xref: /openbsd-src/sys/uvm/uvm_page.c (revision b2ea75c1b17e1a9a339660e7ed45cd24946b230e)
1 /*	$OpenBSD: uvm_page.c,v 1.22 2001/08/11 10:57:22 art Exp $	*/
2 /*	$NetBSD: uvm_page.c,v 1.37 2000/06/09 04:43:19 soda Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * Copyright (c) 1991, 1993, The Regents of the University of California.
7  *
8  * All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by Charles D. Cranor,
24  *      Washington University, the University of California, Berkeley and
25  *      its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
43  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  * uvm_page.c: page ops.
72  */
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/malloc.h>
77 #include <sys/sched.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_page.h>
81 #include <vm/vm_kern.h>
82 
83 #define UVM_PAGE                /* pull in uvm_page.h functions */
84 #include <uvm/uvm.h>
85 
86 /*
87  * global vars... XXXCDC: move to uvm. structure.
88  */
89 
90 /*
91  * physical memory config is stored in vm_physmem.
92  */
93 
94 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
95 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
96 
97 /*
98  * Some supported CPUs in a given architecture don't support all
99  * of the things necessary to do idle page zero'ing efficiently.
100  * We therefore provide a way to disable it from machdep code here.
101  */
102 
103 boolean_t vm_page_zero_enable = TRUE;
104 
105 /*
106  * local variables
107  */
108 
109 /*
110  * these variables record the values returned by vm_page_bootstrap,
111  * for debugging purposes.  The implementation of uvm_pageboot_alloc
112  * and pmap_startup here also uses them internally.
113  */
114 
115 static vaddr_t      virtual_space_start;
116 static vaddr_t      virtual_space_end;
117 
118 /*
119  * we use a hash table with only one bucket during bootup.  we will
120  * later rehash (resize) the hash table once the allocator is ready.
121  * we static allocate the one bootstrap bucket below...
122  */
123 
124 static struct pglist uvm_bootbucket;
125 
126 /*
127  * local prototypes
128  */
129 
130 static void uvm_pageinsert __P((struct vm_page *));
131 
132 
133 /*
134  * inline functions
135  */
136 
137 /*
138  * uvm_pageinsert: insert a page in the object and the hash table
139  *
140  * => caller must lock object
141  * => caller must lock page queues
142  * => call should have already set pg's object and offset pointers
143  *    and bumped the version counter
144  */
145 
146 __inline static void
147 uvm_pageinsert(pg)
148 	struct vm_page *pg;
149 {
150 	struct pglist *buck;
151 	int s;
152 
153 #ifdef DIAGNOSTIC
154 	if (pg->flags & PG_TABLED)
155 		panic("uvm_pageinsert: already inserted");
156 #endif
157 
158 	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
159 	s = splimp();
160 	simple_lock(&uvm.hashlock);
161 	TAILQ_INSERT_TAIL(buck, pg, hashq);	/* put in hash */
162 	simple_unlock(&uvm.hashlock);
163 	splx(s);
164 
165 	TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
166 	pg->flags |= PG_TABLED;
167 	pg->uobject->uo_npages++;
168 
169 }
170 
171 /*
172  * uvm_page_remove: remove page from object and hash
173  *
174  * => caller must lock object
175  * => caller must lock page queues
176  */
177 
178 void __inline
179 uvm_pageremove(pg)
180 	struct vm_page *pg;
181 {
182 	struct pglist *buck;
183 	int s;
184 
185 #ifdef DIAGNOSTIC
186 	if ((pg->flags & (PG_FAULTING)) != 0)
187 		panic("uvm_pageremove: page is faulting");
188 #endif
189 
190 	if ((pg->flags & PG_TABLED) == 0)
191 		return;				/* XXX: log */
192 
193 	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
194 	s = splimp();
195 	simple_lock(&uvm.hashlock);
196 	TAILQ_REMOVE(buck, pg, hashq);
197 	simple_unlock(&uvm.hashlock);
198 	splx(s);
199 
200 	/* object should be locked */
201 	TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
202 
203 	pg->flags &= ~PG_TABLED;
204 	pg->uobject->uo_npages--;
205 	pg->uobject = NULL;
206 	pg->version++;
207 
208 }
209 
210 /*
211  * uvm_page_init: init the page system.   called from uvm_init().
212  *
213  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
214  */
215 
216 void
217 uvm_page_init(kvm_startp, kvm_endp)
218 	vaddr_t *kvm_startp, *kvm_endp;
219 {
220 	vsize_t freepages, pagecount, n;
221 	vm_page_t pagearray;
222 	int lcv, i;
223 	paddr_t paddr;
224 
225 
226 	/*
227 	 * step 1: init the page queues and page queue locks
228 	 */
229 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
230 		for (i = 0; i < PGFL_NQUEUES; i++)
231 			TAILQ_INIT(&uvm.page_free[lcv].pgfl_queues[i]);
232 	}
233 	TAILQ_INIT(&uvm.page_active);
234 	TAILQ_INIT(&uvm.page_inactive_swp);
235 	TAILQ_INIT(&uvm.page_inactive_obj);
236 	simple_lock_init(&uvm.pageqlock);
237 	simple_lock_init(&uvm.fpageqlock);
238 
239 	/*
240 	 * step 2: init the <obj,offset> => <page> hash table. for now
241 	 * we just have one bucket (the bootstrap bucket).   later on we
242 	 * will allocate new buckets as we dynamically resize the hash table.
