xref: /openbsd-src/sys/uvm/uvm_page.c (revision 8500990981f885cbe5e6a4958549cacc238b5ae6)
1 /*	$OpenBSD: uvm_page.c,v 1.48 2003/06/01 00:26:09 miod Exp $	*/
2 /*	$NetBSD: uvm_page.c,v 1.44 2000/11/27 08:40:04 chs Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * Copyright (c) 1991, 1993, The Regents of the University of California.
7  *
8  * All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by Charles D. Cranor,
24  *      Washington University, the University of California, Berkeley and
25  *      its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
43  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  * uvm_page.c: page ops.
72  */
73 
74 #define UVM_PAGE                /* pull in uvm_page.h functions */
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/malloc.h>
78 #include <sys/sched.h>
79 #include <sys/kernel.h>
80 #include <sys/vnode.h>
81 
82 #include <uvm/uvm.h>
83 
84 /*
85  * global vars... XXXCDC: move to uvm. structure.
86  */
87 
88 /*
89  * physical memory config is stored in vm_physmem.
90  */
91 
92 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
93 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
94 
95 /*
96  * Some supported CPUs in a given architecture don't support all
97  * of the things necessary to do idle page zero'ing efficiently.
98  * We therefore provide a way to disable it from machdep code here.
99  */
100 
101 /*
102  * XXX disabled until we can find a way to do this without causing
103  * problems for either cpu caches or DMA latency.
104  */
105 boolean_t vm_page_zero_enable = FALSE;
106 
107 /*
108  * local variables
109  */
110 
111 /*
112  * these variables record the values returned by vm_page_bootstrap,
113  * for debugging purposes.  The implementation of uvm_pageboot_alloc
114  * and pmap_startup here also uses them internally.
115  */
116 
117 static vaddr_t      virtual_space_start;
118 static vaddr_t      virtual_space_end;
119 
120 /*
121  * we use a hash table with only one bucket during bootup.  we will
122  * later rehash (resize) the hash table once the allocator is ready.
123  * we static allocate the one bootstrap bucket below...
124  */
125 
126 static struct pglist uvm_bootbucket;
127 
128 /*
129  * local prototypes
130  */
131 
132 static void uvm_pageinsert(struct vm_page *);
133 static void uvm_pageremove(struct vm_page *);
134 
135 /*
136  * inline functions
137  */
138 
139 /*
140  * uvm_pageinsert: insert a page in the object and the hash table
141  *
142  * => caller must lock object
143  * => caller must lock page queues
144  * => call should have already set pg's object and offset pointers
145  *    and bumped the version counter
146  */
147 
148 __inline static void
149 uvm_pageinsert(pg)
150 	struct vm_page *pg;
151 {
152 	struct pglist *buck;
153 	int s;
154 
155 	KASSERT((pg->flags & PG_TABLED) == 0);
156 	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
157 	s = splvm();
158 	simple_lock(&uvm.hashlock);
159 	TAILQ_INSERT_TAIL(buck, pg, hashq);	/* put in hash */
160 	simple_unlock(&uvm.hashlock);
161 	splx(s);
162 
163 	TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
164 	pg->flags |= PG_TABLED;
165 	pg->uobject->uo_npages++;
166 }
167 
168 /*
169  * uvm_page_remove: remove page from object and hash
170  *
171  * => caller must lock object
172  * => caller must lock page queues
173  */
174 
175 static __inline void
176 uvm_pageremove(pg)
177 	struct vm_page *pg;
178 {
179 	struct pglist *buck;
180 	int s;
181 
182 	KASSERT(pg->flags & PG_TABLED);
183 	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
184 	s = splvm();
185 	simple_lock(&uvm.hashlock);
186 	TAILQ_REMOVE(buck, pg, hashq);
187 	simple_unlock(&uvm.hashlock);
188 	splx(s);
189 
190 #ifdef UBC
191 	if (pg->uobject->pgops == &uvm_vnodeops) {
192 		uvm_pgcnt_vnode--;
193 	}
194 #endif
195 
196 	/* object should be locked */
197 	TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
198 
199 	pg->flags &= ~PG_TABLED;
200 	pg->uobject->uo_npages--;
201 	pg->uobject = NULL;
202 	pg->version++;
203 }
204 
205 /*
206  * uvm_page_init: init the page system.   called from uvm_init().
207  *
208  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
209  */
210 
211 void
212 uvm_page_init(kvm_startp, kvm_endp)
213 	vaddr_t *kvm_startp, *kvm_endp;
214 {
215 	vsize_t freepages, pagecount, n;
216 	vm_page_t pagearray;
217 	int lcv, i;
218 	paddr_t paddr;
219 
220 	/*
221 	 * init the page queues and page queue locks
222 	 */
223 
224 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
225 		for (i = 0; i < PGFL_NQUEUES; i++)
226 			TAILQ_INIT(&uvm.page_free[lcv].pgfl_queues[i]);
227 	}
228 	TAILQ_INIT(&uvm.page_active);
229 	TAILQ_INIT(&uvm.page_inactive_swp);
230 	TAILQ_INIT(&uvm.page_inactive_obj);
231 	simple_lock_init(&uvm.pageqlock);
232 	simple_lock_init(&uvm.fpageqlock);
233 
234 	/*
235 	 * init the <obj,offset> => <page> hash table.  for now
236 	 * we just have one bucket (the bootstrap bucket).  later on we
237 	 * will allocate new buckets as we dynamically resize the hash table.
