xref: /openbsd-src/sys/uvm/uvm_km.c (revision f2da64fbbbf1b03f09f390ab01267c93dfd77c4c)
1 /*	$OpenBSD: uvm_km.c,v 1.128 2015/09/26 17:55:00 kettenis Exp $	*/
2 /*	$NetBSD: uvm_km.c,v 1.42 2001/01/14 02:10:01 thorpej Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * Copyright (c) 1991, 1993, The Regents of the University of California.
7  *
8  * All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
38  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 
65 /*
66  * uvm_km.c: handle kernel memory allocation and management
67  */
68 
69 /*
70  * overview of kernel memory management:
71  *
72  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
73  * starts at a machine-dependent address and is VM_KERNEL_SPACE_SIZE bytes
74  * large.
75  *
76  * the kernel_map has several "submaps."   submaps can only appear in
77  * the kernel_map (user processes can't use them).   submaps "take over"
78  * the management of a sub-range of the kernel's address space.  submaps
79  * are typically allocated at boot time and are never released.   kernel
80  * virtual address space that is mapped by a submap is locked by the
81  * submap's lock -- not the kernel_map's lock.
82  *
83  * thus, the useful feature of submaps is that they allow us to break
84  * up the locking and protection of the kernel address space into smaller
85  * chunks.
86  *
87  * The VM system has several standard kernel submaps:
88  *   kmem_map: Contains only wired kernel memory for malloc(9).
89  *	       Note: All access to this map must be protected by splvm as
90  *	       calls to malloc(9) are allowed in interrupt handlers.
91  *   exec_map: Memory to hold arguments to system calls are allocated from
92  *	       this map.
93  *	       XXX: This is primeraly used to artificially limit the number
94  *	       of concurrent processes doing an exec.
95  *   phys_map: Buffers for vmapbuf (physio) are allocated from this map.
96  *
97  * the kernel allocates its private memory out of special uvm_objects whose
98  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
99  * are "special" and never die).   all kernel objects should be thought of
100  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
101  * object is equal to the size of kernel virtual address space (i.e.
102  * VM_KERNEL_SPACE_SIZE).
103  *
104  * most kernel private memory lives in kernel_object.   the only exception
105  * to this is for memory that belongs to submaps that must be protected
106  * by splvm(). each of these submaps manages their own pages.
107  *
108  * note that just because a kernel object spans the entire kernel virtual
109  * address space doesn't mean that it has to be mapped into the entire space.
110  * large chunks of a kernel object's space go unused either because
111  * that area of kernel VM is unmapped, or there is some other type of
112  * object mapped into that range (e.g. a vnode).    for submap's kernel
113  * objects, the only part of the object that can ever be populated is the
114  * offsets that are managed by the submap.
115  *
116  * note that the "offset" in a kernel object is always the kernel virtual
117  * address minus the vm_map_min(kernel_map).
118  * example:
119  *   suppose kernel_map starts at 0xf8000000 and the kernel does a
120  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
121  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
122  *   then that means that the page at offset 0x235000 in kernel_object is
123  *   mapped at 0xf8235000.
124  *
125  * kernel objects have one other special property: when the kernel virtual
126  * memory mapping them is unmapped, the backing memory in the object is
127  * freed right away.   this is done with the uvm_km_pgremove() function.
128  * this has to be done because there is no backing store for kernel pages
129  * and no need to save them after they are no longer referenced.
130  */
131 
132 #include <sys/param.h>
133 #include <sys/systm.h>
134 #include <sys/kthread.h>
135 #include <uvm/uvm.h>
136 
137 /*
138  * global data structures
139  */
140 
141 struct vm_map *kernel_map = NULL;
142 
143 /* Unconstraint range. */
144 struct uvm_constraint_range	no_constraint = { 0x0, (paddr_t)-1 };
145 
146 /*
147  * local data structues
148  */
149 static struct vm_map		kernel_map_store;
150 
151 /*
152  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
153  * KVM already allocated for text, data, bss, and static data structures).
154  *
155  * => KVM is defined by [base.. base + VM_KERNEL_SPACE_SIZE].
156  *    we assume that [base -> start] has already been allocated and that
157  *    "end" is the end of the kernel image span.
158  */
159 void
160 uvm_km_init(vaddr_t base, vaddr_t start, vaddr_t end)
161 {
162 	/* kernel_object: for pageable anonymous kernel memory */
163 	uao_init();
164 	uvm.kernel_object = uao_create(VM_KERNEL_SPACE_SIZE, UAO_FLAG_KERNOBJ);
165 
166 	/*
167 	 * init the map and reserve already allocated kernel space
168 	 * before installing.
