add one to freepages as a fudge factor to avoid
226 	 * truncation errors (since we can only allocate in terms of whole
227 	 * pages).
228 	 */
229 
230 	pagecount = (((paddr_t)freepages + 1) << PAGE_SHIFT) /
231 	    (PAGE_SIZE + sizeof(struct vm_page));
232 	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
233 	    sizeof(struct vm_page));
234 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
235 
236 	/* init the vm_page structures and put them in the correct place. */
237 	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++) {
238 		n = seg->end - seg->start;
239 		if (n > pagecount) {
240 			panic("uvm_page_init: lost %ld page(s) in init",
241 			    (long)(n - pagecount));
242 			    /* XXXCDC: shouldn't happen? */
243 			/* n = pagecount; */
244 		}
245 
246 		/* set up page array pointers */
247 		seg->pgs = pagearray;
248 		pagearray += n;
249 		pagecount -= n;
250 		seg->lastpg = seg->pgs + (n - 1);
251 
252 		/* init and free vm_pages (we've already zeroed them) */
253 		pgno = seg->start;
254 		paddr = ptoa(pgno);
255 		for (i = 0, curpg = seg->pgs; i < n;
256 		    i++, curpg++, pgno++, paddr += PAGE_SIZE) {
257 			curpg->phys_addr = paddr;
258 			VM_MDPAGE_INIT(curpg);
259 			if (pgno >= seg->avail_start &&
260 			    pgno < seg->avail_end) {
261 				uvmexp.npages++;
262 			}
263 		}
264 
265 		/* Add pages to free pool. */
266 		uvm_pmr_freepages(&seg->pgs[seg->avail_start - seg->start],
267 		    seg->avail_end - seg->avail_start);
268 	}
269 
270 	/*
271 	 * pass up the values of virtual_space_start and
272 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
273 	 * layers of the VM.
274 	 */
275 
276 	*kvm_startp = round_page(virtual_space_start);
277 	*kvm_endp = trunc_page(virtual_space_end);
278 
279 	/* init locks for kernel threads */
280 	mtx_init(&uvm.aiodoned_lock, IPL_BIO);
281 
282 	/*
283 	 * init reserve thresholds
284 	 * XXXCDC - values may need adjusting
285 	 */
286 	uvmexp.reserve_pagedaemon = 4;
287 	uvmexp.reserve_kernel = 8;
288 	uvmexp.anonminpct = 10;
289 	uvmexp.vnodeminpct = 10;
290 	uvmexp.vtextminpct = 5;
291 	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
292 	uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
293 	uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
294 
295 	uvm.page_init_done = TRUE;
296 }
297 
298 /*
299  * uvm_setpagesize: set the page size
300  *
301  * => sets page_shift and page_mask from uvmexp.pagesize.
302  */
303 void
304 uvm_setpagesize(void)
305 {
306 	if (uvmexp.pagesize == 0)
307 		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
308 	uvmexp.pagemask = uvmexp.pagesize - 1;
309 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
310 		panic("uvm_setpagesize: page size not a power of two");
311 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
312 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
313 			break;
314 }
315 
316 /*
317  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
318  */
319 vaddr_t
320 uvm_pageboot_alloc(vsize_t size)
321 {
322 #if defined(PMAP_STEAL_MEMORY)
323 	vaddr_t addr;
324 
325 	/*
326 	 * defer bootstrap allocation to MD code (it may want to allocate
327 	 * from a direct-mapped segment).  pmap_steal_memory should round
328 	 * off virtual_space_start/virtual_space_end.
329 	 */
330 
331 	addr = pmap_steal_memory(size, &virtual_space_start,
332 	    &virtual_space_end);
333 
334 	return addr;
335 
336 #else /* !PMAP_STEAL_MEMORY */
337 
338 	static boolean_t initialized = FALSE;
339 	vaddr_t addr, vaddr;
340 	paddr_t paddr;
341 
342 	/* round to page size */
343 	size = round_page(size);
344 
345 	/* on first call to this function, initialize ourselves. */
346 	if (initialized == FALSE) {
347 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
348 
349 		/* round it the way we like it */
350 		virtual_space_start = round_page(virtual_space_start);
351 		virtual_space_end = trunc_page(virtual_space_end);
352 
353 		initialized = TRUE;
354 	}
355 
356 	/* allocate virtual memory for this request */
357 	if (virtual_space_start == virtual_space_end ||
358 	    (virtual_space_end - virtual_space_start) < size)
359 		panic("uvm_pageboot_alloc: out of virtual space");
360 
361 	addr = virtual_space_start;
362 
363 #ifdef PMAP_GROWKERNEL
364 	/*
365 	 * If the kernel pmap can't map the requested space,
366 	 * then allocate more resources for it.
367 	 */
368 	if (uvm_maxkaddr < (addr + size)) {
369 		uvm_maxkaddr = pmap_growkernel(addr + size);
370 		if (uvm_maxkaddr < (addr + size))
371 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
372 	}
373 #endif
374 
375 	virtual_space_start += size;
376 
377 	/* allocate and mapin physical pages to back new virtual pages */
378 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
379 	    vaddr += PAGE_SIZE) {
380 		if (!uvm_page_physget(&paddr))
381 			panic("uvm_pageboot_alloc: out of memory");
382 
383 		/*
384 		 * Note this memory is no longer managed, so using
385 		 * pmap_kenter is safe.