238 	 */
239 
240 	uvm.page_nhash = 1;			/* 1 bucket */
241 	uvm.page_hashmask = 0;			/* mask for hash function */
242 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
243 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
244 	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
245 
246 	/*
247 	 * allocate vm_page structures.
248 	 */
249 
250 	/*
251 	 * sanity check:
252 	 * before calling this function the MD code is expected to register
253 	 * some free RAM with the uvm_page_physload() function.   our job
254 	 * now is to allocate vm_page structures for this memory.
255 	 */
256 
257 	if (vm_nphysseg == 0)
258 		panic("uvm_page_bootstrap: no memory pre-allocated");
259 
260 	/*
261 	 * first calculate the number of free pages...
262 	 *
263 	 * note that we use start/end rather than avail_start/avail_end.
264 	 * this allows us to allocate extra vm_page structures in case we
265 	 * want to return some memory to the pool after booting.
266 	 */
267 
268 	freepages = 0;
269 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
270 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
271 
272 	/*
273 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
274 	 * use.   for each page of memory we use we need a vm_page structure.
275 	 * thus, the total number of pages we can use is the total size of
276 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
277 	 * structure.   we add one to freepages as a fudge factor to avoid
278 	 * truncation errors (since we can only allocate in terms of whole
279 	 * pages).
280 	 */
281 
282 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
283 	    (PAGE_SIZE + sizeof(struct vm_page));
284 	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
285 	    sizeof(struct vm_page));
286 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
287 
288 	/*
289 	 * init the vm_page structures and put them in the correct place.
290 	 */
291 
292 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
293 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
294 		if (n > pagecount) {
295 			printf("uvm_page_init: lost %ld page(s) in init\n",
296 			    (long)(n - pagecount));
297 			panic("uvm_page_init");  /* XXXCDC: shouldn't happen? */
298 			/* n = pagecount; */
299 		}
300 
301 		/* set up page array pointers */
302 		vm_physmem[lcv].pgs = pagearray;
303 		pagearray += n;
304 		pagecount -= n;
305 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
306 
307 		/* init and free vm_pages (we've already zeroed them) */
308 		paddr = ptoa(vm_physmem[lcv].start);
309 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
310 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
311 #ifdef __HAVE_VM_PAGE_MD
312 			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
313 #endif
314 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
315 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
316 				uvmexp.npages++;
317 				/* add page to free pool */
318 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
319 			}
320 		}
321 	}
322 
323 	/*
324 	 * pass up the values of virtual_space_start and
325 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
326 	 * layers of the VM.
327 	 */
328 
329 	*kvm_startp = round_page(virtual_space_start);
330 	*kvm_endp = trunc_page(virtual_space_end);
331 
332 	/*
333 	 * init locks for kernel threads
334 	 */
335 
336 	simple_lock_init(&uvm.pagedaemon_lock);
337 	simple_lock_init(&uvm.aiodoned_lock);
338 
339 	/*
340 	 * init reserve thresholds
341 	 * XXXCDC - values may need adjusting
342 	 */
343 	uvmexp.reserve_pagedaemon = 4;
344 	uvmexp.reserve_kernel = 6;
345 	uvmexp.anonminpct = 10;
346 	uvmexp.vnodeminpct = 10;
347 	uvmexp.vtextminpct = 5;
348 	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
349 	uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
350 	uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
351 
352   	/*
353 	 * determine if we should zero pages in the idle loop.
354 	 */
355 
356 	uvm.page_idle_zero = vm_page_zero_enable;
357 
358 	/*
359 	 * done!
360 	 */
361 
362 	uvm.page_init_done = TRUE;
363 }
364 
365 /*
366  * uvm_setpagesize: set the page size
367  *
368  * => sets page_shift and page_mask from uvmexp.pagesize.
369  */
370 
371 void
372 uvm_setpagesize()
373 {
374 	if (uvmexp.pagesize == 0)
375 		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
376 	uvmexp.pagemask = uvmexp.pagesize - 1;
377 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
378 		panic("uvm_setpagesize: page size not a power of two");
379 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
380 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
381 			break;
382 }
383 
384 /*
385  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
386  */
387 
388 vaddr_t
389 uvm_pageboot_alloc(size)
390 	vsize_t size;
391 {
392 #if defined(PMAP_STEAL_MEMORY)
393 	vaddr_t addr;
394 
395 	/*
396 	 * defer bootstrap allocation to MD code (it may want to allocate
397 	 * from a direct-mapped segment).  pmap_steal_memory should round
398 	 * off virtual_space_start/virtual_space_end.
