xref: /openbsd-src/sys/uvm/uvm_page.c (revision 850e275390052b330d93020bf619a739a3c277ac)
1 /*	$OpenBSD: uvm_page.c,v 1.67 2008/07/02 15:21:33 art Exp $	*/
2 /*	$NetBSD: uvm_page.c,v 1.44 2000/11/27 08:40:04 chs Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * Copyright (c) 1991, 1993, The Regents of the University of California.
7  *
8  * All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by Charles D. Cranor,
24  *      Washington University, the University of California, Berkeley and
25  *      its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
43  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  * uvm_page.c: page ops.
72  */
73 
74 #define UVM_PAGE                /* pull in uvm_page.h functions */
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/malloc.h>
78 #include <sys/sched.h>
79 #include <sys/kernel.h>
80 #include <sys/vnode.h>
81 #include <sys/mount.h>
82 
83 #include <uvm/uvm.h>
84 
85 /*
86  * global vars... XXXCDC: move to uvm. structure.
87  */
88 
89 /*
90  * physical memory config is stored in vm_physmem.
91  */
92 
93 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
94 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
95 
96 /*
97  * Some supported CPUs in a given architecture don't support all
98  * of the things necessary to do idle page zero'ing efficiently.
99  * We therefore provide a way to disable it from machdep code here.
100  */
101 
102 /*
103  * XXX disabled until we can find a way to do this without causing
104  * problems for either cpu caches or DMA latency.
105  */
106 boolean_t vm_page_zero_enable = FALSE;
107 
108 /*
109  * local variables
110  */
111 
112 /*
113  * these variables record the values returned by vm_page_bootstrap,
114  * for debugging purposes.  The implementation of uvm_pageboot_alloc
115  * and pmap_startup here also uses them internally.
116  */
117 
118 static vaddr_t      virtual_space_start;
119 static vaddr_t      virtual_space_end;
120 
121 /*
122  * we use a hash table with only one bucket during bootup.  we will
123  * later rehash (resize) the hash table once the allocator is ready.
124  * we static allocate the one bootstrap bucket below...
125  */
126 
127 static struct pglist uvm_bootbucket;
128 
129 /*
130  * History
131  */
132 UVMHIST_DECL(pghist);
133 
134 /*
135  * local prototypes
136  */
137 
138 static void uvm_pageinsert(struct vm_page *);
139 static void uvm_pageremove(struct vm_page *);
140 
141 /*
142  * inline functions
143  */
144 
145 /*
146  * uvm_pageinsert: insert a page in the object and the hash table
147  *
148  * => caller must lock object
149  * => caller must lock page queues
150  * => call should have already set pg's object and offset pointers
151  *    and bumped the version counter
152  */
153 
154 __inline static void
155 uvm_pageinsert(struct vm_page *pg)
156 {
157 	struct pglist *buck;
158 	int s;
159 	UVMHIST_FUNC("uvm_pageinsert"); UVMHIST_CALLED(pghist);
160 
161 	KASSERT((pg->pg_flags & PG_TABLED) == 0);
162 	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
163 	s = splvm();
164 	simple_lock(&uvm.hashlock);
165 	TAILQ_INSERT_TAIL(buck, pg, hashq);	/* put in hash */
166 	simple_unlock(&uvm.hashlock);
167 	splx(s);
168 
169 	TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
170 	atomic_setbits_int(&pg->pg_flags, PG_TABLED);
171 	pg->uobject->uo_npages++;
172 }
173 
174 /*
175  * uvm_page_remove: remove page from object and hash
176  *
177  * => caller must lock object
178  * => caller must lock page queues
179  */
180 
181 static __inline void
182 uvm_pageremove(struct vm_page *pg)
183 {
184 	struct pglist *buck;
185 	int s;
186 	UVMHIST_FUNC("uvm_pageremove"); UVMHIST_CALLED(pghist);
187 
188 	KASSERT(pg->pg_flags & PG_TABLED);
189 	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
190 	s = splvm();
191 	simple_lock(&uvm.hashlock);
192 	TAILQ_REMOVE(buck, pg, hashq);
193 	simple_unlock(&uvm.hashlock);
194 	splx(s);
195 
196 #ifdef UBC
197 	if (pg->uobject->pgops == &uvm_vnodeops) {
198 		uvm_pgcnt_vnode--;
199 	}
200 #endif
201 
202 	/* object should be locked */
203 	TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
204 
205 	atomic_clearbits_int(&pg->pg_flags, PG_TABLED);
206 	pg->uobject->uo_npages--;
207 	pg->uobject = NULL;
208 	pg->pg_version++;
209 }
210 
211 /*
212  * uvm_page_init: init the page system.   called from uvm_init().
213  *
214  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
215  */
216 
217 void
218 uvm_page_init(kvm_startp, kvm_endp)
219 	vaddr_t *kvm_startp, *kvm_endp;
220 {
221 	vsize_t freepages, pagecount, n;
222 	vm_page_t pagearray;
223 	int lcv, i;
224 	paddr_t paddr;
225 #if defined(UVMHIST)
226 	static struct uvm_history_ent pghistbuf[100];
227 #endif
228 
229 	UVMHIST_FUNC("uvm_page_init");
230 	UVMHIST_INIT_STATIC(pghist, pghistbuf);
231 	UVMHIST_CALLED(pghist);
232 
233 	/*
234 	 * init the page queues and page queue locks
235 	 */
236 
237 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
238 		for (i = 0; i < PGFL_NQUEUES; i++)
239 			TAILQ_INIT(&uvm.page_free[lcv].pgfl_queues[i]);
240 	}
241 	TAILQ_INIT(&uvm.page_active);
242 	TAILQ_INIT(&uvm.page_inactive_swp);
243 	TAILQ_INIT(&uvm.page_inactive_obj);
244 	simple_lock_init(&uvm.pageqlock);
245 	mtx_init(&uvm.fpageqlock, IPL_VM);
246 
247 	/*
248 	 * init the <obj,offset> => <page> hash table.  for now
249 	 * we just have one bucket (the bootstrap bucket).  later on we
250 	 * will allocate new buckets as we dynamically resize the hash table.
