xref: /openbsd-src/sys/uvm/uvm_km.c (revision 50b7afb2c2c0993b0894d4e34bf857cb13ed9c80)
1 /*	$OpenBSD: uvm_km.c,v 1.114 2014/07/11 16:35:40 jsg Exp $	*/
2 /*	$NetBSD: uvm_km.c,v 1.42 2001/01/14 02:10:01 thorpej Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * Copyright (c) 1991, 1993, The Regents of the University of California.
7  *
8  * All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
38  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 
65 /*
66  * uvm_km.c: handle kernel memory allocation and management
67  */
68 
69 /*
70  * overview of kernel memory management:
71  *
72  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
73  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
74  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
75  *
76  * the kernel_map has several "submaps."   submaps can only appear in
77  * the kernel_map (user processes can't use them).   submaps "take over"
78  * the management of a sub-range of the kernel's address space.  submaps
79  * are typically allocated at boot time and are never released.   kernel
80  * virtual address space that is mapped by a submap is locked by the
81  * submap's lock -- not the kernel_map's lock.
82  *
83  * thus, the useful feature of submaps is that they allow us to break
84  * up the locking and protection of the kernel address space into smaller
85  * chunks.
86  *
87  * The VM system has several standard kernel submaps:
88  *   kmem_map: Contains only wired kernel memory for malloc(9).
89  *	       Note: All access to this map must be protected by splvm as
90  *	       calls to malloc(9) are allowed in interrupt handlers.
91  *   exec_map: Memory to hold arguments to system calls are allocated from
92  *	       this map.
93  *	       XXX: This is primeraly used to artificially limit the number
94  *	       of concurrent processes doing an exec.
95  *   phys_map: Buffers for vmapbuf (physio) are allocated from this map.
96  *
97  * the kernel allocates its private memory out of special uvm_objects whose
98  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
99  * are "special" and never die).   all kernel objects should be thought of
100  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
101  * object is equal to the size of kernel virtual address space (i.e. the
102  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
103  *
104  * most kernel private memory lives in kernel_object.   the only exception
105  * to this is for memory that belongs to submaps that must be protected
106  * by splvm(). each of these submaps manages their own pages.
107  *
108  * note that just because a kernel object spans the entire kernel virtual
109  * address space doesn't mean that it has to be mapped into the entire space.
110  * large chunks of a kernel object's space go unused either because
111  * that area of kernel VM is unmapped, or there is some other type of
112  * object mapped into that range (e.g. a vnode).    for submap's kernel
113  * objects, the only part of the object that can ever be populated is the
114  * offsets that are managed by the submap.
115  *
116  * note that the "offset" in a kernel object is always the kernel virtual
117  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
118  * example:
119  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
120  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
121  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
122  *   then that means that the page at offset 0x235000 in kernel_object is
123  *   mapped at 0xf8235000.
124  *
125  * kernel objects have one other special property: when the kernel virtual
126  * memory mapping them is unmapped, the backing memory in the object is
127  * freed right away.   this is done with the uvm_km_pgremove() function.
128  * this has to be done because there is no backing store for kernel pages
129  * and no need to save them after they are no longer referenced.
130  */
131 
132 #include <sys/param.h>
133 #include <sys/systm.h>
134 #include <sys/proc.h>
135 #include <sys/kthread.h>
136 #include <uvm/uvm.h>
137 
138 /*
139  * global data structures
140  */
141 
142 struct vm_map *kernel_map = NULL;
143 
144 /* Unconstraint range. */
145 struct uvm_constraint_range	no_constraint = { 0x0, (paddr_t)-1 };
146 
147 /*
148  * local data structues
149  */
150 static struct vm_map		kernel_map_store;
151 
152 /*
153  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
154  * KVM already allocated for text, data, bss, and static data structures).
155  *
156  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
157  *    we assume that [min -> start] has already been allocated and that
158  *    "end" is the end.
159  */
160 void
161 uvm_km_init(vaddr_t start, vaddr_t end)
162 {
163 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
164 
165 	/* next, init kernel memory objects. */
166 
167 	/* kernel_object: for pageable anonymous kernel memory */
168 	uao_init();
169 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
170 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
171 
172 	/*
173 	 * init the map and reserve already allocated kernel space
174 	 * before installing.