399 	 */
400 
401 	addr = pmap_steal_memory(size, &virtual_space_start,
402 	    &virtual_space_end);
403 
404 	return(addr);
405 
406 #else /* !PMAP_STEAL_MEMORY */
407 
408 	static boolean_t initialized = FALSE;
409 	vaddr_t addr, vaddr;
410 	paddr_t paddr;
411 
412 	/* round to page size */
413 	size = round_page(size);
414 
415 	/*
416 	 * on first call to this function, initialize ourselves.
417 	 */
418 	if (initialized == FALSE) {
419 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
420 
421 		/* round it the way we like it */
422 		virtual_space_start = round_page(virtual_space_start);
423 		virtual_space_end = trunc_page(virtual_space_end);
424 
425 		initialized = TRUE;
426 	}
427 
428 	/*
429 	 * allocate virtual memory for this request
430 	 */
431 	if (virtual_space_start == virtual_space_end ||
432 	    (virtual_space_end - virtual_space_start) < size)
433 		panic("uvm_pageboot_alloc: out of virtual space");
434 
435 	addr = virtual_space_start;
436 
437 #ifdef PMAP_GROWKERNEL
438 	/*
439 	 * If the kernel pmap can't map the requested space,
440 	 * then allocate more resources for it.
441 	 */
442 	if (uvm_maxkaddr < (addr + size)) {
443 		uvm_maxkaddr = pmap_growkernel(addr + size);
444 		if (uvm_maxkaddr < (addr + size))
445 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
446 	}
447 #endif
448 
449 	virtual_space_start += size;
450 
451 	/*
452 	 * allocate and mapin physical pages to back new virtual pages
453 	 */
454 
455 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
456 	    vaddr += PAGE_SIZE) {
457 
458 		if (!uvm_page_physget(&paddr))
459 			panic("uvm_pageboot_alloc: out of memory");
460 
461 		/*
462 		 * Note this memory is no longer managed, so using
463 		 * pmap_kenter is safe.
464 		 */
465 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
466 	}
467 	return(addr);
468 #endif	/* PMAP_STEAL_MEMORY */
469 }
470 
471 #if !defined(PMAP_STEAL_MEMORY)
472 /*
473  * uvm_page_physget: "steal" one page from the vm_physmem structure.
474  *
475  * => attempt to allocate it off the end of a segment in which the "avail"
476  *    values match the start/end values.   if we can't do that, then we
477  *    will advance both values (making them equal, and removing some
478  *    vm_page structures from the non-avail area).
479  * => return false if out of memory.
480  */
481 
482 /* subroutine: try to allocate from memory chunks on the specified freelist */
483 static boolean_t uvm_page_physget_freelist(paddr_t *, int);
484 
485 static boolean_t
486 uvm_page_physget_freelist(paddrp, freelist)
487 	paddr_t *paddrp;
488 	int freelist;
489 {
490 	int lcv, x;
491 
492 	/* pass 1: try allocating from a matching end */
493 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
494 	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
495 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
496 #else
497 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
498 #endif
499 	{
500 
501 		if (uvm.page_init_done == TRUE)
502 			panic("uvm_page_physget: called _after_ bootstrap");
503 
504 		if (vm_physmem[lcv].free_list != freelist)
505 			continue;
506 
507 		/* try from front */
508 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
509 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
510 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
511 			vm_physmem[lcv].avail_start++;
512 			vm_physmem[lcv].start++;
513 			/* nothing left?   nuke it */
514 			if (vm_physmem[lcv].avail_start ==
515 			    vm_physmem[lcv].end) {
516 				if (vm_nphysseg == 1)
517 				    panic("uvm_page_physget: out of memory!");
518 				vm_nphysseg--;
519 				for (x = lcv ; x < vm_nphysseg ; x++)
520 					/* structure copy */
521 					vm_physmem[x] = vm_physmem[x+1];
522 			}
523 			return (TRUE);
524 		}
525 
526 		/* try from rear */
527 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
528 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
529 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
530 			vm_physmem[lcv].avail_end--;
531 			vm_physmem[lcv].end--;
532 			/* nothing left?   nuke it */
533 			if (vm_physmem[lcv].avail_end ==
534 			    vm_physmem[lcv].start) {
535 				if (vm_nphysseg == 1)
536 				    panic("uvm_page_physget: out of memory!");
537 				vm_nphysseg--;
538 				for (x = lcv ; x < vm_nphysseg ; x++)
539 					/* structure copy */
540 					vm_physmem[x] = vm_physmem[x+1];
541 			}
542 			return (TRUE);
543 		}
544 	}
545 
546 	/* pass2: forget about matching ends, just allocate something */
547 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
548 	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
549 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
550 #else
551 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
552 #endif
553 	{
554 
555 		/* any room in this bank? */
556 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
557 			continue;  /* nope */
558 
559 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
560 		vm_physmem[lcv].avail_start++;
561 		/* truncate! */
562 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
563 
564 		/* nothing left?   nuke it */
565 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
566 			if (vm_nphysseg == 1)
567 				panic("uvm_page_physget: out of memory!");
568 			vm_nphysseg--;
569 			for (x = lcv ; x < vm_nphysseg ; x++)
570 				/* structure copy */
571 				vm_physmem[x] = vm_physmem[x+1];
572 		}
573 		return (TRUE);
574 	}
575 
576 	return (FALSE);        /* whoops! */
577 }
578 
579 boolean_t
580 uvm_page_physget(paddrp)
581 	paddr_t *paddrp;
582 {
583 	int i;
584 
585 	/* try in the order of freelist preference */
586 	for (i = 0; i < VM_NFREELIST; i++)
587 		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
588 			return (TRUE);
589 	return (FALSE);
590 }
591 #endif /* PMAP_STEAL_MEMORY */
592 
593 /*
594  * uvm_page_physload: load physical memory into VM system
595  *
596  * => all args are PFs
597  * => all pages in start/end get vm_page structures
598  * => areas marked by avail_start/avail_end get added to the free page pool
599  * => we are limited to VM_PHYSSEG_MAX physical memory segments
600  */
601 
602 void
603 uvm_page_physload(start, end, avail_start, avail_end, free_list)
604 	paddr_t start, end, avail_start, avail_end;
605 	int free_list;
606 {
607 	int preload, lcv;
608 	psize_t npages;
609 	struct vm_page *pgs;
610 	struct vm_physseg *ps;
611 
612 	if (uvmexp.pagesize == 0)
613 		panic("uvm_page_physload: page size not set!");
614 
615 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
616 		panic("uvm_page_physload: bad free list %d", free_list);
617 
618 	if (start >= end)
619 		panic("uvm_page_physload: start >= end");
620 
621 	/*
622 	 * do we have room?
