xref: /openbsd-src/sys/uvm/uvm_km.c (revision 4c1e55dc91edd6e69ccc60ce855900fbc12cf34f)
1 /*	$OpenBSD: uvm_km.c,v 1.107 2012/03/09 13:01:29 ariane Exp $	*/
2 /*	$NetBSD: uvm_km.c,v 1.42 2001/01/14 02:10:01 thorpej Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * Copyright (c) 1991, 1993, The Regents of the University of California.
7  *
8  * All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by Charles D. Cranor,
24  *      Washington University, the University of California, Berkeley and
25  *      its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
43  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  * uvm_km.c: handle kernel memory allocation and management
72  */
73 
74 /*
75  * overview of kernel memory management:
76  *
77  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
78  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
79  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
80  *
81  * the kernel_map has several "submaps."   submaps can only appear in
82  * the kernel_map (user processes can't use them).   submaps "take over"
83  * the management of a sub-range of the kernel's address space.  submaps
84  * are typically allocated at boot time and are never released.   kernel
85  * virtual address space that is mapped by a submap is locked by the
86  * submap's lock -- not the kernel_map's lock.
87  *
88  * thus, the useful feature of submaps is that they allow us to break
89  * up the locking and protection of the kernel address space into smaller
90  * chunks.
91  *
92  * The VM system has several standard kernel submaps:
93  *   kmem_map: Contains only wired kernel memory for malloc(9).
94  *	       Note: All access to this map must be protected by splvm as
95  *	       calls to malloc(9) are allowed in interrupt handlers.
96  *   exec_map: Memory to hold arguments to system calls are allocated from
97  *	       this map.
98  *	       XXX: This is primeraly used to artificially limit the number
99  *	       of concurrent processes doing an exec.
100  *   phys_map: Buffers for vmapbuf (physio) are allocated from this map.
101  *
102  * the kernel allocates its private memory out of special uvm_objects whose
103  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
104  * are "special" and never die).   all kernel objects should be thought of
105  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
106  * object is equal to the size of kernel virtual address space (i.e. the
107  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
108  *
109  * most kernel private memory lives in kernel_object.   the only exception
110  * to this is for memory that belongs to submaps that must be protected
111  * by splvm(). each of these submaps manages their own pages.
112  *
113  * note that just because a kernel object spans the entire kernel virtual
114  * address space doesn't mean that it has to be mapped into the entire space.
115  * large chunks of a kernel object's space go unused either because
116  * that area of kernel VM is unmapped, or there is some other type of
117  * object mapped into that range (e.g. a vnode).    for submap's kernel
118  * objects, the only part of the object that can ever be populated is the
119  * offsets that are managed by the submap.
120  *
121  * note that the "offset" in a kernel object is always the kernel virtual
122  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
123  * example:
124  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
125  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
126  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
127  *   then that means that the page at offset 0x235000 in kernel_object is
128  *   mapped at 0xf8235000.
129  *
130  * kernel objects have one other special property: when the kernel virtual
131  * memory mapping them is unmapped, the backing memory in the object is
132  * freed right away.   this is done with the uvm_km_pgremove() function.
133  * this has to be done because there is no backing store for kernel pages
134  * and no need to save them after they are no longer referenced.
135  */
136 
137 #include <sys/param.h>
138 #include <sys/systm.h>
139 #include <sys/proc.h>
140 #include <sys/kthread.h>
141 #include <uvm/uvm.h>
142 
143 /*
144  * global data structures
145  */
146 
147 struct vm_map *kernel_map = NULL;
148 
149 /* Unconstraint range. */
150 struct uvm_constraint_range	no_constraint = { 0x0, (paddr_t)-1 };
151 
152 /*
153  * local data structues
154  */
155 
156 static struct vm_map		kernel_map_store;
157 
158 /*
159  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
160  * KVM already allocated for text, data, bss, and static data structures).
161  *
162  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
163  *    we assume that [min -> start] has already been allocated and that
164  *    "end" is the end.
165  */
166 
167 void
168 uvm_km_init(vaddr_t start, vaddr_t end)
169 {
170 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
171 
172 	/*
173 	 * next, init kernel memory objects.
174 	 */
175 
176 	/* kernel_object: for pageable anonymous kernel memory */
177 	uao_init();
178 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
179 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
180 
181 	/*
182 	 * init the map and reserve already allocated kernel space
183 	 * before installing.
