xref: /openbsd-src/sys/uvm/uvm_km.c (revision d13be5d47e4149db2549a9828e244d59dbc43f15)
1 /*	$OpenBSD: uvm_km.c,v 1.106 2011/07/03 18:34:14 oga Exp $	*/
2 /*	$NetBSD: uvm_km.c,v 1.42 2001/01/14 02:10:01 thorpej Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * Copyright (c) 1991, 1993, The Regents of the University of California.
7  *
8  * All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by Charles D. Cranor,
24  *      Washington University, the University of California, Berkeley and
25  *      its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
43  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  * uvm_km.c: handle kernel memory allocation and management
72  */
73 
74 /*
75  * overview of kernel memory management:
76  *
77  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
78  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
79  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
80  *
81  * the kernel_map has several "submaps."   submaps can only appear in
82  * the kernel_map (user processes can't use them).   submaps "take over"
83  * the management of a sub-range of the kernel's address space.  submaps
84  * are typically allocated at boot time and are never released.   kernel
85  * virtual address space that is mapped by a submap is locked by the
86  * submap's lock -- not the kernel_map's lock.
87  *
88  * thus, the useful feature of submaps is that they allow us to break
89  * up the locking and protection of the kernel address space into smaller
90  * chunks.
91  *
92  * The VM system has several standard kernel submaps:
93  *   kmem_map: Contains only wired kernel memory for malloc(9).
94  *	       Note: All access to this map must be protected by splvm as
95  *	       calls to malloc(9) are allowed in interrupt handlers.
96  *   exec_map: Memory to hold arguments to system calls are allocated from
97  *	       this map.
98  *	       XXX: This is primeraly used to artificially limit the number
99  *	       of concurrent processes doing an exec.
100  *   phys_map: Buffers for vmapbuf (physio) are allocated from this map.
101  *
102  * the kernel allocates its private memory out of special uvm_objects whose
103  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
104  * are "special" and never die).   all kernel objects should be thought of
105  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
106  * object is equal to the size of kernel virtual address space (i.e. the
107  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
108  *
109  * most kernel private memory lives in kernel_object.   the only exception
110  * to this is for memory that belongs to submaps that must be protected
111  * by splvm(). each of these submaps manages their own pages.
112  *
113  * note that just because a kernel object spans the entire kernel virtual
114  * address space doesn't mean that it has to be mapped into the entire space.
115  * large chunks of a kernel object's space go unused either because
116  * that area of kernel VM is unmapped, or there is some other type of
117  * object mapped into that range (e.g. a vnode).    for submap's kernel
118  * objects, the only part of the object that can ever be populated is the
119  * offsets that are managed by the submap.
120  *
121  * note that the "offset" in a kernel object is always the kernel virtual
122  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
123  * example:
124  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
125  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
126  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
127  *   then that means that the page at offset 0x235000 in kernel_object is
128  *   mapped at 0xf8235000.
129  *
130  * kernel objects have one other special property: when the kernel virtual
131  * memory mapping them is unmapped, the backing memory in the object is
132  * freed right away.   this is done with the uvm_km_pgremove() function.
133  * this has to be done because there is no backing store for kernel pages
134  * and no need to save them after they are no longer referenced.
135  */
136 
137 #include <sys/param.h>
138 #include <sys/systm.h>
139 #include <sys/proc.h>
140 #include <sys/kthread.h>
141 
142 #include <uvm/uvm.h>
143 
144 /*
145  * global data structures
146  */
147 
148 struct vm_map *kernel_map = NULL;
149 
150 /* Unconstraint range. */
151 struct uvm_constraint_range	no_constraint = { 0x0, (paddr_t)-1 };
152 
153 /*
154  * local data structues
155  */
156 
157 static struct vm_map		kernel_map_store;
158 
159 /*
160  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
161  * KVM already allocated for text, data, bss, and static data structures).
162  *
163  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
164  *    we assume that [min -> start] has already been allocated and that
165  *    "end" is the end.
166  */
167 
168 void
169 uvm_km_init(vaddr_t start, vaddr_t end)
170 {
171 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
172 
173 	/*
174 	 * next, init kernel memory objects.
175 	 */
176 
177 	/* kernel_object: for pageable anonymous kernel memory */
178 	uao_init();
179 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
180 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
181 
182 	/*
183 	 * init the map and reserve already allocated kernel space
184 	 * before installing.
