xref: /openbsd-src/sys/uvm/uvm_km.c (revision 1aba0c0bdf378841f83c37b46ede4eb5aec04ac8)
1*1aba0c0bSmpi /*	$OpenBSD: uvm_km.c,v 1.155 2024/11/01 20:26:18 mpi Exp $	*/
21414b0faSart /*	$NetBSD: uvm_km.c,v 1.42 2001/01/14 02:10:01 thorpej Exp $	*/
3cd7ee8acSart 
4cd7ee8acSart /*
5cd7ee8acSart  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6cd7ee8acSart  * Copyright (c) 1991, 1993, The Regents of the University of California.
7cd7ee8acSart  *
8cd7ee8acSart  * All rights reserved.
9cd7ee8acSart  *
10cd7ee8acSart  * This code is derived from software contributed to Berkeley by
11cd7ee8acSart  * The Mach Operating System project at Carnegie-Mellon University.
12cd7ee8acSart  *
13cd7ee8acSart  * Redistribution and use in source and binary forms, with or without
14cd7ee8acSart  * modification, are permitted provided that the following conditions
15cd7ee8acSart  * are met:
16cd7ee8acSart  * 1. Redistributions of source code must retain the above copyright
17cd7ee8acSart  *    notice, this list of conditions and the following disclaimer.
18cd7ee8acSart  * 2. Redistributions in binary form must reproduce the above copyright
19cd7ee8acSart  *    notice, this list of conditions and the following disclaimer in the
20cd7ee8acSart  *    documentation and/or other materials provided with the distribution.
21188f0ea4Sjsg  * 3. Neither the name of the University nor the names of its contributors
22cd7ee8acSart  *    may be used to endorse or promote products derived from this software
23cd7ee8acSart  *    without specific prior written permission.
24cd7ee8acSart  *
25cd7ee8acSart  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26cd7ee8acSart  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27cd7ee8acSart  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28cd7ee8acSart  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29cd7ee8acSart  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30cd7ee8acSart  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31cd7ee8acSart  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32cd7ee8acSart  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33cd7ee8acSart  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34cd7ee8acSart  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35cd7ee8acSart  * SUCH DAMAGE.
36cd7ee8acSart  *
37cd7ee8acSart  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
38cd7ee8acSart  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
39cd7ee8acSart  *
40cd7ee8acSart  *
41cd7ee8acSart  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42cd7ee8acSart  * All rights reserved.
43cd7ee8acSart  *
44cd7ee8acSart  * Permission to use, copy, modify and distribute this software and
45cd7ee8acSart  * its documentation is hereby granted, provided that both the copyright
46cd7ee8acSart  * notice and this permission notice appear in all copies of the
47cd7ee8acSart  * software, derivative works or modified versions, and any portions
48cd7ee8acSart  * thereof, and that both notices appear in supporting documentation.
49cd7ee8acSart  *
50cd7ee8acSart  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51cd7ee8acSart  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52cd7ee8acSart  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53cd7ee8acSart  *
54cd7ee8acSart  * Carnegie Mellon requests users of this software to return to
55cd7ee8acSart  *
56cd7ee8acSart  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57cd7ee8acSart  *  School of Computer Science
58cd7ee8acSart  *  Carnegie Mellon University
59cd7ee8acSart  *  Pittsburgh PA 15213-3890
60cd7ee8acSart  *
61cd7ee8acSart  * any improvements or extensions that they make and grant Carnegie the
62cd7ee8acSart  * rights to redistribute these changes.
63cd7ee8acSart  */
64cd7ee8acSart 
65cd7ee8acSart /*
66cd7ee8acSart  * uvm_km.c: handle kernel memory allocation and management
67cd7ee8acSart  */
68cd7ee8acSart 
69cd7ee8acSart /*
70cd7ee8acSart  * overview of kernel memory management:
71cd7ee8acSart  *
72cd7ee8acSart  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
735de1d0f0Smiod  * starts at a machine-dependent address and is VM_KERNEL_SPACE_SIZE bytes
745de1d0f0Smiod  * large.
75cd7ee8acSart  *
76cd7ee8acSart  * the kernel_map has several "submaps."   submaps can only appear in
77cd7ee8acSart  * the kernel_map (user processes can't use them).   submaps "take over"
78cd7ee8acSart  * the management of a sub-range of the kernel's address space.  submaps
79cd7ee8acSart  * are typically allocated at boot time and are never released.   kernel
80cd7ee8acSart  * virtual address space that is mapped by a submap is locked by the
81cd7ee8acSart  * submap's lock -- not the kernel_map's lock.
82cd7ee8acSart  *
83cd7ee8acSart  * thus, the useful feature of submaps is that they allow us to break
84cd7ee8acSart  * up the locking and protection of the kernel address space into smaller
85cd7ee8acSart  * chunks.
86cd7ee8acSart  *
8769099dcdSthib  * The VM system has several standard kernel submaps:
8869099dcdSthib  *   kmem_map: Contains only wired kernel memory for malloc(9).
8969099dcdSthib  *	       Note: All access to this map must be protected by splvm as
9069099dcdSthib  *	       calls to malloc(9) are allowed in interrupt handlers.
9169099dcdSthib  *   exec_map: Memory to hold arguments to system calls are allocated from
9269099dcdSthib  *	       this map.
9369099dcdSthib  *	       XXX: This is primeraly used to artificially limit the number
9469099dcdSthib  *	       of concurrent processes doing an exec.
9569099dcdSthib  *   phys_map: Buffers for vmapbuf (physio) are allocated from this map.
96cd7ee8acSart  *
97cd7ee8acSart  * the kernel allocates its private memory out of special uvm_objects whose
98cd7ee8acSart  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
99cd7ee8acSart  * are "special" and never die).   all kernel objects should be thought of
100cd7ee8acSart  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
1015de1d0f0Smiod  * object is equal to the size of kernel virtual address space (i.e.
1025de1d0f0Smiod  * VM_KERNEL_SPACE_SIZE).
103cd7ee8acSart  *
104cd7ee8acSart  * most kernel private memory lives in kernel_object.   the only exception
105cd7ee8acSart  * to this is for memory that belongs to submaps that must be protected
106b7c6e7a5Sart  * by splvm(). each of these submaps manages their own pages.
107cd7ee8acSart  *
1085ee951e4Sderaadt  * note that just because a kernel object spans the entire kernel virtual
109cd7ee8acSart  * address space doesn't mean that it has to be mapped into the entire space.