386 		 */
387 		pmap_kenter_pa(vaddr, paddr, PROT_READ | PROT_WRITE);
388 	}
389 	pmap_update(pmap_kernel());
390 	return addr;
391 #endif	/* PMAP_STEAL_MEMORY */
392 }
393 
394 #if !defined(PMAP_STEAL_MEMORY)
395 /*
396  * uvm_page_physget: "steal" one page from the vm_physmem structure.
397  *
398  * => attempt to allocate it off the end of a segment in which the "avail"
399  *    values match the start/end values.   if we can't do that, then we
400  *    will advance both values (making them equal, and removing some
401  *    vm_page structures from the non-avail area).
402  * => return false if out of memory.
403  */
404 
405 boolean_t
406 uvm_page_physget(paddr_t *paddrp)
407 {
408 	int lcv;
409 	struct vm_physseg *seg;
410 
411 	/* pass 1: try allocating from a matching end */
412 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
413 	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
414 	for (lcv = vm_nphysseg - 1, seg = vm_physmem + lcv; lcv >= 0;
415 	    lcv--, seg--)
416 #else
417 	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
418 #endif
419 	{
420 		if (uvm.page_init_done == TRUE)
421 			panic("uvm_page_physget: called _after_ bootstrap");
422 
423 		/* try from front */
424 		if (seg->avail_start == seg->start &&
425 		    seg->avail_start < seg->avail_end) {
426 			*paddrp = ptoa(seg->avail_start);
427 			seg->avail_start++;
428 			seg->start++;
429 			/* nothing left?   nuke it */
430 			if (seg->avail_start == seg->end) {
431 				if (vm_nphysseg == 1)
432 				    panic("uvm_page_physget: out of memory!");
433 				vm_nphysseg--;
434 				for (; lcv < vm_nphysseg; lcv++, seg++)
435 					/* structure copy */
436 					seg[0] = seg[1];
437 			}
438 			return TRUE;
439 		}
440 
441 		/* try from rear */
442 		if (seg->avail_end == seg->end &&
443 		    seg->avail_start < seg->avail_end) {
444 			*paddrp = ptoa(seg->avail_end - 1);
445 			seg->avail_end--;
446 			seg->end--;
447 			/* nothing left?   nuke it */
448 			if (seg->avail_end == seg->start) {
449 				if (vm_nphysseg == 1)
450 				    panic("uvm_page_physget: out of memory!");
451 				vm_nphysseg--;
452 				for (; lcv < vm_nphysseg ; lcv++, seg++)
453 					/* structure copy */
454 					seg[0] = seg[1];
455 			}
456 			return TRUE;
457 		}
458 	}
459 
460 	/* pass2: forget about matching ends, just allocate something */
461 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
462 	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
463 	for (lcv = vm_nphysseg - 1, seg = vm_physmem + lcv; lcv >= 0;
464 	    lcv--, seg--)
465 #else
466 	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
467 #endif
468 	{
469 
470 		/* any room in this bank? */
471 		if (seg->avail_start >= seg->avail_end)
472 			continue;  /* nope */
473 
474 		*paddrp = ptoa(seg->avail_start);
475 		seg->avail_start++;
476 		/* truncate! */
477 		seg->start = seg->avail_start;
478 
479 		/* nothing left?   nuke it */
480 		if (seg->avail_start == seg->end) {
481 			if (vm_nphysseg == 1)
482 				panic("uvm_page_physget: out of memory!");
483 			vm_nphysseg--;
484 			for (; lcv < vm_nphysseg ; lcv++, seg++)
485 				/* structure copy */
486 				seg[0] = seg[1];
487 		}
488 		return TRUE;
489 	}
490 
491 	return FALSE;        /* whoops! */
492 }
493 
494 #endif /* PMAP_STEAL_MEMORY */
495 
496 /*
497  * uvm_page_physload: load physical memory into VM system
498  *
499  * => all args are PFs
500  * => all pages in start/end get vm_page structures
501  * => areas marked by avail_start/avail_end get added to the free page pool
502  * => we are limited to VM_PHYSSEG_MAX physical memory segments
503  */
504 
505 void
506 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
507     paddr_t avail_end, int flags)
508 {
509 	int preload, lcv;
510 	psize_t npages;
511 	struct vm_page *pgs;
512 	struct vm_physseg *ps, *seg;
513 
514 #ifdef DIAGNOSTIC
515 	if (uvmexp.pagesize == 0)
516 		panic("uvm_page_physload: page size not set!");
517 
518 	if (start >= end)
519 		panic("uvm_page_physload: start >= end");
520 #endif
521 
522 	/* do we have room? */
523 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
524 		printf("uvm_page_physload: unable to load physical memory "
525 		    "segment\n");
526 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
527 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
528 		printf("\tincrease VM_PHYSSEG_MAX\n");
529 		return;
530 	}
531 
532 	/*
533 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
534 	 * called yet, so malloc is not available).
535 	 */
536 	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg; lcv++, seg++) {
537 		if (seg->pgs)
538 			break;
539 	}
540 	preload = (lcv == vm_nphysseg);
541 
542 	/* if VM is already running, attempt to malloc() vm_page structures */
543 	if (!preload) {
544 		/*
545 		 * XXXCDC: need some sort of lockout for this case
546 		 * right now it is only used by devices so it should be alright.