185 	 */
186 
187 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
188 	kernel_map_store.pmap = pmap_kernel();
189 	if (base != start && uvm_map(&kernel_map_store, &base, start - base,
190 	    NULL, UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
191 	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != 0)
192 		panic("uvm_km_init: could not reserve space for kernel");
193 
194 	/*
195 	 * install!
196 	 */
197 
198 	kernel_map = &kernel_map_store;
199 }
200 
201 /*
202  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
203  * is allocated all references to that area of VM must go through it.  this
204  * allows the locking of VAs in kernel_map to be broken up into regions.
205  *
206  * => if `fixed' is true, *min specifies where the region described
207  *      by the submap must start
208  * => if submap is non NULL we use that as the submap, otherwise we
209  *	alloc a new map
210  */
211 struct vm_map *
212 uvm_km_suballoc(struct vm_map *map, vaddr_t *min, vaddr_t *max, vsize_t size,
213     int flags, boolean_t fixed, struct vm_map *submap)
214 {
215 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
216 
217 	size = round_page(size);	/* round up to pagesize */
218 
219 	/*
220 	 * first allocate a blank spot in the parent map
221 	 */
222 
223 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
224 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
225 	    UVM_ADV_RANDOM, mapflags)) != 0) {
226 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
227 	}
228 
229 	/*
230 	 * set VM bounds (min is filled in by uvm_map)
231 	 */
232 
233 	*max = *min + size;
234 
235 	/*
236 	 * add references to pmap and create or init the submap
237 	 */
238 
239 	pmap_reference(vm_map_pmap(map));
240 	if (submap == NULL) {
241 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
242 		if (submap == NULL)
243 			panic("uvm_km_suballoc: unable to create submap");
244 	} else {
245 		uvm_map_setup(submap, *min, *max, flags);
246 		submap->pmap = vm_map_pmap(map);
247 	}
248 
249 	/*
250 	 * now let uvm_map_submap plug in it...
251 	 */
252 
253 	if (uvm_map_submap(map, *min, *max, submap) != 0)
254 		panic("uvm_km_suballoc: submap allocation failed");
255 
256 	return(submap);
257 }
258 
259 /*
260  * uvm_km_pgremove: remove pages from a kernel uvm_object.
261  *
262  * => when you unmap a part of anonymous kernel memory you want to toss
263  *    the pages right away.    (this gets called from uvm_unmap_...).
264  */
265 void
266 uvm_km_pgremove(struct uvm_object *uobj, vaddr_t start, vaddr_t end)
267 {
268 	struct vm_page *pp;
269 	voff_t curoff;
270 	int slot;
271 
272 	KASSERT(uobj->pgops == &aobj_pager);
273 
274 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
275 		pp = uvm_pagelookup(uobj, curoff);
276 		if (pp && pp->pg_flags & PG_BUSY) {
277 			atomic_setbits_int(&pp->pg_flags, PG_WANTED);
278 			UVM_UNLOCK_AND_WAIT(pp, &uobj->vmobjlock, 0,
279 			    "km_pgrm", 0);
280 			simple_lock(&uobj->vmobjlock);
281 			curoff -= PAGE_SIZE; /* loop back to us */
282 			continue;
283 		}
284 
285 		/* free the swap slot, then the page */
286 		slot = uao_dropswap(uobj, curoff >> PAGE_SHIFT);
287 
288 		if (pp != NULL) {
289 			uvm_lock_pageq();
290 			uvm_pagefree(pp);
291 			uvm_unlock_pageq();
292 		} else if (slot != 0) {
293 			simple_lock(&uvm.swap_data_lock);
294 			uvmexp.swpgonly--;
295 			simple_unlock(&uvm.swap_data_lock);
296 		}
297 	}
298 }
299 
300 
301 /*
302  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
303  *    objects
304  *
305  * => when you unmap a part of anonymous kernel memory you want to toss
306  *    the pages right away.    (this gets called from uvm_unmap_...).
307  * => none of the pages will ever be busy, and none of them will ever
308  *    be on the active or inactive queues (because these objects are
309  *    never allowed to "page").
310  */
311 
312 void
313 uvm_km_pgremove_intrsafe(vaddr_t start, vaddr_t end)
314 {
315 	struct vm_page *pg;
316 	vaddr_t va;
317 	paddr_t pa;
318 
319 	for (va = start; va < end; va += PAGE_SIZE) {
320 		if (!pmap_extract(pmap_kernel(), va, &pa))
321 			continue;
322 		pg = PHYS_TO_VM_PAGE(pa);
323 		if (pg == NULL)
324 			panic("uvm_km_pgremove_intrsafe: no page");
325 		uvm_pagefree(pg);
326 	}
327 }
328 
329 /*
330  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
331  *
332  * => we map wired memory into the specified map using the obj passed in
333  * => NOTE: we can return NULL even if we can wait if there is not enough
334  *	free VM space in the map... caller should be prepared to handle
335  *	this case.