623 	 */
624 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
625 		printf("uvm_page_physload: unable to load physical memory "
626 		    "segment\n");
627 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
628 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
629 		printf("\tincrease VM_PHYSSEG_MAX\n");
630 		return;
631 	}
632 
633 	/*
634 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
635 	 * called yet, so malloc is not available).
636 	 */
637 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
638 		if (vm_physmem[lcv].pgs)
639 			break;
640 	}
641 	preload = (lcv == vm_nphysseg);
642 
643 	/*
644 	 * if VM is already running, attempt to malloc() vm_page structures
645 	 */
646 	if (!preload) {
647 #if defined(VM_PHYSSEG_NOADD)
648 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
649 #else
650 		/* XXXCDC: need some sort of lockout for this case */
651 		paddr_t paddr;
652 		npages = end - start;  /* # of pages */
653 		pgs = (vm_page *)uvm_km_alloc(kernel_map,
654 		    sizeof(struct vm_page) * npages);
655 		if (pgs == NULL) {
656 			printf("uvm_page_physload: can not malloc vm_page "
657 			    "structs for segment\n");
658 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
659 			return;
660 		}
661 		/* zero data, init phys_addr and free_list, and free pages */
662 		memset(pgs, 0, sizeof(struct vm_page) * npages);
663 		for (lcv = 0, paddr = ptoa(start) ;
664 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
665 			pgs[lcv].phys_addr = paddr;
666 			pgs[lcv].free_list = free_list;
667 			if (atop(paddr) >= avail_start &&
668 			    atop(paddr) <= avail_end)
669 				uvm_pagefree(&pgs[lcv]);
670 		}
671 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
672 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
673 #endif
674 	} else {
675 
676 		/* gcc complains if these don't get init'd */
677 		pgs = NULL;
678 		npages = 0;
679 
680 	}
681 
682 	/*
683 	 * now insert us in the proper place in vm_physmem[]
684 	 */
685 
686 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
687 
688 	/* random: put it at the end (easy!) */
689 	ps = &vm_physmem[vm_nphysseg];
690 
691 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
692 
693 	{
694 		int x;
695 		/* sort by address for binary search */
696 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
697 			if (start < vm_physmem[lcv].start)
698 				break;
699 		ps = &vm_physmem[lcv];
700 		/* move back other entries, if necessary ... */
701 		for (x = vm_nphysseg ; x > lcv ; x--)
702 			/* structure copy */
703 			vm_physmem[x] = vm_physmem[x - 1];
704 	}
705 
706 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
707 
708 	{
709 		int x;
710 		/* sort by largest segment first */
711 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
712 			if ((end - start) >
713 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
714 				break;
715 		ps = &vm_physmem[lcv];
716 		/* move back other entries, if necessary ... */
717 		for (x = vm_nphysseg ; x > lcv ; x--)
718 			/* structure copy */
719 			vm_physmem[x] = vm_physmem[x - 1];
720 	}
721 
722 #else
723 
724 	panic("uvm_page_physload: unknown physseg strategy selected!");
725 
726 #endif
727 
728 	ps->start = start;
729 	ps->end = end;
730 	ps->avail_start = avail_start;
731 	ps->avail_end = avail_end;
732 	if (preload) {
733 		ps->pgs = NULL;
734 	} else {
735 		ps->pgs = pgs;
736 		ps->lastpg = pgs + npages - 1;
737 	}
738 	ps->free_list = free_list;
739 	vm_nphysseg++;
740 
741 	/*
742 	 * done!
743 	 */
744 
745 	if (!preload)
746 		uvm_page_rehash();
747 
748 	return;
749 }
750 
751 /*
752  * uvm_page_rehash: reallocate hash table based on number of free pages.
