xref: /openbsd-src/sys/uvm/uvm_map.c (revision 24bb5fcea3ed904bc467217bdaadb5dfc618d5bf)
1 /*	$OpenBSD: uvm_map.c,v 1.277 2021/06/17 16:10:39 mpi Exp $	*/
2 /*	$NetBSD: uvm_map.c,v 1.86 2000/11/27 08:40:03 chs Exp $	*/
3 
4 /*
5  * Copyright (c) 2011 Ariane van der Steldt <ariane@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  *
20  * Copyright (c) 1997 Charles D. Cranor and Washington University.
21  * Copyright (c) 1991, 1993, The Regents of the University of California.
22  *
23  * All rights reserved.
24  *
25  * This code is derived from software contributed to Berkeley by
26  * The Mach Operating System project at Carnegie-Mellon University.
27  *
28  * Redistribution and use in source and binary forms, with or without
29  * modification, are permitted provided that the following conditions
30  * are met:
31  * 1. Redistributions of source code must retain the above copyright
32  *    notice, this list of conditions and the following disclaimer.
33  * 2. Redistributions in binary form must reproduce the above copyright
34  *    notice, this list of conditions and the following disclaimer in the
35  *    documentation and/or other materials provided with the distribution.
36  * 3. Neither the name of the University nor the names of its contributors
37  *    may be used to endorse or promote products derived from this software
38  *    without specific prior written permission.
39  *
40  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  *	@(#)vm_map.c    8.3 (Berkeley) 1/12/94
53  * from: Id: uvm_map.c,v 1.1.2.27 1998/02/07 01:16:54 chs Exp
54  *
55  *
56  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
57  * All rights reserved.
58  *
59  * Permission to use, copy, modify and distribute this software and
60  * its documentation is hereby granted, provided that both the copyright
61  * notice and this permission notice appear in all copies of the
62  * software, derivative works or modified versions, and any portions
63  * thereof, and that both notices appear in supporting documentation.
64  *
65  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
66  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
67  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
68  *
69  * Carnegie Mellon requests users of this software to return to
70  *
71  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
72  *  School of Computer Science
73  *  Carnegie Mellon University
74  *  Pittsburgh PA 15213-3890
75  *
76  * any improvements or extensions that they make and grant Carnegie the
77  * rights to redistribute these changes.
78  */
79 
80 /*
81  * uvm_map.c: uvm map operations
82  */
83 
84 /* #define DEBUG */
85 /* #define VMMAP_DEBUG */
86 
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/acct.h>
90 #include <sys/mman.h>
91 #include <sys/proc.h>
92 #include <sys/malloc.h>
93 #include <sys/pool.h>
94 #include <sys/sysctl.h>
95 #include <sys/signalvar.h>
96 #include <sys/syslog.h>
97 #include <sys/user.h>
98 #include <sys/tracepoint.h>
99 
100 #ifdef SYSVSHM
101 #include <sys/shm.h>
102 #endif
103 
104 #include <uvm/uvm.h>
105 
106 #ifdef DDB
107 #include <uvm/uvm_ddb.h>
108 #endif
109 
110 #include <uvm/uvm_addr.h>
111 
112 
113 vsize_t			 uvmspace_dused(struct vm_map*, vaddr_t, vaddr_t);
114 int			 uvm_mapent_isjoinable(struct vm_map*,
115 			    struct vm_map_entry*, struct vm_map_entry*);
116 struct vm_map_entry	*uvm_mapent_merge(struct vm_map*, struct vm_map_entry*,
117 			    struct vm_map_entry*, struct uvm_map_deadq*);
118 struct vm_map_entry	*uvm_mapent_tryjoin(struct vm_map*,
119 			    struct vm_map_entry*, struct uvm_map_deadq*);
120 struct vm_map_entry	*uvm_map_mkentry(struct vm_map*, struct vm_map_entry*,
121 			    struct vm_map_entry*, vaddr_t, vsize_t, int,
122 			    struct uvm_map_deadq*, struct vm_map_entry*);
123 struct vm_map_entry	*uvm_mapent_alloc(struct vm_map*, int);
124 void			 uvm_mapent_free(struct vm_map_entry*);
125 void			 uvm_unmap_kill_entry(struct vm_map*,
126 			    struct vm_map_entry*);
127 void			 uvm_unmap_detach_intrsafe(struct uvm_map_deadq *);
128 void			 uvm_mapent_mkfree(struct vm_map*,
129 			    struct vm_map_entry*, struct vm_map_entry**,
130 			    struct uvm_map_deadq*, boolean_t);
131 void			 uvm_map_pageable_pgon(struct vm_map*,
132 			    struct vm_map_entry*, struct vm_map_entry*,
133 			    vaddr_t, vaddr_t);
134 int			 uvm_map_pageable_wire(struct vm_map*,
135 			    struct vm_map_entry*, struct vm_map_entry*,
136 			    vaddr_t, vaddr_t, int);
137 void			 uvm_map_setup_entries(struct vm_map*);
138 void			 uvm_map_setup_md(struct vm_map*);
139 void			 uvm_map_teardown(struct vm_map*);
140 void			 uvm_map_vmspace_update(struct vm_map*,
141 			    struct uvm_map_deadq*, int);
142 void			 uvm_map_kmem_grow(struct vm_map*,
143 			    struct uvm_map_deadq*, vsize_t, int);
144 void			 uvm_map_freelist_update_clear(struct vm_map*,
145 			    struct uvm_map_deadq*);
146 void			 uvm_map_freelist_update_refill(struct vm_map *, int);
147 void			 uvm_map_freelist_update(struct vm_map*,
148 			    struct uvm_map_deadq*, vaddr_t, vaddr_t,
149 			    vaddr_t, vaddr_t, int);
150 struct vm_map_entry	*uvm_map_fix_space(struct vm_map*, struct vm_map_entry*,
151 			    vaddr_t, vaddr_t, int);
152 int			 uvm_map_sel_limits(vaddr_t*, vaddr_t*, vsize_t, int,
153 			    struct vm_map_entry*, vaddr_t, vaddr_t, vaddr_t,
154 			    int);
155 int			 uvm_map_findspace(struct vm_map*,
156 			    struct vm_map_entry**, struct vm_map_entry**,
157 			    vaddr_t*, vsize_t, vaddr_t, vaddr_t, vm_prot_t,
158 			    vaddr_t);
159 vsize_t			 uvm_map_addr_augment_get(struct vm_map_entry*);
160 void			 uvm_map_addr_augment(struct vm_map_entry*);
161 
162 int			 uvm_map_inentry_recheck(u_long, vaddr_t,
163 			     struct p_inentry *);
164 boolean_t		 uvm_map_inentry_fix(struct proc *, struct p_inentry *,
165 			     vaddr_t, int (*)(vm_map_entry_t), u_long);
166 /*
167  * Tree management functions.
168  */
169 
170 static inline void	 uvm_mapent_copy(struct vm_map_entry*,
171 			    struct vm_map_entry*);
172 static inline int	 uvm_mapentry_addrcmp(const struct vm_map_entry*,
173 			    const struct vm_map_entry*);
174 void			 uvm_mapent_free_insert(struct vm_map*,
175 			    struct uvm_addr_state*, struct vm_map_entry*);
176 void			 uvm_mapent_free_remove(struct vm_map*,
177 			    struct uvm_addr_state*, struct vm_map_entry*);
178 void			 uvm_mapent_addr_insert(struct vm_map*,
179 			    struct vm_map_entry*);
180 void			 uvm_mapent_addr_remove(struct vm_map*,
181 			    struct vm_map_entry*);
182 void			 uvm_map_splitentry(struct vm_map*,
183 			    struct vm_map_entry*, struct vm_map_entry*,
184 			    vaddr_t);
185 vsize_t			 uvm_map_boundary(struct vm_map*, vaddr_t, vaddr_t);
186 
187 /*
188  * uvm_vmspace_fork helper functions.
189  */
190 struct vm_map_entry	*uvm_mapent_clone(struct vm_map*, vaddr_t, vsize_t,
191 			    vsize_t, vm_prot_t, vm_prot_t,
192 			    struct vm_map_entry*, struct uvm_map_deadq*, int,
193 			    int);
194 struct vm_map_entry	*uvm_mapent_share(struct vm_map*, vaddr_t, vsize_t,
195 			    vsize_t, vm_prot_t, vm_prot_t, struct vm_map*,
196 			    struct vm_map_entry*, struct uvm_map_deadq*);
197 struct vm_map_entry	*uvm_mapent_forkshared(struct vmspace*, struct vm_map*,
198 			    struct vm_map*, struct vm_map_entry*,
199 			    struct uvm_map_deadq*);
200 struct vm_map_entry	*uvm_mapent_forkcopy(struct vmspace*, struct vm_map*,
201 			    struct vm_map*, struct vm_map_entry*,
202 			    struct uvm_map_deadq*);
203 struct vm_map_entry	*uvm_mapent_forkzero(struct vmspace*, struct vm_map*,
204 			    struct vm_map*, struct vm_map_entry*,
205 			    struct uvm_map_deadq*);
206 
207 /*
208  * Tree validation.
209  */
210 #ifdef VMMAP_DEBUG
211 void			 uvm_tree_assert(struct vm_map*, int, char*,
212 			    char*, int);
213 #define UVM_ASSERT(map, cond, file, line)				\
214 	uvm_tree_assert((map), (cond), #cond, (file), (line))
215 void			 uvm_tree_sanity(struct vm_map*, char*, int);
216 void			 uvm_tree_size_chk(struct vm_map*, char*, int);
217 void			 vmspace_validate(struct vm_map*);
218 #else
219 #define uvm_tree_sanity(_map, _file, _line)		do {} while (0)
220 #define uvm_tree_size_chk(_map, _file, _line)		do {} while (0)
221 #define vmspace_validate(_map)				do {} while (0)
222 #endif
223 
224 /*
225  * All architectures will have pmap_prefer.
226  */
227 #ifndef PMAP_PREFER
228 #define PMAP_PREFER_ALIGN()	(vaddr_t)PAGE_SIZE
229 #define PMAP_PREFER_OFFSET(off)	0
230 #define PMAP_PREFER(addr, off)	(addr)
231 #endif
232 
233 /*
234  * The kernel map will initially be VM_MAP_KSIZE_INIT bytes.
235  * Every time that gets cramped, we grow by at least VM_MAP_KSIZE_DELTA bytes.
236  *
237  * We attempt to grow by UVM_MAP_KSIZE_ALLOCMUL times the allocation size
238  * each time.
239  */
240 #define VM_MAP_KSIZE_INIT	(512 * (vaddr_t)PAGE_SIZE)
241 #define VM_MAP_KSIZE_DELTA	(256 * (vaddr_t)PAGE_SIZE)
242 #define VM_MAP_KSIZE_ALLOCMUL	4
243 /*
244  * When selecting a random free-space block, look at most FSPACE_DELTA blocks
245  * ahead.
246  */
247 #define FSPACE_DELTA		8
248 /*
249  * Put allocations adjecent to previous allocations when the free-space tree
250  * is larger than FSPACE_COMPACT entries.
251  *
252  * Alignment and PMAP_PREFER may still cause the entry to not be fully
253  * adjecent. Note that this strategy reduces memory fragmentation (by leaving
254  * a large space before or after the allocation).
255  */
256 #define FSPACE_COMPACT		128
257 /*
258  * Make the address selection skip at most this many bytes from the start of
259  * the free space in which the allocation takes place.
260  *
261  * The main idea behind a randomized address space is that an attacker cannot
262  * know where to target his attack. Therefore, the location of objects must be
263  * as random as possible. However, the goal is not to create the most sparse
264  * map that is possible.
265  * FSPACE_MAXOFF pushes the considered range in bytes down to less insane
266  * sizes, thereby reducing the sparseness. The biggest randomization comes
267  * from fragmentation, i.e. FSPACE_COMPACT.
268  */
269 #define FSPACE_MAXOFF		((vaddr_t)32 * 1024 * 1024)
270 /*
271  * Allow for small gaps in the overflow areas.
272  * Gap size is in bytes and does not have to be a multiple of page-size.
273  */
274 #define FSPACE_BIASGAP		((vaddr_t)32 * 1024)
275 
276 /* auto-allocate address lower bound */
277 #define VMMAP_MIN_ADDR		PAGE_SIZE
278 
279 
280 #ifdef DEADBEEF0
281 #define UVMMAP_DEADBEEF		((unsigned long)DEADBEEF0)
282 #else
283 #define UVMMAP_DEADBEEF		((unsigned long)0xdeadd0d0)
284 #endif
285 
286 #ifdef DEBUG
287 int uvm_map_printlocks = 0;
288 
289 #define LPRINTF(_args)							\
290 	do {								\
291 		if (uvm_map_printlocks)					\
292 			printf _args;					\
293 	} while (0)
294 #else
295 #define LPRINTF(_args)	do {} while (0)
296 #endif
297 
298 static struct mutex uvm_kmapent_mtx;
299 static struct timeval uvm_kmapent_last_warn_time;
300 static struct timeval uvm_kmapent_warn_rate = { 10, 0 };
301 
302 const char vmmapbsy[] = "vmmapbsy";
303 
304 /*
305  * pool for vmspace structures.
306  */
307 struct pool uvm_vmspace_pool;
308 
309 /*
310  * pool for dynamically-allocated map entries.
311  */
312 struct pool uvm_map_entry_pool;
313 struct pool uvm_map_entry_kmem_pool;
314 
315 /*
316  * This global represents the end of the kernel virtual address
317  * space. If we want to exceed this, we must grow the kernel
318  * virtual address space dynamically.
319  *
320  * Note, this variable is locked by kernel_map's lock.
321  */
322 vaddr_t uvm_maxkaddr;
323 
324 /*
325  * Locking predicate.
326  */
327 #define UVM_MAP_REQ_WRITE(_map)						\
328 	do {								\
329 		if ((_map)->ref_count > 0) {				\
330 			if (((_map)->flags & VM_MAP_INTRSAFE) == 0)	\
331 				rw_assert_wrlock(&(_map)->lock);	\
332 			else						\
333 				MUTEX_ASSERT_LOCKED(&(_map)->mtx);	\
334 		}							\
335 	} while (0)
336 
337 #define	vm_map_modflags(map, set, clear)				\
338 	do {								\
339 		mtx_enter(&(map)->flags_lock);				\
340 		(map)->flags = ((map)->flags | (set)) & ~(clear);	\
341 		mtx_leave(&(map)->flags_lock);				\
342 	} while (0)
343 
344 
345 /*
346  * Tree describing entries by address.
347  *
348  * Addresses are unique.
349  * Entries with start == end may only exist if they are the first entry
350  * (sorted by address) within a free-memory tree.
351  */
352 
353 static inline int
354 uvm_mapentry_addrcmp(const struct vm_map_entry *e1,
355     const struct vm_map_entry *e2)
356 {
357 	return e1->start < e2->start ? -1 : e1->start > e2->start;
358 }
359 
360 /*
361  * Copy mapentry.
362  */
363 static inline void
364 uvm_mapent_copy(struct vm_map_entry *src, struct vm_map_entry *dst)
365 {
366 	caddr_t csrc, cdst;
367 	size_t sz;
368 
369 	csrc = (caddr_t)src;
370 	cdst = (caddr_t)dst;
371 	csrc += offsetof(struct vm_map_entry, uvm_map_entry_start_copy);
372 	cdst += offsetof(struct vm_map_entry, uvm_map_entry_start_copy);
373 
374 	sz = offsetof(struct vm_map_entry, uvm_map_entry_stop_copy) -
375 	    offsetof(struct vm_map_entry, uvm_map_entry_start_copy);
376 	memcpy(cdst, csrc, sz);
377 }
378 
379 /*
380  * Handle free-list insertion.
381  */
382 void
383 uvm_mapent_free_insert(struct vm_map *map, struct uvm_addr_state *uaddr,
384     struct vm_map_entry *entry)
385 {
386 	const struct uvm_addr_functions *fun;
387 #ifdef VMMAP_DEBUG
388 	vaddr_t min, max, bound;
389 #endif
390 
391 #ifdef VMMAP_DEBUG
392 	/*
393 	 * Boundary check.
394 	 * Boundaries are folded if they go on the same free list.
395 	 */
396 	min = VMMAP_FREE_START(entry);
397 	max = VMMAP_FREE_END(entry);
398 
399 	while (min < max) {
400 		bound = uvm_map_boundary(map, min, max);
401 		KASSERT(uvm_map_uaddr(map, min) == uaddr);
402 		min = bound;
403 	}
404 #endif
405 	KDASSERT((entry->fspace & (vaddr_t)PAGE_MASK) == 0);
406 	KASSERT((entry->etype & UVM_ET_FREEMAPPED) == 0);
407 
408 	UVM_MAP_REQ_WRITE(map);
409 
410 	/* Actual insert: forward to uaddr pointer. */
411 	if (uaddr != NULL) {
412 		fun = uaddr->uaddr_functions;
413 		KDASSERT(fun != NULL);
414 		if (fun->uaddr_free_insert != NULL)
415 			(*fun->uaddr_free_insert)(map, uaddr, entry);
416 		entry->etype |= UVM_ET_FREEMAPPED;
417 	}
418 
419 	/* Update fspace augmentation. */
420 	uvm_map_addr_augment(entry);
421 }
422 
423 /*
424  * Handle free-list removal.
425  */
426 void
427 uvm_mapent_free_remove(struct vm_map *map, struct uvm_addr_state *uaddr,
428     struct vm_map_entry *entry)
429 {
430 	const struct uvm_addr_functions *fun;
431 
432 	KASSERT((entry->etype & UVM_ET_FREEMAPPED) != 0 || uaddr == NULL);
433 	KASSERT(uvm_map_uaddr_e(map, entry) == uaddr);
434 	UVM_MAP_REQ_WRITE(map);
435 
436 	if (uaddr != NULL) {
437 		fun = uaddr->uaddr_functions;
438 		if (fun->uaddr_free_remove != NULL)
439 			(*fun->uaddr_free_remove)(map, uaddr, entry);
440 		entry->etype &= ~UVM_ET_FREEMAPPED;
441 	}
442 }
443 
444 /*
445  * Handle address tree insertion.
446  */
447 void
448 uvm_mapent_addr_insert(struct vm_map *map, struct vm_map_entry *entry)
449 {
450 	struct vm_map_entry *res;
451 
452 	if (!RBT_CHECK(uvm_map_addr, entry, UVMMAP_DEADBEEF))
453 		panic("uvm_mapent_addr_insert: entry still in addr list");
454 	KDASSERT(entry->start <= entry->end);
455 	KDASSERT((entry->start & (vaddr_t)PAGE_MASK) == 0 &&
456 	    (entry->end & (vaddr_t)PAGE_MASK) == 0);
457 
458 	TRACEPOINT(uvm, map_insert,
459 	    entry->start, entry->end, entry->protection, NULL);
460 
461 	UVM_MAP_REQ_WRITE(map);
462 	res = RBT_INSERT(uvm_map_addr, &map->addr, entry);
463 	if (res != NULL) {
464 		panic("uvm_mapent_addr_insert: map %p entry %p "
465 		    "(0x%lx-0x%lx G=0x%lx F=0x%lx) insert collision "
466 		    "with entry %p (0x%lx-0x%lx G=0x%lx F=0x%lx)",
467 		    map, entry,
468 		    entry->start, entry->end, entry->guard, entry->fspace,
469 		    res, res->start, res->end, res->guard, res->fspace);
470 	}
471 }
472 
473 /*
474  * Handle address tree removal.
475  */
476 void
477 uvm_mapent_addr_remove(struct vm_map *map, struct vm_map_entry *entry)
478 {
479 	struct vm_map_entry *res;
480 
481 	TRACEPOINT(uvm, map_remove,
482 	    entry->start, entry->end, entry->protection, NULL);
483 
484 	UVM_MAP_REQ_WRITE(map);
485 	res = RBT_REMOVE(uvm_map_addr, &map->addr, entry);
486 	if (res != entry)
487 		panic("uvm_mapent_addr_remove");
488 	RBT_POISON(uvm_map_addr, entry, UVMMAP_DEADBEEF);
489 }
490 
491 /*
492  * uvm_map_reference: add reference to a map
493  *
494  * => map need not be locked
495  */
496 void
497 uvm_map_reference(struct vm_map *map)
498 {
499 	atomic_inc_int(&map->ref_count);
500 }
501 
502 /*
503  * Calculate the dused delta.
504  */
505 vsize_t
506 uvmspace_dused(struct vm_map *map, vaddr_t min, vaddr_t max)
507 {
508 	struct vmspace *vm;
509 	vsize_t sz;
510 	vaddr_t lmax;
511 	vaddr_t stack_begin, stack_end; /* Position of stack. */
512 
513 	KASSERT(map->flags & VM_MAP_ISVMSPACE);
514 	vm = (struct vmspace *)map;
515 	stack_begin = MIN((vaddr_t)vm->vm_maxsaddr, (vaddr_t)vm->vm_minsaddr);
516 	stack_end = MAX((vaddr_t)vm->vm_maxsaddr, (vaddr_t)vm->vm_minsaddr);
517 
518 	sz = 0;
519 	while (min != max) {
520 		lmax = max;
521 		if (min < stack_begin && lmax > stack_begin)
522 			lmax = stack_begin;
523 		else if (min < stack_end && lmax > stack_end)
524 			lmax = stack_end;
525 
526 		if (min >= stack_begin && min < stack_end) {
527 			/* nothing */
528 		} else
529 			sz += lmax - min;
530 		min = lmax;
531 	}
532 
533 	return sz >> PAGE_SHIFT;
534 }
535 
536 /*
537  * Find the entry describing the given address.
538  */
539 struct vm_map_entry*
540 uvm_map_entrybyaddr(struct uvm_map_addr *atree, vaddr_t addr)
541 {
542 	struct vm_map_entry *iter;
543 
544 	iter = RBT_ROOT(uvm_map_addr, atree);
545 	while (iter != NULL) {
546 		if (iter->start > addr)
547 			iter = RBT_LEFT(uvm_map_addr, iter);
548 		else if (VMMAP_FREE_END(iter) <= addr)
549 			iter = RBT_RIGHT(uvm_map_addr, iter);
550 		else
551 			return iter;
552 	}
553 	return NULL;
554 }
555 
556 /*
557  * DEAD_ENTRY_PUSH(struct vm_map_deadq *deadq, struct vm_map_entry *entry)
558  *
559  * Push dead entries into a linked list.
560  * Since the linked list abuses the address tree for storage, the entry
561  * may not be linked in a map.
562  *
563  * *head must be initialized to NULL before the first call to this macro.
564  * uvm_unmap_detach(*head, 0) will remove dead entries.
565  */
566 static inline void
567 dead_entry_push(struct uvm_map_deadq *deadq, struct vm_map_entry *entry)
568 {
569 	TAILQ_INSERT_TAIL(deadq, entry, dfree.deadq);
570 }
571 #define DEAD_ENTRY_PUSH(_headptr, _entry)				\
572 	dead_entry_push((_headptr), (_entry))
573 
574 /*
575  * Helper function for uvm_map_findspace_tree.
576  *
577  * Given allocation constraints and pmap constraints, finds the
578  * lowest and highest address in a range that can be used for the
579  * allocation.
580  *
581  * pmap_align and pmap_off are ignored on non-PMAP_PREFER archs.
582  *
583  *
584  * Big chunk of math with a seasoning of dragons.
585  */
586 int
587 uvm_map_sel_limits(vaddr_t *min, vaddr_t *max, vsize_t sz, int guardpg,
588     struct vm_map_entry *sel, vaddr_t align,
589     vaddr_t pmap_align, vaddr_t pmap_off, int bias)
590 {
591 	vaddr_t sel_min, sel_max;
592 #ifdef PMAP_PREFER
593 	vaddr_t pmap_min, pmap_max;
594 #endif /* PMAP_PREFER */
595 #ifdef DIAGNOSTIC
596 	int bad;
597 #endif /* DIAGNOSTIC */
598 
599 	sel_min = VMMAP_FREE_START(sel);
600 	sel_max = VMMAP_FREE_END(sel) - sz - (guardpg ? PAGE_SIZE : 0);
601 
602 #ifdef PMAP_PREFER
603 
604 	/*
605 	 * There are two special cases, in which we can satisfy the align
606 	 * requirement and the pmap_prefer requirement.
607 	 * - when pmap_off == 0, we always select the largest of the two
608 	 * - when pmap_off % align == 0 and pmap_align > align, we simply
609 	 *   satisfy the pmap_align requirement and automatically
610 	 *   satisfy the align requirement.
611 	 */
612 	if (align > PAGE_SIZE &&
613 	    !(pmap_align > align && (pmap_off & (align - 1)) == 0)) {
614 		/*
615 		 * Simple case: only use align.
616 		 */
617 		sel_min = roundup(sel_min, align);
618 		sel_max &= ~(align - 1);
619 
620 		if (sel_min > sel_max)
621 			return ENOMEM;
622 
623 		/* Correct for bias. */
624 		if (sel_max - sel_min > FSPACE_BIASGAP) {
625 			if (bias > 0) {
626 				sel_min = sel_max - FSPACE_BIASGAP;
627 				sel_min = roundup(sel_min, align);
628 			} else if (bias < 0) {
629 				sel_max = sel_min + FSPACE_BIASGAP;
630 				sel_max &= ~(align - 1);
631 			}
632 		}
633 	} else if (pmap_align != 0) {
634 		/*
635 		 * Special case: satisfy both pmap_prefer and
636 		 * align argument.
637 		 */
638 		pmap_max = sel_max & ~(pmap_align - 1);
639 		pmap_min = sel_min;
640 		if (pmap_max < sel_min)
641 			return ENOMEM;
642 
643 		/* Adjust pmap_min for BIASGAP for top-addr bias. */
644 		if (bias > 0 && pmap_max - pmap_min > FSPACE_BIASGAP)
645 			pmap_min = pmap_max - FSPACE_BIASGAP;
646 		/* Align pmap_min. */
647 		pmap_min &= ~(pmap_align - 1);
648 		if (pmap_min < sel_min)
649 			pmap_min += pmap_align;
650 		if (pmap_min > pmap_max)
651 			return ENOMEM;
652 
653 		/* Adjust pmap_max for BIASGAP for bottom-addr bias. */
654 		if (bias < 0 && pmap_max - pmap_min > FSPACE_BIASGAP) {
655 			pmap_max = (pmap_min + FSPACE_BIASGAP) &
656 			    ~(pmap_align - 1);
657 		}
658 		if (pmap_min > pmap_max)
659 			return ENOMEM;
660 
661 		/* Apply pmap prefer offset. */
662 		pmap_max |= pmap_off;
663 		if (pmap_max > sel_max)
664 			pmap_max -= pmap_align;
665 		pmap_min |= pmap_off;
666 		if (pmap_min < sel_min)
667 			pmap_min += pmap_align;
668 
669 		/*
670 		 * Fixup: it's possible that pmap_min and pmap_max
671 		 * cross each other. In this case, try to find one
672 		 * address that is allowed.
673 		 * (This usually happens in biased case.)