547 		 */
548  		paddr_t paddr;
549 
550  		npages = end - start;  /* # of pages */
551 
552 		pgs = km_alloc(round_page(npages * sizeof(*pgs)),
553 		    &kv_any, &kp_zero, &kd_waitok);
554 		if (pgs == NULL) {
555 			printf("uvm_page_physload: can not malloc vm_page "
556 			    "structs for segment\n");
557 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
558 			return;
559 		}
560 		/* init phys_addr and free pages, XXX uvmexp.npages */
561 		for (lcv = 0, paddr = ptoa(start); lcv < npages;
562 		    lcv++, paddr += PAGE_SIZE) {
563 			pgs[lcv].phys_addr = paddr;
564 			VM_MDPAGE_INIT(&pgs[lcv]);
565 			if (atop(paddr) >= avail_start &&
566 			    atop(paddr) < avail_end) {
567 				if (flags & PHYSLOAD_DEVICE) {
568 					atomic_setbits_int(&pgs[lcv].pg_flags,
569 					    PG_DEV);
570 					pgs[lcv].wire_count = 1;
571 				} else {
572 #if defined(VM_PHYSSEG_NOADD)
573 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
574 #endif
575 				}
576 			}
577 		}
578 
579 		/* Add pages to free pool. */
580 		if ((flags & PHYSLOAD_DEVICE) == 0) {
581 			uvm_pmr_freepages(&pgs[avail_start - start],
582 			    avail_end - avail_start);
583 		}
584 
585 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
586 	} else {
587 		/* gcc complains if these don't get init'd */
588 		pgs = NULL;
589 		npages = 0;
590 
591 	}
592 
593 	/* now insert us in the proper place in vm_physmem[] */
594 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
595 	/* random: put it at the end (easy!) */
596 	ps = &vm_physmem[vm_nphysseg];
597 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
598 	{
599 		int x;
600 		/* sort by address for binary search */
601 		for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg; lcv++, seg++)
602 			if (start < seg->start)
603 				break;
604 		ps = seg;
605 		/* move back other entries, if necessary ... */
606 		for (x = vm_nphysseg, seg = vm_physmem + x - 1; x > lcv;
607 		    x--, seg--)
608 			/* structure copy */
609 			seg[1] = seg[0];
610 	}
611 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
612 	{
613 		int x;
614 		/* sort by largest segment first */
615 		for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg; lcv++, seg++)
616 			if ((end - start) >
617 			    (seg->end - seg->start))
618 				break;
619 		ps = &vm_physmem[lcv];
620 		/* move back other entries, if necessary ... */
621 		for (x = vm_nphysseg, seg = vm_physmem + x - 1; x > lcv;
622 		    x--, seg--)
623 			/* structure copy */
624 			seg[1] = seg[0];
625 	}
626 #else
627 	panic("uvm_page_physload: unknown physseg strategy selected!");
628 #endif
629 
630 	ps->start = start;
631 	ps->end = end;
632 	ps->avail_start = avail_start;
633 	ps->avail_end = avail_end;
634 	if (preload) {
635 		ps->pgs = NULL;
636 	} else {
637 		ps->pgs = pgs;
638 		ps->lastpg = pgs + npages - 1;
639 	}
640 	vm_nphysseg++;
641 
642 	return;
643 }
644 
645 #ifdef DDB /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
646 
647 void uvm_page_physdump(void); /* SHUT UP GCC */
648 
649 /* call from DDB */
650 void
651 uvm_page_physdump(void)
652 {
653 	int lcv;
654 	struct vm_physseg *seg;
655 
656 	printf("uvm_page_physdump: physical memory config [segs=%d of %d]:\n",
657 	    vm_nphysseg, VM_PHYSSEG_MAX);
658 	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
659 		printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
660 		    (long long)seg->start,
661 		    (long long)seg->end,
662 		    (long long)seg->avail_start,
663 		    (long long)seg->avail_end);
664 	printf("STRATEGY = ");
665 	switch (VM_PHYSSEG_STRAT) {
666 	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
667 	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
668 	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
669 	default: printf("<<UNKNOWN>>!!!!\n");
670 	}
671 }
672 #endif
673 
674 void
675 uvm_shutdown(void)
676 {
677 #ifdef UVM_SWAP_ENCRYPT
678 	uvm_swap_finicrypt_all();
679 #endif
680 	smr_flush();
681 }
682 
683 /*
684  * Perform insert of a given page in the specified anon of obj.
685  * This is basically, uvm_pagealloc, but with the page already given.
686  */
687 void
688 uvm_pagealloc_pg(struct vm_page *pg, struct uvm_object *obj, voff_t off,
689     struct vm_anon *anon)
690 {
691 	int	flags;
692 
693 	KASSERT(obj == NULL || anon == NULL);
694 	KASSERT(anon == NULL || off == 0);
695 	KASSERT(off == trunc_page(off));
696 	KASSERT(obj == NULL || UVM_OBJ_IS_DUMMY(obj) ||
697 	    rw_write_held(obj->vmobjlock));
698 	KASSERT(anon == NULL || anon->an_lock == NULL ||
699 	    rw_write_held(anon->an_lock));
700 
701 	flags = PG_BUSY | PG_FAKE;
702 	pg->offset = off;
703 	pg->uobject = obj;
704 	pg->uanon = anon;
705 	KASSERT(uvm_page_owner_locked_p(pg));
706 	if (anon) {
707 		anon->an_page = pg;
708 		flags |= PQ_ANON;
709 	} else if (obj)
710 		uvm_pageinsert(pg);
711 	atomic_setbits_int(&pg->pg_flags, flags);
712 #if defined(UVM_PAGE_TRKOWN)
713 	pg->owner_tag = NULL;
714 #endif
715 	UVM_PAGE_OWN(pg, "new alloc");
716 }
717 
718 /*
719  * uvm_pglistalloc: allocate a list of pages
720  *
721  * => allocated pages are placed at the tail of rlist.  rlist is
722  *    assumed to be properly initialized by caller.