184 	 */
185 
186 	uvm_map_setup(&kernel_map_store, base, end,
187 #ifdef KVA_GUARDPAGES
188 	    VM_MAP_PAGEABLE | VM_MAP_GUARDPAGES
189 #else
190 	    VM_MAP_PAGEABLE
191 #endif
192 	    );
193 	kernel_map_store.pmap = pmap_kernel();
194 	if (base != start && uvm_map(&kernel_map_store, &base, start - base,
195 	    NULL, UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
196 	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != 0)
197 		panic("uvm_km_init: could not reserve space for kernel");
198 
199 	/*
200 	 * install!
201 	 */
202 
203 	kernel_map = &kernel_map_store;
204 }
205 
206 /*
207  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
208  * is allocated all references to that area of VM must go through it.  this
209  * allows the locking of VAs in kernel_map to be broken up into regions.
210  *
211  * => if `fixed' is true, *min specifies where the region described
212  *      by the submap must start
213  * => if submap is non NULL we use that as the submap, otherwise we
214  *	alloc a new map
215  */
216 struct vm_map *
217 uvm_km_suballoc(struct vm_map *map, vaddr_t *min, vaddr_t *max, vsize_t size,
218     int flags, boolean_t fixed, struct vm_map *submap)
219 {
220 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
221 
222 	size = round_page(size);	/* round up to pagesize */
223 
224 	/*
225 	 * first allocate a blank spot in the parent map
226 	 */
227 
228 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
229 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
230 	    UVM_ADV_RANDOM, mapflags)) != 0) {
231 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
232 	}
233 
234 	/*
235 	 * set VM bounds (min is filled in by uvm_map)
236 	 */
237 
238 	*max = *min + size;
239 
240 	/*
241 	 * add references to pmap and create or init the submap
242 	 */
243 
244 	pmap_reference(vm_map_pmap(map));
245 	if (submap == NULL) {
246 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
247 		if (submap == NULL)
248 			panic("uvm_km_suballoc: unable to create submap");
249 	} else {
250 		uvm_map_setup(submap, *min, *max, flags);
251 		submap->pmap = vm_map_pmap(map);
252 	}
253 
254 	/*
255 	 * now let uvm_map_submap plug in it...
256 	 */
257 
258 	if (uvm_map_submap(map, *min, *max, submap) != 0)
259 		panic("uvm_km_suballoc: submap allocation failed");
260 
261 	return(submap);
262 }
263 
264 /*
265  * uvm_km_pgremove: remove pages from a kernel uvm_object.
266  *
267  * => when you unmap a part of anonymous kernel memory you want to toss
268  *    the pages right away.    (this gets called from uvm_unmap_...).
269  */
270 void
271 uvm_km_pgremove(struct uvm_object *uobj, vaddr_t start, vaddr_t end)
272 {
273 	struct vm_page *pp;
274 	voff_t curoff;
275 	int slot;
276 
277 	KASSERT(uobj->pgops == &aobj_pager);
278 
279 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
280 		pp = uvm_pagelookup(uobj, curoff);
281 		if (pp && pp->pg_flags & PG_BUSY) {
282 			atomic_setbits_int(&pp->pg_flags, PG_WANTED);
283 			UVM_UNLOCK_AND_WAIT(pp, &uobj->vmobjlock, 0,
284 			    "km_pgrm", 0);
285 			simple_lock(&uobj->vmobjlock);
286 			curoff -= PAGE_SIZE; /* loop back to us */
287 			continue;
288 		}
289 
290 		/* free the swap slot, then the page */
291 		slot = uao_dropswap(uobj, curoff >> PAGE_SHIFT);
292 
293 		if (pp != NULL) {
294 			uvm_lock_pageq();
295 			uvm_pagefree(pp);
296 			uvm_unlock_pageq();
297 		} else if (slot != 0) {
298 			simple_lock(&uvm.swap_data_lock);
299 			uvmexp.swpgonly--;
300 			simple_unlock(&uvm.swap_data_lock);
301 		}
302 	}
303 }
304 
305 
306 /*
307  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
308  *    objects
309  *
310  * => when you unmap a part of anonymous kernel memory you want to toss
311  *    the pages right away.    (this gets called from uvm_unmap_...).
312  * => none of the pages will ever be busy, and none of them will ever
313  *    be on the active or inactive queues (because these objects are
314  *    never allowed to "page").
315  */
316 
317 void
318 uvm_km_pgremove_intrsafe(vaddr_t start, vaddr_t end)
319 {
320 	struct vm_page *pg;
321 	vaddr_t va;
322 	paddr_t pa;
323 
324 	for (va = start; va < end; va += PAGE_SIZE) {
325 		if (!pmap_extract(pmap_kernel(), va, &pa))
326 			continue;
327 		pg = PHYS_TO_VM_PAGE(pa);
328 		if (pg == NULL)
329 			panic("uvm_km_pgremove_intrsafe: no page");
330 		uvm_pagefree(pg);
331 	}
332 }
333 
334 /*
335  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
336  *
337  * => we map wired memory into the specified map using the obj passed in
338  * => NOTE: we can return NULL even if we can wait if there is not enough
339  *	free VM space in the map... caller should be prepared to handle
340  *	this case.