674 		 */
675 		if (pmap_min > pmap_max) {
676 			if (pmap_min < sel_max)
677 				pmap_max = pmap_min;
678 			else if (pmap_max > sel_min)
679 				pmap_min = pmap_max;
680 			else
681 				return ENOMEM;
682 		}
683 
684 		/* Internal validation. */
685 		KDASSERT(pmap_min <= pmap_max);
686 
687 		sel_min = pmap_min;
688 		sel_max = pmap_max;
689 	} else if (bias > 0 && sel_max - sel_min > FSPACE_BIASGAP)
690 		sel_min = sel_max - FSPACE_BIASGAP;
691 	else if (bias < 0 && sel_max - sel_min > FSPACE_BIASGAP)
692 		sel_max = sel_min + FSPACE_BIASGAP;
693 
694 #else
695 
696 	if (align > PAGE_SIZE) {
697 		sel_min = roundup(sel_min, align);
698 		sel_max &= ~(align - 1);
699 		if (sel_min > sel_max)
700 			return ENOMEM;
701 
702 		if (bias != 0 && sel_max - sel_min > FSPACE_BIASGAP) {
703 			if (bias > 0) {
704 				sel_min = roundup(sel_max - FSPACE_BIASGAP,
705 				    align);
706 			} else {
707 				sel_max = (sel_min + FSPACE_BIASGAP) &
708 				    ~(align - 1);
709 			}
710 		}
711 	} else if (bias > 0 && sel_max - sel_min > FSPACE_BIASGAP)
712 		sel_min = sel_max - FSPACE_BIASGAP;
713 	else if (bias < 0 && sel_max - sel_min > FSPACE_BIASGAP)
714 		sel_max = sel_min + FSPACE_BIASGAP;
715 
716 #endif
717 
718 	if (sel_min > sel_max)
719 		return ENOMEM;
720 
721 #ifdef DIAGNOSTIC
722 	bad = 0;
723 	/* Lower boundary check. */
724 	if (sel_min < VMMAP_FREE_START(sel)) {
725 		printf("sel_min: 0x%lx, but should be at least 0x%lx\n",
726 		    sel_min, VMMAP_FREE_START(sel));
727 		bad++;
728 	}
729 	/* Upper boundary check. */
730 	if (sel_max > VMMAP_FREE_END(sel) - sz - (guardpg ? PAGE_SIZE : 0)) {
731 		printf("sel_max: 0x%lx, but should be at most 0x%lx\n",
732 		    sel_max,
733 		    VMMAP_FREE_END(sel) - sz - (guardpg ? PAGE_SIZE : 0));
734 		bad++;
735 	}
736 	/* Lower boundary alignment. */
737 	if (align != 0 && (sel_min & (align - 1)) != 0) {
738 		printf("sel_min: 0x%lx, not aligned to 0x%lx\n",
739 		    sel_min, align);
740 		bad++;
741 	}
742 	/* Upper boundary alignment. */
743 	if (align != 0 && (sel_max & (align - 1)) != 0) {
744 		printf("sel_max: 0x%lx, not aligned to 0x%lx\n",
745 		    sel_max, align);
746 		bad++;
747 	}
748 	/* Lower boundary PMAP_PREFER check. */
749 	if (pmap_align != 0 && align == 0 &&
750 	    (sel_min & (pmap_align - 1)) != pmap_off) {
751 		printf("sel_min: 0x%lx, aligned to 0x%lx, expected 0x%lx\n",
752 		    sel_min, sel_min & (pmap_align - 1), pmap_off);
753 		bad++;
754 	}
755 	/* Upper boundary PMAP_PREFER check. */
756 	if (pmap_align != 0 && align == 0 &&
757 	    (sel_max & (pmap_align - 1)) != pmap_off) {
758 		printf("sel_max: 0x%lx, aligned to 0x%lx, expected 0x%lx\n",
759 		    sel_max, sel_max & (pmap_align - 1), pmap_off);
760 		bad++;
761 	}
762 
763 	if (bad) {
764 		panic("uvm_map_sel_limits(sz = %lu, guardpg = %c, "
765 		    "align = 0x%lx, pmap_align = 0x%lx, pmap_off = 0x%lx, "
766 		    "bias = %d, "
767 		    "FREE_START(sel) = 0x%lx, FREE_END(sel) = 0x%lx)",
768 		    sz, (guardpg ? 'T' : 'F'), align, pmap_align, pmap_off,
769 		    bias, VMMAP_FREE_START(sel), VMMAP_FREE_END(sel));
770 	}
771 #endif /* DIAGNOSTIC */
772 
773 	*min = sel_min;
774 	*max = sel_max;
775 	return 0;
776 }
777 
778 /*
779  * Test if memory starting at addr with sz bytes is free.
780  *
781  * Fills in *start_ptr and *end_ptr to be the first and last entry describing
782  * the space.
783  * If called with prefilled *start_ptr and *end_ptr, they are to be correct.
784  */
785 int
786 uvm_map_isavail(struct vm_map *map, struct uvm_addr_state *uaddr,
787     struct vm_map_entry **start_ptr, struct vm_map_entry **end_ptr,
788     vaddr_t addr, vsize_t sz)
789 {
790 	struct uvm_addr_state *free;
791 	struct uvm_map_addr *atree;
792 	struct vm_map_entry *i, *i_end;
793 
794 	if (addr + sz < addr)
795 		return 0;
796 
797 	/*
798 	 * Kernel memory above uvm_maxkaddr is considered unavailable.
799 	 */
800 	if ((map->flags & VM_MAP_ISVMSPACE) == 0) {
801 		if (addr + sz > uvm_maxkaddr)
802 			return 0;
803 	}
804 
805 	atree = &map->addr;
806 
807 	/*
808 	 * Fill in first, last, so they point at the entries containing the
809 	 * first and last address of the range.
810 	 * Note that if they are not NULL, we don't perform the lookup.
811 	 */
812 	KDASSERT(atree != NULL && start_ptr != NULL && end_ptr != NULL);
813 	if (*start_ptr == NULL) {
814 		*start_ptr = uvm_map_entrybyaddr(atree, addr);
815 		if (*start_ptr == NULL)
816 			return 0;
817 	} else
818 		KASSERT(*start_ptr == uvm_map_entrybyaddr(atree, addr));
819 	if (*end_ptr == NULL) {
820 		if (VMMAP_FREE_END(*start_ptr) >= addr + sz)
821 			*end_ptr = *start_ptr;
822 		else {
823 			*end_ptr = uvm_map_entrybyaddr(atree, addr + sz - 1);
824 			if (*end_ptr == NULL)
825 				return 0;
826 		}
827 	} else
828 		KASSERT(*end_ptr == uvm_map_entrybyaddr(atree, addr + sz - 1));
829 
830 	/* Validation. */
831 	KDASSERT(*start_ptr != NULL && *end_ptr != NULL);
832 	KDASSERT((*start_ptr)->start <= addr &&
833 	    VMMAP_FREE_END(*start_ptr) > addr &&
834 	    (*end_ptr)->start < addr + sz &&
835 	    VMMAP_FREE_END(*end_ptr) >= addr + sz);
836 
837 	/*
838 	 * Check the none of the entries intersects with <addr, addr+sz>.
839 	 * Also, if the entry belong to uaddr_exe or uaddr_brk_stack, it is
840 	 * considered unavailable unless called by those allocators.
841 	 */
842 	i = *start_ptr;
843 	i_end = RBT_NEXT(uvm_map_addr, *end_ptr);
844 	for (; i != i_end;
845 	    i = RBT_NEXT(uvm_map_addr, i)) {
846 		if (i->start != i->end && i->end > addr)
847 			return 0;
848 
849 		/*
850 		 * uaddr_exe and uaddr_brk_stack may only be used
851 		 * by these allocators and the NULL uaddr (i.e. no
852 		 * uaddr).
853 		 * Reject if this requirement is not met.
854 		 */
855 		if (uaddr != NULL) {
856 			free = uvm_map_uaddr_e(map, i);
857 
858 			if (uaddr != free && free != NULL &&
859 			    (free == map->uaddr_exe ||
860 			     free == map->uaddr_brk_stack))
861 				return 0;
862 		}
863 	}
864 
865 	return -1;
866 }
867 
868 /*
869  * Invoke each address selector until an address is found.
870  * Will not invoke uaddr_exe.
871  */
872 int
873 uvm_map_findspace(struct vm_map *map, struct vm_map_entry**first,
874     struct vm_map_entry**last, vaddr_t *addr, vsize_t sz,
875     vaddr_t pmap_align, vaddr_t pmap_offset, vm_prot_t prot, vaddr_t hint)
876 {
877 	struct uvm_addr_state *uaddr;
878 	int i;
879 
880 	/*
881 	 * Allocation for sz bytes at any address,
882 	 * using the addr selectors in order.
883 	 */
884 	for (i = 0; i < nitems(map->uaddr_any); i++) {
885 		uaddr = map->uaddr_any[i];
886 
887 		if (uvm_addr_invoke(map, uaddr, first, last,
888 		    addr, sz, pmap_align, pmap_offset, prot, hint) == 0)
889 			return 0;
890 	}
891 
892 	/* Fall back to brk() and stack() address selectors. */
893 	uaddr = map->uaddr_brk_stack;
894 	if (uvm_addr_invoke(map, uaddr, first, last,
895 	    addr, sz, pmap_align, pmap_offset, prot, hint) == 0)
896 		return 0;
897 
898 	return ENOMEM;
899 }
900 
901 /* Calculate entry augmentation value. */
902 vsize_t
903 uvm_map_addr_augment_get(struct vm_map_entry *entry)
904 {
905 	vsize_t			 augment;
906 	struct vm_map_entry	*left, *right;
907 
908 	augment = entry->fspace;
909 	if ((left = RBT_LEFT(uvm_map_addr, entry)) != NULL)
910 		augment = MAX(augment, left->fspace_augment);
911 	if ((right = RBT_RIGHT(uvm_map_addr, entry)) != NULL)
912 		augment = MAX(augment, right->fspace_augment);
913 	return augment;
914 }
915 
916 /*
917  * Update augmentation data in entry.
918  */
919 void
920 uvm_map_addr_augment(struct vm_map_entry *entry)
921 {
922 	vsize_t			 augment;
923 
924 	while (entry != NULL) {
925 		/* Calculate value for augmentation. */
926 		augment = uvm_map_addr_augment_get(entry);
927 
928 		/*
929 		 * Descend update.
930 		 * Once we find an entry that already has the correct value,
931 		 * stop, since it means all its parents will use the correct
932 		 * value too.
933 		 */
934 		if (entry->fspace_augment == augment)
935 			return;
936 		entry->fspace_augment = augment;
937 		entry = RBT_PARENT(uvm_map_addr, entry);
938 	}
939 }
940 
941 /*
942  * uvm_mapanon: establish a valid mapping in map for an anon
943  *
944  * => *addr and sz must be a multiple of PAGE_SIZE.
945  * => *addr is ignored, except if flags contains UVM_FLAG_FIXED.
946  * => map must be unlocked.
947  *
948  * => align: align vaddr, must be a power-of-2.
949  *    Align is only a hint and will be ignored if the alignment fails.
950  */
951 int
952 uvm_mapanon(struct vm_map *map, vaddr_t *addr, vsize_t sz,
953     vsize_t align, unsigned int flags)
954 {
955 	struct vm_map_entry	*first, *last, *entry, *new;
956 	struct uvm_map_deadq	 dead;
957 	vm_prot_t		 prot;
958 	vm_prot_t		 maxprot;
959 	vm_inherit_t		 inherit;
960 	int			 advice;
961 	int			 error;
962 	vaddr_t			 pmap_align, pmap_offset;
963 	vaddr_t			 hint;
964 
965 	KASSERT((map->flags & VM_MAP_ISVMSPACE) == VM_MAP_ISVMSPACE);
966 	KASSERT(map != kernel_map);
967 	KASSERT((map->flags & UVM_FLAG_HOLE) == 0);
968 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
969 	splassert(IPL_NONE);
970 	KASSERT((flags & UVM_FLAG_TRYLOCK) == 0);
971 
972 	/*
973 	 * We use pmap_align and pmap_offset as alignment and offset variables.
974 	 *
975 	 * Because the align parameter takes precedence over pmap prefer,
976 	 * the pmap_align will need to be set to align, with pmap_offset = 0,
977 	 * if pmap_prefer will not align.
978 	 */
979 	pmap_align = MAX(align, PAGE_SIZE);
980 	pmap_offset = 0;
981 
982 	/* Decode parameters. */
983 	prot = UVM_PROTECTION(flags);
984 	maxprot = UVM_MAXPROTECTION(flags);
985 	advice = UVM_ADVICE(flags);
986 	inherit = UVM_INHERIT(flags);
987 	error = 0;
988 	hint = trunc_page(*addr);
989 	TAILQ_INIT(&dead);
990 	KASSERT((sz & (vaddr_t)PAGE_MASK) == 0);
991 	KASSERT((align & (align - 1)) == 0);
992 
993 	/* Check protection. */
994 	if ((prot & maxprot) != prot)
995 		return EACCES;
996 
997 	/*
998 	 * Before grabbing the lock, allocate a map entry for later
999 	 * use to ensure we don't wait for memory while holding the
1000 	 * vm_map_lock.
1001 	 */
1002 	new = uvm_mapent_alloc(map, flags);
1003 	if (new == NULL)
1004 		return ENOMEM;
1005 
1006 	vm_map_lock(map);
1007 	first = last = NULL;
1008 	if (flags & UVM_FLAG_FIXED) {
1009 		/*
1010 		 * Fixed location.
1011 		 *
1012 		 * Note: we ignore align, pmap_prefer.
1013 		 * Fill in first, last and *addr.
1014 		 */
1015 		KASSERT((*addr & PAGE_MASK) == 0);
1016 
1017 		/* Check that the space is available. */
1018 		if (flags & UVM_FLAG_UNMAP) {
1019 			if ((flags & UVM_FLAG_STACK) &&
1020 			    !uvm_map_is_stack_remappable(map, *addr, sz)) {
1021 				error = EINVAL;
1022 				goto unlock;
1023 			}
1024 			uvm_unmap_remove(map, *addr, *addr + sz, &dead, FALSE, TRUE);
1025 		}
1026 		if (!uvm_map_isavail(map, NULL, &first, &last, *addr, sz)) {
1027 			error = ENOMEM;
1028 			goto unlock;
1029 		}
1030 	} else if (*addr != 0 && (*addr & PAGE_MASK) == 0 &&
1031 	    (align == 0 || (*addr & (align - 1)) == 0) &&
1032 	    uvm_map_isavail(map, NULL, &first, &last, *addr, sz)) {
1033 		/*
1034 		 * Address used as hint.
1035 		 *
1036 		 * Note: we enforce the alignment restriction,
1037 		 * but ignore pmap_prefer.
1038 		 */
1039 	} else if ((prot & PROT_EXEC) != 0 && map->uaddr_exe != NULL) {
1040 		/* Run selection algorithm for executables. */
1041 		error = uvm_addr_invoke(map, map->uaddr_exe, &first, &last,
1042 		    addr, sz, pmap_align, pmap_offset, prot, hint);
1043 
1044 		if (error != 0)
1045 			goto unlock;
1046 	} else {
1047 		/* Update freelists from vmspace. */
1048 		uvm_map_vmspace_update(map, &dead, flags);
1049 
1050 		error = uvm_map_findspace(map, &first, &last, addr, sz,
1051 		    pmap_align, pmap_offset, prot, hint);
1052 
1053 		if (error != 0)
1054 			goto unlock;
1055 	}
1056 
1057 	/* Double-check if selected address doesn't cause overflow. */
1058 	if (*addr + sz < *addr) {
1059 		error = ENOMEM;
1060 		goto unlock;
1061 	}
1062 
1063 	/* If we only want a query, return now. */
1064 	if (flags & UVM_FLAG_QUERY) {
1065 		error = 0;
1066 		goto unlock;
1067 	}
1068 
1069 	/*
1070 	 * Create new entry.
1071 	 * first and last may be invalidated after this call.
1072 	 */
1073 	entry = uvm_map_mkentry(map, first, last, *addr, sz, flags, &dead,
1074 	    new);
1075 	if (entry == NULL) {
1076 		error = ENOMEM;
1077 		goto unlock;
1078 	}
1079 	new = NULL;
1080 	KDASSERT(entry->start == *addr && entry->end == *addr + sz);
1081 	entry->object.uvm_obj = NULL;
1082 	entry->offset = 0;
1083 	entry->protection = prot;
1084 	entry->max_protection = maxprot;
1085 	entry->inheritance = inherit;
1086 	entry->wired_count = 0;
1087 	entry->advice = advice;
1088 	if (prot & PROT_WRITE)
1089 		map->wserial++;
1090 	if (flags & UVM_FLAG_SYSCALL) {
1091 		entry->etype |= UVM_ET_SYSCALL;
1092 		map->wserial++;
1093 	}
1094 	if (flags & UVM_FLAG_STACK) {
1095 		entry->etype |= UVM_ET_STACK;
1096 		if (flags & (UVM_FLAG_FIXED | UVM_FLAG_UNMAP))
1097 			map->sserial++;
1098 	}
1099 	if (flags & UVM_FLAG_COPYONW) {
1100 		entry->etype |= UVM_ET_COPYONWRITE;
1101 		if ((flags & UVM_FLAG_OVERLAY) == 0)
1102 			entry->etype |= UVM_ET_NEEDSCOPY;
1103 	}
1104 	if (flags & UVM_FLAG_CONCEAL)
1105 		entry->etype |= UVM_ET_CONCEAL;
1106 	if (flags & UVM_FLAG_OVERLAY) {
1107 		entry->aref.ar_pageoff = 0;
1108 		entry->aref.ar_amap = amap_alloc(sz, M_WAITOK, 0);
1109 	}
1110 
1111 	/* Update map and process statistics. */
1112 	map->size += sz;
1113 	if (prot != PROT_NONE) {
1114 		((struct vmspace *)map)->vm_dused +=
1115 		    uvmspace_dused(map, *addr, *addr + sz);
1116 	}
1117 
1118 unlock:
1119 	vm_map_unlock(map);
1120 
1121 	/*
1122 	 * Remove dead entries.
1123 	 *
1124 	 * Dead entries may be the result of merging.
1125 	 * uvm_map_mkentry may also create dead entries, when it attempts to
1126 	 * destroy free-space entries.
1127 	 */
1128 	uvm_unmap_detach(&dead, 0);
1129 
1130 	if (new)
1131 		uvm_mapent_free(new);
1132 	return error;
1133 }
1134 
1135 /*
1136  * uvm_map: establish a valid mapping in map
1137  *
1138  * => *addr and sz must be a multiple of PAGE_SIZE.
1139  * => map must be unlocked.
1140  * => <uobj,uoffset> value meanings (4 cases):
1141  *	[1] <NULL,uoffset>		== uoffset is a hint for PMAP_PREFER
1142  *	[2] <NULL,UVM_UNKNOWN_OFFSET>	== don't PMAP_PREFER
1143  *	[3] <uobj,uoffset>		== normal mapping
1144  *	[4] <uobj,UVM_UNKNOWN_OFFSET>	== uvm_map finds offset based on VA
1145  *
1146  *   case [4] is for kernel mappings where we don't know the offset until
1147  *   we've found a virtual address.   note that kernel object offsets are
1148  *   always relative to vm_map_min(kernel_map).
1149  *
1150  * => align: align vaddr, must be a power-of-2.
1151  *    Align is only a hint and will be ignored if the alignment fails.
1152  */
1153 int
1154 uvm_map(struct vm_map *map, vaddr_t *addr, vsize_t sz,
1155     struct uvm_object *uobj, voff_t uoffset,
1156     vsize_t align, unsigned int flags)
1157 {
1158 	struct vm_map_entry	*first, *last, *entry, *new;
1159 	struct uvm_map_deadq	 dead;
1160 	vm_prot_t		 prot;
1161 	vm_prot_t		 maxprot;
1162 	vm_inherit_t		 inherit;
1163 	int			 advice;
1164 	int			 error;
1165 	vaddr_t			 pmap_align, pmap_offset;
1166 	vaddr_t			 hint;
1167 
1168 	if ((map->flags & VM_MAP_INTRSAFE) == 0)
1169 		splassert(IPL_NONE);
1170 	else
1171 		splassert(IPL_VM);
1172 
1173 	/*
1174 	 * We use pmap_align and pmap_offset as alignment and offset variables.
1175 	 *
1176 	 * Because the align parameter takes precedence over pmap prefer,
1177 	 * the pmap_align will need to be set to align, with pmap_offset = 0,
1178 	 * if pmap_prefer will not align.
1179 	 */
1180 	if (uoffset == UVM_UNKNOWN_OFFSET) {
1181 		pmap_align = MAX(align, PAGE_SIZE);
1182 		pmap_offset = 0;
1183 	} else {
1184 		pmap_align = MAX(PMAP_PREFER_ALIGN(), PAGE_SIZE);
1185 		pmap_offset = PMAP_PREFER_OFFSET(uoffset);
1186 
1187 		if (align == 0 ||
1188 		    (align <= pmap_align && (pmap_offset & (align - 1)) == 0)) {
1189 			/* pmap_offset satisfies align, no change. */
1190 		} else {
1191 			/* Align takes precedence over pmap prefer. */
1192 			pmap_align = align;
1193 			pmap_offset = 0;
1194 		}
1195 	}
1196 
1197 	/* Decode parameters. */
1198 	prot = UVM_PROTECTION(flags);
1199 	maxprot = UVM_MAXPROTECTION(flags);
1200 	advice = UVM_ADVICE(flags);
1201 	inherit = UVM_INHERIT(flags);
1202 	error = 0;
1203 	hint = trunc_page(*addr);
1204 	TAILQ_INIT(&dead);
1205 	KASSERT((sz & (vaddr_t)PAGE_MASK) == 0);
1206 	KASSERT((align & (align - 1)) == 0);
1207 
1208 	/* Holes are incompatible with other types of mappings. */
1209 	if (flags & UVM_FLAG_HOLE) {
1210 		KASSERT(uobj == NULL && (flags & UVM_FLAG_FIXED) &&
1211 		    (flags & (UVM_FLAG_OVERLAY | UVM_FLAG_COPYONW)) == 0);
1212 	}
1213 
1214 	/* Unset hint for kernel_map non-fixed allocations. */
1215 	if (!(map->flags & VM_MAP_ISVMSPACE) && !(flags & UVM_FLAG_FIXED))
1216 		hint = 0;
1217 
1218 	/* Check protection. */
1219 	if ((prot & maxprot) != prot)
1220 		return EACCES;
1221 
1222 	if (map == kernel_map &&
1223 	    (prot & (PROT_WRITE | PROT_EXEC)) == (PROT_WRITE | PROT_EXEC))
1224 		panic("uvm_map: kernel map W^X violation requested");
1225 
1226 	/*
1227 	 * Before grabbing the lock, allocate a map entry for later
1228 	 * use to ensure we don't wait for memory while holding the
1229 	 * vm_map_lock.
1230 	 */
1231 	new = uvm_mapent_alloc(map, flags);
1232 	if (new == NULL)
1233 		return ENOMEM;
1234 
1235 	if (flags & UVM_FLAG_TRYLOCK) {
1236 		if (vm_map_lock_try(map) == FALSE) {
1237 			error = EFAULT;
1238 			goto out;
1239 		}
1240 	} else {
1241 		vm_map_lock(map);
1242 	}
1243 
1244 	first = last = NULL;
1245 	if (flags & UVM_FLAG_FIXED) {
1246 		/*
1247 		 * Fixed location.
1248 		 *
1249 		 * Note: we ignore align, pmap_prefer.
1250 		 * Fill in first, last and *addr.
1251 		 */
1252 		KASSERT((*addr & PAGE_MASK) == 0);
1253 
1254 		/*
1255 		 * Grow pmap to include allocated address.
1256 		 * If the growth fails, the allocation will fail too.
1257 		 */
1258 		if ((map->flags & VM_MAP_ISVMSPACE) == 0 &&
1259 		    uvm_maxkaddr < (*addr + sz)) {
1260 			uvm_map_kmem_grow(map, &dead,
1261 			    *addr + sz - uvm_maxkaddr, flags);
1262 		}
1263 
1264 		/* Check that the space is available. */
1265 		if (flags & UVM_FLAG_UNMAP)
1266 			uvm_unmap_remove(map, *addr, *addr + sz, &dead, FALSE, TRUE);
1267 		if (!uvm_map_isavail(map, NULL, &first, &last, *addr, sz)) {
1268 			error = ENOMEM;
1269 			goto unlock;
1270 		}
1271 	} else if (*addr != 0 && (*addr & PAGE_MASK) == 0 &&
1272 	    (map->flags & VM_MAP_ISVMSPACE) == VM_MAP_ISVMSPACE &&
1273 	    (align == 0 || (*addr & (align - 1)) == 0) &&
1274 	    uvm_map_isavail(map, NULL, &first, &last, *addr, sz)) {
1275 		/*
1276 		 * Address used as hint.
1277 		 *
1278 		 * Note: we enforce the alignment restriction,
1279 		 * but ignore pmap_prefer.
1280 		 */
1281 	} else if ((prot & PROT_EXEC) != 0 && map->uaddr_exe != NULL) {
1282 		/* Run selection algorithm for executables. */
1283 		error = uvm_addr_invoke(map, map->uaddr_exe, &first, &last,
1284 		    addr, sz, pmap_align, pmap_offset, prot, hint);
1285 
1286 		/* Grow kernel memory and try again. */
1287 		if (error != 0 && (map->flags & VM_MAP_ISVMSPACE) == 0) {
1288 			uvm_map_kmem_grow(map, &dead, sz, flags);
1289 
1290 			error = uvm_addr_invoke(map, map->uaddr_exe,
1291 			    &first, &last, addr, sz,
1292 			    pmap_align, pmap_offset, prot, hint);
1293 		}
1294 
1295 		if (error != 0)
1296 			goto unlock;
1297 	} else {
1298 		/* Update freelists from vmspace. */
1299 		if (map->flags & VM_MAP_ISVMSPACE)
1300 			uvm_map_vmspace_update(map, &dead, flags);
1301 
1302 		error = uvm_map_findspace(map, &first, &last, addr, sz,
1303 		    pmap_align, pmap_offset, prot, hint);
1304 
1305 		/* Grow kernel memory and try again. */
1306 		if (error != 0 && (map->flags & VM_MAP_ISVMSPACE) == 0) {
1307 			uvm_map_kmem_grow(map, &dead, sz, flags);
1308 
1309 			error = uvm_map_findspace(map, &first, &last, addr, sz,
1310 			    pmap_align, pmap_offset, prot, hint);
1311 		}
1312 
1313 		if (error != 0)
1314 			goto unlock;
1315 	}
1316 
1317 	/* Double-check if selected address doesn't cause overflow. */
1318 	if (*addr + sz < *addr) {
1319 		error = ENOMEM;
1320 		goto unlock;
1321 	}
1322 
1323 	KASSERT((map->flags & VM_MAP_ISVMSPACE) == VM_MAP_ISVMSPACE ||
1324 	    uvm_maxkaddr >= *addr + sz);
1325 
1326 	/* If we only want a query, return now. */
1327 	if (flags & UVM_FLAG_QUERY) {
1328 		error = 0;
1329 		goto unlock;
1330 	}
1331 
1332 	if (uobj == NULL)
1333 		uoffset = 0;
1334 	else if (uoffset == UVM_UNKNOWN_OFFSET) {
1335 		KASSERT(UVM_OBJ_IS_KERN_OBJECT(uobj));
1336 		uoffset = *addr - vm_map_min(kernel_map);
1337 	}
1338 
1339 	/*
1340 	 * Create new entry.
1341 	 * first and last may be invalidated after this call.
1342 	 */
1343 	entry = uvm_map_mkentry(map, first, last, *addr, sz, flags, &dead,
1344 	    new);
1345 	if (entry == NULL) {
1346 		error = ENOMEM;
1347 		goto unlock;
1348 	}
1349 	new = NULL;
1350 	KDASSERT(entry->start == *addr && entry->end == *addr + sz);
1351 	entry->object.uvm_obj = uobj;
1352 	entry->offset = uoffset;
1353 	entry->protection = prot;
1354 	entry->max_protection = maxprot;
1355 	entry->inheritance = inherit;
1356 	entry->wired_count = 0;
1357 	entry->advice = advice;
1358 	if (prot & PROT_WRITE)
1359 		map->wserial++;
1360 	if (flags & UVM_FLAG_SYSCALL) {
1361 		entry->etype |= UVM_ET_SYSCALL;
1362 		map->wserial++;
1363 	}
1364 	if (flags & UVM_FLAG_STACK) {
1365 		entry->etype |= UVM_ET_STACK;
1366 		if (flags & UVM_FLAG_UNMAP)
1367 			map->sserial++;
1368 	}
1369 	if (uobj)
1370 		entry->etype |= UVM_ET_OBJ;
1371 	else if (flags & UVM_FLAG_HOLE)
1372 		entry->etype |= UVM_ET_HOLE;
1373 	if (flags & UVM_FLAG_NOFAULT)
1374 		entry->etype |= UVM_ET_NOFAULT;
1375 	if (flags & UVM_FLAG_WC)
1376 		entry->etype |= UVM_ET_WC;
1377 	if (flags & UVM_FLAG_COPYONW) {
1378 		entry->etype |= UVM_ET_COPYONWRITE;
1379 		if ((flags & UVM_FLAG_OVERLAY) == 0)
1380 			entry->etype |= UVM_ET_NEEDSCOPY;
1381 	}
1382 	if (flags & UVM_FLAG_CONCEAL)
1383 		entry->etype |= UVM_ET_CONCEAL;
1384 	if (flags & UVM_FLAG_OVERLAY) {
1385 		entry->aref.ar_pageoff = 0;
1386 		entry->aref.ar_amap = amap_alloc(sz, M_WAITOK, 0);
1387 	}
1388 
1389 	/* Update map and process statistics. */
1390 	if (!(flags & UVM_FLAG_HOLE)) {
1391 		map->size += sz;
1392 		if ((map->flags & VM_MAP_ISVMSPACE) && uobj == NULL &&
1393 		    prot != PROT_NONE) {
1394 			((struct vmspace *)map)->vm_dused +=
1395 			    uvmspace_dused(map, *addr, *addr + sz);
1396 		}
1397 	}
1398 
1399 	/*
1400 	 * Try to merge entry.