723  * => returns 0 on success or errno on failure
724  * => doesn't take into account clean non-busy pages on inactive list
725  *	that could be used(?)
726  * => params:
727  *	size		the size of the allocation, rounded to page size.
728  *	low		the low address of the allowed allocation range.
729  *	high		the high address of the allowed allocation range.
730  *	alignment	memory must be aligned to this power-of-two boundary.
731  *	boundary	no segment in the allocation may cross this
732  *			power-of-two boundary (relative to zero).
733  * => flags:
734  *	UVM_PLA_NOWAIT	fail if allocation fails
735  *	UVM_PLA_WAITOK	wait for memory to become avail
736  *	UVM_PLA_ZERO	return zeroed memory
737  */
738 int
739 uvm_pglistalloc(psize_t size, paddr_t low, paddr_t high, paddr_t alignment,
740     paddr_t boundary, struct pglist *rlist, int nsegs, int flags)
741 {
742 	KASSERT((alignment & (alignment - 1)) == 0);
743 	KASSERT((boundary & (boundary - 1)) == 0);
744 	KASSERT(!(flags & UVM_PLA_WAITOK) ^ !(flags & UVM_PLA_NOWAIT));
745 
746 	if (size == 0)
747 		return EINVAL;
748 	size = atop(round_page(size));
749 
750 	/*
751 	 * XXX uvm_pglistalloc is currently only used for kernel
752 	 * objects. Unlike the checks in uvm_pagealloc, below, here
753 	 * we are always allowed to use the kernel reserve.
754 	 */
755 	flags |= UVM_PLA_USERESERVE;
756 
757 	if ((high & PAGE_MASK) != PAGE_MASK) {
758 		printf("uvm_pglistalloc: Upper boundary 0x%lx "
759 		    "not on pagemask.\n", (unsigned long)high);
760 	}
761 
762 	/*
763 	 * Our allocations are always page granularity, so our alignment
764 	 * must be, too.
765 	 */
766 	if (alignment < PAGE_SIZE)
767 		alignment = PAGE_SIZE;
768 
769 	low = atop(roundup(low, alignment));
770 	/*
771 	 * high + 1 may result in overflow, in which case high becomes 0x0,
772 	 * which is the 'don't care' value.
773 	 * The only requirement in that case is that low is also 0x0, or the
774 	 * low<high assert will fail.
775 	 */
776 	high = atop(high + 1);
777 	alignment = atop(alignment);
778 	if (boundary < PAGE_SIZE && boundary != 0)
779 		boundary = PAGE_SIZE;
780 	boundary = atop(boundary);
781 
782 	return uvm_pmr_getpages(size, low, high, alignment, boundary, nsegs,
783 	    flags, rlist);
784 }
785 
786 /*
787  * uvm_pglistfree: free a list of pages
788  *
789  * => pages should already be unmapped
790  */
791 void
792 uvm_pglistfree(struct pglist *list)
793 {
794 	uvm_pmr_freepageq(list);
795 }
796 
797 /*
798  * interface used by the buffer cache to allocate a buffer at a time.
799  * The pages are allocated wired in DMA accessible memory
800  */
801 int
802 uvm_pagealloc_multi(struct uvm_object *obj, voff_t off, vsize_t size,
803     int flags)
804 {
805 	struct pglist    plist;
806 	struct vm_page  *pg;
807 	int              i, r;
808 
809 	KASSERT(UVM_OBJ_IS_BUFCACHE(obj));
810 	KERNEL_ASSERT_LOCKED();
811 
812 	TAILQ_INIT(&plist);
813 	r = uvm_pglistalloc(size, dma_constraint.ucr_low,
814 	    dma_constraint.ucr_high, 0, 0, &plist, atop(round_page(size)),
815 	    flags);
816 	if (r == 0) {
817 		i = 0;
818 		while ((pg = TAILQ_FIRST(&plist)) != NULL) {
819 			pg->wire_count = 1;
820 			atomic_setbits_int(&pg->pg_flags, PG_CLEAN | PG_FAKE);
821 			KASSERT((pg->pg_flags & PG_DEV) == 0);
822 			TAILQ_REMOVE(&plist, pg, pageq);
823 			uvm_pagealloc_pg(pg, obj, off + ptoa(i++), NULL);
824 		}
825 	}
826 	return r;
827 }
828 
829 /*
830  * interface used by the buffer cache to reallocate a buffer at a time.
831  * The pages are reallocated wired outside the DMA accessible region.