251 	 */
252 
253 	uvm.page_nhash = 1;			/* 1 bucket */
254 	uvm.page_hashmask = 0;			/* mask for hash function */
255 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
256 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
257 	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
258 
259 	/*
260 	 * allocate vm_page structures.
261 	 */
262 
263 	/*
264 	 * sanity check:
265 	 * before calling this function the MD code is expected to register
266 	 * some free RAM with the uvm_page_physload() function.   our job
267 	 * now is to allocate vm_page structures for this memory.
268 	 */
269 
270 	if (vm_nphysseg == 0)
271 		panic("uvm_page_bootstrap: no memory pre-allocated");
272 
273 	/*
274 	 * first calculate the number of free pages...
275 	 *
276 	 * note that we use start/end rather than avail_start/avail_end.
277 	 * this allows us to allocate extra vm_page structures in case we
278 	 * want to return some memory to the pool after booting.
279 	 */
280 
281 	freepages = 0;
282 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
283 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
284 
285 	/*
286 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
287 	 * use.   for each page of memory we use we need a vm_page structure.
288 	 * thus, the total number of pages we can use is the total size of
289 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
290 	 * structure.   we add one to freepages as a fudge factor to avoid
291 	 * truncation errors (since we can only allocate in terms of whole
292 	 * pages).
293 	 */
294 
295 	pagecount = (((paddr_t)freepages + 1) << PAGE_SHIFT) /
296 	    (PAGE_SIZE + sizeof(struct vm_page));
297 	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
298 	    sizeof(struct vm_page));
299 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
300 
301 	/*
302 	 * init the vm_page structures and put them in the correct place.
303 	 */
304 
305 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
306 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
307 		if (n > pagecount) {
308 			printf("uvm_page_init: lost %ld page(s) in init\n",
309 			    (long)(n - pagecount));
310 			panic("uvm_page_init");  /* XXXCDC: shouldn't happen? */
311 			/* n = pagecount; */
312 		}
313 
314 		/* set up page array pointers */
315 		vm_physmem[lcv].pgs = pagearray;
316 		pagearray += n;
317 		pagecount -= n;
318 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
319 
320 		/* init and free vm_pages (we've already zeroed them) */
321 		paddr = ptoa(vm_physmem[lcv].start);
322 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
323 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
324 #ifdef __HAVE_VM_PAGE_MD
325 			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
326 #endif
327 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
328 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
329 				uvmexp.npages++;
330 				/* add page to free pool */
331 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
332 			}
333 		}
334 	}
335 
336 	/*
337 	 * pass up the values of virtual_space_start and
338 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
339 	 * layers of the VM.
340 	 */
341 
342 	*kvm_startp = round_page(virtual_space_start);
343 	*kvm_endp = trunc_page(virtual_space_end);
344 
345 	/*
346 	 * init locks for kernel threads
347 	 */
348 
349 	simple_lock_init(&uvm.pagedaemon_lock);
350 	simple_lock_init(&uvm.aiodoned_lock);
351 
352 	/*
353 	 * init reserve thresholds
354 	 * XXXCDC - values may need adjusting
355 	 */
356 	uvmexp.reserve_pagedaemon = 4;
357 	uvmexp.reserve_kernel = 6;
358 	uvmexp.anonminpct = 10;
359 	uvmexp.vnodeminpct = 10;
360 	uvmexp.vtextminpct = 5;
361 	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
362 	uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
363 	uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
364 
365   	/*
366 	 * determine if we should zero pages in the idle loop.
367 	 */
368 
369 	uvm.page_idle_zero = vm_page_zero_enable;
370 
371 	/*
372 	 * done!
373 	 */
374 
375 	uvm.page_init_done = TRUE;
376 }
377 
378 /*
379  * uvm_setpagesize: set the page size
380  *
381  * => sets page_shift and page_mask from uvmexp.pagesize.
382  */
383 
384 void
385 uvm_setpagesize()
386 {
387 	if (uvmexp.pagesize == 0)
388 		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
389 	uvmexp.pagemask = uvmexp.pagesize - 1;
390 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
391 		panic("uvm_setpagesize: page size not a power of two");
392 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
393 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
394 			break;
395 }
396 
397 /*
398  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
399  */
400 
401 vaddr_t
402 uvm_pageboot_alloc(size)
403 	vsize_t size;
404 {
405 #if defined(PMAP_STEAL_MEMORY)
406 	vaddr_t addr;
407 
408 	/*
409 	 * defer bootstrap allocation to MD code (it may want to allocate
410 	 * from a direct-mapped segment).  pmap_steal_memory should round
411 	 * off virtual_space_start/virtual_space_end.