753  */
754 
755 void
756 uvm_page_rehash()
757 {
758 	int freepages, lcv, bucketcount, s, oldcount;
759 	struct pglist *newbuckets, *oldbuckets;
760 	struct vm_page *pg;
761 	size_t newsize, oldsize;
762 
763 	/*
764 	 * compute number of pages that can go in the free pool
765 	 */
766 
767 	freepages = 0;
768 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
769 		freepages +=
770 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
771 
772 	/*
773 	 * compute number of buckets needed for this number of pages
774 	 */
775 
776 	bucketcount = 1;
777 	while (bucketcount < freepages)
778 		bucketcount = bucketcount * 2;
779 
780 	/*
781 	 * compute the size of the current table and new table.
782 	 */
783 
784 	oldbuckets = uvm.page_hash;
785 	oldcount = uvm.page_nhash;
786 	oldsize = round_page(sizeof(struct pglist) * oldcount);
787 	newsize = round_page(sizeof(struct pglist) * bucketcount);
788 
789 	/*
790 	 * allocate the new buckets
791 	 */
792 
793 	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
794 	if (newbuckets == NULL) {
795 		printf("uvm_page_physrehash: WARNING: could not grow page "
796 		    "hash table\n");
797 		return;
798 	}
799 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
800 		TAILQ_INIT(&newbuckets[lcv]);
801 
802 	/*
803 	 * now replace the old buckets with the new ones and rehash everything
804 	 */
805 
806 	s = splvm();
807 	simple_lock(&uvm.hashlock);
808 	uvm.page_hash = newbuckets;
809 	uvm.page_nhash = bucketcount;
810 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
811 
812 	/* ... and rehash */
813 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
814 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
815 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
816 			TAILQ_INSERT_TAIL(
817 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
818 			  pg, hashq);
819 		}
820 	}
821 	simple_unlock(&uvm.hashlock);
822 	splx(s);
823 
824 	/*
825 	 * free old bucket array if is not the boot-time table
826 	 */
827 
828 	if (oldbuckets != &uvm_bootbucket)
829 		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
830 
831 	/*
832 	 * done
833 	 */
834 	return;
835 }
836 
837 
838 #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
839 
840 void uvm_page_physdump(void); /* SHUT UP GCC */
841 
842 /* call from DDB */
843 void
844 uvm_page_physdump()
845 {
846 	int lcv;
847 
848 	printf("rehash: physical memory config [segs=%d of %d]:\n",
849 				 vm_nphysseg, VM_PHYSSEG_MAX);
850 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
851 		printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
852 		    (long long)vm_physmem[lcv].start,
853 		    (long long)vm_physmem[lcv].end,
854 		    (long long)vm_physmem[lcv].avail_start,
855 		    (long long)vm_physmem[lcv].avail_end);
856 	printf("STRATEGY = ");
857 	switch (VM_PHYSSEG_STRAT) {
858 	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
859 	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
860 	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
861 	default: printf("<<UNKNOWN>>!!!!\n");
862 	}
863 	printf("number of buckets = %d\n", uvm.page_nhash);
864 }
865 #endif
866 
867 /*
868  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
869  *
870  * => return null if no pages free
871  * => wake up pagedaemon if number of free pages drops below low water mark
872  * => if obj != NULL, obj must be locked (to put in hash)
873  * => if anon != NULL, anon must be locked (to put in anon)
874  * => only one of obj or anon can be non-null
875  * => caller must activate/deactivate page if it is not wired.
876  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
877  * => policy decision: it is more important to pull a page off of the
878  *	appropriate priority free list than it is to get a zero'd or
879  *	unknown contents page.  This is because we live with the
880  *	consequences of a bad free list decision for the entire
881  *	lifetime of the page, e.g. if the page comes from memory that
882  *	is slower to access.
883  */
884 
885 struct vm_page *
886 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
887 	struct uvm_object *obj;
888 	voff_t off;
889 	int flags;
890 	struct vm_anon *anon;
891 	int strat, free_list;
892 {
893 	int lcv, try1, try2, s, zeroit = 0;
894 	struct vm_page *pg;
895 	struct pglist *freeq;
896 	struct pgfreelist *pgfl;
897 	boolean_t use_reserve;
898 
899 	KASSERT(obj == NULL || anon == NULL);
900 	KASSERT(off == trunc_page(off));
901 	s = uvm_lock_fpageq();
902 
903 	/*
904 	 * check to see if we need to generate some free pages waking
905 	 * the pagedaemon.
906 	 */
907 
908 #ifdef UBC
909 	if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
910 	    (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
911 	     uvmexp.inactive < uvmexp.inactarg)) {
912 		wakeup(&uvm.pagedaemon);
913 	}
914 #else
915 	if (uvmexp.free < uvmexp.freemin || (uvmexp.free < uvmexp.freetarg &&
916 	    uvmexp.inactive < uvmexp.inactarg))
917 		wakeup(&uvm.pagedaemon);
918 #endif
919 
920 	/*
921 	 * fail if any of these conditions is true:
922 	 * [1]  there really are no free pages, or
923 	 * [2]  only kernel "reserved" pages remain and
924 	 *        the page isn't being allocated to a kernel object.