110cd7ee8acSart  * large chunks of a kernel object's space go unused either because
111cd7ee8acSart  * that area of kernel VM is unmapped, or there is some other type of
112cd7ee8acSart  * object mapped into that range (e.g. a vnode).    for submap's kernel
113cd7ee8acSart  * objects, the only part of the object that can ever be populated is the
114cd7ee8acSart  * offsets that are managed by the submap.
115cd7ee8acSart  *
116cd7ee8acSart  * note that the "offset" in a kernel object is always the kernel virtual
1175de1d0f0Smiod  * address minus the vm_map_min(kernel_map).
118cd7ee8acSart  * example:
1195de1d0f0Smiod  *   suppose kernel_map starts at 0xf8000000 and the kernel does a
120d2ff86caSmpi  *   km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_waitok)) [allocate 1 wired
121d2ff86caSmpi  *   down page in the kernel map].    if km_alloc() returns virtual address
122d2ff86caSmpi  *   0xf8235000, then that means that the page at offset 0x235000 in
123d2ff86caSmpi  *   kernel_object is mapped at 0xf8235000.
124cd7ee8acSart  *
1255ee951e4Sderaadt  * kernel objects have one other special property: when the kernel virtual
126cd7ee8acSart  * memory mapping them is unmapped, the backing memory in the object is
127cd7ee8acSart  * freed right away.   this is done with the uvm_km_pgremove() function.
128cd7ee8acSart  * this has to be done because there is no backing store for kernel pages
129cd7ee8acSart  * and no need to save them after they are no longer referenced.
130cd7ee8acSart  */
131cd7ee8acSart 
132cd7ee8acSart #include <sys/param.h>
133cd7ee8acSart #include <sys/systm.h>
13463cf9471Smpi #include <sys/proc.h>
135151c02abStedu #include <sys/kthread.h>
136cd7ee8acSart #include <uvm/uvm.h>
137cd7ee8acSart 
138cd7ee8acSart /*
139cd7ee8acSart  * global data structures
140cd7ee8acSart  */
141cd7ee8acSart 
1420fefbcf6Sart struct vm_map *kernel_map = NULL;
1431414b0faSart 
144a072d974Sthib /* Unconstraint range. */
145a072d974Sthib struct uvm_constraint_range	no_constraint = { 0x0, (paddr_t)-1 };
146a072d974Sthib 
147cd7ee8acSart /*
1484af3577fSjsg  * local data structures
149cd7ee8acSart  */
150cd7ee8acSart static struct vm_map		kernel_map_store;
151cd7ee8acSart 
152cd7ee8acSart /*
153cd7ee8acSart  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
154cd7ee8acSart  * KVM already allocated for text, data, bss, and static data structures).
155cd7ee8acSart  *
1565de1d0f0Smiod  * => KVM is defined by [base.. base + VM_KERNEL_SPACE_SIZE].
1575de1d0f0Smiod  *    we assume that [base -> start] has already been allocated and that
1585de1d0f0Smiod  *    "end" is the end of the kernel image span.
159cd7ee8acSart  */
160cd7ee8acSart void
1615de1d0f0Smiod uvm_km_init(vaddr_t base, vaddr_t start, vaddr_t end)
162cd7ee8acSart {
163cd7ee8acSart 	/* kernel_object: for pageable anonymous kernel memory */
16428fbabcfSart 	uao_init();
1655de1d0f0Smiod 	uvm.kernel_object = uao_create(VM_KERNEL_SPACE_SIZE, UAO_FLAG_KERNOBJ);
166cd7ee8acSart 
1677cb53682Sart 	/*
1685ee951e4Sderaadt 	 * init the map and reserve already allocated kernel space
169cd7ee8acSart 	 * before installing.
170cd7ee8acSart 	 */
171cd7ee8acSart 
172bcf611cdSvisa 	uvm_map_setup(&kernel_map_store, pmap_kernel(), base, end,
173181c6205Sariane #ifdef KVA_GUARDPAGES
174181c6205Sariane 	    VM_MAP_PAGEABLE | VM_MAP_GUARDPAGES
175181c6205Sariane #else
176181c6205Sariane 	    VM_MAP_PAGEABLE
177181c6205Sariane #endif
178181c6205Sariane 	    );
179efc6a7aaSart 	if (base != start && uvm_map(&kernel_map_store, &base, start - base,
1806ddecd6bSderaadt 	    NULL, UVM_UNKNOWN_OFFSET, 0,
1816ddecd6bSderaadt 	    UVM_MAPFLAG(PROT_READ | PROT_WRITE, PROT_READ | PROT_WRITE,
18215cd8707Sguenther 	    MAP_INHERIT_NONE, MADV_RANDOM, UVM_FLAG_FIXED)) != 0)
183cd7ee8acSart 		panic("uvm_km_init: could not reserve space for kernel");
184cd7ee8acSart 
185cd7ee8acSart 	kernel_map = &kernel_map_store;
1861b1e4826Skurt 
1871b1e4826Skurt #ifndef __HAVE_PMAP_DIRECT
1881b1e4826Skurt 	/* allow km_alloc calls before uvm_km_thread starts */
1891b1e4826Skurt 	mtx_init(&uvm_km_pages.mtx, IPL_VM);
1901b1e4826Skurt #endif
191cd7ee8acSart }
192cd7ee8acSart 
193cd7ee8acSart /*
194cd7ee8acSart  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
195cd7ee8acSart  * is allocated all references to that area of VM must go through it.  this
196cd7ee8acSart  * allows the locking of VAs in kernel_map to be broken up into regions.