169 	 */
170 
171 	uvm_map_setup(&kernel_map_store, base, end,
172 #ifdef KVA_GUARDPAGES
173 	    VM_MAP_PAGEABLE | VM_MAP_GUARDPAGES
174 #else
175 	    VM_MAP_PAGEABLE
176 #endif
177 	    );
178 	kernel_map_store.pmap = pmap_kernel();
179 	if (base != start && uvm_map(&kernel_map_store, &base, start - base,
180 	    NULL, UVM_UNKNOWN_OFFSET, 0,
181 	    UVM_MAPFLAG(PROT_READ | PROT_WRITE, PROT_READ | PROT_WRITE,
182 	    MAP_INHERIT_NONE, MADV_RANDOM, UVM_FLAG_FIXED)) != 0)
183 		panic("uvm_km_init: could not reserve space for kernel");
184 
185 	kernel_map = &kernel_map_store;
186 }
187 
188 /*
189  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
190  * is allocated all references to that area of VM must go through it.  this
191  * allows the locking of VAs in kernel_map to be broken up into regions.
192  *
193  * => if `fixed' is true, *min specifies where the region described
194  *      by the submap must start
195  * => if submap is non NULL we use that as the submap, otherwise we
196  *	alloc a new map
197  */
198 struct vm_map *
199 uvm_km_suballoc(struct vm_map *map, vaddr_t *min, vaddr_t *max, vsize_t size,
200     int flags, boolean_t fixed, struct vm_map *submap)
201 {
202 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
203 
204 	size = round_page(size);	/* round up to pagesize */
205 
206 	/* first allocate a blank spot in the parent map */
207 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
208 	    UVM_MAPFLAG(PROT_READ | PROT_WRITE, PROT_READ | PROT_WRITE,
209 	    MAP_INHERIT_NONE, MADV_RANDOM, mapflags)) != 0) {
210 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
211 	}
212 
213 	/* set VM bounds (min is filled in by uvm_map) */
214 	*max = *min + size;
215 
216 	/* add references to pmap and create or init the submap */
217 	pmap_reference(vm_map_pmap(map));
218 	if (submap == NULL) {
219 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
220 		if (submap == NULL)
221 			panic("uvm_km_suballoc: unable to create submap");
222 	} else {
223 		uvm_map_setup(submap, *min, *max, flags);
224 		submap->pmap = vm_map_pmap(map);
225 	}
226 
227 	/* now let uvm_map_submap plug in it...  */
228 	if (uvm_map_submap(map, *min, *max, submap) != 0)
229 		panic("uvm_km_suballoc: submap allocation failed");
230 
231 	return(submap);
232 }
233 
234 /*
235  * uvm_km_pgremove: remove pages from a kernel uvm_object.
236  *
237  * => when you unmap a part of anonymous kernel memory you want to toss
238  *    the pages right away.    (this gets called from uvm_unmap_...).
239  */
240 void
241 uvm_km_pgremove(struct uvm_object *uobj, vaddr_t start, vaddr_t end)
242 {
243 	struct vm_page *pp;
244 	voff_t curoff;
245 	int slot;
246 
247 	KASSERT(uobj->pgops == &aobj_pager);
248 
249 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
250 		pp = uvm_pagelookup(uobj, curoff);
251 		if (pp && pp->pg_flags & PG_BUSY) {
252 			atomic_setbits_int(&pp->pg_flags, PG_WANTED);
253 			UVM_WAIT(pp, 0, "km_pgrm", 0);
254 			curoff -= PAGE_SIZE; /* loop back to us */
255 			continue;
256 		}
257 
258 		/* free the swap slot, then the page */
259 		slot = uao_dropswap(uobj, curoff >> PAGE_SHIFT);
260 
261 		if (pp != NULL) {
262 			uvm_lock_pageq();
263 			uvm_pagefree(pp);
264 			uvm_unlock_pageq();
265 		} else if (slot != 0) {
266 			uvmexp.swpgonly--;
267 		}
268 	}
269 }
270 
271 
272 /*
273  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
274  *    objects
275  *
276  * => when you unmap a part of anonymous kernel memory you want to toss
277  *    the pages right away.    (this gets called from uvm_unmap_...).
278  * => none of the pages will ever be busy, and none of them will ever
279  *    be on the active or inactive queues (because these objects are
280  *    never allowed to "page").
281  */
282 void
283 uvm_km_pgremove_intrsafe(vaddr_t start, vaddr_t end)
284 {
285 	struct vm_page *pg;
286 	vaddr_t va;
287 	paddr_t pa;
288 
289 	for (va = start; va < end; va += PAGE_SIZE) {
290 		if (!pmap_extract(pmap_kernel(), va, &pa))
291 			continue;
292 		pg = PHYS_TO_VM_PAGE(pa);
293 		if (pg == NULL)
294 			panic("uvm_km_pgremove_intrsafe: no page");
295 		uvm_pagefree(pg);
296 	}
297 }
298 
299 /*
300  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
301  *
302  * => we map wired memory into the specified map using the obj passed in
303  * => NOTE: we can return NULL even if we can wait if there is not enough
304  *	free VM space in the map... caller should be prepared to handle
305  *	this case.