1401 	 *
1402 	 * Userland allocations are kept separated most of the time.
1403 	 * Forego the effort of merging what most of the time can't be merged
1404 	 * and only try the merge if it concerns a kernel entry.
1405 	 */
1406 	if ((flags & UVM_FLAG_NOMERGE) == 0 &&
1407 	    (map->flags & VM_MAP_ISVMSPACE) == 0)
1408 		uvm_mapent_tryjoin(map, entry, &dead);
1409 
1410 unlock:
1411 	vm_map_unlock(map);
1412 
1413 	/*
1414 	 * Remove dead entries.
1415 	 *
1416 	 * Dead entries may be the result of merging.
1417 	 * uvm_map_mkentry may also create dead entries, when it attempts to
1418 	 * destroy free-space entries.
1419 	 */
1420 	if (map->flags & VM_MAP_INTRSAFE)
1421 		uvm_unmap_detach_intrsafe(&dead);
1422 	else
1423 		uvm_unmap_detach(&dead, 0);
1424 out:
1425 	if (new)
1426 		uvm_mapent_free(new);
1427 	return error;
1428 }
1429 
1430 /*
1431  * True iff e1 and e2 can be joined together.
1432  */
1433 int
1434 uvm_mapent_isjoinable(struct vm_map *map, struct vm_map_entry *e1,
1435     struct vm_map_entry *e2)
1436 {
1437 	KDASSERT(e1 != NULL && e2 != NULL);
1438 
1439 	/* Must be the same entry type and not have free memory between. */
1440 	if (e1->etype != e2->etype || e1->end != e2->start)
1441 		return 0;
1442 
1443 	/* Submaps are never joined. */
1444 	if (UVM_ET_ISSUBMAP(e1))
1445 		return 0;
1446 
1447 	/* Never merge wired memory. */
1448 	if (VM_MAPENT_ISWIRED(e1) || VM_MAPENT_ISWIRED(e2))
1449 		return 0;
1450 
1451 	/* Protection, inheritance and advice must be equal. */
1452 	if (e1->protection != e2->protection ||
1453 	    e1->max_protection != e2->max_protection ||
1454 	    e1->inheritance != e2->inheritance ||
1455 	    e1->advice != e2->advice)
1456 		return 0;
1457 
1458 	/* If uvm_object: object itself and offsets within object must match. */
1459 	if (UVM_ET_ISOBJ(e1)) {
1460 		if (e1->object.uvm_obj != e2->object.uvm_obj)
1461 			return 0;
1462 		if (e1->offset + (e1->end - e1->start) != e2->offset)
1463 			return 0;
1464 	}
1465 
1466 	/*
1467 	 * Cannot join shared amaps.
1468 	 * Note: no need to lock amap to look at refs, since we don't care
1469 	 * about its exact value.
1470 	 * If it is 1 (i.e. we have the only reference) it will stay there.
1471 	 */
1472 	if (e1->aref.ar_amap && amap_refs(e1->aref.ar_amap) != 1)
1473 		return 0;
1474 	if (e2->aref.ar_amap && amap_refs(e2->aref.ar_amap) != 1)
1475 		return 0;
1476 
1477 	/* Apparently, e1 and e2 match. */
1478 	return 1;
1479 }
1480 
1481 /*
1482  * Join support function.
1483  *
1484  * Returns the merged entry on success.
1485  * Returns NULL if the merge failed.
1486  */
1487 struct vm_map_entry*
1488 uvm_mapent_merge(struct vm_map *map, struct vm_map_entry *e1,
1489     struct vm_map_entry *e2, struct uvm_map_deadq *dead)
1490 {
1491 	struct uvm_addr_state *free;
1492 
1493 	/*
1494 	 * Merging is not supported for map entries that
1495 	 * contain an amap in e1. This should never happen
1496 	 * anyway, because only kernel entries are merged.
1497 	 * These do not contain amaps.
1498 	 * e2 contains no real information in its amap,
1499 	 * so it can be erased immediately.
1500 	 */
1501 	KASSERT(e1->aref.ar_amap == NULL);
1502 
1503 	/*
1504 	 * Don't drop obj reference:
1505 	 * uvm_unmap_detach will do this for us.
1506 	 */
1507 	free = uvm_map_uaddr_e(map, e1);
1508 	uvm_mapent_free_remove(map, free, e1);
1509 
1510 	free = uvm_map_uaddr_e(map, e2);
1511 	uvm_mapent_free_remove(map, free, e2);
1512 	uvm_mapent_addr_remove(map, e2);
1513 	e1->end = e2->end;
1514 	e1->guard = e2->guard;
1515 	e1->fspace = e2->fspace;
1516 	uvm_mapent_free_insert(map, free, e1);
1517 
1518 	DEAD_ENTRY_PUSH(dead, e2);
1519 	return e1;
1520 }
1521 
1522 /*
1523  * Attempt forward and backward joining of entry.
1524  *
1525  * Returns entry after joins.
1526  * We are guaranteed that the amap of entry is either non-existent or
1527  * has never been used.
1528  */
1529 struct vm_map_entry*
1530 uvm_mapent_tryjoin(struct vm_map *map, struct vm_map_entry *entry,
1531     struct uvm_map_deadq *dead)
1532 {
1533 	struct vm_map_entry *other;
1534 	struct vm_map_entry *merged;
1535 
1536 	/* Merge with previous entry. */
1537 	other = RBT_PREV(uvm_map_addr, entry);
1538 	if (other && uvm_mapent_isjoinable(map, other, entry)) {
1539 		merged = uvm_mapent_merge(map, other, entry, dead);
1540 		if (merged)
1541 			entry = merged;
1542 	}
1543 
1544 	/*
1545 	 * Merge with next entry.
1546 	 *
1547 	 * Because amap can only extend forward and the next entry
1548 	 * probably contains sensible info, only perform forward merging
1549 	 * in the absence of an amap.
1550 	 */
1551 	other = RBT_NEXT(uvm_map_addr, entry);
1552 	if (other && entry->aref.ar_amap == NULL &&
1553 	    other->aref.ar_amap == NULL &&
1554 	    uvm_mapent_isjoinable(map, entry, other)) {
1555 		merged = uvm_mapent_merge(map, entry, other, dead);
1556 		if (merged)
1557 			entry = merged;
1558 	}
1559 
1560 	return entry;
1561 }
1562 
1563 /*
1564  * Kill entries that are no longer in a map.
1565  */
1566 void
1567 uvm_unmap_detach(struct uvm_map_deadq *deadq, int flags)
1568 {
1569 	struct vm_map_entry *entry, *tmp;
1570 	int waitok = flags & UVM_PLA_WAITOK;
1571 
1572 	TAILQ_FOREACH_SAFE(entry, deadq, dfree.deadq, tmp) {
1573 		/* Skip entries for which we have to grab the kernel lock. */
1574 		if (entry->aref.ar_amap || UVM_ET_ISSUBMAP(entry) ||
1575 		    UVM_ET_ISOBJ(entry))
1576 			continue;
1577 
1578 		TAILQ_REMOVE(deadq, entry, dfree.deadq);
1579 		uvm_mapent_free(entry);
1580 	}
1581 
1582 	if (TAILQ_EMPTY(deadq))
1583 		return;
1584 
1585 	KERNEL_LOCK();
1586 	while ((entry = TAILQ_FIRST(deadq)) != NULL) {
1587 		if (waitok)
1588 			uvm_pause();
1589 		/* Drop reference to amap, if we've got one. */
1590 		if (entry->aref.ar_amap)
1591 			amap_unref(entry->aref.ar_amap,
1592 			    entry->aref.ar_pageoff,
1593 			    atop(entry->end - entry->start),
1594 			    flags & AMAP_REFALL);
1595 
1596 		/* Drop reference to our backing object, if we've got one. */
1597 		if (UVM_ET_ISSUBMAP(entry)) {
1598 			/* ... unlikely to happen, but play it safe */
1599 			uvm_map_deallocate(entry->object.sub_map);
1600 		} else if (UVM_ET_ISOBJ(entry) &&
1601 		    entry->object.uvm_obj->pgops->pgo_detach) {
1602 			entry->object.uvm_obj->pgops->pgo_detach(
1603 			    entry->object.uvm_obj);
1604 		}
1605 
1606 		/* Step to next. */
1607 		TAILQ_REMOVE(deadq, entry, dfree.deadq);
1608 		uvm_mapent_free(entry);
1609 	}
1610 	KERNEL_UNLOCK();
1611 }
1612 
1613 void
1614 uvm_unmap_detach_intrsafe(struct uvm_map_deadq *deadq)
1615 {
1616 	struct vm_map_entry *entry;
1617 
1618 	while ((entry = TAILQ_FIRST(deadq)) != NULL) {
1619 		KASSERT(entry->aref.ar_amap == NULL);
1620 		KASSERT(!UVM_ET_ISSUBMAP(entry));
1621 		KASSERT(!UVM_ET_ISOBJ(entry));
1622 		TAILQ_REMOVE(deadq, entry, dfree.deadq);
1623 		uvm_mapent_free(entry);
1624 	}
1625 }
1626 
1627 /*
1628  * Create and insert new entry.
1629  *
1630  * Returned entry contains new addresses and is inserted properly in the tree.
1631  * first and last are (probably) no longer valid.
1632  */
1633 struct vm_map_entry*
1634 uvm_map_mkentry(struct vm_map *map, struct vm_map_entry *first,
1635     struct vm_map_entry *last, vaddr_t addr, vsize_t sz, int flags,
1636     struct uvm_map_deadq *dead, struct vm_map_entry *new)
1637 {
1638 	struct vm_map_entry *entry, *prev;
1639 	struct uvm_addr_state *free;
1640 	vaddr_t min, max;	/* free space boundaries for new entry */
1641 
1642 	KDASSERT(map != NULL);
1643 	KDASSERT(first != NULL);
1644 	KDASSERT(last != NULL);
1645 	KDASSERT(dead != NULL);
1646 	KDASSERT(sz > 0);
1647 	KDASSERT(addr + sz > addr);
1648 	KDASSERT(first->end <= addr && VMMAP_FREE_END(first) > addr);
1649 	KDASSERT(last->start < addr + sz && VMMAP_FREE_END(last) >= addr + sz);
1650 	KDASSERT(uvm_map_isavail(map, NULL, &first, &last, addr, sz));
1651 	uvm_tree_sanity(map, __FILE__, __LINE__);
1652 
1653 	min = addr + sz;
1654 	max = VMMAP_FREE_END(last);
1655 
1656 	/* Initialize new entry. */
1657 	if (new == NULL)
1658 		entry = uvm_mapent_alloc(map, flags);
1659 	else
1660 		entry = new;
1661 	if (entry == NULL)
1662 		return NULL;
1663 	entry->offset = 0;
1664 	entry->etype = 0;
1665 	entry->wired_count = 0;
1666 	entry->aref.ar_pageoff = 0;
1667 	entry->aref.ar_amap = NULL;
1668 
1669 	entry->start = addr;
1670 	entry->end = min;
1671 	entry->guard = 0;
1672 	entry->fspace = 0;
1673 
1674 	/* Reset free space in first. */
1675 	free = uvm_map_uaddr_e(map, first);
1676 	uvm_mapent_free_remove(map, free, first);
1677 	first->guard = 0;
1678 	first->fspace = 0;
1679 
1680 	/*
1681 	 * Remove all entries that are fully replaced.
1682 	 * We are iterating using last in reverse order.
1683 	 */
1684 	for (; first != last; last = prev) {
1685 		prev = RBT_PREV(uvm_map_addr, last);
1686 
1687 		KDASSERT(last->start == last->end);
1688 		free = uvm_map_uaddr_e(map, last);
1689 		uvm_mapent_free_remove(map, free, last);
1690 		uvm_mapent_addr_remove(map, last);
1691 		DEAD_ENTRY_PUSH(dead, last);
1692 	}
1693 	/* Remove first if it is entirely inside <addr, addr+sz>.  */
1694 	if (first->start == addr) {
1695 		uvm_mapent_addr_remove(map, first);
1696 		DEAD_ENTRY_PUSH(dead, first);
1697 	} else {
1698 		uvm_map_fix_space(map, first, VMMAP_FREE_START(first),
1699 		    addr, flags);
1700 	}
1701 
1702 	/* Finally, link in entry. */
1703 	uvm_mapent_addr_insert(map, entry);
1704 	uvm_map_fix_space(map, entry, min, max, flags);
1705 
1706 	uvm_tree_sanity(map, __FILE__, __LINE__);
1707 	return entry;
1708 }
1709 
1710 
1711 /*
1712  * uvm_mapent_alloc: allocate a map entry
1713  */
1714 struct vm_map_entry *
1715 uvm_mapent_alloc(struct vm_map *map, int flags)
1716 {
1717 	struct vm_map_entry *me, *ne;
1718 	int pool_flags;
1719 	int i;
1720 
1721 	pool_flags = PR_WAITOK;
1722 	if (flags & UVM_FLAG_TRYLOCK)
1723 		pool_flags = PR_NOWAIT;
1724 
1725 	if (map->flags & VM_MAP_INTRSAFE || cold) {
1726 		mtx_enter(&uvm_kmapent_mtx);
1727 		if (SLIST_EMPTY(&uvm.kentry_free)) {
1728 			ne = km_alloc(PAGE_SIZE, &kv_page, &kp_dirty,
1729 			    &kd_nowait);
1730 			if (ne == NULL)
1731 				panic("uvm_mapent_alloc: cannot allocate map "
1732 				    "entry");
1733 			for (i = 0; i < PAGE_SIZE / sizeof(*ne); i++) {
1734 				SLIST_INSERT_HEAD(&uvm.kentry_free,
1735 				    &ne[i], daddrs.addr_kentry);
1736 			}
1737 			if (ratecheck(&uvm_kmapent_last_warn_time,
1738 			    &uvm_kmapent_warn_rate))
1739 				printf("uvm_mapent_alloc: out of static "
1740 				    "map entries\n");
1741 		}
1742 		me = SLIST_FIRST(&uvm.kentry_free);
1743 		SLIST_REMOVE_HEAD(&uvm.kentry_free, daddrs.addr_kentry);
1744 		uvmexp.kmapent++;
1745 		mtx_leave(&uvm_kmapent_mtx);
1746 		me->flags = UVM_MAP_STATIC;
1747 	} else if (map == kernel_map) {
1748 		splassert(IPL_NONE);
1749 		me = pool_get(&uvm_map_entry_kmem_pool, pool_flags);
1750 		if (me == NULL)
1751 			goto out;
1752 		me->flags = UVM_MAP_KMEM;
1753 	} else {
1754 		splassert(IPL_NONE);
1755 		me = pool_get(&uvm_map_entry_pool, pool_flags);
1756 		if (me == NULL)
1757 			goto out;
1758 		me->flags = 0;
1759 	}
1760 
1761 	RBT_POISON(uvm_map_addr, me, UVMMAP_DEADBEEF);
1762 out:
1763 	return me;
1764 }
1765 
1766 /*
1767  * uvm_mapent_free: free map entry
1768  *
1769  * => XXX: static pool for kernel map?
1770  */
1771 void
1772 uvm_mapent_free(struct vm_map_entry *me)
1773 {
1774 	if (me->flags & UVM_MAP_STATIC) {
1775 		mtx_enter(&uvm_kmapent_mtx);
1776 		SLIST_INSERT_HEAD(&uvm.kentry_free, me, daddrs.addr_kentry);
1777 		uvmexp.kmapent--;
1778 		mtx_leave(&uvm_kmapent_mtx);
1779 	} else if (me->flags & UVM_MAP_KMEM) {
1780 		splassert(IPL_NONE);
1781 		pool_put(&uvm_map_entry_kmem_pool, me);
1782 	} else {
1783 		splassert(IPL_NONE);
1784 		pool_put(&uvm_map_entry_pool, me);
1785 	}
1786 }
1787 
1788 /*
1789  * uvm_map_lookup_entry: find map entry at or before an address.
1790  *
1791  * => map must at least be read-locked by caller
1792  * => entry is returned in "entry"
1793  * => return value is true if address is in the returned entry
1794  * ET_HOLE entries are considered to not contain a mapping, ergo FALSE is
1795  * returned for those mappings.
1796  */
1797 boolean_t
1798 uvm_map_lookup_entry(struct vm_map *map, vaddr_t address,
1799     struct vm_map_entry **entry)
1800 {
1801 	*entry = uvm_map_entrybyaddr(&map->addr, address);
1802 	return *entry != NULL && !UVM_ET_ISHOLE(*entry) &&
1803 	    (*entry)->start <= address && (*entry)->end > address;
1804 }
1805 
1806 /*
1807  * Stack must be in a MAP_STACK entry. PROT_NONE indicates stack not yet
1808  * grown -- then uvm_map_check_region_range() should not cache the entry
1809  * because growth won't be seen.
1810  */
1811 int
1812 uvm_map_inentry_sp(vm_map_entry_t entry)
1813 {
1814 	if ((entry->etype & UVM_ET_STACK) == 0) {
1815 		if (entry->protection == PROT_NONE)
1816 			return (-1);	/* don't update range */
1817 		return (0);
1818 	}
1819 	return (1);
1820 }
1821 
1822 /*
1823  * The system call must not come from a writeable entry, W^X is violated.
1824  * (Would be nice if we can spot aliasing, which is also kind of bad)
1825  *
1826  * The system call must come from an syscall-labeled entry (which are
1827  * the text regions of the main program, sigtramp, ld.so, or libc).
1828  */
1829 int
1830 uvm_map_inentry_pc(vm_map_entry_t entry)
1831 {
1832 	if (entry->protection & PROT_WRITE)
1833 		return (0);	/* not permitted */
1834 	if ((entry->etype & UVM_ET_SYSCALL) == 0)
1835 		return (0);	/* not permitted */
1836 	return (1);
1837 }
1838 
1839 int
1840 uvm_map_inentry_recheck(u_long serial, vaddr_t addr, struct p_inentry *ie)
1841 {
1842 	return (serial != ie->ie_serial || ie->ie_start == 0 ||
1843 	    addr < ie->ie_start || addr >= ie->ie_end);
1844 }
1845 
1846 /*
1847  * Inside a vm_map find the reg address and verify it via function.
1848  * Remember low and high addresses of region if valid and return TRUE,
1849  * else return FALSE.
1850  */
1851 boolean_t
1852 uvm_map_inentry_fix(struct proc *p, struct p_inentry *ie, vaddr_t addr,
1853     int (*fn)(vm_map_entry_t), u_long serial)
1854 {
1855 	vm_map_t map = &p->p_vmspace->vm_map;
1856 	vm_map_entry_t entry;
1857 	int ret;
1858 
1859 	if (addr < map->min_offset || addr >= map->max_offset)
1860 		return (FALSE);
1861 
1862 	/* lock map */
1863 	vm_map_lock_read(map);
1864 
1865 	/* lookup */
1866 	if (!uvm_map_lookup_entry(map, trunc_page(addr), &entry)) {
1867 		vm_map_unlock_read(map);
1868 		return (FALSE);
1869 	}
1870 
1871 	ret = (*fn)(entry);
1872 	if (ret == 0) {
1873 		vm_map_unlock_read(map);
1874 		return (FALSE);
1875 	} else if (ret == 1) {
1876 		ie->ie_start = entry->start;
1877 		ie->ie_end = entry->end;
1878 		ie->ie_serial = serial;
1879 	} else {
1880 		/* do not update, re-check later */
1881 	}
1882 	vm_map_unlock_read(map);
1883 	return (TRUE);
1884 }
1885 
1886 boolean_t
1887 uvm_map_inentry(struct proc *p, struct p_inentry *ie, vaddr_t addr,
1888     const char *fmt, int (*fn)(vm_map_entry_t), u_long serial)
1889 {
1890 	union sigval sv;
1891 	boolean_t ok = TRUE;
1892 
1893 	if (uvm_map_inentry_recheck(serial, addr, ie)) {
1894 		ok = uvm_map_inentry_fix(p, ie, addr, fn, serial);
1895 		if (!ok) {
1896 			KERNEL_LOCK();
1897 			printf(fmt, p->p_p->ps_comm, p->p_p->ps_pid, p->p_tid,
1898 			    addr, ie->ie_start, ie->ie_end);
1899 			p->p_p->ps_acflag |= AMAP;
1900 			sv.sival_ptr = (void *)PROC_PC(p);
1901 			trapsignal(p, SIGSEGV, 0, SEGV_ACCERR, sv);
1902 			KERNEL_UNLOCK();
1903 		}
1904 	}
1905 	return (ok);
1906 }
1907 
1908 /*
1909  * Check whether the given address range can be converted to a MAP_STACK
1910  * mapping.
1911  *
1912  * Must be called with map locked.
1913  */
1914 boolean_t
1915 uvm_map_is_stack_remappable(struct vm_map *map, vaddr_t addr, vaddr_t sz)
1916 {
1917 	vaddr_t end = addr + sz;
1918 	struct vm_map_entry *first, *iter, *prev = NULL;
1919 
1920 	if (!uvm_map_lookup_entry(map, addr, &first)) {
1921 		printf("map stack 0x%lx-0x%lx of map %p failed: no mapping\n",
1922 		    addr, end, map);
1923 		return FALSE;
1924 	}
1925 
1926 	/*
1927 	 * Check that the address range exists and is contiguous.
1928 	 */
1929 	for (iter = first; iter != NULL && iter->start < end;
1930 	    prev = iter, iter = RBT_NEXT(uvm_map_addr, iter)) {
1931 		/*
1932 		 * Make sure that we do not have holes in the range.
1933 		 */
1934 #if 0
1935 		if (prev != NULL) {
1936 			printf("prev->start 0x%lx, prev->end 0x%lx, "
1937 			    "iter->start 0x%lx, iter->end 0x%lx\n",
1938 			    prev->start, prev->end, iter->start, iter->end);
1939 		}
1940 #endif
1941 
1942 		if (prev != NULL && prev->end != iter->start) {
1943 			printf("map stack 0x%lx-0x%lx of map %p failed: "
1944 			    "hole in range\n", addr, end, map);
1945 			return FALSE;
1946 		}
1947 		if (iter->start == iter->end || UVM_ET_ISHOLE(iter)) {
1948 			printf("map stack 0x%lx-0x%lx of map %p failed: "
1949 			    "hole in range\n", addr, end, map);
1950 			return FALSE;
1951 		}
1952 	}
1953 
1954 	return TRUE;
1955 }
1956 
1957 /*
1958  * Remap the middle-pages of an existing mapping as a stack range.
1959  * If there exists a previous contiguous mapping with the given range
1960  * [addr, addr + sz), with protection PROT_READ|PROT_WRITE, then the
1961  * mapping is dropped, and a new anon mapping is created and marked as
1962  * a stack.
1963  *
1964  * Must be called with map unlocked.
1965  */
1966 int
1967 uvm_map_remap_as_stack(struct proc *p, vaddr_t addr, vaddr_t sz)
1968 {
1969 	vm_map_t map = &p->p_vmspace->vm_map;
1970 	vaddr_t start, end;
1971 	int error;
1972 	int flags = UVM_MAPFLAG(PROT_READ | PROT_WRITE,
1973 	    PROT_READ | PROT_WRITE | PROT_EXEC,
1974 	    MAP_INHERIT_COPY, MADV_NORMAL,
1975 	    UVM_FLAG_STACK | UVM_FLAG_FIXED | UVM_FLAG_UNMAP |
1976 	    UVM_FLAG_COPYONW);
1977 
1978 	start = round_page(addr);
1979 	end = trunc_page(addr + sz);
1980 #ifdef MACHINE_STACK_GROWS_UP
1981 	if (end == addr + sz)
1982 		end -= PAGE_SIZE;
1983 #else
1984 	if (start == addr)
1985 		start += PAGE_SIZE;
1986 #endif
1987 
1988 	if (start < map->min_offset || end >= map->max_offset || end < start)
1989 		return EINVAL;
1990 
1991 	error = uvm_mapanon(map, &start, end - start, 0, flags);
1992 	if (error != 0)
1993 		printf("map stack for pid %d failed\n", p->p_p->ps_pid);
1994 
1995 	return error;
1996 }
1997 
1998 /*
1999  * uvm_map_pie: return a random load address for a PIE executable
2000  * properly aligned.
2001  */
2002 #ifndef VM_PIE_MAX_ADDR
2003 #define VM_PIE_MAX_ADDR (VM_MAXUSER_ADDRESS / 4)
2004 #endif
2005 
2006 #ifndef VM_PIE_MIN_ADDR
2007 #define VM_PIE_MIN_ADDR VM_MIN_ADDRESS
2008 #endif
2009 
2010 #ifndef VM_PIE_MIN_ALIGN
2011 #define VM_PIE_MIN_ALIGN PAGE_SIZE
2012 #endif
2013 
2014 vaddr_t
2015 uvm_map_pie(vaddr_t align)
2016 {
2017 	vaddr_t addr, space, min;
2018 
2019 	align = MAX(align, VM_PIE_MIN_ALIGN);
2020 
2021 	/* round up to next alignment */
2022 	min = (VM_PIE_MIN_ADDR + align - 1) & ~(align - 1);
2023 
2024 	if (align >= VM_PIE_MAX_ADDR || min >= VM_PIE_MAX_ADDR)
2025 		return (align);
2026 
2027 	space = (VM_PIE_MAX_ADDR - min) / align;
2028 	space = MIN(space, (u_int32_t)-1);
2029 
2030 	addr = (vaddr_t)arc4random_uniform((u_int32_t)space) * align;
2031 	addr += min;
2032 
2033 	return (addr);
2034 }
2035 
2036 void
2037 uvm_unmap(struct vm_map *map, vaddr_t start, vaddr_t end)
2038 {
2039 	struct uvm_map_deadq dead;
2040 
2041 	KASSERT((start & (vaddr_t)PAGE_MASK) == 0 &&
2042 	    (end & (vaddr_t)PAGE_MASK) == 0);
2043 	TAILQ_INIT(&dead);
2044 	vm_map_lock(map);
2045 	uvm_unmap_remove(map, start, end, &dead, FALSE, TRUE);
2046 	vm_map_unlock(map);
2047 
2048 	if (map->flags & VM_MAP_INTRSAFE)
2049 		uvm_unmap_detach_intrsafe(&dead);
2050 	else
2051 		uvm_unmap_detach(&dead, 0);
2052 }
2053 
2054 /*
2055  * Mark entry as free.
2056  *
2057  * entry will be put on the dead list.
2058  * The free space will be merged into the previous or a new entry,
2059  * unless markfree is false.
2060  */
2061 void
2062 uvm_mapent_mkfree(struct vm_map *map, struct vm_map_entry *entry,
2063     struct vm_map_entry **prev_ptr, struct uvm_map_deadq *dead,
2064     boolean_t markfree)
2065 {
2066 	struct uvm_addr_state	*free;
2067 	struct vm_map_entry	*prev;
2068 	vaddr_t			 addr;	/* Start of freed range. */
2069 	vaddr_t			 end;	/* End of freed range. */
2070 
2071 	prev = *prev_ptr;
2072 	if (prev == entry)
2073 		*prev_ptr = prev = NULL;
2074 
2075 	if (prev == NULL ||
2076 	    VMMAP_FREE_END(prev) != entry->start)
2077 		prev = RBT_PREV(uvm_map_addr, entry);
2078 
2079 	/* Entry is describing only free memory and has nothing to drain into. */
2080 	if (prev == NULL && entry->start == entry->end && markfree) {
2081 		*prev_ptr = entry;
2082 		return;
2083 	}
2084 
2085 	addr = entry->start;
2086 	end = VMMAP_FREE_END(entry);
2087 	free = uvm_map_uaddr_e(map, entry);
2088 	uvm_mapent_free_remove(map, free, entry);
2089 	uvm_mapent_addr_remove(map, entry);
2090 	DEAD_ENTRY_PUSH(dead, entry);
2091 
2092 	if (markfree) {
2093 		if (prev) {
2094 			free = uvm_map_uaddr_e(map, prev);
2095 			uvm_mapent_free_remove(map, free, prev);
2096 		}
2097 		*prev_ptr = uvm_map_fix_space(map, prev, addr, end, 0);
2098 	}
2099 }
2100 
2101 /*
2102  * Unwire and release referenced amap and object from map entry.