197cd7ee8acSart  *
198cd7ee8acSart  * => if `fixed' is true, *min specifies where the region described
199cd7ee8acSart  *      by the submap must start
200cd7ee8acSart  * => if submap is non NULL we use that as the submap, otherwise we
201cd7ee8acSart  *	alloc a new map
202cd7ee8acSart  */
203cd7ee8acSart struct vm_map *
2040fefbcf6Sart uvm_km_suballoc(struct vm_map *map, vaddr_t *min, vaddr_t *max, vsize_t size,
2050fefbcf6Sart     int flags, boolean_t fixed, struct vm_map *submap)
206cd7ee8acSart {
207cd7ee8acSart 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
208cd7ee8acSart 
209cd7ee8acSart 	size = round_page(size);	/* round up to pagesize */
210cd7ee8acSart 
21135164244Stedu 	/* first allocate a blank spot in the parent map */
212198a4b3fSart 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
21315cd8707Sguenther 	    UVM_MAPFLAG(PROT_READ | PROT_WRITE, PROT_READ | PROT_WRITE,
21415cd8707Sguenther 	    MAP_INHERIT_NONE, MADV_RANDOM, mapflags)) != 0) {
215cd7ee8acSart 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
216cd7ee8acSart 	}
217cd7ee8acSart 
21835164244Stedu 	/* set VM bounds (min is filled in by uvm_map) */
219cd7ee8acSart 	*max = *min + size;
220cd7ee8acSart 
22135164244Stedu 	/* add references to pmap and create or init the submap */
222cd7ee8acSart 	pmap_reference(vm_map_pmap(map));
223cd7ee8acSart 	if (submap == NULL) {
2247cb53682Sart 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
225cd7ee8acSart 		if (submap == NULL)
226cd7ee8acSart 			panic("uvm_km_suballoc: unable to create submap");
227cd7ee8acSart 	} else {
228bcf611cdSvisa 		uvm_map_setup(submap, vm_map_pmap(map), *min, *max, flags);
229cd7ee8acSart 	}
230cd7ee8acSart 
23152887a38Smpi 	/*
23252887a38Smpi 	 * now let uvm_map_submap plug in it...
23352887a38Smpi 	 */
23473c19439Sart 	if (uvm_map_submap(map, *min, *max, submap) != 0)
235cd7ee8acSart 		panic("uvm_km_suballoc: submap allocation failed");
236cd7ee8acSart 
237cd7ee8acSart 	return(submap);
238cd7ee8acSart }
239cd7ee8acSart 
240cd7ee8acSart /*
241cd7ee8acSart  * uvm_km_pgremove: remove pages from a kernel uvm_object.
242cd7ee8acSart  *
243cd7ee8acSart  * => when you unmap a part of anonymous kernel memory you want to toss
244cd7ee8acSart  *    the pages right away.    (this gets called from uvm_unmap_...).
245cd7ee8acSart  */
246cd7ee8acSart void
247c1638fe5Smpi uvm_km_pgremove(struct uvm_object *uobj, vaddr_t startva, vaddr_t endva)
248cd7ee8acSart {
249c1638fe5Smpi 	const voff_t start = startva - vm_map_min(kernel_map);
250c1638fe5Smpi 	const voff_t end = endva - vm_map_min(kernel_map);
251b7c6e7a5Sart 	struct vm_page *pp;
252bdfb579bSart 	voff_t curoff;
25306be59c1Soga 	int slot;
254c4a864baSmpi 	int swpgonlydelta = 0;
255cd7ee8acSart 
25657296fa7Smpi 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
25769c04514Smpi 	KASSERT(rw_write_held(uobj->vmobjlock));
258cd7ee8acSart 
259c1638fe5Smpi 	pmap_remove(pmap_kernel(), startva, endva);
260cd7ee8acSart 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
261cd7ee8acSart 		pp = uvm_pagelookup(uobj, curoff);
26206be59c1Soga 		if (pp && pp->pg_flags & PG_BUSY) {
2635b4619eaSmpi 			uvm_pagewait(pp, uobj->vmobjlock, "km_pgrm");
2645b4619eaSmpi 			rw_enter(uobj->vmobjlock, RW_WRITE);
2650b0fe1a1Soga 			curoff -= PAGE_SIZE; /* loop back to us */
2660b0fe1a1Soga 			continue;
26706be59c1Soga 		}
268cd7ee8acSart 
26906be59c1Soga 		/* free the swap slot, then the page */
27006be59c1Soga 		slot = uao_dropswap(uobj, curoff >> PAGE_SHIFT);
27106be59c1Soga 
27206be59c1Soga 		if (pp != NULL) {
273cd7ee8acSart 			uvm_lock_pageq();
274cd7ee8acSart 			uvm_pagefree(pp);
275cd7ee8acSart 			uvm_unlock_pageq();
27606be59c1Soga 		} else if (slot != 0) {
277c4a864baSmpi 			swpgonlydelta++;
278cd7ee8acSart 		}
279cd7ee8acSart 	}
280c4a864baSmpi 
281c4a864baSmpi 	if (swpgonlydelta > 0) {
282c4a864baSmpi 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
283c4a864baSmpi 		atomic_add_int(&uvmexp.swpgonly, -swpgonlydelta);
284c4a864baSmpi 	}
2857cb53682Sart }
286cd7ee8acSart 
2877cb53682Sart 
2887cb53682Sart /*
2897cb53682Sart  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
2907cb53682Sart  *    objects
2917cb53682Sart  *
2927cb53682Sart  * => when you unmap a part of anonymous kernel memory you want to toss
2937cb53682Sart  *    the pages right away.    (this gets called from uvm_unmap_...).
2947cb53682Sart  * => none of the pages will ever be busy, and none of them will ever
2957cb53682Sart  *    be on the active or inactive queues (because these objects are
2967cb53682Sart  *    never allowed to "page").
2977cb53682Sart  */
2987cb53682Sart void
299b7c6e7a5Sart uvm_km_pgremove_intrsafe(vaddr_t start, vaddr_t end)
3007cb53682Sart {
301b7c6e7a5Sart 	struct vm_page *pg;
302b7c6e7a5Sart 	vaddr_t va;
303b7c6e7a5Sart 	paddr_t pa;
3047cb53682Sart 
305b7c6e7a5Sart 	for (va = start; va < end; va += PAGE_SIZE) {
306b7c6e7a5Sart 		if (!pmap_extract(pmap_kernel(), va, &pa))
307d8e7342aSart 			continue;
308b7c6e7a5Sart 		pg = PHYS_TO_VM_PAGE(pa);
309b7c6e7a5Sart 		if (pg == NULL)
310b7c6e7a5Sart 			panic("uvm_km_pgremove_intrsafe: no page");
311b7c6e7a5Sart 		uvm_pagefree(pg);
312fd628a11Sart 	}
313c1638fe5Smpi 	pmap_kremove(start, end - start);
314cd7ee8acSart }
315cd7ee8acSart 
316cd7ee8acSart /*
317cd7ee8acSart  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
318cd7ee8acSart  *
319cd7ee8acSart  * => we map wired memory into the specified map using the obj passed in
320cd7ee8acSart  * => NOTE: we can return NULL even if we can wait if there is not enough
321cd7ee8acSart  *	free VM space in the map... caller should be prepared to handle
322cd7ee8acSart  *	this case.
