xref: /openbsd-src/sys/uvm/uvm_map.c (revision d1df930ffab53da22f3324c32bed7ac5709915e6)
1 /*	$OpenBSD: uvm_map.c,v 1.238 2018/07/22 14:33:44 kettenis Exp $	*/
2 /*	$NetBSD: uvm_map.c,v 1.86 2000/11/27 08:40:03 chs Exp $	*/
3 
4 /*
5  * Copyright (c) 2011 Ariane van der Steldt <ariane@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  *
20  * Copyright (c) 1997 Charles D. Cranor and Washington University.
21  * Copyright (c) 1991, 1993, The Regents of the University of California.
22  *
23  * All rights reserved.
24  *
25  * This code is derived from software contributed to Berkeley by
26  * The Mach Operating System project at Carnegie-Mellon University.
27  *
28  * Redistribution and use in source and binary forms, with or without
29  * modification, are permitted provided that the following conditions
30  * are met:
31  * 1. Redistributions of source code must retain the above copyright
32  *    notice, this list of conditions and the following disclaimer.
33  * 2. Redistributions in binary form must reproduce the above copyright
34  *    notice, this list of conditions and the following disclaimer in the
35  *    documentation and/or other materials provided with the distribution.
36  * 3. Neither the name of the University nor the names of its contributors
37  *    may be used to endorse or promote products derived from this software
38  *    without specific prior written permission.
39  *
40  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  *	@(#)vm_map.c    8.3 (Berkeley) 1/12/94
53  * from: Id: uvm_map.c,v 1.1.2.27 1998/02/07 01:16:54 chs Exp
54  *
55  *
56  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
57  * All rights reserved.
58  *
59  * Permission to use, copy, modify and distribute this software and
60  * its documentation is hereby granted, provided that both the copyright
61  * notice and this permission notice appear in all copies of the
62  * software, derivative works or modified versions, and any portions
63  * thereof, and that both notices appear in supporting documentation.
64  *
65  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
66  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
67  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
68  *
69  * Carnegie Mellon requests users of this software to return to
70  *
71  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
72  *  School of Computer Science
73  *  Carnegie Mellon University
74  *  Pittsburgh PA 15213-3890
75  *
76  * any improvements or extensions that they make and grant Carnegie the
77  * rights to redistribute these changes.
78  */
79 
80 /*
81  * uvm_map.c: uvm map operations
82  */
83 
84 /* #define DEBUG */
85 /* #define VMMAP_DEBUG */
86 
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/mman.h>
90 #include <sys/proc.h>
91 #include <sys/malloc.h>
92 #include <sys/pool.h>
93 #include <sys/sysctl.h>
94 #include <sys/syslog.h>
95 
96 #ifdef SYSVSHM
97 #include <sys/shm.h>
98 #endif
99 
100 #include <uvm/uvm.h>
101 
102 #ifdef DDB
103 #include <uvm/uvm_ddb.h>
104 #endif
105 
106 #include <uvm/uvm_addr.h>
107 
108 
109 vsize_t			 uvmspace_dused(struct vm_map*, vaddr_t, vaddr_t);
110 int			 uvm_mapent_isjoinable(struct vm_map*,
111 			    struct vm_map_entry*, struct vm_map_entry*);
112 struct vm_map_entry	*uvm_mapent_merge(struct vm_map*, struct vm_map_entry*,
113 			    struct vm_map_entry*, struct uvm_map_deadq*);
114 struct vm_map_entry	*uvm_mapent_tryjoin(struct vm_map*,
115 			    struct vm_map_entry*, struct uvm_map_deadq*);
116 struct vm_map_entry	*uvm_map_mkentry(struct vm_map*, struct vm_map_entry*,
117 			    struct vm_map_entry*, vaddr_t, vsize_t, int,
118 			    struct uvm_map_deadq*, struct vm_map_entry*);
119 struct vm_map_entry	*uvm_mapent_alloc(struct vm_map*, int);
120 void			 uvm_mapent_free(struct vm_map_entry*);
121 void			 uvm_unmap_kill_entry(struct vm_map*,
122 			    struct vm_map_entry*);
123 void			 uvm_unmap_detach_intrsafe(struct uvm_map_deadq *);
124 void			 uvm_mapent_mkfree(struct vm_map*,
125 			    struct vm_map_entry*, struct vm_map_entry**,
126 			    struct uvm_map_deadq*, boolean_t);
127 void			 uvm_map_pageable_pgon(struct vm_map*,
128 			    struct vm_map_entry*, struct vm_map_entry*,
129 			    vaddr_t, vaddr_t);
130 int			 uvm_map_pageable_wire(struct vm_map*,
131 			    struct vm_map_entry*, struct vm_map_entry*,
132 			    vaddr_t, vaddr_t, int);
133 void			 uvm_map_setup_entries(struct vm_map*);
134 void			 uvm_map_setup_md(struct vm_map*);
135 void			 uvm_map_teardown(struct vm_map*);
136 void			 uvm_map_vmspace_update(struct vm_map*,
137 			    struct uvm_map_deadq*, int);
138 void			 uvm_map_kmem_grow(struct vm_map*,
139 			    struct uvm_map_deadq*, vsize_t, int);
140 void			 uvm_map_freelist_update_clear(struct vm_map*,
141 			    struct uvm_map_deadq*);
142 void			 uvm_map_freelist_update_refill(struct vm_map *, int);
143 void			 uvm_map_freelist_update(struct vm_map*,
144 			    struct uvm_map_deadq*, vaddr_t, vaddr_t,
145 			    vaddr_t, vaddr_t, int);
146 struct vm_map_entry	*uvm_map_fix_space(struct vm_map*, struct vm_map_entry*,
147 			    vaddr_t, vaddr_t, int);
148 int			 uvm_map_sel_limits(vaddr_t*, vaddr_t*, vsize_t, int,
149 			    struct vm_map_entry*, vaddr_t, vaddr_t, vaddr_t,
150 			    int);
151 int			 uvm_map_findspace(struct vm_map*,
152 			    struct vm_map_entry**, struct vm_map_entry**,
153 			    vaddr_t*, vsize_t, vaddr_t, vaddr_t, vm_prot_t,
154 			    vaddr_t);
155 vsize_t			 uvm_map_addr_augment_get(struct vm_map_entry*);
156 void			 uvm_map_addr_augment(struct vm_map_entry*);
157 
158 /*
159  * Tree management functions.
160  */
161 
162 static __inline void	 uvm_mapent_copy(struct vm_map_entry*,
163 			    struct vm_map_entry*);
164 static inline int	 uvm_mapentry_addrcmp(const struct vm_map_entry*,
165 			    const struct vm_map_entry*);
166 void			 uvm_mapent_free_insert(struct vm_map*,
167 			    struct uvm_addr_state*, struct vm_map_entry*);
168 void			 uvm_mapent_free_remove(struct vm_map*,
169 			    struct uvm_addr_state*, struct vm_map_entry*);
170 void			 uvm_mapent_addr_insert(struct vm_map*,
171 			    struct vm_map_entry*);
172 void			 uvm_mapent_addr_remove(struct vm_map*,
173 			    struct vm_map_entry*);
174 void			 uvm_map_splitentry(struct vm_map*,
175 			    struct vm_map_entry*, struct vm_map_entry*,
176 			    vaddr_t);
177 vsize_t			 uvm_map_boundary(struct vm_map*, vaddr_t, vaddr_t);
178 int			 uvm_mapent_bias(struct vm_map*, struct vm_map_entry*);
179 
180 /*
181  * uvm_vmspace_fork helper functions.
182  */
183 struct vm_map_entry	*uvm_mapent_clone(struct vm_map*, vaddr_t, vsize_t,
184 			    vsize_t, vm_prot_t, vm_prot_t,
185 			    struct vm_map_entry*, struct uvm_map_deadq*, int,
186 			    int);
187 struct vm_map_entry	*uvm_mapent_share(struct vm_map*, vaddr_t, vsize_t,
188 			    vsize_t, vm_prot_t, vm_prot_t, struct vm_map*,
189 			    struct vm_map_entry*, struct uvm_map_deadq*);
190 struct vm_map_entry	*uvm_mapent_forkshared(struct vmspace*, struct vm_map*,
191 			    struct vm_map*, struct vm_map_entry*,
192 			    struct uvm_map_deadq*);
193 struct vm_map_entry	*uvm_mapent_forkcopy(struct vmspace*, struct vm_map*,
194 			    struct vm_map*, struct vm_map_entry*,
195 			    struct uvm_map_deadq*);
196 struct vm_map_entry	*uvm_mapent_forkzero(struct vmspace*, struct vm_map*,
197 			    struct vm_map*, struct vm_map_entry*,
198 			    struct uvm_map_deadq*);
199 
200 /*
201  * Tree validation.
202  */
203 #ifdef VMMAP_DEBUG
204 void			 uvm_tree_assert(struct vm_map*, int, char*,
205 			    char*, int);
206 #define UVM_ASSERT(map, cond, file, line)				\
207 	uvm_tree_assert((map), (cond), #cond, (file), (line))
208 void			 uvm_tree_sanity(struct vm_map*, char*, int);
209 void			 uvm_tree_size_chk(struct vm_map*, char*, int);
210 void			 vmspace_validate(struct vm_map*);
211 #else
212 #define uvm_tree_sanity(_map, _file, _line)		do {} while (0)
213 #define uvm_tree_size_chk(_map, _file, _line)		do {} while (0)
214 #define vmspace_validate(_map)				do {} while (0)
215 #endif
216 
217 /*
218  * All architectures will have pmap_prefer.
219  */
220 #ifndef PMAP_PREFER
221 #define PMAP_PREFER_ALIGN()	(vaddr_t)PAGE_SIZE
222 #define PMAP_PREFER_OFFSET(off)	0
223 #define PMAP_PREFER(addr, off)	(addr)
224 #endif
225 
226 
227 /*
228  * The kernel map will initially be VM_MAP_KSIZE_INIT bytes.
229  * Every time that gets cramped, we grow by at least VM_MAP_KSIZE_DELTA bytes.
230  *
231  * We attempt to grow by UVM_MAP_KSIZE_ALLOCMUL times the allocation size
232  * each time.
233  */
234 #define VM_MAP_KSIZE_INIT	(512 * (vaddr_t)PAGE_SIZE)
235 #define VM_MAP_KSIZE_DELTA	(256 * (vaddr_t)PAGE_SIZE)
236 #define VM_MAP_KSIZE_ALLOCMUL	4
237 /*
238  * When selecting a random free-space block, look at most FSPACE_DELTA blocks
239  * ahead.
240  */
241 #define FSPACE_DELTA		8
242 /*
243  * Put allocations adjecent to previous allocations when the free-space tree
244  * is larger than FSPACE_COMPACT entries.
245  *
246  * Alignment and PMAP_PREFER may still cause the entry to not be fully
247  * adjecent. Note that this strategy reduces memory fragmentation (by leaving
248  * a large space before or after the allocation).
249  */
250 #define FSPACE_COMPACT		128
251 /*
252  * Make the address selection skip at most this many bytes from the start of
253  * the free space in which the allocation takes place.
254  *
255  * The main idea behind a randomized address space is that an attacker cannot
256  * know where to target his attack. Therefore, the location of objects must be
257  * as random as possible. However, the goal is not to create the most sparse
258  * map that is possible.
259  * FSPACE_MAXOFF pushes the considered range in bytes down to less insane
260  * sizes, thereby reducing the sparseness. The biggest randomization comes
261  * from fragmentation, i.e. FSPACE_COMPACT.
262  */
263 #define FSPACE_MAXOFF		((vaddr_t)32 * 1024 * 1024)
264 /*
265  * Allow for small gaps in the overflow areas.
266  * Gap size is in bytes and does not have to be a multiple of page-size.
267  */
268 #define FSPACE_BIASGAP		((vaddr_t)32 * 1024)
269 
270 /* auto-allocate address lower bound */
271 #define VMMAP_MIN_ADDR		PAGE_SIZE
272 
273 
274 #ifdef DEADBEEF0
275 #define UVMMAP_DEADBEEF		((unsigned long)DEADBEEF0)
276 #else
277 #define UVMMAP_DEADBEEF		((unsigned long)0xdeadd0d0)
278 #endif
279 
280 #ifdef DEBUG
281 int uvm_map_printlocks = 0;
282 
283 #define LPRINTF(_args)							\
284 	do {								\
285 		if (uvm_map_printlocks)					\
286 			printf _args;					\
287 	} while (0)
288 #else
289 #define LPRINTF(_args)	do {} while (0)
290 #endif
291 
292 static struct mutex uvm_kmapent_mtx;
293 static struct timeval uvm_kmapent_last_warn_time;
294 static struct timeval uvm_kmapent_warn_rate = { 10, 0 };
295 
296 const char vmmapbsy[] = "vmmapbsy";
297 
298 /*
299  * pool for vmspace structures.
300  */
301 struct pool uvm_vmspace_pool;
302 
303 /*
304  * pool for dynamically-allocated map entries.
305  */
306 struct pool uvm_map_entry_pool;
307 struct pool uvm_map_entry_kmem_pool;
308 
309 /*
310  * This global represents the end of the kernel virtual address
311  * space. If we want to exceed this, we must grow the kernel
312  * virtual address space dynamically.
313  *
314  * Note, this variable is locked by kernel_map's lock.
315  */
316 vaddr_t uvm_maxkaddr;
317 
318 /*
319  * Locking predicate.
320  */
321 #define UVM_MAP_REQ_WRITE(_map)						\
322 	do {								\
323 		if ((_map)->ref_count > 0) {				\
324 			if (((_map)->flags & VM_MAP_INTRSAFE) == 0)	\
325 				rw_assert_wrlock(&(_map)->lock);	\
326 			else						\
327 				MUTEX_ASSERT_LOCKED(&(_map)->mtx);	\
328 		}							\
329 	} while (0)
330 
331 /*
332  * Tree describing entries by address.
333  *
334  * Addresses are unique.
335  * Entries with start == end may only exist if they are the first entry
336  * (sorted by address) within a free-memory tree.
337  */
338 
339 static inline int
340 uvm_mapentry_addrcmp(const struct vm_map_entry *e1,
341     const struct vm_map_entry *e2)
342 {
343 	return e1->start < e2->start ? -1 : e1->start > e2->start;
344 }
345 
346 /*
347  * Copy mapentry.
348  */
349 static __inline void
350 uvm_mapent_copy(struct vm_map_entry *src, struct vm_map_entry *dst)
351 {
352 	caddr_t csrc, cdst;
353 	size_t sz;
354 
355 	csrc = (caddr_t)src;
356 	cdst = (caddr_t)dst;
357 	csrc += offsetof(struct vm_map_entry, uvm_map_entry_start_copy);
358 	cdst += offsetof(struct vm_map_entry, uvm_map_entry_start_copy);
359 
360 	sz = offsetof(struct vm_map_entry, uvm_map_entry_stop_copy) -
361 	    offsetof(struct vm_map_entry, uvm_map_entry_start_copy);
362 	memcpy(cdst, csrc, sz);
363 }
364 
365 /*
366  * Handle free-list insertion.
367  */
368 void
369 uvm_mapent_free_insert(struct vm_map *map, struct uvm_addr_state *uaddr,
370     struct vm_map_entry *entry)
371 {
372 	const struct uvm_addr_functions *fun;
373 #ifdef VMMAP_DEBUG
374 	vaddr_t min, max, bound;
375 #endif
376 
377 #ifdef VMMAP_DEBUG
378 	/*
379 	 * Boundary check.
380 	 * Boundaries are folded if they go on the same free list.
381 	 */
382 	min = VMMAP_FREE_START(entry);
383 	max = VMMAP_FREE_END(entry);
384 
385 	while (min < max) {
386 		bound = uvm_map_boundary(map, min, max);
387 		KASSERT(uvm_map_uaddr(map, min) == uaddr);
388 		min = bound;
389 	}
390 #endif
391 	KDASSERT((entry->fspace & (vaddr_t)PAGE_MASK) == 0);
392 	KASSERT((entry->etype & UVM_ET_FREEMAPPED) == 0);
393 
394 	UVM_MAP_REQ_WRITE(map);
395 
396 	/* Actual insert: forward to uaddr pointer. */
397 	if (uaddr != NULL) {
398 		fun = uaddr->uaddr_functions;
399 		KDASSERT(fun != NULL);
400 		if (fun->uaddr_free_insert != NULL)
401 			(*fun->uaddr_free_insert)(map, uaddr, entry);
402 		entry->etype |= UVM_ET_FREEMAPPED;
403 	}
404 
405 	/* Update fspace augmentation. */
406 	uvm_map_addr_augment(entry);
407 }
408 
409 /*
410  * Handle free-list removal.
411  */
412 void
413 uvm_mapent_free_remove(struct vm_map *map, struct uvm_addr_state *uaddr,
414     struct vm_map_entry *entry)
415 {
416 	const struct uvm_addr_functions *fun;
417 
418 	KASSERT((entry->etype & UVM_ET_FREEMAPPED) != 0 || uaddr == NULL);
419 	KASSERT(uvm_map_uaddr_e(map, entry) == uaddr);
420 	UVM_MAP_REQ_WRITE(map);
421 
422 	if (uaddr != NULL) {
423 		fun = uaddr->uaddr_functions;
424 		if (fun->uaddr_free_remove != NULL)
425 			(*fun->uaddr_free_remove)(map, uaddr, entry);
426 		entry->etype &= ~UVM_ET_FREEMAPPED;
427 	}
428 }
429 
430 /*
431  * Handle address tree insertion.
432  */
433 void
434 uvm_mapent_addr_insert(struct vm_map *map, struct vm_map_entry *entry)
435 {
436 	struct vm_map_entry *res;
437 
438 	if (!RBT_CHECK(uvm_map_addr, entry, UVMMAP_DEADBEEF))
439 		panic("uvm_mapent_addr_insert: entry still in addr list");
440 	KDASSERT(entry->start <= entry->end);
441 	KDASSERT((entry->start & (vaddr_t)PAGE_MASK) == 0 &&
442 	    (entry->end & (vaddr_t)PAGE_MASK) == 0);
443 
444 	UVM_MAP_REQ_WRITE(map);
445 	res = RBT_INSERT(uvm_map_addr, &map->addr, entry);
446 	if (res != NULL) {
447 		panic("uvm_mapent_addr_insert: map %p entry %p "
448 		    "(0x%lx-0x%lx G=0x%lx F=0x%lx) insert collision "
449 		    "with entry %p (0x%lx-0x%lx G=0x%lx F=0x%lx)",
450 		    map, entry,
451 		    entry->start, entry->end, entry->guard, entry->fspace,
452 		    res, res->start, res->end, res->guard, res->fspace);
453 	}
454 }
455 
456 /*
457  * Handle address tree removal.
458  */
459 void
460 uvm_mapent_addr_remove(struct vm_map *map, struct vm_map_entry *entry)
461 {
462 	struct vm_map_entry *res;
463 
464 	UVM_MAP_REQ_WRITE(map);
465 	res = RBT_REMOVE(uvm_map_addr, &map->addr, entry);
466 	if (res != entry)
467 		panic("uvm_mapent_addr_remove");
468 	RBT_POISON(uvm_map_addr, entry, UVMMAP_DEADBEEF);
469 }
470 
471 /*
472  * uvm_map_reference: add reference to a map
473  *
474  * XXX check map reference counter lock
475  */
476 #define uvm_map_reference(_map)						\
477 	do {								\
478 		map->ref_count++;					\
479 	} while (0)
480 
481 /*
482  * Calculate the dused delta.
483  */
484 vsize_t
485 uvmspace_dused(struct vm_map *map, vaddr_t min, vaddr_t max)
486 {
487 	struct vmspace *vm;
488 	vsize_t sz;
489 	vaddr_t lmax;
490 	vaddr_t stack_begin, stack_end; /* Position of stack. */
491 
492 	KASSERT(map->flags & VM_MAP_ISVMSPACE);
493 	vm = (struct vmspace *)map;
494 	stack_begin = MIN((vaddr_t)vm->vm_maxsaddr, (vaddr_t)vm->vm_minsaddr);
495 	stack_end = MAX((vaddr_t)vm->vm_maxsaddr, (vaddr_t)vm->vm_minsaddr);
496 
497 	sz = 0;
498 	while (min != max) {
499 		lmax = max;
500 		if (min < stack_begin && lmax > stack_begin)
501 			lmax = stack_begin;
502 		else if (min < stack_end && lmax > stack_end)
503 			lmax = stack_end;
504 
505 		if (min >= stack_begin && min < stack_end) {
506 			/* nothing */
507 		} else
508 			sz += lmax - min;
509 		min = lmax;
510 	}
511 
512 	return sz >> PAGE_SHIFT;
513 }
514 
515 /*
516  * Find the entry describing the given address.
517  */
518 struct vm_map_entry*
519 uvm_map_entrybyaddr(struct uvm_map_addr *atree, vaddr_t addr)
520 {
521 	struct vm_map_entry *iter;
522 
523 	iter = RBT_ROOT(uvm_map_addr, atree);
524 	while (iter != NULL) {
525 		if (iter->start > addr)
526 			iter = RBT_LEFT(uvm_map_addr, iter);
527 		else if (VMMAP_FREE_END(iter) <= addr)
528 			iter = RBT_RIGHT(uvm_map_addr, iter);
529 		else
530 			return iter;
531 	}
532 	return NULL;
533 }
534 
535 /*
536  * DEAD_ENTRY_PUSH(struct vm_map_deadq *deadq, struct vm_map_entry *entry)
537  *
538  * Push dead entries into a linked list.
539  * Since the linked list abuses the address tree for storage, the entry
540  * may not be linked in a map.
541  *
542  * *head must be initialized to NULL before the first call to this macro.
543  * uvm_unmap_detach(*head, 0) will remove dead entries.
544  */
545 static __inline void
546 dead_entry_push(struct uvm_map_deadq *deadq, struct vm_map_entry *entry)
547 {
548 	TAILQ_INSERT_TAIL(deadq, entry, dfree.deadq);
549 }
550 #define DEAD_ENTRY_PUSH(_headptr, _entry)				\
551 	dead_entry_push((_headptr), (_entry))
552 
553 /*
554  * Helper function for uvm_map_findspace_tree.
555  *
556  * Given allocation constraints and pmap constraints, finds the
557  * lowest and highest address in a range that can be used for the
558  * allocation.
559  *
560  * pmap_align and pmap_off are ignored on non-PMAP_PREFER archs.
561  *
562  *
563  * Big chunk of math with a seasoning of dragons.
564  */
565 int
566 uvm_map_sel_limits(vaddr_t *min, vaddr_t *max, vsize_t sz, int guardpg,
567     struct vm_map_entry *sel, vaddr_t align,
568     vaddr_t pmap_align, vaddr_t pmap_off, int bias)
569 {
570 	vaddr_t sel_min, sel_max;
571 #ifdef PMAP_PREFER
572 	vaddr_t pmap_min, pmap_max;
573 #endif /* PMAP_PREFER */
574 #ifdef DIAGNOSTIC
575 	int bad;
576 #endif /* DIAGNOSTIC */
577 
578 	sel_min = VMMAP_FREE_START(sel);
579 	sel_max = VMMAP_FREE_END(sel) - sz - (guardpg ? PAGE_SIZE : 0);
580 
581 #ifdef PMAP_PREFER
582 
583 	/*
584 	 * There are two special cases, in which we can satisfy the align
585 	 * requirement and the pmap_prefer requirement.
586 	 * - when pmap_off == 0, we always select the largest of the two
587 	 * - when pmap_off % align == 0 and pmap_align > align, we simply
588 	 *   satisfy the pmap_align requirement and automatically
589 	 *   satisfy the align requirement.
590 	 */
591 	if (align > PAGE_SIZE &&
592 	    !(pmap_align > align && (pmap_off & (align - 1)) == 0)) {
593 		/*
594 		 * Simple case: only use align.
595 		 */
596 		sel_min = roundup(sel_min, align);
597 		sel_max &= ~(align - 1);
598 
599 		if (sel_min > sel_max)
600 			return ENOMEM;
601 
602 		/* Correct for bias. */
603 		if (sel_max - sel_min > FSPACE_BIASGAP) {
604 			if (bias > 0) {
605 				sel_min = sel_max - FSPACE_BIASGAP;
606 				sel_min = roundup(sel_min, align);
607 			} else if (bias < 0) {
608 				sel_max = sel_min + FSPACE_BIASGAP;
609 				sel_max &= ~(align - 1);
610 			}
611 		}
612 	} else if (pmap_align != 0) {
613 		/*
614 		 * Special case: satisfy both pmap_prefer and
615 		 * align argument.
616 		 */
617 		pmap_max = sel_max & ~(pmap_align - 1);
618 		pmap_min = sel_min;
619 		if (pmap_max < sel_min)
620 			return ENOMEM;
621 
622 		/* Adjust pmap_min for BIASGAP for top-addr bias. */
623 		if (bias > 0 && pmap_max - pmap_min > FSPACE_BIASGAP)
624 			pmap_min = pmap_max - FSPACE_BIASGAP;
625 		/* Align pmap_min. */
626 		pmap_min &= ~(pmap_align - 1);
627 		if (pmap_min < sel_min)
628 			pmap_min += pmap_align;
629 		if (pmap_min > pmap_max)
630 			return ENOMEM;
631 
632 		/* Adjust pmap_max for BIASGAP for bottom-addr bias. */
633 		if (bias < 0 && pmap_max - pmap_min > FSPACE_BIASGAP) {
634 			pmap_max = (pmap_min + FSPACE_BIASGAP) &
635 			    ~(pmap_align - 1);
636 		}
637 		if (pmap_min > pmap_max)
638 			return ENOMEM;
639 
640 		/* Apply pmap prefer offset. */
641 		pmap_max |= pmap_off;
642 		if (pmap_max > sel_max)
643 			pmap_max -= pmap_align;
644 		pmap_min |= pmap_off;
645 		if (pmap_min < sel_min)
646 			pmap_min += pmap_align;
647 
648 		/*
649 		 * Fixup: it's possible that pmap_min and pmap_max
650 		 * cross eachother. In this case, try to find one
651 		 * address that is allowed.
652 		 * (This usually happens in biased case.)