336  * => we return KVA of memory allocated
337  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
338  *	lock the map
339  * => low, high, alignment, boundary, nsegs are the corresponding parameters
340  *	to uvm_pglistalloc
341  * => flags: ZERO - correspond to uvm_pglistalloc flags
342  */
343 
344 vaddr_t
345 uvm_km_kmemalloc_pla(struct vm_map *map, struct uvm_object *obj, vsize_t size,
346     vsize_t valign, int flags, paddr_t low, paddr_t high, paddr_t alignment,
347     paddr_t boundary, int nsegs)
348 {
349 	vaddr_t kva, loopva;
350 	voff_t offset;
351 	struct vm_page *pg;
352 	struct pglist pgl;
353 	int pla_flags;
354 
355 	KASSERT(vm_map_pmap(map) == pmap_kernel());
356 	/* UVM_KMF_VALLOC => !UVM_KMF_ZERO */
357 	KASSERT(!(flags & UVM_KMF_VALLOC) ||
358 	    !(flags & UVM_KMF_ZERO));
359 
360 	/*
361 	 * setup for call
362 	 */
363 
364 	size = round_page(size);
365 	kva = vm_map_min(map);	/* hint */
366 	if (nsegs == 0)
367 		nsegs = atop(size);
368 
369 	/*
370 	 * allocate some virtual space
371 	 */
372 
373 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
374 	      valign, UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
375 			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK))) != 0)) {
376 		return(0);
377 	}
378 
379 	/*
380 	 * if all we wanted was VA, return now
381 	 */
382 
383 	if (flags & UVM_KMF_VALLOC) {
384 		return(kva);
385 	}
386 
387 	/*
388 	 * recover object offset from virtual address
389 	 */
390 
391 	if (obj != NULL)
392 		offset = kva - vm_map_min(kernel_map);
393 	else
394 		offset = 0;
395 
396 	/*
397 	 * now allocate and map in the memory... note that we are the only ones
398 	 * whom should ever get a handle on this area of VM.
399 	 */
400 	TAILQ_INIT(&pgl);
401 	pla_flags = 0;
402 	if ((flags & UVM_KMF_NOWAIT) ||
403 	    ((flags & UVM_KMF_CANFAIL) &&
404 	    uvmexp.swpgonly - uvmexp.swpages <= atop(size)))
405 		pla_flags |= UVM_PLA_NOWAIT;
406 	else
407 		pla_flags |= UVM_PLA_WAITOK;
408 	if (flags & UVM_KMF_ZERO)
409 		pla_flags |= UVM_PLA_ZERO;
410 	if (uvm_pglistalloc(size, low, high, alignment, boundary, &pgl, nsegs,
411 	    pla_flags) != 0) {
412 		/* Failed. */
413 		uvm_unmap(map, kva, kva + size);
414 		return (0);
415 	}
416 
417 	loopva = kva;
418 	while (loopva != kva + size) {
419 		pg = TAILQ_FIRST(&pgl);
420 		TAILQ_REMOVE(&pgl, pg, pageq);
421 		uvm_pagealloc_pg(pg, obj, offset, NULL);
422 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
423 		UVM_PAGE_OWN(pg, NULL);
424 
425 		/*
426 		 * map it in: note that we call pmap_enter with the map and
427 		 * object unlocked in case we are kmem_map.
428 		 */
429 
430 		if (obj == NULL) {
431 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
432 			    UVM_PROT_RW);
433 		} else {
434 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
435 			    UVM_PROT_RW,
436 			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
437 		}
438 		loopva += PAGE_SIZE;
439 		offset += PAGE_SIZE;
440 	}
441 	KASSERT(TAILQ_EMPTY(&pgl));
442 	pmap_update(pmap_kernel());
443 
444 	return(kva);
445 }
446 
447 /*
448  * uvm_km_free: free an area of kernel memory
449  */
450 
451 void
452 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size)
453 {
454 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
455 }
456 
457 /*
458  * uvm_km_free_wakeup: free an area of kernel memory and wake up
459  * anyone waiting for vm space.