175 	 */
176 
177 	uvm_map_setup(&kernel_map_store, base, end,
178 #ifdef KVA_GUARDPAGES
179 	    VM_MAP_PAGEABLE | VM_MAP_GUARDPAGES
180 #else
181 	    VM_MAP_PAGEABLE
182 #endif
183 	    );
184 	kernel_map_store.pmap = pmap_kernel();
185 	if (base != start && uvm_map(&kernel_map_store, &base, start - base,
186 	    NULL, UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
187 	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != 0)
188 		panic("uvm_km_init: could not reserve space for kernel");
189 
190 	kernel_map = &kernel_map_store;
191 }
192 
193 /*
194  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
195  * is allocated all references to that area of VM must go through it.  this
196  * allows the locking of VAs in kernel_map to be broken up into regions.
197  *
198  * => if `fixed' is true, *min specifies where the region described
199  *      by the submap must start
200  * => if submap is non NULL we use that as the submap, otherwise we
201  *	alloc a new map
202  */
203 struct vm_map *
204 uvm_km_suballoc(struct vm_map *map, vaddr_t *min, vaddr_t *max, vsize_t size,
205     int flags, boolean_t fixed, struct vm_map *submap)
206 {
207 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
208 
209 	size = round_page(size);	/* round up to pagesize */
210 
211 	/* first allocate a blank spot in the parent map */
212 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
213 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
214 	    UVM_ADV_RANDOM, mapflags)) != 0) {
215 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
216 	}
217 
218 	/* set VM bounds (min is filled in by uvm_map) */
219 	*max = *min + size;
220 
221 	/* add references to pmap and create or init the submap */
222 	pmap_reference(vm_map_pmap(map));
223 	if (submap == NULL) {
224 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
225 		if (submap == NULL)
226 			panic("uvm_km_suballoc: unable to create submap");
227 	} else {
228 		uvm_map_setup(submap, *min, *max, flags);
229 		submap->pmap = vm_map_pmap(map);
230 	}
231 
232 	/* now let uvm_map_submap plug in it...  */
233 	if (uvm_map_submap(map, *min, *max, submap) != 0)
234 		panic("uvm_km_suballoc: submap allocation failed");
235 
236 	return(submap);
237 }
238 
239 /*
240  * uvm_km_pgremove: remove pages from a kernel uvm_object.
241  *
242  * => when you unmap a part of anonymous kernel memory you want to toss
243  *    the pages right away.    (this gets called from uvm_unmap_...).
244  */
245 void
246 uvm_km_pgremove(struct uvm_object *uobj, vaddr_t start, vaddr_t end)
247 {
248 	struct vm_page *pp;
249 	voff_t curoff;
250 	int slot;
251 
252 	KASSERT(uobj->pgops == &aobj_pager);
253 
254 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
255 		pp = uvm_pagelookup(uobj, curoff);
256 		if (pp && pp->pg_flags & PG_BUSY) {
257 			atomic_setbits_int(&pp->pg_flags, PG_WANTED);
258 			UVM_WAIT(pp, 0, "km_pgrm", 0);
259 			curoff -= PAGE_SIZE; /* loop back to us */
260 			continue;
261 		}
262 
263 		/* free the swap slot, then the page */
264 		slot = uao_dropswap(uobj, curoff >> PAGE_SHIFT);
265 
266 		if (pp != NULL) {
267 			uvm_lock_pageq();
268 			uvm_pagefree(pp);
269 			uvm_unlock_pageq();
270 		} else if (slot != 0) {
271 			uvmexp.swpgonly--;
272 		}
273 	}
274 }
275 
276 
277 /*
278  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
279  *    objects
280  *
281  * => when you unmap a part of anonymous kernel memory you want to toss
282  *    the pages right away.    (this gets called from uvm_unmap_...).
283  * => none of the pages will ever be busy, and none of them will ever
284  *    be on the active or inactive queues (because these objects are
285  *    never allowed to "page").
286  */
287 void
288 uvm_km_pgremove_intrsafe(vaddr_t start, vaddr_t end)
289 {
290 	struct vm_page *pg;
291 	vaddr_t va;
292 	paddr_t pa;
293 
294 	for (va = start; va < end; va += PAGE_SIZE) {
295 		if (!pmap_extract(pmap_kernel(), va, &pa))
296 			continue;
297 		pg = PHYS_TO_VM_PAGE(pa);
298 		if (pg == NULL)
299 			panic("uvm_km_pgremove_intrsafe: no page");
300 		uvm_pagefree(pg);
301 	}
302 }
303 
304 /*
305  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
306  *
307  * => we map wired memory into the specified map using the obj passed in
308  * => NOTE: we can return NULL even if we can wait if there is not enough
309  *	free VM space in the map... caller should be prepared to handle
310  *	this case.