243 	 */
244 
245 	uvm.page_nhash = 1;			/* 1 bucket */
246 	uvm.page_hashmask = 0;		/* mask for hash function */
247 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
248 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
249 	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
250 
251 	/*
252 	 * step 3: allocate vm_page structures.
253 	 */
254 
255 	/*
256 	 * sanity check:
257 	 * before calling this function the MD code is expected to register
258 	 * some free RAM with the uvm_page_physload() function.   our job
259 	 * now is to allocate vm_page structures for this memory.
260 	 */
261 
262 	if (vm_nphysseg == 0)
263 		panic("vm_page_bootstrap: no memory pre-allocated");
264 
265 	/*
266 	 * first calculate the number of free pages...
267 	 *
268 	 * note that we use start/end rather than avail_start/avail_end.
269 	 * this allows us to allocate extra vm_page structures in case we
270 	 * want to return some memory to the pool after booting.
271 	 */
272 
273 	freepages = 0;
274 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
275 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
276 
277 	/*
278 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
279 	 * use.   for each page of memory we use we need a vm_page structure.
280 	 * thus, the total number of pages we can use is the total size of
281 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
282 	 * structure.   we add one to freepages as a fudge factor to avoid
283 	 * truncation errors (since we can only allocate in terms of whole
284 	 * pages).
285 	 */
286 
287 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
288 	    (PAGE_SIZE + sizeof(struct vm_page));
289 	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
290 	    sizeof(struct vm_page));
291 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
292 
293 	/*
294 	 * step 4: init the vm_page structures and put them in the correct
295 	 * place...
296 	 */
297 
298 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
299 
300 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
301 		if (n > pagecount) {
302 			printf("uvm_page_init: lost %ld page(s) in init\n",
303 			    (long)(n - pagecount));
304 			panic("uvm_page_init");  /* XXXCDC: shouldn't happen? */
305 			/* n = pagecount; */
306 		}
307 		/* set up page array pointers */
308 		vm_physmem[lcv].pgs = pagearray;
309 		pagearray += n;
310 		pagecount -= n;
311 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
312 
313 		/* init and free vm_pages (we've already zeroed them) */
314 		paddr = ptoa(vm_physmem[lcv].start);
315 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
316 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
317 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
318 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
319 				uvmexp.npages++;
320 				/* add page to free pool */
321 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
322 			}
323 		}
324 	}
325 	/*
326 	 * step 5: pass up the values of virtual_space_start and
327 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
328 	 * layers of the VM.
329 	 */
330 
331 	*kvm_startp = round_page(virtual_space_start);
332 	*kvm_endp = trunc_page(virtual_space_end);
333 
334 	/*
335 	 * step 6: init pagedaemon lock
336 	 */
337 
338 	simple_lock_init(&uvm.pagedaemon_lock);
339 
340 	/*
341 	 * step 7: init reserve thresholds
342 	 * XXXCDC - values may need adjusting
343 	 */
344 	uvmexp.reserve_pagedaemon = 4;
345 	uvmexp.reserve_kernel = 6;
346 
347   	/*
348 	 * step 8: determine if we should zero pages in the idle
349 	 * loop.
350 	 *
351 	 * XXXJRT - might consider zero'ing up to the target *now*,
352 	 *	    but that could take an awfully long time if you
353 	 *	    have a lot of memory.
354 	 */
355 	uvm.page_idle_zero = vm_page_zero_enable;
356 
357 	/*
358 	 * done!
359 	 */
360 
361 	uvm.page_init_done = TRUE;
362 }
363 
364 /*
365  * uvm_setpagesize: set the page size
366  *
367  * => sets page_shift and page_mask from uvmexp.pagesize.
368  * => XXXCDC: move global vars.
369  */
370 
371 void
372 uvm_setpagesize()
373 {
374 	if (uvmexp.pagesize == 0)
375 		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
376 	uvmexp.pagemask = uvmexp.pagesize - 1;
377 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
378 		panic("uvm_setpagesize: page size not a power of two");
379 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
380 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
381 			break;
382 }
383 
384 /*
385  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
386  */
387 
388 vaddr_t
389 uvm_pageboot_alloc(size)
390 	vsize_t size;
391 {
392 #if defined(PMAP_STEAL_MEMORY)
393 	vaddr_t addr;
394 
395 	/*
396 	 * defer bootstrap allocation to MD code (it may want to allocate
397 	 * from a direct-mapped segment).  pmap_steal_memory should round
398 	 * off virtual_space_start/virtual_space_end.