460  *
461  * => XXX: "wanted" bit + unlock&wait on other end?
462  */
463 
464 void
465 uvm_km_free_wakeup(struct vm_map *map, vaddr_t addr, vsize_t size)
466 {
467 	struct vm_map_entry *dead_entries;
468 
469 	vm_map_lock(map);
470 	uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
471 	     &dead_entries, NULL, FALSE);
472 	wakeup(map);
473 	vm_map_unlock(map);
474 
475 	if (dead_entries != NULL)
476 		uvm_unmap_detach(dead_entries, 0);
477 }
478 
479 /*
480  * uvm_km_alloc1: allocate wired down memory in the kernel map.
481  *
482  * => we can sleep if needed
483  */
484 
485 vaddr_t
486 uvm_km_alloc1(struct vm_map *map, vsize_t size, vsize_t align, boolean_t zeroit)
487 {
488 	vaddr_t kva, loopva;
489 	voff_t offset;
490 	struct vm_page *pg;
491 
492 	KASSERT(vm_map_pmap(map) == pmap_kernel());
493 
494 	size = round_page(size);
495 	kva = vm_map_min(map);		/* hint */
496 
497 	/*
498 	 * allocate some virtual space
499 	 */
500 
501 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
502 	    UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
503 	    UVM_INH_NONE, UVM_ADV_RANDOM, 0)) != 0)) {
504 		return(0);
505 	}
506 
507 	/*
508 	 * recover object offset from virtual address
509 	 */
510 
511 	offset = kva - vm_map_min(kernel_map);
512 
513 	/*
514 	 * now allocate the memory.  we must be careful about released pages.
515 	 */
516 
517 	loopva = kva;
518 	while (size) {
519 		simple_lock(&uvm.kernel_object->vmobjlock);
520 		/* allocate ram */
521 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
522 		if (pg) {
523 			atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
524 			UVM_PAGE_OWN(pg, NULL);
525 		}
526 		simple_unlock(&uvm.kernel_object->vmobjlock);
527 		if (__predict_false(pg == NULL)) {
528 			if (curproc == uvm.pagedaemon_proc) {
529 				/*
530 				 * It is unfeasible for the page daemon to
531 				 * sleep for memory, so free what we have
532 				 * allocated and fail.
533 				 */
534 				uvm_unmap(map, kva, loopva - kva);
535 				return (0);
536 			} else {
537 				uvm_wait("km_alloc1w");	/* wait for memory */
538 				continue;
539 			}
540 		}
541 
542 		/*
543 		 * map it in; note we're never called with an intrsafe
544 		 * object, so we always use regular old pmap_enter().
545 		 */
546 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
547 		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
548 
549 		loopva += PAGE_SIZE;
550 		offset += PAGE_SIZE;
551 		size -= PAGE_SIZE;
552 	}
553 	pmap_update(map->pmap);
554 
555 	/*
556 	 * zero on request (note that "size" is now zero due to the above loop
557 	 * so we need to subtract kva from loopva to reconstruct the size).
558 	 */
559 
560 	if (zeroit)
561 		memset((caddr_t)kva, 0, loopva - kva);
562 
563 	return(kva);
564 }
565 
566 /*
567  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
568  *
569  * => memory is not allocated until fault time
570  */
571 
572 vaddr_t
573 uvm_km_valloc(struct vm_map *map, vsize_t size)
574 {
575 	return(uvm_km_valloc_align(map, size, 0, 0));
576 }
577 
578 vaddr_t
579 uvm_km_valloc_try(struct vm_map *map, vsize_t size)
580 {
581 	return(uvm_km_valloc_align(map, size, 0, UVM_FLAG_TRYLOCK));
582 }
583 
584 vaddr_t
585 uvm_km_valloc_align(struct vm_map *map, vsize_t size, vsize_t align, int flags)
586 {
587 	vaddr_t kva;
588 
589 	KASSERT(vm_map_pmap(map) == pmap_kernel());
590 
591 	size = round_page(size);
592 	kva = vm_map_min(map);		/* hint */
593 
594 	/*
595 	 * allocate some virtual space.  will be demand filled by kernel_object.