341  * => we return KVA of memory allocated
342  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
343  *	lock the map
344  * => low, high, alignment, boundary, nsegs are the corresponding parameters
345  *	to uvm_pglistalloc
346  * => flags: ZERO - correspond to uvm_pglistalloc flags
347  */
348 
349 vaddr_t
350 uvm_km_kmemalloc_pla(struct vm_map *map, struct uvm_object *obj, vsize_t size,
351     vsize_t valign, int flags, paddr_t low, paddr_t high, paddr_t alignment,
352     paddr_t boundary, int nsegs)
353 {
354 	vaddr_t kva, loopva;
355 	voff_t offset;
356 	struct vm_page *pg;
357 	struct pglist pgl;
358 	int pla_flags;
359 
360 	KASSERT(vm_map_pmap(map) == pmap_kernel());
361 	/* UVM_KMF_VALLOC => !UVM_KMF_ZERO */
362 	KASSERT(!(flags & UVM_KMF_VALLOC) ||
363 	    !(flags & UVM_KMF_ZERO));
364 
365 	/*
366 	 * setup for call
367 	 */
368 
369 	size = round_page(size);
370 	kva = vm_map_min(map);	/* hint */
371 	if (nsegs == 0)
372 		nsegs = atop(size);
373 
374 	/*
375 	 * allocate some virtual space
376 	 */
377 
378 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
379 	      valign, UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
380 			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK))) != 0)) {
381 		return(0);
382 	}
383 
384 	/*
385 	 * if all we wanted was VA, return now
386 	 */
387 
388 	if (flags & UVM_KMF_VALLOC) {
389 		return(kva);
390 	}
391 
392 	/*
393 	 * recover object offset from virtual address
394 	 */
395 
396 	if (obj != NULL)
397 		offset = kva - vm_map_min(kernel_map);
398 	else
399 		offset = 0;
400 
401 	/*
402 	 * now allocate and map in the memory... note that we are the only ones
403 	 * whom should ever get a handle on this area of VM.
404 	 */
405 	TAILQ_INIT(&pgl);
406 	pla_flags = 0;
407 	if ((flags & UVM_KMF_NOWAIT) ||
408 	    ((flags & UVM_KMF_CANFAIL) &&
409 	    uvmexp.swpgonly - uvmexp.swpages <= atop(size)))
410 		pla_flags |= UVM_PLA_NOWAIT;
411 	else
412 		pla_flags |= UVM_PLA_WAITOK;
413 	if (flags & UVM_KMF_ZERO)
414 		pla_flags |= UVM_PLA_ZERO;
415 	if (uvm_pglistalloc(size, low, high, alignment, boundary, &pgl, nsegs,
416 	    pla_flags) != 0) {
417 		/* Failed. */
418 		uvm_unmap(map, kva, kva + size);
419 		return (0);
420 	}
421 
422 	loopva = kva;
423 	while (loopva != kva + size) {
424 		pg = TAILQ_FIRST(&pgl);
425 		TAILQ_REMOVE(&pgl, pg, pageq);
426 		uvm_pagealloc_pg(pg, obj, offset, NULL);
427 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
428 		UVM_PAGE_OWN(pg, NULL);
429 
430 		/*
431 		 * map it in: note that we call pmap_enter with the map and
432 		 * object unlocked in case we are kmem_map.
433 		 */
434 
435 		if (obj == NULL) {
436 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
437 			    UVM_PROT_RW);
438 		} else {
439 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
440 			    UVM_PROT_RW,
441 			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
442 		}
443 		loopva += PAGE_SIZE;
444 		offset += PAGE_SIZE;
445 	}
446 	KASSERT(TAILQ_EMPTY(&pgl));
447 	pmap_update(pmap_kernel());
448 
449 	return(kva);
450 }
451 
452 /*
453  * uvm_km_free: free an area of kernel memory
454  */
455 
456 void
457 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size)
458 {
459 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
460 }
461 
462 /*
463  * uvm_km_free_wakeup: free an area of kernel memory and wake up
464  * anyone waiting for vm space.
465  *
466  * => XXX: "wanted" bit + unlock&wait on other end?