412 	 */
413 
414 	addr = pmap_steal_memory(size, &virtual_space_start,
415 	    &virtual_space_end);
416 
417 	return(addr);
418 
419 #else /* !PMAP_STEAL_MEMORY */
420 
421 	static boolean_t initialized = FALSE;
422 	vaddr_t addr, vaddr;
423 	paddr_t paddr;
424 
425 	/* round to page size */
426 	size = round_page(size);
427 
428 	/*
429 	 * on first call to this function, initialize ourselves.
430 	 */
431 	if (initialized == FALSE) {
432 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
433 
434 		/* round it the way we like it */
435 		virtual_space_start = round_page(virtual_space_start);
436 		virtual_space_end = trunc_page(virtual_space_end);
437 
438 		initialized = TRUE;
439 	}
440 
441 	/*
442 	 * allocate virtual memory for this request
443 	 */
444 	if (virtual_space_start == virtual_space_end ||
445 	    (virtual_space_end - virtual_space_start) < size)
446 		panic("uvm_pageboot_alloc: out of virtual space");
447 
448 	addr = virtual_space_start;
449 
450 #ifdef PMAP_GROWKERNEL
451 	/*
452 	 * If the kernel pmap can't map the requested space,
453 	 * then allocate more resources for it.
454 	 */
455 	if (uvm_maxkaddr < (addr + size)) {
456 		uvm_maxkaddr = pmap_growkernel(addr + size);
457 		if (uvm_maxkaddr < (addr + size))
458 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
459 	}
460 #endif
461 
462 	virtual_space_start += size;
463 
464 	/*
465 	 * allocate and mapin physical pages to back new virtual pages
466 	 */
467 
468 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
469 	    vaddr += PAGE_SIZE) {
470 
471 		if (!uvm_page_physget(&paddr))
472 			panic("uvm_pageboot_alloc: out of memory");
473 
474 		/*
475 		 * Note this memory is no longer managed, so using
476 		 * pmap_kenter is safe.
477 		 */
478 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
479 	}
480 	pmap_update(pmap_kernel());
481 	return(addr);
482 #endif	/* PMAP_STEAL_MEMORY */
483 }
484 
485 #if !defined(PMAP_STEAL_MEMORY)
486 /*
487  * uvm_page_physget: "steal" one page from the vm_physmem structure.
488  *
489  * => attempt to allocate it off the end of a segment in which the "avail"
490  *    values match the start/end values.   if we can't do that, then we
491  *    will advance both values (making them equal, and removing some
492  *    vm_page structures from the non-avail area).
493  * => return false if out of memory.
494  */
495 
496 /* subroutine: try to allocate from memory chunks on the specified freelist */
497 static boolean_t uvm_page_physget_freelist(paddr_t *, int);
498 
499 static boolean_t
500 uvm_page_physget_freelist(paddrp, freelist)
501 	paddr_t *paddrp;
502 	int freelist;
503 {
504 	int lcv, x;
505 	UVMHIST_FUNC("uvm_page_physget_freelist"); UVMHIST_CALLED(pghist);
506 
507 	/* pass 1: try allocating from a matching end */
508 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
509 	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
510 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
511 #else
512 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
513 #endif
514 	{
515 
516 		if (uvm.page_init_done == TRUE)
517 			panic("uvm_page_physget: called _after_ bootstrap");
518 
519 		if (vm_physmem[lcv].free_list != freelist)
520 			continue;
521 
522 		/* try from front */
523 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
524 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
525 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
526 			vm_physmem[lcv].avail_start++;
527 			vm_physmem[lcv].start++;
528 			/* nothing left?   nuke it */
529 			if (vm_physmem[lcv].avail_start ==
530 			    vm_physmem[lcv].end) {
531 				if (vm_nphysseg == 1)
532 				    panic("uvm_page_physget: out of memory!");
533 				vm_nphysseg--;
534 				for (x = lcv ; x < vm_nphysseg ; x++)
535 					/* structure copy */
536 					vm_physmem[x] = vm_physmem[x+1];
537 			}
538 			return (TRUE);
539 		}
540 
541 		/* try from rear */
542 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
543 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
544 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
545 			vm_physmem[lcv].avail_end--;
546 			vm_physmem[lcv].end--;
547 			/* nothing left?   nuke it */
548 			if (vm_physmem[lcv].avail_end ==
549 			    vm_physmem[lcv].start) {
550 				if (vm_nphysseg == 1)
551 				    panic("uvm_page_physget: out of memory!");
552 				vm_nphysseg--;
553 				for (x = lcv ; x < vm_nphysseg ; x++)
554 					/* structure copy */
555 					vm_physmem[x] = vm_physmem[x+1];
556 			}
557 			return (TRUE);
558 		}
559 	}
560 
561 	/* pass2: forget about matching ends, just allocate something */
562 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
563 	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
564 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
565 #else
566 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
567 #endif
568 	{
569 
570 		/* any room in this bank? */
571 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
572 			continue;  /* nope */
573 
574 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
575 		vm_physmem[lcv].avail_start++;
576 		/* truncate! */
577 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
578 
579 		/* nothing left?   nuke it */
580 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
581 			if (vm_nphysseg == 1)
582 				panic("uvm_page_physget: out of memory!");
583 			vm_nphysseg--;
584 			for (x = lcv ; x < vm_nphysseg ; x++)
585 				/* structure copy */
586 				vm_physmem[x] = vm_physmem[x+1];
587 		}
588 		return (TRUE);
589 	}
590 
591 	return (FALSE);        /* whoops! */
592 }
593 
594 boolean_t
595 uvm_page_physget(paddrp)
596 	paddr_t *paddrp;
597 {
598 	int i;
599 	UVMHIST_FUNC("uvm_page_physget"); UVMHIST_CALLED(pghist);
600 
601 	/* try in the order of freelist preference */
602 	for (i = 0; i < VM_NFREELIST; i++)
603 		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
604 			return (TRUE);
605 	return (FALSE);
606 }
607 #endif /* PMAP_STEAL_MEMORY */
608 
609 /*
610  * uvm_page_physload: load physical memory into VM system
611  *
612  * => all args are PFs
613  * => all pages in start/end get vm_page structures
614  * => areas marked by avail_start/avail_end get added to the free page pool
615  * => we are limited to VM_PHYSSEG_MAX physical memory segments
616  */
617 
618 void
619 uvm_page_physload(start, end, avail_start, avail_end, free_list)
620 	paddr_t start, end, avail_start, avail_end;
621 	int free_list;
622 {
623 	int preload, lcv;
624 	psize_t npages;
625 	struct vm_page *pgs;
626 	struct vm_physseg *ps;
627 
628 	if (uvmexp.pagesize == 0)
629 		panic("uvm_page_physload: page size not set!");
630 
631 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
632 		panic("uvm_page_physload: bad free list %d", free_list);
633 
634 	if (start >= end)
635 		panic("uvm_page_physload: start >= end");
636 
637 	/*
638 	 * do we have room?