399 	 */
400 
401 	addr = pmap_steal_memory(size, &virtual_space_start,
402 	    &virtual_space_end);
403 
404 	return(addr);
405 
406 #else /* !PMAP_STEAL_MEMORY */
407 
408 	static boolean_t initialized = FALSE;
409 	vaddr_t addr, vaddr;
410 	paddr_t paddr;
411 
412 	/* round to page size */
413 	size = round_page(size);
414 
415 	/*
416 	 * on first call to this function, initialize ourselves.
417 	 */
418 	if (initialized == FALSE) {
419 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
420 
421 		/* round it the way we like it */
422 		virtual_space_start = round_page(virtual_space_start);
423 		virtual_space_end = trunc_page(virtual_space_end);
424 
425 		initialized = TRUE;
426 	}
427 
428 	/*
429 	 * allocate virtual memory for this request
430 	 */
431 	if (virtual_space_start == virtual_space_end ||
432 	    (virtual_space_end - virtual_space_start) < size)
433 		panic("uvm_pageboot_alloc: out of virtual space");
434 
435 	addr = virtual_space_start;
436 
437 #ifdef PMAP_GROWKERNEL
438 	/*
439 	 * If the kernel pmap can't map the requested space,
440 	 * then allocate more resources for it.
441 	 */
442 	if (uvm_maxkaddr < (addr + size)) {
443 		uvm_maxkaddr = pmap_growkernel(addr + size);
444 		if (uvm_maxkaddr < (addr + size))
445 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
446 	}
447 #endif
448 
449 	virtual_space_start += size;
450 
451 	/*
452 	 * allocate and mapin physical pages to back new virtual pages
453 	 */
454 
455 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
456 	    vaddr += PAGE_SIZE) {
457 
458 		if (!uvm_page_physget(&paddr))
459 			panic("uvm_pageboot_alloc: out of memory");
460 
461 		/*
462 		 * Note this memory is no longer managed, so using
463 		 * pmap_kenter is safe.
464 		 */
465 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
466 	}
467 	return(addr);
468 #endif	/* PMAP_STEAL_MEMORY */
469 }
470 
471 #if !defined(PMAP_STEAL_MEMORY)
472 /*
473  * uvm_page_physget: "steal" one page from the vm_physmem structure.
474  *
475  * => attempt to allocate it off the end of a segment in which the "avail"
476  *    values match the start/end values.   if we can't do that, then we
477  *    will advance both values (making them equal, and removing some
478  *    vm_page structures from the non-avail area).
479  * => return false if out of memory.
480  */
481 
482 /* subroutine: try to allocate from memory chunks on the specified freelist */
483 static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
484 
485 static boolean_t
486 uvm_page_physget_freelist(paddrp, freelist)
487 	paddr_t *paddrp;
488 	int freelist;
489 {
490 	int lcv, x;
491 
492 	/* pass 1: try allocating from a matching end */
493 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
494 	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
495 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
496 #else
497 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
498 #endif
499 	{
500 
501 		if (uvm.page_init_done == TRUE)
502 			panic("vm_page_physget: called _after_ bootstrap");
503 
504 		if (vm_physmem[lcv].free_list != freelist)
505 			continue;
506 
507 		/* try from front */
508 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
509 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
510 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
511 			vm_physmem[lcv].avail_start++;
512 			vm_physmem[lcv].start++;
513 			/* nothing left?   nuke it */
514 			if (vm_physmem[lcv].avail_start ==
515 			    vm_physmem[lcv].end) {
516 				if (vm_nphysseg == 1)
517 				    panic("vm_page_physget: out of memory!");
518 				vm_nphysseg--;
519 				for (x = lcv ; x < vm_nphysseg ; x++)
520 					/* structure copy */
521 					vm_physmem[x] = vm_physmem[x+1];
522 			}
523 			return (TRUE);
524 		}
525 
526 		/* try from rear */
527 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
528 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
529 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
530 			vm_physmem[lcv].avail_end--;
531 			vm_physmem[lcv].end--;
532 			/* nothing left?   nuke it */
533 			if (vm_physmem[lcv].avail_end ==
534 			    vm_physmem[lcv].start) {
535 				if (vm_nphysseg == 1)
536 				    panic("vm_page_physget: out of memory!");
537 				vm_nphysseg--;
538 				for (x = lcv ; x < vm_nphysseg ; x++)
539 					/* structure copy */
540 					vm_physmem[x] = vm_physmem[x+1];
541 			}
542 			return (TRUE);
543 		}
544 	}
545 
546 	/* pass2: forget about matching ends, just allocate something */
547 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
548 	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
549 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
550 #else
551 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
552 #endif
553 	{
554 
555 		/* any room in this bank? */
556 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
557 			continue;  /* nope */
558 
559 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
560 		vm_physmem[lcv].avail_start++;
561 		/* truncate! */
562 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
563 