653 		 */
654 		if (pmap_min > pmap_max) {
655 			if (pmap_min < sel_max)
656 				pmap_max = pmap_min;
657 			else if (pmap_max > sel_min)
658 				pmap_min = pmap_max;
659 			else
660 				return ENOMEM;
661 		}
662 
663 		/* Internal validation. */
664 		KDASSERT(pmap_min <= pmap_max);
665 
666 		sel_min = pmap_min;
667 		sel_max = pmap_max;
668 	} else if (bias > 0 && sel_max - sel_min > FSPACE_BIASGAP)
669 		sel_min = sel_max - FSPACE_BIASGAP;
670 	else if (bias < 0 && sel_max - sel_min > FSPACE_BIASGAP)
671 		sel_max = sel_min + FSPACE_BIASGAP;
672 
673 #else
674 
675 	if (align > PAGE_SIZE) {
676 		sel_min = roundup(sel_min, align);
677 		sel_max &= ~(align - 1);
678 		if (sel_min > sel_max)
679 			return ENOMEM;
680 
681 		if (bias != 0 && sel_max - sel_min > FSPACE_BIASGAP) {
682 			if (bias > 0) {
683 				sel_min = roundup(sel_max - FSPACE_BIASGAP,
684 				    align);
685 			} else {
686 				sel_max = (sel_min + FSPACE_BIASGAP) &
687 				    ~(align - 1);
688 			}
689 		}
690 	} else if (bias > 0 && sel_max - sel_min > FSPACE_BIASGAP)
691 		sel_min = sel_max - FSPACE_BIASGAP;
692 	else if (bias < 0 && sel_max - sel_min > FSPACE_BIASGAP)
693 		sel_max = sel_min + FSPACE_BIASGAP;
694 
695 #endif
696 
697 	if (sel_min > sel_max)
698 		return ENOMEM;
699 
700 #ifdef DIAGNOSTIC
701 	bad = 0;
702 	/* Lower boundary check. */
703 	if (sel_min < VMMAP_FREE_START(sel)) {
704 		printf("sel_min: 0x%lx, but should be at least 0x%lx\n",
705 		    sel_min, VMMAP_FREE_START(sel));
706 		bad++;
707 	}
708 	/* Upper boundary check. */
709 	if (sel_max > VMMAP_FREE_END(sel) - sz - (guardpg ? PAGE_SIZE : 0)) {
710 		printf("sel_max: 0x%lx, but should be at most 0x%lx\n",
711 		    sel_max,
712 		    VMMAP_FREE_END(sel) - sz - (guardpg ? PAGE_SIZE : 0));
713 		bad++;
714 	}
715 	/* Lower boundary alignment. */
716 	if (align != 0 && (sel_min & (align - 1)) != 0) {
717 		printf("sel_min: 0x%lx, not aligned to 0x%lx\n",
718 		    sel_min, align);
719 		bad++;
720 	}
721 	/* Upper boundary alignment. */
722 	if (align != 0 && (sel_max & (align - 1)) != 0) {
723 		printf("sel_max: 0x%lx, not aligned to 0x%lx\n",
724 		    sel_max, align);
725 		bad++;
726 	}
727 	/* Lower boundary PMAP_PREFER check. */
728 	if (pmap_align != 0 && align == 0 &&
729 	    (sel_min & (pmap_align - 1)) != pmap_off) {
730 		printf("sel_min: 0x%lx, aligned to 0x%lx, expected 0x%lx\n",
731 		    sel_min, sel_min & (pmap_align - 1), pmap_off);
732 		bad++;
733 	}
734 	/* Upper boundary PMAP_PREFER check. */
735 	if (pmap_align != 0 && align == 0 &&
736 	    (sel_max & (pmap_align - 1)) != pmap_off) {
737 		printf("sel_max: 0x%lx, aligned to 0x%lx, expected 0x%lx\n",
738 		    sel_max, sel_max & (pmap_align - 1), pmap_off);
739 		bad++;
740 	}
741 
742 	if (bad) {
743 		panic("uvm_map_sel_limits(sz = %lu, guardpg = %c, "
744 		    "align = 0x%lx, pmap_align = 0x%lx, pmap_off = 0x%lx, "
745 		    "bias = %d, "
746 		    "FREE_START(sel) = 0x%lx, FREE_END(sel) = 0x%lx)",
747 		    sz, (guardpg ? 'T' : 'F'), align, pmap_align, pmap_off,
748 		    bias, VMMAP_FREE_START(sel), VMMAP_FREE_END(sel));
749 	}
750 #endif /* DIAGNOSTIC */
751 
752 	*min = sel_min;
753 	*max = sel_max;
754 	return 0;
755 }
756 
757 /*
758  * Test if memory starting at addr with sz bytes is free.
759  *
760  * Fills in *start_ptr and *end_ptr to be the first and last entry describing
761  * the space.
762  * If called with prefilled *start_ptr and *end_ptr, they are to be correct.
763  */
764 int
765 uvm_map_isavail(struct vm_map *map, struct uvm_addr_state *uaddr,
766     struct vm_map_entry **start_ptr, struct vm_map_entry **end_ptr,
767     vaddr_t addr, vsize_t sz)
768 {
769 	struct uvm_addr_state *free;
770 	struct uvm_map_addr *atree;
771 	struct vm_map_entry *i, *i_end;
772 
773 	if (addr + sz < addr)
774 		return 0;
775 
776 	/*
777 	 * Kernel memory above uvm_maxkaddr is considered unavailable.
778 	 */
779 	if ((map->flags & VM_MAP_ISVMSPACE) == 0) {
780 		if (addr + sz > uvm_maxkaddr)
781 			return 0;
782 	}
783 
784 	atree = &map->addr;
785 
786 	/*
787 	 * Fill in first, last, so they point at the entries containing the
788 	 * first and last address of the range.
789 	 * Note that if they are not NULL, we don't perform the lookup.
790 	 */
791 	KDASSERT(atree != NULL && start_ptr != NULL && end_ptr != NULL);
792 	if (*start_ptr == NULL) {
793 		*start_ptr = uvm_map_entrybyaddr(atree, addr);
794 		if (*start_ptr == NULL)
795 			return 0;
796 	} else
797 		KASSERT(*start_ptr == uvm_map_entrybyaddr(atree, addr));
798 	if (*end_ptr == NULL) {
799 		if (VMMAP_FREE_END(*start_ptr) >= addr + sz)
800 			*end_ptr = *start_ptr;
801 		else {
802 			*end_ptr = uvm_map_entrybyaddr(atree, addr + sz - 1);
803 			if (*end_ptr == NULL)
804 				return 0;
805 		}
806 	} else
807 		KASSERT(*end_ptr == uvm_map_entrybyaddr(atree, addr + sz - 1));
808 
809 	/* Validation. */
810 	KDASSERT(*start_ptr != NULL && *end_ptr != NULL);
811 	KDASSERT((*start_ptr)->start <= addr &&
812 	    VMMAP_FREE_END(*start_ptr) > addr &&
813 	    (*end_ptr)->start < addr + sz &&
814 	    VMMAP_FREE_END(*end_ptr) >= addr + sz);
815 
816 	/*
817 	 * Check the none of the entries intersects with <addr, addr+sz>.
818 	 * Also, if the entry belong to uaddr_exe or uaddr_brk_stack, it is
819 	 * considered unavailable unless called by those allocators.
820 	 */
821 	i = *start_ptr;
822 	i_end = RBT_NEXT(uvm_map_addr, *end_ptr);
823 	for (; i != i_end;
824 	    i = RBT_NEXT(uvm_map_addr, i)) {
825 		if (i->start != i->end && i->end > addr)
826 			return 0;
827 
828 		/*
829 		 * uaddr_exe and uaddr_brk_stack may only be used
830 		 * by these allocators and the NULL uaddr (i.e. no
831 		 * uaddr).
832 		 * Reject if this requirement is not met.
833 		 */
834 		if (uaddr != NULL) {
835 			free = uvm_map_uaddr_e(map, i);
836 
837 			if (uaddr != free && free != NULL &&
838 			    (free == map->uaddr_exe ||
839 			     free == map->uaddr_brk_stack))
840 				return 0;
841 		}
842 	}
843 
844 	return -1;
845 }
846 
847 /*
848  * Invoke each address selector until an address is found.
849  * Will not invoke uaddr_exe.
850  */
851 int
852 uvm_map_findspace(struct vm_map *map, struct vm_map_entry**first,
853     struct vm_map_entry**last, vaddr_t *addr, vsize_t sz,
854     vaddr_t pmap_align, vaddr_t pmap_offset, vm_prot_t prot, vaddr_t hint)
855 {
856 	struct uvm_addr_state *uaddr;
857 	int i;
858 
859 	/*
860 	 * Allocation for sz bytes at any address,
861 	 * using the addr selectors in order.
862 	 */
863 	for (i = 0; i < nitems(map->uaddr_any); i++) {
864 		uaddr = map->uaddr_any[i];
865 
866 		if (uvm_addr_invoke(map, uaddr, first, last,
867 		    addr, sz, pmap_align, pmap_offset, prot, hint) == 0)
868 			return 0;
869 	}
870 
871 	/* Fall back to brk() and stack() address selectors. */
872 	uaddr = map->uaddr_brk_stack;
873 	if (uvm_addr_invoke(map, uaddr, first, last,
874 	    addr, sz, pmap_align, pmap_offset, prot, hint) == 0)
875 		return 0;
876 
877 	return ENOMEM;
878 }
879 
880 /* Calculate entry augmentation value. */
881 vsize_t
882 uvm_map_addr_augment_get(struct vm_map_entry *entry)
883 {
884 	vsize_t			 augment;
885 	struct vm_map_entry	*left, *right;
886 
887 	augment = entry->fspace;
888 	if ((left = RBT_LEFT(uvm_map_addr, entry)) != NULL)
889 		augment = MAX(augment, left->fspace_augment);
890 	if ((right = RBT_RIGHT(uvm_map_addr, entry)) != NULL)
891 		augment = MAX(augment, right->fspace_augment);
892 	return augment;
893 }
894 
895 /*
896  * Update augmentation data in entry.
897  */
898 void
899 uvm_map_addr_augment(struct vm_map_entry *entry)
900 {
901 	vsize_t			 augment;
902 
903 	while (entry != NULL) {
904 		/* Calculate value for augmentation. */
905 		augment = uvm_map_addr_augment_get(entry);
906 
907 		/*
908 		 * Descend update.
909 		 * Once we find an entry that already has the correct value,
910 		 * stop, since it means all its parents will use the correct
911 		 * value too.
912 		 */
913 		if (entry->fspace_augment == augment)
914 			return;
915 		entry->fspace_augment = augment;
916 		entry = RBT_PARENT(uvm_map_addr, entry);
917 	}
918 }
919 
920 /*
921  * uvm_mapanon: establish a valid mapping in map for an anon
922  *
923  * => *addr and sz must be a multiple of PAGE_SIZE.
924  * => *addr is ignored, except if flags contains UVM_FLAG_FIXED.
925  * => map must be unlocked.
926  *
927  * => align: align vaddr, must be a power-of-2.
928  *    Align is only a hint and will be ignored if the alignment fails.
929  */
930 int
931 uvm_mapanon(struct vm_map *map, vaddr_t *addr, vsize_t sz,
932     vsize_t align, unsigned int flags)
933 {
934 	struct vm_map_entry	*first, *last, *entry, *new;
935 	struct uvm_map_deadq	 dead;
936 	vm_prot_t		 prot;
937 	vm_prot_t		 maxprot;
938 	vm_inherit_t		 inherit;
939 	int			 advice;
940 	int			 error;
941 	vaddr_t			 pmap_align, pmap_offset;
942 	vaddr_t			 hint;
943 
944 	KASSERT((map->flags & VM_MAP_ISVMSPACE) == VM_MAP_ISVMSPACE);
945 	KASSERT(map != kernel_map);
946 	KASSERT((map->flags & UVM_FLAG_HOLE) == 0);
947 
948 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
949 	splassert(IPL_NONE);
950 
951 	/*
952 	 * We use pmap_align and pmap_offset as alignment and offset variables.
953 	 *
954 	 * Because the align parameter takes precedence over pmap prefer,
955 	 * the pmap_align will need to be set to align, with pmap_offset = 0,
956 	 * if pmap_prefer will not align.
957 	 */
958 	pmap_align = MAX(align, PAGE_SIZE);
959 	pmap_offset = 0;
960 
961 	/* Decode parameters. */
962 	prot = UVM_PROTECTION(flags);
963 	maxprot = UVM_MAXPROTECTION(flags);
964 	advice = UVM_ADVICE(flags);
965 	inherit = UVM_INHERIT(flags);
966 	error = 0;
967 	hint = trunc_page(*addr);
968 	TAILQ_INIT(&dead);
969 	KASSERT((sz & (vaddr_t)PAGE_MASK) == 0);
970 	KASSERT((align & (align - 1)) == 0);
971 
972 	/* Check protection. */
973 	if ((prot & maxprot) != prot)
974 		return EACCES;
975 
976 	/*
977 	 * Before grabbing the lock, allocate a map entry for later
978 	 * use to ensure we don't wait for memory while holding the
979 	 * vm_map_lock.
980 	 */
981 	new = uvm_mapent_alloc(map, flags);
982 	if (new == NULL)
983 		return(ENOMEM);
984 
985 	if (flags & UVM_FLAG_TRYLOCK) {
986 		if (vm_map_lock_try(map) == FALSE) {
987 			error = EFAULT;
988 			goto out;
989 		}
990 	} else
991 		vm_map_lock(map);
992 
993 	first = last = NULL;
994 	if (flags & UVM_FLAG_FIXED) {
995 		/*
996 		 * Fixed location.
997 		 *
998 		 * Note: we ignore align, pmap_prefer.
999 		 * Fill in first, last and *addr.
1000 		 */
1001 		KASSERT((*addr & PAGE_MASK) == 0);
1002 
1003 		/* Check that the space is available. */
1004 		if (flags & UVM_FLAG_UNMAP) {
1005 			if ((flags & UVM_FLAG_STACK) &&
1006 			    !uvm_map_is_stack_remappable(map, *addr, sz)) {
1007 				error = EINVAL;
1008 				goto unlock;
1009 			}
1010 			uvm_unmap_remove(map, *addr, *addr + sz, &dead, FALSE, TRUE);
1011 		}
1012 		if (!uvm_map_isavail(map, NULL, &first, &last, *addr, sz)) {
1013 			error = ENOMEM;
1014 			goto unlock;
1015 		}
1016 	} else if (*addr != 0 && (*addr & PAGE_MASK) == 0 &&
1017 	    (align == 0 || (*addr & (align - 1)) == 0) &&
1018 	    uvm_map_isavail(map, NULL, &first, &last, *addr, sz)) {
1019 		/*
1020 		 * Address used as hint.
1021 		 *
1022 		 * Note: we enforce the alignment restriction,
1023 		 * but ignore pmap_prefer.
1024 		 */
1025 	} else if ((prot & PROT_EXEC) != 0 && map->uaddr_exe != NULL) {
1026 		/* Run selection algorithm for executables. */
1027 		error = uvm_addr_invoke(map, map->uaddr_exe, &first, &last,
1028 		    addr, sz, pmap_align, pmap_offset, prot, hint);
1029 
1030 		if (error != 0)
1031 			goto unlock;
1032 	} else {
1033 		/* Update freelists from vmspace. */
1034 		uvm_map_vmspace_update(map, &dead, flags);
1035 
1036 		error = uvm_map_findspace(map, &first, &last, addr, sz,
1037 		    pmap_align, pmap_offset, prot, hint);
1038 
1039 		if (error != 0)
1040 			goto unlock;
1041 	}
1042 
1043 	/* Double-check if selected address doesn't cause overflow. */
1044 	if (*addr + sz < *addr) {
1045 		error = ENOMEM;
1046 		goto unlock;
1047 	}
1048 
1049 	/* If we only want a query, return now. */
1050 	if (flags & UVM_FLAG_QUERY) {
1051 		error = 0;
1052 		goto unlock;
1053 	}
1054 
1055 	/*
1056 	 * Create new entry.
1057 	 * first and last may be invalidated after this call.
1058 	 */
1059 	entry = uvm_map_mkentry(map, first, last, *addr, sz, flags, &dead,
1060 	    new);
1061 	if (entry == NULL) {
1062 		error = ENOMEM;
1063 		goto unlock;
1064 	}
1065 	new = NULL;
1066 	KDASSERT(entry->start == *addr && entry->end == *addr + sz);
1067 	entry->object.uvm_obj = NULL;
1068 	entry->offset = 0;
1069 	entry->protection = prot;
1070 	entry->max_protection = maxprot;
1071 	entry->inheritance = inherit;
1072 	entry->wired_count = 0;
1073 	entry->advice = advice;
1074 	if (flags & UVM_FLAG_STACK) {
1075 		entry->etype |= UVM_ET_STACK;
1076 		if (flags & (UVM_FLAG_FIXED | UVM_FLAG_UNMAP))
1077 			map->serial++;
1078 	}
1079 	if (flags & UVM_FLAG_COPYONW) {
1080 		entry->etype |= UVM_ET_COPYONWRITE;
1081 		if ((flags & UVM_FLAG_OVERLAY) == 0)
1082 			entry->etype |= UVM_ET_NEEDSCOPY;
1083 	}
1084 	if (flags & UVM_FLAG_OVERLAY) {
1085 		KERNEL_LOCK();
1086 		entry->aref.ar_pageoff = 0;
1087 		entry->aref.ar_amap = amap_alloc(sz, M_WAITOK, 0);
1088 		KERNEL_UNLOCK();
1089 	}
1090 
1091 	/* Update map and process statistics. */
1092 	map->size += sz;
1093 	((struct vmspace *)map)->vm_dused += uvmspace_dused(map, *addr, *addr + sz);
1094 
1095 unlock:
1096 	vm_map_unlock(map);
1097 
1098 	/*
1099 	 * Remove dead entries.
1100 	 *
1101 	 * Dead entries may be the result of merging.
1102 	 * uvm_map_mkentry may also create dead entries, when it attempts to
1103 	 * destroy free-space entries.
1104 	 */
1105 	uvm_unmap_detach(&dead, 0);
1106 out:
1107 	if (new)
1108 		uvm_mapent_free(new);
1109 	return error;
1110 }
1111 
1112 /*
1113  * uvm_map: establish a valid mapping in map
1114  *
1115  * => *addr and sz must be a multiple of PAGE_SIZE.
1116  * => map must be unlocked.
1117  * => <uobj,uoffset> value meanings (4 cases):
1118  *	[1] <NULL,uoffset>		== uoffset is a hint for PMAP_PREFER
1119  *	[2] <NULL,UVM_UNKNOWN_OFFSET>	== don't PMAP_PREFER
1120  *	[3] <uobj,uoffset>		== normal mapping
1121  *	[4] <uobj,UVM_UNKNOWN_OFFSET>	== uvm_map finds offset based on VA
1122  *
1123  *   case [4] is for kernel mappings where we don't know the offset until
1124  *   we've found a virtual address.   note that kernel object offsets are
1125  *   always relative to vm_map_min(kernel_map).
1126  *
1127  * => align: align vaddr, must be a power-of-2.
1128  *    Align is only a hint and will be ignored if the alignment fails.
1129  */
1130 int
1131 uvm_map(struct vm_map *map, vaddr_t *addr, vsize_t sz,
1132     struct uvm_object *uobj, voff_t uoffset,
1133     vsize_t align, unsigned int flags)
1134 {
1135 	struct vm_map_entry	*first, *last, *entry, *new;
1136 	struct uvm_map_deadq	 dead;
1137 	vm_prot_t		 prot;
1138 	vm_prot_t		 maxprot;
1139 	vm_inherit_t		 inherit;
1140 	int			 advice;
1141 	int			 error;
1142 	vaddr_t			 pmap_align, pmap_offset;
1143 	vaddr_t			 hint;
1144 
1145 	if ((map->flags & VM_MAP_INTRSAFE) == 0)
1146 		splassert(IPL_NONE);
1147 	else
1148 		splassert(IPL_VM);
1149 
1150 	/*
1151 	 * We use pmap_align and pmap_offset as alignment and offset variables.
1152 	 *
1153 	 * Because the align parameter takes precedence over pmap prefer,
1154 	 * the pmap_align will need to be set to align, with pmap_offset = 0,
1155 	 * if pmap_prefer will not align.
1156 	 */
1157 	if (uoffset == UVM_UNKNOWN_OFFSET) {
1158 		pmap_align = MAX(align, PAGE_SIZE);
1159 		pmap_offset = 0;
1160 	} else {
1161 		pmap_align = MAX(PMAP_PREFER_ALIGN(), PAGE_SIZE);
1162 		pmap_offset = PMAP_PREFER_OFFSET(uoffset);
1163 
1164 		if (align == 0 ||
1165 		    (align <= pmap_align && (pmap_offset & (align - 1)) == 0)) {
1166 			/* pmap_offset satisfies align, no change. */
1167 		} else {
1168 			/* Align takes precedence over pmap prefer. */
1169 			pmap_align = align;
1170 			pmap_offset = 0;
1171 		}
1172 	}
1173 
1174 	/* Decode parameters. */
1175 	prot = UVM_PROTECTION(flags);
1176 	maxprot = UVM_MAXPROTECTION(flags);
1177 	advice = UVM_ADVICE(flags);
1178 	inherit = UVM_INHERIT(flags);
1179 	error = 0;
1180 	hint = trunc_page(*addr);
1181 	TAILQ_INIT(&dead);
1182 	KASSERT((sz & (vaddr_t)PAGE_MASK) == 0);
1183 	KASSERT((align & (align - 1)) == 0);
1184 
1185 	/* Holes are incompatible with other types of mappings. */
1186 	if (flags & UVM_FLAG_HOLE) {
1187 		KASSERT(uobj == NULL && (flags & UVM_FLAG_FIXED) &&
1188 		    (flags & (UVM_FLAG_OVERLAY | UVM_FLAG_COPYONW)) == 0);
1189 	}
1190 
1191 	/* Unset hint for kernel_map non-fixed allocations. */
1192 	if (!(map->flags & VM_MAP_ISVMSPACE) && !(flags & UVM_FLAG_FIXED))
1193 		hint = 0;
1194 
1195 	/* Check protection. */
1196 	if ((prot & maxprot) != prot)
1197 		return EACCES;
1198 
1199 	if (map == kernel_map &&
1200 	    (prot & (PROT_WRITE | PROT_EXEC)) == (PROT_WRITE | PROT_EXEC))
1201 		panic("uvm_map: kernel map W^X violation requested");
1202 
1203 	/*
1204 	 * Before grabbing the lock, allocate a map entry for later
1205 	 * use to ensure we don't wait for memory while holding the
1206 	 * vm_map_lock.
1207 	 */
1208 	new = uvm_mapent_alloc(map, flags);
1209 	if (new == NULL)
1210 		return(ENOMEM);
1211 
1212 	if (flags & UVM_FLAG_TRYLOCK) {
1213 		if (vm_map_lock_try(map) == FALSE) {
1214 			error = EFAULT;
1215 			goto out;
1216 		}
1217 	} else {
1218 		vm_map_lock(map);
1219 	}
1220 
1221 	first = last = NULL;
1222 	if (flags & UVM_FLAG_FIXED) {
1223 		/*
1224 		 * Fixed location.
1225 		 *
1226 		 * Note: we ignore align, pmap_prefer.
1227 		 * Fill in first, last and *addr.
1228 		 */
1229 		KASSERT((*addr & PAGE_MASK) == 0);
1230 
1231 		/*
1232 		 * Grow pmap to include allocated address.
1233 		 * If the growth fails, the allocation will fail too.
1234 		 */
1235 		if ((map->flags & VM_MAP_ISVMSPACE) == 0 &&
1236 		    uvm_maxkaddr < (*addr + sz)) {
1237 			uvm_map_kmem_grow(map, &dead,
1238 			    *addr + sz - uvm_maxkaddr, flags);
1239 		}
1240 
1241 		/* Check that the space is available. */
1242 		if (flags & UVM_FLAG_UNMAP)
1243 			uvm_unmap_remove(map, *addr, *addr + sz, &dead, FALSE, TRUE);
1244 		if (!uvm_map_isavail(map, NULL, &first, &last, *addr, sz)) {
1245 			error = ENOMEM;
1246 			goto unlock;
1247 		}
1248 	} else if (*addr != 0 && (*addr & PAGE_MASK) == 0 &&
1249 	    (map->flags & VM_MAP_ISVMSPACE) == VM_MAP_ISVMSPACE &&
1250 	    (align == 0 || (*addr & (align - 1)) == 0) &&
1251 	    uvm_map_isavail(map, NULL, &first, &last, *addr, sz)) {
1252 		/*
1253 		 * Address used as hint.
1254 		 *
1255 		 * Note: we enforce the alignment restriction,
1256 		 * but ignore pmap_prefer.
1257 		 */
1258 	} else if ((prot & PROT_EXEC) != 0 && map->uaddr_exe != NULL) {
1259 		/* Run selection algorithm for executables. */
1260 		error = uvm_addr_invoke(map, map->uaddr_exe, &first, &last,
1261 		    addr, sz, pmap_align, pmap_offset, prot, hint);
1262 
1263 		/* Grow kernel memory and try again. */
1264 		if (error != 0 && (map->flags & VM_MAP_ISVMSPACE) == 0) {
1265 			uvm_map_kmem_grow(map, &dead, sz, flags);
1266 
1267 			error = uvm_addr_invoke(map, map->uaddr_exe,
1268 			    &first, &last, addr, sz,
1269 			    pmap_align, pmap_offset, prot, hint);
1270 		}
1271 
1272 		if (error != 0)
1273 			goto unlock;
1274 	} else {
1275 		/* Update freelists from vmspace. */
1276 		if (map->flags & VM_MAP_ISVMSPACE)
1277 			uvm_map_vmspace_update(map, &dead, flags);
1278 
1279 		error = uvm_map_findspace(map, &first, &last, addr, sz,
1280 		    pmap_align, pmap_offset, prot, hint);
1281 
1282 		/* Grow kernel memory and try again. */
1283 		if (error != 0 && (map->flags & VM_MAP_ISVMSPACE) == 0) {
1284 			uvm_map_kmem_grow(map, &dead, sz, flags);
1285 
1286 			error = uvm_map_findspace(map, &first, &last, addr, sz,
1287 			    pmap_align, pmap_offset, prot, hint);
1288 		}
1289 
1290 		if (error != 0)
1291 			goto unlock;
1292 	}
1293 
1294 	/* Double-check if selected address doesn't cause overflow. */
1295 	if (*addr + sz < *addr) {
1296 		error = ENOMEM;
1297 		goto unlock;
1298 	}
1299 
1300 	KASSERT((map->flags & VM_MAP_ISVMSPACE) == VM_MAP_ISVMSPACE ||
1301 	    uvm_maxkaddr >= *addr + sz);
1302 
1303 	/* If we only want a query, return now. */
1304 	if (flags & UVM_FLAG_QUERY) {
1305 		error = 0;
1306 		goto unlock;
1307 	}
1308 
1309 	if (uobj == NULL)
1310 		uoffset = 0;
1311 	else if (uoffset == UVM_UNKNOWN_OFFSET) {
1312 		KASSERT(UVM_OBJ_IS_KERN_OBJECT(uobj));
1313 		uoffset = *addr - vm_map_min(kernel_map);
1314 	}
1315 
1316 	/*
1317 	 * Create new entry.
1318 	 * first and last may be invalidated after this call.
1319 	 */
1320 	entry = uvm_map_mkentry(map, first, last, *addr, sz, flags, &dead,
1321 	    new);
1322 	if (entry == NULL) {
1323 		error = ENOMEM;
1324 		goto unlock;
1325 	}
1326 	new = NULL;
1327 	KDASSERT(entry->start == *addr && entry->end == *addr + sz);
1328 	entry->object.uvm_obj = uobj;
1329 	entry->offset = uoffset;
1330 	entry->protection = prot;
1331 	entry->max_protection = maxprot;
1332 	entry->inheritance = inherit;
1333 	entry->wired_count = 0;
1334 	entry->advice = advice;
1335 	if (flags & UVM_FLAG_STACK) {
1336 		entry->etype |= UVM_ET_STACK;
1337 		if (flags & UVM_FLAG_UNMAP)
1338 			map->serial++;
1339 	}
1340 	if (uobj)
1341 		entry->etype |= UVM_ET_OBJ;
1342 	else if (flags & UVM_FLAG_HOLE)
1343 		entry->etype |= UVM_ET_HOLE;
1344 	if (flags & UVM_FLAG_NOFAULT)
1345 		entry->etype |= UVM_ET_NOFAULT;
1346 	if (flags & UVM_FLAG_COPYONW) {
1347 		entry->etype |= UVM_ET_COPYONWRITE;
1348 		if ((flags & UVM_FLAG_OVERLAY) == 0)
1349 			entry->etype |= UVM_ET_NEEDSCOPY;
1350 	}
1351 	if (flags & UVM_FLAG_OVERLAY) {
1352 		entry->aref.ar_pageoff = 0;
1353 		entry->aref.ar_amap = amap_alloc(sz, M_WAITOK, 0);
1354 	}
1355 
1356 	/* Update map and process statistics. */
1357 	if (!(flags & UVM_FLAG_HOLE)) {
1358 		map->size += sz;
1359 		if ((map->flags & VM_MAP_ISVMSPACE) && uobj == NULL) {
1360 			((struct vmspace *)map)->vm_dused +=
1361 			    uvmspace_dused(map, *addr, *addr + sz);
1362 		}
1363 	}
1364 
1365 	/*
1366 	 * Try to merge entry.