467  */
468 
469 void
470 uvm_km_free_wakeup(struct vm_map *map, vaddr_t addr, vsize_t size)
471 {
472 	struct uvm_map_deadq dead_entries;
473 
474 	vm_map_lock(map);
475 	TAILQ_INIT(&dead_entries);
476 	uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
477 	     &dead_entries, FALSE, TRUE);
478 	wakeup(map);
479 	vm_map_unlock(map);
480 
481 	uvm_unmap_detach(&dead_entries, 0);
482 }
483 
484 /*
485  * uvm_km_alloc1: allocate wired down memory in the kernel map.
486  *
487  * => we can sleep if needed
488  */
489 
490 vaddr_t
491 uvm_km_alloc1(struct vm_map *map, vsize_t size, vsize_t align, boolean_t zeroit)
492 {
493 	vaddr_t kva, loopva;
494 	voff_t offset;
495 	struct vm_page *pg;
496 
497 	KASSERT(vm_map_pmap(map) == pmap_kernel());
498 
499 	size = round_page(size);
500 	kva = vm_map_min(map);		/* hint */
501 
502 	/*
503 	 * allocate some virtual space
504 	 */
505 
506 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
507 	    UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
508 	    UVM_INH_NONE, UVM_ADV_RANDOM, 0)) != 0)) {
509 		return(0);
510 	}
511 
512 	/*
513 	 * recover object offset from virtual address
514 	 */
515 
516 	offset = kva - vm_map_min(kernel_map);
517 
518 	/*
519 	 * now allocate the memory.  we must be careful about released pages.
520 	 */
521 
522 	loopva = kva;
523 	while (size) {
524 		simple_lock(&uvm.kernel_object->vmobjlock);
525 		/* allocate ram */
526 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
527 		if (pg) {
528 			atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
529 			UVM_PAGE_OWN(pg, NULL);
530 		}
531 		simple_unlock(&uvm.kernel_object->vmobjlock);
532 		if (__predict_false(pg == NULL)) {
533 			if (curproc == uvm.pagedaemon_proc) {
534 				/*
535 				 * It is unfeasible for the page daemon to
536 				 * sleep for memory, so free what we have
537 				 * allocated and fail.
538 				 */
539 				uvm_unmap(map, kva, loopva - kva);
540 				return (0);
541 			} else {
542 				uvm_wait("km_alloc1w");	/* wait for memory */
543 				continue;
544 			}
545 		}
546 
547 		/*
548 		 * map it in; note we're never called with an intrsafe
549 		 * object, so we always use regular old pmap_enter().
550 		 */
551 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
552 		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
553 
554 		loopva += PAGE_SIZE;
555 		offset += PAGE_SIZE;
556 		size -= PAGE_SIZE;
557 	}
558 	pmap_update(map->pmap);
559 
560 	/*
561 	 * zero on request (note that "size" is now zero due to the above loop
562 	 * so we need to subtract kva from loopva to reconstruct the size).
563 	 */
564 
565 	if (zeroit)
566 		memset((caddr_t)kva, 0, loopva - kva);
567 
568 	return(kva);
569 }
570 
571 /*
572  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
573  *
574  * => memory is not allocated until fault time
575  */
576 
577 vaddr_t
578 uvm_km_valloc(struct vm_map *map, vsize_t size)
579 {
580 	return(uvm_km_valloc_align(map, size, 0, 0));
581 }
582 
583 vaddr_t
584 uvm_km_valloc_try(struct vm_map *map, vsize_t size)
585 {
586 	return(uvm_km_valloc_align(map, size, 0, UVM_FLAG_TRYLOCK));
587 }
588 
589 vaddr_t
590 uvm_km_valloc_align(struct vm_map *map, vsize_t size, vsize_t align, int flags)
591 {
592 	vaddr_t kva;
593 
594 	KASSERT(vm_map_pmap(map) == pmap_kernel());
595 
596 	size = round_page(size);
597 	kva = vm_map_min(map);		/* hint */
598 
599 	/*
600 	 * allocate some virtual space.  will be demand filled by kernel_object.
601 	 */
602 
603 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
604 	    UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
605 	    UVM_INH_NONE, UVM_ADV_RANDOM, flags)) != 0)) {
606 		return(0);
607 	}
608 
609 	return(kva);
610 }
611 
612 /*
613  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
614  *
615  * => memory is not allocated until fault time
616  * => if no room in map, wait for space to free, unless requested size
617  *    is larger than map (in which case we return 0)
618  */
619 
620 vaddr_t
621 uvm_km_valloc_prefer_wait(struct vm_map *map, vsize_t size, voff_t prefer)
622 {
623 	vaddr_t kva;
624 
625 	KASSERT(vm_map_pmap(map) == pmap_kernel());
626 
627 	size = round_page(size);
628 	if (size > vm_map_max(map) - vm_map_min(map))
629 		return(0);
630 
631 	while (1) {
632 		kva = vm_map_min(map);		/* hint */
633 
634 		/*
635 		 * allocate some virtual space.   will be demand filled
636 		 * by kernel_object.