2103  */
2104 void
2105 uvm_unmap_kill_entry(struct vm_map *map, struct vm_map_entry *entry)
2106 {
2107 	/* Unwire removed map entry. */
2108 	if (VM_MAPENT_ISWIRED(entry)) {
2109 		KERNEL_LOCK();
2110 		entry->wired_count = 0;
2111 		uvm_fault_unwire_locked(map, entry->start, entry->end);
2112 		KERNEL_UNLOCK();
2113 	}
2114 
2115 	/* Entry-type specific code. */
2116 	if (UVM_ET_ISHOLE(entry)) {
2117 		/* Nothing to be done for holes. */
2118 	} else if (map->flags & VM_MAP_INTRSAFE) {
2119 		KASSERT(vm_map_pmap(map) == pmap_kernel());
2120 		uvm_km_pgremove_intrsafe(entry->start, entry->end);
2121 		pmap_kremove(entry->start, entry->end - entry->start);
2122 	} else if (UVM_ET_ISOBJ(entry) &&
2123 	    UVM_OBJ_IS_KERN_OBJECT(entry->object.uvm_obj)) {
2124 		KASSERT(vm_map_pmap(map) == pmap_kernel());
2125 		/*
2126 		 * Note: kernel object mappings are currently used in
2127 		 * two ways:
2128 		 *  [1] "normal" mappings of pages in the kernel object
2129 		 *  [2] uvm_km_valloc'd allocations in which we
2130 		 *      pmap_enter in some non-kernel-object page
2131 		 *      (e.g. vmapbuf).
2132 		 *
2133 		 * for case [1], we need to remove the mapping from
2134 		 * the pmap and then remove the page from the kernel
2135 		 * object (because, once pages in a kernel object are
2136 		 * unmapped they are no longer needed, unlike, say,
2137 		 * a vnode where you might want the data to persist
2138 		 * until flushed out of a queue).
2139 		 *
2140 		 * for case [2], we need to remove the mapping from
2141 		 * the pmap.  there shouldn't be any pages at the
2142 		 * specified offset in the kernel object [but it
2143 		 * doesn't hurt to call uvm_km_pgremove just to be
2144 		 * safe?]
2145 		 *
2146 		 * uvm_km_pgremove currently does the following:
2147 		 *   for pages in the kernel object range:
2148 		 *     - drops the swap slot
2149 		 *     - uvm_pagefree the page
2150 		 *
2151 		 * note there is version of uvm_km_pgremove() that
2152 		 * is used for "intrsafe" objects.
2153 		 */
2154 		/*
2155 		 * remove mappings from pmap and drop the pages
2156 		 * from the object.  offsets are always relative
2157 		 * to vm_map_min(kernel_map).
2158 		 */
2159 		pmap_remove(pmap_kernel(), entry->start, entry->end);
2160 		uvm_km_pgremove(entry->object.uvm_obj,
2161 		    entry->start - vm_map_min(kernel_map),
2162 		    entry->end - vm_map_min(kernel_map));
2163 
2164 		/*
2165 		 * null out kernel_object reference, we've just
2166 		 * dropped it
2167 		 */
2168 		entry->etype &= ~UVM_ET_OBJ;
2169 		entry->object.uvm_obj = NULL;  /* to be safe */
2170 	} else {
2171 		/* remove mappings the standard way. */
2172 		pmap_remove(map->pmap, entry->start, entry->end);
2173 	}
2174 }
2175 
2176 /*
2177  * Remove all entries from start to end.
2178  *
2179  * If remove_holes, then remove ET_HOLE entries as well.
2180  * If markfree, entry will be properly marked free, otherwise, no replacement
2181  * entry will be put in the tree (corrupting the tree).
2182  */
2183 void
2184 uvm_unmap_remove(struct vm_map *map, vaddr_t start, vaddr_t end,
2185     struct uvm_map_deadq *dead, boolean_t remove_holes,
2186     boolean_t markfree)
2187 {
2188 	struct vm_map_entry *prev_hint, *next, *entry;
2189 
2190 	start = MAX(start, map->min_offset);
2191 	end = MIN(end, map->max_offset);
2192 	if (start >= end)
2193 		return;
2194 
2195 	if ((map->flags & VM_MAP_INTRSAFE) == 0)
2196 		splassert(IPL_NONE);
2197 	else
2198 		splassert(IPL_VM);
2199 
2200 	/* Find first affected entry. */
2201 	entry = uvm_map_entrybyaddr(&map->addr, start);
2202 	KDASSERT(entry != NULL && entry->start <= start);
2203 	if (entry->end <= start && markfree)
2204 		entry = RBT_NEXT(uvm_map_addr, entry);
2205 	else
2206 		UVM_MAP_CLIP_START(map, entry, start);
2207 
2208 	/*
2209 	 * Iterate entries until we reach end address.
2210 	 * prev_hint hints where the freed space can be appended to.
2211 	 */
2212 	prev_hint = NULL;
2213 	for (; entry != NULL && entry->start < end; entry = next) {
2214 		KDASSERT(entry->start >= start);
2215 		if (entry->end > end || !markfree)
2216 			UVM_MAP_CLIP_END(map, entry, end);
2217 		KDASSERT(entry->start >= start && entry->end <= end);
2218 		next = RBT_NEXT(uvm_map_addr, entry);
2219 
2220 		/* Don't remove holes unless asked to do so. */
2221 		if (UVM_ET_ISHOLE(entry)) {
2222 			if (!remove_holes) {
2223 				prev_hint = entry;
2224 				continue;
2225 			}
2226 		}
2227 
2228 		/* A stack has been removed.. */
2229 		if (UVM_ET_ISSTACK(entry) && (map->flags & VM_MAP_ISVMSPACE))
2230 			map->sserial++;
2231 
2232 		/* Kill entry. */
2233 		uvm_unmap_kill_entry(map, entry);
2234 
2235 		/* Update space usage. */
2236 		if ((map->flags & VM_MAP_ISVMSPACE) &&
2237 		    entry->object.uvm_obj == NULL &&
2238 		    entry->protection != PROT_NONE &&
2239 		    !UVM_ET_ISHOLE(entry)) {
2240 			((struct vmspace *)map)->vm_dused -=
2241 			    uvmspace_dused(map, entry->start, entry->end);
2242 		}
2243 		if (!UVM_ET_ISHOLE(entry))
2244 			map->size -= entry->end - entry->start;
2245 
2246 		/* Actual removal of entry. */
2247 		uvm_mapent_mkfree(map, entry, &prev_hint, dead, markfree);
2248 	}
2249 
2250 	pmap_update(vm_map_pmap(map));
2251 
2252 #ifdef VMMAP_DEBUG
2253 	if (markfree) {
2254 		for (entry = uvm_map_entrybyaddr(&map->addr, start);
2255 		    entry != NULL && entry->start < end;
2256 		    entry = RBT_NEXT(uvm_map_addr, entry)) {
2257 			KDASSERT(entry->end <= start ||
2258 			    entry->start == entry->end ||
2259 			    UVM_ET_ISHOLE(entry));
2260 		}
2261 	} else {
2262 		vaddr_t a;
2263 		for (a = start; a < end; a += PAGE_SIZE)
2264 			KDASSERT(uvm_map_entrybyaddr(&map->addr, a) == NULL);
2265 	}
2266 #endif
2267 }
2268 
2269 /*
2270  * Mark all entries from first until end (exclusive) as pageable.
2271  *
2272  * Lock must be exclusive on entry and will not be touched.
2273  */
2274 void
2275 uvm_map_pageable_pgon(struct vm_map *map, struct vm_map_entry *first,
2276     struct vm_map_entry *end, vaddr_t start_addr, vaddr_t end_addr)
2277 {
2278 	struct vm_map_entry *iter;
2279 
2280 	for (iter = first; iter != end;
2281 	    iter = RBT_NEXT(uvm_map_addr, iter)) {
2282 		KDASSERT(iter->start >= start_addr && iter->end <= end_addr);
2283 		if (!VM_MAPENT_ISWIRED(iter) || UVM_ET_ISHOLE(iter))
2284 			continue;
2285 
2286 		iter->wired_count = 0;
2287 		uvm_fault_unwire_locked(map, iter->start, iter->end);
2288 	}
2289 }
2290 
2291 /*
2292  * Mark all entries from first until end (exclusive) as wired.
2293  *
2294  * Lockflags determines the lock state on return from this function.
2295  * Lock must be exclusive on entry.
2296  */
2297 int
2298 uvm_map_pageable_wire(struct vm_map *map, struct vm_map_entry *first,
2299     struct vm_map_entry *end, vaddr_t start_addr, vaddr_t end_addr,
2300     int lockflags)
2301 {
2302 	struct vm_map_entry *iter;
2303 #ifdef DIAGNOSTIC
2304 	unsigned int timestamp_save;
2305 #endif
2306 	int error;
2307 
2308 	/*
2309 	 * Wire pages in two passes:
2310 	 *
2311 	 * 1: holding the write lock, we create any anonymous maps that need
2312 	 *    to be created.  then we clip each map entry to the region to
2313 	 *    be wired and increment its wiring count.
2314 	 *
2315 	 * 2: we downgrade to a read lock, and call uvm_fault_wire to fault
2316 	 *    in the pages for any newly wired area (wired_count == 1).
2317 	 *
2318 	 *    downgrading to a read lock for uvm_fault_wire avoids a possible
2319 	 *    deadlock with another thread that may have faulted on one of
2320 	 *    the pages to be wired (it would mark the page busy, blocking
2321 	 *    us, then in turn block on the map lock that we hold).
2322 	 *    because we keep the read lock on the map, the copy-on-write
2323 	 *    status of the entries we modify here cannot change.
2324 	 */
2325 	for (iter = first; iter != end;
2326 	    iter = RBT_NEXT(uvm_map_addr, iter)) {
2327 		KDASSERT(iter->start >= start_addr && iter->end <= end_addr);
2328 		if (UVM_ET_ISHOLE(iter) || iter->start == iter->end ||
2329 		    iter->protection == PROT_NONE)
2330 			continue;
2331 
2332 		/*
2333 		 * Perform actions of vm_map_lookup that need the write lock.
2334 		 * - create an anonymous map for copy-on-write
2335 		 * - anonymous map for zero-fill
2336 		 * Skip submaps.
2337 		 */
2338 		if (!VM_MAPENT_ISWIRED(iter) && !UVM_ET_ISSUBMAP(iter) &&
2339 		    UVM_ET_ISNEEDSCOPY(iter) &&
2340 		    ((iter->protection & PROT_WRITE) ||
2341 		    iter->object.uvm_obj == NULL)) {
2342 			amap_copy(map, iter, M_WAITOK,
2343 			    UVM_ET_ISSTACK(iter) ? FALSE : TRUE,
2344 			    iter->start, iter->end);
2345 		}
2346 		iter->wired_count++;
2347 	}
2348 
2349 	/*
2350 	 * Pass 2.
2351 	 */
2352 #ifdef DIAGNOSTIC
2353 	timestamp_save = map->timestamp;
2354 #endif
2355 	vm_map_busy(map);
2356 	vm_map_downgrade(map);
2357 
2358 	error = 0;
2359 	for (iter = first; error == 0 && iter != end;
2360 	    iter = RBT_NEXT(uvm_map_addr, iter)) {
2361 		if (UVM_ET_ISHOLE(iter) || iter->start == iter->end ||
2362 		    iter->protection == PROT_NONE)
2363 			continue;
2364 
2365 		error = uvm_fault_wire(map, iter->start, iter->end,
2366 		    iter->protection);
2367 	}
2368 
2369 	if (error) {
2370 		/*
2371 		 * uvm_fault_wire failure
2372 		 *
2373 		 * Reacquire lock and undo our work.
2374 		 */
2375 		vm_map_upgrade(map);
2376 		vm_map_unbusy(map);
2377 #ifdef DIAGNOSTIC
2378 		if (timestamp_save != map->timestamp)
2379 			panic("uvm_map_pageable_wire: stale map");
2380 #endif
2381 
2382 		/*
2383 		 * first is no longer needed to restart loops.
2384 		 * Use it as iterator to unmap successful mappings.
2385 		 */
2386 		for (; first != iter;
2387 		    first = RBT_NEXT(uvm_map_addr, first)) {
2388 			if (UVM_ET_ISHOLE(first) ||
2389 			    first->start == first->end ||
2390 			    first->protection == PROT_NONE)
2391 				continue;
2392 
2393 			first->wired_count--;
2394 			if (!VM_MAPENT_ISWIRED(first)) {
2395 				uvm_fault_unwire_locked(map,
2396 				    iter->start, iter->end);
2397 			}
2398 		}
2399 
2400 		/* decrease counter in the rest of the entries */
2401 		for (; iter != end;
2402 		    iter = RBT_NEXT(uvm_map_addr, iter)) {
2403 			if (UVM_ET_ISHOLE(iter) || iter->start == iter->end ||
2404 			    iter->protection == PROT_NONE)
2405 				continue;
2406 
2407 			iter->wired_count--;
2408 		}
2409 
2410 		if ((lockflags & UVM_LK_EXIT) == 0)
2411 			vm_map_unlock(map);
2412 		return error;
2413 	}
2414 
2415 	/* We are currently holding a read lock. */
2416 	if ((lockflags & UVM_LK_EXIT) == 0) {
2417 		vm_map_unbusy(map);
2418 		vm_map_unlock_read(map);
2419 	} else {
2420 		vm_map_upgrade(map);
2421 		vm_map_unbusy(map);
2422 #ifdef DIAGNOSTIC
2423 		if (timestamp_save != map->timestamp)
2424 			panic("uvm_map_pageable_wire: stale map");
2425 #endif
2426 	}
2427 	return 0;
2428 }
2429 
2430 /*
2431  * uvm_map_pageable: set pageability of a range in a map.
2432  *
2433  * Flags:
2434  * UVM_LK_ENTER: map is already locked by caller
2435  * UVM_LK_EXIT:  don't unlock map on exit
2436  *
2437  * The full range must be in use (entries may not have fspace != 0).
2438  * UVM_ET_HOLE counts as unmapped.
2439  */
2440 int
2441 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
2442     boolean_t new_pageable, int lockflags)
2443 {
2444 	struct vm_map_entry *first, *last, *tmp;
2445 	int error;
2446 
2447 	start = trunc_page(start);
2448 	end = round_page(end);
2449 
2450 	if (start > end)
2451 		return EINVAL;
2452 	if (start == end)
2453 		return 0;	/* nothing to do */
2454 	if (start < map->min_offset)
2455 		return EFAULT; /* why? see first XXX below */
2456 	if (end > map->max_offset)
2457 		return EINVAL; /* why? see second XXX below */
2458 
2459 	KASSERT(map->flags & VM_MAP_PAGEABLE);
2460 	if ((lockflags & UVM_LK_ENTER) == 0)
2461 		vm_map_lock(map);
2462 
2463 	/*
2464 	 * Find first entry.
2465 	 *
2466 	 * Initial test on start is different, because of the different
2467 	 * error returned. Rest is tested further down.
2468 	 */
2469 	first = uvm_map_entrybyaddr(&map->addr, start);
2470 	if (first->end <= start || UVM_ET_ISHOLE(first)) {
2471 		/*
2472 		 * XXX if the first address is not mapped, it is EFAULT?
2473 		 */
2474 		error = EFAULT;
2475 		goto out;
2476 	}
2477 
2478 	/* Check that the range has no holes. */
2479 	for (last = first; last != NULL && last->start < end;
2480 	    last = RBT_NEXT(uvm_map_addr, last)) {
2481 		if (UVM_ET_ISHOLE(last) ||
2482 		    (last->end < end && VMMAP_FREE_END(last) != last->end)) {
2483 			/*
2484 			 * XXX unmapped memory in range, why is it EINVAL
2485 			 * instead of EFAULT?
2486 			 */
2487 			error = EINVAL;
2488 			goto out;
2489 		}
2490 	}
2491 
2492 	/*
2493 	 * Last ended at the first entry after the range.
2494 	 * Move back one step.
2495 	 *
2496 	 * Note that last may be NULL.
2497 	 */
2498 	if (last == NULL) {
2499 		last = RBT_MAX(uvm_map_addr, &map->addr);
2500 		if (last->end < end) {
2501 			error = EINVAL;
2502 			goto out;
2503 		}
2504 	} else {
2505 		KASSERT(last != first);
2506 		last = RBT_PREV(uvm_map_addr, last);
2507 	}
2508 
2509 	/* Wire/unwire pages here. */
2510 	if (new_pageable) {
2511 		/*
2512 		 * Mark pageable.
2513 		 * entries that are not wired are untouched.
2514 		 */
2515 		if (VM_MAPENT_ISWIRED(first))
2516 			UVM_MAP_CLIP_START(map, first, start);
2517 		/*
2518 		 * Split last at end.
2519 		 * Make tmp be the first entry after what is to be touched.
2520 		 * If last is not wired, don't touch it.
2521 		 */
2522 		if (VM_MAPENT_ISWIRED(last)) {
2523 			UVM_MAP_CLIP_END(map, last, end);
2524 			tmp = RBT_NEXT(uvm_map_addr, last);
2525 		} else
2526 			tmp = last;
2527 
2528 		uvm_map_pageable_pgon(map, first, tmp, start, end);
2529 		error = 0;
2530 
2531 out:
2532 		if ((lockflags & UVM_LK_EXIT) == 0)
2533 			vm_map_unlock(map);
2534 		return error;
2535 	} else {
2536 		/*
2537 		 * Mark entries wired.
2538 		 * entries are always touched (because recovery needs this).
2539 		 */
2540 		if (!VM_MAPENT_ISWIRED(first))
2541 			UVM_MAP_CLIP_START(map, first, start);
2542 		/*
2543 		 * Split last at end.
2544 		 * Make tmp be the first entry after what is to be touched.
2545 		 * If last is not wired, don't touch it.
2546 		 */
2547 		if (!VM_MAPENT_ISWIRED(last)) {
2548 			UVM_MAP_CLIP_END(map, last, end);
2549 			tmp = RBT_NEXT(uvm_map_addr, last);
2550 		} else
2551 			tmp = last;
2552 
2553 		return uvm_map_pageable_wire(map, first, tmp, start, end,
2554 		    lockflags);
2555 	}
2556 }
2557 
2558 /*
2559  * uvm_map_pageable_all: special case of uvm_map_pageable - affects
2560  * all mapped regions.
2561  *
2562  * Map must not be locked.
2563  * If no flags are specified, all ragions are unwired.
2564  */
2565 int
2566 uvm_map_pageable_all(struct vm_map *map, int flags, vsize_t limit)
2567 {
2568 	vsize_t size;
2569 	struct vm_map_entry *iter;
2570 
2571 	KASSERT(map->flags & VM_MAP_PAGEABLE);
2572 	vm_map_lock(map);
2573 
2574 	if (flags == 0) {
2575 		uvm_map_pageable_pgon(map, RBT_MIN(uvm_map_addr, &map->addr),
2576 		    NULL, map->min_offset, map->max_offset);
2577 
2578 		vm_map_modflags(map, 0, VM_MAP_WIREFUTURE);
2579 		vm_map_unlock(map);
2580 		return 0;
2581 	}
2582 
2583 	if (flags & MCL_FUTURE)
2584 		vm_map_modflags(map, VM_MAP_WIREFUTURE, 0);
2585 	if (!(flags & MCL_CURRENT)) {
2586 		vm_map_unlock(map);
2587 		return 0;
2588 	}
2589 
2590 	/*
2591 	 * Count number of pages in all non-wired entries.
2592 	 * If the number exceeds the limit, abort.
2593 	 */
2594 	size = 0;
2595 	RBT_FOREACH(iter, uvm_map_addr, &map->addr) {
2596 		if (VM_MAPENT_ISWIRED(iter) || UVM_ET_ISHOLE(iter))
2597 			continue;
2598 
2599 		size += iter->end - iter->start;
2600 	}
2601 
2602 	if (atop(size) + uvmexp.wired > uvmexp.wiredmax) {
2603 		vm_map_unlock(map);
2604 		return ENOMEM;
2605 	}
2606 
2607 	/* XXX non-pmap_wired_count case must be handled by caller */
2608 #ifdef pmap_wired_count
2609 	if (limit != 0 &&
2610 	    size + ptoa(pmap_wired_count(vm_map_pmap(map))) > limit) {
2611 		vm_map_unlock(map);
2612 		return ENOMEM;
2613 	}
2614 #endif
2615 
2616 	/*
2617 	 * uvm_map_pageable_wire will release lock
2618 	 */
2619 	return uvm_map_pageable_wire(map, RBT_MIN(uvm_map_addr, &map->addr),
2620 	    NULL, map->min_offset, map->max_offset, 0);
2621 }
2622 
2623 /*
2624  * Initialize map.
2625  *
2626  * Allocates sufficient entries to describe the free memory in the map.
2627  */
2628 void
2629 uvm_map_setup(struct vm_map *map, pmap_t pmap, vaddr_t min, vaddr_t max,
2630     int flags)
2631 {
2632 	int i;
2633 
2634 	KASSERT((min & (vaddr_t)PAGE_MASK) == 0);
2635 	KASSERT((max & (vaddr_t)PAGE_MASK) == 0 ||
2636 	    (max & (vaddr_t)PAGE_MASK) == (vaddr_t)PAGE_MASK);
2637 
2638 	/*
2639 	 * Update parameters.
2640 	 *
2641 	 * This code handles (vaddr_t)-1 and other page mask ending addresses
2642 	 * properly.
2643 	 * We lose the top page if the full virtual address space is used.
2644 	 */
2645 	if (max & (vaddr_t)PAGE_MASK) {
2646 		max += 1;
2647 		if (max == 0) /* overflow */
2648 			max -= PAGE_SIZE;
2649 	}
2650 
2651 	RBT_INIT(uvm_map_addr, &map->addr);
2652 	map->uaddr_exe = NULL;
2653 	for (i = 0; i < nitems(map->uaddr_any); ++i)
2654 		map->uaddr_any[i] = NULL;
2655 	map->uaddr_brk_stack = NULL;
2656 
2657 	map->pmap = pmap;
2658 	map->size = 0;
2659 	map->ref_count = 0;
2660 	map->min_offset = min;
2661 	map->max_offset = max;
2662 	map->b_start = map->b_end = 0; /* Empty brk() area by default. */
2663 	map->s_start = map->s_end = 0; /* Empty stack area by default. */
2664 	map->flags = flags;
2665 	map->timestamp = 0;
2666 	if (flags & VM_MAP_ISVMSPACE)
2667 		rw_init_flags(&map->lock, "vmmaplk", RWL_DUPOK);
2668 	else
2669 		rw_init(&map->lock, "kmmaplk");
2670 	mtx_init(&map->mtx, IPL_VM);
2671 	mtx_init(&map->flags_lock, IPL_VM);
2672 
2673 	/* Configure the allocators. */
2674 	if (flags & VM_MAP_ISVMSPACE)
2675 		uvm_map_setup_md(map);
2676 	else
2677 		map->uaddr_any[3] = &uaddr_kbootstrap;
2678 
2679 	/*
2680 	 * Fill map entries.
2681 	 * We do not need to write-lock the map here because only the current
2682 	 * thread sees it right now. Initialize ref_count to 0 above to avoid
2683 	 * bogus triggering of lock-not-held assertions.
2684 	 */
2685 	uvm_map_setup_entries(map);
2686 	uvm_tree_sanity(map, __FILE__, __LINE__);
2687 	map->ref_count = 1;
2688 }
2689 
2690 /*
2691  * Destroy the map.
2692  *
2693  * This is the inverse operation to uvm_map_setup.
2694  */
2695 void
2696 uvm_map_teardown(struct vm_map *map)
2697 {
2698 	struct uvm_map_deadq	 dead_entries;
2699 	struct vm_map_entry	*entry, *tmp;
2700 #ifdef VMMAP_DEBUG
2701 	size_t			 numq, numt;
2702 #endif
2703 	int			 i;
2704 
2705 	KERNEL_ASSERT_LOCKED();
2706 	KERNEL_UNLOCK();
2707 	KERNEL_ASSERT_UNLOCKED();
2708 
2709 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2710 
2711 	/* Remove address selectors. */
2712 	uvm_addr_destroy(map->uaddr_exe);
2713 	map->uaddr_exe = NULL;
2714 	for (i = 0; i < nitems(map->uaddr_any); i++) {
2715 		uvm_addr_destroy(map->uaddr_any[i]);
2716 		map->uaddr_any[i] = NULL;
2717 	}
2718 	uvm_addr_destroy(map->uaddr_brk_stack);
2719 	map->uaddr_brk_stack = NULL;
2720 
2721 	/*
2722 	 * Remove entries.
2723 	 *
2724 	 * The following is based on graph breadth-first search.
2725 	 *
2726 	 * In color terms:
2727 	 * - the dead_entries set contains all nodes that are reachable
2728 	 *   (i.e. both the black and the grey nodes)
2729 	 * - any entry not in dead_entries is white
2730 	 * - any entry that appears in dead_entries before entry,
2731 	 *   is black, the rest is grey.
2732 	 * The set [entry, end] is also referred to as the wavefront.
2733 	 *
2734 	 * Since the tree is always a fully connected graph, the breadth-first
2735 	 * search guarantees that each vmmap_entry is visited exactly once.
2736 	 * The vm_map is broken down in linear time.
2737 	 */
2738 	TAILQ_INIT(&dead_entries);
2739 	if ((entry = RBT_ROOT(uvm_map_addr, &map->addr)) != NULL)
2740 		DEAD_ENTRY_PUSH(&dead_entries, entry);
2741 	while (entry != NULL) {
2742 		sched_pause(yield);
2743 		uvm_unmap_kill_entry(map, entry);
2744 		if ((tmp = RBT_LEFT(uvm_map_addr, entry)) != NULL)
2745 			DEAD_ENTRY_PUSH(&dead_entries, tmp);
2746 		if ((tmp = RBT_RIGHT(uvm_map_addr, entry)) != NULL)
2747 			DEAD_ENTRY_PUSH(&dead_entries, tmp);
2748 		/* Update wave-front. */
2749 		entry = TAILQ_NEXT(entry, dfree.deadq);
2750 	}
2751 
2752 #ifdef VMMAP_DEBUG
2753 	numt = numq = 0;
2754 	RBT_FOREACH(entry, uvm_map_addr, &map->addr)
2755 		numt++;
2756 	TAILQ_FOREACH(entry, &dead_entries, dfree.deadq)
2757 		numq++;
2758 	KASSERT(numt == numq);
2759 #endif
2760 	uvm_unmap_detach(&dead_entries, UVM_PLA_WAITOK);
2761 
2762 	KERNEL_LOCK();
2763 
2764 	pmap_destroy(map->pmap);
2765 	map->pmap = NULL;
2766 }
2767 
2768 /*
2769  * Populate map with free-memory entries.
2770  *
2771  * Map must be initialized and empty.
2772  */
2773 void
2774 uvm_map_setup_entries(struct vm_map *map)
2775 {
2776 	KDASSERT(RBT_EMPTY(uvm_map_addr, &map->addr));
2777 
2778 	uvm_map_fix_space(map, NULL, map->min_offset, map->max_offset, 0);
2779 }
2780 
2781 /*
2782  * Split entry at given address.
2783  *
2784  * orig:  entry that is to be split.
2785  * next:  a newly allocated map entry that is not linked.
2786  * split: address at which the split is done.
2787  */
2788 void
2789 uvm_map_splitentry(struct vm_map *map, struct vm_map_entry *orig,
2790     struct vm_map_entry *next, vaddr_t split)
2791 {
2792 	struct uvm_addr_state *free, *free_before;
2793 	vsize_t adj;
2794 
2795 	if ((split & PAGE_MASK) != 0) {
2796 		panic("uvm_map_splitentry: split address 0x%lx "
2797 		    "not on page boundary!", split);
2798 	}
2799 	KDASSERT(map != NULL && orig != NULL && next != NULL);
2800 	uvm_tree_sanity(map, __FILE__, __LINE__);
2801 	KASSERT(orig->start < split && VMMAP_FREE_END(orig) > split);
2802 
2803 #ifdef VMMAP_DEBUG
2804 	KDASSERT(RBT_FIND(uvm_map_addr, &map->addr, orig) == orig);
2805 	KDASSERT(RBT_FIND(uvm_map_addr, &map->addr, next) != next);
2806 #endif /* VMMAP_DEBUG */
2807 
2808 	/*
2809 	 * Free space will change, unlink from free space tree.