311  * => we return KVA of memory allocated
312  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
313  *	lock the map
314  * => low, high, alignment, boundary, nsegs are the corresponding parameters
315  *	to uvm_pglistalloc
316  * => flags: ZERO - correspond to uvm_pglistalloc flags
317  */
318 vaddr_t
319 uvm_km_kmemalloc_pla(struct vm_map *map, struct uvm_object *obj, vsize_t size,
320     vsize_t valign, int flags, paddr_t low, paddr_t high, paddr_t alignment,
321     paddr_t boundary, int nsegs)
322 {
323 	vaddr_t kva, loopva;
324 	voff_t offset;
325 	struct vm_page *pg;
326 	struct pglist pgl;
327 	int pla_flags;
328 
329 	KASSERT(vm_map_pmap(map) == pmap_kernel());
330 	/* UVM_KMF_VALLOC => !UVM_KMF_ZERO */
331 	KASSERT(!(flags & UVM_KMF_VALLOC) ||
332 	    !(flags & UVM_KMF_ZERO));
333 
334 	/* setup for call */
335 	size = round_page(size);
336 	kva = vm_map_min(map);	/* hint */
337 	if (nsegs == 0)
338 		nsegs = atop(size);
339 
340 	/* allocate some virtual space */
341 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
342 	      valign, UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
343 			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK))) != 0)) {
344 		return(0);
345 	}
346 
347 	/* if all we wanted was VA, return now */
348 	if (flags & UVM_KMF_VALLOC) {
349 		return(kva);
350 	}
351 
352 	/* recover object offset from virtual address */
353 	if (obj != NULL)
354 		offset = kva - vm_map_min(kernel_map);
355 	else
356 		offset = 0;
357 
358 	/*
359 	 * now allocate and map in the memory... note that we are the only ones
360 	 * whom should ever get a handle on this area of VM.
361 	 */
362 	TAILQ_INIT(&pgl);
363 	pla_flags = 0;
364 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
365 	if ((flags & UVM_KMF_NOWAIT) ||
366 	    ((flags & UVM_KMF_CANFAIL) &&
367 	    uvmexp.swpages - uvmexp.swpgonly <= atop(size)))
368 		pla_flags |= UVM_PLA_NOWAIT;
369 	else
370 		pla_flags |= UVM_PLA_WAITOK;
371 	if (flags & UVM_KMF_ZERO)
372 		pla_flags |= UVM_PLA_ZERO;
373 	if (uvm_pglistalloc(size, low, high, alignment, boundary, &pgl, nsegs,
374 	    pla_flags) != 0) {
375 		/* Failed. */
376 		uvm_unmap(map, kva, kva + size);
377 		return (0);
378 	}
379 
380 	loopva = kva;
381 	while (loopva != kva + size) {
382 		pg = TAILQ_FIRST(&pgl);
383 		TAILQ_REMOVE(&pgl, pg, pageq);
384 		uvm_pagealloc_pg(pg, obj, offset, NULL);
385 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
386 		UVM_PAGE_OWN(pg, NULL);
387 
388 		/*
389 		 * map it in: note that we call pmap_enter with the map and
390 		 * object unlocked in case we are kmem_map.
391 		 */
392 		if (obj == NULL) {
393 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
394 			    UVM_PROT_RW);
395 		} else {
396 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
397 			    UVM_PROT_RW,
398 			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
399 		}
400 		loopva += PAGE_SIZE;
401 		offset += PAGE_SIZE;
402 	}
403 	KASSERT(TAILQ_EMPTY(&pgl));
404 	pmap_update(pmap_kernel());
405 
406 	return(kva);
407 }
408 
409 /*
410  * uvm_km_free: free an area of kernel memory
411  */
412 void
413 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size)
414 {
415 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
416 }
417 
418 /*
419  * uvm_km_free_wakeup: free an area of kernel memory and wake up
420  * anyone waiting for vm space.
421  *
422  * => XXX: "wanted" bit + unlock&wait on other end?
423  */
424 void
425 uvm_km_free_wakeup(struct vm_map *map, vaddr_t addr, vsize_t size)
426 {
427 	struct uvm_map_deadq dead_entries;
428 
429 	vm_map_lock(map);
430 	TAILQ_INIT(&dead_entries);
431 	uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
432 	     &dead_entries, FALSE, TRUE);
433 	wakeup(map);
434 	vm_map_unlock(map);
435 
436 	uvm_unmap_detach(&dead_entries, 0);
437 }
438 
439 /*
440  * uvm_km_alloc1: allocate wired down memory in the kernel map.