637 		 */
638 
639 		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
640 		    prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
641 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0)) == 0)) {
642 			return(kva);
643 		}
644 
645 		/*
646 		 * failed.  sleep for a while (on map)
647 		 */
648 
649 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
650 	}
651 	/*NOTREACHED*/
652 }
653 
654 vaddr_t
655 uvm_km_valloc_wait(struct vm_map *map, vsize_t size)
656 {
657 	return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
658 }
659 
660 #if defined(__HAVE_PMAP_DIRECT)
661 /*
662  * uvm_km_page allocator, __HAVE_PMAP_DIRECT arch
663  * On architectures with machine memory direct mapped into a portion
664  * of KVM, we have very little work to do.  Just get a physical page,
665  * and find and return its VA.
666  */
667 void
668 uvm_km_page_init(void)
669 {
670 	/* nothing */
671 }
672 
673 #else
674 /*
675  * uvm_km_page allocator, non __HAVE_PMAP_DIRECT archs
676  * This is a special allocator that uses a reserve of free pages
677  * to fulfill requests.  It is fast and interrupt safe, but can only
678  * return page sized regions.  Its primary use is as a backend for pool.
679  *
680  * The memory returned is allocated from the larger kernel_map, sparing
681  * pressure on the small interrupt-safe kmem_map.  It is wired, but
682  * not zero filled.
683  */
684 
685 struct uvm_km_pages uvm_km_pages;
686 
687 void uvm_km_createthread(void *);
688 void uvm_km_thread(void *);
689 struct uvm_km_free_page *uvm_km_doputpage(struct uvm_km_free_page *);
690 
691 /*
692  * Allocate the initial reserve, and create the thread which will
693  * keep the reserve full.  For bootstrapping, we allocate more than
694  * the lowat amount, because it may be a while before the thread is
695  * running.
696  */
697 void
698 uvm_km_page_init(void)
699 {
700 	int	lowat_min;
701 	int	i;
702 	int	len, bulk;
703 	vaddr_t	addr;
704 
705 	mtx_init(&uvm_km_pages.mtx, IPL_VM);
706 	if (!uvm_km_pages.lowat) {
707 		/* based on physmem, calculate a good value here */
708 		uvm_km_pages.lowat = physmem / 256;
709 		lowat_min = physmem < atop(16 * 1024 * 1024) ? 32 : 128;
710 		if (uvm_km_pages.lowat < lowat_min)
711 			uvm_km_pages.lowat = lowat_min;
712 	}
713 	if (uvm_km_pages.lowat > UVM_KM_PAGES_LOWAT_MAX)
714 		uvm_km_pages.lowat = UVM_KM_PAGES_LOWAT_MAX;
715 	uvm_km_pages.hiwat = 4 * uvm_km_pages.lowat;
716 	if (uvm_km_pages.hiwat > UVM_KM_PAGES_HIWAT_MAX)
717 		uvm_km_pages.hiwat = UVM_KM_PAGES_HIWAT_MAX;
718 
719 	/* Allocate all pages in as few allocations as possible. */
720 	len = 0;
721 	bulk = uvm_km_pages.hiwat;
722 	while (len < uvm_km_pages.hiwat && bulk > 0) {
723 		bulk = MIN(bulk, uvm_km_pages.hiwat - len);
724 		addr = vm_map_min(kernel_map);
725 		if (uvm_map(kernel_map, &addr, (vsize_t)bulk << PAGE_SHIFT,
726 		    NULL, UVM_UNKNOWN_OFFSET, 0,
727 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
728 		    UVM_ADV_RANDOM, UVM_KMF_TRYLOCK)) != 0) {
729 			bulk /= 2;
730 			continue;
731 		}
732 
733 		for (i = len; i < len + bulk; i++, addr += PAGE_SIZE)
734 			uvm_km_pages.page[i] = addr;
735 		len += bulk;
736 	}
737 
738 	uvm_km_pages.free = len;
739 	for (i = len; i < UVM_KM_PAGES_HIWAT_MAX; i++)
740 		uvm_km_pages.page[i] = 0;
741 
742 	/* tone down if really high */
743 	if (uvm_km_pages.lowat > 512)
744 		uvm_km_pages.lowat = 512;
745 
746 	kthread_create_deferred(uvm_km_createthread, NULL);
747 }
748 
749 void
750 uvm_km_createthread(void *arg)
751 {
752 	kthread_create(uvm_km_thread, NULL, &uvm_km_pages.km_proc, "kmthread");
753 }
754 
755 /*
756  * Endless loop.  We grab pages in increments of 16 pages, then
757  * quickly swap them into the list.  At some point we can consider
758  * returning memory to the system if we have too many free pages,
759  * but that's not implemented yet.