2810 	 */
2811 	free = uvm_map_uaddr_e(map, orig);
2812 	uvm_mapent_free_remove(map, free, orig);
2813 
2814 	adj = split - orig->start;
2815 
2816 	uvm_mapent_copy(orig, next);
2817 	if (split >= orig->end) {
2818 		next->etype = 0;
2819 		next->offset = 0;
2820 		next->wired_count = 0;
2821 		next->start = next->end = split;
2822 		next->guard = 0;
2823 		next->fspace = VMMAP_FREE_END(orig) - split;
2824 		next->aref.ar_amap = NULL;
2825 		next->aref.ar_pageoff = 0;
2826 		orig->guard = MIN(orig->guard, split - orig->end);
2827 		orig->fspace = split - VMMAP_FREE_START(orig);
2828 	} else {
2829 		orig->fspace = 0;
2830 		orig->guard = 0;
2831 		orig->end = next->start = split;
2832 
2833 		if (next->aref.ar_amap) {
2834 			amap_splitref(&orig->aref, &next->aref, adj);
2835 		}
2836 		if (UVM_ET_ISSUBMAP(orig)) {
2837 			uvm_map_reference(next->object.sub_map);
2838 			next->offset += adj;
2839 		} else if (UVM_ET_ISOBJ(orig)) {
2840 			if (next->object.uvm_obj->pgops &&
2841 			    next->object.uvm_obj->pgops->pgo_reference) {
2842 				KERNEL_LOCK();
2843 				next->object.uvm_obj->pgops->pgo_reference(
2844 				    next->object.uvm_obj);
2845 				KERNEL_UNLOCK();
2846 			}
2847 			next->offset += adj;
2848 		}
2849 	}
2850 
2851 	/*
2852 	 * Link next into address tree.
2853 	 * Link orig and next into free-space tree.
2854 	 *
2855 	 * Don't insert 'next' into the addr tree until orig has been linked,
2856 	 * in case the free-list looks at adjecent entries in the addr tree
2857 	 * for its decisions.
2858 	 */
2859 	if (orig->fspace > 0)
2860 		free_before = free;
2861 	else
2862 		free_before = uvm_map_uaddr_e(map, orig);
2863 	uvm_mapent_free_insert(map, free_before, orig);
2864 	uvm_mapent_addr_insert(map, next);
2865 	uvm_mapent_free_insert(map, free, next);
2866 
2867 	uvm_tree_sanity(map, __FILE__, __LINE__);
2868 }
2869 
2870 
2871 #ifdef VMMAP_DEBUG
2872 
2873 void
2874 uvm_tree_assert(struct vm_map *map, int test, char *test_str,
2875     char *file, int line)
2876 {
2877 	char* map_special;
2878 
2879 	if (test)
2880 		return;
2881 
2882 	if (map == kernel_map)
2883 		map_special = " (kernel_map)";
2884 	else if (map == kmem_map)
2885 		map_special = " (kmem_map)";
2886 	else
2887 		map_special = "";
2888 	panic("uvm_tree_sanity %p%s (%s %d): %s", map, map_special, file,
2889 	    line, test_str);
2890 }
2891 
2892 /*
2893  * Check that map is sane.
2894  */
2895 void
2896 uvm_tree_sanity(struct vm_map *map, char *file, int line)
2897 {
2898 	struct vm_map_entry	*iter;
2899 	vaddr_t			 addr;
2900 	vaddr_t			 min, max, bound; /* Bounds checker. */
2901 	struct uvm_addr_state	*free;
2902 
2903 	addr = vm_map_min(map);
2904 	RBT_FOREACH(iter, uvm_map_addr, &map->addr) {
2905 		/*
2906 		 * Valid start, end.
2907 		 * Catch overflow for end+fspace.
2908 		 */
2909 		UVM_ASSERT(map, iter->end >= iter->start, file, line);
2910 		UVM_ASSERT(map, VMMAP_FREE_END(iter) >= iter->end, file, line);
2911 
2912 		/* May not be empty. */
2913 		UVM_ASSERT(map, iter->start < VMMAP_FREE_END(iter),
2914 		    file, line);
2915 
2916 		/* Addresses for entry must lie within map boundaries. */
2917 		UVM_ASSERT(map, iter->start >= vm_map_min(map) &&
2918 		    VMMAP_FREE_END(iter) <= vm_map_max(map), file, line);
2919 
2920 		/* Tree may not have gaps. */
2921 		UVM_ASSERT(map, iter->start == addr, file, line);
2922 		addr = VMMAP_FREE_END(iter);
2923 
2924 		/*
2925 		 * Free space may not cross boundaries, unless the same
2926 		 * free list is used on both sides of the border.
2927 		 */
2928 		min = VMMAP_FREE_START(iter);
2929 		max = VMMAP_FREE_END(iter);
2930 
2931 		while (min < max &&
2932 		    (bound = uvm_map_boundary(map, min, max)) != max) {
2933 			UVM_ASSERT(map,
2934 			    uvm_map_uaddr(map, bound - 1) ==
2935 			    uvm_map_uaddr(map, bound),
2936 			    file, line);
2937 			min = bound;
2938 		}
2939 
2940 		free = uvm_map_uaddr_e(map, iter);
2941 		if (free) {
2942 			UVM_ASSERT(map, (iter->etype & UVM_ET_FREEMAPPED) != 0,
2943 			    file, line);
2944 		} else {
2945 			UVM_ASSERT(map, (iter->etype & UVM_ET_FREEMAPPED) == 0,
2946 			    file, line);
2947 		}
2948 	}
2949 	UVM_ASSERT(map, addr == vm_map_max(map), file, line);
2950 }
2951 
2952 void
2953 uvm_tree_size_chk(struct vm_map *map, char *file, int line)
2954 {
2955 	struct vm_map_entry *iter;
2956 	vsize_t size;
2957 
2958 	size = 0;
2959 	RBT_FOREACH(iter, uvm_map_addr, &map->addr) {
2960 		if (!UVM_ET_ISHOLE(iter))
2961 			size += iter->end - iter->start;
2962 	}
2963 
2964 	if (map->size != size)
2965 		printf("map size = 0x%lx, should be 0x%lx\n", map->size, size);
2966 	UVM_ASSERT(map, map->size == size, file, line);
2967 
2968 	vmspace_validate(map);
2969 }
2970 
2971 /*
2972  * This function validates the statistics on vmspace.
2973  */
2974 void
2975 vmspace_validate(struct vm_map *map)
2976 {
2977 	struct vmspace *vm;
2978 	struct vm_map_entry *iter;
2979 	vaddr_t imin, imax;
2980 	vaddr_t stack_begin, stack_end; /* Position of stack. */
2981 	vsize_t stack, heap; /* Measured sizes. */
2982 
2983 	if (!(map->flags & VM_MAP_ISVMSPACE))
2984 		return;
2985 
2986 	vm = (struct vmspace *)map;
2987 	stack_begin = MIN((vaddr_t)vm->vm_maxsaddr, (vaddr_t)vm->vm_minsaddr);
2988 	stack_end = MAX((vaddr_t)vm->vm_maxsaddr, (vaddr_t)vm->vm_minsaddr);
2989 
2990 	stack = heap = 0;
2991 	RBT_FOREACH(iter, uvm_map_addr, &map->addr) {
2992 		imin = imax = iter->start;
2993 
2994 		if (UVM_ET_ISHOLE(iter) || iter->object.uvm_obj != NULL ||
2995 		    iter->prot != PROT_NONE)
2996 			continue;
2997 
2998 		/*
2999 		 * Update stack, heap.
3000 		 * Keep in mind that (theoretically) the entries of
3001 		 * userspace and stack may be joined.
3002 		 */
3003 		while (imin != iter->end) {
3004 			/*
3005 			 * Set imax to the first boundary crossed between
3006 			 * imin and stack addresses.
3007 			 */
3008 			imax = iter->end;
3009 			if (imin < stack_begin && imax > stack_begin)
3010 				imax = stack_begin;
3011 			else if (imin < stack_end && imax > stack_end)
3012 				imax = stack_end;
3013 
3014 			if (imin >= stack_begin && imin < stack_end)
3015 				stack += imax - imin;
3016 			else
3017 				heap += imax - imin;
3018 			imin = imax;
3019 		}
3020 	}
3021 
3022 	heap >>= PAGE_SHIFT;
3023 	if (heap != vm->vm_dused) {
3024 		printf("vmspace stack range: 0x%lx-0x%lx\n",
3025 		    stack_begin, stack_end);
3026 		panic("vmspace_validate: vmspace.vm_dused invalid, "
3027 		    "expected %ld pgs, got %ld pgs in map %p",
3028 		    heap, vm->vm_dused,
3029 		    map);
3030 	}
3031 }
3032 
3033 #endif /* VMMAP_DEBUG */
3034 
3035 /*
3036  * uvm_map_init: init mapping system at boot time.   note that we allocate
3037  * and init the static pool of structs vm_map_entry for the kernel here.
3038  */
3039 void
3040 uvm_map_init(void)
3041 {
3042 	static struct vm_map_entry kernel_map_entry[MAX_KMAPENT];
3043 	int lcv;
3044 
3045 	/* now set up static pool of kernel map entries ... */
3046 	mtx_init(&uvm_kmapent_mtx, IPL_VM);
3047 	SLIST_INIT(&uvm.kentry_free);
3048 	for (lcv = 0 ; lcv < MAX_KMAPENT ; lcv++) {
3049 		SLIST_INSERT_HEAD(&uvm.kentry_free,
3050 		    &kernel_map_entry[lcv], daddrs.addr_kentry);
3051 	}
3052 
3053 	/* initialize the map-related pools. */
3054 	pool_init(&uvm_vmspace_pool, sizeof(struct vmspace), 0,
3055 	    IPL_NONE, PR_WAITOK, "vmsppl", NULL);
3056 	pool_init(&uvm_map_entry_pool, sizeof(struct vm_map_entry), 0,
3057 	    IPL_VM, PR_WAITOK, "vmmpepl", NULL);
3058 	pool_init(&uvm_map_entry_kmem_pool, sizeof(struct vm_map_entry), 0,
3059 	    IPL_VM, 0, "vmmpekpl", NULL);
3060 	pool_sethiwat(&uvm_map_entry_pool, 8192);
3061 
3062 	uvm_addr_init();
3063 }
3064 
3065 #if defined(DDB)
3066 
3067 /*
3068  * DDB hooks
3069  */
3070 
3071 /*
3072  * uvm_map_printit: actually prints the map
3073  */
3074 void
3075 uvm_map_printit(struct vm_map *map, boolean_t full,
3076     int (*pr)(const char *, ...))
3077 {
3078 	struct vmspace			*vm;
3079 	struct vm_map_entry		*entry;
3080 	struct uvm_addr_state		*free;
3081 	int				 in_free, i;
3082 	char				 buf[8];
3083 
3084 	(*pr)("MAP %p: [0x%lx->0x%lx]\n", map, map->min_offset,map->max_offset);
3085 	(*pr)("\tbrk() allocate range: 0x%lx-0x%lx\n",
3086 	    map->b_start, map->b_end);
3087 	(*pr)("\tstack allocate range: 0x%lx-0x%lx\n",
3088 	    map->s_start, map->s_end);
3089 	(*pr)("\tsz=%u, ref=%d, version=%u, flags=0x%x\n",
3090 	    map->size, map->ref_count, map->timestamp,
3091 	    map->flags);
3092 	(*pr)("\tpmap=%p(resident=%d)\n", map->pmap,
3093 	    pmap_resident_count(map->pmap));
3094 
3095 	/* struct vmspace handling. */
3096 	if (map->flags & VM_MAP_ISVMSPACE) {
3097 		vm = (struct vmspace *)map;
3098 
3099 		(*pr)("\tvm_refcnt=%d vm_shm=%p vm_rssize=%u vm_swrss=%u\n",
3100 		    vm->vm_refcnt, vm->vm_shm, vm->vm_rssize, vm->vm_swrss);
3101 		(*pr)("\tvm_tsize=%u vm_dsize=%u\n",
3102 		    vm->vm_tsize, vm->vm_dsize);
3103 		(*pr)("\tvm_taddr=%p vm_daddr=%p\n",
3104 		    vm->vm_taddr, vm->vm_daddr);
3105 		(*pr)("\tvm_maxsaddr=%p vm_minsaddr=%p\n",
3106 		    vm->vm_maxsaddr, vm->vm_minsaddr);
3107 	}
3108 
3109 	if (!full)
3110 		goto print_uaddr;
3111 	RBT_FOREACH(entry, uvm_map_addr, &map->addr) {
3112 		(*pr)(" - %p: 0x%lx->0x%lx: obj=%p/0x%llx, amap=%p/%d\n",
3113 		    entry, entry->start, entry->end, entry->object.uvm_obj,
3114 		    (long long)entry->offset, entry->aref.ar_amap,
3115 		    entry->aref.ar_pageoff);
3116 		(*pr)("\tsubmap=%c, cow=%c, nc=%c, stack=%c, "
3117 		    "syscall=%c, prot(max)=%d/%d, inh=%d, "
3118 		    "wc=%d, adv=%d\n",
3119 		    (entry->etype & UVM_ET_SUBMAP) ? 'T' : 'F',
3120 		    (entry->etype & UVM_ET_COPYONWRITE) ? 'T' : 'F',
3121 		    (entry->etype & UVM_ET_NEEDSCOPY) ? 'T' : 'F',
3122 		    (entry->etype & UVM_ET_STACK) ? 'T' : 'F',
3123 		    (entry->etype & UVM_ET_SYSCALL) ? 'T' : 'F',
3124 		    entry->protection, entry->max_protection,
3125 		    entry->inheritance, entry->wired_count, entry->advice);
3126 
3127 		free = uvm_map_uaddr_e(map, entry);
3128 		in_free = (free != NULL);
3129 		(*pr)("\thole=%c, free=%c, guard=0x%lx, "
3130 		    "free=0x%lx-0x%lx\n",
3131 		    (entry->etype & UVM_ET_HOLE) ? 'T' : 'F',
3132 		    in_free ? 'T' : 'F',
3133 		    entry->guard,
3134 		    VMMAP_FREE_START(entry), VMMAP_FREE_END(entry));
3135 		(*pr)("\tfspace_augment=%lu\n", entry->fspace_augment);
3136 		(*pr)("\tfreemapped=%c, uaddr=%p\n",
3137 		    (entry->etype & UVM_ET_FREEMAPPED) ? 'T' : 'F', free);
3138 		if (free) {
3139 			(*pr)("\t\t(0x%lx-0x%lx %s)\n",
3140 			    free->uaddr_minaddr, free->uaddr_maxaddr,
3141 			    free->uaddr_functions->uaddr_name);
3142 		}
3143 	}
3144 
3145 print_uaddr:
3146 	uvm_addr_print(map->uaddr_exe, "exe", full, pr);
3147 	for (i = 0; i < nitems(map->uaddr_any); i++) {
3148 		snprintf(&buf[0], sizeof(buf), "any[%d]", i);
3149 		uvm_addr_print(map->uaddr_any[i], &buf[0], full, pr);
3150 	}
3151 	uvm_addr_print(map->uaddr_brk_stack, "brk/stack", full, pr);
3152 }
3153 
3154 /*
3155  * uvm_object_printit: actually prints the object
3156  */
3157 void
3158 uvm_object_printit(struct uvm_object *uobj, boolean_t full,
3159     int (*pr)(const char *, ...))
3160 {
3161 	struct vm_page *pg;
3162 	int cnt = 0;
3163 
3164 	(*pr)("OBJECT %p: pgops=%p, npages=%d, ",
3165 	    uobj, uobj->pgops, uobj->uo_npages);
3166 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
3167 		(*pr)("refs=<SYSTEM>\n");
3168 	else
3169 		(*pr)("refs=%d\n", uobj->uo_refs);
3170 
3171 	if (!full) {
3172 		return;
3173 	}
3174 	(*pr)("  PAGES <pg,offset>:\n  ");
3175 	RBT_FOREACH(pg, uvm_objtree, &uobj->memt) {
3176 		(*pr)("<%p,0x%llx> ", pg, (long long)pg->offset);
3177 		if ((cnt % 3) == 2) {
3178 			(*pr)("\n  ");
3179 		}
3180 		cnt++;
3181 	}
3182 	if ((cnt % 3) != 2) {
3183 		(*pr)("\n");
3184 	}
3185 }
3186 
3187 /*
3188  * uvm_page_printit: actually print the page
3189  */
3190 static const char page_flagbits[] =
3191 	"\20\1BUSY\2WANTED\3TABLED\4CLEAN\5CLEANCHK\6RELEASED\7FAKE\10RDONLY"
3192 	"\11ZERO\12DEV\15PAGER1\21FREE\22INACTIVE\23ACTIVE\25ANON\26AOBJ"
3193 	"\27ENCRYPT\31PMAP0\32PMAP1\33PMAP2\34PMAP3\35PMAP4\36PMAP5";
3194 
3195 void
3196 uvm_page_printit(struct vm_page *pg, boolean_t full,
3197     int (*pr)(const char *, ...))
3198 {
3199 	struct vm_page *tpg;
3200 	struct uvm_object *uobj;
3201 	struct pglist *pgl;
3202 
3203 	(*pr)("PAGE %p:\n", pg);
3204 	(*pr)("  flags=%b, vers=%d, wire_count=%d, pa=0x%llx\n",
3205 	    pg->pg_flags, page_flagbits, pg->pg_version, pg->wire_count,
3206 	    (long long)pg->phys_addr);
3207 	(*pr)("  uobject=%p, uanon=%p, offset=0x%llx\n",
3208 	    pg->uobject, pg->uanon, (long long)pg->offset);
3209 #if defined(UVM_PAGE_TRKOWN)
3210 	if (pg->pg_flags & PG_BUSY)
3211 		(*pr)("  owning thread = %d, tag=%s",
3212 		    pg->owner, pg->owner_tag);
3213 	else
3214 		(*pr)("  page not busy, no owner");
3215 #else
3216 	(*pr)("  [page ownership tracking disabled]");
3217 #endif
3218 	(*pr)("\tvm_page_md %p\n", &pg->mdpage);
3219 
3220 	if (!full)
3221 		return;
3222 
3223 	/* cross-verify object/anon */
3224 	if ((pg->pg_flags & PQ_FREE) == 0) {
3225 		if (pg->pg_flags & PQ_ANON) {
3226 			if (pg->uanon == NULL || pg->uanon->an_page != pg)
3227 			    (*pr)("  >>> ANON DOES NOT POINT HERE <<< (%p)\n",
3228 				(pg->uanon) ? pg->uanon->an_page : NULL);
3229 			else
3230 				(*pr)("  anon backpointer is OK\n");
3231 		} else {
3232 			uobj = pg->uobject;
3233 			if (uobj) {
3234 				(*pr)("  checking object list\n");
3235 				RBT_FOREACH(tpg, uvm_objtree, &uobj->memt) {
3236 					if (tpg == pg) {
3237 						break;
3238 					}
3239 				}
3240 				if (tpg)
3241 					(*pr)("  page found on object list\n");
3242 				else
3243 					(*pr)("  >>> PAGE NOT FOUND "
3244 					    "ON OBJECT LIST! <<<\n");
3245 			}
3246 		}
3247 	}
3248 
3249 	/* cross-verify page queue */
3250 	if (pg->pg_flags & PQ_FREE) {
3251 		if (uvm_pmr_isfree(pg))
3252 			(*pr)("  page found in uvm_pmemrange\n");
3253 		else
3254 			(*pr)("  >>> page not found in uvm_pmemrange <<<\n");
3255 		pgl = NULL;
3256 	} else if (pg->pg_flags & PQ_INACTIVE) {
3257 		pgl = (pg->pg_flags & PQ_SWAPBACKED) ?
3258 		    &uvm.page_inactive_swp : &uvm.page_inactive_obj;
3259 	} else if (pg->pg_flags & PQ_ACTIVE) {
3260 		pgl = &uvm.page_active;
3261  	} else {
3262 		pgl = NULL;
3263 	}
3264 
3265 	if (pgl) {
3266 		(*pr)("  checking pageq list\n");
3267 		TAILQ_FOREACH(tpg, pgl, pageq) {
3268 			if (tpg == pg) {
3269 				break;
3270 			}
3271 		}
3272 		if (tpg)
3273 			(*pr)("  page found on pageq list\n");
3274 		else
3275 			(*pr)("  >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
3276 	}
3277 }
3278 #endif
3279 
3280 /*
3281  * uvm_map_protect: change map protection
3282  *
3283  * => set_max means set max_protection.
3284  * => map must be unlocked.
3285  */
3286 int
3287 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
3288     vm_prot_t new_prot, boolean_t set_max)
3289 {
3290 	struct vm_map_entry *first, *iter;
3291 	vm_prot_t old_prot;
3292 	vm_prot_t mask;
3293 	vsize_t dused;
3294 	int error;
3295 
3296 	if (start > end)
3297 		return EINVAL;
3298 	start = MAX(start, map->min_offset);
3299 	end = MIN(end, map->max_offset);
3300 	if (start >= end)
3301 		return 0;
3302 
3303 	dused = 0;
3304 	error = 0;
3305 	vm_map_lock(map);
3306 
3307 	/*
3308 	 * Set up first and last.
3309 	 * - first will contain first entry at or after start.
3310 	 */
3311 	first = uvm_map_entrybyaddr(&map->addr, start);
3312 	KDASSERT(first != NULL);
3313 	if (first->end <= start)
3314 		first = RBT_NEXT(uvm_map_addr, first);
3315 
3316 	/* First, check for protection violations. */
3317 	for (iter = first; iter != NULL && iter->start < end;
3318 	    iter = RBT_NEXT(uvm_map_addr, iter)) {
3319 		/* Treat memory holes as free space. */
3320 		if (iter->start == iter->end || UVM_ET_ISHOLE(iter))
3321 			continue;
3322 
3323 		old_prot = iter->protection;
3324 		if (old_prot == PROT_NONE && new_prot != old_prot) {
3325 			dused += uvmspace_dused(
3326 			    map, MAX(start, iter->start), MIN(end, iter->end));
3327 		}
3328 
3329 		if (UVM_ET_ISSUBMAP(iter)) {
3330 			error = EINVAL;
3331 			goto out;
3332 		}
3333 		if ((new_prot & iter->max_protection) != new_prot) {
3334 			error = EACCES;
3335 			goto out;
3336 		}
3337 		if (map == kernel_map &&
3338 		    (new_prot & (PROT_WRITE | PROT_EXEC)) == (PROT_WRITE | PROT_EXEC))
3339 			panic("uvm_map_protect: kernel map W^X violation requested");
3340 	}
3341 
3342 	/* Check limits. */
3343 	if (dused > 0 && (map->flags & VM_MAP_ISVMSPACE)) {
3344 		vsize_t limit = lim_cur(RLIMIT_DATA);
3345 		dused = ptoa(dused);
3346 		if (limit < dused ||
3347 		    limit - dused < ptoa(((struct vmspace *)map)->vm_dused)) {
3348 			error = ENOMEM;
3349 			goto out;
3350 		}
3351 	}
3352 
3353 	/* Fix protections.  */
3354 	for (iter = first; iter != NULL && iter->start < end;
3355 	    iter = RBT_NEXT(uvm_map_addr, iter)) {
3356 		/* Treat memory holes as free space. */
3357 		if (iter->start == iter->end || UVM_ET_ISHOLE(iter))
3358 			continue;
3359 
3360 		old_prot = iter->protection;
3361 
3362 		/*
3363 		 * Skip adapting protection iff old and new protection
3364 		 * are equal.
3365 		 */
3366 		if (set_max) {
3367 			if (old_prot == (new_prot & old_prot) &&
3368 			    iter->max_protection == new_prot)
3369 				continue;
3370 		} else {
3371 			if (old_prot == new_prot)
3372 				continue;
3373 		}
3374 
3375 		UVM_MAP_CLIP_START(map, iter, start);
3376 		UVM_MAP_CLIP_END(map, iter, end);
3377 
3378 		if (set_max) {
3379 			iter->max_protection = new_prot;
3380 			iter->protection &= new_prot;
3381 		} else
3382 			iter->protection = new_prot;
3383 
3384 		/*
3385 		 * update physical map if necessary.  worry about copy-on-write
3386 		 * here -- CHECK THIS XXX
3387 		 */
3388 		if (iter->protection != old_prot) {
3389 			mask = UVM_ET_ISCOPYONWRITE(iter) ?
3390 			    ~PROT_WRITE : PROT_MASK;
3391 
3392 			/* XXX should only wserial++ if no split occurs */
3393 			if (iter->protection & PROT_WRITE)
3394 				map->wserial++;
3395 
3396 			if (map->flags & VM_MAP_ISVMSPACE) {
3397 				if (old_prot == PROT_NONE) {
3398 					((struct vmspace *)map)->vm_dused +=
3399 					    uvmspace_dused(map, iter->start,
3400 					        iter->end);
3401 				}
3402 				if (iter->protection == PROT_NONE) {
3403 					((struct vmspace *)map)->vm_dused -=
3404 					    uvmspace_dused(map, iter->start,
3405 					        iter->end);
3406 				}
3407 			}
3408 
3409 			/* update pmap */
3410 			if ((iter->protection & mask) == PROT_NONE &&
3411 			    VM_MAPENT_ISWIRED(iter)) {
3412 				/*
3413 				 * TODO(ariane) this is stupid. wired_count
3414 				 * is 0 if not wired, otherwise anything
3415 				 * larger than 0 (incremented once each time
3416 				 * wire is called).
3417 				 * Mostly to be able to undo the damage on
3418 				 * failure. Not the actually be a wired
3419 				 * refcounter...
3420 				 * Originally: iter->wired_count--;
3421 				 * (don't we have to unwire this in the pmap
3422 				 * as well?)
3423 				 */
3424 				iter->wired_count = 0;
3425 			}
3426 			pmap_protect(map->pmap, iter->start, iter->end,
3427 			    iter->protection & mask);
3428 		}
3429 
3430 		/*
3431 		 * If the map is configured to lock any future mappings,
3432 		 * wire this entry now if the old protection was PROT_NONE
3433 		 * and the new protection is not PROT_NONE.
3434 		 */
3435 		if ((map->flags & VM_MAP_WIREFUTURE) != 0 &&
3436 		    VM_MAPENT_ISWIRED(iter) == 0 &&
3437 		    old_prot == PROT_NONE &&
3438 		    new_prot != PROT_NONE) {
3439 			if (uvm_map_pageable(map, iter->start, iter->end,
3440 			    FALSE, UVM_LK_ENTER | UVM_LK_EXIT) != 0) {
3441 				/*
3442 				 * If locking the entry fails, remember the
3443 				 * error if it's the first one.  Note we
3444 				 * still continue setting the protection in
3445 				 * the map, but it will return the resource
3446 				 * storage condition regardless.
3447 				 *
3448 				 * XXX Ignore what the actual error is,
3449 				 * XXX just call it a resource shortage
3450 				 * XXX so that it doesn't get confused
3451 				 * XXX what uvm_map_protect() itself would
3452 				 * XXX normally return.
3453 				 */
3454 				error = ENOMEM;
3455 			}
3456 		}
3457 	}
3458 	pmap_update(map->pmap);
3459 
3460 out:
3461 	vm_map_unlock(map);
3462 	return error;
3463 }
3464 
3465 /*
3466  * uvmspace_alloc: allocate a vmspace structure.
3467  *
3468  * - structure includes vm_map and pmap
3469  * - XXX: no locking on this structure
3470  * - refcnt set to 1, rest must be init'd by caller
3471  */
3472 struct vmspace *
3473 uvmspace_alloc(vaddr_t min, vaddr_t max, boolean_t pageable,
3474     boolean_t remove_holes)
3475 {
3476 	struct vmspace *vm;
3477 
3478 	vm = pool_get(&uvm_vmspace_pool, PR_WAITOK | PR_ZERO);
3479 	uvmspace_init(vm, NULL, min, max, pageable, remove_holes);
3480 	return (vm);
3481 }
3482 
3483 /*
3484  * uvmspace_init: initialize a vmspace structure.