306  * => we return KVA of memory allocated
307  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
308  *	lock the map
309  * => low, high, alignment, boundary, nsegs are the corresponding parameters
310  *	to uvm_pglistalloc
311  * => flags: ZERO - correspond to uvm_pglistalloc flags
312  */
313 vaddr_t
314 uvm_km_kmemalloc_pla(struct vm_map *map, struct uvm_object *obj, vsize_t size,
315     vsize_t valign, int flags, paddr_t low, paddr_t high, paddr_t alignment,
316     paddr_t boundary, int nsegs)
317 {
318 	vaddr_t kva, loopva;
319 	voff_t offset;
320 	struct vm_page *pg;
321 	struct pglist pgl;
322 	int pla_flags;
323 
324 	KASSERT(vm_map_pmap(map) == pmap_kernel());
325 	/* UVM_KMF_VALLOC => !UVM_KMF_ZERO */
326 	KASSERT(!(flags & UVM_KMF_VALLOC) ||
327 	    !(flags & UVM_KMF_ZERO));
328 
329 	/* setup for call */
330 	size = round_page(size);
331 	kva = vm_map_min(map);	/* hint */
332 	if (nsegs == 0)
333 		nsegs = atop(size);
334 
335 	/* allocate some virtual space */
336 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
337 	    valign, UVM_MAPFLAG(PROT_READ | PROT_WRITE, PROT_READ | PROT_WRITE,
338 	    MAP_INHERIT_NONE, MADV_RANDOM, (flags & UVM_KMF_TRYLOCK))) != 0)) {
339 		return(0);
340 	}
341 
342 	/* if all we wanted was VA, return now */
343 	if (flags & UVM_KMF_VALLOC) {
344 		return(kva);
345 	}
346 
347 	/* recover object offset from virtual address */
348 	if (obj != NULL)
349 		offset = kva - vm_map_min(kernel_map);
350 	else
351 		offset = 0;
352 
353 	/*
354 	 * now allocate and map in the memory... note that we are the only ones
355 	 * whom should ever get a handle on this area of VM.
356 	 */
357 	TAILQ_INIT(&pgl);
358 	pla_flags = 0;
359 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
360 	if ((flags & UVM_KMF_NOWAIT) ||
361 	    ((flags & UVM_KMF_CANFAIL) &&
362 	    uvmexp.swpages - uvmexp.swpgonly <= atop(size)))
363 		pla_flags |= UVM_PLA_NOWAIT;
364 	else
365 		pla_flags |= UVM_PLA_WAITOK;
366 	if (flags & UVM_KMF_ZERO)
367 		pla_flags |= UVM_PLA_ZERO;
368 	if (uvm_pglistalloc(size, low, high, alignment, boundary, &pgl, nsegs,
369 	    pla_flags) != 0) {
370 		/* Failed. */
371 		uvm_unmap(map, kva, kva + size);
372 		return (0);
373 	}
374 
375 	loopva = kva;
376 	while (loopva != kva + size) {
377 		pg = TAILQ_FIRST(&pgl);
378 		TAILQ_REMOVE(&pgl, pg, pageq);
379 		uvm_pagealloc_pg(pg, obj, offset, NULL);
380 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
381 		UVM_PAGE_OWN(pg, NULL);
382 
383 		/*
384 		 * map it in: note that we call pmap_enter with the map and
385 		 * object unlocked in case we are kmem_map.
386 		 */
387 		if (obj == NULL) {
388 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
389 			    PROT_READ | PROT_WRITE);
390 		} else {
391 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
392 			    PROT_READ | PROT_WRITE,
393 			    PROT_READ | PROT_WRITE | PMAP_WIRED);
394 		}
395 		loopva += PAGE_SIZE;
396 		offset += PAGE_SIZE;
397 	}
398 	KASSERT(TAILQ_EMPTY(&pgl));
399 	pmap_update(pmap_kernel());
400 
401 	return(kva);
402 }
403 
404 /*
405  * uvm_km_free: free an area of kernel memory
406  */
407 void
408 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size)
409 {
410 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
411 }
412 
413 /*
414  * uvm_km_free_wakeup: free an area of kernel memory and wake up
415  * anyone waiting for vm space.
416  *
417  * => XXX: "wanted" bit + unlock&wait on other end?