441  *
442  * => we can sleep if needed
443  */
444 vaddr_t
445 uvm_km_alloc1(struct vm_map *map, vsize_t size, vsize_t align, boolean_t zeroit)
446 {
447 	vaddr_t kva, loopva;
448 	voff_t offset;
449 	struct vm_page *pg;
450 
451 	KASSERT(vm_map_pmap(map) == pmap_kernel());
452 
453 	size = round_page(size);
454 	kva = vm_map_min(map);		/* hint */
455 
456 	/* allocate some virtual space */
457 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
458 	    UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
459 	    UVM_INH_NONE, UVM_ADV_RANDOM, 0)) != 0)) {
460 		return(0);
461 	}
462 
463 	/* recover object offset from virtual address */
464 	offset = kva - vm_map_min(kernel_map);
465 
466 	/* now allocate the memory.  we must be careful about released pages. */
467 	loopva = kva;
468 	while (size) {
469 		/* allocate ram */
470 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
471 		if (pg) {
472 			atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
473 			UVM_PAGE_OWN(pg, NULL);
474 		}
475 		if (__predict_false(pg == NULL)) {
476 			if (curproc == uvm.pagedaemon_proc) {
477 				/*
478 				 * It is unfeasible for the page daemon to
479 				 * sleep for memory, so free what we have
480 				 * allocated and fail.
481 				 */
482 				uvm_unmap(map, kva, loopva - kva);
483 				return (0);
484 			} else {
485 				uvm_wait("km_alloc1w");	/* wait for memory */
486 				continue;
487 			}
488 		}
489 
490 		/*
491 		 * map it in; note we're never called with an intrsafe
492 		 * object, so we always use regular old pmap_enter().
493 		 */
494 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
495 		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
496 
497 		loopva += PAGE_SIZE;
498 		offset += PAGE_SIZE;
499 		size -= PAGE_SIZE;
500 	}
501 	pmap_update(map->pmap);
502 
503 	/*
504 	 * zero on request (note that "size" is now zero due to the above loop
505 	 * so we need to subtract kva from loopva to reconstruct the size).
506 	 */
507 	if (zeroit)
508 		memset((caddr_t)kva, 0, loopva - kva);
509 
510 	return(kva);
511 }
512 
513 /*
514  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
515  *
516  * => memory is not allocated until fault time
517  */
518 
519 vaddr_t
520 uvm_km_valloc(struct vm_map *map, vsize_t size)
521 {
522 	return(uvm_km_valloc_align(map, size, 0, 0));
523 }
524 
525 vaddr_t
526 uvm_km_valloc_try(struct vm_map *map, vsize_t size)
527 {
528 	return(uvm_km_valloc_align(map, size, 0, UVM_FLAG_TRYLOCK));
529 }
530 
531 vaddr_t
532 uvm_km_valloc_align(struct vm_map *map, vsize_t size, vsize_t align, int flags)
533 {
534 	vaddr_t kva;
535 
536 	KASSERT(vm_map_pmap(map) == pmap_kernel());
537 
538 	size = round_page(size);
539 	kva = vm_map_min(map);		/* hint */
540 
541 	/* allocate some virtual space, demand filled by kernel_object. */
542 
543 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
544 	    UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
545 	    UVM_INH_NONE, UVM_ADV_RANDOM, flags)) != 0)) {
546 		return(0);
547 	}
548 
549 	return(kva);
550 }
551 
552 /*
553  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
554  *
555  * => memory is not allocated until fault time
556  * => if no room in map, wait for space to free, unless requested size
557  *    is larger than map (in which case we return 0)
558  */
559 vaddr_t
560 uvm_km_valloc_prefer_wait(struct vm_map *map, vsize_t size, voff_t prefer)
561 {
562 	vaddr_t kva;
563 
564 	KASSERT(vm_map_pmap(map) == pmap_kernel());
565 
566 	size = round_page(size);
567 	if (size > vm_map_max(map) - vm_map_min(map))
568 		return(0);
569 
570 	while (1) {
571 		kva = vm_map_min(map);		/* hint */
572 
573 		/*
574 		 * allocate some virtual space.   will be demand filled
575 		 * by kernel_object.
576 		 */
577 		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
578 		    prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
579 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0)) == 0)) {
580 			return(kva);
581 		}
582 
583 		/* failed.  sleep for a while (on map) */
584 		tsleep(map, PVM, "vallocwait", 0);
585 	}
586 	/*NOTREACHED*/
587 }
588 
589 vaddr_t
590 uvm_km_valloc_wait(struct vm_map *map, vsize_t size)
591 {
592 	return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
593 }
594 
595 #if defined(__HAVE_PMAP_DIRECT)
596 /*
597  * uvm_km_page allocator, __HAVE_PMAP_DIRECT arch
598  * On architectures with machine memory direct mapped into a portion
599  * of KVM, we have very little work to do.  Just get a physical page,
600  * and find and return its VA.