564 		/* nothing left?   nuke it */
565 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
566 			if (vm_nphysseg == 1)
567 				panic("vm_page_physget: out of memory!");
568 			vm_nphysseg--;
569 			for (x = lcv ; x < vm_nphysseg ; x++)
570 				/* structure copy */
571 				vm_physmem[x] = vm_physmem[x+1];
572 		}
573 		return (TRUE);
574 	}
575 
576 	return (FALSE);        /* whoops! */
577 }
578 
579 boolean_t
580 uvm_page_physget(paddrp)
581 	paddr_t *paddrp;
582 {
583 	int i;
584 
585 	/* try in the order of freelist preference */
586 	for (i = 0; i < VM_NFREELIST; i++)
587 		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
588 			return (TRUE);
589 	return (FALSE);
590 }
591 #endif /* PMAP_STEAL_MEMORY */
592 
593 /*
594  * uvm_page_physload: load physical memory into VM system
595  *
596  * => all args are PFs
597  * => all pages in start/end get vm_page structures
598  * => areas marked by avail_start/avail_end get added to the free page pool
599  * => we are limited to VM_PHYSSEG_MAX physical memory segments
600  */
601 
602 void
603 uvm_page_physload(start, end, avail_start, avail_end, free_list)
604 	paddr_t start, end, avail_start, avail_end;
605 	int free_list;
606 {
607 	int preload, lcv;
608 	psize_t npages;
609 	struct vm_page *pgs;
610 	struct vm_physseg *ps;
611 
612 	if (uvmexp.pagesize == 0)
613 		panic("uvm_page_physload: page size not set!");
614 
615 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
616 		panic("uvm_page_physload: bad free list %d\n", free_list);
617 
618 	if (start >= end)
619 		panic("uvm_page_physload: start >= end");
620 
621 	/*
622 	 * do we have room?
623 	 */
624 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
625 		printf("uvm_page_physload: unable to load physical memory "
626 		    "segment\n");
627 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
628 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
629 		return;
630 	}
631 
632 	/*
633 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
634 	 * called yet, so malloc is not available).
635 	 */
636 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
637 		if (vm_physmem[lcv].pgs)
638 			break;
639 	}
640 	preload = (lcv == vm_nphysseg);
641 
642 	/*
643 	 * if VM is already running, attempt to malloc() vm_page structures
644 	 */
645 	if (!preload) {
646 #if defined(VM_PHYSSEG_NOADD)
647 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
648 #else
649 		/* XXXCDC: need some sort of lockout for this case */
650 		paddr_t paddr;
651 		npages = end - start;  /* # of pages */
652 		MALLOC(pgs, struct vm_page *, sizeof(struct vm_page) * npages,
653 					 M_VMPAGE, M_NOWAIT);
654 		if (pgs == NULL) {
655 			printf("uvm_page_physload: can not malloc vm_page "
656 			    "structs for segment\n");
657 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
658 			return;
659 		}
660 		/* zero data, init phys_addr and free_list, and free pages */
661 		memset(pgs, 0, sizeof(struct vm_page) * npages);
662 		for (lcv = 0, paddr = ptoa(start) ;
663 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
664 			pgs[lcv].phys_addr = paddr;
665 			pgs[lcv].free_list = free_list;
666 			if (atop(paddr) >= avail_start &&
667 			    atop(paddr) <= avail_end)
668 				uvm_pagefree(&pgs[lcv]);
669 		}
670 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
671 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
672 #endif
673 	} else {
674 
675 		/* gcc complains if these don't get init'd */
676 		pgs = NULL;
677 		npages = 0;
678 
679 	}
680 
681 	/*
682 	 * now insert us in the proper place in vm_physmem[]
683 	 */
684 
685 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
686 
687 	/* random: put it at the end (easy!) */
688 	ps = &vm_physmem[vm_nphysseg];
689 
690 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
691 
692 	{
693 		int x;
694 		/* sort by address for binary search */
695 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
696 			if (start < vm_physmem[lcv].start)
697 				break;
698 		ps = &vm_physmem[lcv];
699 		/* move back other entries, if necessary ... */
700 		for (x = vm_nphysseg ; x > lcv ; x--)
701 			/* structure copy */
702 			vm_physmem[x] = vm_physmem[x - 1];
703 	}
704 
705 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
706 
707 	{
708 		int x;
709 		/* sort by largest segment first */
710 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
711 			if ((end - start) >
712 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
713 				break;
714 		ps = &vm_physmem[lcv];
715 		/* move back other entries, if necessary ... */
716 		for (x = vm_nphysseg ; x > lcv ; x--)
717 			/* structure copy */
718 			vm_physmem[x] = vm_physmem[x - 1];
719 	}
720 
721 #else
722 
723 	panic("uvm_page_physload: unknown physseg strategy selected!");
724 
725 #endif
726 
727 	ps->start = start;
728 	ps->end = end;
729 	ps->avail_start = avail_start;
730 	ps->avail_end = avail_end;
731 	if (preload) {
732 		ps->pgs = NULL;
733 	} else {
734 		ps->pgs = pgs;
735 		ps->lastpg = pgs + npages - 1;
736 	}
737 	ps->free_list = free_list;
738 	vm_nphysseg++;
739 
740 	/*
741 	 * done!