3485  *
3486  * - XXX: no locking on this structure
3487  * - refcnt set to 1, rest must be init'd by caller
3488  */
3489 void
3490 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t min, vaddr_t max,
3491     boolean_t pageable, boolean_t remove_holes)
3492 {
3493 	KASSERT(pmap == NULL || pmap == pmap_kernel());
3494 
3495 	if (pmap)
3496 		pmap_reference(pmap);
3497 	else
3498 		pmap = pmap_create();
3499 
3500 	uvm_map_setup(&vm->vm_map, pmap, min, max,
3501 	    (pageable ? VM_MAP_PAGEABLE : 0) | VM_MAP_ISVMSPACE);
3502 
3503 	vm->vm_refcnt = 1;
3504 
3505 	if (remove_holes)
3506 		pmap_remove_holes(vm);
3507 }
3508 
3509 /*
3510  * uvmspace_share: share a vmspace between two processes
3511  *
3512  * - used for vfork
3513  */
3514 
3515 struct vmspace *
3516 uvmspace_share(struct process *pr)
3517 {
3518 	struct vmspace *vm = pr->ps_vmspace;
3519 
3520 	uvmspace_addref(vm);
3521 	return vm;
3522 }
3523 
3524 /*
3525  * uvmspace_exec: the process wants to exec a new program
3526  *
3527  * - XXX: no locking on vmspace
3528  */
3529 
3530 void
3531 uvmspace_exec(struct proc *p, vaddr_t start, vaddr_t end)
3532 {
3533 	struct process *pr = p->p_p;
3534 	struct vmspace *nvm, *ovm = pr->ps_vmspace;
3535 	struct vm_map *map = &ovm->vm_map;
3536 	struct uvm_map_deadq dead_entries;
3537 
3538 	KASSERT((start & (vaddr_t)PAGE_MASK) == 0);
3539 	KASSERT((end & (vaddr_t)PAGE_MASK) == 0 ||
3540 	    (end & (vaddr_t)PAGE_MASK) == (vaddr_t)PAGE_MASK);
3541 
3542 	pmap_unuse_final(p);   /* before stack addresses go away */
3543 	TAILQ_INIT(&dead_entries);
3544 
3545 	/* see if more than one process is using this vmspace...  */
3546 	if (ovm->vm_refcnt == 1) {
3547 		/*
3548 		 * If pr is the only process using its vmspace then
3549 		 * we can safely recycle that vmspace for the program
3550 		 * that is being exec'd.
3551 		 */
3552 
3553 #ifdef SYSVSHM
3554 		/*
3555 		 * SYSV SHM semantics require us to kill all segments on an exec
3556 		 */
3557 		if (ovm->vm_shm)
3558 			shmexit(ovm);
3559 #endif
3560 
3561 		/*
3562 		 * POSIX 1003.1b -- "lock future mappings" is revoked
3563 		 * when a process execs another program image.
3564 		 */
3565 		vm_map_lock(map);
3566 		vm_map_modflags(map, 0, VM_MAP_WIREFUTURE|VM_MAP_SYSCALL_ONCE);
3567 
3568 		/*
3569 		 * now unmap the old program
3570 		 *
3571 		 * Instead of attempting to keep the map valid, we simply
3572 		 * nuke all entries and ask uvm_map_setup to reinitialize
3573 		 * the map to the new boundaries.
3574 		 *
3575 		 * uvm_unmap_remove will actually nuke all entries for us
3576 		 * (as in, not replace them with free-memory entries).
3577 		 */
3578 		uvm_unmap_remove(map, map->min_offset, map->max_offset,
3579 		    &dead_entries, TRUE, FALSE);
3580 
3581 		KDASSERT(RBT_EMPTY(uvm_map_addr, &map->addr));
3582 
3583 		/* Nuke statistics and boundaries. */
3584 		memset(&ovm->vm_startcopy, 0,
3585 		    (caddr_t) (ovm + 1) - (caddr_t) &ovm->vm_startcopy);
3586 
3587 
3588 		if (end & (vaddr_t)PAGE_MASK) {
3589 			end += 1;
3590 			if (end == 0) /* overflow */
3591 				end -= PAGE_SIZE;
3592 		}
3593 
3594 		/* Setup new boundaries and populate map with entries. */
3595 		map->min_offset = start;
3596 		map->max_offset = end;
3597 		uvm_map_setup_entries(map);
3598 		vm_map_unlock(map);
3599 
3600 		/* but keep MMU holes unavailable */
3601 		pmap_remove_holes(ovm);
3602 	} else {
3603 		/*
3604 		 * pr's vmspace is being shared, so we can't reuse
3605 		 * it for pr since it is still being used for others.
3606 		 * allocate a new vmspace for pr
3607 		 */
3608 		nvm = uvmspace_alloc(start, end,
3609 		    (map->flags & VM_MAP_PAGEABLE) ? TRUE : FALSE, TRUE);
3610 
3611 		/* install new vmspace and drop our ref to the old one. */
3612 		pmap_deactivate(p);
3613 		p->p_vmspace = pr->ps_vmspace = nvm;
3614 		pmap_activate(p);
3615 
3616 		uvmspace_free(ovm);
3617 	}
3618 
3619 	/* Release dead entries */
3620 	uvm_unmap_detach(&dead_entries, 0);
3621 }
3622 
3623 /*
3624  * uvmspace_addref: add a reference to a vmspace.
3625  */
3626 void
3627 uvmspace_addref(struct vmspace *vm)
3628 {
3629 	KERNEL_ASSERT_LOCKED();
3630 	KASSERT(vm->vm_refcnt > 0);
3631 
3632 	vm->vm_refcnt++;
3633 }
3634 
3635 /*
3636  * uvmspace_free: free a vmspace data structure
3637  */
3638 void
3639 uvmspace_free(struct vmspace *vm)
3640 {
3641 	KERNEL_ASSERT_LOCKED();
3642 
3643 	if (--vm->vm_refcnt == 0) {
3644 		/*
3645 		 * lock the map, to wait out all other references to it.  delete
3646 		 * all of the mappings and pages they hold, then call the pmap
3647 		 * module to reclaim anything left.
3648 		 */
3649 #ifdef SYSVSHM
3650 		/* Get rid of any SYSV shared memory segments. */
3651 		if (vm->vm_shm != NULL)
3652 			shmexit(vm);
3653 #endif
3654 
3655 		uvm_map_teardown(&vm->vm_map);
3656 		pool_put(&uvm_vmspace_pool, vm);
3657 	}
3658 }
3659 
3660 /*
3661  * uvm_share: Map the address range [srcaddr, srcaddr + sz) in
3662  * srcmap to the address range [dstaddr, dstaddr + sz) in
3663  * dstmap.
3664  *
3665  * The whole address range in srcmap must be backed by an object
3666  * (no holes).
3667  *
3668  * If successful, the address ranges share memory and the destination
3669  * address range uses the protection flags in prot.
3670  *
3671  * This routine assumes that sz is a multiple of PAGE_SIZE and
3672  * that dstaddr and srcaddr are page-aligned.
3673  */
3674 int
3675 uvm_share(struct vm_map *dstmap, vaddr_t dstaddr, vm_prot_t prot,
3676     struct vm_map *srcmap, vaddr_t srcaddr, vsize_t sz)
3677 {
3678 	int ret = 0;
3679 	vaddr_t unmap_end;
3680 	vaddr_t dstva;
3681 	vsize_t s_off, len, n = sz, remain;
3682 	struct vm_map_entry *first = NULL, *last = NULL;
3683 	struct vm_map_entry *src_entry, *psrc_entry = NULL;
3684 	struct uvm_map_deadq dead;
3685 
3686 	if (srcaddr >= srcmap->max_offset || sz > srcmap->max_offset - srcaddr)
3687 		return EINVAL;
3688 
3689 	TAILQ_INIT(&dead);
3690 	vm_map_lock(dstmap);
3691 	vm_map_lock_read(srcmap);
3692 
3693 	if (!uvm_map_isavail(dstmap, NULL, &first, &last, dstaddr, sz)) {
3694 		ret = ENOMEM;
3695 		goto exit_unlock;
3696 	}
3697 	if (!uvm_map_lookup_entry(srcmap, srcaddr, &src_entry)) {
3698 		ret = EINVAL;
3699 		goto exit_unlock;
3700 	}
3701 
3702 	dstva = dstaddr;
3703 	unmap_end = dstaddr;
3704 	for (; src_entry != NULL;
3705 	    psrc_entry = src_entry,
3706 	    src_entry = RBT_NEXT(uvm_map_addr, src_entry)) {
3707 		/* hole in address space, bail out */
3708 		if (psrc_entry != NULL && psrc_entry->end != src_entry->start)
3709 			break;
3710 		if (src_entry->start >= srcaddr + sz)
3711 			break;
3712 
3713 		if (UVM_ET_ISSUBMAP(src_entry))
3714 			panic("uvm_share: encountered a submap (illegal)");
3715 		if (!UVM_ET_ISCOPYONWRITE(src_entry) &&
3716 		    UVM_ET_ISNEEDSCOPY(src_entry))
3717 			panic("uvm_share: non-copy_on_write map entries "
3718 			    "marked needs_copy (illegal)");
3719 
3720 		/*
3721 		 * srcaddr > map entry start? means we are in the middle of a
3722 		 * map, so we calculate the offset to use in the source map.
3723 		 */
3724 		if (srcaddr > src_entry->start)
3725 			s_off = srcaddr - src_entry->start;
3726 		else if (srcaddr == src_entry->start)
3727 			s_off = 0;
3728 		else
3729 			panic("uvm_share: map entry start > srcaddr");
3730 
3731 		remain = src_entry->end - src_entry->start - s_off;
3732 
3733 		/* Determine how many bytes to share in this pass */
3734 		if (n < remain)
3735 			len = n;
3736 		else
3737 			len = remain;
3738 
3739 		if (uvm_mapent_share(dstmap, dstva, len, s_off, prot, prot,
3740 		    srcmap, src_entry, &dead) == NULL)
3741 			break;
3742 
3743 		n -= len;
3744 		dstva += len;
3745 		srcaddr += len;
3746 		unmap_end = dstva + len;
3747 		if (n == 0)
3748 			goto exit_unlock;
3749 	}
3750 
3751 	ret = EINVAL;
3752 	uvm_unmap_remove(dstmap, dstaddr, unmap_end, &dead, FALSE, TRUE);
3753 
3754 exit_unlock:
3755 	vm_map_unlock_read(srcmap);
3756 	vm_map_unlock(dstmap);
3757 	uvm_unmap_detach(&dead, 0);
3758 
3759 	return ret;
3760 }
3761 
3762 /*
3763  * Clone map entry into other map.
3764  *
3765  * Mapping will be placed at dstaddr, for the same length.
3766  * Space must be available.
3767  * Reference counters are incremented.
3768  */
3769 struct vm_map_entry *
3770 uvm_mapent_clone(struct vm_map *dstmap, vaddr_t dstaddr, vsize_t dstlen,
3771     vsize_t off, vm_prot_t prot, vm_prot_t maxprot,
3772     struct vm_map_entry *old_entry, struct uvm_map_deadq *dead,
3773     int mapent_flags, int amap_share_flags)
3774 {
3775 	struct vm_map_entry *new_entry, *first, *last;
3776 
3777 	KDASSERT(!UVM_ET_ISSUBMAP(old_entry));
3778 
3779 	/* Create new entry (linked in on creation). Fill in first, last. */
3780 	first = last = NULL;
3781 	if (!uvm_map_isavail(dstmap, NULL, &first, &last, dstaddr, dstlen)) {
3782 		panic("uvm_mapent_clone: no space in map for "
3783 		    "entry in empty map");
3784 	}
3785 	new_entry = uvm_map_mkentry(dstmap, first, last,
3786 	    dstaddr, dstlen, mapent_flags, dead, NULL);
3787 	if (new_entry == NULL)
3788 		return NULL;
3789 	/* old_entry -> new_entry */
3790 	new_entry->object = old_entry->object;
3791 	new_entry->offset = old_entry->offset;
3792 	new_entry->aref = old_entry->aref;
3793 	new_entry->etype |= old_entry->etype & ~UVM_ET_FREEMAPPED;
3794 	new_entry->protection = prot;
3795 	new_entry->max_protection = maxprot;
3796 	new_entry->inheritance = old_entry->inheritance;
3797 	new_entry->advice = old_entry->advice;
3798 
3799 	/* gain reference to object backing the map (can't be a submap). */
3800 	if (new_entry->aref.ar_amap) {
3801 		new_entry->aref.ar_pageoff += off >> PAGE_SHIFT;
3802 		amap_ref(new_entry->aref.ar_amap, new_entry->aref.ar_pageoff,
3803 		    (new_entry->end - new_entry->start) >> PAGE_SHIFT,
3804 		    amap_share_flags);
3805 	}
3806 
3807 	if (UVM_ET_ISOBJ(new_entry) &&
3808 	    new_entry->object.uvm_obj->pgops->pgo_reference) {
3809 		new_entry->offset += off;
3810 		new_entry->object.uvm_obj->pgops->pgo_reference
3811 		    (new_entry->object.uvm_obj);
3812 	}
3813 
3814 	return new_entry;
3815 }
3816 
3817 struct vm_map_entry *
3818 uvm_mapent_share(struct vm_map *dstmap, vaddr_t dstaddr, vsize_t dstlen,
3819     vsize_t off, vm_prot_t prot, vm_prot_t maxprot, struct vm_map *old_map,
3820     struct vm_map_entry *old_entry, struct uvm_map_deadq *dead)
3821 {
3822 	/*
3823 	 * If old_entry refers to a copy-on-write region that has not yet been
3824 	 * written to (needs_copy flag is set), then we need to allocate a new
3825 	 * amap for old_entry.
3826 	 *
3827 	 * If we do not do this, and the process owning old_entry does a copy-on
3828 	 * write later, old_entry and new_entry will refer to different memory
3829 	 * regions, and the memory between the processes is no longer shared.
3830 	 *
3831 	 * [in other words, we need to clear needs_copy]
3832 	 */
3833 
3834 	if (UVM_ET_ISNEEDSCOPY(old_entry)) {
3835 		/* get our own amap, clears needs_copy */
3836 		amap_copy(old_map, old_entry, M_WAITOK, FALSE, 0, 0);
3837 		/* XXXCDC: WAITOK??? */
3838 	}
3839 
3840 	return uvm_mapent_clone(dstmap, dstaddr, dstlen, off,
3841 	    prot, maxprot, old_entry, dead, 0, AMAP_SHARED);
3842 }
3843 
3844 /*
3845  * share the mapping: this means we want the old and
3846  * new entries to share amaps and backing objects.
3847  */
3848 struct vm_map_entry *
3849 uvm_mapent_forkshared(struct vmspace *new_vm, struct vm_map *new_map,
3850     struct vm_map *old_map,
3851     struct vm_map_entry *old_entry, struct uvm_map_deadq *dead)
3852 {
3853 	struct vm_map_entry *new_entry;
3854 
3855 	new_entry = uvm_mapent_share(new_map, old_entry->start,
3856 	    old_entry->end - old_entry->start, 0, old_entry->protection,
3857 	    old_entry->max_protection, old_map, old_entry, dead);
3858 
3859 	/*
3860 	 * pmap_copy the mappings: this routine is optional
3861 	 * but if it is there it will reduce the number of
3862 	 * page faults in the new proc.
3863 	 */
3864 	if (!UVM_ET_ISHOLE(new_entry))
3865 		pmap_copy(new_map->pmap, old_map->pmap, new_entry->start,
3866 		    (new_entry->end - new_entry->start), new_entry->start);
3867 
3868 	return (new_entry);
3869 }
3870 
3871 /*
3872  * copy-on-write the mapping (using mmap's
3873  * MAP_PRIVATE semantics)
3874  *
3875  * allocate new_entry, adjust reference counts.
3876  * (note that new references are read-only).
3877  */
3878 struct vm_map_entry *
3879 uvm_mapent_forkcopy(struct vmspace *new_vm, struct vm_map *new_map,
3880     struct vm_map *old_map,
3881     struct vm_map_entry *old_entry, struct uvm_map_deadq *dead)
3882 {
3883 	struct vm_map_entry	*new_entry;
3884 	boolean_t		 protect_child;
3885 
3886 	new_entry = uvm_mapent_clone(new_map, old_entry->start,
3887 	    old_entry->end - old_entry->start, 0, old_entry->protection,
3888 	    old_entry->max_protection, old_entry, dead, 0, 0);
3889 
3890 	new_entry->etype |=
3891 	    (UVM_ET_COPYONWRITE|UVM_ET_NEEDSCOPY);
3892 
3893 	/*
3894 	 * the new entry will need an amap.  it will either
3895 	 * need to be copied from the old entry or created
3896 	 * from scratch (if the old entry does not have an
3897 	 * amap).  can we defer this process until later
3898 	 * (by setting "needs_copy") or do we need to copy
3899 	 * the amap now?
3900 	 *
3901 	 * we must copy the amap now if any of the following
3902 	 * conditions hold:
3903 	 * 1. the old entry has an amap and that amap is
3904 	 *    being shared.  this means that the old (parent)
3905 	 *    process is sharing the amap with another
3906 	 *    process.  if we do not clear needs_copy here
3907 	 *    we will end up in a situation where both the
3908 	 *    parent and child process are referring to the
3909 	 *    same amap with "needs_copy" set.  if the
3910 	 *    parent write-faults, the fault routine will
3911 	 *    clear "needs_copy" in the parent by allocating
3912 	 *    a new amap.   this is wrong because the
3913 	 *    parent is supposed to be sharing the old amap
3914 	 *    and the new amap will break that.
3915 	 *
3916 	 * 2. if the old entry has an amap and a non-zero
3917 	 *    wire count then we are going to have to call
3918 	 *    amap_cow_now to avoid page faults in the
3919 	 *    parent process.   since amap_cow_now requires
3920 	 *    "needs_copy" to be clear we might as well
3921 	 *    clear it here as well.
3922 	 *
3923 	 */
3924 	if (old_entry->aref.ar_amap != NULL &&
3925 	    ((amap_flags(old_entry->aref.ar_amap) &
3926 	    AMAP_SHARED) != 0 ||
3927 	    VM_MAPENT_ISWIRED(old_entry))) {
3928 		amap_copy(new_map, new_entry, M_WAITOK, FALSE,
3929 		    0, 0);
3930 		/* XXXCDC: M_WAITOK ... ok? */
3931 	}
3932 
3933 	/*
3934 	 * if the parent's entry is wired down, then the
3935 	 * parent process does not want page faults on
3936 	 * access to that memory.  this means that we
3937 	 * cannot do copy-on-write because we can't write
3938 	 * protect the old entry.   in this case we
3939 	 * resolve all copy-on-write faults now, using
3940 	 * amap_cow_now.   note that we have already
3941 	 * allocated any needed amap (above).
3942 	 */
3943 	if (VM_MAPENT_ISWIRED(old_entry)) {
3944 		/*
3945 		 * resolve all copy-on-write faults now
3946 		 * (note that there is nothing to do if
3947 		 * the old mapping does not have an amap).
3948 		 * XXX: is it worthwhile to bother with
3949 		 * pmap_copy in this case?
3950 		 */
3951 		if (old_entry->aref.ar_amap)
3952 			amap_cow_now(new_map, new_entry);
3953 	} else {
3954 		if (old_entry->aref.ar_amap) {
3955 			/*
3956 			 * setup mappings to trigger copy-on-write faults
3957 			 * we must write-protect the parent if it has
3958 			 * an amap and it is not already "needs_copy"...
3959 			 * if it is already "needs_copy" then the parent
3960 			 * has already been write-protected by a previous
3961 			 * fork operation.
3962 			 *
3963 			 * if we do not write-protect the parent, then
3964 			 * we must be sure to write-protect the child
3965 			 * after the pmap_copy() operation.
3966 			 *
3967 			 * XXX: pmap_copy should have some way of telling
3968 			 * us that it didn't do anything so we can avoid
3969 			 * calling pmap_protect needlessly.
3970 			 */
3971 			if (!UVM_ET_ISNEEDSCOPY(old_entry)) {
3972 				if (old_entry->max_protection & PROT_WRITE) {
3973 					pmap_protect(old_map->pmap,
3974 					    old_entry->start,
3975 					    old_entry->end,
3976 					    old_entry->protection &
3977 					    ~PROT_WRITE);
3978 					pmap_update(old_map->pmap);
3979 				}
3980 				old_entry->etype |= UVM_ET_NEEDSCOPY;
3981 			}
3982 
3983 	  		/* parent must now be write-protected */
3984 	  		protect_child = FALSE;
3985 		} else {
3986 			/*
3987 			 * we only need to protect the child if the
3988 			 * parent has write access.
3989 			 */
3990 			if (old_entry->max_protection & PROT_WRITE)
3991 				protect_child = TRUE;
3992 			else
3993 				protect_child = FALSE;
3994 		}
3995 		/*
3996 		 * copy the mappings
3997 		 * XXX: need a way to tell if this does anything
3998 		 */
3999 		if (!UVM_ET_ISHOLE(new_entry))
4000 			pmap_copy(new_map->pmap, old_map->pmap,
4001 			    new_entry->start,
4002 			    (old_entry->end - old_entry->start),
4003 			    old_entry->start);
4004 
4005 		/* protect the child's mappings if necessary */
4006 		if (protect_child) {
4007 			pmap_protect(new_map->pmap, new_entry->start,
4008 			    new_entry->end,
4009 			    new_entry->protection &
4010 			    ~PROT_WRITE);
4011 		}
4012 	}
4013 
4014 	return (new_entry);
4015 }
4016 
4017 /*
4018  * zero the mapping: the new entry will be zero initialized
4019  */
4020 struct vm_map_entry *
4021 uvm_mapent_forkzero(struct vmspace *new_vm, struct vm_map *new_map,
4022     struct vm_map *old_map,
4023     struct vm_map_entry *old_entry, struct uvm_map_deadq *dead)
4024 {
4025 	struct vm_map_entry *new_entry;
4026 
4027 	new_entry = uvm_mapent_clone(new_map, old_entry->start,
4028 	    old_entry->end - old_entry->start, 0, old_entry->protection,
4029 	    old_entry->max_protection, old_entry, dead, 0, 0);
4030 
4031 	new_entry->etype |=
4032 	    (UVM_ET_COPYONWRITE|UVM_ET_NEEDSCOPY);
4033 
4034 	if (new_entry->aref.ar_amap) {
4035 		amap_unref(new_entry->aref.ar_amap, new_entry->aref.ar_pageoff,
4036 		    atop(new_entry->end - new_entry->start), 0);
4037 		new_entry->aref.ar_amap = NULL;
4038 		new_entry->aref.ar_pageoff = 0;
4039 	}
4040 
4041 	if (UVM_ET_ISOBJ(new_entry)) {
4042 		if (new_entry->object.uvm_obj->pgops->pgo_detach)
4043 			new_entry->object.uvm_obj->pgops->pgo_detach(
4044 			    new_entry->object.uvm_obj);
4045 		new_entry->object.uvm_obj = NULL;
4046 		new_entry->etype &= ~UVM_ET_OBJ;
4047 	}
4048 
4049 	return (new_entry);
4050 }
4051 
4052 /*
4053  * uvmspace_fork: fork a process' main map
4054  *
4055  * => create a new vmspace for child process from parent.
4056  * => parent's map must not be locked.
4057  */
4058 struct vmspace *
4059 uvmspace_fork(struct process *pr)
4060 {
4061 	struct vmspace *vm1 = pr->ps_vmspace;
4062 	struct vmspace *vm2;
4063 	struct vm_map *old_map = &vm1->vm_map;
4064 	struct vm_map *new_map;
4065 	struct vm_map_entry *old_entry, *new_entry;
4066 	struct uvm_map_deadq dead;
4067 
4068 	vm_map_lock(old_map);
4069 
4070 	vm2 = uvmspace_alloc(old_map->min_offset, old_map->max_offset,
4071 	    (old_map->flags & VM_MAP_PAGEABLE) ? TRUE : FALSE, FALSE);
4072 	memcpy(&vm2->vm_startcopy, &vm1->vm_startcopy,
4073 	    (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy);
4074 	vm2->vm_dused = 0; /* Statistic managed by us. */
4075 	new_map = &vm2->vm_map;
4076 	vm_map_lock(new_map);
4077 
4078 	/* go entry-by-entry */
4079 	TAILQ_INIT(&dead);
4080 	RBT_FOREACH(old_entry, uvm_map_addr, &old_map->addr) {
4081 		if (old_entry->start == old_entry->end)
4082 			continue;
4083 
4084 		/* first, some sanity checks on the old entry */
4085 		if (UVM_ET_ISSUBMAP(old_entry)) {
4086 			panic("fork: encountered a submap during fork "
4087 			    "(illegal)");
4088 		}
4089 
4090 		if (!UVM_ET_ISCOPYONWRITE(old_entry) &&
4091 		    UVM_ET_ISNEEDSCOPY(old_entry)) {
4092 			panic("fork: non-copy_on_write map entry marked "
4093 			    "needs_copy (illegal)");
4094 		}
4095 
4096 		/* Apply inheritance. */
4097 		switch (old_entry->inheritance) {
4098 		case MAP_INHERIT_SHARE:
4099 			new_entry = uvm_mapent_forkshared(vm2, new_map,
4100 			    old_map, old_entry, &dead);
4101 			break;
4102 		case MAP_INHERIT_COPY:
4103 			new_entry = uvm_mapent_forkcopy(vm2, new_map,
4104 			    old_map, old_entry, &dead);
4105 			break;
4106 		case MAP_INHERIT_ZERO:
4107 			new_entry = uvm_mapent_forkzero(vm2, new_map,
4108 			    old_map, old_entry, &dead);
4109 			break;
4110 		default:
4111 			continue;
4112 		}
4113 
4114 	 	/* Update process statistics. */
4115 		if (!UVM_ET_ISHOLE(new_entry))
4116 			new_map->size += new_entry->end - new_entry->start;
4117 		if (!UVM_ET_ISOBJ(new_entry) && !UVM_ET_ISHOLE(new_entry) &&
4118 		    new_entry->protection != PROT_NONE) {
4119 			vm2->vm_dused += uvmspace_dused(
4120 			    new_map, new_entry->start, new_entry->end);
4121 		}
4122 	}
4123 
4124 	vm_map_unlock(old_map);
4125 	vm_map_unlock(new_map);
4126 
4127 	/*
4128 	 * This can actually happen, if multiple entries described a
4129 	 * space in which an entry was inherited.
4130 	 */
4131 	uvm_unmap_detach(&dead, 0);
4132 
4133 #ifdef SYSVSHM
4134 	if (vm1->vm_shm)
4135 		shmfork(vm1, vm2);
4136 #endif
4137 
4138 	return vm2;
4139 }
4140 
4141 /*
4142  * uvm_map_hint: return the beginning of the best area suitable for
4143  * creating a new mapping with "prot" protection.
4144  */
4145 vaddr_t
4146 uvm_map_hint(struct vmspace *vm, vm_prot_t prot, vaddr_t minaddr,
4147     vaddr_t maxaddr)
4148 {
4149 	vaddr_t addr;
4150 	vaddr_t spacing;
4151 
4152 #ifdef __i386__
4153 	/*
4154 	 * If executable skip first two pages, otherwise start
4155 	 * after data + heap region.
4156 	 */
4157 	if ((prot & PROT_EXEC) != 0 &&
4158 	    (vaddr_t)vm->vm_daddr >= I386_MAX_EXE_ADDR) {
4159 		addr = (PAGE_SIZE*2) +
4160 		    (arc4random() & (I386_MAX_EXE_ADDR / 2 - 1));
4161 		return (round_page(addr));
4162 	}
4163 #endif
4164 
4165 #if defined (__LP64__)
4166 	spacing = MIN(4UL * 1024 * 1024 * 1024, MAXDSIZ) - 1;
4167 #else
4168 	spacing = MIN(1 * 1024 * 1024 * 1024, MAXDSIZ) - 1;
4169 #endif
4170 
4171 	/*
4172 	 * Start malloc/mmap after the brk.
4173 	 */
4174 	addr = (vaddr_t)vm->vm_daddr + BRKSIZ;
4175 	addr = MAX(addr, minaddr);
4176 
4177 	if (addr < maxaddr) {
4178 		while (spacing > maxaddr - addr)
4179 			spacing >>= 1;
4180 	}
4181 	addr += arc4random() & spacing;
4182 	return (round_page(addr));
4183 }
4184 
4185 /*
4186  * uvm_map_submap: punch down part of a map into a submap
4187  *
4188  * => only the kernel_map is allowed to be submapped
4189  * => the purpose of submapping is to break up the locking granularity
4190  *	of a larger map
4191  * => the range specified must have been mapped previously with a uvm_map()
4192  *	call [with uobj==NULL] to create a blank map entry in the main map.
4193  *	[And it had better still be blank!]
4194  * => maps which contain submaps should never be copied or forked.
4195  * => to remove a submap, use uvm_unmap() on the main map
4196  *	and then uvm_map_deallocate() the submap.
4197  * => main map must be unlocked.
4198  * => submap must have been init'd and have a zero reference count.