601  */
602 void
603 uvm_km_page_init(void)
604 {
605 	/* nothing */
606 }
607 
608 #else
609 /*
610  * uvm_km_page allocator, non __HAVE_PMAP_DIRECT archs
611  * This is a special allocator that uses a reserve of free pages
612  * to fulfill requests.  It is fast and interrupt safe, but can only
613  * return page sized regions.  Its primary use is as a backend for pool.
614  *
615  * The memory returned is allocated from the larger kernel_map, sparing
616  * pressure on the small interrupt-safe kmem_map.  It is wired, but
617  * not zero filled.
618  */
619 
620 struct uvm_km_pages uvm_km_pages;
621 
622 void uvm_km_createthread(void *);
623 void uvm_km_thread(void *);
624 struct uvm_km_free_page *uvm_km_doputpage(struct uvm_km_free_page *);
625 
626 /*
627  * Allocate the initial reserve, and create the thread which will
628  * keep the reserve full.  For bootstrapping, we allocate more than
629  * the lowat amount, because it may be a while before the thread is
630  * running.
631  */
632 void
633 uvm_km_page_init(void)
634 {
635 	int	lowat_min;
636 	int	i;
637 	int	len, bulk;
638 	vaddr_t	addr;
639 
640 	mtx_init(&uvm_km_pages.mtx, IPL_VM);
641 	if (!uvm_km_pages.lowat) {
642 		/* based on physmem, calculate a good value here */
643 		uvm_km_pages.lowat = physmem / 256;
644 		lowat_min = physmem < atop(16 * 1024 * 1024) ? 32 : 128;
645 		if (uvm_km_pages.lowat < lowat_min)
646 			uvm_km_pages.lowat = lowat_min;
647 	}
648 	if (uvm_km_pages.lowat > UVM_KM_PAGES_LOWAT_MAX)
649 		uvm_km_pages.lowat = UVM_KM_PAGES_LOWAT_MAX;
650 	uvm_km_pages.hiwat = 4 * uvm_km_pages.lowat;
651 	if (uvm_km_pages.hiwat > UVM_KM_PAGES_HIWAT_MAX)
652 		uvm_km_pages.hiwat = UVM_KM_PAGES_HIWAT_MAX;
653 
654 	/* Allocate all pages in as few allocations as possible. */
655 	len = 0;
656 	bulk = uvm_km_pages.hiwat;
657 	while (len < uvm_km_pages.hiwat && bulk > 0) {
658 		bulk = MIN(bulk, uvm_km_pages.hiwat - len);
659 		addr = vm_map_min(kernel_map);
660 		if (uvm_map(kernel_map, &addr, (vsize_t)bulk << PAGE_SHIFT,
661 		    NULL, UVM_UNKNOWN_OFFSET, 0,
662 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
663 		    UVM_ADV_RANDOM, UVM_KMF_TRYLOCK)) != 0) {
664 			bulk /= 2;
665 			continue;
666 		}
667 
668 		for (i = len; i < len + bulk; i++, addr += PAGE_SIZE)
669 			uvm_km_pages.page[i] = addr;
670 		len += bulk;
671 	}
672 
673 	uvm_km_pages.free = len;
674 	for (i = len; i < UVM_KM_PAGES_HIWAT_MAX; i++)
675 		uvm_km_pages.page[i] = 0;
676 
677 	/* tone down if really high */
678 	if (uvm_km_pages.lowat > 512)
679 		uvm_km_pages.lowat = 512;
680 
681 	kthread_create_deferred(uvm_km_createthread, NULL);
682 }
683 
684 void
685 uvm_km_createthread(void *arg)
686 {
687 	kthread_create(uvm_km_thread, NULL, &uvm_km_pages.km_proc, "kmthread");
688 }
689 
690 /*
691  * Endless loop.  We grab pages in increments of 16 pages, then
692  * quickly swap them into the list.  At some point we can consider
693  * returning memory to the system if we have too many free pages,
694  * but that's not implemented yet.