418  */
419 void
420 uvm_km_free_wakeup(struct vm_map *map, vaddr_t addr, vsize_t size)
421 {
422 	struct uvm_map_deadq dead_entries;
423 
424 	vm_map_lock(map);
425 	TAILQ_INIT(&dead_entries);
426 	uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
427 	     &dead_entries, FALSE, TRUE);
428 	wakeup(map);
429 	vm_map_unlock(map);
430 
431 	uvm_unmap_detach(&dead_entries, 0);
432 }
433 
434 /*
435  * uvm_km_alloc1: allocate wired down memory in the kernel map.
436  *
437  * => we can sleep if needed
438  */
439 vaddr_t
440 uvm_km_alloc1(struct vm_map *map, vsize_t size, vsize_t align, boolean_t zeroit)
441 {
442 	vaddr_t kva, loopva;
443 	voff_t offset;
444 	struct vm_page *pg;
445 
446 	KASSERT(vm_map_pmap(map) == pmap_kernel());
447 
448 	size = round_page(size);
449 	kva = vm_map_min(map);		/* hint */
450 
451 	/* allocate some virtual space */
452 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
453 	    UVM_UNKNOWN_OFFSET, align,
454 	    UVM_MAPFLAG(PROT_READ | PROT_WRITE,
455 	    PROT_READ | PROT_WRITE | PROT_EXEC,
456 	    MAP_INHERIT_NONE, MADV_RANDOM, 0)) != 0)) {
457 		return(0);
458 	}
459 
460 	/* recover object offset from virtual address */
461 	offset = kva - vm_map_min(kernel_map);
462 
463 	/* now allocate the memory.  we must be careful about released pages. */
464 	loopva = kva;
465 	while (size) {
466 		/* allocate ram */
467 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
468 		if (pg) {
469 			atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
470 			UVM_PAGE_OWN(pg, NULL);
471 		}
472 		if (__predict_false(pg == NULL)) {
473 			if (curproc == uvm.pagedaemon_proc) {
474 				/*
475 				 * It is unfeasible for the page daemon to
476 				 * sleep for memory, so free what we have
477 				 * allocated and fail.
478 				 */
479 				uvm_unmap(map, kva, loopva - kva);
480 				return (0);
481 			} else {
482 				uvm_wait("km_alloc1w");	/* wait for memory */
483 				continue;
484 			}
485 		}
486 
487 		/*
488 		 * map it in; note we're never called with an intrsafe
489 		 * object, so we always use regular old pmap_enter().
490 		 */
491 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
492 		    PROT_READ | PROT_WRITE,
493 		    PROT_READ | PROT_WRITE | PMAP_WIRED);
494 
495 		loopva += PAGE_SIZE;
496 		offset += PAGE_SIZE;
497 		size -= PAGE_SIZE;
498 	}
499 	pmap_update(map->pmap);
500 
501 	/*
502 	 * zero on request (note that "size" is now zero due to the above loop
503 	 * so we need to subtract kva from loopva to reconstruct the size).
504 	 */
505 	if (zeroit)
506 		memset((caddr_t)kva, 0, loopva - kva);
507 
508 	return(kva);
509 }
510 
511 /*
512  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
513  *
514  * => memory is not allocated until fault time
515  */
516 
517 vaddr_t
518 uvm_km_valloc(struct vm_map *map, vsize_t size)
519 {
520 	return(uvm_km_valloc_align(map, size, 0, 0));
521 }
522 
523 vaddr_t
524 uvm_km_valloc_try(struct vm_map *map, vsize_t size)
525 {
526 	return(uvm_km_valloc_align(map, size, 0, UVM_FLAG_TRYLOCK));
527 }
528 
529 vaddr_t
530 uvm_km_valloc_align(struct vm_map *map, vsize_t size, vsize_t align, int flags)
531 {
532 	vaddr_t kva;
533 
534 	KASSERT(vm_map_pmap(map) == pmap_kernel());
535 
536 	size = round_page(size);
537 	kva = vm_map_min(map);		/* hint */
538 
539 	/* allocate some virtual space, demand filled by kernel_object. */
540 
541 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
542 	    UVM_UNKNOWN_OFFSET, align,
543 	    UVM_MAPFLAG(PROT_READ | PROT_WRITE, PROT_READ | PROT_WRITE,
544 	    MAP_INHERIT_NONE, MADV_RANDOM, flags)) != 0)) {
545 		return(0);
546 	}
547 
548 	return(kva);
549 }
550 
551 /*
552  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
553  *
554  * => memory is not allocated until fault time
555  * => if no room in map, wait for space to free, unless requested size
556  *    is larger than map (in which case we return 0)
557  */
558 vaddr_t
559 uvm_km_valloc_prefer_wait(struct vm_map *map, vsize_t size, voff_t prefer)
560 {
561 	vaddr_t kva;
562 
563 	KASSERT(vm_map_pmap(map) == pmap_kernel());
564 
565 	size = round_page(size);
566 	if (size > vm_map_max(map) - vm_map_min(map))
567 		return(0);
568 
569 	while (1) {
570 		kva = vm_map_min(map);		/* hint */
571 
572 		/*
573 		 * allocate some virtual space.   will be demand filled
574 		 * by kernel_object.