323cd7ee8acSart  * => we return KVA of memory allocated
324cd7ee8acSart  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
325cd7ee8acSart  *	lock the map
326b426ab7bSthib  * => low, high, alignment, boundary, nsegs are the corresponding parameters
327b426ab7bSthib  *	to uvm_pglistalloc
328b426ab7bSthib  * => flags: ZERO - correspond to uvm_pglistalloc flags
329cd7ee8acSart  */
330cd7ee8acSart vaddr_t
331b426ab7bSthib uvm_km_kmemalloc_pla(struct vm_map *map, struct uvm_object *obj, vsize_t size,
33242096da3Sart     vsize_t valign, int flags, paddr_t low, paddr_t high, paddr_t alignment,
33342096da3Sart     paddr_t boundary, int nsegs)
334cd7ee8acSart {
335cd7ee8acSart 	vaddr_t kva, loopva;
336c850818cSart 	voff_t offset;
337cd7ee8acSart 	struct vm_page *pg;
338b426ab7bSthib 	struct pglist pgl;
339b426ab7bSthib 	int pla_flags;
340cd7ee8acSart 
341fd628a11Sart 	KASSERT(vm_map_pmap(map) == pmap_kernel());
342b426ab7bSthib 	/* UVM_KMF_VALLOC => !UVM_KMF_ZERO */
343b426ab7bSthib 	KASSERT(!(flags & UVM_KMF_VALLOC) ||
344b426ab7bSthib 	    !(flags & UVM_KMF_ZERO));
345cd7ee8acSart 
34635164244Stedu 	/* setup for call */
347cd7ee8acSart 	size = round_page(size);
348cd7ee8acSart 	kva = vm_map_min(map);	/* hint */
349b426ab7bSthib 	if (nsegs == 0)
350b426ab7bSthib 		nsegs = atop(size);
351cd7ee8acSart 
35235164244Stedu 	/* allocate some virtual space */
353b1990b04Sart 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
35415cd8707Sguenther 	    valign, UVM_MAPFLAG(PROT_READ | PROT_WRITE, PROT_READ | PROT_WRITE,
35515cd8707Sguenther 	    MAP_INHERIT_NONE, MADV_RANDOM, (flags & UVM_KMF_TRYLOCK))) != 0)) {
356b9df1565Smpi 		return 0;
357cd7ee8acSart 	}
358cd7ee8acSart 
35935164244Stedu 	/* if all we wanted was VA, return now */
360cd7ee8acSart 	if (flags & UVM_KMF_VALLOC) {
361b9df1565Smpi 		return kva;
362cd7ee8acSart 	}
363fd628a11Sart 
36435164244Stedu 	/* recover object offset from virtual address */
365b7c6e7a5Sart 	if (obj != NULL)
366cd7ee8acSart 		offset = kva - vm_map_min(kernel_map);
367b7c6e7a5Sart 	else
368b7c6e7a5Sart 		offset = 0;
369b7c6e7a5Sart 
370cd7ee8acSart 	/*
371cd7ee8acSart 	 * now allocate and map in the memory... note that we are the only ones
372cd7ee8acSart 	 * whom should ever get a handle on this area of VM.
373cd7ee8acSart 	 */
374b426ab7bSthib 	TAILQ_INIT(&pgl);
375b426ab7bSthib 	pla_flags = 0;
3763aad6debSkettenis 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
377b426ab7bSthib 	if ((flags & UVM_KMF_NOWAIT) ||
378b426ab7bSthib 	    ((flags & UVM_KMF_CANFAIL) &&
3793aad6debSkettenis 	    uvmexp.swpages - uvmexp.swpgonly <= atop(size)))
380b426ab7bSthib 		pla_flags |= UVM_PLA_NOWAIT;
381b426ab7bSthib 	else
382b426ab7bSthib 		pla_flags |= UVM_PLA_WAITOK;
383b426ab7bSthib 	if (flags & UVM_KMF_ZERO)
384b426ab7bSthib 		pla_flags |= UVM_PLA_ZERO;
385b426ab7bSthib 	if (uvm_pglistalloc(size, low, high, alignment, boundary, &pgl, nsegs,
386b426ab7bSthib 	    pla_flags) != 0) {
387b426ab7bSthib 		/* Failed. */
388b426ab7bSthib 		uvm_unmap(map, kva, kva + size);
389b426ab7bSthib 		return (0);
390b426ab7bSthib 	}
391cd7ee8acSart 
39269c04514Smpi 	if (obj != NULL)
39369c04514Smpi 		rw_enter(obj->vmobjlock, RW_WRITE);
39469c04514Smpi 
395cd7ee8acSart 	loopva = kva;
3967abd2af2Sart 	while (loopva != kva + size) {
397b426ab7bSthib 		pg = TAILQ_FIRST(&pgl);
398b426ab7bSthib 		TAILQ_REMOVE(&pgl, pg, pageq);
399b426ab7bSthib 		uvm_pagealloc_pg(pg, obj, offset, NULL);
40065d6360cSart 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
401cd7ee8acSart 		UVM_PAGE_OWN(pg, NULL);
402cd7ee8acSart 
403cd7ee8acSart 		/*
404cd7ee8acSart 		 * map it in: note that we call pmap_enter with the map and
405b7c6e7a5Sart 		 * object unlocked in case we are kmem_map.