1367 	 *
1368 	 * Userland allocations are kept separated most of the time.
1369 	 * Forego the effort of merging what most of the time can't be merged
1370 	 * and only try the merge if it concerns a kernel entry.
1371 	 */
1372 	if ((flags & UVM_FLAG_NOMERGE) == 0 &&
1373 	    (map->flags & VM_MAP_ISVMSPACE) == 0)
1374 		uvm_mapent_tryjoin(map, entry, &dead);
1375 
1376 unlock:
1377 	vm_map_unlock(map);
1378 
1379 	/*
1380 	 * Remove dead entries.
1381 	 *
1382 	 * Dead entries may be the result of merging.
1383 	 * uvm_map_mkentry may also create dead entries, when it attempts to
1384 	 * destroy free-space entries.
1385 	 */
1386 	if (map->flags & VM_MAP_INTRSAFE)
1387 		uvm_unmap_detach_intrsafe(&dead);
1388 	else
1389 		uvm_unmap_detach(&dead, 0);
1390 out:
1391 	if (new)
1392 		uvm_mapent_free(new);
1393 	return error;
1394 }
1395 
1396 /*
1397  * True iff e1 and e2 can be joined together.
1398  */
1399 int
1400 uvm_mapent_isjoinable(struct vm_map *map, struct vm_map_entry *e1,
1401     struct vm_map_entry *e2)
1402 {
1403 	KDASSERT(e1 != NULL && e2 != NULL);
1404 
1405 	/* Must be the same entry type and not have free memory between. */
1406 	if (e1->etype != e2->etype || e1->end != e2->start)
1407 		return 0;
1408 
1409 	/* Submaps are never joined. */
1410 	if (UVM_ET_ISSUBMAP(e1))
1411 		return 0;
1412 
1413 	/* Never merge wired memory. */
1414 	if (VM_MAPENT_ISWIRED(e1) || VM_MAPENT_ISWIRED(e2))
1415 		return 0;
1416 
1417 	/* Protection, inheritance and advice must be equal. */
1418 	if (e1->protection != e2->protection ||
1419 	    e1->max_protection != e2->max_protection ||
1420 	    e1->inheritance != e2->inheritance ||
1421 	    e1->advice != e2->advice)
1422 		return 0;
1423 
1424 	/* If uvm_object: object itself and offsets within object must match. */
1425 	if (UVM_ET_ISOBJ(e1)) {
1426 		if (e1->object.uvm_obj != e2->object.uvm_obj)
1427 			return 0;
1428 		if (e1->offset + (e1->end - e1->start) != e2->offset)
1429 			return 0;
1430 	}
1431 
1432 	/*
1433 	 * Cannot join shared amaps.
1434 	 * Note: no need to lock amap to look at refs, since we don't care
1435 	 * about its exact value.
1436 	 * If it is 1 (i.e. we have the only reference) it will stay there.
1437 	 */
1438 	if (e1->aref.ar_amap && amap_refs(e1->aref.ar_amap) != 1)
1439 		return 0;
1440 	if (e2->aref.ar_amap && amap_refs(e2->aref.ar_amap) != 1)
1441 		return 0;
1442 
1443 	/* Apprently, e1 and e2 match. */
1444 	return 1;
1445 }
1446 
1447 /*
1448  * Join support function.
1449  *
1450  * Returns the merged entry on succes.
1451  * Returns NULL if the merge failed.
1452  */
1453 struct vm_map_entry*
1454 uvm_mapent_merge(struct vm_map *map, struct vm_map_entry *e1,
1455     struct vm_map_entry *e2, struct uvm_map_deadq *dead)
1456 {
1457 	struct uvm_addr_state *free;
1458 
1459 	/*
1460 	 * Merging is not supported for map entries that
1461 	 * contain an amap in e1. This should never happen
1462 	 * anyway, because only kernel entries are merged.
1463 	 * These do not contain amaps.
1464 	 * e2 contains no real information in its amap,
1465 	 * so it can be erased immediately.
1466 	 */
1467 	KASSERT(e1->aref.ar_amap == NULL);
1468 
1469 	/*
1470 	 * Don't drop obj reference:
1471 	 * uvm_unmap_detach will do this for us.
1472 	 */
1473 	free = uvm_map_uaddr_e(map, e1);
1474 	uvm_mapent_free_remove(map, free, e1);
1475 
1476 	free = uvm_map_uaddr_e(map, e2);
1477 	uvm_mapent_free_remove(map, free, e2);
1478 	uvm_mapent_addr_remove(map, e2);
1479 	e1->end = e2->end;
1480 	e1->guard = e2->guard;
1481 	e1->fspace = e2->fspace;
1482 	uvm_mapent_free_insert(map, free, e1);
1483 
1484 	DEAD_ENTRY_PUSH(dead, e2);
1485 	return e1;
1486 }
1487 
1488 /*
1489  * Attempt forward and backward joining of entry.
1490  *
1491  * Returns entry after joins.
1492  * We are guaranteed that the amap of entry is either non-existant or
1493  * has never been used.
1494  */
1495 struct vm_map_entry*
1496 uvm_mapent_tryjoin(struct vm_map *map, struct vm_map_entry *entry,
1497     struct uvm_map_deadq *dead)
1498 {
1499 	struct vm_map_entry *other;
1500 	struct vm_map_entry *merged;
1501 
1502 	/* Merge with previous entry. */
1503 	other = RBT_PREV(uvm_map_addr, entry);
1504 	if (other && uvm_mapent_isjoinable(map, other, entry)) {
1505 		merged = uvm_mapent_merge(map, other, entry, dead);
1506 		if (merged)
1507 			entry = merged;
1508 	}
1509 
1510 	/*
1511 	 * Merge with next entry.
1512 	 *
1513 	 * Because amap can only extend forward and the next entry
1514 	 * probably contains sensible info, only perform forward merging
1515 	 * in the absence of an amap.
1516 	 */
1517 	other = RBT_NEXT(uvm_map_addr, entry);
1518 	if (other && entry->aref.ar_amap == NULL &&
1519 	    other->aref.ar_amap == NULL &&
1520 	    uvm_mapent_isjoinable(map, entry, other)) {
1521 		merged = uvm_mapent_merge(map, entry, other, dead);
1522 		if (merged)
1523 			entry = merged;
1524 	}
1525 
1526 	return entry;
1527 }
1528 
1529 /*
1530  * Kill entries that are no longer in a map.
1531  */
1532 void
1533 uvm_unmap_detach(struct uvm_map_deadq *deadq, int flags)
1534 {
1535 	struct vm_map_entry *entry;
1536 	int waitok = flags & UVM_PLA_WAITOK;
1537 
1538 	if (TAILQ_EMPTY(deadq))
1539 		return;
1540 
1541 	KERNEL_LOCK();
1542 	while ((entry = TAILQ_FIRST(deadq)) != NULL) {
1543 		if (waitok)
1544 			uvm_pause();
1545 		/* Drop reference to amap, if we've got one. */
1546 		if (entry->aref.ar_amap)
1547 			amap_unref(entry->aref.ar_amap,
1548 			    entry->aref.ar_pageoff,
1549 			    atop(entry->end - entry->start),
1550 			    flags & AMAP_REFALL);
1551 
1552 		/* Drop reference to our backing object, if we've got one. */
1553 		if (UVM_ET_ISSUBMAP(entry)) {
1554 			/* ... unlikely to happen, but play it safe */
1555 			uvm_map_deallocate(entry->object.sub_map);
1556 		} else if (UVM_ET_ISOBJ(entry) &&
1557 		    entry->object.uvm_obj->pgops->pgo_detach) {
1558 			entry->object.uvm_obj->pgops->pgo_detach(
1559 			    entry->object.uvm_obj);
1560 		}
1561 
1562 		/* Step to next. */
1563 		TAILQ_REMOVE(deadq, entry, dfree.deadq);
1564 		uvm_mapent_free(entry);
1565 	}
1566 	KERNEL_UNLOCK();
1567 }
1568 
1569 void
1570 uvm_unmap_detach_intrsafe(struct uvm_map_deadq *deadq)
1571 {
1572 	struct vm_map_entry *entry;
1573 
1574 	while ((entry = TAILQ_FIRST(deadq)) != NULL) {
1575 		KASSERT(entry->aref.ar_amap == NULL);
1576 		KASSERT(!UVM_ET_ISSUBMAP(entry));
1577 		KASSERT(!UVM_ET_ISOBJ(entry));
1578 		TAILQ_REMOVE(deadq, entry, dfree.deadq);
1579 		uvm_mapent_free(entry);
1580 	}
1581 }
1582 
1583 /*
1584  * Create and insert new entry.
1585  *
1586  * Returned entry contains new addresses and is inserted properly in the tree.
1587  * first and last are (probably) no longer valid.
1588  */
1589 struct vm_map_entry*
1590 uvm_map_mkentry(struct vm_map *map, struct vm_map_entry *first,
1591     struct vm_map_entry *last, vaddr_t addr, vsize_t sz, int flags,
1592     struct uvm_map_deadq *dead, struct vm_map_entry *new)
1593 {
1594 	struct vm_map_entry *entry, *prev;
1595 	struct uvm_addr_state *free;
1596 	vaddr_t min, max;	/* free space boundaries for new entry */
1597 
1598 	KDASSERT(map != NULL);
1599 	KDASSERT(first != NULL);
1600 	KDASSERT(last != NULL);
1601 	KDASSERT(dead != NULL);
1602 	KDASSERT(sz > 0);
1603 	KDASSERT(addr + sz > addr);
1604 	KDASSERT(first->end <= addr && VMMAP_FREE_END(first) > addr);
1605 	KDASSERT(last->start < addr + sz && VMMAP_FREE_END(last) >= addr + sz);
1606 	KDASSERT(uvm_map_isavail(map, NULL, &first, &last, addr, sz));
1607 	uvm_tree_sanity(map, __FILE__, __LINE__);
1608 
1609 	min = addr + sz;
1610 	max = VMMAP_FREE_END(last);
1611 
1612 	/* Initialize new entry. */
1613 	if (new == NULL)
1614 		entry = uvm_mapent_alloc(map, flags);
1615 	else
1616 		entry = new;
1617 	if (entry == NULL)
1618 		return NULL;
1619 	entry->offset = 0;
1620 	entry->etype = 0;
1621 	entry->wired_count = 0;
1622 	entry->aref.ar_pageoff = 0;
1623 	entry->aref.ar_amap = NULL;
1624 
1625 	entry->start = addr;
1626 	entry->end = min;
1627 	entry->guard = 0;
1628 	entry->fspace = 0;
1629 
1630 	/* Reset free space in first. */
1631 	free = uvm_map_uaddr_e(map, first);
1632 	uvm_mapent_free_remove(map, free, first);
1633 	first->guard = 0;
1634 	first->fspace = 0;
1635 
1636 	/*
1637 	 * Remove all entries that are fully replaced.
1638 	 * We are iterating using last in reverse order.
1639 	 */
1640 	for (; first != last; last = prev) {
1641 		prev = RBT_PREV(uvm_map_addr, last);
1642 
1643 		KDASSERT(last->start == last->end);
1644 		free = uvm_map_uaddr_e(map, last);
1645 		uvm_mapent_free_remove(map, free, last);
1646 		uvm_mapent_addr_remove(map, last);
1647 		DEAD_ENTRY_PUSH(dead, last);
1648 	}
1649 	/* Remove first if it is entirely inside <addr, addr+sz>.  */
1650 	if (first->start == addr) {
1651 		uvm_mapent_addr_remove(map, first);
1652 		DEAD_ENTRY_PUSH(dead, first);
1653 	} else {
1654 		uvm_map_fix_space(map, first, VMMAP_FREE_START(first),
1655 		    addr, flags);
1656 	}
1657 
1658 	/* Finally, link in entry. */
1659 	uvm_mapent_addr_insert(map, entry);
1660 	uvm_map_fix_space(map, entry, min, max, flags);
1661 
1662 	uvm_tree_sanity(map, __FILE__, __LINE__);
1663 	return entry;
1664 }
1665 
1666 
1667 /*
1668  * uvm_mapent_alloc: allocate a map entry
1669  */
1670 struct vm_map_entry *
1671 uvm_mapent_alloc(struct vm_map *map, int flags)
1672 {
1673 	struct vm_map_entry *me, *ne;
1674 	int pool_flags;
1675 	int i;
1676 
1677 	pool_flags = PR_WAITOK;
1678 	if (flags & UVM_FLAG_TRYLOCK)
1679 		pool_flags = PR_NOWAIT;
1680 
1681 	if (map->flags & VM_MAP_INTRSAFE || cold) {
1682 		mtx_enter(&uvm_kmapent_mtx);
1683 		if (SLIST_EMPTY(&uvm.kentry_free)) {
1684 			ne = km_alloc(PAGE_SIZE, &kv_page, &kp_dirty,
1685 			    &kd_nowait);
1686 			if (ne == NULL)
1687 				panic("uvm_mapent_alloc: cannot allocate map "
1688 				    "entry");
1689 			for (i = 0; i < PAGE_SIZE / sizeof(*ne); i++) {
1690 				SLIST_INSERT_HEAD(&uvm.kentry_free,
1691 				    &ne[i], daddrs.addr_kentry);
1692 			}
1693 			if (ratecheck(&uvm_kmapent_last_warn_time,
1694 			    &uvm_kmapent_warn_rate))
1695 				printf("uvm_mapent_alloc: out of static "
1696 				    "map entries\n");
1697 		}
1698 		me = SLIST_FIRST(&uvm.kentry_free);
1699 		SLIST_REMOVE_HEAD(&uvm.kentry_free, daddrs.addr_kentry);
1700 		uvmexp.kmapent++;
1701 		mtx_leave(&uvm_kmapent_mtx);
1702 		me->flags = UVM_MAP_STATIC;
1703 	} else if (map == kernel_map) {
1704 		splassert(IPL_NONE);
1705 		me = pool_get(&uvm_map_entry_kmem_pool, pool_flags);
1706 		if (me == NULL)
1707 			goto out;
1708 		me->flags = UVM_MAP_KMEM;
1709 	} else {
1710 		splassert(IPL_NONE);
1711 		me = pool_get(&uvm_map_entry_pool, pool_flags);
1712 		if (me == NULL)
1713 			goto out;
1714 		me->flags = 0;
1715 	}
1716 
1717 	if (me != NULL) {
1718 		RBT_POISON(uvm_map_addr, me, UVMMAP_DEADBEEF);
1719 	}
1720 
1721 out:
1722 	return(me);
1723 }
1724 
1725 /*
1726  * uvm_mapent_free: free map entry
1727  *
1728  * => XXX: static pool for kernel map?
1729  */
1730 void
1731 uvm_mapent_free(struct vm_map_entry *me)
1732 {
1733 	if (me->flags & UVM_MAP_STATIC) {
1734 		mtx_enter(&uvm_kmapent_mtx);
1735 		SLIST_INSERT_HEAD(&uvm.kentry_free, me, daddrs.addr_kentry);
1736 		uvmexp.kmapent--;
1737 		mtx_leave(&uvm_kmapent_mtx);
1738 	} else if (me->flags & UVM_MAP_KMEM) {
1739 		splassert(IPL_NONE);
1740 		pool_put(&uvm_map_entry_kmem_pool, me);
1741 	} else {
1742 		splassert(IPL_NONE);
1743 		pool_put(&uvm_map_entry_pool, me);
1744 	}
1745 }
1746 
1747 /*
1748  * uvm_map_lookup_entry: find map entry at or before an address.
1749  *
1750  * => map must at least be read-locked by caller
1751  * => entry is returned in "entry"
1752  * => return value is true if address is in the returned entry
1753  * ET_HOLE entries are considered to not contain a mapping, ergo FALSE is
1754  * returned for those mappings.
1755  */
1756 boolean_t
1757 uvm_map_lookup_entry(struct vm_map *map, vaddr_t address,
1758     struct vm_map_entry **entry)
1759 {
1760 	*entry = uvm_map_entrybyaddr(&map->addr, address);
1761 	return *entry != NULL && !UVM_ET_ISHOLE(*entry) &&
1762 	    (*entry)->start <= address && (*entry)->end > address;
1763 }
1764 
1765 /*
1766  * Inside a vm_map find the sp address and verify MAP_STACK, and also
1767  * remember low and high regions of that of region  which is marked
1768  * with MAP_STACK.  Return TRUE.
1769  * If sp isn't in a MAP_STACK region return FALSE.
1770  */
1771 boolean_t
1772 uvm_map_check_stack_range(struct proc *p, vaddr_t sp)
1773 {
1774 	vm_map_t map = &p->p_vmspace->vm_map;
1775 	vm_map_entry_t entry;
1776 
1777 	if (sp < map->min_offset || sp >= map->max_offset)
1778 		return(FALSE);
1779 
1780 	/* lock map */
1781 	vm_map_lock_read(map);
1782 
1783 	/* lookup */
1784 	if (!uvm_map_lookup_entry(map, trunc_page(sp), &entry)) {
1785 		vm_map_unlock_read(map);
1786 		return(FALSE);
1787 	}
1788 
1789 	if ((entry->etype & UVM_ET_STACK) == 0) {
1790 		vm_map_unlock_read(map);
1791 		return (FALSE);
1792 	}
1793 	p->p_spstart = entry->start;
1794 	p->p_spend = entry->end;
1795 	p->p_spserial = map->serial;
1796 	vm_map_unlock_read(map);
1797 	return(TRUE);
1798 }
1799 
1800 /*
1801  * Check whether the given address range can be converted to a MAP_STACK
1802  * mapping.
1803  *
1804  * Must be called with map locked.
1805  */
1806 boolean_t
1807 uvm_map_is_stack_remappable(struct vm_map *map, vaddr_t addr, vaddr_t sz)
1808 {
1809 	vaddr_t end = addr + sz;
1810 	struct vm_map_entry *first, *iter, *prev = NULL;
1811 
1812 	if (!uvm_map_lookup_entry(map, addr, &first)) {
1813 		printf("map stack 0x%lx-0x%lx of map %p failed: no mapping\n",
1814 		    addr, end, map);
1815 		return FALSE;
1816 	}
1817 
1818 	/*
1819 	 * Check that the address range exists and is contiguous.
1820 	 */
1821 	for (iter = first; iter != NULL && iter->start < end;
1822 	    prev = iter, iter = RBT_NEXT(uvm_map_addr, iter)) {
1823 		/*
1824 		 * Make sure that we do not have holes in the range.
1825 		 */
1826 #if 0
1827 		if (prev != NULL) {
1828 			printf("prev->start 0x%lx, prev->end 0x%lx, "
1829 			    "iter->start 0x%lx, iter->end 0x%lx\n",
1830 			    prev->start, prev->end, iter->start, iter->end);
1831 		}
1832 #endif
1833 
1834 		if (prev != NULL && prev->end != iter->start) {
1835 			printf("map stack 0x%lx-0x%lx of map %p failed: "
1836 			    "hole in range\n", addr, end, map);
1837 			return FALSE;
1838 		}
1839 		if (iter->start == iter->end || UVM_ET_ISHOLE(iter)) {
1840 			printf("map stack 0x%lx-0x%lx of map %p failed: "
1841 			    "hole in range\n", addr, end, map);
1842 			return FALSE;
1843 		}
1844 	}
1845 
1846 	return TRUE;
1847 }
1848 
1849 /*
1850  * Remap the middle-pages of an existing mapping as a stack range.
1851  * If there exists a previous contiguous mapping with the given range
1852  * [addr, addr + sz), with protection PROT_READ|PROT_WRITE, then the
1853  * mapping is dropped, and a new anon mapping is created and marked as
1854  * a stack.
1855  *
1856  * Must be called with map unlocked.
1857  */
1858 int
1859 uvm_map_remap_as_stack(struct proc *p, vaddr_t addr, vaddr_t sz)
1860 {
1861 	vm_map_t map = &p->p_vmspace->vm_map;
1862 	vaddr_t start, end;
1863 	int error;
1864 	int flags = UVM_MAPFLAG(PROT_READ | PROT_WRITE,
1865 	    PROT_READ | PROT_WRITE | PROT_EXEC,
1866 	    MAP_INHERIT_COPY, MADV_NORMAL,
1867 	    UVM_FLAG_STACK | UVM_FLAG_FIXED | UVM_FLAG_UNMAP |
1868 	    UVM_FLAG_COPYONW);
1869 
1870 	start = round_page(addr);
1871 	end = trunc_page(addr + sz);
1872 #ifdef MACHINE_STACK_GROWS_UP
1873 	if (end == addr + sz)
1874 		end -= PAGE_SIZE;
1875 #else
1876 	if (start == addr)
1877 		start += PAGE_SIZE;
1878 #endif
1879 
1880 	if (start < map->min_offset || end >= map->max_offset || end < start)
1881 		return EINVAL;
1882 
1883 	error = uvm_mapanon(map, &start, end - start, 0, flags);
1884 	if (error != 0)
1885 		printf("map stack for pid %d failed\n", p->p_p->ps_pid);
1886 
1887 	return error;
1888 }
1889 
1890 /*
1891  * uvm_map_pie: return a random load address for a PIE executable
1892  * properly aligned.
1893  */
1894 #ifndef VM_PIE_MAX_ADDR
1895 #define VM_PIE_MAX_ADDR (VM_MAXUSER_ADDRESS / 4)
1896 #endif
1897 
1898 #ifndef VM_PIE_MIN_ADDR
1899 #define VM_PIE_MIN_ADDR VM_MIN_ADDRESS
1900 #endif
1901 
1902 #ifndef VM_PIE_MIN_ALIGN
1903 #define VM_PIE_MIN_ALIGN PAGE_SIZE
1904 #endif
1905 
1906 vaddr_t
1907 uvm_map_pie(vaddr_t align)
1908 {
1909 	vaddr_t addr, space, min;
1910 
1911 	align = MAX(align, VM_PIE_MIN_ALIGN);
1912 
1913 	/* round up to next alignment */
1914 	min = (VM_PIE_MIN_ADDR + align - 1) & ~(align - 1);
1915 
1916 	if (align >= VM_PIE_MAX_ADDR || min >= VM_PIE_MAX_ADDR)
1917 		return (align);
1918 
1919 	space = (VM_PIE_MAX_ADDR - min) / align;
1920 	space = MIN(space, (u_int32_t)-1);
1921 
1922 	addr = (vaddr_t)arc4random_uniform((u_int32_t)space) * align;
1923 	addr += min;
1924 
1925 	return (addr);
1926 }
1927 
1928 void
1929 uvm_unmap(struct vm_map *map, vaddr_t start, vaddr_t end)
1930 {
1931 	struct uvm_map_deadq dead;
1932 
1933 	KASSERT((start & (vaddr_t)PAGE_MASK) == 0 &&
1934 	    (end & (vaddr_t)PAGE_MASK) == 0);
1935 	TAILQ_INIT(&dead);
1936 	vm_map_lock(map);
1937 	uvm_unmap_remove(map, start, end, &dead, FALSE, TRUE);
1938 	vm_map_unlock(map);
1939 
1940 	if (map->flags & VM_MAP_INTRSAFE)
1941 		uvm_unmap_detach_intrsafe(&dead);
1942 	else
1943 		uvm_unmap_detach(&dead, 0);
1944 }
1945 
1946 /*
1947  * Mark entry as free.
1948  *
1949  * entry will be put on the dead list.
1950  * The free space will be merged into the previous or a new entry,
1951  * unless markfree is false.
1952  */
1953 void
1954 uvm_mapent_mkfree(struct vm_map *map, struct vm_map_entry *entry,
1955     struct vm_map_entry **prev_ptr, struct uvm_map_deadq *dead,
1956     boolean_t markfree)
1957 {
1958 	struct uvm_addr_state	*free;
1959 	struct vm_map_entry	*prev;
1960 	vaddr_t			 addr;	/* Start of freed range. */
1961 	vaddr_t			 end;	/* End of freed range. */
1962 
1963 	prev = *prev_ptr;
1964 	if (prev == entry)
1965 		*prev_ptr = prev = NULL;
1966 
1967 	if (prev == NULL ||
1968 	    VMMAP_FREE_END(prev) != entry->start)
1969 		prev = RBT_PREV(uvm_map_addr, entry);
1970 
1971 	/* Entry is describing only free memory and has nothing to drain into. */
1972 	if (prev == NULL && entry->start == entry->end && markfree) {
1973 		*prev_ptr = entry;
1974 		return;
1975 	}
1976 
1977 	addr = entry->start;
1978 	end = VMMAP_FREE_END(entry);
1979 	free = uvm_map_uaddr_e(map, entry);
1980 	uvm_mapent_free_remove(map, free, entry);
1981 	uvm_mapent_addr_remove(map, entry);
1982 	DEAD_ENTRY_PUSH(dead, entry);
1983 
1984 	if (markfree) {
1985 		if (prev) {
1986 			free = uvm_map_uaddr_e(map, prev);
1987 			uvm_mapent_free_remove(map, free, prev);
1988 		}
1989 		*prev_ptr = uvm_map_fix_space(map, prev, addr, end, 0);
1990 	}
1991 }
1992 
1993 /*
1994  * Unwire and release referenced amap and object from map entry.
1995  */
1996 void
1997 uvm_unmap_kill_entry(struct vm_map *map, struct vm_map_entry *entry)
1998 {
1999 	/* Unwire removed map entry. */
2000 	if (VM_MAPENT_ISWIRED(entry)) {
2001 		KERNEL_LOCK();
2002 		entry->wired_count = 0;
2003 		uvm_fault_unwire_locked(map, entry->start, entry->end);
2004 		KERNEL_UNLOCK();
2005 	}
2006 
2007 	/* Entry-type specific code. */
2008 	if (UVM_ET_ISHOLE(entry)) {
2009 		/* Nothing to be done for holes. */
2010 	} else if (map->flags & VM_MAP_INTRSAFE) {
2011 		KASSERT(vm_map_pmap(map) == pmap_kernel());
2012 		uvm_km_pgremove_intrsafe(entry->start, entry->end);
2013 		pmap_kremove(entry->start, entry->end - entry->start);
2014 	} else if (UVM_ET_ISOBJ(entry) &&
2015 	    UVM_OBJ_IS_KERN_OBJECT(entry->object.uvm_obj)) {
2016 		KASSERT(vm_map_pmap(map) == pmap_kernel());
2017 		/*
2018 		 * Note: kernel object mappings are currently used in
2019 		 * two ways:
2020 		 *  [1] "normal" mappings of pages in the kernel object
2021 		 *  [2] uvm_km_valloc'd allocations in which we
2022 		 *      pmap_enter in some non-kernel-object page
2023 		 *      (e.g. vmapbuf).
2024 		 *
2025 		 * for case [1], we need to remove the mapping from
2026 		 * the pmap and then remove the page from the kernel
2027 		 * object (because, once pages in a kernel object are
2028 		 * unmapped they are no longer needed, unlike, say,
2029 		 * a vnode where you might want the data to persist
2030 		 * until flushed out of a queue).
2031 		 *
2032 		 * for case [2], we need to remove the mapping from
2033 		 * the pmap.  there shouldn't be any pages at the
2034 		 * specified offset in the kernel object [but it
2035 		 * doesn't hurt to call uvm_km_pgremove just to be
2036 		 * safe?]
2037 		 *
2038 		 * uvm_km_pgremove currently does the following:
2039 		 *   for pages in the kernel object range:
2040 		 *     - drops the swap slot
2041 		 *     - uvm_pagefree the page
2042 		 *
2043 		 * note there is version of uvm_km_pgremove() that
2044 		 * is used for "intrsafe" objects.