760  */
761 void
762 uvm_km_thread(void *arg)
763 {
764 	vaddr_t pg[16];
765 	int i;
766 	int allocmore = 0;
767 	struct uvm_km_free_page *fp = NULL;
768 
769 	for (;;) {
770 		mtx_enter(&uvm_km_pages.mtx);
771 		if (uvm_km_pages.free >= uvm_km_pages.lowat &&
772 		    uvm_km_pages.freelist == NULL) {
773 			msleep(&uvm_km_pages.km_proc, &uvm_km_pages.mtx,
774 			    PVM, "kmalloc", 0);
775 		}
776 		allocmore = uvm_km_pages.free < uvm_km_pages.lowat;
777 		fp = uvm_km_pages.freelist;
778 		uvm_km_pages.freelist = NULL;
779 		uvm_km_pages.freelistlen = 0;
780 		mtx_leave(&uvm_km_pages.mtx);
781 
782 		if (allocmore) {
783 			bzero(pg, sizeof(pg));
784 			for (i = 0; i < nitems(pg); i++) {
785 				pg[i] = vm_map_min(kernel_map);
786 				if (uvm_map(kernel_map, &pg[i], PAGE_SIZE,
787 				    NULL, UVM_UNKNOWN_OFFSET, 0,
788 				    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
789 				    UVM_INH_NONE, UVM_ADV_RANDOM,
790 				    UVM_KMF_TRYLOCK)) != 0) {
791 					pg[i] = 0;
792 					break;
793 				}
794 			}
795 
796 			mtx_enter(&uvm_km_pages.mtx);
797 			for (i = 0; i < nitems(pg); i++) {
798 				if (uvm_km_pages.free ==
799 				    nitems(uvm_km_pages.page))
800 					break;
801 				else if (pg[i] != 0)
802 					uvm_km_pages.page[uvm_km_pages.free++]
803 					    = pg[i];
804 			}
805 			wakeup(&uvm_km_pages.free);
806 			mtx_leave(&uvm_km_pages.mtx);
807 
808 			/* Cleanup left-over pages (if any). */
809 			for (; i < nitems(pg); i++) {
810 				if (pg[i] != 0) {
811 					uvm_unmap(kernel_map,
812 					    pg[i], pg[i] + PAGE_SIZE);
813 				}
814 			}
815 		}
816 		while (fp) {
817 			fp = uvm_km_doputpage(fp);
818 		}
819 	}
820 }
821 
822 struct uvm_km_free_page *
823 uvm_km_doputpage(struct uvm_km_free_page *fp)
824 {
825 	vaddr_t va = (vaddr_t)fp;
826 	struct vm_page *pg;
827 	int	freeva = 1;
828 	struct uvm_km_free_page *nextfp = fp->next;
829 
830 	pg = uvm_atopg(va);
831 
832 	pmap_kremove(va, PAGE_SIZE);
833 	pmap_update(kernel_map->pmap);
834 
835 	mtx_enter(&uvm_km_pages.mtx);
836 	if (uvm_km_pages.free < uvm_km_pages.hiwat) {
837 		uvm_km_pages.page[uvm_km_pages.free++] = va;
838 		freeva = 0;
839 	}
840 	mtx_leave(&uvm_km_pages.mtx);
841 
842 	if (freeva)
843 		uvm_unmap(kernel_map, va, va + PAGE_SIZE);
844 
845 	uvm_pagefree(pg);
846 	return (nextfp);
847 }
848 #endif	/* !__HAVE_PMAP_DIRECT */
849 
850 void *
851 km_alloc(size_t sz, const struct kmem_va_mode *kv,
852     const struct kmem_pa_mode *kp, const struct kmem_dyn_mode *kd)
853 {
854 	struct vm_map *map;
855 	struct vm_page *pg;
856 	struct pglist pgl;
857 	int mapflags = 0;
858 	vm_prot_t prot;
859 	int pla_flags;
860 	int pla_maxseg;
861 #ifdef __HAVE_PMAP_DIRECT
862 	paddr_t pa;
863 #endif
864 	vaddr_t va, sva;
865 
866 	KASSERT(sz == round_page(sz));
867 
868 	TAILQ_INIT(&pgl);
869 
870 	if (kp->kp_nomem || kp->kp_pageable)
871 		goto alloc_va;
872 
873 	pla_flags = kd->kd_waitok ? UVM_PLA_WAITOK : UVM_PLA_NOWAIT;
874 	pla_flags |= UVM_PLA_TRYCONTIG;
875 	if (kp->kp_zero)
876 		pla_flags |= UVM_PLA_ZERO;
877 
878 	pla_maxseg = kp->kp_maxseg;
879 	if (pla_maxseg == 0)
880 		pla_maxseg = sz / PAGE_SIZE;
881 
882 	if (uvm_pglistalloc(sz, kp->kp_constraint->ucr_low,
883 	    kp->kp_constraint->ucr_high, kp->kp_align, kp->kp_boundary,
884 	    &pgl, pla_maxseg, pla_flags)) {
885 		return (NULL);
886 	}
887 
888 #ifdef __HAVE_PMAP_DIRECT
889 	if (kv->kv_align || kv->kv_executable)
890 		goto alloc_va;
891 #if 1
892 	/*
893 	 * For now, only do DIRECT mappings for single page
894 	 * allocations, until we figure out a good way to deal
895 	 * with contig allocations in km_free.