596 	 */
597 
598 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
599 	    UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
600 	    UVM_INH_NONE, UVM_ADV_RANDOM, flags)) != 0)) {
601 		return(0);
602 	}
603 
604 	return(kva);
605 }
606 
607 /*
608  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
609  *
610  * => memory is not allocated until fault time
611  * => if no room in map, wait for space to free, unless requested size
612  *    is larger than map (in which case we return 0)
613  */
614 
615 vaddr_t
616 uvm_km_valloc_prefer_wait(struct vm_map *map, vsize_t size, voff_t prefer)
617 {
618 	vaddr_t kva;
619 
620 	KASSERT(vm_map_pmap(map) == pmap_kernel());
621 
622 	size = round_page(size);
623 	if (size > vm_map_max(map) - vm_map_min(map))
624 		return(0);
625 
626 	while (1) {
627 		kva = vm_map_min(map);		/* hint */
628 
629 		/*
630 		 * allocate some virtual space.   will be demand filled
631 		 * by kernel_object.
632 		 */
633 
634 		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
635 		    prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
636 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0)) == 0)) {
637 			return(kva);
638 		}
639 
640 		/*
641 		 * failed.  sleep for a while (on map)
642 		 */
643 
644 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
645 	}
646 	/*NOTREACHED*/
647 }
648 
649 vaddr_t
650 uvm_km_valloc_wait(struct vm_map *map, vsize_t size)
651 {
652 	return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
653 }
654 
655 #if defined(__HAVE_PMAP_DIRECT)
656 /*
657  * uvm_km_page allocator, __HAVE_PMAP_DIRECT arch
658  * On architectures with machine memory direct mapped into a portion
659  * of KVM, we have very little work to do.  Just get a physical page,
660  * and find and return its VA.
661  */
662 void
663 uvm_km_page_init(void)
664 {
665 	/* nothing */
666 }
667 
668 #else
669 /*
670  * uvm_km_page allocator, non __HAVE_PMAP_DIRECT archs
671  * This is a special allocator that uses a reserve of free pages
672  * to fulfill requests.  It is fast and interrupt safe, but can only
673  * return page sized regions.  Its primary use is as a backend for pool.
674  *
675  * The memory returned is allocated from the larger kernel_map, sparing
676  * pressure on the small interrupt-safe kmem_map.  It is wired, but
677  * not zero filled.
678  */
679 
680 struct uvm_km_pages uvm_km_pages;
681 
682 void uvm_km_createthread(void *);
683 void uvm_km_thread(void *);
684 struct uvm_km_free_page *uvm_km_doputpage(struct uvm_km_free_page *);
685 
686 /*
687  * Allocate the initial reserve, and create the thread which will
688  * keep the reserve full.  For bootstrapping, we allocate more than
689  * the lowat amount, because it may be a while before the thread is
690  * running.
691  */
692 void
693 uvm_km_page_init(void)
694 {
695 	int lowat_min;
696 	int i;
697 
698 	mtx_init(&uvm_km_pages.mtx, IPL_VM);
699 	if (!uvm_km_pages.lowat) {
700 		/* based on physmem, calculate a good value here */
701 		uvm_km_pages.lowat = physmem / 256;
702 		lowat_min = physmem < atop(16 * 1024 * 1024) ? 32 : 128;
703 		if (uvm_km_pages.lowat < lowat_min)
704 			uvm_km_pages.lowat = lowat_min;
705 	}
706 	if (uvm_km_pages.lowat > UVM_KM_PAGES_LOWAT_MAX)
707 		uvm_km_pages.lowat = UVM_KM_PAGES_LOWAT_MAX;
708 	uvm_km_pages.hiwat = 4 * uvm_km_pages.lowat;
709 	if (uvm_km_pages.hiwat > UVM_KM_PAGES_HIWAT_MAX)
710 		uvm_km_pages.hiwat = UVM_KM_PAGES_HIWAT_MAX;
711 
712 	for (i = 0; i < uvm_km_pages.hiwat; i++) {
713 		uvm_km_pages.page[i] = (vaddr_t)uvm_km_kmemalloc(kernel_map,
714 		    NULL, PAGE_SIZE, UVM_KMF_NOWAIT|UVM_KMF_VALLOC);
715 		if (uvm_km_pages.page[i] == 0)
716 			break;
717 	}
718 	uvm_km_pages.free = i;
719 	for ( ; i < UVM_KM_PAGES_HIWAT_MAX; i++)
720 		uvm_km_pages.page[i] = 0;
721 
722 	/* tone down if really high */
723 	if (uvm_km_pages.lowat > 512)
724 		uvm_km_pages.lowat = 512;
725 
726 	kthread_create_deferred(uvm_km_createthread, NULL);
727 }
728 
729 void
730 uvm_km_createthread(void *arg)
731 {
732 	kthread_create(uvm_km_thread, NULL, &uvm_km_pages.km_proc, "kmthread");
733 }
734 
735 /*
736  * Endless loop.  We grab pages in increments of 16 pages, then
737  * quickly swap them into the list.  At some point we can consider
738  * returning memory to the system if we have too many free pages,
739  * but that's not implemented yet.