2045 		 */
2046 		/*
2047 		 * remove mappings from pmap and drop the pages
2048 		 * from the object.  offsets are always relative
2049 		 * to vm_map_min(kernel_map).
2050 		 */
2051 		pmap_remove(pmap_kernel(), entry->start, entry->end);
2052 		uvm_km_pgremove(entry->object.uvm_obj,
2053 		    entry->start - vm_map_min(kernel_map),
2054 		    entry->end - vm_map_min(kernel_map));
2055 
2056 		/*
2057 		 * null out kernel_object reference, we've just
2058 		 * dropped it
2059 		 */
2060 		entry->etype &= ~UVM_ET_OBJ;
2061 		entry->object.uvm_obj = NULL;  /* to be safe */
2062 	} else {
2063 		/* remove mappings the standard way. */
2064 		pmap_remove(map->pmap, entry->start, entry->end);
2065 	}
2066 }
2067 
2068 /*
2069  * Remove all entries from start to end.
2070  *
2071  * If remove_holes, then remove ET_HOLE entries as well.
2072  * If markfree, entry will be properly marked free, otherwise, no replacement
2073  * entry will be put in the tree (corrupting the tree).
2074  */
2075 void
2076 uvm_unmap_remove(struct vm_map *map, vaddr_t start, vaddr_t end,
2077     struct uvm_map_deadq *dead, boolean_t remove_holes,
2078     boolean_t markfree)
2079 {
2080 	struct vm_map_entry *prev_hint, *next, *entry;
2081 
2082 	start = MAX(start, map->min_offset);
2083 	end = MIN(end, map->max_offset);
2084 	if (start >= end)
2085 		return;
2086 
2087 	if ((map->flags & VM_MAP_INTRSAFE) == 0)
2088 		splassert(IPL_NONE);
2089 	else
2090 		splassert(IPL_VM);
2091 
2092 	/* Find first affected entry. */
2093 	entry = uvm_map_entrybyaddr(&map->addr, start);
2094 	KDASSERT(entry != NULL && entry->start <= start);
2095 	if (entry->end <= start && markfree)
2096 		entry = RBT_NEXT(uvm_map_addr, entry);
2097 	else
2098 		UVM_MAP_CLIP_START(map, entry, start);
2099 
2100 	/*
2101 	 * Iterate entries until we reach end address.
2102 	 * prev_hint hints where the freed space can be appended to.
2103 	 */
2104 	prev_hint = NULL;
2105 	for (; entry != NULL && entry->start < end; entry = next) {
2106 		KDASSERT(entry->start >= start);
2107 		if (entry->end > end || !markfree)
2108 			UVM_MAP_CLIP_END(map, entry, end);
2109 		KDASSERT(entry->start >= start && entry->end <= end);
2110 		next = RBT_NEXT(uvm_map_addr, entry);
2111 
2112 		/* Don't remove holes unless asked to do so. */
2113 		if (UVM_ET_ISHOLE(entry)) {
2114 			if (!remove_holes) {
2115 				prev_hint = entry;
2116 				continue;
2117 			}
2118 		}
2119 
2120 		/* A stack has been removed.. */
2121 		if (UVM_ET_ISSTACK(entry) && (map->flags & VM_MAP_ISVMSPACE))
2122 			map->serial++;
2123 
2124 		/* Kill entry. */
2125 		uvm_unmap_kill_entry(map, entry);
2126 
2127 		/* Update space usage. */
2128 		if ((map->flags & VM_MAP_ISVMSPACE) &&
2129 		    entry->object.uvm_obj == NULL &&
2130 		    !UVM_ET_ISHOLE(entry)) {
2131 			((struct vmspace *)map)->vm_dused -=
2132 			    uvmspace_dused(map, entry->start, entry->end);
2133 		}
2134 		if (!UVM_ET_ISHOLE(entry))
2135 			map->size -= entry->end - entry->start;
2136 
2137 		/* Actual removal of entry. */
2138 		uvm_mapent_mkfree(map, entry, &prev_hint, dead, markfree);
2139 	}
2140 
2141 	pmap_update(vm_map_pmap(map));
2142 
2143 #ifdef VMMAP_DEBUG
2144 	if (markfree) {
2145 		for (entry = uvm_map_entrybyaddr(&map->addr, start);
2146 		    entry != NULL && entry->start < end;
2147 		    entry = RBT_NEXT(uvm_map_addr, entry)) {
2148 			KDASSERT(entry->end <= start ||
2149 			    entry->start == entry->end ||
2150 			    UVM_ET_ISHOLE(entry));
2151 		}
2152 	} else {
2153 		vaddr_t a;
2154 		for (a = start; a < end; a += PAGE_SIZE)
2155 			KDASSERT(uvm_map_entrybyaddr(&map->addr, a) == NULL);
2156 	}
2157 #endif
2158 }
2159 
2160 /*
2161  * Mark all entries from first until end (exclusive) as pageable.
2162  *
2163  * Lock must be exclusive on entry and will not be touched.
2164  */
2165 void
2166 uvm_map_pageable_pgon(struct vm_map *map, struct vm_map_entry *first,
2167     struct vm_map_entry *end, vaddr_t start_addr, vaddr_t end_addr)
2168 {
2169 	struct vm_map_entry *iter;
2170 
2171 	for (iter = first; iter != end;
2172 	    iter = RBT_NEXT(uvm_map_addr, iter)) {
2173 		KDASSERT(iter->start >= start_addr && iter->end <= end_addr);
2174 		if (!VM_MAPENT_ISWIRED(iter) || UVM_ET_ISHOLE(iter))
2175 			continue;
2176 
2177 		iter->wired_count = 0;
2178 		uvm_fault_unwire_locked(map, iter->start, iter->end);
2179 	}
2180 }
2181 
2182 /*
2183  * Mark all entries from first until end (exclusive) as wired.
2184  *
2185  * Lockflags determines the lock state on return from this function.
2186  * Lock must be exclusive on entry.
2187  */
2188 int
2189 uvm_map_pageable_wire(struct vm_map *map, struct vm_map_entry *first,
2190     struct vm_map_entry *end, vaddr_t start_addr, vaddr_t end_addr,
2191     int lockflags)
2192 {
2193 	struct vm_map_entry *iter;
2194 #ifdef DIAGNOSTIC
2195 	unsigned int timestamp_save;
2196 #endif
2197 	int error;
2198 
2199 	/*
2200 	 * Wire pages in two passes:
2201 	 *
2202 	 * 1: holding the write lock, we create any anonymous maps that need
2203 	 *    to be created.  then we clip each map entry to the region to
2204 	 *    be wired and increment its wiring count.
2205 	 *
2206 	 * 2: we downgrade to a read lock, and call uvm_fault_wire to fault
2207 	 *    in the pages for any newly wired area (wired_count == 1).
2208 	 *
2209 	 *    downgrading to a read lock for uvm_fault_wire avoids a possible
2210 	 *    deadlock with another thread that may have faulted on one of
2211 	 *    the pages to be wired (it would mark the page busy, blocking
2212 	 *    us, then in turn block on the map lock that we hold).
2213 	 *    because we keep the read lock on the map, the copy-on-write
2214 	 *    status of the entries we modify here cannot change.
2215 	 */
2216 	for (iter = first; iter != end;
2217 	    iter = RBT_NEXT(uvm_map_addr, iter)) {
2218 		KDASSERT(iter->start >= start_addr && iter->end <= end_addr);
2219 		if (UVM_ET_ISHOLE(iter) || iter->start == iter->end ||
2220 		    iter->protection == PROT_NONE)
2221 			continue;
2222 
2223 		/*
2224 		 * Perform actions of vm_map_lookup that need the write lock.
2225 		 * - create an anonymous map for copy-on-write
2226 		 * - anonymous map for zero-fill
2227 		 * Skip submaps.
2228 		 */
2229 		if (!VM_MAPENT_ISWIRED(iter) && !UVM_ET_ISSUBMAP(iter) &&
2230 		    UVM_ET_ISNEEDSCOPY(iter) &&
2231 		    ((iter->protection & PROT_WRITE) ||
2232 		    iter->object.uvm_obj == NULL)) {
2233 			amap_copy(map, iter, M_WAITOK,
2234 			    UVM_ET_ISSTACK(iter) ? FALSE : TRUE,
2235 			    iter->start, iter->end);
2236 		}
2237 		iter->wired_count++;
2238 	}
2239 
2240 	/*
2241 	 * Pass 2.
2242 	 */
2243 #ifdef DIAGNOSTIC
2244 	timestamp_save = map->timestamp;
2245 #endif
2246 	vm_map_busy(map);
2247 	vm_map_downgrade(map);
2248 
2249 	error = 0;
2250 	for (iter = first; error == 0 && iter != end;
2251 	    iter = RBT_NEXT(uvm_map_addr, iter)) {
2252 		if (UVM_ET_ISHOLE(iter) || iter->start == iter->end ||
2253 		    iter->protection == PROT_NONE)
2254 			continue;
2255 
2256 		error = uvm_fault_wire(map, iter->start, iter->end,
2257 		    iter->protection);
2258 	}
2259 
2260 	if (error) {
2261 		/*
2262 		 * uvm_fault_wire failure
2263 		 *
2264 		 * Reacquire lock and undo our work.
2265 		 */
2266 		vm_map_upgrade(map);
2267 		vm_map_unbusy(map);
2268 #ifdef DIAGNOSTIC
2269 		if (timestamp_save != map->timestamp)
2270 			panic("uvm_map_pageable_wire: stale map");
2271 #endif
2272 
2273 		/*
2274 		 * first is no longer needed to restart loops.
2275 		 * Use it as iterator to unmap successful mappings.
2276 		 */
2277 		for (; first != iter;
2278 		    first = RBT_NEXT(uvm_map_addr, first)) {
2279 			if (UVM_ET_ISHOLE(first) ||
2280 			    first->start == first->end ||
2281 			    first->protection == PROT_NONE)
2282 				continue;
2283 
2284 			first->wired_count--;
2285 			if (!VM_MAPENT_ISWIRED(first)) {
2286 				uvm_fault_unwire_locked(map,
2287 				    iter->start, iter->end);
2288 			}
2289 		}
2290 
2291 		/* decrease counter in the rest of the entries */
2292 		for (; iter != end;
2293 		    iter = RBT_NEXT(uvm_map_addr, iter)) {
2294 			if (UVM_ET_ISHOLE(iter) || iter->start == iter->end ||
2295 			    iter->protection == PROT_NONE)
2296 				continue;
2297 
2298 			iter->wired_count--;
2299 		}
2300 
2301 		if ((lockflags & UVM_LK_EXIT) == 0)
2302 			vm_map_unlock(map);
2303 		return error;
2304 	}
2305 
2306 	/* We are currently holding a read lock. */
2307 	if ((lockflags & UVM_LK_EXIT) == 0) {
2308 		vm_map_unbusy(map);
2309 		vm_map_unlock_read(map);
2310 	} else {
2311 		vm_map_upgrade(map);
2312 		vm_map_unbusy(map);
2313 #ifdef DIAGNOSTIC
2314 		if (timestamp_save != map->timestamp)
2315 			panic("uvm_map_pageable_wire: stale map");
2316 #endif
2317 	}
2318 	return 0;
2319 }
2320 
2321 /*
2322  * uvm_map_pageable: set pageability of a range in a map.
2323  *
2324  * Flags:
2325  * UVM_LK_ENTER: map is already locked by caller
2326  * UVM_LK_EXIT:  don't unlock map on exit
2327  *
2328  * The full range must be in use (entries may not have fspace != 0).
2329  * UVM_ET_HOLE counts as unmapped.
2330  */
2331 int
2332 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
2333     boolean_t new_pageable, int lockflags)
2334 {
2335 	struct vm_map_entry *first, *last, *tmp;
2336 	int error;
2337 
2338 	start = trunc_page(start);
2339 	end = round_page(end);
2340 
2341 	if (start > end)
2342 		return EINVAL;
2343 	if (start == end)
2344 		return 0;	/* nothing to do */
2345 	if (start < map->min_offset)
2346 		return EFAULT; /* why? see first XXX below */
2347 	if (end > map->max_offset)
2348 		return EINVAL; /* why? see second XXX below */
2349 
2350 	KASSERT(map->flags & VM_MAP_PAGEABLE);
2351 	if ((lockflags & UVM_LK_ENTER) == 0)
2352 		vm_map_lock(map);
2353 
2354 	/*
2355 	 * Find first entry.
2356 	 *
2357 	 * Initial test on start is different, because of the different
2358 	 * error returned. Rest is tested further down.
2359 	 */
2360 	first = uvm_map_entrybyaddr(&map->addr, start);
2361 	if (first->end <= start || UVM_ET_ISHOLE(first)) {
2362 		/*
2363 		 * XXX if the first address is not mapped, it is EFAULT?
2364 		 */
2365 		error = EFAULT;
2366 		goto out;
2367 	}
2368 
2369 	/* Check that the range has no holes. */
2370 	for (last = first; last != NULL && last->start < end;
2371 	    last = RBT_NEXT(uvm_map_addr, last)) {
2372 		if (UVM_ET_ISHOLE(last) ||
2373 		    (last->end < end && VMMAP_FREE_END(last) != last->end)) {
2374 			/*
2375 			 * XXX unmapped memory in range, why is it EINVAL
2376 			 * instead of EFAULT?
2377 			 */
2378 			error = EINVAL;
2379 			goto out;
2380 		}
2381 	}
2382 
2383 	/*
2384 	 * Last ended at the first entry after the range.
2385 	 * Move back one step.
2386 	 *
2387 	 * Note that last may be NULL.
2388 	 */
2389 	if (last == NULL) {
2390 		last = RBT_MAX(uvm_map_addr, &map->addr);
2391 		if (last->end < end) {
2392 			error = EINVAL;
2393 			goto out;
2394 		}
2395 	} else {
2396 		KASSERT(last != first);
2397 		last = RBT_PREV(uvm_map_addr, last);
2398 	}
2399 
2400 	/* Wire/unwire pages here. */
2401 	if (new_pageable) {
2402 		/*
2403 		 * Mark pageable.
2404 		 * entries that are not wired are untouched.
2405 		 */
2406 		if (VM_MAPENT_ISWIRED(first))
2407 			UVM_MAP_CLIP_START(map, first, start);
2408 		/*
2409 		 * Split last at end.
2410 		 * Make tmp be the first entry after what is to be touched.
2411 		 * If last is not wired, don't touch it.
2412 		 */
2413 		if (VM_MAPENT_ISWIRED(last)) {
2414 			UVM_MAP_CLIP_END(map, last, end);
2415 			tmp = RBT_NEXT(uvm_map_addr, last);
2416 		} else
2417 			tmp = last;
2418 
2419 		uvm_map_pageable_pgon(map, first, tmp, start, end);
2420 		error = 0;
2421 
2422 out:
2423 		if ((lockflags & UVM_LK_EXIT) == 0)
2424 			vm_map_unlock(map);
2425 		return error;
2426 	} else {
2427 		/*
2428 		 * Mark entries wired.
2429 		 * entries are always touched (because recovery needs this).
2430 		 */
2431 		if (!VM_MAPENT_ISWIRED(first))
2432 			UVM_MAP_CLIP_START(map, first, start);
2433 		/*
2434 		 * Split last at end.
2435 		 * Make tmp be the first entry after what is to be touched.
2436 		 * If last is not wired, don't touch it.
2437 		 */
2438 		if (!VM_MAPENT_ISWIRED(last)) {
2439 			UVM_MAP_CLIP_END(map, last, end);
2440 			tmp = RBT_NEXT(uvm_map_addr, last);
2441 		} else
2442 			tmp = last;
2443 
2444 		return uvm_map_pageable_wire(map, first, tmp, start, end,
2445 		    lockflags);
2446 	}
2447 }
2448 
2449 /*
2450  * uvm_map_pageable_all: special case of uvm_map_pageable - affects
2451  * all mapped regions.
2452  *
2453  * Map must not be locked.
2454  * If no flags are specified, all ragions are unwired.
2455  */
2456 int
2457 uvm_map_pageable_all(struct vm_map *map, int flags, vsize_t limit)
2458 {
2459 	vsize_t size;
2460 	struct vm_map_entry *iter;
2461 
2462 	KASSERT(map->flags & VM_MAP_PAGEABLE);
2463 	vm_map_lock(map);
2464 
2465 	if (flags == 0) {
2466 		uvm_map_pageable_pgon(map, RBT_MIN(uvm_map_addr, &map->addr),
2467 		    NULL, map->min_offset, map->max_offset);
2468 
2469 		vm_map_modflags(map, 0, VM_MAP_WIREFUTURE);
2470 		vm_map_unlock(map);
2471 		return 0;
2472 	}
2473 
2474 	if (flags & MCL_FUTURE)
2475 		vm_map_modflags(map, VM_MAP_WIREFUTURE, 0);
2476 	if (!(flags & MCL_CURRENT)) {
2477 		vm_map_unlock(map);
2478 		return 0;
2479 	}
2480 
2481 	/*
2482 	 * Count number of pages in all non-wired entries.
2483 	 * If the number exceeds the limit, abort.
2484 	 */
2485 	size = 0;
2486 	RBT_FOREACH(iter, uvm_map_addr, &map->addr) {
2487 		if (VM_MAPENT_ISWIRED(iter) || UVM_ET_ISHOLE(iter))
2488 			continue;
2489 
2490 		size += iter->end - iter->start;
2491 	}
2492 
2493 	if (atop(size) + uvmexp.wired > uvmexp.wiredmax) {
2494 		vm_map_unlock(map);
2495 		return ENOMEM;
2496 	}
2497 
2498 	/* XXX non-pmap_wired_count case must be handled by caller */
2499 #ifdef pmap_wired_count
2500 	if (limit != 0 &&
2501 	    size + ptoa(pmap_wired_count(vm_map_pmap(map))) > limit) {
2502 		vm_map_unlock(map);
2503 		return ENOMEM;
2504 	}
2505 #endif
2506 
2507 	/*
2508 	 * uvm_map_pageable_wire will release lcok
2509 	 */
2510 	return uvm_map_pageable_wire(map, RBT_MIN(uvm_map_addr, &map->addr),
2511 	    NULL, map->min_offset, map->max_offset, 0);
2512 }
2513 
2514 /*
2515  * Initialize map.
2516  *
2517  * Allocates sufficient entries to describe the free memory in the map.
2518  */
2519 void
2520 uvm_map_setup(struct vm_map *map, vaddr_t min, vaddr_t max, int flags)
2521 {
2522 	int i;
2523 
2524 	KASSERT((min & (vaddr_t)PAGE_MASK) == 0);
2525 	KASSERT((max & (vaddr_t)PAGE_MASK) == 0 ||
2526 	    (max & (vaddr_t)PAGE_MASK) == (vaddr_t)PAGE_MASK);
2527 
2528 	/*
2529 	 * Update parameters.
2530 	 *
2531 	 * This code handles (vaddr_t)-1 and other page mask ending addresses
2532 	 * properly.
2533 	 * We lose the top page if the full virtual address space is used.
2534 	 */
2535 	if (max & (vaddr_t)PAGE_MASK) {
2536 		max += 1;
2537 		if (max == 0) /* overflow */
2538 			max -= PAGE_SIZE;
2539 	}
2540 
2541 	RBT_INIT(uvm_map_addr, &map->addr);
2542 	map->uaddr_exe = NULL;
2543 	for (i = 0; i < nitems(map->uaddr_any); ++i)
2544 		map->uaddr_any[i] = NULL;
2545 	map->uaddr_brk_stack = NULL;
2546 
2547 	map->size = 0;
2548 	map->ref_count = 0;
2549 	map->min_offset = min;
2550 	map->max_offset = max;
2551 	map->b_start = map->b_end = 0; /* Empty brk() area by default. */
2552 	map->s_start = map->s_end = 0; /* Empty stack area by default. */
2553 	map->flags = flags;
2554 	map->timestamp = 0;
2555 	rw_init_flags(&map->lock, "vmmaplk", RWL_DUPOK);
2556 	mtx_init(&map->mtx, IPL_VM);
2557 	mtx_init(&map->flags_lock, IPL_VM);
2558 
2559 	/* Configure the allocators. */
2560 	if (flags & VM_MAP_ISVMSPACE)
2561 		uvm_map_setup_md(map);
2562 	else
2563 		map->uaddr_any[3] = &uaddr_kbootstrap;
2564 
2565 	/*
2566 	 * Fill map entries.
2567 	 * We do not need to write-lock the map here because only the current
2568 	 * thread sees it right now. Initialize ref_count to 0 above to avoid
2569 	 * bogus triggering of lock-not-held assertions.
2570 	 */
2571 	uvm_map_setup_entries(map);
2572 	uvm_tree_sanity(map, __FILE__, __LINE__);
2573 	map->ref_count = 1;
2574 }
2575 
2576 /*
2577  * Destroy the map.
2578  *
2579  * This is the inverse operation to uvm_map_setup.
2580  */
2581 void
2582 uvm_map_teardown(struct vm_map *map)
2583 {
2584 	struct uvm_map_deadq	 dead_entries;
2585 	struct vm_map_entry	*entry, *tmp;
2586 #ifdef VMMAP_DEBUG
2587 	size_t			 numq, numt;
2588 #endif
2589 	int			 i;
2590 
2591 	KERNEL_ASSERT_LOCKED();
2592 	KERNEL_UNLOCK();
2593 	KERNEL_ASSERT_UNLOCKED();
2594 
2595 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2596 
2597 	/* Remove address selectors. */
2598 	uvm_addr_destroy(map->uaddr_exe);
2599 	map->uaddr_exe = NULL;
2600 	for (i = 0; i < nitems(map->uaddr_any); i++) {
2601 		uvm_addr_destroy(map->uaddr_any[i]);
2602 		map->uaddr_any[i] = NULL;
2603 	}
2604 	uvm_addr_destroy(map->uaddr_brk_stack);
2605 	map->uaddr_brk_stack = NULL;
2606 
2607 	/*
2608 	 * Remove entries.
2609 	 *
2610 	 * The following is based on graph breadth-first search.
2611 	 *
2612 	 * In color terms:
2613 	 * - the dead_entries set contains all nodes that are reachable
2614 	 *   (i.e. both the black and the grey nodes)
2615 	 * - any entry not in dead_entries is white
2616 	 * - any entry that appears in dead_entries before entry,
2617 	 *   is black, the rest is grey.
2618 	 * The set [entry, end] is also referred to as the wavefront.
2619 	 *
2620 	 * Since the tree is always a fully connected graph, the breadth-first
2621 	 * search guarantees that each vmmap_entry is visited exactly once.
2622 	 * The vm_map is broken down in linear time.
2623 	 */
2624 	TAILQ_INIT(&dead_entries);
2625 	if ((entry = RBT_ROOT(uvm_map_addr, &map->addr)) != NULL)
2626 		DEAD_ENTRY_PUSH(&dead_entries, entry);
2627 	while (entry != NULL) {
2628 		sched_pause(yield);
2629 		uvm_unmap_kill_entry(map, entry);
2630 		if ((tmp = RBT_LEFT(uvm_map_addr, entry)) != NULL)
2631 			DEAD_ENTRY_PUSH(&dead_entries, tmp);
2632 		if ((tmp = RBT_RIGHT(uvm_map_addr, entry)) != NULL)
2633 			DEAD_ENTRY_PUSH(&dead_entries, tmp);
2634 		/* Update wave-front. */
2635 		entry = TAILQ_NEXT(entry, dfree.deadq);
2636 	}
2637 
2638 #ifdef VMMAP_DEBUG
2639 	numt = numq = 0;
2640 	RBT_FOREACH(entry, uvm_map_addr, &map->addr)
2641 		numt++;
2642 	TAILQ_FOREACH(entry, &dead_entries, dfree.deadq)
2643 		numq++;
2644 	KASSERT(numt == numq);
2645 #endif
2646 	uvm_unmap_detach(&dead_entries, UVM_PLA_WAITOK);
2647 
2648 	KERNEL_LOCK();
2649 
2650 	pmap_destroy(map->pmap);
2651 	map->pmap = NULL;
2652 }
2653 
2654 /*
2655  * Populate map with free-memory entries.
2656  *
2657  * Map must be initialized and empty.
2658  */
2659 void
2660 uvm_map_setup_entries(struct vm_map *map)
2661 {
2662 	KDASSERT(RBT_EMPTY(uvm_map_addr, &map->addr));
2663 
2664 	uvm_map_fix_space(map, NULL, map->min_offset, map->max_offset, 0);
2665 }
2666 
2667 /*
2668  * Split entry at given address.
2669  *
2670  * orig:  entry that is to be split.
2671  * next:  a newly allocated map entry that is not linked.
2672  * split: address at which the split is done.
2673  */
2674 void
2675 uvm_map_splitentry(struct vm_map *map, struct vm_map_entry *orig,
2676     struct vm_map_entry *next, vaddr_t split)
2677 {
2678 	struct uvm_addr_state *free, *free_before;
2679 	vsize_t adj;
2680 
2681 	if ((split & PAGE_MASK) != 0) {
2682 		panic("uvm_map_splitentry: split address 0x%lx "
2683 		    "not on page boundary!", split);
2684 	}
2685 	KDASSERT(map != NULL && orig != NULL && next != NULL);
2686 	uvm_tree_sanity(map, __FILE__, __LINE__);
2687 	KASSERT(orig->start < split && VMMAP_FREE_END(orig) > split);
2688 
2689 #ifdef VMMAP_DEBUG
2690 	KDASSERT(RBT_FIND(uvm_map_addr, &map->addr, orig) == orig);
2691 	KDASSERT(RBT_FIND(uvm_map_addr, &map->addr, next) != next);
2692 #endif /* VMMAP_DEBUG */
2693 
2694 	/*
2695 	 * Free space will change, unlink from free space tree.
2696 	 */
2697 	free = uvm_map_uaddr_e(map, orig);
2698 	uvm_mapent_free_remove(map, free, orig);
2699 
2700 	adj = split - orig->start;
2701 
2702 	uvm_mapent_copy(orig, next);
2703 	if (split >= orig->end) {
2704 		next->etype = 0;
2705 		next->offset = 0;
2706 		next->wired_count = 0;
2707 		next->start = next->end = split;
2708 		next->guard = 0;
2709 		next->fspace = VMMAP_FREE_END(orig) - split;
2710 		next->aref.ar_amap = NULL;
2711 		next->aref.ar_pageoff = 0;
2712 		orig->guard = MIN(orig->guard, split - orig->end);
2713 		orig->fspace = split - VMMAP_FREE_START(orig);
2714 	} else {
2715 		orig->fspace = 0;
2716 		orig->guard = 0;
2717 		orig->end = next->start = split;
2718 
2719 		if (next->aref.ar_amap) {
2720 			KERNEL_LOCK();
2721 			amap_splitref(&orig->aref, &next->aref, adj);
2722 			KERNEL_UNLOCK();
2723 		}
2724 		if (UVM_ET_ISSUBMAP(orig)) {
2725 			uvm_map_reference(next->object.sub_map);
2726 			next->offset += adj;
2727 		} else if (UVM_ET_ISOBJ(orig)) {
2728 			if (next->object.uvm_obj->pgops &&
2729 			    next->object.uvm_obj->pgops->pgo_reference) {
2730 				KERNEL_LOCK();
2731 				next->object.uvm_obj->pgops->pgo_reference(
2732 				    next->object.uvm_obj);
2733 				KERNEL_UNLOCK();
2734 			}
2735 			next->offset += adj;
2736 		}
2737 	}
2738 
2739 	/*
2740 	 * Link next into address tree.
2741 	 * Link orig and next into free-space tree.