4199  *	[need not be locked as we don't actually reference it]
4200  */
4201 int
4202 uvm_map_submap(struct vm_map *map, vaddr_t start, vaddr_t end,
4203     struct vm_map *submap)
4204 {
4205 	struct vm_map_entry *entry;
4206 	int result;
4207 
4208 	if (start > map->max_offset || end > map->max_offset ||
4209 	    start < map->min_offset || end < map->min_offset)
4210 		return EINVAL;
4211 
4212 	vm_map_lock(map);
4213 
4214 	if (uvm_map_lookup_entry(map, start, &entry)) {
4215 		UVM_MAP_CLIP_START(map, entry, start);
4216 		UVM_MAP_CLIP_END(map, entry, end);
4217 	} else
4218 		entry = NULL;
4219 
4220 	if (entry != NULL &&
4221 	    entry->start == start && entry->end == end &&
4222 	    entry->object.uvm_obj == NULL && entry->aref.ar_amap == NULL &&
4223 	    !UVM_ET_ISCOPYONWRITE(entry) && !UVM_ET_ISNEEDSCOPY(entry)) {
4224 		entry->etype |= UVM_ET_SUBMAP;
4225 		entry->object.sub_map = submap;
4226 		entry->offset = 0;
4227 		uvm_map_reference(submap);
4228 		result = 0;
4229 	} else
4230 		result = EINVAL;
4231 
4232 	vm_map_unlock(map);
4233 	return result;
4234 }
4235 
4236 /*
4237  * uvm_map_checkprot: check protection in map
4238  *
4239  * => must allow specific protection in a fully allocated region.
4240  * => map mut be read or write locked by caller.
4241  */
4242 boolean_t
4243 uvm_map_checkprot(struct vm_map *map, vaddr_t start, vaddr_t end,
4244     vm_prot_t protection)
4245 {
4246 	struct vm_map_entry *entry;
4247 
4248 	if (start < map->min_offset || end > map->max_offset || start > end)
4249 		return FALSE;
4250 	if (start == end)
4251 		return TRUE;
4252 
4253 	/*
4254 	 * Iterate entries.
4255 	 */
4256 	for (entry = uvm_map_entrybyaddr(&map->addr, start);
4257 	    entry != NULL && entry->start < end;
4258 	    entry = RBT_NEXT(uvm_map_addr, entry)) {
4259 		/* Fail if a hole is found. */
4260 		if (UVM_ET_ISHOLE(entry) ||
4261 		    (entry->end < end && entry->end != VMMAP_FREE_END(entry)))
4262 			return FALSE;
4263 
4264 		/* Check protection. */
4265 		if ((entry->protection & protection) != protection)
4266 			return FALSE;
4267 	}
4268 	return TRUE;
4269 }
4270 
4271 /*
4272  * uvm_map_create: create map
4273  */
4274 vm_map_t
4275 uvm_map_create(pmap_t pmap, vaddr_t min, vaddr_t max, int flags)
4276 {
4277 	vm_map_t map;
4278 
4279 	map = malloc(sizeof *map, M_VMMAP, M_WAITOK);
4280 	uvm_map_setup(map, pmap, min, max, flags);
4281 	return (map);
4282 }
4283 
4284 /*
4285  * uvm_map_deallocate: drop reference to a map
4286  *
4287  * => caller must not lock map
4288  * => we will zap map if ref count goes to zero
4289  */
4290 void
4291 uvm_map_deallocate(vm_map_t map)
4292 {
4293 	int c;
4294 	struct uvm_map_deadq dead;
4295 
4296 	c = atomic_dec_int_nv(&map->ref_count);
4297 	if (c > 0) {
4298 		return;
4299 	}
4300 
4301 	/*
4302 	 * all references gone.   unmap and free.
4303 	 *
4304 	 * No lock required: we are only one to access this map.
4305 	 */
4306 	TAILQ_INIT(&dead);
4307 	uvm_tree_sanity(map, __FILE__, __LINE__);
4308 	uvm_unmap_remove(map, map->min_offset, map->max_offset, &dead,
4309 	    TRUE, FALSE);
4310 	pmap_destroy(map->pmap);
4311 	KASSERT(RBT_EMPTY(uvm_map_addr, &map->addr));
4312 	free(map, M_VMMAP, sizeof *map);
4313 
4314 	uvm_unmap_detach(&dead, 0);
4315 }
4316 
4317 /*
4318  * uvm_map_inherit: set inheritance code for range of addrs in map.
4319  *
4320  * => map must be unlocked
4321  * => note that the inherit code is used during a "fork".  see fork
4322  *	code for details.
4323  */
4324 int
4325 uvm_map_inherit(struct vm_map *map, vaddr_t start, vaddr_t end,
4326     vm_inherit_t new_inheritance)
4327 {
4328 	struct vm_map_entry *entry;
4329 
4330 	switch (new_inheritance) {
4331 	case MAP_INHERIT_NONE:
4332 	case MAP_INHERIT_COPY:
4333 	case MAP_INHERIT_SHARE:
4334 	case MAP_INHERIT_ZERO:
4335 		break;
4336 	default:
4337 		return (EINVAL);
4338 	}
4339 
4340 	if (start > end)
4341 		return EINVAL;
4342 	start = MAX(start, map->min_offset);
4343 	end = MIN(end, map->max_offset);
4344 	if (start >= end)
4345 		return 0;
4346 
4347 	vm_map_lock(map);
4348 
4349 	entry = uvm_map_entrybyaddr(&map->addr, start);
4350 	if (entry->end > start)
4351 		UVM_MAP_CLIP_START(map, entry, start);
4352 	else
4353 		entry = RBT_NEXT(uvm_map_addr, entry);
4354 
4355 	while (entry != NULL && entry->start < end) {
4356 		UVM_MAP_CLIP_END(map, entry, end);
4357 		entry->inheritance = new_inheritance;
4358 		entry = RBT_NEXT(uvm_map_addr, entry);
4359 	}
4360 
4361 	vm_map_unlock(map);
4362 	return (0);
4363 }
4364 
4365 /*
4366  * uvm_map_syscall: permit system calls for range of addrs in map.
4367  *
4368  * => map must be unlocked
4369  */
4370 int
4371 uvm_map_syscall(struct vm_map *map, vaddr_t start, vaddr_t end)
4372 {
4373 	struct vm_map_entry *entry;
4374 
4375 	if (start > end)
4376 		return EINVAL;
4377 	start = MAX(start, map->min_offset);
4378 	end = MIN(end, map->max_offset);
4379 	if (start >= end)
4380 		return 0;
4381 	if (map->flags & VM_MAP_SYSCALL_ONCE)	/* only allowed once */
4382 		return (EPERM);
4383 
4384 	vm_map_lock(map);
4385 
4386 	entry = uvm_map_entrybyaddr(&map->addr, start);
4387 	if (entry->end > start)
4388 		UVM_MAP_CLIP_START(map, entry, start);
4389 	else
4390 		entry = RBT_NEXT(uvm_map_addr, entry);
4391 
4392 	while (entry != NULL && entry->start < end) {
4393 		UVM_MAP_CLIP_END(map, entry, end);
4394 		entry->etype |= UVM_ET_SYSCALL;
4395 		entry = RBT_NEXT(uvm_map_addr, entry);
4396 	}
4397 
4398 	map->wserial++;
4399 	map->flags |= VM_MAP_SYSCALL_ONCE;
4400 	vm_map_unlock(map);
4401 	return (0);
4402 }
4403 
4404 /*
4405  * uvm_map_advice: set advice code for range of addrs in map.
4406  *
4407  * => map must be unlocked
4408  */
4409 int
4410 uvm_map_advice(struct vm_map *map, vaddr_t start, vaddr_t end, int new_advice)
4411 {
4412 	struct vm_map_entry *entry;
4413 
4414 	switch (new_advice) {
4415 	case MADV_NORMAL:
4416 	case MADV_RANDOM:
4417 	case MADV_SEQUENTIAL:
4418 		break;
4419 	default:
4420 		return (EINVAL);
4421 	}
4422 
4423 	if (start > end)
4424 		return EINVAL;
4425 	start = MAX(start, map->min_offset);
4426 	end = MIN(end, map->max_offset);
4427 	if (start >= end)
4428 		return 0;
4429 
4430 	vm_map_lock(map);
4431 
4432 	entry = uvm_map_entrybyaddr(&map->addr, start);
4433 	if (entry != NULL && entry->end > start)
4434 		UVM_MAP_CLIP_START(map, entry, start);
4435 	else if (entry!= NULL)
4436 		entry = RBT_NEXT(uvm_map_addr, entry);
4437 
4438 	/*
4439 	 * XXXJRT: disallow holes?
4440 	 */
4441 	while (entry != NULL && entry->start < end) {
4442 		UVM_MAP_CLIP_END(map, entry, end);
4443 		entry->advice = new_advice;
4444 		entry = RBT_NEXT(uvm_map_addr, entry);
4445 	}
4446 
4447 	vm_map_unlock(map);
4448 	return (0);
4449 }
4450 
4451 /*
4452  * uvm_map_extract: extract a mapping from a map and put it somewhere
4453  * in the kernel_map, setting protection to max_prot.
4454  *
4455  * => map should be unlocked (we will write lock it and kernel_map)
4456  * => returns 0 on success, error code otherwise
4457  * => start must be page aligned
4458  * => len must be page sized
4459  * => flags:
4460  *      UVM_EXTRACT_FIXPROT: set prot to maxprot as we go
4461  * Mappings are QREF's.
4462  */
4463 int
4464 uvm_map_extract(struct vm_map *srcmap, vaddr_t start, vsize_t len,
4465     vaddr_t *dstaddrp, int flags)
4466 {
4467 	struct uvm_map_deadq dead;
4468 	struct vm_map_entry *first, *entry, *newentry, *tmp1, *tmp2;
4469 	vaddr_t dstaddr;
4470 	vaddr_t end;
4471 	vaddr_t cp_start;
4472 	vsize_t cp_len, cp_off;
4473 	int error;
4474 
4475 	TAILQ_INIT(&dead);
4476 	end = start + len;
4477 
4478 	/*
4479 	 * Sanity check on the parameters.
4480 	 * Also, since the mapping may not contain gaps, error out if the
4481 	 * mapped area is not in source map.
4482 	 */
4483 	if ((start & (vaddr_t)PAGE_MASK) != 0 ||
4484 	    (end & (vaddr_t)PAGE_MASK) != 0 || end < start)
4485 		return EINVAL;
4486 	if (start < srcmap->min_offset || end > srcmap->max_offset)
4487 		return EINVAL;
4488 
4489 	/* Initialize dead entries. Handle len == 0 case. */
4490 	if (len == 0)
4491 		return 0;
4492 
4493 	/* Acquire lock on srcmap. */
4494 	vm_map_lock(srcmap);
4495 
4496 	/* Lock srcmap, lookup first and last entry in <start,len>. */
4497 	first = uvm_map_entrybyaddr(&srcmap->addr, start);
4498 
4499 	/* Check that the range is contiguous. */
4500 	for (entry = first; entry != NULL && entry->end < end;
4501 	    entry = RBT_NEXT(uvm_map_addr, entry)) {
4502 		if (VMMAP_FREE_END(entry) != entry->end ||
4503 		    UVM_ET_ISHOLE(entry)) {
4504 			error = EINVAL;
4505 			goto fail;
4506 		}
4507 	}
4508 	if (entry == NULL || UVM_ET_ISHOLE(entry)) {
4509 		error = EINVAL;
4510 		goto fail;
4511 	}
4512 
4513 	/*
4514 	 * Handle need-copy flag.
4515 	 */
4516 	for (entry = first; entry != NULL && entry->start < end;
4517 	    entry = RBT_NEXT(uvm_map_addr, entry)) {
4518 		if (UVM_ET_ISNEEDSCOPY(entry))
4519 			amap_copy(srcmap, entry, M_NOWAIT,
4520 			    UVM_ET_ISSTACK(entry) ? FALSE : TRUE, start, end);
4521 		if (UVM_ET_ISNEEDSCOPY(entry)) {
4522 			/*
4523 			 * amap_copy failure
4524 			 */
4525 			error = ENOMEM;
4526 			goto fail;
4527 		}
4528 	}
4529 
4530 	/* Lock destination map (kernel_map). */
4531 	vm_map_lock(kernel_map);
4532 
4533 	if (uvm_map_findspace(kernel_map, &tmp1, &tmp2, &dstaddr, len,
4534 	    MAX(PAGE_SIZE, PMAP_PREFER_ALIGN()), PMAP_PREFER_OFFSET(start),
4535 	    PROT_NONE, 0) != 0) {
4536 		error = ENOMEM;
4537 		goto fail2;
4538 	}
4539 	*dstaddrp = dstaddr;
4540 
4541 	/*
4542 	 * We now have srcmap and kernel_map locked.
4543 	 * dstaddr contains the destination offset in dstmap.
4544 	 */
4545 	/* step 1: start looping through map entries, performing extraction. */
4546 	for (entry = first; entry != NULL && entry->start < end;
4547 	    entry = RBT_NEXT(uvm_map_addr, entry)) {
4548 		KDASSERT(!UVM_ET_ISNEEDSCOPY(entry));
4549 		if (UVM_ET_ISHOLE(entry))
4550 			continue;
4551 
4552 		/* Calculate uvm_mapent_clone parameters. */
4553 		cp_start = entry->start;
4554 		if (cp_start < start) {
4555 			cp_off = start - cp_start;
4556 			cp_start = start;
4557 		} else
4558 			cp_off = 0;
4559 		cp_len = MIN(entry->end, end) - cp_start;
4560 
4561 		newentry = uvm_mapent_clone(kernel_map,
4562 		    cp_start - start + dstaddr, cp_len, cp_off,
4563 		    entry->protection, entry->max_protection,
4564 		    entry, &dead, flags, AMAP_SHARED | AMAP_REFALL);
4565 		if (newentry == NULL) {
4566 			error = ENOMEM;
4567 			goto fail2_unmap;
4568 		}
4569 		kernel_map->size += cp_len;
4570 		if (flags & UVM_EXTRACT_FIXPROT)
4571 			newentry->protection = newentry->max_protection;
4572 
4573 		/*
4574 		 * Step 2: perform pmap copy.
4575 		 * (Doing this in the loop saves one RB traversal.)
4576 		 */
4577 		pmap_copy(kernel_map->pmap, srcmap->pmap,
4578 		    cp_start - start + dstaddr, cp_len, cp_start);
4579 	}
4580 	pmap_update(kernel_map->pmap);
4581 
4582 	error = 0;
4583 
4584 	/* Unmap copied entries on failure. */
4585 fail2_unmap:
4586 	if (error) {
4587 		uvm_unmap_remove(kernel_map, dstaddr, dstaddr + len, &dead,
4588 		    FALSE, TRUE);
4589 	}
4590 
4591 	/* Release maps, release dead entries. */
4592 fail2:
4593 	vm_map_unlock(kernel_map);
4594 
4595 fail:
4596 	vm_map_unlock(srcmap);
4597 
4598 	uvm_unmap_detach(&dead, 0);
4599 
4600 	return error;
4601 }
4602 
4603 /*
4604  * uvm_map_clean: clean out a map range
4605  *
4606  * => valid flags:
4607  *   if (flags & PGO_CLEANIT): dirty pages are cleaned first
4608  *   if (flags & PGO_SYNCIO): dirty pages are written synchronously
4609  *   if (flags & PGO_DEACTIVATE): any cached pages are deactivated after clean
4610  *   if (flags & PGO_FREE): any cached pages are freed after clean
4611  * => returns an error if any part of the specified range isn't mapped
4612  * => never a need to flush amap layer since the anonymous memory has
4613  *	no permanent home, but may deactivate pages there
4614  * => called from sys_msync() and sys_madvise()
4615  * => caller must not write-lock map (read OK).
4616  * => we may sleep while cleaning if SYNCIO [with map read-locked]
4617  */
4618 
4619 int
4620 uvm_map_clean(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
4621 {
4622 	struct vm_map_entry *first, *entry;
4623 	struct vm_amap *amap;
4624 	struct vm_anon *anon;
4625 	struct vm_page *pg;
4626 	struct uvm_object *uobj;
4627 	vaddr_t cp_start, cp_end;
4628 	int refs;
4629 	int error;
4630 	boolean_t rv;
4631 
4632 	KASSERT((flags & (PGO_FREE|PGO_DEACTIVATE)) !=
4633 	    (PGO_FREE|PGO_DEACTIVATE));
4634 
4635 	if (start > end || start < map->min_offset || end > map->max_offset)
4636 		return EINVAL;
4637 
4638 	vm_map_lock_read(map);
4639 	first = uvm_map_entrybyaddr(&map->addr, start);
4640 
4641 	/* Make a first pass to check for holes. */
4642 	for (entry = first; entry != NULL && entry->start < end;
4643 	    entry = RBT_NEXT(uvm_map_addr, entry)) {
4644 		if (UVM_ET_ISSUBMAP(entry)) {
4645 			vm_map_unlock_read(map);
4646 			return EINVAL;
4647 		}
4648 		if (UVM_ET_ISSUBMAP(entry) ||
4649 		    UVM_ET_ISHOLE(entry) ||
4650 		    (entry->end < end &&
4651 		    VMMAP_FREE_END(entry) != entry->end)) {
4652 			vm_map_unlock_read(map);
4653 			return EFAULT;
4654 		}
4655 	}
4656 
4657 	error = 0;
4658 	for (entry = first; entry != NULL && entry->start < end;
4659 	    entry = RBT_NEXT(uvm_map_addr, entry)) {
4660 		amap = entry->aref.ar_amap;	/* top layer */
4661 		if (UVM_ET_ISOBJ(entry))
4662 			uobj = entry->object.uvm_obj;
4663 		else
4664 			uobj = NULL;
4665 
4666 		/*
4667 		 * No amap cleaning necessary if:
4668 		 *  - there's no amap
4669 		 *  - we're not deactivating or freeing pages.
4670 		 */
4671 		if (amap == NULL || (flags & (PGO_DEACTIVATE|PGO_FREE)) == 0)
4672 			goto flush_object;
4673 
4674 		cp_start = MAX(entry->start, start);
4675 		cp_end = MIN(entry->end, end);
4676 
4677 		amap_lock(amap);
4678 		for (; cp_start != cp_end; cp_start += PAGE_SIZE) {
4679 			anon = amap_lookup(&entry->aref,
4680 			    cp_start - entry->start);
4681 			if (anon == NULL)
4682 				continue;
4683 
4684 			KASSERT(anon->an_lock == amap->am_lock);
4685 			pg = anon->an_page;
4686 			if (pg == NULL) {
4687 				continue;
4688 			}
4689 			KASSERT(pg->pg_flags & PQ_ANON);
4690 
4691 			switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
4692 			/*
4693 			 * XXX In these first 3 cases, we always just
4694 			 * XXX deactivate the page.  We may want to
4695 			 * XXX handle the different cases more
4696 			 * XXX specifically, in the future.
4697 			 */
4698 			case PGO_CLEANIT|PGO_FREE:
4699 			case PGO_CLEANIT|PGO_DEACTIVATE:
4700 			case PGO_DEACTIVATE:
4701 deactivate_it:
4702 				/* skip the page if it's wired */
4703 				if (pg->wire_count != 0)
4704 					break;
4705 
4706 				uvm_lock_pageq();
4707 
4708 				KASSERT(pg->uanon == anon);
4709 
4710 				/* zap all mappings for the page. */
4711 				pmap_page_protect(pg, PROT_NONE);
4712 
4713 				/* ...and deactivate the page. */
4714 				uvm_pagedeactivate(pg);
4715 
4716 				uvm_unlock_pageq();
4717 				break;
4718 			case PGO_FREE:
4719 				/*
4720 				 * If there are multiple references to
4721 				 * the amap, just deactivate the page.
4722 				 */
4723 				if (amap_refs(amap) > 1)
4724 					goto deactivate_it;
4725 
4726 				/* XXX skip the page if it's wired */
4727 				if (pg->wire_count != 0) {
4728 					break;
4729 				}
4730 				amap_unadd(&entry->aref,
4731 				    cp_start - entry->start);
4732 				refs = --anon->an_ref;
4733 				if (refs == 0)
4734 					uvm_anfree(anon);
4735 				break;
4736 			default:
4737 				panic("uvm_map_clean: weird flags");
4738 			}
4739 		}
4740 		amap_unlock(amap);
4741 
4742 flush_object:
4743 		cp_start = MAX(entry->start, start);
4744 		cp_end = MIN(entry->end, end);
4745 
4746 		/*
4747 		 * flush pages if we've got a valid backing object.
4748 		 *
4749 		 * Don't PGO_FREE if we don't have write permission
4750 		 * and don't flush if this is a copy-on-write object
4751 		 * since we can't know our permissions on it.
4752 		 */
4753 		if (uobj != NULL &&
4754 		    ((flags & PGO_FREE) == 0 ||
4755 		     ((entry->max_protection & PROT_WRITE) != 0 &&
4756 		      (entry->etype & UVM_ET_COPYONWRITE) == 0))) {
4757 			rv = uobj->pgops->pgo_flush(uobj,
4758 			    cp_start - entry->start + entry->offset,
4759 			    cp_end - entry->start + entry->offset, flags);
4760 
4761 			if (rv == FALSE)
4762 				error = EFAULT;
4763 		}
4764 	}
4765 
4766 	vm_map_unlock_read(map);
4767 	return error;
4768 }
4769 
4770 /*
4771  * UVM_MAP_CLIP_END implementation
4772  */
4773 void
4774 uvm_map_clip_end(struct vm_map *map, struct vm_map_entry *entry, vaddr_t addr)
4775 {
4776 	struct vm_map_entry *tmp;
4777 
4778 	KASSERT(entry->start < addr && VMMAP_FREE_END(entry) > addr);
4779 	tmp = uvm_mapent_alloc(map, 0);
4780 
4781 	/* Invoke splitentry. */
4782 	uvm_map_splitentry(map, entry, tmp, addr);
4783 }
4784 
4785 /*
4786  * UVM_MAP_CLIP_START implementation
4787  *
4788  * Clippers are required to not change the pointers to the entry they are
4789  * clipping on.
4790  * Since uvm_map_splitentry turns the original entry into the lowest
4791  * entry (address wise) we do a swap between the new entry and the original
4792  * entry, prior to calling uvm_map_splitentry.
4793  */
4794 void
4795 uvm_map_clip_start(struct vm_map *map, struct vm_map_entry *entry, vaddr_t addr)
4796 {
4797 	struct vm_map_entry *tmp;
4798 	struct uvm_addr_state *free;
4799 
4800 	/* Unlink original. */
4801 	free = uvm_map_uaddr_e(map, entry);
4802 	uvm_mapent_free_remove(map, free, entry);
4803 	uvm_mapent_addr_remove(map, entry);
4804 
4805 	/* Copy entry. */
4806 	KASSERT(entry->start < addr && VMMAP_FREE_END(entry) > addr);
4807 	tmp = uvm_mapent_alloc(map, 0);
4808 	uvm_mapent_copy(entry, tmp);
4809 
4810 	/* Put new entry in place of original entry. */
4811 	uvm_mapent_addr_insert(map, tmp);
4812 	uvm_mapent_free_insert(map, free, tmp);
4813 
4814 	/* Invoke splitentry. */
4815 	uvm_map_splitentry(map, tmp, entry, addr);
4816 }
4817 
4818 /*
4819  * Boundary fixer.
4820  */
4821 static inline vaddr_t uvm_map_boundfix(vaddr_t, vaddr_t, vaddr_t);
4822 static inline vaddr_t
4823 uvm_map_boundfix(vaddr_t min, vaddr_t max, vaddr_t bound)
4824 {
4825 	return (min < bound && max > bound) ? bound : max;
4826 }
4827 
4828 /*
4829  * Choose free list based on address at start of free space.
4830  *
4831  * The uvm_addr_state returned contains addr and is the first of:
4832  * - uaddr_exe
4833  * - uaddr_brk_stack
4834  * - uaddr_any
4835  */
4836 struct uvm_addr_state*
4837 uvm_map_uaddr(struct vm_map *map, vaddr_t addr)
4838 {
4839 	struct uvm_addr_state *uaddr;
4840 	int i;
4841 
4842 	/* Special case the first page, to prevent mmap from returning 0. */
4843 	if (addr < VMMAP_MIN_ADDR)
4844 		return NULL;
4845 
4846 	/* Upper bound for kernel maps at uvm_maxkaddr. */
4847 	if ((map->flags & VM_MAP_ISVMSPACE) == 0) {
4848 		if (addr >= uvm_maxkaddr)
4849 			return NULL;
4850 	}
4851 
4852 	/* Is the address inside the exe-only map? */
4853 	if (map->uaddr_exe != NULL && addr >= map->uaddr_exe->uaddr_minaddr &&
4854 	    addr < map->uaddr_exe->uaddr_maxaddr)
4855 		return map->uaddr_exe;
4856 
4857 	/* Check if the space falls inside brk/stack area. */
4858 	if ((addr >= map->b_start && addr < map->b_end) ||
4859 	    (addr >= map->s_start && addr < map->s_end)) {
4860 		if (map->uaddr_brk_stack != NULL &&
4861 		    addr >= map->uaddr_brk_stack->uaddr_minaddr &&
4862 		    addr < map->uaddr_brk_stack->uaddr_maxaddr) {
4863 			return map->uaddr_brk_stack;
4864 		} else
4865 			return NULL;
4866 	}
4867 
4868 	/*
4869 	 * Check the other selectors.
4870 	 *
4871 	 * These selectors are only marked as the owner, if they have insert
4872 	 * functions.
4873 	 */
4874 	for (i = 0; i < nitems(map->uaddr_any); i++) {
4875 		uaddr = map->uaddr_any[i];
4876 		if (uaddr == NULL)
4877 			continue;
4878 		if (uaddr->uaddr_functions->uaddr_free_insert == NULL)
4879 			continue;
4880 
4881 		if (addr >= uaddr->uaddr_minaddr &&
4882 		    addr < uaddr->uaddr_maxaddr)
4883 			return uaddr;
4884 	}
4885 
4886 	return NULL;
4887 }
4888 
4889 /*
4890  * Choose free list based on address at start of free space.
4891  *
4892  * The uvm_addr_state returned contains addr and is the first of:
4893  * - uaddr_exe
4894  * - uaddr_brk_stack
4895  * - uaddr_any
4896  */
4897 struct uvm_addr_state*
4898 uvm_map_uaddr_e(struct vm_map *map, struct vm_map_entry *entry)
4899 {
4900 	return uvm_map_uaddr(map, VMMAP_FREE_START(entry));
4901 }
4902 
4903 /*
4904  * Returns the first free-memory boundary that is crossed by [min-max].
4905  */
4906 vsize_t
4907 uvm_map_boundary(struct vm_map *map, vaddr_t min, vaddr_t max)
4908 {
4909 	struct uvm_addr_state	*uaddr;
4910 	int			 i;
4911 
4912 	/* Never return first page. */
4913 	max = uvm_map_boundfix(min, max, VMMAP_MIN_ADDR);
4914 
4915 	/* Treat the maxkaddr special, if the map is a kernel_map. */
4916 	if ((map->flags & VM_MAP_ISVMSPACE) == 0)
4917 		max = uvm_map_boundfix(min, max, uvm_maxkaddr);
4918 
4919 	/* Check for exe-only boundaries. */
4920 	if (map->uaddr_exe != NULL) {
4921 		max = uvm_map_boundfix(min, max, map->uaddr_exe->uaddr_minaddr);
4922 		max = uvm_map_boundfix(min, max, map->uaddr_exe->uaddr_maxaddr);
4923 	}
4924 
4925 	/* Check for exe-only boundaries. */
4926 	if (map->uaddr_brk_stack != NULL) {
4927 		max = uvm_map_boundfix(min, max,
4928 		    map->uaddr_brk_stack->uaddr_minaddr);
4929 		max = uvm_map_boundfix(min, max,
4930 		    map->uaddr_brk_stack->uaddr_maxaddr);
4931 	}
4932 
4933 	/* Check other boundaries. */
4934 	for (i = 0; i < nitems(map->uaddr_any); i++) {
4935 		uaddr = map->uaddr_any[i];
4936 		if (uaddr != NULL) {
4937 			max = uvm_map_boundfix(min, max, uaddr->uaddr_minaddr);
4938 			max = uvm_map_boundfix(min, max, uaddr->uaddr_maxaddr);
4939 		}
4940 	}
4941 
4942 	/* Boundaries at stack and brk() area. */
4943 	max = uvm_map_boundfix(min, max, map->s_start);
4944 	max = uvm_map_boundfix(min, max, map->s_end);
4945 	max = uvm_map_boundfix(min, max, map->b_start);
4946 	max = uvm_map_boundfix(min, max, map->b_end);
4947 
4948 	return max;
4949 }
4950 
4951 /*
4952  * Update map allocation start and end addresses from proc vmspace.