639 	 */
640 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
641 		printf("uvm_page_physload: unable to load physical memory "
642 		    "segment\n");
643 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
644 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
645 		printf("\tincrease VM_PHYSSEG_MAX\n");
646 		return;
647 	}
648 
649 	/*
650 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
651 	 * called yet, so malloc is not available).
652 	 */
653 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
654 		if (vm_physmem[lcv].pgs)
655 			break;
656 	}
657 	preload = (lcv == vm_nphysseg);
658 
659 	/*
660 	 * if VM is already running, attempt to malloc() vm_page structures
661 	 */
662 	if (!preload) {
663 #if defined(VM_PHYSSEG_NOADD)
664 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
665 #else
666 		/* XXXCDC: need some sort of lockout for this case */
667 		paddr_t paddr;
668 		npages = end - start;  /* # of pages */
669 		pgs = (vm_page *)uvm_km_alloc(kernel_map,
670 		    sizeof(struct vm_page) * npages);
671 		if (pgs == NULL) {
672 			printf("uvm_page_physload: can not malloc vm_page "
673 			    "structs for segment\n");
674 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
675 			return;
676 		}
677 		/* zero data, init phys_addr and free_list, and free pages */
678 		memset(pgs, 0, sizeof(struct vm_page) * npages);
679 		for (lcv = 0, paddr = ptoa(start) ;
680 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
681 			pgs[lcv].phys_addr = paddr;
682 			pgs[lcv].free_list = free_list;
683 			if (atop(paddr) >= avail_start &&
684 			    atop(paddr) <= avail_end)
685 				uvm_pagefree(&pgs[lcv]);
686 		}
687 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
688 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
689 #endif
690 	} else {
691 
692 		/* gcc complains if these don't get init'd */
693 		pgs = NULL;
694 		npages = 0;
695 
696 	}
697 
698 	/*
699 	 * now insert us in the proper place in vm_physmem[]
700 	 */
701 
702 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
703 
704 	/* random: put it at the end (easy!) */
705 	ps = &vm_physmem[vm_nphysseg];
706 
707 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
708 
709 	{
710 		int x;
711 		/* sort by address for binary search */
712 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
713 			if (start < vm_physmem[lcv].start)
714 				break;
715 		ps = &vm_physmem[lcv];
716 		/* move back other entries, if necessary ... */
717 		for (x = vm_nphysseg ; x > lcv ; x--)
718 			/* structure copy */
719 			vm_physmem[x] = vm_physmem[x - 1];
720 	}
721 
722 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
723 
724 	{
725 		int x;
726 		/* sort by largest segment first */
727 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
728 			if ((end - start) >
729 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
730 				break;
731 		ps = &vm_physmem[lcv];
732 		/* move back other entries, if necessary ... */
733 		for (x = vm_nphysseg ; x > lcv ; x--)
734 			/* structure copy */
735 			vm_physmem[x] = vm_physmem[x - 1];
736 	}
737 
738 #else
739 
740 	panic("uvm_page_physload: unknown physseg strategy selected!");
741 
742 #endif
743 
744 	ps->start = start;
745 	ps->end = end;
746 	ps->avail_start = avail_start;
747 	ps->avail_end = avail_end;
748 	if (preload) {
749 		ps->pgs = NULL;
750 	} else {
751 		ps->pgs = pgs;
752 		ps->lastpg = pgs + npages - 1;
753 	}
754 	ps->free_list = free_list;
755 	vm_nphysseg++;
756 
757 	/*
758 	 * done!
759 	 */
760 
761 	if (!preload)
762 		uvm_page_rehash();
763 
764 	return;
765 }
766 
767 /*
768  * uvm_page_rehash: reallocate hash table based on number of free pages.