896 	 */
897 	if (!kv->kv_singlepage)
898 		goto alloc_va;
899 #endif
900 	/*
901 	 * Dubious optimization. If we got a contig segment, just map it
902 	 * through the direct map.
903 	 */
904 	TAILQ_FOREACH(pg, &pgl, pageq) {
905 		if (pg != TAILQ_FIRST(&pgl) &&
906 		    VM_PAGE_TO_PHYS(pg) != pa + PAGE_SIZE)
907 			break;
908 		pa = VM_PAGE_TO_PHYS(pg);
909 	}
910 	if (pg == NULL) {
911 		TAILQ_FOREACH(pg, &pgl, pageq) {
912 			vaddr_t v;
913 			v = pmap_map_direct(pg);
914 			if (pg == TAILQ_FIRST(&pgl))
915 				va = v;
916 		}
917 		return ((void *)va);
918 	}
919 #endif
920 alloc_va:
921 	if (kv->kv_executable) {
922 		prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
923 	} else {
924 		prot = VM_PROT_READ | VM_PROT_WRITE;
925 	}
926 
927 	if (kp->kp_pageable) {
928 		KASSERT(kp->kp_object);
929 		KASSERT(!kv->kv_singlepage);
930 	} else {
931 		KASSERT(kp->kp_object == NULL);
932 	}
933 
934 	if (kv->kv_singlepage) {
935 		KASSERT(sz == PAGE_SIZE);
936 #ifdef __HAVE_PMAP_DIRECT
937 		panic("km_alloc: DIRECT single page");
938 #else
939 		mtx_enter(&uvm_km_pages.mtx);
940 		while (uvm_km_pages.free == 0) {
941 			if (kd->kd_waitok == 0) {
942 				mtx_leave(&uvm_km_pages.mtx);
943 				uvm_pglistfree(&pgl);
944 				return NULL;
945 			}
946 			msleep(&uvm_km_pages.free, &uvm_km_pages.mtx, PVM,
947 			    "getpage", 0);
948 		}
949 		va = uvm_km_pages.page[--uvm_km_pages.free];
950 		if (uvm_km_pages.free < uvm_km_pages.lowat &&
951 		    curproc != uvm_km_pages.km_proc) {
952 			if (kd->kd_slowdown)
953 				*kd->kd_slowdown = 1;
954 			wakeup(&uvm_km_pages.km_proc);
955 		}
956 		mtx_leave(&uvm_km_pages.mtx);
957 #endif
958 	} else {
959 		struct uvm_object *uobj = NULL;
960 
961 		if (kd->kd_trylock)
962 			mapflags |= UVM_KMF_TRYLOCK;
963 
964 		if (kp->kp_object)
965 			uobj = *kp->kp_object;
966 try_map:
967 		map = *kv->kv_map;
968 		va = vm_map_min(map);
969 		if (uvm_map(map, &va, sz, uobj, kd->kd_prefer,
970 		    kv->kv_align, UVM_MAPFLAG(prot, prot, UVM_INH_NONE,
971 		    UVM_ADV_RANDOM, mapflags))) {
972 			if (kv->kv_wait && kd->kd_waitok) {
973 				tsleep(map, PVM, "km_allocva", 0);
974 				goto try_map;
975 			}
976 			uvm_pglistfree(&pgl);
977 			return (NULL);
978 		}
979 	}
980 	sva = va;
981 	TAILQ_FOREACH(pg, &pgl, pageq) {
982 		if (kp->kp_pageable)
983 			pmap_enter(pmap_kernel(), va, VM_PAGE_TO_PHYS(pg),
984 			    prot, prot | PMAP_WIRED);
985 		else
986 			pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), prot);
987 		va += PAGE_SIZE;
988 	}
989 	pmap_update(pmap_kernel());
990 	return ((void *)sva);
991 }
992 
993 void
994 km_free(void *v, size_t sz, const struct kmem_va_mode *kv,
995     const struct kmem_pa_mode *kp)
996 {
997 	vaddr_t sva, eva, va;