4953  */
4954 void
4955 uvm_map_vmspace_update(struct vm_map *map,
4956     struct uvm_map_deadq *dead, int flags)
4957 {
4958 	struct vmspace *vm;
4959 	vaddr_t b_start, b_end, s_start, s_end;
4960 
4961 	KASSERT(map->flags & VM_MAP_ISVMSPACE);
4962 	KASSERT(offsetof(struct vmspace, vm_map) == 0);
4963 
4964 	/*
4965 	 * Derive actual allocation boundaries from vmspace.
4966 	 */
4967 	vm = (struct vmspace *)map;
4968 	b_start = (vaddr_t)vm->vm_daddr;
4969 	b_end   = b_start + BRKSIZ;
4970 	s_start = MIN((vaddr_t)vm->vm_maxsaddr, (vaddr_t)vm->vm_minsaddr);
4971 	s_end   = MAX((vaddr_t)vm->vm_maxsaddr, (vaddr_t)vm->vm_minsaddr);
4972 #ifdef DIAGNOSTIC
4973 	if ((b_start & (vaddr_t)PAGE_MASK) != 0 ||
4974 	    (b_end & (vaddr_t)PAGE_MASK) != 0 ||
4975 	    (s_start & (vaddr_t)PAGE_MASK) != 0 ||
4976 	    (s_end & (vaddr_t)PAGE_MASK) != 0) {
4977 		panic("uvm_map_vmspace_update: vmspace %p invalid bounds: "
4978 		    "b=0x%lx-0x%lx s=0x%lx-0x%lx",
4979 		    vm, b_start, b_end, s_start, s_end);
4980 	}
4981 #endif
4982 
4983 	if (__predict_true(map->b_start == b_start && map->b_end == b_end &&
4984 	    map->s_start == s_start && map->s_end == s_end))
4985 		return;
4986 
4987 	uvm_map_freelist_update(map, dead, b_start, b_end,
4988 	    s_start, s_end, flags);
4989 }
4990 
4991 /*
4992  * Grow kernel memory.
4993  *
4994  * This function is only called for kernel maps when an allocation fails.
4995  *
4996  * If the map has a gap that is large enough to accommodate alloc_sz, this
4997  * function will make sure map->free will include it.
4998  */
4999 void
5000 uvm_map_kmem_grow(struct vm_map *map, struct uvm_map_deadq *dead,
5001     vsize_t alloc_sz, int flags)
5002 {
5003 	vsize_t sz;
5004 	vaddr_t end;
5005 	struct vm_map_entry *entry;
5006 
5007 	/* Kernel memory only. */
5008 	KASSERT((map->flags & VM_MAP_ISVMSPACE) == 0);
5009 	/* Destroy free list. */
5010 	uvm_map_freelist_update_clear(map, dead);
5011 
5012 	/* Include the guard page in the hard minimum requirement of alloc_sz. */
5013 	if (map->flags & VM_MAP_GUARDPAGES)
5014 		alloc_sz += PAGE_SIZE;
5015 
5016 	/*
5017 	 * Grow by ALLOCMUL * alloc_sz, but at least VM_MAP_KSIZE_DELTA.
5018 	 *
5019 	 * Don't handle the case where the multiplication overflows:
5020 	 * if that happens, the allocation is probably too big anyway.
5021 	 */
5022 	sz = MAX(VM_MAP_KSIZE_ALLOCMUL * alloc_sz, VM_MAP_KSIZE_DELTA);
5023 
5024 	/*
5025 	 * Walk forward until a gap large enough for alloc_sz shows up.
5026 	 *
5027 	 * We assume the kernel map has no boundaries.
5028 	 * uvm_maxkaddr may be zero.
5029 	 */
5030 	end = MAX(uvm_maxkaddr, map->min_offset);
5031 	entry = uvm_map_entrybyaddr(&map->addr, end);
5032 	while (entry && entry->fspace < alloc_sz)
5033 		entry = RBT_NEXT(uvm_map_addr, entry);
5034 	if (entry) {
5035 		end = MAX(VMMAP_FREE_START(entry), end);
5036 		end += MIN(sz, map->max_offset - end);
5037 	} else
5038 		end = map->max_offset;
5039 
5040 	/* Reserve pmap entries. */
5041 #ifdef PMAP_GROWKERNEL
5042 	uvm_maxkaddr = pmap_growkernel(end);
5043 #else
5044 	uvm_maxkaddr = MAX(uvm_maxkaddr, end);
5045 #endif
5046 
5047 	/* Rebuild free list. */
5048 	uvm_map_freelist_update_refill(map, flags);
5049 }
5050 
5051 /*
5052  * Freelist update subfunction: unlink all entries from freelists.
5053  */
5054 void
5055 uvm_map_freelist_update_clear(struct vm_map *map, struct uvm_map_deadq *dead)
5056 {
5057 	struct uvm_addr_state *free;
5058 	struct vm_map_entry *entry, *prev, *next;
5059 
5060 	prev = NULL;
5061 	for (entry = RBT_MIN(uvm_map_addr, &map->addr); entry != NULL;
5062 	    entry = next) {
5063 		next = RBT_NEXT(uvm_map_addr, entry);
5064 
5065 		free = uvm_map_uaddr_e(map, entry);
5066 		uvm_mapent_free_remove(map, free, entry);
5067 
5068 		if (prev != NULL && entry->start == entry->end) {
5069 			prev->fspace += VMMAP_FREE_END(entry) - entry->end;
5070 			uvm_mapent_addr_remove(map, entry);
5071 			DEAD_ENTRY_PUSH(dead, entry);
5072 		} else
5073 			prev = entry;
5074 	}
5075 }
5076 
5077 /*
5078  * Freelist update subfunction: refill the freelists with entries.
5079  */
5080 void
5081 uvm_map_freelist_update_refill(struct vm_map *map, int flags)
5082 {
5083 	struct vm_map_entry *entry;
5084 	vaddr_t min, max;
5085 
5086 	RBT_FOREACH(entry, uvm_map_addr, &map->addr) {
5087 		min = VMMAP_FREE_START(entry);
5088 		max = VMMAP_FREE_END(entry);
5089 		entry->fspace = 0;
5090 
5091 		entry = uvm_map_fix_space(map, entry, min, max, flags);
5092 	}
5093 
5094 	uvm_tree_sanity(map, __FILE__, __LINE__);
5095 }
5096 
5097 /*
5098  * Change {a,b}_{start,end} allocation ranges and associated free lists.
5099  */
5100 void
5101 uvm_map_freelist_update(struct vm_map *map, struct uvm_map_deadq *dead,
5102     vaddr_t b_start, vaddr_t b_end, vaddr_t s_start, vaddr_t s_end, int flags)
5103 {
5104 	KDASSERT(b_end >= b_start && s_end >= s_start);
5105 
5106 	/* Clear all free lists. */
5107 	uvm_map_freelist_update_clear(map, dead);
5108 
5109 	/* Apply new bounds. */
5110 	map->b_start = b_start;
5111 	map->b_end   = b_end;
5112 	map->s_start = s_start;
5113 	map->s_end   = s_end;
5114 
5115 	/* Refill free lists. */
5116 	uvm_map_freelist_update_refill(map, flags);
5117 }
5118 
5119 /*
5120  * Assign a uvm_addr_state to the specified pointer in vm_map.
5121  *
5122  * May sleep.
5123  */
5124 void
5125 uvm_map_set_uaddr(struct vm_map *map, struct uvm_addr_state **which,
5126     struct uvm_addr_state *newval)
5127 {
5128 	struct uvm_map_deadq dead;
5129 
5130 	/* Pointer which must be in this map. */
5131 	KASSERT(which != NULL);
5132 	KASSERT((void*)map <= (void*)(which) &&
5133 	    (void*)(which) < (void*)(map + 1));
5134 
5135 	vm_map_lock(map);
5136 	TAILQ_INIT(&dead);
5137 	uvm_map_freelist_update_clear(map, &dead);
5138 
5139 	uvm_addr_destroy(*which);
5140 	*which = newval;
5141 
5142 	uvm_map_freelist_update_refill(map, 0);
5143 	vm_map_unlock(map);
5144 	uvm_unmap_detach(&dead, 0);
5145 }
5146 
5147 /*
5148  * Correct space insert.
5149  *
5150  * Entry must not be on any freelist.
5151  */
5152 struct vm_map_entry*
5153 uvm_map_fix_space(struct vm_map *map, struct vm_map_entry *entry,
5154     vaddr_t min, vaddr_t max, int flags)
5155 {
5156 	struct uvm_addr_state	*free, *entfree;
5157 	vaddr_t			 lmax;
5158 
5159 	KASSERT(entry == NULL || (entry->etype & UVM_ET_FREEMAPPED) == 0);
5160 	KDASSERT(min <= max);
5161 	KDASSERT((entry != NULL && VMMAP_FREE_END(entry) == min) ||
5162 	    min == map->min_offset);
5163 
5164 	/*
5165 	 * During the function, entfree will always point at the uaddr state
5166 	 * for entry.
5167 	 */
5168 	entfree = (entry == NULL ? NULL :
5169 	    uvm_map_uaddr_e(map, entry));
5170 
5171 	while (min != max) {
5172 		/* Claim guard page for entry. */
5173 		if ((map->flags & VM_MAP_GUARDPAGES) && entry != NULL &&
5174 		    VMMAP_FREE_END(entry) == entry->end &&
5175 		    entry->start != entry->end) {
5176 			if (max - min == 2 * PAGE_SIZE) {
5177 				/*
5178 				 * If the free-space gap is exactly 2 pages,
5179 				 * we make the guard 2 pages instead of 1.
5180 				 * Because in a guarded map, an area needs
5181 				 * at least 2 pages to allocate from:
5182 				 * one page for the allocation and one for
5183 				 * the guard.
5184 				 */
5185 				entry->guard = 2 * PAGE_SIZE;
5186 				min = max;
5187 			} else {
5188 				entry->guard = PAGE_SIZE;
5189 				min += PAGE_SIZE;
5190 			}
5191 			continue;
5192 		}
5193 
5194 		/*
5195 		 * Handle the case where entry has a 2-page guard, but the
5196 		 * space after entry is freed.
5197 		 */
5198 		if (entry != NULL && entry->fspace == 0 &&
5199 		    entry->guard > PAGE_SIZE) {
5200 			entry->guard = PAGE_SIZE;
5201 			min = VMMAP_FREE_START(entry);
5202 		}
5203 
5204 		lmax = uvm_map_boundary(map, min, max);
5205 		free = uvm_map_uaddr(map, min);
5206 
5207 		/*
5208 		 * Entries are merged if they point at the same uvm_free().
5209 		 * Exception to that rule: if min == uvm_maxkaddr, a new
5210 		 * entry is started regardless (otherwise the allocators
5211 		 * will get confused).
5212 		 */
5213 		if (entry != NULL && free == entfree &&
5214 		    !((map->flags & VM_MAP_ISVMSPACE) == 0 &&
5215 		    min == uvm_maxkaddr)) {
5216 			KDASSERT(VMMAP_FREE_END(entry) == min);
5217 			entry->fspace += lmax - min;
5218 		} else {
5219 			/*
5220 			 * Commit entry to free list: it'll not be added to
5221 			 * anymore.
5222 			 * We'll start a new entry and add to that entry
5223 			 * instead.
5224 			 */
5225 			if (entry != NULL)
5226 				uvm_mapent_free_insert(map, entfree, entry);
5227 
5228 			/* New entry for new uaddr. */
5229 			entry = uvm_mapent_alloc(map, flags);
5230 			KDASSERT(entry != NULL);
5231 			entry->end = entry->start = min;
5232 			entry->guard = 0;
5233 			entry->fspace = lmax - min;
5234 			entry->object.uvm_obj = NULL;
5235 			entry->offset = 0;
5236 			entry->etype = 0;
5237 			entry->protection = entry->max_protection = 0;
5238 			entry->inheritance = 0;
5239 			entry->wired_count = 0;
5240 			entry->advice = 0;
5241 			entry->aref.ar_pageoff = 0;
5242 			entry->aref.ar_amap = NULL;
5243 			uvm_mapent_addr_insert(map, entry);
5244 
5245 			entfree = free;
5246 		}
5247 
5248 		min = lmax;
5249 	}
5250 	/* Finally put entry on the uaddr state. */
5251 	if (entry != NULL)
5252 		uvm_mapent_free_insert(map, entfree, entry);
5253 
5254 	return entry;
5255 }
5256 
5257 /*
5258  * MQuery style of allocation.
5259  *
5260  * This allocator searches forward until sufficient space is found to map
5261  * the given size.
5262  *
5263  * XXX: factor in offset (via pmap_prefer) and protection?
5264  */
5265 int
5266 uvm_map_mquery(struct vm_map *map, vaddr_t *addr_p, vsize_t sz, voff_t offset,
5267     int flags)
5268 {
5269 	struct vm_map_entry *entry, *last;
5270 	vaddr_t addr;
5271 	vaddr_t tmp, pmap_align, pmap_offset;
5272 	int error;
5273 
5274 	addr = *addr_p;
5275 	vm_map_lock_read(map);
5276 
5277 	/* Configure pmap prefer. */
5278 	if (offset != UVM_UNKNOWN_OFFSET) {
5279 		pmap_align = MAX(PAGE_SIZE, PMAP_PREFER_ALIGN());
5280 		pmap_offset = PMAP_PREFER_OFFSET(offset);
5281 	} else {
5282 		pmap_align = PAGE_SIZE;
5283 		pmap_offset = 0;
5284 	}
5285 
5286 	/* Align address to pmap_prefer unless FLAG_FIXED is set. */
5287 	if (!(flags & UVM_FLAG_FIXED) && offset != UVM_UNKNOWN_OFFSET) {
5288 	  	tmp = (addr & ~(pmap_align - 1)) | pmap_offset;
5289 		if (tmp < addr)
5290 			tmp += pmap_align;
5291 		addr = tmp;
5292 	}
5293 
5294 	/* First, check if the requested range is fully available. */
5295 	entry = uvm_map_entrybyaddr(&map->addr, addr);
5296 	last = NULL;
5297 	if (uvm_map_isavail(map, NULL, &entry, &last, addr, sz)) {
5298 		error = 0;
5299 		goto out;
5300 	}
5301 	if (flags & UVM_FLAG_FIXED) {
5302 		error = EINVAL;
5303 		goto out;
5304 	}
5305 
5306 	error = ENOMEM; /* Default error from here. */
5307 
5308 	/*
5309 	 * At this point, the memory at <addr, sz> is not available.
5310 	 * The reasons are:
5311 	 * [1] it's outside the map,
5312 	 * [2] it starts in used memory (and therefore needs to move
5313 	 *     toward the first free page in entry),
5314 	 * [3] it starts in free memory but bumps into used memory.
5315 	 *
5316 	 * Note that for case [2], the forward moving is handled by the
5317 	 * for loop below.
5318 	 */
5319 	if (entry == NULL) {
5320 		/* [1] Outside the map. */
5321 		if (addr >= map->max_offset)
5322 			goto out;
5323 		else
5324 			entry = RBT_MIN(uvm_map_addr, &map->addr);
5325 	} else if (VMMAP_FREE_START(entry) <= addr) {
5326 		/* [3] Bumped into used memory. */
5327 		entry = RBT_NEXT(uvm_map_addr, entry);
5328 	}
5329 
5330 	/* Test if the next entry is sufficient for the allocation. */
5331 	for (; entry != NULL;
5332 	    entry = RBT_NEXT(uvm_map_addr, entry)) {
5333 		if (entry->fspace == 0)
5334 			continue;
5335 		addr = VMMAP_FREE_START(entry);
5336 
5337 restart:	/* Restart address checks on address change. */
5338 		tmp = (addr & ~(pmap_align - 1)) | pmap_offset;
5339 		if (tmp < addr)
5340 			tmp += pmap_align;
5341 		addr = tmp;
5342 		if (addr >= VMMAP_FREE_END(entry))
5343 			continue;
5344 
5345 		/* Skip brk() allocation addresses. */
5346 		if (addr + sz > map->b_start && addr < map->b_end) {
5347 			if (VMMAP_FREE_END(entry) > map->b_end) {
5348 				addr = map->b_end;
5349 				goto restart;
5350 			} else
5351 				continue;
5352 		}
5353 		/* Skip stack allocation addresses. */
5354 		if (addr + sz > map->s_start && addr < map->s_end) {
5355 			if (VMMAP_FREE_END(entry) > map->s_end) {
5356 				addr = map->s_end;
5357 				goto restart;
5358 			} else
5359 				continue;
5360 		}
5361 
5362 		last = NULL;
5363 		if (uvm_map_isavail(map, NULL, &entry, &last, addr, sz)) {
5364 			error = 0;
5365 			goto out;
5366 		}
5367 	}
5368 
5369 out:
5370 	vm_map_unlock_read(map);
5371 	if (error == 0)
5372 		*addr_p = addr;
5373 	return error;
5374 }
5375 
5376 boolean_t
5377 vm_map_lock_try_ln(struct vm_map *map, char *file, int line)
5378 {
5379 	boolean_t rv;
5380 
5381 	if (map->flags & VM_MAP_INTRSAFE) {
5382 		rv = mtx_enter_try(&map->mtx);
5383 	} else {
5384 		mtx_enter(&map->flags_lock);
5385 		if (map->flags & VM_MAP_BUSY) {
5386 			mtx_leave(&map->flags_lock);
5387 			return (FALSE);
5388 		}
5389 		mtx_leave(&map->flags_lock);
5390 		rv = (rw_enter(&map->lock, RW_WRITE|RW_NOSLEEP) == 0);
5391 		/* check if the lock is busy and back out if we won the race */
5392 		if (rv) {
5393 			mtx_enter(&map->flags_lock);
5394 			if (map->flags & VM_MAP_BUSY) {
5395 				rw_exit(&map->lock);
5396 				rv = FALSE;
5397 			}
5398 			mtx_leave(&map->flags_lock);
5399 		}
5400 	}
5401 
5402 	if (rv) {
5403 		map->timestamp++;
5404 		LPRINTF(("map   lock: %p (at %s %d)\n", map, file, line));
5405 		uvm_tree_sanity(map, file, line);
5406 		uvm_tree_size_chk(map, file, line);
5407 	}
5408 
5409 	return (rv);
5410 }
5411 
5412 void
5413 vm_map_lock_ln(struct vm_map *map, char *file, int line)
5414 {
5415 	if ((map->flags & VM_MAP_INTRSAFE) == 0) {
5416 		do {
5417 			mtx_enter(&map->flags_lock);
5418 tryagain:
5419 			while (map->flags & VM_MAP_BUSY) {
5420 				map->flags |= VM_MAP_WANTLOCK;
5421 				msleep_nsec(&map->flags, &map->flags_lock,
5422 				    PVM, vmmapbsy, INFSLP);
5423 			}
5424 			mtx_leave(&map->flags_lock);
5425 		} while (rw_enter(&map->lock, RW_WRITE|RW_SLEEPFAIL) != 0);
5426 		/* check if the lock is busy and back out if we won the race */
5427 		mtx_enter(&map->flags_lock);
5428 		if (map->flags & VM_MAP_BUSY) {
5429 			rw_exit(&map->lock);
5430 			goto tryagain;
5431 		}
5432 		mtx_leave(&map->flags_lock);
5433 	} else {
5434 		mtx_enter(&map->mtx);
5435 	}
5436 
5437 	map->timestamp++;
5438 	LPRINTF(("map   lock: %p (at %s %d)\n", map, file, line));
5439 	uvm_tree_sanity(map, file, line);
5440 	uvm_tree_size_chk(map, file, line);
5441 }
5442 
5443 void
5444 vm_map_lock_read_ln(struct vm_map *map, char *file, int line)
5445 {
5446 	if ((map->flags & VM_MAP_INTRSAFE) == 0)
5447 		rw_enter_read(&map->lock);
5448 	else
5449 		mtx_enter(&map->mtx);
5450 	LPRINTF(("map   lock: %p (at %s %d)\n", map, file, line));
5451 	uvm_tree_sanity(map, file, line);
5452 	uvm_tree_size_chk(map, file, line);
5453 }
5454 
5455 void
5456 vm_map_unlock_ln(struct vm_map *map, char *file, int line)
5457 {
5458 	uvm_tree_sanity(map, file, line);
5459 	uvm_tree_size_chk(map, file, line);
5460 	LPRINTF(("map unlock: %p (at %s %d)\n", map, file, line));
5461 	if ((map->flags & VM_MAP_INTRSAFE) == 0)
5462 		rw_exit(&map->lock);
5463 	else
5464 		mtx_leave(&map->mtx);
5465 }
5466 
5467 void
5468 vm_map_unlock_read_ln(struct vm_map *map, char *file, int line)
5469 {
5470 	/* XXX: RO */ uvm_tree_sanity(map, file, line);
5471 	/* XXX: RO */ uvm_tree_size_chk(map, file, line);
5472 	LPRINTF(("map unlock: %p (at %s %d)\n", map, file, line));
5473 	if ((map->flags & VM_MAP_INTRSAFE) == 0)
5474 		rw_exit_read(&map->lock);
5475 	else
5476 		mtx_leave(&map->mtx);
5477 }
5478 
5479 void
5480 vm_map_downgrade_ln(struct vm_map *map, char *file, int line)
5481 {
5482 	uvm_tree_sanity(map, file, line);
5483 	uvm_tree_size_chk(map, file, line);
5484 	LPRINTF(("map unlock: %p (at %s %d)\n", map, file, line));
5485 	LPRINTF(("map   lock: %p (at %s %d)\n", map, file, line));
5486 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
5487 	if ((map->flags & VM_MAP_INTRSAFE) == 0)
5488 		rw_enter(&map->lock, RW_DOWNGRADE);
5489 }
5490 
5491 void
5492 vm_map_upgrade_ln(struct vm_map *map, char *file, int line)
5493 {
5494 	/* XXX: RO */ uvm_tree_sanity(map, file, line);
5495 	/* XXX: RO */ uvm_tree_size_chk(map, file, line);
5496 	LPRINTF(("map unlock: %p (at %s %d)\n", map, file, line));
5497 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
5498 	if ((map->flags & VM_MAP_INTRSAFE) == 0) {
5499 		rw_exit_read(&map->lock);
5500 		rw_enter_write(&map->lock);
5501 	}
5502 	LPRINTF(("map   lock: %p (at %s %d)\n", map, file, line));
5503 	uvm_tree_sanity(map, file, line);
5504 }
5505 
5506 void
5507 vm_map_busy_ln(struct vm_map *map, char *file, int line)
5508 {
5509 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
5510 	mtx_enter(&map->flags_lock);
5511 	map->flags |= VM_MAP_BUSY;
5512 	mtx_leave(&map->flags_lock);
5513 }
5514 
5515 void
5516 vm_map_unbusy_ln(struct vm_map *map, char *file, int line)
5517 {
5518 	int oflags;
5519 
5520 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
5521 	mtx_enter(&map->flags_lock);
5522 	oflags = map->flags;
5523 	map->flags &= ~(VM_MAP_BUSY|VM_MAP_WANTLOCK);
5524 	mtx_leave(&map->flags_lock);
5525 	if (oflags & VM_MAP_WANTLOCK)
5526 		wakeup(&map->flags);
5527 }
5528 
5529 #ifndef SMALL_KERNEL
5530 int
5531 uvm_map_fill_vmmap(struct vm_map *map, struct kinfo_vmentry *kve,
5532     size_t *lenp)
5533 {
5534 	struct vm_map_entry *entry;
5535 	vaddr_t start;
5536 	int cnt, maxcnt, error = 0;
5537 
5538 	KASSERT(*lenp > 0);
5539 	KASSERT((*lenp % sizeof(*kve)) == 0);
5540 	cnt = 0;
5541 	maxcnt = *lenp / sizeof(*kve);
5542 	KASSERT(maxcnt > 0);
5543 
5544 	/*
5545 	 * Return only entries whose address is above the given base
5546 	 * address.  This allows userland to iterate without knowing the
5547 	 * number of entries beforehand.
5548 	 */
5549 	start = (vaddr_t)kve[0].kve_start;
5550 
5551 	vm_map_lock(map);
5552 	RBT_FOREACH(entry, uvm_map_addr, &map->addr) {
5553 		if (cnt == maxcnt) {
5554 			error = ENOMEM;
5555 			break;
5556 		}
5557 		if (start != 0 && entry->start < start)
5558 			continue;
5559 		kve->kve_start = entry->start;
5560 		kve->kve_end = entry->end;
5561 		kve->kve_guard = entry->guard;
5562 		kve->kve_fspace = entry->fspace;
5563 		kve->kve_fspace_augment = entry->fspace_augment;
5564 		kve->kve_offset = entry->offset;
5565 		kve->kve_wired_count = entry->wired_count;
5566 		kve->kve_etype = entry->etype;
5567 		kve->kve_protection = entry->protection;
5568 		kve->kve_max_protection = entry->max_protection;
5569 		kve->kve_advice = entry->advice;
5570 		kve->kve_inheritance = entry->inheritance;
5571 		kve->kve_flags = entry->flags;
5572 		kve++;
5573 		cnt++;
5574 	}
5575 	vm_map_unlock(map);
5576 
5577 	KASSERT(cnt <= maxcnt);
5578 
5579 	*lenp = sizeof(*kve) * cnt;
5580 	return error;
5581 }
5582 #endif
5583 
5584 
5585 RBT_GENERATE_AUGMENT(uvm_map_addr, vm_map_entry, daddrs.addr_entry,
5586     uvm_mapentry_addrcmp, uvm_map_addr_augment);
5587 
5588 
5589 /*
5590  * MD code: vmspace allocator setup.
5591  */
5592 
5593 #ifdef __i386__
5594 void
5595 uvm_map_setup_md(struct vm_map *map)
5596 {
5597 	vaddr_t		min, max;
5598 
5599 	min = map->min_offset;
5600 	max = map->max_offset;
5601 
5602 	/*
5603 	 * Ensure the selectors will not try to manage page 0;
5604 	 * it's too special.
5605 	 */
5606 	if (min < VMMAP_MIN_ADDR)
5607 		min = VMMAP_MIN_ADDR;
5608 
5609 #if 0	/* Cool stuff, not yet */
5610 	/* Executable code is special. */
5611 	map->uaddr_exe = uaddr_rnd_create(min, I386_MAX_EXE_ADDR);
5612 	/* Place normal allocations beyond executable mappings. */
5613 	map->uaddr_any[3] = uaddr_pivot_create(2 * I386_MAX_EXE_ADDR, max);
5614 #else	/* Crappy stuff, for now */
5615 	map->uaddr_any[0] = uaddr_rnd_create(min, max);
5616 #endif
5617 
5618 #ifndef SMALL_KERNEL
5619 	map->uaddr_brk_stack = uaddr_stack_brk_create(min, max);
5620 #endif /* !SMALL_KERNEL */
5621 }
5622 #elif __LP64__
5623 void
5624 uvm_map_setup_md(struct vm_map *map)
5625 {
5626 	vaddr_t		min, max;
5627 
5628 	min = map->min_offset;
5629 	max = map->max_offset;
5630 
5631 	/*
5632 	 * Ensure the selectors will not try to manage page 0;
5633 	 * it's too special.
5634 	 */
5635 	if (min < VMMAP_MIN_ADDR)
5636 		min = VMMAP_MIN_ADDR;
5637 
5638 #if 0	/* Cool stuff, not yet */
5639 	map->uaddr_any[3] = uaddr_pivot_create(MAX(min, 0x100000000ULL), max);
5640 #else	/* Crappy stuff, for now */
5641 	map->uaddr_any[0] = uaddr_rnd_create(min, max);
5642 #endif
5643 
5644 #ifndef SMALL_KERNEL
5645 	map->uaddr_brk_stack = uaddr_stack_brk_create(min, max);
5646 #endif /* !SMALL_KERNEL */
5647 }
5648 #else	/* non-i386, 32 bit */
5649 void
5650 uvm_map_setup_md(struct vm_map *map)
5651 {
5652 	vaddr_t		min, max;
5653 
5654 	min = map->min_offset;
5655 	max = map->max_offset;
5656 
5657 	/*
5658 	 * Ensure the selectors will not try to manage page 0;
5659 	 * it's too special.
5660 	 */
5661 	if (min < VMMAP_MIN_ADDR)
5662 		min = VMMAP_MIN_ADDR;
5663 
5664 #if 0	/* Cool stuff, not yet */
5665 	map->uaddr_any[3] = uaddr_pivot_create(min, max);
5666 #else	/* Crappy stuff, for now */
5667 	map->uaddr_any[0] = uaddr_rnd_create(min, max);
5668 #endif
5669 
5670 #ifndef SMALL_KERNEL
5671 	map->uaddr_brk_stack = uaddr_stack_brk_create(min, max);
5672 #endif /* !SMALL_KERNEL */
5673 }
5674 #endif
5675