769  */
770 
771 void
772 uvm_page_rehash()
773 {
774 	int freepages, lcv, bucketcount, s, oldcount;
775 	struct pglist *newbuckets, *oldbuckets;
776 	struct vm_page *pg;
777 	size_t newsize, oldsize;
778 
779 	/*
780 	 * compute number of pages that can go in the free pool
781 	 */
782 
783 	freepages = 0;
784 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
785 		freepages +=
786 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
787 
788 	/*
789 	 * compute number of buckets needed for this number of pages
790 	 */
791 
792 	bucketcount = 1;
793 	while (bucketcount < freepages)
794 		bucketcount = bucketcount * 2;
795 
796 	/*
797 	 * compute the size of the current table and new table.
798 	 */
799 
800 	oldbuckets = uvm.page_hash;
801 	oldcount = uvm.page_nhash;
802 	oldsize = round_page(sizeof(struct pglist) * oldcount);
803 	newsize = round_page(sizeof(struct pglist) * bucketcount);
804 
805 	/*
806 	 * allocate the new buckets
807 	 */
808 
809 	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
810 	if (newbuckets == NULL) {
811 		printf("uvm_page_physrehash: WARNING: could not grow page "
812 		    "hash table\n");
813 		return;
814 	}
815 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
816 		TAILQ_INIT(&newbuckets[lcv]);
817 
818 	/*
819 	 * now replace the old buckets with the new ones and rehash everything
820 	 */
821 
822 	s = splvm();
823 	simple_lock(&uvm.hashlock);
824 	uvm.page_hash = newbuckets;
825 	uvm.page_nhash = bucketcount;
826 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
827 
828 	/* ... and rehash */
829 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
830 		while ((pg = TAILQ_FIRST(&oldbuckets[lcv])) != NULL) {
831 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
832 			TAILQ_INSERT_TAIL(
833 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
834 			  pg, hashq);
835 		}
836 	}
837 	simple_unlock(&uvm.hashlock);
838 	splx(s);
839 
840 	/*
841 	 * free old bucket array if is not the boot-time table
842 	 */
843 
844 	if (oldbuckets != &uvm_bootbucket)
845 		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
846 
847 	/*
848 	 * done
849 	 */
850 	return;
851 }
852 
853 
854 #ifdef DDB /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
855 
856 void uvm_page_physdump(void); /* SHUT UP GCC */
857 
858 /* call from DDB */
859 void
860 uvm_page_physdump()
861 {
862 	int lcv;
863 
864 	printf("rehash: physical memory config [segs=%d of %d]:\n",
865 				 vm_nphysseg, VM_PHYSSEG_MAX);
866 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
867 		printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
868 		    (long long)vm_physmem[lcv].start,
869 		    (long long)vm_physmem[lcv].end,
870 		    (long long)vm_physmem[lcv].avail_start,
871 		    (long long)vm_physmem[lcv].avail_end);
872 	printf("STRATEGY = ");
873 	switch (VM_PHYSSEG_STRAT) {
874 	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
875 	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
876 	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
877 	default: printf("<<UNKNOWN>>!!!!\n");
878 	}
879 	printf("number of buckets = %d\n", uvm.page_nhash);
880 }
881 #endif
882 
883 void
884 uvm_shutdown(void)
885 {
886 #ifdef UVM_SWAP_ENCRYPT
887 	uvm_swap_finicrypt_all();
888 #endif
889 }
890 
891 /*
892  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
893  *
894  * => return null if no pages free
895  * => wake up pagedaemon if number of free pages drops below low water mark
896  * => if obj != NULL, obj must be locked (to put in hash)
897  * => if anon != NULL, anon must be locked (to put in anon)
898  * => only one of obj or anon can be non-null
899  * => caller must activate/deactivate page if it is not wired.
900  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
901  * => policy decision: it is more important to pull a page off of the
902  *	appropriate priority free list than it is to get a zero'd or
903  *	unknown contents page.  This is because we live with the
904  *	consequences of a bad free list decision for the entire
905  *	lifetime of the page, e.g. if the page comes from memory that
906  *	is slower to access.
907  */
908 
909 struct vm_page *
910 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
911 	struct uvm_object *obj;
912 	voff_t off;
913 	int flags;
914 	struct vm_anon *anon;
915 	int strat, free_list;
916 {
917 	int lcv, try1, try2, zeroit = 0;
918 	struct vm_page *pg;
919 	struct pglist *freeq;
920 	struct pgfreelist *pgfl;
921 	boolean_t use_reserve;
922 	UVMHIST_FUNC("uvm_pagealloc_strat"); UVMHIST_CALLED(pghist);
923 
924 	KASSERT(obj == NULL || anon == NULL);
925 	KASSERT(off == trunc_page(off));
926 
927 	uvm_lock_fpageq();
928 
929 	/*
930 	 * check to see if we need to generate some free pages waking
931 	 * the pagedaemon.
932 	 */
933 	if ((uvmexp.free - BUFPAGES_DEFICIT) < uvmexp.freemin ||
934 	    ((uvmexp.free - BUFPAGES_DEFICIT) < uvmexp.freetarg &&
935 	     uvmexp.inactive < uvmexp.inactarg))
936 		wakeup(&uvm.pagedaemon);
937 
938 	/*
939 	 * fail if any of these conditions is true:
940 	 * [1]  there really are no free pages, or
941 	 * [2]  only kernel "reserved" pages remain and
942 	 *        the page isn't being allocated to a kernel object.
943 	 * [3]  only pagedaemon "reserved" pages remain and
944 	 *        the requestor isn't the pagedaemon.