406cd7ee8acSart 		 */
407b7c6e7a5Sart 		if (obj == NULL) {
4087cb53682Sart 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
4091e8cdc2eSderaadt 			    PROT_READ | PROT_WRITE);
4107cb53682Sart 		} else {
4117cb53682Sart 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
4121e8cdc2eSderaadt 			    PROT_READ | PROT_WRITE,
4131e8cdc2eSderaadt 			    PROT_READ | PROT_WRITE | PMAP_WIRED);
4147cb53682Sart 		}
415cd7ee8acSart 		loopva += PAGE_SIZE;
416cd7ee8acSart 		offset += PAGE_SIZE;
417cd7ee8acSart 	}
418b426ab7bSthib 	KASSERT(TAILQ_EMPTY(&pgl));
4193d404988Sdrahn 	pmap_update(pmap_kernel());
4203d404988Sdrahn 
42169c04514Smpi 	if (obj != NULL)
42269c04514Smpi 		rw_exit(obj->vmobjlock);
42369c04514Smpi 
424b9df1565Smpi 	return kva;
425cd7ee8acSart }
426cd7ee8acSart 
427cd7ee8acSart /*
428cd7ee8acSart  * uvm_km_free: free an area of kernel memory
429cd7ee8acSart  */
430cd7ee8acSart void
431b7c6e7a5Sart uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size)
432cd7ee8acSart {
433cd7ee8acSart 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
434cd7ee8acSart }
435cd7ee8acSart 
436c64d9fffStedu #if defined(__HAVE_PMAP_DIRECT)
4371fca5607Stedu /*
438c64d9fffStedu  * uvm_km_page allocator, __HAVE_PMAP_DIRECT arch
4390869ad61Stedu  * On architectures with machine memory direct mapped into a portion
4400869ad61Stedu  * of KVM, we have very little work to do.  Just get a physical page,
441b426ab7bSthib  * and find and return its VA.
4420869ad61Stedu  */
4430869ad61Stedu void
4440869ad61Stedu uvm_km_page_init(void)
4450869ad61Stedu {
4460869ad61Stedu 	/* nothing */
4470869ad61Stedu }
4480869ad61Stedu 
44918b79dc7Sdlg void
4505f2b3891Sdlg uvm_km_page_lateinit(void)
45118b79dc7Sdlg {
45218b79dc7Sdlg 	/* nothing */
45318b79dc7Sdlg }
45418b79dc7Sdlg 
4550869ad61Stedu #else
4560869ad61Stedu /*
457c64d9fffStedu  * uvm_km_page allocator, non __HAVE_PMAP_DIRECT archs
4581fca5607Stedu  * This is a special allocator that uses a reserve of free pages
4591fca5607Stedu  * to fulfill requests.  It is fast and interrupt safe, but can only
4601fca5607Stedu  * return page sized regions.  Its primary use is as a backend for pool.
4611fca5607Stedu  *
4621fca5607Stedu  * The memory returned is allocated from the larger kernel_map, sparing
4631fca5607Stedu  * pressure on the small interrupt-safe kmem_map.  It is wired, but
4641fca5607Stedu  * not zero filled.
4651fca5607Stedu  */
4661fca5607Stedu 
467b426ab7bSthib struct uvm_km_pages uvm_km_pages;
468898645e1Stedu 
469151c02abStedu void uvm_km_createthread(void *);
470151c02abStedu void uvm_km_thread(void *);
471a278a794Stedu struct uvm_km_free_page *uvm_km_doputpage(struct uvm_km_free_page *);
472151c02abStedu 
4731fca5607Stedu /*
4741fca5607Stedu  * Allocate the initial reserve, and create the thread which will
4751fca5607Stedu  * keep the reserve full.  For bootstrapping, we allocate more than
4761fca5607Stedu  * the lowat amount, because it may be a while before the thread is
4771fca5607Stedu  * running.
4781fca5607Stedu  */
479151c02abStedu void
480151c02abStedu uvm_km_page_init(void)
481151c02abStedu {
48260819449Smiod 	int	lowat_min;
483151c02abStedu 	int	i;
484181c6205Sariane 	int	len, bulk;
485181c6205Sariane 	vaddr_t	addr;
486151c02abStedu 
487b426ab7bSthib 	if (!uvm_km_pages.lowat) {
488cbf7b8d1Stedu 		/* based on physmem, calculate a good value here */
489b426ab7bSthib 		uvm_km_pages.lowat = physmem / 256;
49060819449Smiod 		lowat_min = physmem < atop(16 * 1024 * 1024) ? 32 : 128;
491b426ab7bSthib 		if (uvm_km_pages.lowat < lowat_min)
492b426ab7bSthib 			uvm_km_pages.lowat = lowat_min;
493cbf7b8d1Stedu 	}
494b426ab7bSthib 	if (uvm_km_pages.lowat > UVM_KM_PAGES_LOWAT_MAX)
495b426ab7bSthib 		uvm_km_pages.lowat = UVM_KM_PAGES_LOWAT_MAX;
496b426ab7bSthib 	uvm_km_pages.hiwat = 4 * uvm_km_pages.lowat;
497b426ab7bSthib 	if (uvm_km_pages.hiwat > UVM_KM_PAGES_HIWAT_MAX)
498b426ab7bSthib 		uvm_km_pages.hiwat = UVM_KM_PAGES_HIWAT_MAX;
499151c02abStedu 
500181c6205Sariane 	/* Allocate all pages in as few allocations as possible. */
501181c6205Sariane 	len = 0;
502181c6205Sariane 	bulk = uvm_km_pages.hiwat;
503181c6205Sariane 	while (len < uvm_km_pages.hiwat && bulk > 0) {
504181c6205Sariane 		bulk = MIN(bulk, uvm_km_pages.hiwat - len);
505181c6205Sariane 		addr = vm_map_min(kernel_map);
506181c6205Sariane 		if (uvm_map(kernel_map, &addr, (vsize_t)bulk << PAGE_SHIFT,
507181c6205Sariane 		    NULL, UVM_UNKNOWN_OFFSET, 0,
5081e8cdc2eSderaadt 		    UVM_MAPFLAG(PROT_READ | PROT_WRITE,
509e087cc70Sguenther 		    PROT_READ | PROT_WRITE, MAP_INHERIT_NONE,
51015cd8707Sguenther 		    MADV_RANDOM, UVM_KMF_TRYLOCK)) != 0) {
511181c6205Sariane 			bulk /= 2;
512181c6205Sariane 			continue;
513151c02abStedu 		}
514181c6205Sariane 
515181c6205Sariane 		for (i = len; i < len + bulk; i++, addr += PAGE_SIZE)
516181c6205Sariane 			uvm_km_pages.page[i] = addr;
517181c6205Sariane 		len += bulk;
518181c6205Sariane 	}
519181c6205Sariane 
520181c6205Sariane 	uvm_km_pages.free = len;
521181c6205Sariane 	for (i = len; i < UVM_KM_PAGES_HIWAT_MAX; i++)
52288ee6abdSmiod 		uvm_km_pages.page[i] = 0;
523151c02abStedu 
524cbf7b8d1Stedu 	/* tone down if really high */
525b426ab7bSthib 	if (uvm_km_pages.lowat > 512)
526b426ab7bSthib 		uvm_km_pages.lowat = 512;
52718b79dc7Sdlg }
528cbf7b8d1Stedu 
52918b79dc7Sdlg void
53018b79dc7Sdlg uvm_km_page_lateinit(void)
53118b79dc7Sdlg {
532151c02abStedu 	kthread_create_deferred(uvm_km_createthread, NULL);
533151c02abStedu }
534151c02abStedu 
535151c02abStedu void
536151c02abStedu uvm_km_createthread(void *arg)
537151c02abStedu {
538b426ab7bSthib 	kthread_create(uvm_km_thread, NULL, &uvm_km_pages.km_proc, "kmthread");
539151c02abStedu }
540151c02abStedu 
5411fca5607Stedu /*
5421fca5607Stedu  * Endless loop.  We grab pages in increments of 16 pages, then
543bde9ef78Stedu  * quickly swap them into the list.