740  */
741 void
742 uvm_km_thread(void *arg)
743 {
744 	vaddr_t pg[16];
745 	int i;
746 	int allocmore = 0;
747 	struct uvm_km_free_page *fp = NULL;
748 
749 	for (;;) {
750 		mtx_enter(&uvm_km_pages.mtx);
751 		if (uvm_km_pages.free >= uvm_km_pages.lowat &&
752 		    uvm_km_pages.freelist == NULL) {
753 			msleep(&uvm_km_pages.km_proc, &uvm_km_pages.mtx,
754 			    PVM, "kmalloc", 0);
755 		}
756 		allocmore = uvm_km_pages.free < uvm_km_pages.lowat;
757 		fp = uvm_km_pages.freelist;
758 		uvm_km_pages.freelist = NULL;
759 		uvm_km_pages.freelistlen = 0;
760 		mtx_leave(&uvm_km_pages.mtx);
761 
762 		if (allocmore) {
763 			for (i = 0; i < nitems(pg); i++) {
764 				pg[i] = (vaddr_t)uvm_km_kmemalloc(kernel_map,
765 				    NULL, PAGE_SIZE, UVM_KMF_VALLOC);
766 			}
767 
768 			mtx_enter(&uvm_km_pages.mtx);
769 			for (i = 0; i < nitems(pg); i++) {
770 				if (uvm_km_pages.free ==
771 				    nitems(uvm_km_pages.page))
772 					break;
773 				else
774 					uvm_km_pages.page[uvm_km_pages.free++]
775 					    = pg[i];
776 			}
777 			wakeup(&uvm_km_pages.free);
778 			mtx_leave(&uvm_km_pages.mtx);
779 
780 			/* Cleanup left-over pages (if any). */
781 			for (; i < nitems(pg); i++)
782 				uvm_km_free(kernel_map, pg[i], PAGE_SIZE);
783 		}
784 		while (fp) {
785 			fp = uvm_km_doputpage(fp);
786 		}
787 	}
788 }
789 
790 struct uvm_km_free_page *
791 uvm_km_doputpage(struct uvm_km_free_page *fp)
792 {
793 	vaddr_t va = (vaddr_t)fp;
794 	struct vm_page *pg;
795 	int	freeva = 1;
796 	struct uvm_km_free_page *nextfp = fp->next;
797 
798 	pg = uvm_atopg(va);
799 
800 	pmap_kremove(va, PAGE_SIZE);
801 	pmap_update(kernel_map->pmap);
802 
803 	mtx_enter(&uvm_km_pages.mtx);
804 	if (uvm_km_pages.free < uvm_km_pages.hiwat) {
805 		uvm_km_pages.page[uvm_km_pages.free++] = va;
806 		freeva = 0;
807 	}
808 	mtx_leave(&uvm_km_pages.mtx);
809 
810 	if (freeva)
811 		uvm_km_free(kernel_map, va, PAGE_SIZE);
812 
813 	uvm_pagefree(pg);
814 	return (nextfp);
815 }
816 #endif	/* !__HAVE_PMAP_DIRECT */
817 
818 void *
819 km_alloc(size_t sz, const struct kmem_va_mode *kv,
820     const struct kmem_pa_mode *kp, const struct kmem_dyn_mode *kd)
821 {
822 	struct vm_map *map;
823 	struct vm_page *pg;
824 	struct pglist pgl;
825 	int mapflags = 0;
826 	vm_prot_t prot;
827 	int pla_flags;
828 	int pla_maxseg;
829 #ifdef __HAVE_PMAP_DIRECT
830 	paddr_t pa;
831 #endif
832 	vaddr_t va, sva;
833 
834 	KASSERT(sz == round_page(sz));
835 
836 	TAILQ_INIT(&pgl);
837 
838 	if (kp->kp_nomem || kp->kp_pageable)
839 		goto alloc_va;
840 
841 	pla_flags = kd->kd_waitok ? UVM_PLA_WAITOK : UVM_PLA_NOWAIT;
842 	pla_flags |= UVM_PLA_TRYCONTIG;
843 	if (kp->kp_zero)
844 		pla_flags |= UVM_PLA_ZERO;
845 
846 	pla_maxseg = kp->kp_maxseg;
847 	if (pla_maxseg == 0)
848 		pla_maxseg = sz / PAGE_SIZE;
849 
850 	if (uvm_pglistalloc(sz, kp->kp_constraint->ucr_low,
851 	    kp->kp_constraint->ucr_high, kp->kp_align, kp->kp_boundary,
852 	    &pgl, pla_maxseg, pla_flags)) {
853 		return (NULL);
854 	}
855 
856 #ifdef __HAVE_PMAP_DIRECT
857 	if (kv->kv_align || kv->kv_executable)
858 		goto alloc_va;
859 #if 1
860 	/*
861 	 * For now, only do DIRECT mappings for single page
862 	 * allocations, until we figure out a good way to deal
863 	 * with contig allocations in km_free.