2742 	 *
2743 	 * Don't insert 'next' into the addr tree until orig has been linked,
2744 	 * in case the free-list looks at adjecent entries in the addr tree
2745 	 * for its decisions.
2746 	 */
2747 	if (orig->fspace > 0)
2748 		free_before = free;
2749 	else
2750 		free_before = uvm_map_uaddr_e(map, orig);
2751 	uvm_mapent_free_insert(map, free_before, orig);
2752 	uvm_mapent_addr_insert(map, next);
2753 	uvm_mapent_free_insert(map, free, next);
2754 
2755 	uvm_tree_sanity(map, __FILE__, __LINE__);
2756 }
2757 
2758 
2759 #ifdef VMMAP_DEBUG
2760 
2761 void
2762 uvm_tree_assert(struct vm_map *map, int test, char *test_str,
2763     char *file, int line)
2764 {
2765 	char* map_special;
2766 
2767 	if (test)
2768 		return;
2769 
2770 	if (map == kernel_map)
2771 		map_special = " (kernel_map)";
2772 	else if (map == kmem_map)
2773 		map_special = " (kmem_map)";
2774 	else
2775 		map_special = "";
2776 	panic("uvm_tree_sanity %p%s (%s %d): %s", map, map_special, file,
2777 	    line, test_str);
2778 }
2779 
2780 /*
2781  * Check that map is sane.
2782  */
2783 void
2784 uvm_tree_sanity(struct vm_map *map, char *file, int line)
2785 {
2786 	struct vm_map_entry	*iter;
2787 	vaddr_t			 addr;
2788 	vaddr_t			 min, max, bound; /* Bounds checker. */
2789 	struct uvm_addr_state	*free;
2790 
2791 	addr = vm_map_min(map);
2792 	RBT_FOREACH(iter, uvm_map_addr, &map->addr) {
2793 		/*
2794 		 * Valid start, end.
2795 		 * Catch overflow for end+fspace.
2796 		 */
2797 		UVM_ASSERT(map, iter->end >= iter->start, file, line);
2798 		UVM_ASSERT(map, VMMAP_FREE_END(iter) >= iter->end, file, line);
2799 
2800 		/* May not be empty. */
2801 		UVM_ASSERT(map, iter->start < VMMAP_FREE_END(iter),
2802 		    file, line);
2803 
2804 		/* Addresses for entry must lie within map boundaries. */
2805 		UVM_ASSERT(map, iter->start >= vm_map_min(map) &&
2806 		    VMMAP_FREE_END(iter) <= vm_map_max(map), file, line);
2807 
2808 		/* Tree may not have gaps. */
2809 		UVM_ASSERT(map, iter->start == addr, file, line);
2810 		addr = VMMAP_FREE_END(iter);
2811 
2812 		/*
2813 		 * Free space may not cross boundaries, unless the same
2814 		 * free list is used on both sides of the border.
2815 		 */
2816 		min = VMMAP_FREE_START(iter);
2817 		max = VMMAP_FREE_END(iter);
2818 
2819 		while (min < max &&
2820 		    (bound = uvm_map_boundary(map, min, max)) != max) {
2821 			UVM_ASSERT(map,
2822 			    uvm_map_uaddr(map, bound - 1) ==
2823 			    uvm_map_uaddr(map, bound),
2824 			    file, line);
2825 			min = bound;
2826 		}
2827 
2828 		free = uvm_map_uaddr_e(map, iter);
2829 		if (free) {
2830 			UVM_ASSERT(map, (iter->etype & UVM_ET_FREEMAPPED) != 0,
2831 			    file, line);
2832 		} else {
2833 			UVM_ASSERT(map, (iter->etype & UVM_ET_FREEMAPPED) == 0,
2834 			    file, line);
2835 		}
2836 	}
2837 	UVM_ASSERT(map, addr == vm_map_max(map), file, line);
2838 }
2839 
2840 void
2841 uvm_tree_size_chk(struct vm_map *map, char *file, int line)
2842 {
2843 	struct vm_map_entry *iter;
2844 	vsize_t size;
2845 
2846 	size = 0;
2847 	RBT_FOREACH(iter, uvm_map_addr, &map->addr) {
2848 		if (!UVM_ET_ISHOLE(iter))
2849 			size += iter->end - iter->start;
2850 	}
2851 
2852 	if (map->size != size)
2853 		printf("map size = 0x%lx, should be 0x%lx\n", map->size, size);
2854 	UVM_ASSERT(map, map->size == size, file, line);
2855 
2856 	vmspace_validate(map);
2857 }
2858 
2859 /*
2860  * This function validates the statistics on vmspace.
2861  */
2862 void
2863 vmspace_validate(struct vm_map *map)
2864 {
2865 	struct vmspace *vm;
2866 	struct vm_map_entry *iter;
2867 	vaddr_t imin, imax;
2868 	vaddr_t stack_begin, stack_end; /* Position of stack. */
2869 	vsize_t stack, heap; /* Measured sizes. */
2870 
2871 	if (!(map->flags & VM_MAP_ISVMSPACE))
2872 		return;
2873 
2874 	vm = (struct vmspace *)map;
2875 	stack_begin = MIN((vaddr_t)vm->vm_maxsaddr, (vaddr_t)vm->vm_minsaddr);
2876 	stack_end = MAX((vaddr_t)vm->vm_maxsaddr, (vaddr_t)vm->vm_minsaddr);
2877 
2878 	stack = heap = 0;
2879 	RBT_FOREACH(iter, uvm_map_addr, &map->addr) {
2880 		imin = imax = iter->start;
2881 
2882 		if (UVM_ET_ISHOLE(iter) || iter->object.uvm_obj != NULL)
2883 			continue;
2884 
2885 		/*
2886 		 * Update stack, heap.
2887 		 * Keep in mind that (theoretically) the entries of
2888 		 * userspace and stack may be joined.
2889 		 */
2890 		while (imin != iter->end) {
2891 			/*
2892 			 * Set imax to the first boundary crossed between
2893 			 * imin and stack addresses.
2894 			 */
2895 			imax = iter->end;
2896 			if (imin < stack_begin && imax > stack_begin)
2897 				imax = stack_begin;
2898 			else if (imin < stack_end && imax > stack_end)
2899 				imax = stack_end;
2900 
2901 			if (imin >= stack_begin && imin < stack_end)
2902 				stack += imax - imin;
2903 			else
2904 				heap += imax - imin;
2905 			imin = imax;
2906 		}
2907 	}
2908 
2909 	heap >>= PAGE_SHIFT;
2910 	if (heap != vm->vm_dused) {
2911 		printf("vmspace stack range: 0x%lx-0x%lx\n",
2912 		    stack_begin, stack_end);
2913 		panic("vmspace_validate: vmspace.vm_dused invalid, "
2914 		    "expected %ld pgs, got %ld pgs in map %p",
2915 		    heap, vm->vm_dused,
2916 		    map);
2917 	}
2918 }
2919 
2920 #endif /* VMMAP_DEBUG */
2921 
2922 /*
2923  * uvm_map_init: init mapping system at boot time.   note that we allocate
2924  * and init the static pool of structs vm_map_entry for the kernel here.
2925  */
2926 void
2927 uvm_map_init(void)
2928 {
2929 	static struct vm_map_entry kernel_map_entry[MAX_KMAPENT];
2930 	int lcv;
2931 
2932 	/* now set up static pool of kernel map entries ... */
2933 	mtx_init(&uvm_kmapent_mtx, IPL_VM);
2934 	SLIST_INIT(&uvm.kentry_free);
2935 	for (lcv = 0 ; lcv < MAX_KMAPENT ; lcv++) {
2936 		SLIST_INSERT_HEAD(&uvm.kentry_free,
2937 		    &kernel_map_entry[lcv], daddrs.addr_kentry);
2938 	}
2939 
2940 	/* initialize the map-related pools. */
2941 	pool_init(&uvm_vmspace_pool, sizeof(struct vmspace), 0,
2942 	    IPL_NONE, PR_WAITOK, "vmsppl", NULL);
2943 	pool_init(&uvm_map_entry_pool, sizeof(struct vm_map_entry), 0,
2944 	    IPL_VM, PR_WAITOK, "vmmpepl", NULL);
2945 	pool_init(&uvm_map_entry_kmem_pool, sizeof(struct vm_map_entry), 0,
2946 	    IPL_VM, 0, "vmmpekpl", NULL);
2947 	pool_sethiwat(&uvm_map_entry_pool, 8192);
2948 
2949 	uvm_addr_init();
2950 }
2951 
2952 #if defined(DDB)
2953 
2954 /*
2955  * DDB hooks
2956  */
2957 
2958 /*
2959  * uvm_map_printit: actually prints the map
2960  */
2961 void
2962 uvm_map_printit(struct vm_map *map, boolean_t full,
2963     int (*pr)(const char *, ...))
2964 {
2965 	struct vmspace			*vm;
2966 	struct vm_map_entry		*entry;
2967 	struct uvm_addr_state		*free;
2968 	int				 in_free, i;
2969 	char				 buf[8];
2970 
2971 	(*pr)("MAP %p: [0x%lx->0x%lx]\n", map, map->min_offset,map->max_offset);
2972 	(*pr)("\tbrk() allocate range: 0x%lx-0x%lx\n",
2973 	    map->b_start, map->b_end);
2974 	(*pr)("\tstack allocate range: 0x%lx-0x%lx\n",
2975 	    map->s_start, map->s_end);
2976 	(*pr)("\tsz=%u, ref=%d, version=%u, flags=0x%x\n",
2977 	    map->size, map->ref_count, map->timestamp,
2978 	    map->flags);
2979 	(*pr)("\tpmap=%p(resident=%d)\n", map->pmap,
2980 	    pmap_resident_count(map->pmap));
2981 
2982 	/* struct vmspace handling. */
2983 	if (map->flags & VM_MAP_ISVMSPACE) {
2984 		vm = (struct vmspace *)map;
2985 
2986 		(*pr)("\tvm_refcnt=%d vm_shm=%p vm_rssize=%u vm_swrss=%u\n",
2987 		    vm->vm_refcnt, vm->vm_shm, vm->vm_rssize, vm->vm_swrss);
2988 		(*pr)("\tvm_tsize=%u vm_dsize=%u\n",
2989 		    vm->vm_tsize, vm->vm_dsize);
2990 		(*pr)("\tvm_taddr=%p vm_daddr=%p\n",
2991 		    vm->vm_taddr, vm->vm_daddr);
2992 		(*pr)("\tvm_maxsaddr=%p vm_minsaddr=%p\n",
2993 		    vm->vm_maxsaddr, vm->vm_minsaddr);
2994 	}
2995 
2996 	if (!full)
2997 		goto print_uaddr;
2998 	RBT_FOREACH(entry, uvm_map_addr, &map->addr) {
2999 		(*pr)(" - %p: 0x%lx->0x%lx: obj=%p/0x%llx, amap=%p/%d\n",
3000 		    entry, entry->start, entry->end, entry->object.uvm_obj,
3001 		    (long long)entry->offset, entry->aref.ar_amap,
3002 		    entry->aref.ar_pageoff);
3003 		(*pr)("\tsubmap=%c, cow=%c, nc=%c, stack=%c, prot(max)=%d/%d, inh=%d, "
3004 		    "wc=%d, adv=%d\n",
3005 		    (entry->etype & UVM_ET_SUBMAP) ? 'T' : 'F',
3006 		    (entry->etype & UVM_ET_COPYONWRITE) ? 'T' : 'F',
3007 		    (entry->etype & UVM_ET_NEEDSCOPY) ? 'T' : 'F',
3008 		    (entry->etype & UVM_ET_STACK) ? 'T' : 'F',
3009 		    entry->protection, entry->max_protection,
3010 		    entry->inheritance, entry->wired_count, entry->advice);
3011 
3012 		free = uvm_map_uaddr_e(map, entry);
3013 		in_free = (free != NULL);
3014 		(*pr)("\thole=%c, free=%c, guard=0x%lx, "
3015 		    "free=0x%lx-0x%lx\n",
3016 		    (entry->etype & UVM_ET_HOLE) ? 'T' : 'F',
3017 		    in_free ? 'T' : 'F',
3018 		    entry->guard,
3019 		    VMMAP_FREE_START(entry), VMMAP_FREE_END(entry));
3020 		(*pr)("\tfspace_augment=%lu\n", entry->fspace_augment);
3021 		(*pr)("\tfreemapped=%c, uaddr=%p\n",
3022 		    (entry->etype & UVM_ET_FREEMAPPED) ? 'T' : 'F', free);
3023 		if (free) {
3024 			(*pr)("\t\t(0x%lx-0x%lx %s)\n",
3025 			    free->uaddr_minaddr, free->uaddr_maxaddr,
3026 			    free->uaddr_functions->uaddr_name);
3027 		}
3028 	}
3029 
3030 print_uaddr:
3031 	uvm_addr_print(map->uaddr_exe, "exe", full, pr);
3032 	for (i = 0; i < nitems(map->uaddr_any); i++) {
3033 		snprintf(&buf[0], sizeof(buf), "any[%d]", i);
3034 		uvm_addr_print(map->uaddr_any[i], &buf[0], full, pr);
3035 	}
3036 	uvm_addr_print(map->uaddr_brk_stack, "brk/stack", full, pr);
3037 }
3038 
3039 /*
3040  * uvm_object_printit: actually prints the object
3041  */
3042 void
3043 uvm_object_printit(uobj, full, pr)
3044 	struct uvm_object *uobj;
3045 	boolean_t full;
3046 	int (*pr)(const char *, ...);
3047 {
3048 	struct vm_page *pg;
3049 	int cnt = 0;
3050 
3051 	(*pr)("OBJECT %p: pgops=%p, npages=%d, ",
3052 	    uobj, uobj->pgops, uobj->uo_npages);
3053 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
3054 		(*pr)("refs=<SYSTEM>\n");
3055 	else
3056 		(*pr)("refs=%d\n", uobj->uo_refs);
3057 
3058 	if (!full) {
3059 		return;
3060 	}
3061 	(*pr)("  PAGES <pg,offset>:\n  ");
3062 	RBT_FOREACH(pg, uvm_objtree, &uobj->memt) {
3063 		(*pr)("<%p,0x%llx> ", pg, (long long)pg->offset);
3064 		if ((cnt % 3) == 2) {
3065 			(*pr)("\n  ");
3066 		}
3067 		cnt++;
3068 	}
3069 	if ((cnt % 3) != 2) {
3070 		(*pr)("\n");
3071 	}
3072 }
3073 
3074 /*
3075  * uvm_page_printit: actually print the page
3076  */
3077 static const char page_flagbits[] =
3078 	"\20\1BUSY\2WANTED\3TABLED\4CLEAN\5CLEANCHK\6RELEASED\7FAKE\10RDONLY"
3079 	"\11ZERO\12DEV\15PAGER1\21FREE\22INACTIVE\23ACTIVE\25ANON\26AOBJ"
3080 	"\27ENCRYPT\31PMAP0\32PMAP1\33PMAP2\34PMAP3\35PMAP4\36PMAP5";
3081 
3082 void
3083 uvm_page_printit(pg, full, pr)
3084 	struct vm_page *pg;
3085 	boolean_t full;
3086 	int (*pr)(const char *, ...);
3087 {
3088 	struct vm_page *tpg;
3089 	struct uvm_object *uobj;
3090 	struct pglist *pgl;
3091 
3092 	(*pr)("PAGE %p:\n", pg);
3093 	(*pr)("  flags=%b, vers=%d, wire_count=%d, pa=0x%llx\n",
3094 	    pg->pg_flags, page_flagbits, pg->pg_version, pg->wire_count,
3095 	    (long long)pg->phys_addr);
3096 	(*pr)("  uobject=%p, uanon=%p, offset=0x%llx\n",
3097 	    pg->uobject, pg->uanon, (long long)pg->offset);
3098 #if defined(UVM_PAGE_TRKOWN)
3099 	if (pg->pg_flags & PG_BUSY)
3100 		(*pr)("  owning thread = %d, tag=%s",
3101 		    pg->owner, pg->owner_tag);
3102 	else
3103 		(*pr)("  page not busy, no owner");
3104 #else
3105 	(*pr)("  [page ownership tracking disabled]");
3106 #endif
3107 	(*pr)("\tvm_page_md %p\n", &pg->mdpage);
3108 
3109 	if (!full)
3110 		return;
3111 
3112 	/* cross-verify object/anon */
3113 	if ((pg->pg_flags & PQ_FREE) == 0) {
3114 		if (pg->pg_flags & PQ_ANON) {
3115 			if (pg->uanon == NULL || pg->uanon->an_page != pg)
3116 			    (*pr)("  >>> ANON DOES NOT POINT HERE <<< (%p)\n",
3117 				(pg->uanon) ? pg->uanon->an_page : NULL);
3118 			else
3119 				(*pr)("  anon backpointer is OK\n");
3120 		} else {
3121 			uobj = pg->uobject;
3122 			if (uobj) {
3123 				(*pr)("  checking object list\n");
3124 				RBT_FOREACH(tpg, uvm_objtree, &uobj->memt) {
3125 					if (tpg == pg) {
3126 						break;
3127 					}
3128 				}
3129 				if (tpg)
3130 					(*pr)("  page found on object list\n");
3131 				else
3132 					(*pr)("  >>> PAGE NOT FOUND "
3133 					    "ON OBJECT LIST! <<<\n");
3134 			}
3135 		}
3136 	}
3137 
3138 	/* cross-verify page queue */
3139 	if (pg->pg_flags & PQ_FREE) {
3140 		if (uvm_pmr_isfree(pg))
3141 			(*pr)("  page found in uvm_pmemrange\n");
3142 		else
3143 			(*pr)("  >>> page not found in uvm_pmemrange <<<\n");
3144 		pgl = NULL;
3145 	} else if (pg->pg_flags & PQ_INACTIVE) {
3146 		pgl = (pg->pg_flags & PQ_SWAPBACKED) ?
3147 		    &uvm.page_inactive_swp : &uvm.page_inactive_obj;
3148 	} else if (pg->pg_flags & PQ_ACTIVE) {
3149 		pgl = &uvm.page_active;
3150  	} else {
3151 		pgl = NULL;
3152 	}
3153 
3154 	if (pgl) {
3155 		(*pr)("  checking pageq list\n");
3156 		TAILQ_FOREACH(tpg, pgl, pageq) {
3157 			if (tpg == pg) {
3158 				break;
3159 			}
3160 		}
3161 		if (tpg)
3162 			(*pr)("  page found on pageq list\n");
3163 		else
3164 			(*pr)("  >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
3165 	}
3166 }
3167 #endif
3168 
3169 /*
3170  * uvm_map_protect: change map protection
3171  *
3172  * => set_max means set max_protection.
3173  * => map must be unlocked.
3174  */
3175 int
3176 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
3177     vm_prot_t new_prot, boolean_t set_max)
3178 {
3179 	struct vm_map_entry *first, *iter;
3180 	vm_prot_t old_prot;
3181 	vm_prot_t mask;
3182 	int error;
3183 
3184 	if (start > end)
3185 		return EINVAL;
3186 	start = MAX(start, map->min_offset);
3187 	end = MIN(end, map->max_offset);
3188 	if (start >= end)
3189 		return 0;
3190 
3191 	error = 0;
3192 	vm_map_lock(map);
3193 
3194 	/*
3195 	 * Set up first and last.
3196 	 * - first will contain first entry at or after start.
3197 	 */
3198 	first = uvm_map_entrybyaddr(&map->addr, start);
3199 	KDASSERT(first != NULL);
3200 	if (first->end <= start)
3201 		first = RBT_NEXT(uvm_map_addr, first);
3202 
3203 	/* First, check for protection violations. */
3204 	for (iter = first; iter != NULL && iter->start < end;
3205 	    iter = RBT_NEXT(uvm_map_addr, iter)) {
3206 		/* Treat memory holes as free space. */
3207 		if (iter->start == iter->end || UVM_ET_ISHOLE(iter))
3208 			continue;
3209 
3210 		if (UVM_ET_ISSUBMAP(iter)) {
3211 			error = EINVAL;
3212 			goto out;
3213 		}
3214 		if ((new_prot & iter->max_protection) != new_prot) {
3215 			error = EACCES;
3216 			goto out;
3217 		}
3218 		if (map == kernel_map &&
3219 		    (new_prot & (PROT_WRITE | PROT_EXEC)) == (PROT_WRITE | PROT_EXEC))
3220 			panic("uvm_map_protect: kernel map W^X violation requested");
3221 	}
3222 
3223 	/* Fix protections.  */
3224 	for (iter = first; iter != NULL && iter->start < end;
3225 	    iter = RBT_NEXT(uvm_map_addr, iter)) {
3226 		/* Treat memory holes as free space. */
3227 		if (iter->start == iter->end || UVM_ET_ISHOLE(iter))
3228 			continue;
3229 
3230 		old_prot = iter->protection;
3231 
3232 		/*
3233 		 * Skip adapting protection iff old and new protection
3234 		 * are equal.
3235 		 */
3236 		if (set_max) {
3237 			if (old_prot == (new_prot & old_prot) &&
3238 			    iter->max_protection == new_prot)
3239 				continue;
3240 		} else {
3241 			if (old_prot == new_prot)
3242 				continue;
3243 		}
3244 
3245 		UVM_MAP_CLIP_START(map, iter, start);
3246 		UVM_MAP_CLIP_END(map, iter, end);
3247 
3248 		if (set_max) {
3249 			iter->max_protection = new_prot;
3250 			iter->protection &= new_prot;
3251 		} else
3252 			iter->protection = new_prot;
3253 
3254 		/*
3255 		 * update physical map if necessary.  worry about copy-on-write
3256 		 * here -- CHECK THIS XXX
3257 		 */
3258 		if (iter->protection != old_prot) {
3259 			mask = UVM_ET_ISCOPYONWRITE(iter) ?
3260 			    ~PROT_WRITE : PROT_MASK;
3261 
3262 			/* update pmap */
3263 			if ((iter->protection & mask) == PROT_NONE &&
3264 			    VM_MAPENT_ISWIRED(iter)) {
3265 				/*
3266 				 * TODO(ariane) this is stupid. wired_count
3267 				 * is 0 if not wired, otherwise anything
3268 				 * larger than 0 (incremented once each time
3269 				 * wire is called).
3270 				 * Mostly to be able to undo the damage on
3271 				 * failure. Not the actually be a wired
3272 				 * refcounter...
3273 				 * Originally: iter->wired_count--;
3274 				 * (don't we have to unwire this in the pmap
3275 				 * as well?)
3276 				 */
3277 				iter->wired_count = 0;
3278 			}
3279 			pmap_protect(map->pmap, iter->start, iter->end,
3280 			    iter->protection & mask);
3281 		}
3282 
3283 		/*
3284 		 * If the map is configured to lock any future mappings,
3285 		 * wire this entry now if the old protection was PROT_NONE
3286 		 * and the new protection is not PROT_NONE.
3287 		 */
3288 		if ((map->flags & VM_MAP_WIREFUTURE) != 0 &&
3289 		    VM_MAPENT_ISWIRED(iter) == 0 &&
3290 		    old_prot == PROT_NONE &&
3291 		    new_prot != PROT_NONE) {
3292 			if (uvm_map_pageable(map, iter->start, iter->end,
3293 			    FALSE, UVM_LK_ENTER | UVM_LK_EXIT) != 0) {
3294 				/*
3295 				 * If locking the entry fails, remember the
3296 				 * error if it's the first one.  Note we
3297 				 * still continue setting the protection in
3298 				 * the map, but it will return the resource
3299 				 * storage condition regardless.
3300 				 *
3301 				 * XXX Ignore what the actual error is,
3302 				 * XXX just call it a resource shortage
3303 				 * XXX so that it doesn't get confused
3304 				 * XXX what uvm_map_protect() itself would
3305 				 * XXX normally return.
3306 				 */
3307 				error = ENOMEM;
3308 			}
3309 		}
3310 	}
3311 	pmap_update(map->pmap);
3312 
3313 out:
3314 	vm_map_unlock(map);
3315 	return error;
3316 }
3317 
3318 /*
3319  * uvmspace_alloc: allocate a vmspace structure.
3320  *
3321  * - structure includes vm_map and pmap
3322  * - XXX: no locking on this structure
3323  * - refcnt set to 1, rest must be init'd by caller
3324  */
3325 struct vmspace *
3326 uvmspace_alloc(vaddr_t min, vaddr_t max, boolean_t pageable,
3327     boolean_t remove_holes)
3328 {
3329 	struct vmspace *vm;
3330 
3331 	vm = pool_get(&uvm_vmspace_pool, PR_WAITOK | PR_ZERO);
3332 	uvmspace_init(vm, NULL, min, max, pageable, remove_holes);
3333 	return (vm);
3334 }
3335 
3336 /*
3337  * uvmspace_init: initialize a vmspace structure.
3338  *
3339  * - XXX: no locking on this structure
3340  * - refcnt set to 1, rest must be init'd by caller
3341  */
3342 void
3343 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t min, vaddr_t max,
3344     boolean_t pageable, boolean_t remove_holes)
3345 {
3346 	KASSERT(pmap == NULL || pmap == pmap_kernel());
3347 
3348 	if (pmap)
3349 		pmap_reference(pmap);
3350 	else
3351 		pmap = pmap_create();
3352 	vm->vm_map.pmap = pmap;
3353 
3354 	uvm_map_setup(&vm->vm_map, min, max,
3355 	    (pageable ? VM_MAP_PAGEABLE : 0) | VM_MAP_ISVMSPACE);
3356 
3357 	vm->vm_refcnt = 1;
3358 
3359 	if (remove_holes)
3360 		pmap_remove_holes(vm);
3361 }
3362 
3363 /*
3364  * uvmspace_share: share a vmspace between two processes
3365  *
3366  * - XXX: no locking on vmspace
3367  * - used for vfork
3368  */
3369 
3370 struct vmspace *
3371 uvmspace_share(struct process *pr)
3372 {
3373 	struct vmspace *vm = pr->ps_vmspace;
3374 
3375 	vm->vm_refcnt++;
3376 	return vm;
3377 }
3378 
3379 /*
3380  * uvmspace_exec: the process wants to exec a new program
3381  *
3382  * - XXX: no locking on vmspace
3383  */
3384 
3385 void
3386 uvmspace_exec(struct proc *p, vaddr_t start, vaddr_t end)
3387 {
3388 	struct process *pr = p->p_p;
3389 	struct vmspace *nvm, *ovm = pr->ps_vmspace;
3390 	struct vm_map *map = &ovm->vm_map;
3391 	struct uvm_map_deadq dead_entries;
3392 
3393 	KASSERT((start & (vaddr_t)PAGE_MASK) == 0);
3394 	KASSERT((end & (vaddr_t)PAGE_MASK) == 0 ||
3395 	    (end & (vaddr_t)PAGE_MASK) == (vaddr_t)PAGE_MASK);
3396 
3397 	pmap_unuse_final(p);   /* before stack addresses go away */
3398 	TAILQ_INIT(&dead_entries);
3399 
3400 	/* see if more than one process is using this vmspace...  */
3401 	if (ovm->vm_refcnt == 1) {
3402 		/*
3403 		 * If pr is the only process using its vmspace then
3404 		 * we can safely recycle that vmspace for the program
3405 		 * that is being exec'd.
3406 		 */
3407 
3408 #ifdef SYSVSHM
3409 		/*
3410 		 * SYSV SHM semantics require us to kill all segments on an exec
3411 		 */
3412 		if (ovm->vm_shm)
3413 			shmexit(ovm);
3414 #endif
3415 
3416 		/*
3417 		 * POSIX 1003.1b -- "lock future mappings" is revoked
3418 		 * when a process execs another program image.