5441fca5607Stedu  */
545151c02abStedu void
546151c02abStedu uvm_km_thread(void *arg)
547151c02abStedu {
548b426ab7bSthib 	vaddr_t pg[16];
549b426ab7bSthib 	int i;
550a278a794Stedu 	int allocmore = 0;
551c8a9920fSguenther 	int flags;
552a278a794Stedu 	struct uvm_km_free_page *fp = NULL;
553151c02abStedu 
55430cd4535Skettenis 	KERNEL_UNLOCK();
55530cd4535Skettenis 
556b426ab7bSthib 	for (;;) {
557b426ab7bSthib 		mtx_enter(&uvm_km_pages.mtx);
558a278a794Stedu 		if (uvm_km_pages.free >= uvm_km_pages.lowat &&
559a278a794Stedu 		    uvm_km_pages.freelist == NULL) {
5602404448fSjsg 			msleep_nsec(&uvm_km_pages.km_proc, &uvm_km_pages.mtx,
5612404448fSjsg 			    PVM, "kmalloc", INFSLP);
562b426ab7bSthib 		}
563a278a794Stedu 		allocmore = uvm_km_pages.free < uvm_km_pages.lowat;
564a278a794Stedu 		fp = uvm_km_pages.freelist;
565a278a794Stedu 		uvm_km_pages.freelist = NULL;
566a278a794Stedu 		uvm_km_pages.freelistlen = 0;
567d925b6f0Sthib 		mtx_leave(&uvm_km_pages.mtx);
568b426ab7bSthib 
569a278a794Stedu 		if (allocmore) {
570c8a9920fSguenther 			/*
571c8a9920fSguenther 			 * If there was nothing on the freelist, then we
572c8a9920fSguenther 			 * must obtain at least one page to make progress.
573c8a9920fSguenther 			 * So, only use UVM_KMF_TRYLOCK for the first page
574c8a9920fSguenther 			 * if fp != NULL
575c8a9920fSguenther 			 */
5761e8cdc2eSderaadt 			flags = UVM_MAPFLAG(PROT_READ | PROT_WRITE,
57715cd8707Sguenther 			    PROT_READ | PROT_WRITE, MAP_INHERIT_NONE,
57815cd8707Sguenther 			    MADV_RANDOM, fp != NULL ? UVM_KMF_TRYLOCK : 0);
5796c0aa6dcStedu 			memset(pg, 0, sizeof(pg));
580b426ab7bSthib 			for (i = 0; i < nitems(pg); i++) {
581181c6205Sariane 				pg[i] = vm_map_min(kernel_map);
582181c6205Sariane 				if (uvm_map(kernel_map, &pg[i], PAGE_SIZE,
583c8a9920fSguenther 				    NULL, UVM_UNKNOWN_OFFSET, 0, flags) != 0) {
584181c6205Sariane 					pg[i] = 0;
585181c6205Sariane 					break;
586181c6205Sariane 				}
587c8a9920fSguenther 
588c8a9920fSguenther 				/* made progress, so don't sleep for more */
5891e8cdc2eSderaadt 				flags = UVM_MAPFLAG(PROT_READ | PROT_WRITE,
59015cd8707Sguenther 				    PROT_READ | PROT_WRITE, MAP_INHERIT_NONE,
59115cd8707Sguenther 				    MADV_RANDOM, UVM_KMF_TRYLOCK);
592b426ab7bSthib 			}
593b426ab7bSthib 
594b426ab7bSthib 			mtx_enter(&uvm_km_pages.mtx);
595b426ab7bSthib 			for (i = 0; i < nitems(pg); i++) {
596a278a794Stedu 				if (uvm_km_pages.free ==
597a278a794Stedu 				    nitems(uvm_km_pages.page))
598e2cd81a3Smickey 					break;
599181c6205Sariane 				else if (pg[i] != 0)
600a278a794Stedu 					uvm_km_pages.page[uvm_km_pages.free++]
601a278a794Stedu 					    = pg[i];
602151c02abStedu 			}
603b426ab7bSthib 			wakeup(&uvm_km_pages.free);
604b426ab7bSthib 			mtx_leave(&uvm_km_pages.mtx);
605151c02abStedu 
606b426ab7bSthib 			/* Cleanup left-over pages (if any). */
607181c6205Sariane 			for (; i < nitems(pg); i++) {
608181c6205Sariane 				if (pg[i] != 0) {
609181c6205Sariane 					uvm_unmap(kernel_map,
610181c6205Sariane 					    pg[i], pg[i] + PAGE_SIZE);
611181c6205Sariane 				}
612181c6205Sariane 			}
613b426ab7bSthib 		}
614a278a794Stedu 		while (fp) {
615a278a794Stedu 			fp = uvm_km_doputpage(fp);
616a278a794Stedu 		}
617a278a794Stedu 	}
618b426ab7bSthib }
619b426ab7bSthib 
620a278a794Stedu struct uvm_km_free_page *
621a278a794Stedu uvm_km_doputpage(struct uvm_km_free_page *fp)
622a278a794Stedu {
623a278a794Stedu 	vaddr_t va = (vaddr_t)fp;
624a278a794Stedu 	struct vm_page *pg;
62528cfa0a3Sthib 	int	freeva = 1;
626a278a794Stedu 	struct uvm_km_free_page *nextfp = fp->next;
627a278a794Stedu 
62859f84dd2Soga 	pg = uvm_atopg(va);
629b426ab7bSthib 
630d925b6f0Sthib 	pmap_kremove(va, PAGE_SIZE);
631b426ab7bSthib 	pmap_update(kernel_map->pmap);
632b426ab7bSthib 
633b426ab7bSthib 	mtx_enter(&uvm_km_pages.mtx);
63428cfa0a3Sthib 	if (uvm_km_pages.free < uvm_km_pages.hiwat) {
635b426ab7bSthib 		uvm_km_pages.page[uvm_km_pages.free++] = va;
63628cfa0a3Sthib 		freeva = 0;
63728cfa0a3Sthib 	}
638b426ab7bSthib 	mtx_leave(&uvm_km_pages.mtx);
63928cfa0a3Sthib 