832  *
833  */
834 int
835 uvm_pagerealloc_multi(struct uvm_object *obj, voff_t off, vsize_t size,
836     int flags, struct uvm_constraint_range *where)
837 {
838 	struct pglist    plist;
839 	struct vm_page  *pg, *tpg;
840 	int              i, r;
841 	voff_t		offset;
842 
843 	KASSERT(UVM_OBJ_IS_BUFCACHE(obj));
844 	KERNEL_ASSERT_LOCKED();
845 
846 	TAILQ_INIT(&plist);
847 	if (size == 0)
848 		panic("size 0 uvm_pagerealloc");
849 	r = uvm_pglistalloc(size, where->ucr_low, where->ucr_high, 0,
850 	    0, &plist, atop(round_page(size)), flags);
851 	if (r == 0) {
852 		i = 0;
853 		while((pg = TAILQ_FIRST(&plist)) != NULL) {
854 			offset = off + ptoa(i++);
855 			tpg = uvm_pagelookup(obj, offset);
856 			KASSERT(tpg != NULL);
857 			pg->wire_count = 1;
858 			atomic_setbits_int(&pg->pg_flags, PG_CLEAN | PG_FAKE);
859 			KASSERT((pg->pg_flags & PG_DEV) == 0);
860 			TAILQ_REMOVE(&plist, pg, pageq);
861 			uvm_pagecopy(tpg, pg);
862 			KASSERT(tpg->wire_count == 1);
863 			tpg->wire_count = 0;
864 			uvm_lock_pageq();
865 			uvm_pagefree(tpg);
866 			uvm_unlock_pageq();
867 			uvm_pagealloc_pg(pg, obj, offset, NULL);
868 		}
869 	}
870 	return r;
871 }
872 
873 /*
874  * uvm_pagealloc: allocate vm_page from a particular free list.
875  *
876  * => return null if no pages free
877  * => wake up pagedaemon if number of free pages drops below low water mark
878  * => only one of obj or anon can be non-null
879  * => caller must activate/deactivate page if it is not wired.
880  */
881 
882 struct vm_page *
883 uvm_pagealloc(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
884     int flags)
885 {
886 	struct vm_page *pg;
887 	struct pglist pgl;
888 	int pmr_flags;
889 
890 	KASSERT(obj == NULL || anon == NULL);
891 	KASSERT(anon == NULL || off == 0);
892 	KASSERT(off == trunc_page(off));
893 	KASSERT(obj == NULL || UVM_OBJ_IS_DUMMY(obj) ||
894 	    rw_write_held(obj->vmobjlock));
895 	KASSERT(anon == NULL || anon->an_lock == NULL ||
896 	    rw_write_held(anon->an_lock));
897 
898 	pmr_flags = UVM_PLA_NOWAIT;
899 
900 	/*
901 	 * We're allowed to use the kernel reserve if the page is
902 	 * being allocated to a kernel object.
903 	 */
904 	if ((flags & UVM_PGA_USERESERVE) ||
905 	    (obj != NULL && UVM_OBJ_IS_KERN_OBJECT(obj)))
906 	    	pmr_flags |= UVM_PLA_USERESERVE;
907 
908 	if (flags & UVM_PGA_ZERO)
909 		pmr_flags |= UVM_PLA_ZERO;
910 	TAILQ_INIT(&pgl);
911 	if (uvm_pmr_getpages(1, 0, 0, 1, 0, 1, pmr_flags, &pgl) != 0)
912 		goto fail;
913 
914 	pg = TAILQ_FIRST(&pgl);
915 	KASSERT(pg != NULL && TAILQ_NEXT(pg, pageq) == NULL);
916 
917 	uvm_pagealloc_pg(pg, obj, off, anon);
918 	KASSERT((pg->pg_flags & PG_DEV) == 0);
919 	if (flags & UVM_PGA_ZERO)
920 		atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
921 	else
922 		atomic_setbits_int(&pg->pg_flags, PG_CLEAN);
923 
924 	return pg;
925 
926 fail:
927 	return NULL;
928 }
929 
930 /*
931  * uvm_pagerealloc: reallocate a page from one object to another
932  */
933 
934 void
935 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
936 {
937 
938 	/* remove it from the old object */
939 	if (pg->uobject) {
940 		uvm_pageremove(pg);
941 	}
942 
943 	/* put it in the new object */
944 	if (newobj) {
945 		pg->uobject = newobj;
946 		pg->offset = newoff;
947 		pg->pg_version++;
948 		uvm_pageinsert(pg);
949 	}
950 }
951 
952 /*
953  * uvm_pageclean: clean page
954  *
955  * => erase page's identity (i.e. remove from object)
956  * => caller must lock page queues if `pg' is managed
957  * => assumes all valid mappings of pg are gone
958  */
959 void
960 uvm_pageclean(struct vm_page *pg)
961 {
962 	u_int flags_to_clear = 0;
963 
964 	if ((pg->pg_flags & (PG_TABLED|PQ_ACTIVE|PQ_INACTIVE)) &&
965 	    (pg->uobject == NULL || !UVM_OBJ_IS_PMAP(pg->uobject)))
966 		MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
967 
968 #ifdef DEBUG
969 	if (pg->uobject == (void *)0xdeadbeef &&
970 	    pg->uanon == (void *)0xdeadbeef) {
971 		panic("uvm_pagefree: freeing free page %p", pg);
972 	}
973 #endif
974 
975 	KASSERT((pg->pg_flags & PG_DEV) == 0);
976 	KASSERT(pg->uobject == NULL || UVM_OBJ_IS_DUMMY(pg->uobject) ||
977 	    rw_write_held(pg->uobject->vmobjlock));
978 	KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
979 	    rw_write_held(pg->uanon->an_lock));
980 
981 	/*
982 	 * if the page was an object page (and thus "TABLED"), remove it
983 	 * from the object.