3419 		 */
3420 		vm_map_lock(map);
3421 		vm_map_modflags(map, 0, VM_MAP_WIREFUTURE);
3422 
3423 		/*
3424 		 * now unmap the old program
3425 		 *
3426 		 * Instead of attempting to keep the map valid, we simply
3427 		 * nuke all entries and ask uvm_map_setup to reinitialize
3428 		 * the map to the new boundaries.
3429 		 *
3430 		 * uvm_unmap_remove will actually nuke all entries for us
3431 		 * (as in, not replace them with free-memory entries).
3432 		 */
3433 		uvm_unmap_remove(map, map->min_offset, map->max_offset,
3434 		    &dead_entries, TRUE, FALSE);
3435 
3436 		KDASSERT(RBT_EMPTY(uvm_map_addr, &map->addr));
3437 
3438 		/* Nuke statistics and boundaries. */
3439 		memset(&ovm->vm_startcopy, 0,
3440 		    (caddr_t) (ovm + 1) - (caddr_t) &ovm->vm_startcopy);
3441 
3442 
3443 		if (end & (vaddr_t)PAGE_MASK) {
3444 			end += 1;
3445 			if (end == 0) /* overflow */
3446 				end -= PAGE_SIZE;
3447 		}
3448 
3449 		/* Setup new boundaries and populate map with entries. */
3450 		map->min_offset = start;
3451 		map->max_offset = end;
3452 		uvm_map_setup_entries(map);
3453 		vm_map_unlock(map);
3454 
3455 		/* but keep MMU holes unavailable */
3456 		pmap_remove_holes(ovm);
3457 	} else {
3458 		/*
3459 		 * pr's vmspace is being shared, so we can't reuse
3460 		 * it for pr since it is still being used for others.
3461 		 * allocate a new vmspace for pr
3462 		 */
3463 		nvm = uvmspace_alloc(start, end,
3464 		    (map->flags & VM_MAP_PAGEABLE) ? TRUE : FALSE, TRUE);
3465 
3466 		/* install new vmspace and drop our ref to the old one. */
3467 		pmap_deactivate(p);
3468 		p->p_vmspace = pr->ps_vmspace = nvm;
3469 		pmap_activate(p);
3470 
3471 		uvmspace_free(ovm);
3472 	}
3473 
3474 	/* Release dead entries */
3475 	uvm_unmap_detach(&dead_entries, 0);
3476 }
3477 
3478 /*
3479  * uvmspace_free: free a vmspace data structure
3480  *
3481  * - XXX: no locking on vmspace
3482  */
3483 void
3484 uvmspace_free(struct vmspace *vm)
3485 {
3486 	if (--vm->vm_refcnt == 0) {
3487 		/*
3488 		 * lock the map, to wait out all other references to it.  delete
3489 		 * all of the mappings and pages they hold, then call the pmap
3490 		 * module to reclaim anything left.
3491 		 */
3492 #ifdef SYSVSHM
3493 		/* Get rid of any SYSV shared memory segments. */
3494 		if (vm->vm_shm != NULL)
3495 			shmexit(vm);
3496 #endif
3497 
3498 		uvm_map_teardown(&vm->vm_map);
3499 		pool_put(&uvm_vmspace_pool, vm);
3500 	}
3501 }
3502 
3503 /*
3504  * uvm_share: Map the address range [srcaddr, srcaddr + sz) in
3505  * srcmap to the address range [dstaddr, dstaddr + sz) in
3506  * dstmap.
3507  *
3508  * The whole address range in srcmap must be backed by an object
3509  * (no holes).
3510  *
3511  * If successful, the address ranges share memory and the destination
3512  * address range uses the protection flags in prot.
3513  *
3514  * This routine assumes that sz is a multiple of PAGE_SIZE and
3515  * that dstaddr and srcaddr are page-aligned.
3516  */
3517 int
3518 uvm_share(struct vm_map *dstmap, vaddr_t dstaddr, vm_prot_t prot,
3519     struct vm_map *srcmap, vaddr_t srcaddr, vsize_t sz)
3520 {
3521 	int ret = 0;
3522 	vaddr_t unmap_end;
3523 	vaddr_t dstva;
3524 	vsize_t off, len, n = sz;
3525 	struct vm_map_entry *first = NULL, *last = NULL;
3526 	struct vm_map_entry *src_entry, *psrc_entry = NULL;
3527 	struct uvm_map_deadq dead;
3528 
3529 	if (srcaddr >= srcmap->max_offset || sz > srcmap->max_offset - srcaddr)
3530 		return EINVAL;
3531 
3532 	TAILQ_INIT(&dead);
3533 	vm_map_lock(dstmap);
3534 	vm_map_lock_read(srcmap);
3535 
3536 	if (!uvm_map_isavail(dstmap, NULL, &first, &last, dstaddr, sz)) {
3537 		ret = ENOMEM;
3538 		goto exit_unlock;
3539 	}
3540 	if (!uvm_map_lookup_entry(srcmap, srcaddr, &src_entry)) {
3541 		ret = EINVAL;
3542 		goto exit_unlock;
3543 	}
3544 
3545 	unmap_end = dstaddr;
3546 	for (; src_entry != NULL;
3547 	    psrc_entry = src_entry,
3548 	    src_entry = RBT_NEXT(uvm_map_addr, src_entry)) {
3549 		/* hole in address space, bail out */
3550 		if (psrc_entry != NULL && psrc_entry->end != src_entry->start)
3551 			break;
3552 		if (src_entry->start >= srcaddr + sz)
3553 			break;
3554 
3555 		if (UVM_ET_ISSUBMAP(src_entry))
3556 			panic("uvm_share: encountered a submap (illegal)");
3557 		if (!UVM_ET_ISCOPYONWRITE(src_entry) &&
3558 		    UVM_ET_ISNEEDSCOPY(src_entry))
3559 			panic("uvm_share: non-copy_on_write map entries "
3560 			    "marked needs_copy (illegal)");
3561 
3562 		dstva = dstaddr;
3563 		if (src_entry->start > srcaddr) {
3564 			dstva += src_entry->start - srcaddr;
3565 			off = 0;
3566 		} else
3567 			off = srcaddr - src_entry->start;
3568 
3569 		if (n < src_entry->end - src_entry->start)
3570 			len = n;
3571 		else
3572 			len = src_entry->end - src_entry->start;
3573 		n -= len;
3574 
3575 		if (uvm_mapent_share(dstmap, dstva, len, off, prot, prot,
3576 		    srcmap, src_entry, &dead) == NULL)
3577 			break;
3578 
3579 		unmap_end = dstva + len;
3580 		if (n == 0)
3581 			goto exit_unlock;
3582 	}
3583 
3584 	ret = EINVAL;
3585 	uvm_unmap_remove(dstmap, dstaddr, unmap_end, &dead, FALSE, TRUE);
3586 
3587 exit_unlock:
3588 	vm_map_unlock_read(srcmap);
3589 	vm_map_unlock(dstmap);
3590 	uvm_unmap_detach(&dead, 0);
3591 
3592 	return ret;
3593 }
3594 
3595 /*
3596  * Clone map entry into other map.
3597  *
3598  * Mapping will be placed at dstaddr, for the same length.
3599  * Space must be available.
3600  * Reference counters are incremented.
3601  */
3602 struct vm_map_entry *
3603 uvm_mapent_clone(struct vm_map *dstmap, vaddr_t dstaddr, vsize_t dstlen,
3604     vsize_t off, vm_prot_t prot, vm_prot_t maxprot,
3605     struct vm_map_entry *old_entry, struct uvm_map_deadq *dead,
3606     int mapent_flags, int amap_share_flags)
3607 {
3608 	struct vm_map_entry *new_entry, *first, *last;
3609 
3610 	KDASSERT(!UVM_ET_ISSUBMAP(old_entry));
3611 
3612 	/* Create new entry (linked in on creation). Fill in first, last. */
3613 	first = last = NULL;
3614 	if (!uvm_map_isavail(dstmap, NULL, &first, &last, dstaddr, dstlen)) {
3615 		panic("uvmspace_fork: no space in map for "
3616 		    "entry in empty map");
3617 	}
3618 	new_entry = uvm_map_mkentry(dstmap, first, last,
3619 	    dstaddr, dstlen, mapent_flags, dead, NULL);
3620 	if (new_entry == NULL)
3621 		return NULL;
3622 	/* old_entry -> new_entry */
3623 	new_entry->object = old_entry->object;
3624 	new_entry->offset = old_entry->offset;
3625 	new_entry->aref = old_entry->aref;
3626 	new_entry->etype |= old_entry->etype & ~UVM_ET_FREEMAPPED;
3627 	new_entry->protection = prot;
3628 	new_entry->max_protection = maxprot;
3629 	new_entry->inheritance = old_entry->inheritance;
3630 	new_entry->advice = old_entry->advice;
3631 
3632 	/* gain reference to object backing the map (can't be a submap). */
3633 	if (new_entry->aref.ar_amap) {
3634 		new_entry->aref.ar_pageoff += off >> PAGE_SHIFT;
3635 		amap_ref(new_entry->aref.ar_amap, new_entry->aref.ar_pageoff,
3636 		    (new_entry->end - new_entry->start) >> PAGE_SHIFT,
3637 		    amap_share_flags);
3638 	}
3639 
3640 	if (UVM_ET_ISOBJ(new_entry) &&
3641 	    new_entry->object.uvm_obj->pgops->pgo_reference) {
3642 		new_entry->offset += off;
3643 		new_entry->object.uvm_obj->pgops->pgo_reference
3644 		    (new_entry->object.uvm_obj);
3645 	}
3646 
3647 	return new_entry;
3648 }
3649 
3650 struct vm_map_entry *
3651 uvm_mapent_share(struct vm_map *dstmap, vaddr_t dstaddr, vsize_t dstlen,
3652     vsize_t off, vm_prot_t prot, vm_prot_t maxprot, struct vm_map *old_map,
3653     struct vm_map_entry *old_entry, struct uvm_map_deadq *dead)
3654 {
3655 	/*
3656 	 * If old_entry refers to a copy-on-write region that has not yet been
3657 	 * written to (needs_copy flag is set), then we need to allocate a new
3658 	 * amap for old_entry.
3659 	 *
3660 	 * If we do not do this, and the process owning old_entry does a copy-on
3661 	 * write later, old_entry and new_entry will refer to different memory
3662 	 * regions, and the memory between the processes is no longer shared.
3663 	 *
3664 	 * [in other words, we need to clear needs_copy]
3665 	 */
3666 
3667 	if (UVM_ET_ISNEEDSCOPY(old_entry)) {
3668 		/* get our own amap, clears needs_copy */
3669 		amap_copy(old_map, old_entry, M_WAITOK, FALSE,
3670 		    0, 0);
3671 		/* XXXCDC: WAITOK??? */
3672 	}
3673 
3674 	return uvm_mapent_clone(dstmap, dstaddr, dstlen, off,
3675 	    prot, maxprot, old_entry, dead, 0, AMAP_SHARED);
3676 }
3677 
3678 /*
3679  * share the mapping: this means we want the old and
3680  * new entries to share amaps and backing objects.
3681  */
3682 struct vm_map_entry *
3683 uvm_mapent_forkshared(struct vmspace *new_vm, struct vm_map *new_map,
3684     struct vm_map *old_map,
3685     struct vm_map_entry *old_entry, struct uvm_map_deadq *dead)
3686 {
3687 	struct vm_map_entry *new_entry;
3688 
3689 	new_entry = uvm_mapent_share(new_map, old_entry->start,
3690 	    old_entry->end - old_entry->start, 0, old_entry->protection,
3691 	    old_entry->max_protection, old_map, old_entry, dead);
3692 
3693 	/*
3694 	 * pmap_copy the mappings: this routine is optional
3695 	 * but if it is there it will reduce the number of
3696 	 * page faults in the new proc.
3697 	 */
3698 	if (!UVM_ET_ISHOLE(new_entry))
3699 		pmap_copy(new_map->pmap, old_map->pmap, new_entry->start,
3700 		    (new_entry->end - new_entry->start), new_entry->start);
3701 
3702 	return (new_entry);
3703 }
3704 
3705 /*
3706  * copy-on-write the mapping (using mmap's
3707  * MAP_PRIVATE semantics)
3708  *
3709  * allocate new_entry, adjust reference counts.
3710  * (note that new references are read-only).
3711  */
3712 struct vm_map_entry *
3713 uvm_mapent_forkcopy(struct vmspace *new_vm, struct vm_map *new_map,
3714     struct vm_map *old_map,
3715     struct vm_map_entry *old_entry, struct uvm_map_deadq *dead)
3716 {
3717 	struct vm_map_entry	*new_entry;
3718 	boolean_t		 protect_child;
3719 
3720 	new_entry = uvm_mapent_clone(new_map, old_entry->start,
3721 	    old_entry->end - old_entry->start, 0, old_entry->protection,
3722 	    old_entry->max_protection, old_entry, dead, 0, 0);
3723 
3724 	new_entry->etype |=
3725 	    (UVM_ET_COPYONWRITE|UVM_ET_NEEDSCOPY);
3726 
3727 	/*
3728 	 * the new entry will need an amap.  it will either
3729 	 * need to be copied from the old entry or created
3730 	 * from scratch (if the old entry does not have an
3731 	 * amap).  can we defer this process until later
3732 	 * (by setting "needs_copy") or do we need to copy
3733 	 * the amap now?
3734 	 *
3735 	 * we must copy the amap now if any of the following
3736 	 * conditions hold:
3737 	 * 1. the old entry has an amap and that amap is
3738 	 *    being shared.  this means that the old (parent)
3739 	 *    process is sharing the amap with another
3740 	 *    process.  if we do not clear needs_copy here
3741 	 *    we will end up in a situation where both the
3742 	 *    parent and child process are referring to the
3743 	 *    same amap with "needs_copy" set.  if the
3744 	 *    parent write-faults, the fault routine will
3745 	 *    clear "needs_copy" in the parent by allocating
3746 	 *    a new amap.   this is wrong because the
3747 	 *    parent is supposed to be sharing the old amap
3748 	 *    and the new amap will break that.
3749 	 *
3750 	 * 2. if the old entry has an amap and a non-zero
3751 	 *    wire count then we are going to have to call
3752 	 *    amap_cow_now to avoid page faults in the
3753 	 *    parent process.   since amap_cow_now requires
3754 	 *    "needs_copy" to be clear we might as well
3755 	 *    clear it here as well.
3756 	 *
3757 	 */
3758 	if (old_entry->aref.ar_amap != NULL &&
3759 	    ((amap_flags(old_entry->aref.ar_amap) &
3760 	    AMAP_SHARED) != 0 ||
3761 	    VM_MAPENT_ISWIRED(old_entry))) {
3762 		amap_copy(new_map, new_entry, M_WAITOK, FALSE,
3763 		    0, 0);
3764 		/* XXXCDC: M_WAITOK ... ok? */
3765 	}
3766 
3767 	/*
3768 	 * if the parent's entry is wired down, then the
3769 	 * parent process does not want page faults on
3770 	 * access to that memory.  this means that we
3771 	 * cannot do copy-on-write because we can't write
3772 	 * protect the old entry.   in this case we
3773 	 * resolve all copy-on-write faults now, using
3774 	 * amap_cow_now.   note that we have already
3775 	 * allocated any needed amap (above).
3776 	 */
3777 	if (VM_MAPENT_ISWIRED(old_entry)) {
3778 		/*
3779 		 * resolve all copy-on-write faults now
3780 		 * (note that there is nothing to do if
3781 		 * the old mapping does not have an amap).
3782 		 * XXX: is it worthwhile to bother with
3783 		 * pmap_copy in this case?
3784 		 */
3785 		if (old_entry->aref.ar_amap)
3786 			amap_cow_now(new_map, new_entry);
3787 	} else {
3788 		if (old_entry->aref.ar_amap) {
3789 			/*
3790 			 * setup mappings to trigger copy-on-write faults
3791 			 * we must write-protect the parent if it has
3792 			 * an amap and it is not already "needs_copy"...
3793 			 * if it is already "needs_copy" then the parent
3794 			 * has already been write-protected by a previous
3795 			 * fork operation.
3796 			 *
3797 			 * if we do not write-protect the parent, then
3798 			 * we must be sure to write-protect the child
3799 			 * after the pmap_copy() operation.
3800 			 *
3801 			 * XXX: pmap_copy should have some way of telling
3802 			 * us that it didn't do anything so we can avoid
3803 			 * calling pmap_protect needlessly.
3804 			 */
3805 			if (!UVM_ET_ISNEEDSCOPY(old_entry)) {
3806 				if (old_entry->max_protection & PROT_WRITE) {
3807 					pmap_protect(old_map->pmap,
3808 					    old_entry->start,
3809 					    old_entry->end,
3810 					    old_entry->protection &
3811 					    ~PROT_WRITE);
3812 					pmap_update(old_map->pmap);
3813 				}
3814 				old_entry->etype |= UVM_ET_NEEDSCOPY;
3815 			}
3816 
3817 	  		/* parent must now be write-protected */
3818 	  		protect_child = FALSE;
3819 		} else {
3820 			/*
3821 			 * we only need to protect the child if the
3822 			 * parent has write access.
3823 			 */
3824 			if (old_entry->max_protection & PROT_WRITE)
3825 				protect_child = TRUE;
3826 			else
3827 				protect_child = FALSE;
3828 		}
3829 		/*
3830 		 * copy the mappings
3831 		 * XXX: need a way to tell if this does anything
3832 		 */
3833 		if (!UVM_ET_ISHOLE(new_entry))
3834 			pmap_copy(new_map->pmap, old_map->pmap,
3835 			    new_entry->start,
3836 			    (old_entry->end - old_entry->start),
3837 			    old_entry->start);
3838 
3839 		/* protect the child's mappings if necessary */
3840 		if (protect_child) {
3841 			pmap_protect(new_map->pmap, new_entry->start,
3842 			    new_entry->end,
3843 			    new_entry->protection &
3844 			    ~PROT_WRITE);
3845 		}
3846 	}
3847 
3848 	return (new_entry);
3849 }
3850 
3851 /*
3852  * zero the mapping: the new entry will be zero initialized
3853  */
3854 struct vm_map_entry *
3855 uvm_mapent_forkzero(struct vmspace *new_vm, struct vm_map *new_map,
3856     struct vm_map *old_map,
3857     struct vm_map_entry *old_entry, struct uvm_map_deadq *dead)
3858 {
3859 	struct vm_map_entry *new_entry;
3860 
3861 	new_entry = uvm_mapent_clone(new_map, old_entry->start,
3862 	    old_entry->end - old_entry->start, 0, old_entry->protection,
3863 	    old_entry->max_protection, old_entry, dead, 0, 0);
3864 
3865 	new_entry->etype |=
3866 	    (UVM_ET_COPYONWRITE|UVM_ET_NEEDSCOPY);
3867 
3868 	if (new_entry->aref.ar_amap) {
3869 		amap_unref(new_entry->aref.ar_amap, new_entry->aref.ar_pageoff,
3870 		    atop(new_entry->end - new_entry->start), 0);
3871 		new_entry->aref.ar_amap = NULL;
3872 		new_entry->aref.ar_pageoff = 0;
3873 	}
3874 
3875 	if (UVM_ET_ISOBJ(new_entry)) {
3876 		if (new_entry->object.uvm_obj->pgops->pgo_detach)
3877 			new_entry->object.uvm_obj->pgops->pgo_detach(
3878 			    new_entry->object.uvm_obj);
3879 		new_entry->object.uvm_obj = NULL;
3880 		new_entry->etype &= ~UVM_ET_OBJ;
3881 	}
3882 
3883 	return (new_entry);
3884 }
3885 
3886 /*
3887  * uvmspace_fork: fork a process' main map
3888  *
3889  * => create a new vmspace for child process from parent.
3890  * => parent's map must not be locked.
3891  */
3892 struct vmspace *
3893 uvmspace_fork(struct process *pr)
3894 {
3895 	struct vmspace *vm1 = pr->ps_vmspace;
3896 	struct vmspace *vm2;
3897 	struct vm_map *old_map = &vm1->vm_map;
3898 	struct vm_map *new_map;
3899 	struct vm_map_entry *old_entry, *new_entry;
3900 	struct uvm_map_deadq dead;
3901 
3902 	vm_map_lock(old_map);
3903 
3904 	vm2 = uvmspace_alloc(old_map->min_offset, old_map->max_offset,
3905 	    (old_map->flags & VM_MAP_PAGEABLE) ? TRUE : FALSE, FALSE);
3906 	memcpy(&vm2->vm_startcopy, &vm1->vm_startcopy,
3907 	    (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy);
3908 	vm2->vm_dused = 0; /* Statistic managed by us. */
3909 	new_map = &vm2->vm_map;
3910 	vm_map_lock(new_map);
3911 
3912 	/* go entry-by-entry */
3913 	TAILQ_INIT(&dead);
3914 	RBT_FOREACH(old_entry, uvm_map_addr, &old_map->addr) {
3915 		if (old_entry->start == old_entry->end)
3916 			continue;
3917 
3918 		/* first, some sanity checks on the old entry */
3919 		if (UVM_ET_ISSUBMAP(old_entry)) {
3920 			panic("fork: encountered a submap during fork "
3921 			    "(illegal)");
3922 		}
3923 
3924 		if (!UVM_ET_ISCOPYONWRITE(old_entry) &&
3925 		    UVM_ET_ISNEEDSCOPY(old_entry)) {
3926 			panic("fork: non-copy_on_write map entry marked "
3927 			    "needs_copy (illegal)");
3928 		}
3929 
3930 		/* Apply inheritance. */
3931 		switch (old_entry->inheritance) {
3932 		case MAP_INHERIT_SHARE:
3933 			new_entry = uvm_mapent_forkshared(vm2, new_map,
3934 			    old_map, old_entry, &dead);
3935 			break;
3936 		case MAP_INHERIT_COPY:
3937 			new_entry = uvm_mapent_forkcopy(vm2, new_map,
3938 			    old_map, old_entry, &dead);
3939 			break;
3940 		case MAP_INHERIT_ZERO:
3941 			new_entry = uvm_mapent_forkzero(vm2, new_map,
3942 			    old_map, old_entry, &dead);
3943 			break;
3944 		default:
3945 			continue;
3946 		}
3947 
3948 	 	/* Update process statistics. */
3949 		if (!UVM_ET_ISHOLE(new_entry))
3950 			new_map->size += new_entry->end - new_entry->start;
3951 		if (!UVM_ET_ISOBJ(new_entry) && !UVM_ET_ISHOLE(new_entry)) {
3952 			vm2->vm_dused += uvmspace_dused(
3953 			    new_map, new_entry->start, new_entry->end);
3954 		}
3955 	}
3956 
3957 	vm_map_unlock(old_map);
3958 	vm_map_unlock(new_map);
3959 
3960 	/*
3961 	 * This can actually happen, if multiple entries described a
3962 	 * space in which an entry was inherited.
3963 	 */
3964 	uvm_unmap_detach(&dead, 0);
3965 
3966 #ifdef SYSVSHM
3967 	if (vm1->vm_shm)
3968 		shmfork(vm1, vm2);
3969 #endif
3970 
3971 	return vm2;
3972 }
3973 
3974 /*
3975  * uvm_map_hint: return the beginning of the best area suitable for
3976  * creating a new mapping with "prot" protection.
3977  */
3978 vaddr_t
3979 uvm_map_hint(struct vmspace *vm, vm_prot_t prot, vaddr_t minaddr,
3980     vaddr_t maxaddr)
3981 {
3982 	vaddr_t addr;
3983 	vaddr_t spacing;
3984 
3985 #ifdef __i386__
3986 	/*
3987 	 * If executable skip first two pages, otherwise start
3988 	 * after data + heap region.
3989 	 */
3990 	if ((prot & PROT_EXEC) != 0 &&
3991 	    (vaddr_t)vm->vm_daddr >= I386_MAX_EXE_ADDR) {
3992 		addr = (PAGE_SIZE*2) +
3993 		    (arc4random() & (I386_MAX_EXE_ADDR / 2 - 1));
3994 		return (round_page(addr));
3995 	}
3996 #endif
3997 
3998 #if defined (__LP64__)
3999 	spacing = MIN(4UL * 1024 * 1024 * 1024, MAXDSIZ) - 1;
4000 #else
4001 	spacing = MIN(1 * 1024 * 1024 * 1024, MAXDSIZ) - 1;
4002 #endif
4003 
4004 	/*
4005 	 * Start malloc/mmap after the brk.
4006 	 */
4007 	addr = (vaddr_t)vm->vm_daddr + BRKSIZ;
4008 	addr = MAX(addr, minaddr);
4009 
4010 	if (addr < maxaddr) {
4011 		while (spacing > maxaddr - addr)
4012 			spacing >>= 1;
4013 	}
4014 	addr += arc4random() & spacing;
4015 	return (round_page(addr));
4016 }
4017 
4018 /*
4019  * uvm_map_submap: punch down part of a map into a submap
4020  *
4021  * => only the kernel_map is allowed to be submapped
4022  * => the purpose of submapping is to break up the locking granularity
4023  *	of a larger map
4024  * => the range specified must have been mapped previously with a uvm_map()
4025  *	call [with uobj==NULL] to create a blank map entry in the main map.
4026  *	[And it had better still be blank!]
4027  * => maps which contain submaps should never be copied or forked.
4028  * => to remove a submap, use uvm_unmap() on the main map
4029  *	and then uvm_map_deallocate() the submap.
4030  * => main map must be unlocked.
4031  * => submap must have been init'd and have a zero reference count.
4032  *	[need not be locked as we don't actually reference it]
4033  */
4034 int
4035 uvm_map_submap(struct vm_map *map, vaddr_t start, vaddr_t end,
4036     struct vm_map *submap)
4037 {
4038 	struct vm_map_entry *entry;
4039 	int result;
4040 
4041 	if (start > map->max_offset || end > map->max_offset ||
4042 	    start < map->min_offset || end < map->min_offset)
4043 		return EINVAL;
4044 
4045 	vm_map_lock(map);
4046 
4047 	if (uvm_map_lookup_entry(map, start, &entry)) {
4048 		UVM_MAP_CLIP_START(map, entry, start);
4049 		UVM_MAP_CLIP_END(map, entry, end);
4050 	} else
4051 		entry = NULL;
4052 
4053 	if (entry != NULL &&
4054 	    entry->start == start && entry->end == end &&
4055 	    entry->object.uvm_obj == NULL && entry->aref.ar_amap == NULL &&
4056 	    !UVM_ET_ISCOPYONWRITE(entry) && !UVM_ET_ISNEEDSCOPY(entry)) {
4057 		entry->etype |= UVM_ET_SUBMAP;
4058 		entry->object.sub_map = submap;
4059 		entry->offset = 0;
4060 		uvm_map_reference(submap);
4061 		result = 0;
4062 	} else
4063 		result = EINVAL;
4064 
4065 	vm_map_unlock(map);
4066 	return(result);
4067 }
4068 
4069 /*
4070  * uvm_map_checkprot: check protection in map
4071  *
4072  * => must allow specific protection in a fully allocated region.
4073  * => map mut be read or write locked by caller.
4074  */
4075 boolean_t
4076 uvm_map_checkprot(struct vm_map *map, vaddr_t start, vaddr_t end,
4077     vm_prot_t protection)
4078 {
4079 	struct vm_map_entry *entry;
4080 
4081 	if (start < map->min_offset || end > map->max_offset || start > end)
4082 		return FALSE;
4083 	if (start == end)
4084 		return TRUE;
4085 
4086 	/*
4087 	 * Iterate entries.