575 		 */
576 		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
577 		    prefer, 0,
578 		    UVM_MAPFLAG(PROT_READ | PROT_WRITE, PROT_READ | PROT_WRITE,
579 		    MAP_INHERIT_NONE, MADV_RANDOM, 0)) == 0)) {
580 			return(kva);
581 		}
582 
583 		/* failed.  sleep for a while (on map) */
584 		tsleep(map, PVM, "vallocwait", 0);
585 	}
586 	/*NOTREACHED*/
587 }
588 
589 vaddr_t
590 uvm_km_valloc_wait(struct vm_map *map, vsize_t size)
591 {
592 	return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
593 }
594 
595 #if defined(__HAVE_PMAP_DIRECT)
596 /*
597  * uvm_km_page allocator, __HAVE_PMAP_DIRECT arch
598  * On architectures with machine memory direct mapped into a portion
599  * of KVM, we have very little work to do.  Just get a physical page,
600  * and find and return its VA.
601  */
602 void
603 uvm_km_page_init(void)
604 {
605 	/* nothing */
606 }
607 
608 #else
609 /*
610  * uvm_km_page allocator, non __HAVE_PMAP_DIRECT archs
611  * This is a special allocator that uses a reserve of free pages
612  * to fulfill requests.  It is fast and interrupt safe, but can only
613  * return page sized regions.  Its primary use is as a backend for pool.
614  *
615  * The memory returned is allocated from the larger kernel_map, sparing
616  * pressure on the small interrupt-safe kmem_map.  It is wired, but
617  * not zero filled.
618  */
619 
620 struct uvm_km_pages uvm_km_pages;
621 
622 void uvm_km_createthread(void *);
623 void uvm_km_thread(void *);
624 struct uvm_km_free_page *uvm_km_doputpage(struct uvm_km_free_page *);
625 
626 /*
627  * Allocate the initial reserve, and create the thread which will
628  * keep the reserve full.  For bootstrapping, we allocate more than
629  * the lowat amount, because it may be a while before the thread is
630  * running.
631  */
632 void
633 uvm_km_page_init(void)
634 {
635 	int	lowat_min;
636 	int	i;
637 	int	len, bulk;
638 	vaddr_t	addr;
639 
640 	mtx_init(&uvm_km_pages.mtx, IPL_VM);
641 	if (!uvm_km_pages.lowat) {
642 		/* based on physmem, calculate a good value here */
643 		uvm_km_pages.lowat = physmem / 256;
644 		lowat_min = physmem < atop(16 * 1024 * 1024) ? 32 : 128;
645 		if (uvm_km_pages.lowat < lowat_min)
646 			uvm_km_pages.lowat = lowat_min;
647 	}
648 	if (uvm_km_pages.lowat > UVM_KM_PAGES_LOWAT_MAX)
649 		uvm_km_pages.lowat = UVM_KM_PAGES_LOWAT_MAX;
650 	uvm_km_pages.hiwat = 4 * uvm_km_pages.lowat;
651 	if (uvm_km_pages.hiwat > UVM_KM_PAGES_HIWAT_MAX)
652 		uvm_km_pages.hiwat = UVM_KM_PAGES_HIWAT_MAX;
653 
654 	/* Allocate all pages in as few allocations as possible. */
655 	len = 0;
656 	bulk = uvm_km_pages.hiwat;
657 	while (len < uvm_km_pages.hiwat && bulk > 0) {
658 		bulk = MIN(bulk, uvm_km_pages.hiwat - len);
659 		addr = vm_map_min(kernel_map);
660 		if (uvm_map(kernel_map, &addr, (vsize_t)bulk << PAGE_SHIFT,
661 		    NULL, UVM_UNKNOWN_OFFSET, 0,
662 		    UVM_MAPFLAG(PROT_READ | PROT_WRITE,
663 		    PROT_READ | PROT_WRITE, MAP_INHERIT_NONE,
664 		    MADV_RANDOM, UVM_KMF_TRYLOCK)) != 0) {
665 			bulk /= 2;
666 			continue;
667 		}
668 
669 		for (i = len; i < len + bulk; i++, addr += PAGE_SIZE)
670 			uvm_km_pages.page[i] = addr;
671 		len += bulk;
672 	}
673 
674 	uvm_km_pages.free = len;
675 	for (i = len; i < UVM_KM_PAGES_HIWAT_MAX; i++)
676 		uvm_km_pages.page[i] = 0;
677 
678 	/* tone down if really high */
679 	if (uvm_km_pages.lowat > 512)
680 		uvm_km_pages.lowat = 512;
681 
682 	kthread_create_deferred(uvm_km_createthread, NULL);
683 }
684 
685 void
686 uvm_km_createthread(void *arg)
687 {
688 	kthread_create(uvm_km_thread, NULL, &uvm_km_pages.km_proc, "kmthread");
689 }
690 
691 /*
692  * Endless loop.  We grab pages in increments of 16 pages, then
693  * quickly swap them into the list.  At some point we can consider
694  * returning memory to the system if we have too many free pages,
695  * but that's not implemented yet.