984 	 */
985 	if (pg->pg_flags & PG_TABLED)
986 		uvm_pageremove(pg);
987 
988 	/*
989 	 * now remove the page from the queues
990 	 */
991 	if (pg->pg_flags & PQ_ACTIVE) {
992 		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
993 		flags_to_clear |= PQ_ACTIVE;
994 		uvmexp.active--;
995 	}
996 	if (pg->pg_flags & PQ_INACTIVE) {
997 		if (pg->pg_flags & PQ_SWAPBACKED)
998 			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
999 		else
1000 			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1001 		flags_to_clear |= PQ_INACTIVE;
1002 		uvmexp.inactive--;
1003 	}
1004 
1005 	/*
1006 	 * if the page was wired, unwire it now.
1007 	 */
1008 	if (pg->wire_count) {
1009 		pg->wire_count = 0;
1010 		uvmexp.wired--;
1011 	}
1012 	if (pg->uanon) {
1013 		pg->uanon->an_page = NULL;
1014 		pg->uanon = NULL;
1015 	}
1016 
1017 	/* Clean page state bits. */
1018 	flags_to_clear |= PQ_ANON|PQ_AOBJ|PQ_ENCRYPT|PG_ZERO|PG_FAKE|PG_BUSY|
1019 	    PG_RELEASED|PG_CLEAN|PG_CLEANCHK;
1020 	atomic_clearbits_int(&pg->pg_flags, flags_to_clear);
1021 
1022 #ifdef DEBUG
1023 	pg->uobject = (void *)0xdeadbeef;
1024 	pg->offset = 0xdeadbeef;
1025 	pg->uanon = (void *)0xdeadbeef;
1026 #endif
1027 }
1028 
1029 /*
1030  * uvm_pagefree: free page
1031  *
1032  * => erase page's identity (i.e. remove from object)
1033  * => put page on free list
1034  * => caller must lock page queues if `pg' is managed
1035  * => assumes all valid mappings of pg are gone
1036  */
1037 void
1038 uvm_pagefree(struct vm_page *pg)
1039 {
1040 	if ((pg->pg_flags & (PG_TABLED|PQ_ACTIVE|PQ_INACTIVE)) &&
1041 	    (pg->uobject == NULL || !UVM_OBJ_IS_PMAP(pg->uobject)))
1042 		MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
1043 
1044 	uvm_pageclean(pg);
1045 	uvm_pmr_freepages(pg, 1);
1046 }
1047 
1048 /*
1049  * uvm_page_unbusy: unbusy an array of pages.
1050  *
1051  * => pages must either all belong to the same object, or all belong to anons.
1052  * => if pages are anon-owned, anons must have 0 refcount.
1053  */
1054 void
1055 uvm_page_unbusy(struct vm_page **pgs, int npgs)
1056 {
1057 	struct vm_page *pg;
1058 	struct uvm_object *uobj;
1059 	int i;
1060 
1061 	for (i = 0; i < npgs; i++) {
1062 		pg = pgs[i];
1063 
1064 		if (pg == NULL || pg == PGO_DONTCARE) {
1065 			continue;
1066 		}
1067 
1068 #if notyet
1069 		/*
1070                  * XXX swap case in uvm_aio_aiodone() is not holding the lock.
1071 		 *
1072 		 * This isn't compatible with the PG_RELEASED anon case below.
1073 		 */
1074 		KASSERT(uvm_page_owner_locked_p(pg));
1075 #endif
1076 		KASSERT(pg->pg_flags & PG_BUSY);
1077 
1078 		if (pg->pg_flags & PG_WANTED) {
1079 			wakeup(pg);
1080 		}
1081 		if (pg->pg_flags & PG_RELEASED) {
1082 			uobj = pg->uobject;
1083 			if (uobj != NULL) {
1084 				uvm_lock_pageq();
1085 				pmap_page_protect(pg, PROT_NONE);
1086 				/* XXX won't happen right now */
1087 				if (pg->pg_flags & PQ_AOBJ)
1088 					uao_dropswap(uobj,
1089 					    pg->offset >> PAGE_SHIFT);
1090 				uvm_pagefree(pg);
1091 				uvm_unlock_pageq();
1092 			} else {
1093 				rw_enter(pg->uanon->an_lock, RW_WRITE);
1094 				uvm_anon_release(pg->uanon);
1095 			}
1096 		} else {
1097 			atomic_clearbits_int(&pg->pg_flags, PG_WANTED|PG_BUSY);
1098 			UVM_PAGE_OWN(pg, NULL);
1099 		}
1100 	}
1101 }
1102 
1103 #if defined(UVM_PAGE_TRKOWN)
1104 /*
1105  * uvm_page_own: set or release page ownership
1106  *
1107  * => this is a debugging function that keeps track of who sets PG_BUSY
1108  *	and where they do it.   it can be used to track down problems
1109  *	such a thread setting "PG_BUSY" and never releasing it.