864 	 */
865 	if (!kv->kv_singlepage)
866 		goto alloc_va;
867 #endif
868 	/*
869 	 * Dubious optimization. If we got a contig segment, just map it
870 	 * through the direct map.
871 	 */
872 	TAILQ_FOREACH(pg, &pgl, pageq) {
873 		if (pg != TAILQ_FIRST(&pgl) &&
874 		    VM_PAGE_TO_PHYS(pg) != pa + PAGE_SIZE)
875 			break;
876 		pa = VM_PAGE_TO_PHYS(pg);
877 	}
878 	if (pg == NULL) {
879 		TAILQ_FOREACH(pg, &pgl, pageq) {
880 			vaddr_t v;
881 			v = pmap_map_direct(pg);
882 			if (pg == TAILQ_FIRST(&pgl))
883 				va = v;
884 		}
885 		return ((void *)va);
886 	}
887 #endif
888 alloc_va:
889 	if (kv->kv_executable) {
890 		prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
891 	} else {
892 		prot = VM_PROT_READ | VM_PROT_WRITE;
893 	}
894 
895 	if (kp->kp_pageable) {
896 		KASSERT(kp->kp_object);
897 		KASSERT(!kv->kv_singlepage);
898 	} else {
899 		KASSERT(kp->kp_object == NULL);
900 	}
901 
902 	if (kv->kv_singlepage) {
903 		KASSERT(sz == PAGE_SIZE);
904 #ifdef __HAVE_PMAP_DIRECT
905 		panic("km_alloc: DIRECT single page");
906 #else
907 		mtx_enter(&uvm_km_pages.mtx);
908 		while (uvm_km_pages.free == 0) {
909 			if (kd->kd_waitok == 0) {
910 				mtx_leave(&uvm_km_pages.mtx);
911 				uvm_pglistfree(&pgl);
912 				return NULL;
913 			}
914 			msleep(&uvm_km_pages.free, &uvm_km_pages.mtx, PVM,
915 			    "getpage", 0);
916 		}
917 		va = uvm_km_pages.page[--uvm_km_pages.free];
918 		if (uvm_km_pages.free < uvm_km_pages.lowat &&
919 		    curproc != uvm_km_pages.km_proc) {
920 			if (kd->kd_slowdown)
921 				*kd->kd_slowdown = 1;
922 			wakeup(&uvm_km_pages.km_proc);
923 		}
924 		mtx_leave(&uvm_km_pages.mtx);
925 #endif
926 	} else {
927 		struct uvm_object *uobj = NULL;
928 
929 		if (kd->kd_trylock)
930 			mapflags |= UVM_KMF_TRYLOCK;
931 
932 		if (kp->kp_object)
933 			uobj = *kp->kp_object;
934 try_map:
935 		map = *kv->kv_map;
936 		va = vm_map_min(map);
937 		if (uvm_map(map, &va, sz, uobj, kd->kd_prefer,
938 		    kv->kv_align, UVM_MAPFLAG(prot, prot, UVM_INH_NONE,
939 		    UVM_ADV_RANDOM, mapflags))) {
940 			if (kv->kv_wait && kd->kd_waitok) {
941 				tsleep(map, PVM, "km_allocva", 0);
942 				goto try_map;
943 			}
944 			uvm_pglistfree(&pgl);
945 			return (NULL);
946 		}
947 	}
948 	sva = va;
949 	TAILQ_FOREACH(pg, &pgl, pageq) {
950 		if (kp->kp_pageable)
951 			pmap_enter(pmap_kernel(), va, VM_PAGE_TO_PHYS(pg),
952 			    prot, prot | PMAP_WIRED);
953 		else
954 			pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), prot);
955 		va += PAGE_SIZE;
956 	}
957 	pmap_update(pmap_kernel());
958 	return ((void *)sva);
959 }
960 
961 void
962 km_free(void *v, size_t sz, const struct kmem_va_mode *kv,
963     const struct kmem_pa_mode *kp)
964 {