696  */
697 void
698 uvm_km_thread(void *arg)
699 {
700 	vaddr_t pg[16];
701 	int i;
702 	int allocmore = 0;
703 	int flags;
704 	struct uvm_km_free_page *fp = NULL;
705 
706 	KERNEL_UNLOCK();
707 
708 	for (;;) {
709 		mtx_enter(&uvm_km_pages.mtx);
710 		if (uvm_km_pages.free >= uvm_km_pages.lowat &&
711 		    uvm_km_pages.freelist == NULL) {
712 			msleep(&uvm_km_pages.km_proc, &uvm_km_pages.mtx,
713 			    PVM, "kmalloc", 0);
714 		}
715 		allocmore = uvm_km_pages.free < uvm_km_pages.lowat;
716 		fp = uvm_km_pages.freelist;
717 		uvm_km_pages.freelist = NULL;
718 		uvm_km_pages.freelistlen = 0;
719 		mtx_leave(&uvm_km_pages.mtx);
720 
721 		if (allocmore) {
722 			/*
723 			 * If there was nothing on the freelist, then we
724 			 * must obtain at least one page to make progress.
725 			 * So, only use UVM_KMF_TRYLOCK for the first page
726 			 * if fp != NULL
727 			 */
728 			flags = UVM_MAPFLAG(PROT_READ | PROT_WRITE,
729 			    PROT_READ | PROT_WRITE, MAP_INHERIT_NONE,
730 			    MADV_RANDOM, fp != NULL ? UVM_KMF_TRYLOCK : 0);
731 			memset(pg, 0, sizeof(pg));
732 			for (i = 0; i < nitems(pg); i++) {
733 				pg[i] = vm_map_min(kernel_map);
734 				if (uvm_map(kernel_map, &pg[i], PAGE_SIZE,
735 				    NULL, UVM_UNKNOWN_OFFSET, 0, flags) != 0) {
736 					pg[i] = 0;
737 					break;
738 				}
739 
740 				/* made progress, so don't sleep for more */
741 				flags = UVM_MAPFLAG(PROT_READ | PROT_WRITE,
742 				    PROT_READ | PROT_WRITE, MAP_INHERIT_NONE,
743 				    MADV_RANDOM, UVM_KMF_TRYLOCK);
744 			}
745 
746 			mtx_enter(&uvm_km_pages.mtx);
747 			for (i = 0; i < nitems(pg); i++) {
748 				if (uvm_km_pages.free ==
749 				    nitems(uvm_km_pages.page))
750 					break;
751 				else if (pg[i] != 0)
752 					uvm_km_pages.page[uvm_km_pages.free++]
753 					    = pg[i];
754 			}
755 			wakeup(&uvm_km_pages.free);
756 			mtx_leave(&uvm_km_pages.mtx);
757 
758 			/* Cleanup left-over pages (if any). */
759 			for (; i < nitems(pg); i++) {
760 				if (pg[i] != 0) {
761 					uvm_unmap(kernel_map,
762 					    pg[i], pg[i] + PAGE_SIZE);
763 				}
764 			}
765 		}
766 		while (fp) {
767 			fp = uvm_km_doputpage(fp);
768 		}
769 	}
770 }
771 
772 struct uvm_km_free_page *
773 uvm_km_doputpage(struct uvm_km_free_page *fp)
774 {
775 	vaddr_t va = (vaddr_t)fp;
776 	struct vm_page *pg;
777 	int	freeva = 1;
778 	struct uvm_km_free_page *nextfp = fp->next;
779 
780 	pg = uvm_atopg(va);
781 
782 	pmap_kremove(va, PAGE_SIZE);
783 	pmap_update(kernel_map->pmap);
784 
785 	mtx_enter(&uvm_km_pages.mtx);
786 	if (uvm_km_pages.free < uvm_km_pages.hiwat) {
787 		uvm_km_pages.page[uvm_km_pages.free++] = va;
788 		freeva = 0;
789 	}
790 	mtx_leave(&uvm_km_pages.mtx);
791 
792 	if (freeva)
793 		uvm_unmap(kernel_map, va, va + PAGE_SIZE);
794 
795 	uvm_pagefree(pg);
796 	return (nextfp);
797 }
798 #endif	/* !__HAVE_PMAP_DIRECT */
799 
800 void *
801 km_alloc(size_t sz, const struct kmem_va_mode *kv,
802     const struct kmem_pa_mode *kp, const struct kmem_dyn_mode *kd)
803 {
804 	struct vm_map *map;
805 	struct vm_page *pg;
806 	struct pglist pgl;