1110  * => if "tag" is NULL then we are releasing page ownership
1111  */
1112 void
1113 uvm_page_own(struct vm_page *pg, char *tag)
1114 {
1115 	/* gain ownership? */
1116 	if (tag) {
1117 		if (pg->owner_tag) {
1118 			printf("uvm_page_own: page %p already owned "
1119 			    "by thread %d [%s]\n", pg,
1120 			     pg->owner, pg->owner_tag);
1121 			panic("uvm_page_own");
1122 		}
1123 		pg->owner = (curproc) ? curproc->p_tid :  (pid_t) -1;
1124 		pg->owner_tag = tag;
1125 		return;
1126 	}
1127 
1128 	/* drop ownership */
1129 	if (pg->owner_tag == NULL) {
1130 		printf("uvm_page_own: dropping ownership of an non-owned "
1131 		    "page (%p)\n", pg);
1132 		panic("uvm_page_own");
1133 	}
1134 	pg->owner_tag = NULL;
1135 	return;
1136 }
1137 #endif
1138 
1139 /*
1140  * when VM_PHYSSEG_MAX is 1, we can simplify these functions
1141  */
1142 
1143 #if VM_PHYSSEG_MAX > 1
1144 /*
1145  * vm_physseg_find: find vm_physseg structure that belongs to a PA
1146  */
1147 int
1148 vm_physseg_find(paddr_t pframe, int *offp)
1149 {
1150 	struct vm_physseg *seg;
1151 
1152 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
1153 	/* binary search for it */
1154 	int	start, len, try;
1155 
1156 	/*
1157 	 * if try is too large (thus target is less than than try) we reduce
1158 	 * the length to trunc(len/2) [i.e. everything smaller than "try"]
1159 	 *
1160 	 * if the try is too small (thus target is greater than try) then
1161 	 * we set the new start to be (try + 1).   this means we need to
1162 	 * reduce the length to (round(len/2) - 1).
1163 	 *
1164 	 * note "adjust" below which takes advantage of the fact that
1165 	 *  (round(len/2) - 1) == trunc((len - 1) / 2)
1166 	 * for any value of len we may have
1167 	 */
1168 
1169 	for (start = 0, len = vm_nphysseg ; len != 0 ; len = len / 2) {
1170 		try = start + (len / 2);	/* try in the middle */
1171 		seg = vm_physmem + try;
1172 
1173 		/* start past our try? */
1174 		if (pframe >= seg->start) {
1175 			/* was try correct? */
1176 			if (pframe < seg->end) {
1177 				if (offp)
1178 					*offp = pframe - seg->start;
1179 				return try;            /* got it */
1180 			}
1181 			start = try + 1;	/* next time, start here */
1182 			len--;			/* "adjust" */
1183 		} else {
1184 			/*
1185 			 * pframe before try, just reduce length of
1186 			 * region, done in "for" loop
1187 			 */
1188 		}
1189 	}
1190 	return -1;
1191 
1192 #else
1193 	/* linear search for it */
1194 	int	lcv;
1195 
1196 	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++) {
1197 		if (pframe >= seg->start && pframe < seg->end) {
1198 			if (offp)
1199 				*offp = pframe - seg->start;
1200 			return lcv;		   /* got it */
1201 		}
1202 	}
1203 	return -1;
1204 
1205 #endif
1206 }
1207 
1208 /*
1209  * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
1210  * back from an I/O mapping (ugh!).   used in some MD code as well.
1211  */
1212 struct vm_page *
1213 PHYS_TO_VM_PAGE(paddr_t pa)
1214 {
1215 	paddr_t pf = atop(pa);
1216 	int	off;
1217 	int	psi;
1218 
1219 	psi = vm_physseg_find(pf, &off);
1220 
1221 	return (psi == -1) ? NULL : &vm_physmem[psi].pgs[off];
1222 }
1223 #endif /* VM_PHYSSEG_MAX > 1 */
1224 
1225 /*
1226  * uvm_pagelookup: look up a page
1227  */
1228 struct vm_page *
1229 uvm_pagelookup(struct uvm_object *obj, voff_t off)
1230 {
1231 	/* XXX if stack is too much, handroll */
1232 	struct vm_page pg;
1233 
1234 	pg.offset = off;
1235 	return RBT_FIND(uvm_objtree, &obj->memt, &pg);
1236 }
1237 
1238 /*
1239  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1240  *
1241  * => caller must lock page queues
1242  */
1243 void
1244 uvm_pagewire(struct vm_page *pg)
1245 {
1246 	KASSERT(uvm_page_owner_locked_p(pg));
1247 	MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
1248 
1249 	if (pg->wire_count == 0) {
1250 		if (pg->pg_flags & PQ_ACTIVE) {
1251 			TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1252 			atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
1253 			uvmexp.active--;
1254 		}
1255 		if (pg->pg_flags & PQ_INACTIVE) {
1256 			if (pg->pg_flags & PQ_SWAPBACKED)
1257 				TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1258 			else
1259 				TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1260 			atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
1261 			uvmexp.inactive--;
1262 		}
1263 		uvmexp.wired++;
1264 	}
1265 	pg->wire_count++;
1266 }
1267 
1268 /*
1269  * uvm_pageunwire: unwire the page.
1270  *
1271  * => activate if wire count goes to zero.