965 	vaddr_t sva, eva, va;
966 	struct vm_page *pg;
967 	struct pglist pgl;
968 
969 	sva = va = (vaddr_t)v;
970 	eva = va + sz;
971 
972 	if (kp->kp_nomem) {
973 		goto free_va;
974 	}
975 
976 	if (kv->kv_singlepage) {
977 #ifdef __HAVE_PMAP_DIRECT
978 		pg = pmap_unmap_direct(va);
979 		uvm_pagefree(pg);
980 #else
981 		struct uvm_km_free_page *fp = v;
982 		mtx_enter(&uvm_km_pages.mtx);
983 		fp->next = uvm_km_pages.freelist;
984 		uvm_km_pages.freelist = fp;
985 		if (uvm_km_pages.freelistlen++ > 16)
986 			wakeup(&uvm_km_pages.km_proc);
987 		mtx_leave(&uvm_km_pages.mtx);
988 #endif
989 		return;
990 	}
991 
992 	if (kp->kp_pageable) {
993 		pmap_remove(pmap_kernel(), sva, eva);
994 		pmap_update(pmap_kernel());
995 	} else {
996 		TAILQ_INIT(&pgl);
997 		for (va = sva; va < eva; va += PAGE_SIZE) {
998 			paddr_t pa;
999 
1000 			if (!pmap_extract(pmap_kernel(), va, &pa))
1001 				continue;
1002 
1003 			pg = PHYS_TO_VM_PAGE(pa);
1004 			if (pg == NULL) {
1005 				panic("km_free: unmanaged page 0x%lx\n", pa);
1006 			}
1007 			TAILQ_INSERT_TAIL(&pgl, pg, pageq);
1008 		}
1009 		pmap_kremove(sva, sz);
1010 		pmap_update(pmap_kernel());
1011 		uvm_pglistfree(&pgl);
1012 	}
1013 free_va:
1014 	uvm_unmap(*kv->kv_map, sva, eva);
1015 	if (kv->kv_wait)
1016 		wakeup(*kv->kv_map);
1017 }
1018 
1019 const struct kmem_va_mode kv_any = {
1020 	.kv_map = &kernel_map,
1021 };
1022 
1023 const struct kmem_va_mode kv_intrsafe = {
1024 	.kv_map = &kmem_map,
1025 };
1026 
1027 const struct kmem_va_mode kv_page = {
1028 	.kv_singlepage = 1
1029 };
1030 
1031 const struct kmem_pa_mode kp_dirty = {
1032 	.kp_constraint = &no_constraint
1033 };
1034 
1035 const struct kmem_pa_mode kp_dma = {
1036 	.kp_constraint = &dma_constraint
1037 };
1038 
1039 const struct kmem_pa_mode kp_dma_contig = {
1040 	.kp_constraint = &dma_constraint,
1041 	.kp_maxseg = 1
1042 };
1043 
1044 const struct kmem_pa_mode kp_dma_zero = {
1045 	.kp_constraint = &dma_constraint,
1046 	.kp_zero = 1
1047 };
1048 
1049 const struct kmem_pa_mode kp_zero = {
1050 	.kp_constraint = &no_constraint,
1051 	.kp_zero = 1
1052 };
1053 
1054 const struct kmem_pa_mode kp_pageable = {
1055 	.kp_object = &uvm.kernel_object,
1056 	.kp_pageable = 1
1057 /* XXX - kp_nomem, maybe, but we'll need to fix km_free. */
1058 };
1059 
1060 const struct kmem_pa_mode kp_none = {
1061 	.kp_nomem = 1
1062 };
1063 
1064 const struct kmem_dyn_mode kd_waitok = {
1065 	.kd_waitok = 1,
1066 	.kd_prefer = UVM_UNKNOWN_OFFSET
1067 };
1068 
1069 const struct kmem_dyn_mode kd_nowait = {
1070 	.kd_prefer = UVM_UNKNOWN_OFFSET
1071 };
1072 
1073 const struct kmem_dyn_mode kd_trylock = {
1074 	.kd_trylock = 1,
1075 	.kd_prefer = UVM_UNKNOWN_OFFSET
1076 };
1077