4088 	 */
4089 	for (entry = uvm_map_entrybyaddr(&map->addr, start);
4090 	    entry != NULL && entry->start < end;
4091 	    entry = RBT_NEXT(uvm_map_addr, entry)) {
4092 		/* Fail if a hole is found. */
4093 		if (UVM_ET_ISHOLE(entry) ||
4094 		    (entry->end < end && entry->end != VMMAP_FREE_END(entry)))
4095 			return FALSE;
4096 
4097 		/* Check protection. */
4098 		if ((entry->protection & protection) != protection)
4099 			return FALSE;
4100 	}
4101 	return TRUE;
4102 }
4103 
4104 /*
4105  * uvm_map_create: create map
4106  */
4107 vm_map_t
4108 uvm_map_create(pmap_t pmap, vaddr_t min, vaddr_t max, int flags)
4109 {
4110 	vm_map_t map;
4111 
4112 	map = malloc(sizeof *map, M_VMMAP, M_WAITOK);
4113 	map->pmap = pmap;
4114 	uvm_map_setup(map, min, max, flags);
4115 	return (map);
4116 }
4117 
4118 /*
4119  * uvm_map_deallocate: drop reference to a map
4120  *
4121  * => caller must not lock map
4122  * => we will zap map if ref count goes to zero
4123  */
4124 void
4125 uvm_map_deallocate(vm_map_t map)
4126 {
4127 	int c;
4128 	struct uvm_map_deadq dead;
4129 
4130 	c = --map->ref_count;
4131 	if (c > 0) {
4132 		return;
4133 	}
4134 
4135 	/*
4136 	 * all references gone.   unmap and free.
4137 	 *
4138 	 * No lock required: we are only one to access this map.
4139 	 */
4140 	TAILQ_INIT(&dead);
4141 	uvm_tree_sanity(map, __FILE__, __LINE__);
4142 	uvm_unmap_remove(map, map->min_offset, map->max_offset, &dead,
4143 	    TRUE, FALSE);
4144 	pmap_destroy(map->pmap);
4145 	KASSERT(RBT_EMPTY(uvm_map_addr, &map->addr));
4146 	free(map, M_VMMAP, sizeof *map);
4147 
4148 	uvm_unmap_detach(&dead, 0);
4149 }
4150 
4151 /*
4152  * uvm_map_inherit: set inheritance code for range of addrs in map.
4153  *
4154  * => map must be unlocked
4155  * => note that the inherit code is used during a "fork".  see fork
4156  *	code for details.
4157  */
4158 int
4159 uvm_map_inherit(struct vm_map *map, vaddr_t start, vaddr_t end,
4160     vm_inherit_t new_inheritance)
4161 {
4162 	struct vm_map_entry *entry;
4163 
4164 	switch (new_inheritance) {
4165 	case MAP_INHERIT_NONE:
4166 	case MAP_INHERIT_COPY:
4167 	case MAP_INHERIT_SHARE:
4168 	case MAP_INHERIT_ZERO:
4169 		break;
4170 	default:
4171 		return (EINVAL);
4172 	}
4173 
4174 	if (start > end)
4175 		return EINVAL;
4176 	start = MAX(start, map->min_offset);
4177 	end = MIN(end, map->max_offset);
4178 	if (start >= end)
4179 		return 0;
4180 
4181 	vm_map_lock(map);
4182 
4183 	entry = uvm_map_entrybyaddr(&map->addr, start);
4184 	if (entry->end > start)
4185 		UVM_MAP_CLIP_START(map, entry, start);
4186 	else
4187 		entry = RBT_NEXT(uvm_map_addr, entry);
4188 
4189 	while (entry != NULL && entry->start < end) {
4190 		UVM_MAP_CLIP_END(map, entry, end);
4191 		entry->inheritance = new_inheritance;
4192 		entry = RBT_NEXT(uvm_map_addr, entry);
4193 	}
4194 
4195 	vm_map_unlock(map);
4196 	return (0);
4197 }
4198 
4199 /*
4200  * uvm_map_advice: set advice code for range of addrs in map.
4201  *
4202  * => map must be unlocked
4203  */
4204 int
4205 uvm_map_advice(struct vm_map *map, vaddr_t start, vaddr_t end, int new_advice)
4206 {
4207 	struct vm_map_entry *entry;
4208 
4209 	switch (new_advice) {
4210 	case MADV_NORMAL:
4211 	case MADV_RANDOM:
4212 	case MADV_SEQUENTIAL:
4213 		break;
4214 	default:
4215 		return (EINVAL);
4216 	}
4217 
4218 	if (start > end)
4219 		return EINVAL;
4220 	start = MAX(start, map->min_offset);
4221 	end = MIN(end, map->max_offset);
4222 	if (start >= end)
4223 		return 0;
4224 
4225 	vm_map_lock(map);
4226 
4227 	entry = uvm_map_entrybyaddr(&map->addr, start);
4228 	if (entry != NULL && entry->end > start)
4229 		UVM_MAP_CLIP_START(map, entry, start);
4230 	else if (entry!= NULL)
4231 		entry = RBT_NEXT(uvm_map_addr, entry);
4232 
4233 	/*
4234 	 * XXXJRT: disallow holes?
4235 	 */
4236 	while (entry != NULL && entry->start < end) {
4237 		UVM_MAP_CLIP_END(map, entry, end);
4238 		entry->advice = new_advice;
4239 		entry = RBT_NEXT(uvm_map_addr, entry);
4240 	}
4241 
4242 	vm_map_unlock(map);
4243 	return (0);
4244 }
4245 
4246 /*
4247  * uvm_map_extract: extract a mapping from a map and put it somewhere
4248  * in the kernel_map, setting protection to max_prot.
4249  *
4250  * => map should be unlocked (we will write lock it and kernel_map)
4251  * => returns 0 on success, error code otherwise
4252  * => start must be page aligned
4253  * => len must be page sized
4254  * => flags:
4255  *      UVM_EXTRACT_FIXPROT: set prot to maxprot as we go
4256  * Mappings are QREF's.
4257  */
4258 int
4259 uvm_map_extract(struct vm_map *srcmap, vaddr_t start, vsize_t len,
4260     vaddr_t *dstaddrp, int flags)
4261 {
4262 	struct uvm_map_deadq dead;
4263 	struct vm_map_entry *first, *entry, *newentry, *tmp1, *tmp2;
4264 	vaddr_t dstaddr;
4265 	vaddr_t end;
4266 	vaddr_t cp_start;
4267 	vsize_t cp_len, cp_off;
4268 	int error;
4269 
4270 	TAILQ_INIT(&dead);
4271 	end = start + len;
4272 
4273 	/*
4274 	 * Sanity check on the parameters.
4275 	 * Also, since the mapping may not contain gaps, error out if the
4276 	 * mapped area is not in source map.
4277 	 */
4278 	if ((start & (vaddr_t)PAGE_MASK) != 0 ||
4279 	    (end & (vaddr_t)PAGE_MASK) != 0 || end < start)
4280 		return EINVAL;
4281 	if (start < srcmap->min_offset || end > srcmap->max_offset)
4282 		return EINVAL;
4283 
4284 	/* Initialize dead entries. Handle len == 0 case. */
4285 	if (len == 0)
4286 		return 0;
4287 
4288 	/* Acquire lock on srcmap. */
4289 	vm_map_lock(srcmap);
4290 
4291 	/* Lock srcmap, lookup first and last entry in <start,len>. */
4292 	first = uvm_map_entrybyaddr(&srcmap->addr, start);
4293 
4294 	/* Check that the range is contiguous. */
4295 	for (entry = first; entry != NULL && entry->end < end;
4296 	    entry = RBT_NEXT(uvm_map_addr, entry)) {
4297 		if (VMMAP_FREE_END(entry) != entry->end ||
4298 		    UVM_ET_ISHOLE(entry)) {
4299 			error = EINVAL;
4300 			goto fail;
4301 		}
4302 	}
4303 	if (entry == NULL || UVM_ET_ISHOLE(entry)) {
4304 		error = EINVAL;
4305 		goto fail;
4306 	}
4307 
4308 	/*
4309 	 * Handle need-copy flag.
4310 	 */
4311 	for (entry = first; entry != NULL && entry->start < end;
4312 	    entry = RBT_NEXT(uvm_map_addr, entry)) {
4313 		if (UVM_ET_ISNEEDSCOPY(entry))
4314 			amap_copy(srcmap, entry, M_NOWAIT,
4315 			    UVM_ET_ISSTACK(entry) ? FALSE : TRUE, start, end);
4316 		if (UVM_ET_ISNEEDSCOPY(entry)) {
4317 			/*
4318 			 * amap_copy failure
4319 			 */
4320 			error = ENOMEM;
4321 			goto fail;
4322 		}
4323 	}
4324 
4325 	/* Lock destination map (kernel_map). */
4326 	vm_map_lock(kernel_map);
4327 
4328 	if (uvm_map_findspace(kernel_map, &tmp1, &tmp2, &dstaddr, len,
4329 	    MAX(PAGE_SIZE, PMAP_PREFER_ALIGN()), PMAP_PREFER_OFFSET(start),
4330 	    PROT_NONE, 0) != 0) {
4331 		error = ENOMEM;
4332 		goto fail2;
4333 	}
4334 	*dstaddrp = dstaddr;
4335 
4336 	/*
4337 	 * We now have srcmap and kernel_map locked.
4338 	 * dstaddr contains the destination offset in dstmap.
4339 	 */
4340 	/* step 1: start looping through map entries, performing extraction. */
4341 	for (entry = first; entry != NULL && entry->start < end;
4342 	    entry = RBT_NEXT(uvm_map_addr, entry)) {
4343 		KDASSERT(!UVM_ET_ISNEEDSCOPY(entry));
4344 		if (UVM_ET_ISHOLE(entry))
4345 			continue;
4346 
4347 		/* Calculate uvm_mapent_clone parameters. */
4348 		cp_start = entry->start;
4349 		if (cp_start < start) {
4350 			cp_off = start - cp_start;
4351 			cp_start = start;
4352 		} else
4353 			cp_off = 0;
4354 		cp_len = MIN(entry->end, end) - cp_start;
4355 
4356 		newentry = uvm_mapent_clone(kernel_map,
4357 		    cp_start - start + dstaddr, cp_len, cp_off,
4358 		    entry->protection, entry->max_protection,
4359 		    entry, &dead, flags, AMAP_SHARED | AMAP_REFALL);
4360 		if (newentry == NULL) {
4361 			error = ENOMEM;
4362 			goto fail2_unmap;
4363 		}
4364 		kernel_map->size += cp_len;
4365 		if (flags & UVM_EXTRACT_FIXPROT)
4366 			newentry->protection = newentry->max_protection;
4367 
4368 		/*
4369 		 * Step 2: perform pmap copy.
4370 		 * (Doing this in the loop saves one RB traversal.)
4371 		 */
4372 		pmap_copy(kernel_map->pmap, srcmap->pmap,
4373 		    cp_start - start + dstaddr, cp_len, cp_start);
4374 	}
4375 	pmap_update(kernel_map->pmap);
4376 
4377 	error = 0;
4378 
4379 	/* Unmap copied entries on failure. */
4380 fail2_unmap:
4381 	if (error) {
4382 		uvm_unmap_remove(kernel_map, dstaddr, dstaddr + len, &dead,
4383 		    FALSE, TRUE);
4384 	}
4385 
4386 	/* Release maps, release dead entries. */
4387 fail2:
4388 	vm_map_unlock(kernel_map);
4389 
4390 fail:
4391 	vm_map_unlock(srcmap);
4392 
4393 	uvm_unmap_detach(&dead, 0);
4394 
4395 	return error;
4396 }
4397 
4398 /*
4399  * uvm_map_clean: clean out a map range
4400  *
4401  * => valid flags:
4402  *   if (flags & PGO_CLEANIT): dirty pages are cleaned first
4403  *   if (flags & PGO_SYNCIO): dirty pages are written synchronously
4404  *   if (flags & PGO_DEACTIVATE): any cached pages are deactivated after clean
4405  *   if (flags & PGO_FREE): any cached pages are freed after clean
4406  * => returns an error if any part of the specified range isn't mapped
4407  * => never a need to flush amap layer since the anonymous memory has
4408  *	no permanent home, but may deactivate pages there
4409  * => called from sys_msync() and sys_madvise()
4410  * => caller must not write-lock map (read OK).
4411  * => we may sleep while cleaning if SYNCIO [with map read-locked]
4412  */
4413 
4414 int
4415 uvm_map_clean(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
4416 {
4417 	struct vm_map_entry *first, *entry;
4418 	struct vm_amap *amap;
4419 	struct vm_anon *anon;
4420 	struct vm_page *pg;
4421 	struct uvm_object *uobj;
4422 	vaddr_t cp_start, cp_end;
4423 	int refs;
4424 	int error;
4425 	boolean_t rv;
4426 
4427 	KASSERT((flags & (PGO_FREE|PGO_DEACTIVATE)) !=
4428 	    (PGO_FREE|PGO_DEACTIVATE));
4429 
4430 	if (start > end || start < map->min_offset || end > map->max_offset)
4431 		return EINVAL;
4432 
4433 	vm_map_lock_read(map);
4434 	first = uvm_map_entrybyaddr(&map->addr, start);
4435 
4436 	/* Make a first pass to check for holes. */
4437 	for (entry = first; entry != NULL && entry->start < end;
4438 	    entry = RBT_NEXT(uvm_map_addr, entry)) {
4439 		if (UVM_ET_ISSUBMAP(entry)) {
4440 			vm_map_unlock_read(map);
4441 			return EINVAL;
4442 		}
4443 		if (UVM_ET_ISSUBMAP(entry) ||
4444 		    UVM_ET_ISHOLE(entry) ||
4445 		    (entry->end < end &&
4446 		    VMMAP_FREE_END(entry) != entry->end)) {
4447 			vm_map_unlock_read(map);
4448 			return EFAULT;
4449 		}
4450 	}
4451 
4452 	error = 0;
4453 	for (entry = first; entry != NULL && entry->start < end;
4454 	    entry = RBT_NEXT(uvm_map_addr, entry)) {
4455 		amap = entry->aref.ar_amap;	/* top layer */
4456 		if (UVM_ET_ISOBJ(entry))
4457 			uobj = entry->object.uvm_obj;
4458 		else
4459 			uobj = NULL;
4460 
4461 		/*
4462 		 * No amap cleaning necessary if:
4463 		 *  - there's no amap
4464 		 *  - we're not deactivating or freeing pages.
4465 		 */
4466 		if (amap == NULL || (flags & (PGO_DEACTIVATE|PGO_FREE)) == 0)
4467 			goto flush_object;
4468 
4469 		cp_start = MAX(entry->start, start);
4470 		cp_end = MIN(entry->end, end);
4471 
4472 		for (; cp_start != cp_end; cp_start += PAGE_SIZE) {
4473 			anon = amap_lookup(&entry->aref,
4474 			    cp_start - entry->start);
4475 			if (anon == NULL)
4476 				continue;
4477 
4478 			pg = anon->an_page;
4479 			if (pg == NULL) {
4480 				continue;
4481 			}
4482 			KASSERT(pg->pg_flags & PQ_ANON);
4483 
4484 			switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
4485 			/*
4486 			 * XXX In these first 3 cases, we always just
4487 			 * XXX deactivate the page.  We may want to
4488 			 * XXX handle the different cases more
4489 			 * XXX specifically, in the future.
4490 			 */
4491 			case PGO_CLEANIT|PGO_FREE:
4492 			case PGO_CLEANIT|PGO_DEACTIVATE:
4493 			case PGO_DEACTIVATE:
4494 deactivate_it:
4495 				/* skip the page if it's wired */
4496 				if (pg->wire_count != 0)
4497 					break;
4498 
4499 				uvm_lock_pageq();
4500 
4501 				KASSERT(pg->uanon == anon);
4502 
4503 				/* zap all mappings for the page. */
4504 				pmap_page_protect(pg, PROT_NONE);
4505 
4506 				/* ...and deactivate the page. */
4507 				uvm_pagedeactivate(pg);
4508 
4509 				uvm_unlock_pageq();
4510 				break;
4511 			case PGO_FREE:
4512 				/*
4513 				 * If there are multiple references to
4514 				 * the amap, just deactivate the page.
4515 				 */
4516 				if (amap_refs(amap) > 1)
4517 					goto deactivate_it;
4518 
4519 				/* XXX skip the page if it's wired */
4520 				if (pg->wire_count != 0) {
4521 					break;
4522 				}
4523 				amap_unadd(&entry->aref,
4524 				    cp_start - entry->start);
4525 				refs = --anon->an_ref;
4526 				if (refs == 0)
4527 					uvm_anfree(anon);
4528 				break;
4529 			default:
4530 				panic("uvm_map_clean: weird flags");
4531 			}
4532 		}
4533 
4534 flush_object:
4535 		cp_start = MAX(entry->start, start);
4536 		cp_end = MIN(entry->end, end);
4537 
4538 		/*
4539 		 * flush pages if we've got a valid backing object.
4540 		 *
4541 		 * Don't PGO_FREE if we don't have write permission
4542 		 * and don't flush if this is a copy-on-write object
4543 		 * since we can't know our permissions on it.
4544 		 */
4545 		if (uobj != NULL &&
4546 		    ((flags & PGO_FREE) == 0 ||
4547 		     ((entry->max_protection & PROT_WRITE) != 0 &&
4548 		      (entry->etype & UVM_ET_COPYONWRITE) == 0))) {
4549 			rv = uobj->pgops->pgo_flush(uobj,
4550 			    cp_start - entry->start + entry->offset,
4551 			    cp_end - entry->start + entry->offset, flags);
4552 
4553 			if (rv == FALSE)
4554 				error = EFAULT;
4555 		}
4556 	}
4557 
4558 	vm_map_unlock_read(map);
4559 	return error;
4560 }
4561 
4562 /*
4563  * UVM_MAP_CLIP_END implementation
4564  */
4565 void
4566 uvm_map_clip_end(struct vm_map *map, struct vm_map_entry *entry, vaddr_t addr)
4567 {
4568 	struct vm_map_entry *tmp;
4569 
4570 	KASSERT(entry->start < addr && VMMAP_FREE_END(entry) > addr);
4571 	tmp = uvm_mapent_alloc(map, 0);
4572 
4573 	/* Invoke splitentry. */
4574 	uvm_map_splitentry(map, entry, tmp, addr);
4575 }
4576 
4577 /*
4578  * UVM_MAP_CLIP_START implementation
4579  *
4580  * Clippers are required to not change the pointers to the entry they are
4581  * clipping on.
4582  * Since uvm_map_splitentry turns the original entry into the lowest
4583  * entry (address wise) we do a swap between the new entry and the original
4584  * entry, prior to calling uvm_map_splitentry.
4585  */
4586 void
4587 uvm_map_clip_start(struct vm_map *map, struct vm_map_entry *entry, vaddr_t addr)
4588 {
4589 	struct vm_map_entry *tmp;
4590 	struct uvm_addr_state *free;
4591 
4592 	/* Unlink original. */
4593 	free = uvm_map_uaddr_e(map, entry);
4594 	uvm_mapent_free_remove(map, free, entry);
4595 	uvm_mapent_addr_remove(map, entry);
4596 
4597 	/* Copy entry. */
4598 	KASSERT(entry->start < addr && VMMAP_FREE_END(entry) > addr);
4599 	tmp = uvm_mapent_alloc(map, 0);
4600 	uvm_mapent_copy(entry, tmp);
4601 
4602 	/* Put new entry in place of original entry. */
4603 	uvm_mapent_addr_insert(map, tmp);
4604 	uvm_mapent_free_insert(map, free, tmp);
4605 
4606 	/* Invoke splitentry. */
4607 	uvm_map_splitentry(map, tmp, entry, addr);
4608 }
4609 
4610 /*
4611  * Boundary fixer.
4612  */
4613 static __inline vaddr_t uvm_map_boundfix(vaddr_t, vaddr_t, vaddr_t);
4614 static __inline vaddr_t
4615 uvm_map_boundfix(vaddr_t min, vaddr_t max, vaddr_t bound)
4616 {
4617 	return (min < bound && max > bound) ? bound : max;
4618 }
4619 
4620 /*
4621  * Choose free list based on address at start of free space.
4622  *
4623  * The uvm_addr_state returned contains addr and is the first of:
4624  * - uaddr_exe
4625  * - uaddr_brk_stack
4626  * - uaddr_any
4627  */
4628 struct uvm_addr_state*
4629 uvm_map_uaddr(struct vm_map *map, vaddr_t addr)
4630 {
4631 	struct uvm_addr_state *uaddr;
4632 	int i;
4633 
4634 	/* Special case the first page, to prevent mmap from returning 0. */
4635 	if (addr < VMMAP_MIN_ADDR)
4636 		return NULL;
4637 
4638 	/* Upper bound for kernel maps at uvm_maxkaddr. */
4639 	if ((map->flags & VM_MAP_ISVMSPACE) == 0) {
4640 		if (addr >= uvm_maxkaddr)
4641 			return NULL;
4642 	}
4643 
4644 	/* Is the address inside the exe-only map? */
4645 	if (map->uaddr_exe != NULL && addr >= map->uaddr_exe->uaddr_minaddr &&
4646 	    addr < map->uaddr_exe->uaddr_maxaddr)
4647 		return map->uaddr_exe;
4648 
4649 	/* Check if the space falls inside brk/stack area. */
4650 	if ((addr >= map->b_start && addr < map->b_end) ||
4651 	    (addr >= map->s_start && addr < map->s_end)) {
4652 		if (map->uaddr_brk_stack != NULL &&
4653 		    addr >= map->uaddr_brk_stack->uaddr_minaddr &&
4654 		    addr < map->uaddr_brk_stack->uaddr_maxaddr) {
4655 			return map->uaddr_brk_stack;
4656 		} else
4657 			return NULL;
4658 	}
4659 
4660 	/*
4661 	 * Check the other selectors.
4662 	 *
4663 	 * These selectors are only marked as the owner, if they have insert
4664 	 * functions.
4665 	 */
4666 	for (i = 0; i < nitems(map->uaddr_any); i++) {
4667 		uaddr = map->uaddr_any[i];
4668 		if (uaddr == NULL)
4669 			continue;
4670 		if (uaddr->uaddr_functions->uaddr_free_insert == NULL)
4671 			continue;
4672 
4673 		if (addr >= uaddr->uaddr_minaddr &&
4674 		    addr < uaddr->uaddr_maxaddr)
4675 			return uaddr;
4676 	}
4677 
4678 	return NULL;
4679 }
4680 
4681 /*
4682  * Choose free list based on address at start of free space.
4683  *
4684  * The uvm_addr_state returned contains addr and is the first of:
4685  * - uaddr_exe
4686  * - uaddr_brk_stack
4687  * - uaddr_any
4688  */
4689 struct uvm_addr_state*
4690 uvm_map_uaddr_e(struct vm_map *map, struct vm_map_entry *entry)
4691 {
4692 	return uvm_map_uaddr(map, VMMAP_FREE_START(entry));
4693 }
4694 
4695 /*
4696  * Returns the first free-memory boundary that is crossed by [min-max].
4697  */
4698 vsize_t
4699 uvm_map_boundary(struct vm_map *map, vaddr_t min, vaddr_t max)
4700 {
4701 	struct uvm_addr_state	*uaddr;
4702 	int			 i;
4703 
4704 	/* Never return first page. */
4705 	max = uvm_map_boundfix(min, max, VMMAP_MIN_ADDR);
4706 
4707 	/* Treat the maxkaddr special, if the map is a kernel_map. */
4708 	if ((map->flags & VM_MAP_ISVMSPACE) == 0)
4709 		max = uvm_map_boundfix(min, max, uvm_maxkaddr);
4710 
4711 	/* Check for exe-only boundaries. */
4712 	if (map->uaddr_exe != NULL) {
4713 		max = uvm_map_boundfix(min, max, map->uaddr_exe->uaddr_minaddr);
4714 		max = uvm_map_boundfix(min, max, map->uaddr_exe->uaddr_maxaddr);
4715 	}
4716 
4717 	/* Check for exe-only boundaries. */
4718 	if (map->uaddr_brk_stack != NULL) {
4719 		max = uvm_map_boundfix(min, max,
4720 		    map->uaddr_brk_stack->uaddr_minaddr);
4721 		max = uvm_map_boundfix(min, max,
4722 		    map->uaddr_brk_stack->uaddr_maxaddr);
4723 	}
4724 
4725 	/* Check other boundaries. */
4726 	for (i = 0; i < nitems(map->uaddr_any); i++) {
4727 		uaddr = map->uaddr_any[i];
4728 		if (uaddr != NULL) {
4729 			max = uvm_map_boundfix(min, max, uaddr->uaddr_minaddr);
4730 			max = uvm_map_boundfix(min, max, uaddr->uaddr_maxaddr);
4731 		}
4732 	}
4733 
4734 	/* Boundaries at stack and brk() area. */
4735 	max = uvm_map_boundfix(min, max, map->s_start);
4736 	max = uvm_map_boundfix(min, max, map->s_end);
4737 	max = uvm_map_boundfix(min, max, map->b_start);
4738 	max = uvm_map_boundfix(min, max, map->b_end);
4739 
4740 	return max;
4741 }
4742 
4743 /*
4744  * Update map allocation start and end addresses from proc vmspace.
4745  */
4746 void
4747 uvm_map_vmspace_update(struct vm_map *map,
4748     struct uvm_map_deadq *dead, int flags)
4749 {
4750 	struct vmspace *vm;
4751 	vaddr_t b_start, b_end, s_start, s_end;
4752 
4753 	KASSERT(map->flags & VM_MAP_ISVMSPACE);
4754 	KASSERT(offsetof(struct vmspace, vm_map) == 0);
4755 
4756 	/*
4757 	 * Derive actual allocation boundaries from vmspace.
4758 	 */
4759 	vm = (struct vmspace *)map;
4760 	b_start = (vaddr_t)vm->vm_daddr;
4761 	b_end   = b_start + BRKSIZ;
4762 	s_start = MIN((vaddr_t)vm->vm_maxsaddr, (vaddr_t)vm->vm_minsaddr);
4763 	s_end   = MAX((vaddr_t)vm->vm_maxsaddr, (vaddr_t)vm->vm_minsaddr);
4764 #ifdef DIAGNOSTIC
4765 	if ((b_start & (vaddr_t)PAGE_MASK) != 0 ||
4766 	    (b_end & (vaddr_t)PAGE_MASK) != 0 ||
4767 	    (s_start & (vaddr_t)PAGE_MASK) != 0 ||
4768 	    (s_end & (vaddr_t)PAGE_MASK) != 0) {
4769 		panic("uvm_map_vmspace_update: vmspace %p invalid bounds: "
4770 		    "b=0x%lx-0x%lx s=0x%lx-0x%lx",
4771 		    vm, b_start, b_end, s_start, s_end);
4772 	}
4773 #endif
4774 
4775 	if (__predict_true(map->b_start == b_start && map->b_end == b_end &&
4776 	    map->s_start == s_start && map->s_end == s_end))
4777 		return;
4778 
4779 	uvm_map_freelist_update(map, dead, b_start, b_end,
4780 	    s_start, s_end, flags);
4781 }
4782 
4783 /*
4784  * Grow kernel memory.
4785  *
4786  * This function is only called for kernel maps when an allocation fails.
4787  *
4788  * If the map has a gap that is large enough to accommodate alloc_sz, this
4789  * function will make sure map->free will include it.
4790  */
4791 void
4792 uvm_map_kmem_grow(struct vm_map *map, struct uvm_map_deadq *dead,
4793     vsize_t alloc_sz, int flags)
4794 {
4795 	vsize_t sz;
4796 	vaddr_t end;
4797 	struct vm_map_entry *entry;
4798 
4799 	/* Kernel memory only. */
4800 	KASSERT((map->flags & VM_MAP_ISVMSPACE) == 0);
4801 	/* Destroy free list. */
4802 	uvm_map_freelist_update_clear(map, dead);
4803 
4804 	/* Include the guard page in the hard minimum requirement of alloc_sz. */
4805 	if (map->flags & VM_MAP_GUARDPAGES)
4806 		alloc_sz += PAGE_SIZE;
4807 
4808 	/*
4809 	 * Grow by ALLOCMUL * alloc_sz, but at least VM_MAP_KSIZE_DELTA.