925 	 * [3]  only pagedaemon "reserved" pages remain and
926 	 *        the requestor isn't the pagedaemon.
927 	 */
928 
929 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
930 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
931 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
932 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
933 	     !(use_reserve && (curproc == uvm.pagedaemon_proc ||
934 				curproc == syncerproc))))
935 		goto fail;
936 
937 #if PGFL_NQUEUES != 2
938 #error uvm_pagealloc_strat needs to be updated
939 #endif
940 
941 	/*
942 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
943 	 * we try the UNKNOWN queue first.
944 	 */
945 	if (flags & UVM_PGA_ZERO) {
946 		try1 = PGFL_ZEROS;
947 		try2 = PGFL_UNKNOWN;
948 	} else {
949 		try1 = PGFL_UNKNOWN;
950 		try2 = PGFL_ZEROS;
951 	}
952 
953  again:
954 	switch (strat) {
955 	case UVM_PGA_STRAT_NORMAL:
956 		/* Check all freelists in descending priority order. */
957 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
958 			pgfl = &uvm.page_free[lcv];
959 			if ((pg = TAILQ_FIRST((freeq =
960 			      &pgfl->pgfl_queues[try1]))) != NULL ||
961 			    (pg = TAILQ_FIRST((freeq =
962 			      &pgfl->pgfl_queues[try2]))) != NULL)
963 				goto gotit;
964 		}
965 
966 		/* No pages free! */
967 		goto fail;
968 
969 	case UVM_PGA_STRAT_ONLY:
970 	case UVM_PGA_STRAT_FALLBACK:
971 		/* Attempt to allocate from the specified free list. */
972 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
973 		pgfl = &uvm.page_free[free_list];
974 		if ((pg = TAILQ_FIRST((freeq =
975 		      &pgfl->pgfl_queues[try1]))) != NULL ||
976 		    (pg = TAILQ_FIRST((freeq =
977 		      &pgfl->pgfl_queues[try2]))) != NULL)
978 			goto gotit;
979 
980 		/* Fall back, if possible. */
981 		if (strat == UVM_PGA_STRAT_FALLBACK) {
982 			strat = UVM_PGA_STRAT_NORMAL;
983 			goto again;
984 		}
985 
986 		/* No pages free! */
987 		goto fail;
988 
989 	default:
990 		panic("uvm_pagealloc_strat: bad strat %d", strat);
991 		/* NOTREACHED */
992 	}
993 
994  gotit:
995 	TAILQ_REMOVE(freeq, pg, pageq);
996 	uvmexp.free--;
997 
998 	/* update zero'd page count */
999 	if (pg->flags & PG_ZERO)
1000 		uvmexp.zeropages--;
1001 
1002 	/*
1003 	 * update allocation statistics and remember if we have to
1004 	 * zero the page
1005 	 */
1006 	if (flags & UVM_PGA_ZERO) {
1007 		if (pg->flags & PG_ZERO) {
1008 			uvmexp.pga_zerohit++;
1009 			zeroit = 0;
1010 		} else {
1011 			uvmexp.pga_zeromiss++;
1012 			zeroit = 1;
1013 		}
1014 	}
1015 
1016 	uvm_unlock_fpageq(s);		/* unlock free page queue */
1017 
1018 	pg->offset = off;
1019 	pg->uobject = obj;
1020 	pg->uanon = anon;
1021 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1022 	pg->version++;
1023 	if (anon) {
1024 		anon->u.an_page = pg;
1025 		pg->pqflags = PQ_ANON;
1026 #ifdef UBC
1027 		uvm_pgcnt_anon++;
1028 #endif
1029 	} else {
1030 		if (obj)
1031 			uvm_pageinsert(pg);
1032 		pg->pqflags = 0;
1033 	}
1034 #if defined(UVM_PAGE_TRKOWN)
1035 	pg->owner_tag = NULL;
1036 #endif
1037 	UVM_PAGE_OWN(pg, "new alloc");
1038 
1039 	if (flags & UVM_PGA_ZERO) {
1040 		/*
1041 		 * A zero'd page is not clean.  If we got a page not already
1042 		 * zero'd, then we have to zero it ourselves.