945 	 */
946 
947 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
948 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
949 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
950 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
951 	     !((curproc == uvm.pagedaemon_proc) ||
952 	      (curproc == syncerproc))))
953 		goto fail;
954 
955 #if PGFL_NQUEUES != 2
956 #error uvm_pagealloc_strat needs to be updated
957 #endif
958 
959 	/*
960 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
961 	 * we try the UNKNOWN queue first.
962 	 */
963 	if (flags & UVM_PGA_ZERO) {
964 		try1 = PGFL_ZEROS;
965 		try2 = PGFL_UNKNOWN;
966 	} else {
967 		try1 = PGFL_UNKNOWN;
968 		try2 = PGFL_ZEROS;
969 	}
970 
971 	UVMHIST_LOG(pghist, "obj=%p off=%lx anon=%p flags=%lx",
972 	    obj, (u_long)off, anon, flags);
973 	UVMHIST_LOG(pghist, "strat=%ld free_list=%ld", strat, free_list, 0, 0);
974  again:
975 	switch (strat) {
976 	case UVM_PGA_STRAT_NORMAL:
977 		/* Check all freelists in descending priority order. */
978 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
979 			pgfl = &uvm.page_free[lcv];
980 			if ((pg = TAILQ_FIRST((freeq =
981 			      &pgfl->pgfl_queues[try1]))) != NULL ||
982 			    (pg = TAILQ_FIRST((freeq =
983 			      &pgfl->pgfl_queues[try2]))) != NULL)
984 				goto gotit;
985 		}
986 
987 		/* No pages free! */
988 		goto fail;
989 
990 	case UVM_PGA_STRAT_ONLY:
991 	case UVM_PGA_STRAT_FALLBACK:
992 		/* Attempt to allocate from the specified free list. */
993 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
994 		pgfl = &uvm.page_free[free_list];
995 		if ((pg = TAILQ_FIRST((freeq =
996 		      &pgfl->pgfl_queues[try1]))) != NULL ||
997 		    (pg = TAILQ_FIRST((freeq =
998 		      &pgfl->pgfl_queues[try2]))) != NULL)
999 			goto gotit;
1000 
1001 		/* Fall back, if possible. */
1002 		if (strat == UVM_PGA_STRAT_FALLBACK) {
1003 			strat = UVM_PGA_STRAT_NORMAL;
1004 			goto again;
1005 		}
1006 
1007 		/* No pages free! */
1008 		goto fail;
1009 
1010 	default:
1011 		panic("uvm_pagealloc_strat: bad strat %d", strat);
1012 		/* NOTREACHED */
1013 	}
1014 
1015  gotit:
1016 	TAILQ_REMOVE(freeq, pg, pageq);
1017 	uvmexp.free--;
1018 
1019 	/* update zero'd page count */
1020 	if (pg->pg_flags & PG_ZERO)
1021 		uvmexp.zeropages--;
1022 
1023 	/*
1024 	 * update allocation statistics and remember if we have to
1025 	 * zero the page
1026 	 */
1027 	if (flags & UVM_PGA_ZERO) {
1028 		if (pg->pg_flags & PG_ZERO) {
1029 			uvmexp.pga_zerohit++;
1030 			zeroit = 0;
1031 		} else {
1032 			uvmexp.pga_zeromiss++;
1033 			zeroit = 1;
1034 		}
1035 	}
1036 
1037 	uvm_unlock_fpageq();		/* unlock free page queue */
1038 
1039 	pg->offset = off;
1040 	pg->uobject = obj;
1041 	pg->uanon = anon;
1042 	pg->pg_flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1043 	pg->pg_version++;
1044 	if (anon) {
1045 		anon->an_page = pg;
1046 		atomic_setbits_int(&pg->pg_flags, PQ_ANON);
1047 #ifdef UBC
1048 		uvm_pgcnt_anon++;
1049 #endif
1050 	} else {
1051 		if (obj)
1052 			uvm_pageinsert(pg);
1053 	}
1054 #if defined(UVM_PAGE_TRKOWN)
1055 	pg->owner_tag = NULL;
1056 #endif
1057 	UVM_PAGE_OWN(pg, "new alloc");
1058 
1059 	if (flags & UVM_PGA_ZERO) {
1060 		/*
1061 		 * A zero'd page is not clean.  If we got a page not already
1062 		 * zero'd, then we have to zero it ourselves.