64028cfa0a3Sthib 	if (freeva)
641181c6205Sariane 		uvm_unmap(kernel_map, va, va + PAGE_SIZE);
642b426ab7bSthib 
643b426ab7bSthib 	uvm_pagefree(pg);
644a278a794Stedu 	return (nextfp);
645151c02abStedu }
646a278a794Stedu #endif	/* !__HAVE_PMAP_DIRECT */
647ea41019aSart 
648ea41019aSart void *
649803ae8aaSart km_alloc(size_t sz, const struct kmem_va_mode *kv,
650803ae8aaSart     const struct kmem_pa_mode *kp, const struct kmem_dyn_mode *kd)
651ea41019aSart {
652ea41019aSart 	struct vm_map *map;
653ea41019aSart 	struct vm_page *pg;
654ea41019aSart 	struct pglist pgl;
655ea41019aSart 	int mapflags = 0;
656ea41019aSart 	vm_prot_t prot;
6576d52d019Skettenis 	paddr_t pla_align;
658ea41019aSart 	int pla_flags;
65912e839c5Sariane 	int pla_maxseg;
660ede08b28Sjan 	vaddr_t va, sva = 0;
661ea41019aSart 
662ea41019aSart 	KASSERT(sz == round_page(sz));
663ea41019aSart 
664ea41019aSart 	TAILQ_INIT(&pgl);
665ea41019aSart 
666ea41019aSart 	if (kp->kp_nomem || kp->kp_pageable)
667ea41019aSart 		goto alloc_va;
668ea41019aSart 
669ea41019aSart 	pla_flags = kd->kd_waitok ? UVM_PLA_WAITOK : UVM_PLA_NOWAIT;
670ea41019aSart 	pla_flags |= UVM_PLA_TRYCONTIG;
671ea41019aSart 	if (kp->kp_zero)
672ea41019aSart 		pla_flags |= UVM_PLA_ZERO;
673ea41019aSart 
6746d52d019Skettenis 	pla_align = kp->kp_align;
6756d52d019Skettenis #ifdef __HAVE_PMAP_DIRECT
6766d52d019Skettenis 	if (pla_align < kv->kv_align)
6776d52d019Skettenis 		pla_align = kv->kv_align;
6786d52d019Skettenis #endif
67912e839c5Sariane 	pla_maxseg = kp->kp_maxseg;
68012e839c5Sariane 	if (pla_maxseg == 0)
68112e839c5Sariane 		pla_maxseg = sz / PAGE_SIZE;
68212e839c5Sariane 
683ea41019aSart 	if (uvm_pglistalloc(sz, kp->kp_constraint->ucr_low,
6846d52d019Skettenis 	    kp->kp_constraint->ucr_high, pla_align, kp->kp_boundary,
68512e839c5Sariane 	    &pgl, pla_maxseg, pla_flags)) {
686ea41019aSart 		return (NULL);
687ea41019aSart 	}
688ea41019aSart 
689ea41019aSart #ifdef __HAVE_PMAP_DIRECT
690ae931b54Sart 	/*
6916d52d019Skettenis 	 * Only use direct mappings for single page or single segment
6926d52d019Skettenis 	 * allocations.
693ae931b54Sart 	 */
6946d52d019Skettenis 	if (kv->kv_singlepage || kp->kp_maxseg == 1) {
695ea41019aSart 		TAILQ_FOREACH(pg, &pgl, pageq) {
6966d52d019Skettenis 			va = pmap_map_direct(pg);
697ea41019aSart 			if (pg == TAILQ_FIRST(&pgl))
6986d52d019Skettenis 				sva = va;
699ea41019aSart 		}
7006d52d019Skettenis 		return ((void *)sva);
701ea41019aSart 	}
702ea41019aSart #endif
703ea41019aSart alloc_va:
7041e8cdc2eSderaadt 	prot = PROT_READ | PROT_WRITE;
705ea41019aSart 
706ea41019aSart 	if (kp->kp_pageable) {
707ea41019aSart 		KASSERT(kp->kp_object);
708ea41019aSart 		KASSERT(!kv->kv_singlepage);
709ea41019aSart 	} else {
710ea41019aSart 		KASSERT(kp->kp_object == NULL);
711ea41019aSart 	}
712ea41019aSart 
713ea41019aSart 	if (kv->kv_singlepage) {
714ea41019aSart 		KASSERT(sz == PAGE_SIZE);
715ea41019aSart #ifdef __HAVE_PMAP_DIRECT
716fd49af7aSart 		panic("km_alloc: DIRECT single page");
717ea41019aSart #else
718ea41019aSart 		mtx_enter(&uvm_km_pages.mtx);
719ea41019aSart 		while (uvm_km_pages.free == 0) {
720ea41019aSart 			if (kd->kd_waitok == 0) {
721ea41019aSart 				mtx_leave(&uvm_km_pages.mtx);
722ec684ed3Sart 				uvm_pglistfree(&pgl);
723ea41019aSart 				return NULL;
724ea41019aSart 			}
7252404448fSjsg 			msleep_nsec(&uvm_km_pages.free, &uvm_km_pages.mtx,
7262404448fSjsg 			    PVM, "getpage", INFSLP);
727ea41019aSart 		}
728ea41019aSart 		va = uvm_km_pages.page[--uvm_km_pages.free];
729ea41019aSart 		if (uvm_km_pages.free < uvm_km_pages.lowat &&
730ea41019aSart 		    curproc != uvm_km_pages.km_proc) {
731ea41019aSart 			if (kd->kd_slowdown)
732ea41019aSart 				*kd->kd_slowdown = 1;
733ea41019aSart 			wakeup(&uvm_km_pages.km_proc);
734ea41019aSart 		}
735ea41019aSart 		mtx_leave(&uvm_km_pages.mtx);
736ea41019aSart #endif
737ea41019aSart 	} else {
738ea41019aSart 		struct uvm_object *uobj = NULL;
739ea41019aSart 
740ea41019aSart 		if (kd->kd_trylock)
741ea41019aSart 			mapflags |= UVM_KMF_TRYLOCK;
742ea41019aSart 