742 	 */
743 
744 	if (!preload)
745 		uvm_page_rehash();
746 
747 	return;
748 }
749 
750 /*
751  * uvm_page_rehash: reallocate hash table based on number of free pages.
752  */
753 
754 void
755 uvm_page_rehash()
756 {
757 	int freepages, lcv, bucketcount, s, oldcount;
758 	struct pglist *newbuckets, *oldbuckets;
759 	struct vm_page *pg;
760 	size_t newsize, oldsize;
761 
762 	/*
763 	 * compute number of pages that can go in the free pool
764 	 */
765 
766 	freepages = 0;
767 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
768 		freepages +=
769 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
770 
771 	/*
772 	 * compute number of buckets needed for this number of pages
773 	 */
774 
775 	bucketcount = 1;
776 	while (bucketcount < freepages)
777 		bucketcount = bucketcount * 2;
778 
779 	/*
780 	 * compute the size of the current table and new table.
781 	 */
782 
783 	oldbuckets = uvm.page_hash;
784 	oldcount = uvm.page_nhash;
785 	oldsize = round_page(sizeof(struct pglist) * oldcount);
786 	newsize = round_page(sizeof(struct pglist) * bucketcount);
787 
788 	/*
789 	 * allocate the new buckets
790 	 */
791 
792 	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
793 	if (newbuckets == NULL) {
794 		printf("uvm_page_physrehash: WARNING: could not grow page "
795 		    "hash table\n");
796 		return;
797 	}
798 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
799 		TAILQ_INIT(&newbuckets[lcv]);
800 
801 	/*
802 	 * now replace the old buckets with the new ones and rehash everything
803 	 */
804 
805 	s = splimp();
806 	simple_lock(&uvm.hashlock);
807 	uvm.page_hash = newbuckets;
808 	uvm.page_nhash = bucketcount;
809 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
810 
811 	/* ... and rehash */
812 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
813 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
814 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
815 			TAILQ_INSERT_TAIL(
816 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
817 			  pg, hashq);
818 		}
819 	}
820 	simple_unlock(&uvm.hashlock);
821 	splx(s);
822 
823 	/*
824 	 * free old bucket array if is not the boot-time table
825 	 */
826 
827 	if (oldbuckets != &uvm_bootbucket)
828 		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
829 
830 	/*
831 	 * done
832 	 */
833 	return;
834 }
835 
836 
837 #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
838 
839 void uvm_page_physdump __P((void)); /* SHUT UP GCC */
840 
841 /* call from DDB */
842 void
843 uvm_page_physdump()
844 {
845 	int lcv;
846 
847 	printf("rehash: physical memory config [segs=%d of %d]:\n",
848 				 vm_nphysseg, VM_PHYSSEG_MAX);
849 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
850 		printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
851 		    (long long)vm_physmem[lcv].start,
852 		    (long long)vm_physmem[lcv].end,
853 		    (long long)vm_physmem[lcv].avail_start,
854 		    (long long)vm_physmem[lcv].avail_end);
855 	printf("STRATEGY = ");
856 	switch (VM_PHYSSEG_STRAT) {
857 	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
858 	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
859 	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
860 	default: printf("<<UNKNOWN>>!!!!\n");
861 	}
862 	printf("number of buckets = %d\n", uvm.page_nhash);
863 }
864 #endif
865 
866 /*
867  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
868  *
869  * => return null if no pages free
870  * => wake up pagedaemon if number of free pages drops below low water mark
871  * => if obj != NULL, obj must be locked (to put in hash)
872  * => if anon != NULL, anon must be locked (to put in anon)
873  * => only one of obj or anon can be non-null
874  * => caller must activate/deactivate page if it is not wired.
875  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
876  * => policy decision: it is more important to pull a page off of the
877  *	appropriate priority free list than it is to get a zero'd or
878  *	unknown contents page.  This is because we live with the
879  *	consequences of a bad free list decision for the entire
880  *	lifetime of the page, e.g. if the page comes from memory that
881  *	is slower to access.
882  */
883 
884 struct vm_page *
885 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
886 	struct uvm_object *obj;
887 	voff_t off;
888 	int flags;
889 	struct vm_anon *anon;
890 	int strat, free_list;
891 {
892 	int lcv, try1, try2, s, zeroit = 0;
893 	struct vm_page *pg;
894 	struct pglist *freeq;
895 	struct pgfreelist *pgfl;
896 	boolean_t use_reserve;
897 
898 #ifdef DIAGNOSTIC
899 	/* sanity check */
900 	if (obj && anon)
901 		panic("uvm_pagealloc: obj and anon != NULL");
902 #endif
903 
904 	s = uvm_lock_fpageq();		/* lock free page queue */
905 
906 	/*
907 	 * check to see if we need to generate some free pages waking
908 	 * the pagedaemon.