807 	int mapflags = 0;
808 	vm_prot_t prot;
809 	paddr_t pla_align;
810 	int pla_flags;
811 	int pla_maxseg;
812 	vaddr_t va, sva;
813 
814 	KASSERT(sz == round_page(sz));
815 
816 	TAILQ_INIT(&pgl);
817 
818 	if (kp->kp_nomem || kp->kp_pageable)
819 		goto alloc_va;
820 
821 	pla_flags = kd->kd_waitok ? UVM_PLA_WAITOK : UVM_PLA_NOWAIT;
822 	pla_flags |= UVM_PLA_TRYCONTIG;
823 	if (kp->kp_zero)
824 		pla_flags |= UVM_PLA_ZERO;
825 
826 	pla_align = kp->kp_align;
827 #ifdef __HAVE_PMAP_DIRECT
828 	if (pla_align < kv->kv_align)
829 		pla_align = kv->kv_align;
830 #endif
831 	pla_maxseg = kp->kp_maxseg;
832 	if (pla_maxseg == 0)
833 		pla_maxseg = sz / PAGE_SIZE;
834 
835 	if (uvm_pglistalloc(sz, kp->kp_constraint->ucr_low,
836 	    kp->kp_constraint->ucr_high, pla_align, kp->kp_boundary,
837 	    &pgl, pla_maxseg, pla_flags)) {
838 		return (NULL);
839 	}
840 
841 #ifdef __HAVE_PMAP_DIRECT
842 	/*
843 	 * Only use direct mappings for single page or single segment
844 	 * allocations.
845 	 */
846 	if (kv->kv_singlepage || kp->kp_maxseg == 1) {
847 		TAILQ_FOREACH(pg, &pgl, pageq) {
848 			va = pmap_map_direct(pg);
849 			if (pg == TAILQ_FIRST(&pgl))
850 				sva = va;
851 		}
852 		return ((void *)sva);
853 	}
854 #endif
855 alloc_va:
856 	prot = PROT_READ | PROT_WRITE;
857 
858 	if (kp->kp_pageable) {
859 		KASSERT(kp->kp_object);
860 		KASSERT(!kv->kv_singlepage);
861 	} else {
862 		KASSERT(kp->kp_object == NULL);
863 	}
864 
865 	if (kv->kv_singlepage) {
866 		KASSERT(sz == PAGE_SIZE);
867 #ifdef __HAVE_PMAP_DIRECT
868 		panic("km_alloc: DIRECT single page");
869 #else
870 		mtx_enter(&uvm_km_pages.mtx);
871 		while (uvm_km_pages.free == 0) {
872 			if (kd->kd_waitok == 0) {
873 				mtx_leave(&uvm_km_pages.mtx);
874 				uvm_pglistfree(&pgl);
875 				return NULL;
876 			}
877 			msleep(&uvm_km_pages.free, &uvm_km_pages.mtx, PVM,
878 			    "getpage", 0);
879 		}
880 		va = uvm_km_pages.page[--uvm_km_pages.free];
881 		if (uvm_km_pages.free < uvm_km_pages.lowat &&
882 		    curproc != uvm_km_pages.km_proc) {
883 			if (kd->kd_slowdown)
884 				*kd->kd_slowdown = 1;
885 			wakeup(&uvm_km_pages.km_proc);
886 		}
887 		mtx_leave(&uvm_km_pages.mtx);
888 #endif
889 	} else {
890 		struct uvm_object *uobj = NULL;
891 
892 		if (kd->kd_trylock)
893 			mapflags |= UVM_KMF_TRYLOCK;
894 
895 		if (kp->kp_object)
896 			uobj = *kp->kp_object;
897 try_map:
898 		map = *kv->kv_map;
899 		va = vm_map_min(map);
900 		if (uvm_map(map, &va, sz, uobj, kd->kd_prefer,
901 		    kv->kv_align, UVM_MAPFLAG(prot, prot, MAP_INHERIT_NONE,
902 		    MADV_RANDOM, mapflags))) {
903 			if (kv->kv_wait && kd->kd_waitok) {
904 				tsleep(map, PVM, "km_allocva", 0);
905 				goto try_map;
906 			}
907 			uvm_pglistfree(&pgl);
908 			return (NULL);
909 		}
910 	}
911 	sva = va;
912 	TAILQ_FOREACH(pg, &pgl, pageq) {
913 		if (kp->kp_pageable)
914 			pmap_enter(pmap_kernel(), va, VM_PAGE_TO_PHYS(pg),
915 			    prot, prot | PMAP_WIRED);
916 		else
917 			pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), prot);
918 		va += PAGE_SIZE;
919 	}