1063 		 */
1064 		atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1065 		if (zeroit)
1066 			pmap_zero_page(pg);
1067 	}
1068 
1069 	UVMHIST_LOG(pghist, "allocated pg %p/%lx", pg,
1070 	    (u_long)VM_PAGE_TO_PHYS(pg), 0, 0);
1071 	return(pg);
1072 
1073  fail:
1074 	uvm_unlock_fpageq();
1075 	UVMHIST_LOG(pghist, "failed!", 0, 0, 0, 0);
1076 	return (NULL);
1077 }
1078 
1079 /*
1080  * uvm_pagerealloc: reallocate a page from one object to another
1081  *
1082  * => both objects must be locked
1083  */
1084 
1085 void
1086 uvm_pagerealloc(pg, newobj, newoff)
1087 	struct vm_page *pg;
1088 	struct uvm_object *newobj;
1089 	voff_t newoff;
1090 {
1091 
1092 	UVMHIST_FUNC("uvm_pagerealloc"); UVMHIST_CALLED(pghist);
1093 
1094 	/*
1095 	 * remove it from the old object
1096 	 */
1097 
1098 	if (pg->uobject) {
1099 		uvm_pageremove(pg);
1100 	}
1101 
1102 	/*
1103 	 * put it in the new object
1104 	 */
1105 
1106 	if (newobj) {
1107 		pg->uobject = newobj;
1108 		pg->offset = newoff;
1109 		pg->pg_version++;
1110 		uvm_pageinsert(pg);
1111 	}
1112 }
1113 
1114 
1115 /*
1116  * uvm_pagefree: free page
1117  *
1118  * => erase page's identity (i.e. remove from hash/object)
1119  * => put page on free list
1120  * => caller must lock owning object (either anon or uvm_object)
1121  * => caller must lock page queues
1122  * => assumes all valid mappings of pg are gone
1123  */
1124 
1125 void
1126 uvm_pagefree(struct vm_page *pg)
1127 {
1128 	int saved_loan_count = pg->loan_count;
1129 	UVMHIST_FUNC("uvm_pagefree"); UVMHIST_CALLED(pghist);
1130 
1131 #ifdef DEBUG
1132 	if (pg->uobject == (void *)0xdeadbeef &&
1133 	    pg->uanon == (void *)0xdeadbeef) {
1134 		panic("uvm_pagefree: freeing free page %p", pg);
1135 	}
1136 #endif
1137 
1138 	UVMHIST_LOG(pghist, "freeing pg %p/%lx", pg,
1139 	    (u_long)VM_PAGE_TO_PHYS(pg), 0, 0);
1140 
1141 	/*
1142 	 * if the page was an object page (and thus "TABLED"), remove it
1143 	 * from the object.
1144 	 */
1145 
1146 	if (pg->pg_flags & PG_TABLED) {
1147 
1148 		/*
1149 		 * if the object page is on loan we are going to drop ownership.
1150 		 * it is possible that an anon will take over as owner for this
1151 		 * page later on.   the anon will want a !PG_CLEAN page so that
1152 		 * it knows it needs to allocate swap if it wants to page the
1153 		 * page out.
1154 		 */
1155 
1156 		/* in case an anon takes over */
1157 		if (saved_loan_count)
1158 			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1159 		uvm_pageremove(pg);
1160 
1161 		/*
1162 		 * if our page was on loan, then we just lost control over it
1163 		 * (in fact, if it was loaned to an anon, the anon may have
1164 		 * already taken over ownership of the page by now and thus
1165 		 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1166 		 * return (when the last loan is dropped, then the page can be
1167 		 * freed by whatever was holding the last loan).
1168 		 */
1169 
1170 		if (saved_loan_count)
1171 			return;
1172 	} else if (saved_loan_count && pg->uanon) {
1173 		/*
1174 		 * if our page is owned by an anon and is loaned out to the
1175 		 * kernel then we just want to drop ownership and return.
1176 		 * the kernel must free the page when all its loans clear ...
1177 		 * note that the kernel can't change the loan status of our
1178 		 * page as long as we are holding PQ lock.
1179 		 */
1180 		atomic_clearbits_int(&pg->pg_flags, PQ_ANON);
1181 		pg->uanon->an_page = NULL;
1182 		pg->uanon = NULL;
1183 		return;
1184 	}
1185 	KASSERT(saved_loan_count == 0);
1186 
1187 	/*
1188 	 * now remove the page from the queues
1189 	 */
1190 
1191 	if (pg->pg_flags & PQ_ACTIVE) {
1192 		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1193 		atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
1194 		uvmexp.active--;
1195 	}
1196 	if (pg->pg_flags & PQ_INACTIVE) {
1197 		if (pg->pg_flags & PQ_SWAPBACKED)
1198 			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1199 		else
1200 			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1201 		atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
1202 		uvmexp.inactive--;
1203 	}
1204 
1205 	/*
1206 	 * if the page was wired, unwire it now.
1207 	 */
1208 
1209 	if (pg->wire_count) {
1210 		pg->wire_count = 0;
1211 		uvmexp.wired--;
1212 	}
1213 	if (pg->uanon) {
1214 		pg->uanon->an_page = NULL;
1215 #ifdef UBC
1216 		uvm_pgcnt_anon--;
1217 #endif
1218 	}
1219 
1220 	/*
1221 	 * and put on free queue
1222 	 */
1223 
1224 	atomic_clearbits_int(&pg->pg_flags, PG_ZERO);
1225 
1226 	uvm_lock_fpageq();
1227 	TAILQ_INSERT_TAIL(&uvm.page_free[
1228 	    uvm_page_lookup_freelist(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1229 	atomic_clearbits_int(&pg->pg_flags, PQ_MASK);
1230 	atomic_setbits_int(&pg->pg_flags, PQ_FREE);
1231 #ifdef DEBUG
1232 	pg->uobject = (void *)0xdeadbeef;
1233 	pg->offset = 0xdeadbeef;
1234 	pg->uanon = (void *)0xdeadbeef;
1235 #endif
1236 	uvmexp.free++;
1237 
1238 	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1239 		uvm.page_idle_zero = vm_page_zero_enable;
1240 
1241 	uvm_unlock_fpageq();
1242 }
1243 
1244 /*
1245  * uvm_page_unbusy: unbusy an array of pages.
1246  *
1247  * => pages must either all belong to the same object, or all belong to anons.
1248  * => if pages are object-owned, object must be locked.
1249  * => if pages are anon-owned, anons must be unlockd and have 0 refcount.