909 	 */
910 
911 	if (uvmexp.free < uvmexp.freemin || (uvmexp.free < uvmexp.freetarg &&
912 	    uvmexp.inactive < uvmexp.inactarg))
913 		wakeup(&uvm.pagedaemon);
914 
915 	/*
916 	 * fail if any of these conditions is true:
917 	 * [1]  there really are no free pages, or
918 	 * [2]  only kernel "reserved" pages remain and
919 	 *        the page isn't being allocated to a kernel object.
920 	 * [3]  only pagedaemon "reserved" pages remain and
921 	 *        the requestor isn't the pagedaemon.
922 	 */
923 
924 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
925 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
926 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
927 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
928 	     !(use_reserve && (curproc == uvm.pagedaemon_proc ||
929 				curproc == syncerproc))))
930 		goto fail;
931 
932 #if PGFL_NQUEUES != 2
933 #error uvm_pagealloc_strat needs to be updated
934 #endif
935 
936 	/*
937 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
938 	 * we try the UNKNOWN queue first.
939 	 */
940 	if (flags & UVM_PGA_ZERO) {
941 		try1 = PGFL_ZEROS;
942 		try2 = PGFL_UNKNOWN;
943 	} else {
944 		try1 = PGFL_UNKNOWN;
945 		try2 = PGFL_ZEROS;
946 	}
947 
948  again:
949 	switch (strat) {
950 	case UVM_PGA_STRAT_NORMAL:
951 		/* Check all freelists in descending priority order. */
952 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
953 			pgfl = &uvm.page_free[lcv];
954 			if ((pg = TAILQ_FIRST((freeq =
955 			      &pgfl->pgfl_queues[try1]))) != NULL ||
956 			    (pg = TAILQ_FIRST((freeq =
957 			      &pgfl->pgfl_queues[try2]))) != NULL)
958 				goto gotit;
959 		}
960 
961 		/* No pages free! */
962 		goto fail;
963 
964 	case UVM_PGA_STRAT_ONLY:
965 	case UVM_PGA_STRAT_FALLBACK:
966 		/* Attempt to allocate from the specified free list. */
967 #ifdef DIAGNOSTIC
968 		if (free_list >= VM_NFREELIST || free_list < 0)
969 			panic("uvm_pagealloc_strat: bad free list %d",
970 			    free_list);
971 #endif
972 		pgfl = &uvm.page_free[free_list];
973 		if ((pg = TAILQ_FIRST((freeq =
974 		      &pgfl->pgfl_queues[try1]))) != NULL ||
975 		    (pg = TAILQ_FIRST((freeq =
976 		      &pgfl->pgfl_queues[try2]))) != NULL)
977 			goto gotit;
978 
979 		/* Fall back, if possible. */
980 		if (strat == UVM_PGA_STRAT_FALLBACK) {
981 			strat = UVM_PGA_STRAT_NORMAL;
982 			goto again;
983 		}
984 
985 		/* No pages free! */
986 		goto fail;
987 
988 	default:
989 		panic("uvm_pagealloc_strat: bad strat %d", strat);
990 		/* NOTREACHED */
991 	}
992 
993  gotit:
994 	TAILQ_REMOVE(freeq, pg, pageq);
995 	uvmexp.free--;
996 
997 	/* update zero'd page count */
998 	if (pg->flags & PG_ZERO)
999 		uvmexp.zeropages--;
1000 
1001 	/*
1002 	 * update allocation statistics and remember if we have to
1003 	 * zero the page
1004 	 */
1005 	if (flags & UVM_PGA_ZERO) {
1006 		if (pg->flags & PG_ZERO) {
1007 			uvmexp.pga_zerohit++;
1008 			zeroit = 0;
1009 		} else {
1010 			uvmexp.pga_zeromiss++;
1011 			zeroit = 1;
1012 		}
1013 	}
1014 
1015 	uvm_unlock_fpageq(s);		/* unlock free page queue */
1016 
1017 	pg->offset = off;
1018 	pg->uobject = obj;
1019 	pg->uanon = anon;
1020 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1021 	pg->version++;
1022 	pg->wire_count = 0;
1023 	pg->loan_count = 0;
1024 	if (anon) {
1025 		anon->u.an_page = pg;
1026 		pg->pqflags = PQ_ANON;
1027 	} else {
1028 		if (obj)
1029 			uvm_pageinsert(pg);
1030 		pg->pqflags = 0;
1031 	}
1032 #if defined(UVM_PAGE_TRKOWN)
1033 	pg->owner_tag = NULL;
1034 #endif
1035 	UVM_PAGE_OWN(pg, "new alloc");
1036 
1037 	if (flags & UVM_PGA_ZERO) {
1038 		/*
1039 		 * A zero'd page is not clean.  If we got a page not already
1040 		 * zero'd, then we have to zero it ourselves.
1041 		 */
1042 		pg->flags &= ~PG_CLEAN;
1043 		if (zeroit)
1044 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1045 	}
1046 
1047 	return(pg);
1048 
1049  fail:
1050 	uvm_unlock_fpageq(s);
1051 	return (NULL);
1052 }
1053 
1054 /*
1055  * uvm_pagealloc_contig: allocate contiguous memory.