1272  * => caller must lock page queues
1273  */
1274 void
1275 uvm_pageunwire(struct vm_page *pg)
1276 {
1277 	KASSERT(uvm_page_owner_locked_p(pg));
1278 	MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
1279 
1280 	pg->wire_count--;
1281 	if (pg->wire_count == 0) {
1282 		TAILQ_INSERT_TAIL(&uvm.page_active, pg, pageq);
1283 		uvmexp.active++;
1284 		atomic_setbits_int(&pg->pg_flags, PQ_ACTIVE);
1285 		uvmexp.wired--;
1286 	}
1287 }
1288 
1289 /*
1290  * uvm_pagedeactivate: deactivate page -- no pmaps have access to page
1291  *
1292  * => caller must lock page queues
1293  * => caller must check to make sure page is not wired
1294  * => object that page belongs to must be locked (so we can adjust pg->flags)
1295  */
1296 void
1297 uvm_pagedeactivate(struct vm_page *pg)
1298 {
1299 	KASSERT(uvm_page_owner_locked_p(pg));
1300 	MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
1301 
1302 	if (pg->pg_flags & PQ_ACTIVE) {
1303 		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1304 		atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
1305 		uvmexp.active--;
1306 	}
1307 	if ((pg->pg_flags & PQ_INACTIVE) == 0) {
1308 		KASSERT(pg->wire_count == 0);
1309 		if (pg->pg_flags & PQ_SWAPBACKED)
1310 			TAILQ_INSERT_TAIL(&uvm.page_inactive_swp, pg, pageq);
1311 		else
1312 			TAILQ_INSERT_TAIL(&uvm.page_inactive_obj, pg, pageq);
1313 		atomic_setbits_int(&pg->pg_flags, PQ_INACTIVE);
1314 		uvmexp.inactive++;
1315 		pmap_clear_reference(pg);
1316 		/*
1317 		 * update the "clean" bit.  this isn't 100%
1318 		 * accurate, and doesn't have to be.  we'll
1319 		 * re-sync it after we zap all mappings when
1320 		 * scanning the inactive list.
1321 		 */
1322 		if ((pg->pg_flags & PG_CLEAN) != 0 &&
1323 		    pmap_is_modified(pg))
1324 			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1325 	}
1326 }
1327 
1328 /*
1329  * uvm_pageactivate: activate page
1330  *
1331  * => caller must lock page queues
1332  */
1333 void
1334 uvm_pageactivate(struct vm_page *pg)
1335 {
1336 	KASSERT(uvm_page_owner_locked_p(pg));
1337 	MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
1338 
1339 	if (pg->pg_flags & PQ_INACTIVE) {
1340 		if (pg->pg_flags & PQ_SWAPBACKED)
1341 			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1342 		else
1343 			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1344 		atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
1345 		uvmexp.inactive--;
1346 	}
1347 	if (pg->wire_count == 0) {
1348 		/*
1349 		 * if page is already active, remove it from list so we
1350 		 * can put it at tail.  if it wasn't active, then mark
1351 		 * it active and bump active count
1352 		 */
1353 		if (pg->pg_flags & PQ_ACTIVE)
1354 			TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1355 		else {
1356 			atomic_setbits_int(&pg->pg_flags, PQ_ACTIVE);
1357 			uvmexp.active++;
1358 		}
1359 
1360 		TAILQ_INSERT_TAIL(&uvm.page_active, pg, pageq);
1361 	}
1362 }
1363 
1364 /*
1365  * uvm_pagezero: zero fill a page
1366  */
1367 void
1368 uvm_pagezero(struct vm_page *pg)
1369 {
1370 	atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1371 	pmap_zero_page(pg);
1372 }
1373 
1374 /*
1375  * uvm_pagecopy: copy a page
1376  */
1377 void
1378 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1379 {
1380 	atomic_clearbits_int(&dst->pg_flags, PG_CLEAN);
1381 	pmap_copy_page(src, dst);
1382 }
1383 
1384 /*
1385  * uvm_page_owner_locked_p: return true if object associated with page is
1386  * locked.  this is a weak check for runtime assertions only.
1387  */
1388 int
1389 uvm_page_owner_locked_p(struct vm_page *pg)
1390 {
1391 	if (pg->uobject != NULL) {
1392 		if (UVM_OBJ_IS_DUMMY(pg->uobject))
1393 			return 1;
1394 		return rw_write_held(pg->uobject->vmobjlock);
1395 	}
1396 	if (pg->uanon != NULL) {
1397 		return rw_write_held(pg->uanon->an_lock);
1398 	}
1399 	return 1;
1400 }
1401 
1402 /*
1403  * uvm_pagecount: count the number of physical pages in the address range.
1404  */
1405 psize_t
1406 uvm_pagecount(struct uvm_constraint_range* constraint)
1407 {
1408 	int lcv;
1409 	psize_t sz;
1410 	paddr_t low, high;
1411 	paddr_t ps_low, ps_high;
1412 
1413 	/* Algorithm uses page numbers. */
1414 	low = atop(constraint->ucr_low);
1415 	high = atop(constraint->ucr_high);
1416 
1417 	sz = 0;
1418 	for (lcv = 0; lcv < vm_nphysseg; lcv++) {
1419 		ps_low = MAX(low, vm_physmem[lcv].avail_start);
1420 		ps_high = MIN(high, vm_physmem[lcv].avail_end);
1421 		if (ps_low < ps_high)
1422 			sz += ps_high - ps_low;
1423 	}
1424 	return sz;
1425 }
1426