1043 		 */
1044 		pg->flags &= ~PG_CLEAN;
1045 		if (zeroit)
1046 			pmap_zero_page(pg);
1047 	}
1048 
1049 	return(pg);
1050 
1051  fail:
1052 	uvm_unlock_fpageq(s);
1053 	return (NULL);
1054 }
1055 
1056 /*
1057  * uvm_pagerealloc: reallocate a page from one object to another
1058  *
1059  * => both objects must be locked
1060  */
1061 
1062 void
1063 uvm_pagerealloc(pg, newobj, newoff)
1064 	struct vm_page *pg;
1065 	struct uvm_object *newobj;
1066 	voff_t newoff;
1067 {
1068 	/*
1069 	 * remove it from the old object
1070 	 */
1071 
1072 	if (pg->uobject) {
1073 		uvm_pageremove(pg);
1074 	}
1075 
1076 	/*
1077 	 * put it in the new object
1078 	 */
1079 
1080 	if (newobj) {
1081 		pg->uobject = newobj;
1082 		pg->offset = newoff;
1083 		pg->version++;
1084 		uvm_pageinsert(pg);
1085 	}
1086 }
1087 
1088 
1089 /*
1090  * uvm_pagefree: free page
1091  *
1092  * => erase page's identity (i.e. remove from hash/object)
1093  * => put page on free list
1094  * => caller must lock owning object (either anon or uvm_object)
1095  * => caller must lock page queues
1096  * => assumes all valid mappings of pg are gone
1097  */
1098 
1099 void
1100 uvm_pagefree(pg)
1101 	struct vm_page *pg;
1102 {
1103 	int s;
1104 	int saved_loan_count = pg->loan_count;
1105 
1106 #ifdef DEBUG
1107 	if (pg->uobject == (void *)0xdeadbeef &&
1108 	    pg->uanon == (void *)0xdeadbeef) {
1109 		panic("uvm_pagefree: freeing free page %p", pg);
1110 	}
1111 #endif
1112 
1113 	/*
1114 	 * if the page was an object page (and thus "TABLED"), remove it
1115 	 * from the object.
1116 	 */
1117 
1118 	if (pg->flags & PG_TABLED) {
1119 
1120 		/*
1121 		 * if the object page is on loan we are going to drop ownership.
1122 		 * it is possible that an anon will take over as owner for this
1123 		 * page later on.   the anon will want a !PG_CLEAN page so that
1124 		 * it knows it needs to allocate swap if it wants to page the
1125 		 * page out.
1126 		 */
1127 
1128 		if (saved_loan_count)
1129 			pg->flags &= ~PG_CLEAN;	/* in case an anon takes over */
1130 		uvm_pageremove(pg);
1131 
1132 		/*
1133 		 * if our page was on loan, then we just lost control over it
1134 		 * (in fact, if it was loaned to an anon, the anon may have
1135 		 * already taken over ownership of the page by now and thus
1136 		 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1137 		 * return (when the last loan is dropped, then the page can be
1138 		 * freed by whatever was holding the last loan).
1139 		 */
1140 
1141 		if (saved_loan_count)
1142 			return;
1143 	} else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1144 
1145 		/*
1146 		 * if our page is owned by an anon and is loaned out to the
1147 		 * kernel then we just want to drop ownership and return.
1148 		 * the kernel must free the page when all its loans clear ...
1149 		 * note that the kernel can't change the loan status of our
1150 		 * page as long as we are holding PQ lock.
1151 		 */
1152 
1153 		pg->pqflags &= ~PQ_ANON;
1154 		pg->uanon = NULL;
1155 		return;
1156 	}
1157 	KASSERT(saved_loan_count == 0);
1158 
1159 	/*
1160 	 * now remove the page from the queues
1161 	 */
1162 
1163 	if (pg->pqflags & PQ_ACTIVE) {
1164 		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1165 		pg->pqflags &= ~PQ_ACTIVE;
1166 		uvmexp.active--;
1167 	}
1168 	if (pg->pqflags & PQ_INACTIVE) {
1169 		if (pg->pqflags & PQ_SWAPBACKED)
1170 			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1171 		else
1172 			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1173 		pg->pqflags &= ~PQ_INACTIVE;
1174 		uvmexp.inactive--;
1175 	}
1176 
1177 	/*
1178 	 * if the page was wired, unwire it now.
1179 	 */
1180 
1181 	if (pg->wire_count) {
1182 		pg->wire_count = 0;
1183 		uvmexp.wired--;
1184 	}
1185 #ifdef UBC
1186 	if (pg->uanon) {
1187 		uvm_pgcnt_anon--;
1188 	}
1189 #endif
1190 
1191 	/*
1192 	 * and put on free queue
1193 	 */
1194 
1195 	pg->flags &= ~PG_ZERO;
1196 
1197 	s = uvm_lock_fpageq();
1198 	TAILQ_INSERT_TAIL(&uvm.page_free[
1199 	    uvm_page_lookup_freelist(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1200 	pg->pqflags = PQ_FREE;
1201 #ifdef DEBUG
1202 	pg->uobject = (void *)0xdeadbeef;
1203 	pg->offset = 0xdeadbeef;
1204 	pg->uanon = (void *)0xdeadbeef;
1205 #endif
1206 	uvmexp.free++;
1207 
1208 	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1209 		uvm.page_idle_zero = vm_page_zero_enable;
1210 
1211 	uvm_unlock_fpageq(s);
1212 }
1213 
1214 /*
1215  * uvm_page_unbusy: unbusy an array of pages.
1216  *
1217  * => pages must either all belong to the same object, or all belong to anons.
1218  * => if pages are object-owned, object must be locked.
1219  * => if pages are anon-owned, anons must be unlockd and have 0 refcount.