1056  *
1057  * XXX - fix comment.
1058  */
1059 
1060 vaddr_t
1061 uvm_pagealloc_contig(size, low, high, alignment)
1062 	vaddr_t size;
1063 	vaddr_t low, high;
1064 	vaddr_t alignment;
1065 {
1066 	struct pglist pglist;
1067 	struct vm_page *pg;
1068 	vaddr_t addr, temp_addr;
1069 
1070 	size = round_page(size);
1071 
1072 	TAILQ_INIT(&pglist);
1073 	if (uvm_pglistalloc(size, low, high, alignment, 0,
1074 			    &pglist, 1, FALSE))
1075 		return 0;
1076 	addr = vm_map_min(kernel_map);
1077 	if (uvm_map(kernel_map, &addr, size, NULL, UVM_UNKNOWN_OFFSET,
1078 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
1079 				UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
1080 		uvm_pglistfree(&pglist);
1081 		return 0;
1082 	}
1083 	temp_addr = addr;
1084 	for (pg = TAILQ_FIRST(&pglist); pg != NULL;
1085 	     pg = TAILQ_NEXT(pg, pageq)) {
1086 	        pg->uobject = uvm.kernel_object;
1087 		pg->offset = temp_addr - vm_map_min(kernel_map);
1088 		uvm_pageinsert(pg);
1089 		uvm_pagewire(pg);
1090 		pmap_kenter_pa(temp_addr, VM_PAGE_TO_PHYS(pg),
1091 			       VM_PROT_READ|VM_PROT_WRITE);
1092 		temp_addr += PAGE_SIZE;
1093 	}
1094 	return addr;
1095 }
1096 
1097 /*
1098  * uvm_pagerealloc: reallocate a page from one object to another
1099  *
1100  * => both objects must be locked
1101  */
1102 
1103 void
1104 uvm_pagerealloc(pg, newobj, newoff)
1105 	struct vm_page *pg;
1106 	struct uvm_object *newobj;
1107 	voff_t newoff;
1108 {
1109 	/*
1110 	 * remove it from the old object
1111 	 */
1112 
1113 	if (pg->uobject) {
1114 		uvm_pageremove(pg);
1115 	}
1116 
1117 	/*
1118 	 * put it in the new object
1119 	 */
1120 
1121 	if (newobj) {
1122 		pg->uobject = newobj;
1123 		pg->offset = newoff;
1124 		pg->version++;
1125 		uvm_pageinsert(pg);
1126 	}
1127 
1128 	return;
1129 }
1130 
1131 
1132 /*
1133  * uvm_pagefree: free page
1134  *
1135  * => erase page's identity (i.e. remove from hash/object)
1136  * => put page on free list
1137  * => caller must lock owning object (either anon or uvm_object)
1138  * => caller must lock page queues
1139  * => assumes all valid mappings of pg are gone
1140  */
1141 
1142 void uvm_pagefree(pg)
1143 
1144 struct vm_page *pg;
1145 
1146 {
1147 	int s;
1148 	int saved_loan_count = pg->loan_count;
1149 
1150 	/*
1151 	 * if the page was an object page (and thus "TABLED"), remove it
1152 	 * from the object.
1153 	 */
1154 
1155 	if (pg->flags & PG_TABLED) {
1156 
1157 		/*
1158 		 * if the object page is on loan we are going to drop ownership.
1159 		 * it is possible that an anon will take over as owner for this
1160 		 * page later on.   the anon will want a !PG_CLEAN page so that
1161 		 * it knows it needs to allocate swap if it wants to page the
1162 		 * page out.
1163 		 */
1164 
1165 		if (saved_loan_count)
1166 			pg->flags &= ~PG_CLEAN;	/* in case an anon takes over */
1167 
1168 		uvm_pageremove(pg);
1169 
1170 		/*
1171 		 * if our page was on loan, then we just lost control over it
1172 		 * (in fact, if it was loaned to an anon, the anon may have
1173 		 * already taken over ownership of the page by now and thus
1174 		 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1175 		 * return (when the last loan is dropped, then the page can be
1176 		 * freed by whatever was holding the last loan).
1177 		 */
1178 		if (saved_loan_count)
1179 			return;
1180 
1181 	} else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1182 
1183 		/*
1184 		 * if our page is owned by an anon and is loaned out to the
1185 		 * kernel then we just want to drop ownership and return.
1186 		 * the kernel must free the page when all its loans clear ...
1187 		 * note that the kernel can't change the loan status of our
1188 		 * page as long as we are holding PQ lock.