998 	struct vm_page *pg;
999 	struct pglist pgl;
1000 
1001 	sva = va = (vaddr_t)v;
1002 	eva = va + sz;
1003 
1004 	if (kp->kp_nomem) {
1005 		goto free_va;
1006 	}
1007 
1008 	if (kv->kv_singlepage) {
1009 #ifdef __HAVE_PMAP_DIRECT
1010 		pg = pmap_unmap_direct(va);
1011 		uvm_pagefree(pg);
1012 #else
1013 		struct uvm_km_free_page *fp = v;
1014 		mtx_enter(&uvm_km_pages.mtx);
1015 		fp->next = uvm_km_pages.freelist;
1016 		uvm_km_pages.freelist = fp;
1017 		if (uvm_km_pages.freelistlen++ > 16)
1018 			wakeup(&uvm_km_pages.km_proc);
1019 		mtx_leave(&uvm_km_pages.mtx);
1020 #endif
1021 		return;
1022 	}
1023 
1024 	if (kp->kp_pageable) {
1025 		pmap_remove(pmap_kernel(), sva, eva);
1026 		pmap_update(pmap_kernel());
1027 	} else {
1028 		TAILQ_INIT(&pgl);
1029 		for (va = sva; va < eva; va += PAGE_SIZE) {
1030 			paddr_t pa;
1031 
1032 			if (!pmap_extract(pmap_kernel(), va, &pa))
1033 				continue;
1034 
1035 			pg = PHYS_TO_VM_PAGE(pa);
1036 			if (pg == NULL) {
1037 				panic("km_free: unmanaged page 0x%lx\n", pa);
1038 			}
1039 			TAILQ_INSERT_TAIL(&pgl, pg, pageq);
1040 		}
1041 		pmap_kremove(sva, sz);
1042 		pmap_update(pmap_kernel());
1043 		uvm_pglistfree(&pgl);
1044 	}
1045 free_va:
1046 	uvm_unmap(*kv->kv_map, sva, eva);
1047 	if (kv->kv_wait)
1048 		wakeup(*kv->kv_map);
1049 }
1050 
1051 const struct kmem_va_mode kv_any = {
1052 	.kv_map = &kernel_map,
1053 };
1054 
1055 const struct kmem_va_mode kv_intrsafe = {
1056 	.kv_map = &kmem_map,
1057 };
1058 
1059 const struct kmem_va_mode kv_page = {
1060 	.kv_singlepage = 1
1061 };
1062 
1063 const struct kmem_pa_mode kp_dirty = {
1064 	.kp_constraint = &no_constraint
1065 };
1066 
1067 const struct kmem_pa_mode kp_dma = {
1068 	.kp_constraint = &dma_constraint
1069 };
1070 
1071 const struct kmem_pa_mode kp_dma_contig = {
1072 	.kp_constraint = &dma_constraint,
1073 	.kp_maxseg = 1
1074 };
1075 
1076 const struct kmem_pa_mode kp_dma_zero = {
1077 	.kp_constraint = &dma_constraint,
1078 	.kp_zero = 1
1079 };
1080 
1081 const struct kmem_pa_mode kp_zero = {
1082 	.kp_constraint = &no_constraint,
1083 	.kp_zero = 1
1084 };
1085 
1086 const struct kmem_pa_mode kp_pageable = {
1087 	.kp_object = &uvm.kernel_object,
1088 	.kp_pageable = 1
1089 /* XXX - kp_nomem, maybe, but we'll need to fix km_free. */
1090 };
1091 
1092 const struct kmem_pa_mode kp_none = {
1093 	.kp_nomem = 1
1094 };
1095 
1096 const struct kmem_dyn_mode kd_waitok = {
1097 	.kd_waitok = 1,
1098 	.kd_prefer = UVM_UNKNOWN_OFFSET
1099 };
1100 
1101 const struct kmem_dyn_mode kd_nowait = {
1102 	.kd_prefer = UVM_UNKNOWN_OFFSET
1103 };
1104 
1105 const struct kmem_dyn_mode kd_trylock = {
1106 	.kd_trylock = 1,
1107 	.kd_prefer = UVM_UNKNOWN_OFFSET
1108 };
1109