1220  */
1221 
1222 void
1223 uvm_page_unbusy(pgs, npgs)
1224 	struct vm_page **pgs;
1225 	int npgs;
1226 {
1227 	struct vm_page *pg;
1228 	struct uvm_object *uobj;
1229 	int i;
1230 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(pdhist);
1231 
1232 	for (i = 0; i < npgs; i++) {
1233 		pg = pgs[i];
1234 
1235 		if (pg == NULL || pg == PGO_DONTCARE) {
1236 			continue;
1237 		}
1238 		if (pg->flags & PG_WANTED) {
1239 			wakeup(pg);
1240 		}
1241 		if (pg->flags & PG_RELEASED) {
1242 			UVMHIST_LOG(pdhist, "releasing pg %p", pg,0,0,0);
1243 			uobj = pg->uobject;
1244 			if (uobj != NULL) {
1245 				uobj->pgops->pgo_releasepg(pg, NULL);
1246 			} else {
1247 				pg->flags &= ~(PG_BUSY);
1248 				UVM_PAGE_OWN(pg, NULL);
1249 				uvm_anfree(pg->uanon);
1250 			}
1251 		} else {
1252 			UVMHIST_LOG(pdhist, "unbusying pg %p", pg,0,0,0);
1253 			pg->flags &= ~(PG_WANTED|PG_BUSY);
1254 			UVM_PAGE_OWN(pg, NULL);
1255 		}
1256 	}
1257 }
1258 
1259 #if defined(UVM_PAGE_TRKOWN)
1260 /*
1261  * uvm_page_own: set or release page ownership
1262  *
1263  * => this is a debugging function that keeps track of who sets PG_BUSY
1264  *	and where they do it.   it can be used to track down problems
1265  *	such a process setting "PG_BUSY" and never releasing it.
1266  * => page's object [if any] must be locked
1267  * => if "tag" is NULL then we are releasing page ownership
1268  */
1269 void
1270 uvm_page_own(pg, tag)
1271 	struct vm_page *pg;
1272 	char *tag;
1273 {
1274 	/* gain ownership? */
1275 	if (tag) {
1276 		if (pg->owner_tag) {
1277 			printf("uvm_page_own: page %p already owned "
1278 			    "by proc %d [%s]\n", pg,
1279 			     pg->owner, pg->owner_tag);
1280 			panic("uvm_page_own");
1281 		}
1282 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
1283 		pg->owner_tag = tag;
1284 		return;
1285 	}
1286 
1287 	/* drop ownership */
1288 	if (pg->owner_tag == NULL) {
1289 		printf("uvm_page_own: dropping ownership of an non-owned "
1290 		    "page (%p)\n", pg);
1291 		panic("uvm_page_own");
1292 	}
1293 	pg->owner_tag = NULL;
1294 	return;
1295 }
1296 #endif
1297 
1298 /*
1299  * uvm_pageidlezero: zero free pages while the system is idle.
1300  *
1301  * => we do at least one iteration per call, if we are below the target.
1302  * => we loop until we either reach the target or whichqs indicates that
1303  *	there is a process ready to run.
1304  */
1305 void
1306 uvm_pageidlezero()
1307 {
1308 	struct vm_page *pg;
1309 	struct pgfreelist *pgfl;
1310 	int free_list, s;
1311 
1312 	do {
1313 		s = uvm_lock_fpageq();
1314 
1315 		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1316 			uvm.page_idle_zero = FALSE;
1317 			uvm_unlock_fpageq(s);
1318 			return;
1319 		}
1320 
1321 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1322 			pgfl = &uvm.page_free[free_list];
1323 			if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
1324 			    PGFL_UNKNOWN])) != NULL)
1325 				break;
1326 		}
1327 
1328 		if (pg == NULL) {
1329 			/*
1330 			 * No non-zero'd pages; don't bother trying again
1331 			 * until we know we have non-zero'd pages free.
1332 			 */
1333 			uvm.page_idle_zero = FALSE;
1334 			uvm_unlock_fpageq(s);
1335 			return;
1336 		}
1337 
1338 		TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1339 		uvmexp.free--;
1340 		uvm_unlock_fpageq(s);
1341 
1342 #ifdef PMAP_PAGEIDLEZERO
1343 		if (PMAP_PAGEIDLEZERO(pg) == FALSE) {
1344 			/*
1345 			 * The machine-dependent code detected some
1346 			 * reason for us to abort zeroing pages,
1347 			 * probably because there is a process now
1348 			 * ready to run.
1349 			 */
1350 			s = uvm_lock_fpageq();
1351 			TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_UNKNOWN],
1352 			    pg, pageq);
1353 			uvmexp.free++;
1354 			uvmexp.zeroaborts++;
1355 			uvm_unlock_fpageq(s);
1356 			return;
1357 		}
1358 #else
1359 		/*
1360 		 * XXX This will toast the cache unless the pmap_zero_page()
1361 		 * XXX implementation does uncached access.
1362 		 */
1363 		pmap_zero_page(pg);
1364 #endif
1365 		pg->flags |= PG_ZERO;
1366 
1367 		s = uvm_lock_fpageq();
1368 		TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
1369 		uvmexp.free++;
1370 		uvmexp.zeropages++;
1371 		uvm_unlock_fpageq(s);
1372 	} while (whichqs == 0);
1373 }
1374