1189 		 */
1190 		pg->pqflags &= ~PQ_ANON;
1191 		pg->uanon = NULL;
1192 		return;
1193 	}
1194 
1195 #ifdef DIAGNOSTIC
1196 	if (saved_loan_count) {
1197 		printf("uvm_pagefree: warning: freeing page with a loan "
1198 		    "count of %d\n", saved_loan_count);
1199 		panic("uvm_pagefree: loan count");
1200 	}
1201 #endif
1202 
1203 
1204 	/*
1205 	 * now remove the page from the queues
1206 	 */
1207 
1208 	if (pg->pqflags & PQ_ACTIVE) {
1209 		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1210 		pg->pqflags &= ~PQ_ACTIVE;
1211 		uvmexp.active--;
1212 	}
1213 	if (pg->pqflags & PQ_INACTIVE) {
1214 		if (pg->pqflags & PQ_SWAPBACKED)
1215 			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1216 		else
1217 			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1218 		pg->pqflags &= ~PQ_INACTIVE;
1219 		uvmexp.inactive--;
1220 	}
1221 
1222 	/*
1223 	 * if the page was wired, unwire it now.
1224 	 */
1225 	if (pg->wire_count) {
1226 		pg->wire_count = 0;
1227 		uvmexp.wired--;
1228 	}
1229 
1230 	/*
1231 	 * and put on free queue
1232 	 */
1233 
1234 	pg->flags &= ~PG_ZERO;
1235 
1236 	s = uvm_lock_fpageq();
1237 	TAILQ_INSERT_TAIL(&uvm.page_free[
1238 	    uvm_page_lookup_freelist(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1239 	pg->pqflags = PQ_FREE;
1240 #ifdef DEBUG
1241 	pg->uobject = (void *)0xdeadbeef;
1242 	pg->offset = 0xdeadbeef;
1243 	pg->uanon = (void *)0xdeadbeef;
1244 #endif
1245 	uvmexp.free++;
1246 
1247 	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1248 		uvm.page_idle_zero = vm_page_zero_enable;
1249 
1250 	uvm_unlock_fpageq(s);
1251 }
1252 
1253 #if defined(UVM_PAGE_TRKOWN)
1254 /*
1255  * uvm_page_own: set or release page ownership
1256  *
1257  * => this is a debugging function that keeps track of who sets PG_BUSY
1258  *	and where they do it.   it can be used to track down problems
1259  *	such a process setting "PG_BUSY" and never releasing it.
1260  * => page's object [if any] must be locked
1261  * => if "tag" is NULL then we are releasing page ownership
1262  */
1263 void
1264 uvm_page_own(pg, tag)
1265 	struct vm_page *pg;
1266 	char *tag;
1267 {
1268 	/* gain ownership? */
1269 	if (tag) {
1270 		if (pg->owner_tag) {
1271 			printf("uvm_page_own: page %p already owned "
1272 			    "by proc %d [%s]\n", pg,
1273 			     pg->owner, pg->owner_tag);
1274 			panic("uvm_page_own");
1275 		}
1276 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
1277 		pg->owner_tag = tag;
1278 		return;
1279 	}
1280 
1281 	/* drop ownership */
1282 	if (pg->owner_tag == NULL) {
1283 		printf("uvm_page_own: dropping ownership of an non-owned "
1284 		    "page (%p)\n", pg);
1285 		panic("uvm_page_own");
1286 	}
1287 	pg->owner_tag = NULL;
1288 	return;
1289 }
1290 #endif
1291 
1292 /*
1293  * uvm_pageidlezero: zero free pages while the system is idle.
1294  *
1295  * => we do at least one iteration per call, if we are below the target.
1296  * => we loop until we either reach the target or whichqs indicates that
1297  *	there is a process ready to run.
1298  */
1299 void
1300 uvm_pageidlezero()
1301 {
1302 	struct vm_page *pg;
1303 	struct pgfreelist *pgfl;
1304 	int free_list, s;
1305 
1306 	do {
1307 		s = uvm_lock_fpageq();
1308 
1309 		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1310 			uvm.page_idle_zero = FALSE;
1311 			uvm_unlock_fpageq(s);
1312 			return;
1313 		}
1314 
1315 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1316 			pgfl = &uvm.page_free[free_list];
1317 			if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
1318 			    PGFL_UNKNOWN])) != NULL)
1319 				break;
1320 		}
1321 
1322 		if (pg == NULL) {
1323 			/*
1324 			 * No non-zero'd pages; don't bother trying again
1325 			 * until we know we have non-zero'd pages free.
1326 			 */
1327 			uvm.page_idle_zero = FALSE;
1328 			uvm_unlock_fpageq(s);
1329 			return;
1330 		}
1331 
1332 		TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1333 		uvmexp.free--;
1334 		uvm_unlock_fpageq(s);
1335 
1336 #ifdef PMAP_PAGEIDLEZERO
1337 		PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg));
1338 #else
1339 		/*
1340 		 * XXX This will toast the cache unless the pmap_zero_page()
1341 		 * XXX implementation does uncached access.
1342 		 */
1343 		pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1344 #endif
1345 		pg->flags |= PG_ZERO;
1346 
1347 		s = uvm_lock_fpageq();
1348 		TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
1349 		uvmexp.free++;
1350 		uvmexp.zeropages++;
1351 		uvm_unlock_fpageq(s);
1352 	} while (whichqs == 0);
1353 }
1354