695  */
696 void
697 uvm_km_thread(void *arg)
698 {
699 	vaddr_t pg[16];
700 	int i;
701 	int allocmore = 0;
702 	int flags;
703 	struct uvm_km_free_page *fp = NULL;
704 
705 	for (;;) {
706 		mtx_enter(&uvm_km_pages.mtx);
707 		if (uvm_km_pages.free >= uvm_km_pages.lowat &&
708 		    uvm_km_pages.freelist == NULL) {
709 			msleep(&uvm_km_pages.km_proc, &uvm_km_pages.mtx,
710 			    PVM, "kmalloc", 0);
711 		}
712 		allocmore = uvm_km_pages.free < uvm_km_pages.lowat;
713 		fp = uvm_km_pages.freelist;
714 		uvm_km_pages.freelist = NULL;
715 		uvm_km_pages.freelistlen = 0;
716 		mtx_leave(&uvm_km_pages.mtx);
717 
718 		if (allocmore) {
719 			/*
720 			 * If there was nothing on the freelist, then we
721 			 * must obtain at least one page to make progress.
722 			 * So, only use UVM_KMF_TRYLOCK for the first page
723 			 * if fp != NULL
724 			 */
725 			flags = UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
726 			    UVM_INH_NONE, UVM_ADV_RANDOM,
727 			    fp != NULL ? UVM_KMF_TRYLOCK : 0);
728 			bzero(pg, sizeof(pg));
729 			for (i = 0; i < nitems(pg); i++) {
730 				pg[i] = vm_map_min(kernel_map);
731 				if (uvm_map(kernel_map, &pg[i], PAGE_SIZE,
732 				    NULL, UVM_UNKNOWN_OFFSET, 0, flags) != 0) {
733 					pg[i] = 0;
734 					break;
735 				}
736 
737 				/* made progress, so don't sleep for more */
738 				flags = UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
739 				    UVM_INH_NONE, UVM_ADV_RANDOM,
740 				    UVM_KMF_TRYLOCK);
741 			}
742 
743 			mtx_enter(&uvm_km_pages.mtx);
744 			for (i = 0; i < nitems(pg); i++) {
745 				if (uvm_km_pages.free ==
746 				    nitems(uvm_km_pages.page))
747 					break;
748 				else if (pg[i] != 0)
749 					uvm_km_pages.page[uvm_km_pages.free++]
750 					    = pg[i];
751 			}
752 			wakeup(&uvm_km_pages.free);
753 			mtx_leave(&uvm_km_pages.mtx);
754 
755 			/* Cleanup left-over pages (if any). */
756 			for (; i < nitems(pg); i++) {
757 				if (pg[i] != 0) {
758 					uvm_unmap(kernel_map,
759 					    pg[i], pg[i] + PAGE_SIZE);
760 				}
761 			}
762 		}
763 		while (fp) {
764 			fp = uvm_km_doputpage(fp);
765 		}
766 	}
767 }
768 
769 struct uvm_km_free_page *
770 uvm_km_doputpage(struct uvm_km_free_page *fp)
771 {
772 	vaddr_t va = (vaddr_t)fp;
773 	struct vm_page *pg;
774 	int	freeva = 1;
775 	struct uvm_km_free_page *nextfp = fp->next;
776 
777 	pg = uvm_atopg(va);
778 
779 	pmap_kremove(va, PAGE_SIZE);
780 	pmap_update(kernel_map->pmap);
781 
782 	mtx_enter(&uvm_km_pages.mtx);
783 	if (uvm_km_pages.free < uvm_km_pages.hiwat) {
784 		uvm_km_pages.page[uvm_km_pages.free++] = va;
785 		freeva = 0;
786 	}
787 	mtx_leave(&uvm_km_pages.mtx);
788 
789 	if (freeva)
790 		uvm_unmap(kernel_map, va, va + PAGE_SIZE);
791 
792 	uvm_pagefree(pg);
793 	return (nextfp);
794 }
795 #endif	/* !__HAVE_PMAP_DIRECT */
796 
797 void *
798 km_alloc(size_t sz, const struct kmem_va_mode *kv,
799     const struct kmem_pa_mode *kp, const struct kmem_dyn_mode *kd)
800 {
801 	struct vm_map *map;
802 	struct vm_page *pg;
803 	struct pglist pgl;
804 	int mapflags = 0;
805 	vm_prot_t prot;
806 	int pla_flags;
807 	int pla_maxseg;
808 #ifdef __HAVE_PMAP_DIRECT
809 	paddr_t pa;
810 #endif
811 	vaddr_t va, sva;
812 
813 	KASSERT(sz == round_page(sz));
814 
815 	TAILQ_INIT(&pgl);
816 
817 	if (kp->kp_nomem || kp->kp_pageable)
818 		goto alloc_va;
819 
820 	pla_flags = kd->kd_waitok ? UVM_PLA_WAITOK : UVM_PLA_NOWAIT;
821 	pla_flags |= UVM_PLA_TRYCONTIG;
822 	if (kp->kp_zero)
823 		pla_flags |= UVM_PLA_ZERO;
824 
825 	pla_maxseg = kp->kp_maxseg;
826 	if (pla_maxseg == 0)
827 		pla_maxseg = sz / PAGE_SIZE;
828 
829 	if (uvm_pglistalloc(sz, kp->kp_constraint->ucr_low,
830 	    kp->kp_constraint->ucr_high, kp->kp_align, kp->kp_boundary,
831 	    &pgl, pla_maxseg, pla_flags)) {
832 		return (NULL);
833 	}
834 
835 #ifdef __HAVE_PMAP_DIRECT
836 	if (kv->kv_align || kv->kv_executable)
837 		goto alloc_va;
838 #if 1
839 	/*
840 	 * For now, only do DIRECT mappings for single page
841 	 * allocations, until we figure out a good way to deal
842 	 * with contig allocations in km_free.