4810 	 *
4811 	 * Don't handle the case where the multiplication overflows:
4812 	 * if that happens, the allocation is probably too big anyway.
4813 	 */
4814 	sz = MAX(VM_MAP_KSIZE_ALLOCMUL * alloc_sz, VM_MAP_KSIZE_DELTA);
4815 
4816 	/*
4817 	 * Walk forward until a gap large enough for alloc_sz shows up.
4818 	 *
4819 	 * We assume the kernel map has no boundaries.
4820 	 * uvm_maxkaddr may be zero.
4821 	 */
4822 	end = MAX(uvm_maxkaddr, map->min_offset);
4823 	entry = uvm_map_entrybyaddr(&map->addr, end);
4824 	while (entry && entry->fspace < alloc_sz)
4825 		entry = RBT_NEXT(uvm_map_addr, entry);
4826 	if (entry) {
4827 		end = MAX(VMMAP_FREE_START(entry), end);
4828 		end += MIN(sz, map->max_offset - end);
4829 	} else
4830 		end = map->max_offset;
4831 
4832 	/* Reserve pmap entries. */
4833 #ifdef PMAP_GROWKERNEL
4834 	uvm_maxkaddr = pmap_growkernel(end);
4835 #else
4836 	uvm_maxkaddr = MAX(uvm_maxkaddr, end);
4837 #endif
4838 
4839 	/* Rebuild free list. */
4840 	uvm_map_freelist_update_refill(map, flags);
4841 }
4842 
4843 /*
4844  * Freelist update subfunction: unlink all entries from freelists.
4845  */
4846 void
4847 uvm_map_freelist_update_clear(struct vm_map *map, struct uvm_map_deadq *dead)
4848 {
4849 	struct uvm_addr_state *free;
4850 	struct vm_map_entry *entry, *prev, *next;
4851 
4852 	prev = NULL;
4853 	for (entry = RBT_MIN(uvm_map_addr, &map->addr); entry != NULL;
4854 	    entry = next) {
4855 		next = RBT_NEXT(uvm_map_addr, entry);
4856 
4857 		free = uvm_map_uaddr_e(map, entry);
4858 		uvm_mapent_free_remove(map, free, entry);
4859 
4860 		if (prev != NULL && entry->start == entry->end) {
4861 			prev->fspace += VMMAP_FREE_END(entry) - entry->end;
4862 			uvm_mapent_addr_remove(map, entry);
4863 			DEAD_ENTRY_PUSH(dead, entry);
4864 		} else
4865 			prev = entry;
4866 	}
4867 }
4868 
4869 /*
4870  * Freelist update subfunction: refill the freelists with entries.
4871  */
4872 void
4873 uvm_map_freelist_update_refill(struct vm_map *map, int flags)
4874 {
4875 	struct vm_map_entry *entry;
4876 	vaddr_t min, max;
4877 
4878 	RBT_FOREACH(entry, uvm_map_addr, &map->addr) {
4879 		min = VMMAP_FREE_START(entry);
4880 		max = VMMAP_FREE_END(entry);
4881 		entry->fspace = 0;
4882 
4883 		entry = uvm_map_fix_space(map, entry, min, max, flags);
4884 	}
4885 
4886 	uvm_tree_sanity(map, __FILE__, __LINE__);
4887 }
4888 
4889 /*
4890  * Change {a,b}_{start,end} allocation ranges and associated free lists.
4891  */
4892 void
4893 uvm_map_freelist_update(struct vm_map *map, struct uvm_map_deadq *dead,
4894     vaddr_t b_start, vaddr_t b_end, vaddr_t s_start, vaddr_t s_end, int flags)
4895 {
4896 	KDASSERT(b_end >= b_start && s_end >= s_start);
4897 
4898 	/* Clear all free lists. */
4899 	uvm_map_freelist_update_clear(map, dead);
4900 
4901 	/* Apply new bounds. */
4902 	map->b_start = b_start;
4903 	map->b_end   = b_end;
4904 	map->s_start = s_start;
4905 	map->s_end   = s_end;
4906 
4907 	/* Refill free lists. */
4908 	uvm_map_freelist_update_refill(map, flags);
4909 }
4910 
4911 /*
4912  * Assign a uvm_addr_state to the specified pointer in vm_map.
4913  *
4914  * May sleep.
4915  */
4916 void
4917 uvm_map_set_uaddr(struct vm_map *map, struct uvm_addr_state **which,
4918     struct uvm_addr_state *newval)
4919 {
4920 	struct uvm_map_deadq dead;
4921 
4922 	/* Pointer which must be in this map. */
4923 	KASSERT(which != NULL);
4924 	KASSERT((void*)map <= (void*)(which) &&
4925 	    (void*)(which) < (void*)(map + 1));
4926 
4927 	vm_map_lock(map);
4928 	TAILQ_INIT(&dead);
4929 	uvm_map_freelist_update_clear(map, &dead);
4930 
4931 	uvm_addr_destroy(*which);
4932 	*which = newval;
4933 
4934 	uvm_map_freelist_update_refill(map, 0);
4935 	vm_map_unlock(map);
4936 	uvm_unmap_detach(&dead, 0);
4937 }
4938 
4939 /*
4940  * Correct space insert.
4941  *
4942  * Entry must not be on any freelist.
4943  */
4944 struct vm_map_entry*
4945 uvm_map_fix_space(struct vm_map *map, struct vm_map_entry *entry,
4946     vaddr_t min, vaddr_t max, int flags)
4947 {
4948 	struct uvm_addr_state	*free, *entfree;
4949 	vaddr_t			 lmax;
4950 
4951 	KASSERT(entry == NULL || (entry->etype & UVM_ET_FREEMAPPED) == 0);
4952 	KDASSERT(min <= max);
4953 	KDASSERT((entry != NULL && VMMAP_FREE_END(entry) == min) ||
4954 	    min == map->min_offset);
4955 
4956 	/*
4957 	 * During the function, entfree will always point at the uaddr state
4958 	 * for entry.
4959 	 */
4960 	entfree = (entry == NULL ? NULL :
4961 	    uvm_map_uaddr_e(map, entry));
4962 
4963 	while (min != max) {
4964 		/* Claim guard page for entry. */
4965 		if ((map->flags & VM_MAP_GUARDPAGES) && entry != NULL &&
4966 		    VMMAP_FREE_END(entry) == entry->end &&
4967 		    entry->start != entry->end) {
4968 			if (max - min == 2 * PAGE_SIZE) {
4969 				/*
4970 				 * If the free-space gap is exactly 2 pages,
4971 				 * we make the guard 2 pages instead of 1.
4972 				 * Because in a guarded map, an area needs
4973 				 * at least 2 pages to allocate from:
4974 				 * one page for the allocation and one for
4975 				 * the guard.
4976 				 */
4977 				entry->guard = 2 * PAGE_SIZE;
4978 				min = max;
4979 			} else {
4980 				entry->guard = PAGE_SIZE;
4981 				min += PAGE_SIZE;
4982 			}
4983 			continue;
4984 		}
4985 
4986 		/*
4987 		 * Handle the case where entry has a 2-page guard, but the
4988 		 * space after entry is freed.
4989 		 */
4990 		if (entry != NULL && entry->fspace == 0 &&
4991 		    entry->guard > PAGE_SIZE) {
4992 			entry->guard = PAGE_SIZE;
4993 			min = VMMAP_FREE_START(entry);
4994 		}
4995 
4996 		lmax = uvm_map_boundary(map, min, max);
4997 		free = uvm_map_uaddr(map, min);
4998 
4999 		/*
5000 		 * Entries are merged if they point at the same uvm_free().
5001 		 * Exception to that rule: if min == uvm_maxkaddr, a new
5002 		 * entry is started regardless (otherwise the allocators
5003 		 * will get confused).
5004 		 */
5005 		if (entry != NULL && free == entfree &&
5006 		    !((map->flags & VM_MAP_ISVMSPACE) == 0 &&
5007 		    min == uvm_maxkaddr)) {
5008 			KDASSERT(VMMAP_FREE_END(entry) == min);
5009 			entry->fspace += lmax - min;
5010 		} else {
5011 			/*
5012 			 * Commit entry to free list: it'll not be added to
5013 			 * anymore.
5014 			 * We'll start a new entry and add to that entry
5015 			 * instead.
5016 			 */
5017 			if (entry != NULL)
5018 				uvm_mapent_free_insert(map, entfree, entry);
5019 
5020 			/* New entry for new uaddr. */
5021 			entry = uvm_mapent_alloc(map, flags);
5022 			KDASSERT(entry != NULL);
5023 			entry->end = entry->start = min;
5024 			entry->guard = 0;
5025 			entry->fspace = lmax - min;
5026 			entry->object.uvm_obj = NULL;
5027 			entry->offset = 0;
5028 			entry->etype = 0;
5029 			entry->protection = entry->max_protection = 0;
5030 			entry->inheritance = 0;
5031 			entry->wired_count = 0;
5032 			entry->advice = 0;
5033 			entry->aref.ar_pageoff = 0;
5034 			entry->aref.ar_amap = NULL;
5035 			uvm_mapent_addr_insert(map, entry);
5036 
5037 			entfree = free;
5038 		}
5039 
5040 		min = lmax;
5041 	}
5042 	/* Finally put entry on the uaddr state. */
5043 	if (entry != NULL)
5044 		uvm_mapent_free_insert(map, entfree, entry);
5045 
5046 	return entry;
5047 }
5048 
5049 /*
5050  * MQuery style of allocation.
5051  *
5052  * This allocator searches forward until sufficient space is found to map
5053  * the given size.
5054  *
5055  * XXX: factor in offset (via pmap_prefer) and protection?
5056  */
5057 int
5058 uvm_map_mquery(struct vm_map *map, vaddr_t *addr_p, vsize_t sz, voff_t offset,
5059     int flags)
5060 {
5061 	struct vm_map_entry *entry, *last;
5062 	vaddr_t addr;
5063 	vaddr_t tmp, pmap_align, pmap_offset;
5064 	int error;
5065 
5066 	addr = *addr_p;
5067 	vm_map_lock_read(map);
5068 
5069 	/* Configure pmap prefer. */
5070 	if (offset != UVM_UNKNOWN_OFFSET) {
5071 		pmap_align = MAX(PAGE_SIZE, PMAP_PREFER_ALIGN());
5072 		pmap_offset = PMAP_PREFER_OFFSET(offset);
5073 	} else {
5074 		pmap_align = PAGE_SIZE;
5075 		pmap_offset = 0;
5076 	}
5077 
5078 	/* Align address to pmap_prefer unless FLAG_FIXED is set. */
5079 	if (!(flags & UVM_FLAG_FIXED) && offset != UVM_UNKNOWN_OFFSET) {
5080 	  	tmp = (addr & ~(pmap_align - 1)) | pmap_offset;
5081 		if (tmp < addr)
5082 			tmp += pmap_align;
5083 		addr = tmp;
5084 	}
5085 
5086 	/* First, check if the requested range is fully available. */
5087 	entry = uvm_map_entrybyaddr(&map->addr, addr);
5088 	last = NULL;
5089 	if (uvm_map_isavail(map, NULL, &entry, &last, addr, sz)) {
5090 		error = 0;
5091 		goto out;
5092 	}
5093 	if (flags & UVM_FLAG_FIXED) {
5094 		error = EINVAL;
5095 		goto out;
5096 	}
5097 
5098 	error = ENOMEM; /* Default error from here. */
5099 
5100 	/*
5101 	 * At this point, the memory at <addr, sz> is not available.
5102 	 * The reasons are:
5103 	 * [1] it's outside the map,
5104 	 * [2] it starts in used memory (and therefore needs to move
5105 	 *     toward the first free page in entry),
5106 	 * [3] it starts in free memory but bumps into used memory.
5107 	 *
5108 	 * Note that for case [2], the forward moving is handled by the
5109 	 * for loop below.
5110 	 */
5111 	if (entry == NULL) {
5112 		/* [1] Outside the map. */
5113 		if (addr >= map->max_offset)
5114 			goto out;
5115 		else
5116 			entry = RBT_MIN(uvm_map_addr, &map->addr);
5117 	} else if (VMMAP_FREE_START(entry) <= addr) {
5118 		/* [3] Bumped into used memory. */
5119 		entry = RBT_NEXT(uvm_map_addr, entry);
5120 	}
5121 
5122 	/* Test if the next entry is sufficient for the allocation. */
5123 	for (; entry != NULL;
5124 	    entry = RBT_NEXT(uvm_map_addr, entry)) {
5125 		if (entry->fspace == 0)
5126 			continue;
5127 		addr = VMMAP_FREE_START(entry);
5128 
5129 restart:	/* Restart address checks on address change. */
5130 		tmp = (addr & ~(pmap_align - 1)) | pmap_offset;
5131 		if (tmp < addr)
5132 			tmp += pmap_align;
5133 		addr = tmp;
5134 		if (addr >= VMMAP_FREE_END(entry))
5135 			continue;
5136 
5137 		/* Skip brk() allocation addresses. */
5138 		if (addr + sz > map->b_start && addr < map->b_end) {
5139 			if (VMMAP_FREE_END(entry) > map->b_end) {
5140 				addr = map->b_end;
5141 				goto restart;
5142 			} else
5143 				continue;
5144 		}
5145 		/* Skip stack allocation addresses. */
5146 		if (addr + sz > map->s_start && addr < map->s_end) {
5147 			if (VMMAP_FREE_END(entry) > map->s_end) {
5148 				addr = map->s_end;
5149 				goto restart;
5150 			} else
5151 				continue;
5152 		}
5153 
5154 		last = NULL;
5155 		if (uvm_map_isavail(map, NULL, &entry, &last, addr, sz)) {
5156 			error = 0;
5157 			goto out;
5158 		}
5159 	}
5160 
5161 out:
5162 	vm_map_unlock_read(map);
5163 	if (error == 0)
5164 		*addr_p = addr;
5165 	return error;
5166 }
5167 
5168 /*
5169  * Determine allocation bias.
5170  *
5171  * Returns 1 if we should bias to high addresses, -1 for a bias towards low
5172  * addresses, or 0 for no bias.
5173  * The bias mechanism is intended to avoid clashing with brk() and stack
5174  * areas.
5175  */
5176 int
5177 uvm_mapent_bias(struct vm_map *map, struct vm_map_entry *entry)
5178 {
5179 	vaddr_t start, end;
5180 
5181 	start = VMMAP_FREE_START(entry);
5182 	end = VMMAP_FREE_END(entry);
5183 
5184 	/* Stay at the top of brk() area. */
5185 	if (end >= map->b_start && start < map->b_end)
5186 		return 1;
5187 	/* Stay at the far end of the stack area. */
5188 	if (end >= map->s_start && start < map->s_end) {
5189 #ifdef MACHINE_STACK_GROWS_UP
5190 		return 1;
5191 #else
5192 		return -1;
5193 #endif
5194 	}
5195 
5196 	/* No bias, this area is meant for us. */
5197 	return 0;
5198 }
5199 
5200 
5201 boolean_t
5202 vm_map_lock_try_ln(struct vm_map *map, char *file, int line)
5203 {
5204 	boolean_t rv;
5205 
5206 	if (map->flags & VM_MAP_INTRSAFE) {
5207 		rv = _mtx_enter_try(&map->mtx LOCK_FL_ARGS);
5208 	} else {
5209 		mtx_enter(&map->flags_lock);
5210 		if (map->flags & VM_MAP_BUSY) {
5211 			mtx_leave(&map->flags_lock);
5212 			return (FALSE);
5213 		}
5214 		mtx_leave(&map->flags_lock);
5215 		rv = (_rw_enter(&map->lock, RW_WRITE|RW_NOSLEEP LOCK_FL_ARGS)
5216 		    == 0);
5217 		/* check if the lock is busy and back out if we won the race */
5218 		if (rv) {
5219 			mtx_enter(&map->flags_lock);
5220 			if (map->flags & VM_MAP_BUSY) {
5221 				_rw_exit(&map->lock LOCK_FL_ARGS);
5222 				rv = FALSE;
5223 			}
5224 			mtx_leave(&map->flags_lock);
5225 		}
5226 	}
5227 
5228 	if (rv) {
5229 		map->timestamp++;
5230 		LPRINTF(("map   lock: %p (at %s %d)\n", map, file, line));
5231 		uvm_tree_sanity(map, file, line);
5232 		uvm_tree_size_chk(map, file, line);
5233 	}
5234 
5235 	return (rv);
5236 }
5237 
5238 void
5239 vm_map_lock_ln(struct vm_map *map, char *file, int line)
5240 {
5241 	if ((map->flags & VM_MAP_INTRSAFE) == 0) {
5242 		do {
5243 			mtx_enter(&map->flags_lock);
5244 tryagain:
5245 			while (map->flags & VM_MAP_BUSY) {
5246 				map->flags |= VM_MAP_WANTLOCK;
5247 				msleep(&map->flags, &map->flags_lock,
5248 				    PVM, vmmapbsy, 0);
5249 			}
5250 			mtx_leave(&map->flags_lock);
5251 		} while (_rw_enter(&map->lock, RW_WRITE|RW_SLEEPFAIL
5252 		    LOCK_FL_ARGS) != 0);
5253 		/* check if the lock is busy and back out if we won the race */
5254 		mtx_enter(&map->flags_lock);
5255 		if (map->flags & VM_MAP_BUSY) {
5256 			_rw_exit(&map->lock LOCK_FL_ARGS);
5257 			goto tryagain;
5258 		}
5259 		mtx_leave(&map->flags_lock);
5260 	} else {
5261 		_mtx_enter(&map->mtx LOCK_FL_ARGS);
5262 	}
5263 
5264 	map->timestamp++;
5265 	LPRINTF(("map   lock: %p (at %s %d)\n", map, file, line));
5266 	uvm_tree_sanity(map, file, line);
5267 	uvm_tree_size_chk(map, file, line);
5268 }
5269 
5270 void
5271 vm_map_lock_read_ln(struct vm_map *map, char *file, int line)
5272 {
5273 	if ((map->flags & VM_MAP_INTRSAFE) == 0)
5274 		_rw_enter_read(&map->lock LOCK_FL_ARGS);
5275 	else
5276 		_mtx_enter(&map->mtx LOCK_FL_ARGS);
5277 	LPRINTF(("map   lock: %p (at %s %d)\n", map, file, line));
5278 	uvm_tree_sanity(map, file, line);
5279 	uvm_tree_size_chk(map, file, line);
5280 }
5281 
5282 void
5283 vm_map_unlock_ln(struct vm_map *map, char *file, int line)
5284 {
5285 	uvm_tree_sanity(map, file, line);
5286 	uvm_tree_size_chk(map, file, line);
5287 	LPRINTF(("map unlock: %p (at %s %d)\n", map, file, line));
5288 	if ((map->flags & VM_MAP_INTRSAFE) == 0)
5289 		_rw_exit(&map->lock LOCK_FL_ARGS);
5290 	else
5291 		_mtx_leave(&map->mtx LOCK_FL_ARGS);
5292 }
5293 
5294 void
5295 vm_map_unlock_read_ln(struct vm_map *map, char *file, int line)
5296 {
5297 	/* XXX: RO */ uvm_tree_sanity(map, file, line);
5298 	/* XXX: RO */ uvm_tree_size_chk(map, file, line);
5299 	LPRINTF(("map unlock: %p (at %s %d)\n", map, file, line));
5300 	if ((map->flags & VM_MAP_INTRSAFE) == 0)
5301 		_rw_exit_read(&map->lock LOCK_FL_ARGS);
5302 	else
5303 		_mtx_leave(&map->mtx LOCK_FL_ARGS);
5304 }
5305 
5306 void
5307 vm_map_downgrade_ln(struct vm_map *map, char *file, int line)
5308 {
5309 	uvm_tree_sanity(map, file, line);
5310 	uvm_tree_size_chk(map, file, line);
5311 	LPRINTF(("map unlock: %p (at %s %d)\n", map, file, line));
5312 	LPRINTF(("map   lock: %p (at %s %d)\n", map, file, line));
5313 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
5314 	if ((map->flags & VM_MAP_INTRSAFE) == 0)
5315 		_rw_enter(&map->lock, RW_DOWNGRADE LOCK_FL_ARGS);
5316 }
5317 
5318 void
5319 vm_map_upgrade_ln(struct vm_map *map, char *file, int line)
5320 {
5321 	/* XXX: RO */ uvm_tree_sanity(map, file, line);
5322 	/* XXX: RO */ uvm_tree_size_chk(map, file, line);
5323 	LPRINTF(("map unlock: %p (at %s %d)\n", map, file, line));
5324 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
5325 	if ((map->flags & VM_MAP_INTRSAFE) == 0) {
5326 		_rw_exit_read(&map->lock LOCK_FL_ARGS);
5327 		_rw_enter_write(&map->lock LOCK_FL_ARGS);
5328 	}
5329 	LPRINTF(("map   lock: %p (at %s %d)\n", map, file, line));
5330 	uvm_tree_sanity(map, file, line);
5331 }
5332 
5333 void
5334 vm_map_busy_ln(struct vm_map *map, char *file, int line)
5335 {
5336 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
5337 	mtx_enter(&map->flags_lock);
5338 	map->flags |= VM_MAP_BUSY;
5339 	mtx_leave(&map->flags_lock);
5340 }
5341 
5342 void
5343 vm_map_unbusy_ln(struct vm_map *map, char *file, int line)
5344 {
5345 	int oflags;
5346 
5347 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
5348 	mtx_enter(&map->flags_lock);
5349 	oflags = map->flags;
5350 	map->flags &= ~(VM_MAP_BUSY|VM_MAP_WANTLOCK);
5351 	mtx_leave(&map->flags_lock);
5352 	if (oflags & VM_MAP_WANTLOCK)
5353 		wakeup(&map->flags);
5354 }
5355 
5356 #ifndef SMALL_KERNEL
5357 int
5358 uvm_map_fill_vmmap(struct vm_map *map, struct kinfo_vmentry *kve,
5359     size_t *lenp)
5360 {
5361 	struct vm_map_entry *entry;
5362 	vaddr_t start;
5363 	int cnt, maxcnt, error = 0;
5364 
5365 	KASSERT(*lenp > 0);
5366 	KASSERT((*lenp % sizeof(*kve)) == 0);
5367 	cnt = 0;
5368 	maxcnt = *lenp / sizeof(*kve);
5369 	KASSERT(maxcnt > 0);
5370 
5371 	/*
5372 	 * Return only entries whose address is above the given base
5373 	 * address.  This allows userland to iterate without knowing the
5374 	 * number of entries beforehand.
5375 	 */
5376 	start = (vaddr_t)kve[0].kve_start;
5377 
5378 	vm_map_lock(map);
5379 	RBT_FOREACH(entry, uvm_map_addr, &map->addr) {
5380 		if (cnt == maxcnt) {
5381 			error = ENOMEM;
5382 			break;
5383 		}
5384 		if (start != 0 && entry->start < start)
5385 			continue;
5386 		kve->kve_start = entry->start;
5387 		kve->kve_end = entry->end;
5388 		kve->kve_guard = entry->guard;
5389 		kve->kve_fspace = entry->fspace;
5390 		kve->kve_fspace_augment = entry->fspace_augment;
5391 		kve->kve_offset = entry->offset;
5392 		kve->kve_wired_count = entry->wired_count;
5393 		kve->kve_etype = entry->etype;
5394 		kve->kve_protection = entry->protection;
5395 		kve->kve_max_protection = entry->max_protection;
5396 		kve->kve_advice = entry->advice;
5397 		kve->kve_inheritance = entry->inheritance;
5398 		kve->kve_flags = entry->flags;
5399 		kve++;
5400 		cnt++;
5401 	}
5402 	vm_map_unlock(map);
5403 
5404 	KASSERT(cnt <= maxcnt);
5405 
5406 	*lenp = sizeof(*kve) * cnt;
5407 	return error;
5408 }
5409 #endif
5410 
5411 
5412 RBT_GENERATE_AUGMENT(uvm_map_addr, vm_map_entry, daddrs.addr_entry,
5413     uvm_mapentry_addrcmp, uvm_map_addr_augment);
5414 
5415 
5416 /*
5417  * MD code: vmspace allocator setup.
5418  */
5419 
5420 #ifdef __i386__
5421 void
5422 uvm_map_setup_md(struct vm_map *map)
5423 {
5424 	vaddr_t		min, max;
5425 
5426 	min = map->min_offset;
5427 	max = map->max_offset;
5428 
5429 	/*
5430 	 * Ensure the selectors will not try to manage page 0;
5431 	 * it's too special.
5432 	 */
5433 	if (min < VMMAP_MIN_ADDR)
5434 		min = VMMAP_MIN_ADDR;
5435 
5436 #if 0	/* Cool stuff, not yet */
5437 	/* Executable code is special. */
5438 	map->uaddr_exe = uaddr_rnd_create(min, I386_MAX_EXE_ADDR);
5439 	/* Place normal allocations beyond executable mappings. */
5440 	map->uaddr_any[3] = uaddr_pivot_create(2 * I386_MAX_EXE_ADDR, max);
5441 #else	/* Crappy stuff, for now */
5442 	map->uaddr_any[0] = uaddr_rnd_create(min, max);
5443 #endif
5444 
5445 #ifndef SMALL_KERNEL
5446 	map->uaddr_brk_stack = uaddr_stack_brk_create(min, max);
5447 #endif /* !SMALL_KERNEL */
5448 }
5449 #elif __LP64__
5450 void
5451 uvm_map_setup_md(struct vm_map *map)
5452 {
5453 	vaddr_t		min, max;
5454 
5455 	min = map->min_offset;
5456 	max = map->max_offset;
5457 
5458 	/*
5459 	 * Ensure the selectors will not try to manage page 0;
5460 	 * it's too special.
5461 	 */
5462 	if (min < VMMAP_MIN_ADDR)
5463 		min = VMMAP_MIN_ADDR;
5464 
5465 #if 0	/* Cool stuff, not yet */
5466 	map->uaddr_any[3] = uaddr_pivot_create(MAX(min, 0x100000000ULL), max);
5467 #else	/* Crappy stuff, for now */
5468 	map->uaddr_any[0] = uaddr_rnd_create(min, max);
5469 #endif
5470 
5471 #ifndef SMALL_KERNEL
5472 	map->uaddr_brk_stack = uaddr_stack_brk_create(min, max);
5473 #endif /* !SMALL_KERNEL */
5474 }
5475 #else	/* non-i386, 32 bit */
5476 void
5477 uvm_map_setup_md(struct vm_map *map)
5478 {
5479 	vaddr_t		min, max;
5480 
5481 	min = map->min_offset;
5482 	max = map->max_offset;
5483 
5484 	/*
5485 	 * Ensure the selectors will not try to manage page 0;
5486 	 * it's too special.
5487 	 */
5488 	if (min < VMMAP_MIN_ADDR)
5489 		min = VMMAP_MIN_ADDR;
5490 
5491 #if 0	/* Cool stuff, not yet */
5492 	map->uaddr_any[3] = uaddr_pivot_create(min, max);
5493 #else	/* Crappy stuff, for now */
5494 	map->uaddr_any[0] = uaddr_rnd_create(min, max);
5495 #endif
5496 
5497 #ifndef SMALL_KERNEL
5498 	map->uaddr_brk_stack = uaddr_stack_brk_create(min, max);
5499 #endif /* !SMALL_KERNEL */
5500 }
5501 #endif
5502