1250  */
1251 
1252 void
1253 uvm_page_unbusy(pgs, npgs)
1254 	struct vm_page **pgs;
1255 	int npgs;
1256 {
1257 	struct vm_page *pg;
1258 	struct uvm_object *uobj;
1259 	int i;
1260 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(pdhist);
1261 
1262 	for (i = 0; i < npgs; i++) {
1263 		pg = pgs[i];
1264 
1265 		if (pg == NULL || pg == PGO_DONTCARE) {
1266 			continue;
1267 		}
1268 		if (pg->pg_flags & PG_WANTED) {
1269 			wakeup(pg);
1270 		}
1271 		if (pg->pg_flags & PG_RELEASED) {
1272 			UVMHIST_LOG(pdhist, "releasing pg %p", pg,0,0,0);
1273 			uobj = pg->uobject;
1274 			if (uobj != NULL) {
1275 				uobj->pgops->pgo_releasepg(pg, NULL);
1276 			} else {
1277 				atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
1278 				UVM_PAGE_OWN(pg, NULL);
1279 				uvm_anfree(pg->uanon);
1280 			}
1281 		} else {
1282 			UVMHIST_LOG(pdhist, "unbusying pg %p", pg,0,0,0);
1283 			atomic_clearbits_int(&pg->pg_flags, PG_WANTED|PG_BUSY);
1284 			UVM_PAGE_OWN(pg, NULL);
1285 		}
1286 	}
1287 }
1288 
1289 #if defined(UVM_PAGE_TRKOWN)
1290 /*
1291  * uvm_page_own: set or release page ownership
1292  *
1293  * => this is a debugging function that keeps track of who sets PG_BUSY
1294  *	and where they do it.   it can be used to track down problems
1295  *	such a process setting "PG_BUSY" and never releasing it.
1296  * => page's object [if any] must be locked
1297  * => if "tag" is NULL then we are releasing page ownership
1298  */
1299 void
1300 uvm_page_own(pg, tag)
1301 	struct vm_page *pg;
1302 	char *tag;
1303 {
1304 	/* gain ownership? */
1305 	if (tag) {
1306 		if (pg->owner_tag) {
1307 			printf("uvm_page_own: page %p already owned "
1308 			    "by proc %d [%s]\n", pg,
1309 			     pg->owner, pg->owner_tag);
1310 			panic("uvm_page_own");
1311 		}
1312 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
1313 		pg->owner_tag = tag;
1314 		return;
1315 	}
1316 
1317 	/* drop ownership */
1318 	if (pg->owner_tag == NULL) {
1319 		printf("uvm_page_own: dropping ownership of an non-owned "
1320 		    "page (%p)\n", pg);
1321 		panic("uvm_page_own");
1322 	}
1323 	pg->owner_tag = NULL;
1324 	return;
1325 }
1326 #endif
1327 
1328 /*
1329  * uvm_pageidlezero: zero free pages while the system is idle.
1330  *
1331  * => we do at least one iteration per call, if we are below the target.
1332  * => we loop until we either reach the target or whichqs indicates that
1333  *	there is a process ready to run.
1334  */
1335 void
1336 uvm_pageidlezero()
1337 {
1338 	struct vm_page *pg;
1339 	struct pgfreelist *pgfl;
1340 	int free_list;
1341 	UVMHIST_FUNC("uvm_pageidlezero"); UVMHIST_CALLED(pghist);
1342 
1343 	do {
1344 		uvm_lock_fpageq();
1345 
1346 		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1347 			uvm.page_idle_zero = FALSE;
1348 			uvm_unlock_fpageq();
1349 			return;
1350 		}
1351 
1352 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1353 			pgfl = &uvm.page_free[free_list];
1354 			if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
1355 			    PGFL_UNKNOWN])) != NULL)
1356 				break;
1357 		}
1358 
1359 		if (pg == NULL) {
1360 			/*
1361 			 * No non-zero'd pages; don't bother trying again
1362 			 * until we know we have non-zero'd pages free.
1363 			 */
1364 			uvm.page_idle_zero = FALSE;
1365 			uvm_unlock_fpageq();
1366 			return;
1367 		}
1368 
1369 		TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1370 		uvmexp.free--;
1371 		uvm_unlock_fpageq();
1372 
1373 #ifdef PMAP_PAGEIDLEZERO
1374 		if (PMAP_PAGEIDLEZERO(pg) == FALSE) {
1375 			/*
1376 			 * The machine-dependent code detected some
1377 			 * reason for us to abort zeroing pages,
1378 			 * probably because there is a process now
1379 			 * ready to run.
1380 			 */
1381 			uvm_lock_fpageq();
1382 			TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_UNKNOWN],
1383 			    pg, pageq);
1384 			uvmexp.free++;
1385 			uvmexp.zeroaborts++;
1386 			uvm_unlock_fpageq();
1387 			return;
1388 		}
1389 #else
1390 		/*
1391 		 * XXX This will toast the cache unless the pmap_zero_page()
1392 		 * XXX implementation does uncached access.
1393 		 */
1394 		pmap_zero_page(pg);
1395 #endif
1396 		atomic_setbits_int(&pg->pg_flags, PG_ZERO);
1397 
1398 		uvm_lock_fpageq();
1399 		TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
1400 		uvmexp.free++;
1401 		uvmexp.zeropages++;
1402 		uvm_unlock_fpageq();
1403 	} while (sched_is_idle());
1404 }
1405