843 	 */
844 	if (!kv->kv_singlepage)
845 		goto alloc_va;
846 #endif
847 	/*
848 	 * Dubious optimization. If we got a contig segment, just map it
849 	 * through the direct map.
850 	 */
851 	TAILQ_FOREACH(pg, &pgl, pageq) {
852 		if (pg != TAILQ_FIRST(&pgl) &&
853 		    VM_PAGE_TO_PHYS(pg) != pa + PAGE_SIZE)
854 			break;
855 		pa = VM_PAGE_TO_PHYS(pg);
856 	}
857 	if (pg == NULL) {
858 		TAILQ_FOREACH(pg, &pgl, pageq) {
859 			vaddr_t v;
860 			v = pmap_map_direct(pg);
861 			if (pg == TAILQ_FIRST(&pgl))
862 				va = v;
863 		}
864 		return ((void *)va);
865 	}
866 #endif
867 alloc_va:
868 	if (kv->kv_executable) {
869 		prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
870 	} else {
871 		prot = VM_PROT_READ | VM_PROT_WRITE;
872 	}
873 
874 	if (kp->kp_pageable) {
875 		KASSERT(kp->kp_object);
876 		KASSERT(!kv->kv_singlepage);
877 	} else {
878 		KASSERT(kp->kp_object == NULL);
879 	}
880 
881 	if (kv->kv_singlepage) {
882 		KASSERT(sz == PAGE_SIZE);
883 #ifdef __HAVE_PMAP_DIRECT
884 		panic("km_alloc: DIRECT single page");
885 #else
886 		mtx_enter(&uvm_km_pages.mtx);
887 		while (uvm_km_pages.free == 0) {
888 			if (kd->kd_waitok == 0) {
889 				mtx_leave(&uvm_km_pages.mtx);
890 				uvm_pglistfree(&pgl);
891 				return NULL;
892 			}
893 			msleep(&uvm_km_pages.free, &uvm_km_pages.mtx, PVM,
894 			    "getpage", 0);
895 		}
896 		va = uvm_km_pages.page[--uvm_km_pages.free];
897 		if (uvm_km_pages.free < uvm_km_pages.lowat &&
898 		    curproc != uvm_km_pages.km_proc) {
899 			if (kd->kd_slowdown)
900 				*kd->kd_slowdown = 1;
901 			wakeup(&uvm_km_pages.km_proc);
902 		}
903 		mtx_leave(&uvm_km_pages.mtx);
904 #endif
905 	} else {
906 		struct uvm_object *uobj = NULL;
907 
908 		if (kd->kd_trylock)
909 			mapflags |= UVM_KMF_TRYLOCK;
910 
911 		if (kp->kp_object)
912 			uobj = *kp->kp_object;
913 try_map:
914 		map = *kv->kv_map;
915 		va = vm_map_min(map);
916 		if (uvm_map(map, &va, sz, uobj, kd->kd_prefer,
917 		    kv->kv_align, UVM_MAPFLAG(prot, prot, UVM_INH_NONE,
918 		    UVM_ADV_RANDOM, mapflags))) {
919 			if (kv->kv_wait && kd->kd_waitok) {
920 				tsleep(map, PVM, "km_allocva", 0);
921 				goto try_map;
922 			}
923 			uvm_pglistfree(&pgl);
924 			return (NULL);
925 		}
926 	}
927 	sva = va;
928 	TAILQ_FOREACH(pg, &pgl, pageq) {
929 		if (kp->kp_pageable)
930 			pmap_enter(pmap_kernel(), va, VM_PAGE_TO_PHYS(pg),
931 			    prot, prot | PMAP_WIRED);
932 		else
933 			pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), prot);
934 		va += PAGE_SIZE;
935 	}
936 	pmap_update(pmap_kernel());
937 	return ((void *)sva);
938 }
939 
940 void
941 km_free(void *v, size_t sz, const struct kmem_va_mode *kv,
942     const struct kmem_pa_mode *kp)