920 	pmap_update(pmap_kernel());
921 	return ((void *)sva);
922 }
923 
924 void
925 km_free(void *v, size_t sz, const struct kmem_va_mode *kv,
926     const struct kmem_pa_mode *kp)
927 {
928 	vaddr_t sva, eva, va;
929 	struct vm_page *pg;
930 	struct pglist pgl;
931 
932 	sva = (vaddr_t)v;
933 	eva = sva + sz;
934 
935 	if (kp->kp_nomem)
936 		goto free_va;
937 
938 #ifdef __HAVE_PMAP_DIRECT
939 	if (kv->kv_singlepage || kp->kp_maxseg == 1) {
940 		TAILQ_INIT(&pgl);
941 		for (va = sva; va < eva; va += PAGE_SIZE) {
942 			pg = pmap_unmap_direct(va);
943 			TAILQ_INSERT_TAIL(&pgl, pg, pageq);
944 		}
945 		uvm_pglistfree(&pgl);
946 		return;
947 	}
948 #else
949 	if (kv->kv_singlepage) {
950 		struct uvm_km_free_page *fp = v;
951 
952 		mtx_enter(&uvm_km_pages.mtx);
953 		fp->next = uvm_km_pages.freelist;
954 		uvm_km_pages.freelist = fp;
955 		if (uvm_km_pages.freelistlen++ > 16)
956 			wakeup(&uvm_km_pages.km_proc);
957 		mtx_leave(&uvm_km_pages.mtx);
958 		return;
959 	}
960 #endif
961 
962 	if (kp->kp_pageable) {
963 		pmap_remove(pmap_kernel(), sva, eva);
964 		pmap_update(pmap_kernel());
965 	} else {
966 		TAILQ_INIT(&pgl);
967 		for (va = sva; va < eva; va += PAGE_SIZE) {
968 			paddr_t pa;
969 
970 			if (!pmap_extract(pmap_kernel(), va, &pa))
971 				continue;
972 
973 			pg = PHYS_TO_VM_PAGE(pa);
974 			if (pg == NULL) {
975 				panic("km_free: unmanaged page 0x%lx\n", pa);
976 			}
977 			TAILQ_INSERT_TAIL(&pgl, pg, pageq);
978 		}
979 		pmap_kremove(sva, sz);
980 		pmap_update(pmap_kernel());
981 		uvm_pglistfree(&pgl);
982 	}
983 free_va:
984 	uvm_unmap(*kv->kv_map, sva, eva);
985 	if (kv->kv_wait)
986 		wakeup(*kv->kv_map);
987 }
988 
989 const struct kmem_va_mode kv_any = {
990 	.kv_map = &kernel_map,
991 };
992 
993 const struct kmem_va_mode kv_intrsafe = {
994 	.kv_map = &kmem_map,
995 };
996 
997 const struct kmem_va_mode kv_page = {
998 	.kv_singlepage = 1
999 };
1000 
1001 const struct kmem_pa_mode kp_dirty = {
1002 	.kp_constraint = &no_constraint
1003 };
1004 
1005 const struct kmem_pa_mode kp_dma = {
1006 	.kp_constraint = &dma_constraint
1007 };
1008 
1009 const struct kmem_pa_mode kp_dma_contig = {
1010 	.kp_constraint = &dma_constraint,
1011 	.kp_maxseg = 1
1012 };
1013 
1014 const struct kmem_pa_mode kp_dma_zero = {
1015 	.kp_constraint = &dma_constraint,
1016 	.kp_zero = 1
1017 };
1018 
1019 const struct kmem_pa_mode kp_zero = {
1020 	.kp_constraint = &no_constraint,
1021 	.kp_zero = 1
1022 };
1023 
1024 const struct kmem_pa_mode kp_pageable = {
1025 	.kp_object = &uvm.kernel_object,
1026 	.kp_pageable = 1
1027 /* XXX - kp_nomem, maybe, but we'll need to fix km_free. */
1028 };
1029 
1030 const struct kmem_pa_mode kp_none = {
1031 	.kp_nomem = 1
1032 };
1033 
1034 const struct kmem_dyn_mode kd_waitok = {
1035 	.kd_waitok = 1,
1036 	.kd_prefer = UVM_UNKNOWN_OFFSET
1037 };
1038 
1039 const struct kmem_dyn_mode kd_nowait = {
1040 	.kd_prefer = UVM_UNKNOWN_OFFSET
1041 };
1042 
1043 const struct kmem_dyn_mode kd_trylock = {
1044 	.kd_trylock = 1,
1045 	.kd_prefer = UVM_UNKNOWN_OFFSET
1046 };
1047