943 {
944 	vaddr_t sva, eva, va;
945 	struct vm_page *pg;
946 	struct pglist pgl;
947 
948 	sva = va = (vaddr_t)v;
949 	eva = va + sz;
950 
951 	if (kp->kp_nomem) {
952 		goto free_va;
953 	}
954 
955 	if (kv->kv_singlepage) {
956 #ifdef __HAVE_PMAP_DIRECT
957 		pg = pmap_unmap_direct(va);
958 		uvm_pagefree(pg);
959 #else
960 		struct uvm_km_free_page *fp = v;
961 		mtx_enter(&uvm_km_pages.mtx);
962 		fp->next = uvm_km_pages.freelist;
963 		uvm_km_pages.freelist = fp;
964 		if (uvm_km_pages.freelistlen++ > 16)
965 			wakeup(&uvm_km_pages.km_proc);
966 		mtx_leave(&uvm_km_pages.mtx);
967 #endif
968 		return;
969 	}
970 
971 	if (kp->kp_pageable) {
972 		pmap_remove(pmap_kernel(), sva, eva);
973 		pmap_update(pmap_kernel());
974 	} else {
975 		TAILQ_INIT(&pgl);
976 		for (va = sva; va < eva; va += PAGE_SIZE) {
977 			paddr_t pa;
978 
979 			if (!pmap_extract(pmap_kernel(), va, &pa))
980 				continue;
981 
982 			pg = PHYS_TO_VM_PAGE(pa);
983 			if (pg == NULL) {
984 				panic("km_free: unmanaged page 0x%lx\n", pa);
985 			}
986 			TAILQ_INSERT_TAIL(&pgl, pg, pageq);
987 		}
988 		pmap_kremove(sva, sz);
989 		pmap_update(pmap_kernel());
990 		uvm_pglistfree(&pgl);
991 	}
992 free_va:
993 	uvm_unmap(*kv->kv_map, sva, eva);
994 	if (kv->kv_wait)
995 		wakeup(*kv->kv_map);
996 }
997 
998 const struct kmem_va_mode kv_any = {
999 	.kv_map = &kernel_map,
1000 };
1001 
1002 const struct kmem_va_mode kv_intrsafe = {
1003 	.kv_map = &kmem_map,
1004 };
1005 
1006 const struct kmem_va_mode kv_page = {
1007 	.kv_singlepage = 1
1008 };
1009 
1010 const struct kmem_pa_mode kp_dirty = {
1011 	.kp_constraint = &no_constraint
1012 };
1013 
1014 const struct kmem_pa_mode kp_dma = {
1015 	.kp_constraint = &dma_constraint
1016 };
1017 
1018 const struct kmem_pa_mode kp_dma_contig = {
1019 	.kp_constraint = &dma_constraint,
1020 	.kp_maxseg = 1
1021 };
1022 
1023 const struct kmem_pa_mode kp_dma_zero = {
1024 	.kp_constraint = &dma_constraint,
1025 	.kp_zero = 1
1026 };
1027 
1028 const struct kmem_pa_mode kp_zero = {
1029 	.kp_constraint = &no_constraint,
1030 	.kp_zero = 1
1031 };
1032 
1033 const struct kmem_pa_mode kp_pageable = {
1034 	.kp_object = &uvm.kernel_object,
1035 	.kp_pageable = 1
1036 /* XXX - kp_nomem, maybe, but we'll need to fix km_free. */
1037 };
1038 
1039 const struct kmem_pa_mode kp_none = {
1040 	.kp_nomem = 1
1041 };
1042 
1043 const struct kmem_dyn_mode kd_waitok = {
1044 	.kd_waitok = 1,
1045 	.kd_prefer = UVM_UNKNOWN_OFFSET
1046 };
1047 
1048 const struct kmem_dyn_mode kd_nowait = {
1049 	.kd_prefer = UVM_UNKNOWN_OFFSET
1050 };
1051 
1052 const struct kmem_dyn_mode kd_trylock = {
1053 	.kd_trylock = 1,
1054 	.kd_prefer = UVM_UNKNOWN_OFFSET
1055 };
1056