743ea41019aSart 		if (kp->kp_object)
744ea41019aSart 			uobj = *kp->kp_object;
745ea41019aSart try_map:
746ea41019aSart 		map = *kv->kv_map;
747ea41019aSart 		va = vm_map_min(map);
748ea41019aSart 		if (uvm_map(map, &va, sz, uobj, kd->kd_prefer,
749e087cc70Sguenther 		    kv->kv_align, UVM_MAPFLAG(prot, prot, MAP_INHERIT_NONE,
75015cd8707Sguenther 		    MADV_RANDOM, mapflags))) {
751ea41019aSart 			if (kv->kv_wait && kd->kd_waitok) {
752744ebc9fSmpi 				tsleep_nsec(map, PVM, "km_allocva", INFSLP);
753ea41019aSart 				goto try_map;
754ea41019aSart 			}
755ec684ed3Sart 			uvm_pglistfree(&pgl);
756ea41019aSart 			return (NULL);
757ea41019aSart 		}
758ea41019aSart 	}
759ea41019aSart 	sva = va;
760ea41019aSart 	TAILQ_FOREACH(pg, &pgl, pageq) {
761ea41019aSart 		if (kp->kp_pageable)
762ea41019aSart 			pmap_enter(pmap_kernel(), va, VM_PAGE_TO_PHYS(pg),
763ea41019aSart 			    prot, prot | PMAP_WIRED);
764ea41019aSart 		else
765ea41019aSart 			pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), prot);
766ea41019aSart 		va += PAGE_SIZE;
767ea41019aSart 	}
7687023c098Smatthew 	pmap_update(pmap_kernel());
769ea41019aSart 	return ((void *)sva);
770ea41019aSart }
771ea41019aSart 
772ea41019aSart void
773803ae8aaSart km_free(void *v, size_t sz, const struct kmem_va_mode *kv,
774803ae8aaSart     const struct kmem_pa_mode *kp)
775ea41019aSart {
776ea41019aSart 	vaddr_t sva, eva, va;
777ea41019aSart 	struct vm_page *pg;
778ea41019aSart 	struct pglist pgl;
779ea41019aSart 
7806d52d019Skettenis 	sva = (vaddr_t)v;
7816d52d019Skettenis 	eva = sva + sz;
782ea41019aSart 
7836d52d019Skettenis 	if (kp->kp_nomem)
784ea41019aSart 		goto free_va;
785ea41019aSart 
786fd49af7aSart #ifdef __HAVE_PMAP_DIRECT
7876d52d019Skettenis 	if (kv->kv_singlepage || kp->kp_maxseg == 1) {
7886d52d019Skettenis 		TAILQ_INIT(&pgl);
7896d52d019Skettenis 		for (va = sva; va < eva; va += PAGE_SIZE) {
790ea41019aSart 			pg = pmap_unmap_direct(va);
7916d52d019Skettenis 			TAILQ_INSERT_TAIL(&pgl, pg, pageq);
7926d52d019Skettenis 		}
7936d52d019Skettenis 		uvm_pglistfree(&pgl);
7946d52d019Skettenis 		return;
7956d52d019Skettenis 	}
796fd49af7aSart #else
7976d52d019Skettenis 	if (kv->kv_singlepage) {
798fd49af7aSart 		struct uvm_km_free_page *fp = v;
7996d52d019Skettenis 
800fd49af7aSart 		mtx_enter(&uvm_km_pages.mtx);
801fd49af7aSart 		fp->next = uvm_km_pages.freelist;
802a434b199Skettenis 		uvm_km_pages.freelist = fp;
803fd49af7aSart 		if (uvm_km_pages.freelistlen++ > 16)
804fd49af7aSart 			wakeup(&uvm_km_pages.km_proc);
805fd49af7aSart 		mtx_leave(&uvm_km_pages.mtx);
806ea41019aSart 		return;
807ea41019aSart 	}
8086d52d019Skettenis #endif
809ea41019aSart 
810ea41019aSart 	if (kp->kp_pageable) {
811ea41019aSart 		pmap_remove(pmap_kernel(), sva, eva);
812fd49af7aSart 		pmap_update(pmap_kernel());
813ea41019aSart 	} else {
814ea41019aSart 		TAILQ_INIT(&pgl);
815ea41019aSart 		for (va = sva; va < eva; va += PAGE_SIZE) {
816ea41019aSart 			paddr_t pa;
817ea41019aSart 
818ea41019aSart 			if (!pmap_extract(pmap_kernel(), va, &pa))
819ea41019aSart 				continue;
820ea41019aSart 
821ea41019aSart 			pg = PHYS_TO_VM_PAGE(pa);
822fd49af7aSart 			if (pg == NULL) {
8234123b6a7Sderaadt 				panic("km_free: unmanaged page 0x%lx", pa);
824ea41019aSart 			}
825fd49af7aSart 			TAILQ_INSERT_TAIL(&pgl, pg, pageq);
826ea41019aSart 		}
827ea41019aSart 		pmap_kremove(sva, sz);
828ea41019aSart 		pmap_update(pmap_kernel());
829fd49af7aSart 		uvm_pglistfree(&pgl);
830fd49af7aSart 	}
831ea41019aSart free_va:
832ea41019aSart 	uvm_unmap(*kv->kv_map, sva, eva);
833ea41019aSart 	if (kv->kv_wait)
834ea41019aSart 		wakeup(*kv->kv_map);
835ea41019aSart }
836ea41019aSart 
837803ae8aaSart const struct kmem_va_mode kv_any = {
838ea41019aSart 	.kv_map = &kernel_map,
839ea41019aSart };
840ea41019aSart 
841803ae8aaSart const struct kmem_va_mode kv_intrsafe = {
842ea41019aSart 	.kv_map = &kmem_map,
843ea41019aSart };
844ea41019aSart 
845803ae8aaSart const struct kmem_va_mode kv_page = {
846ea41019aSart 	.kv_singlepage = 1
847ea41019aSart };
848ea41019aSart 
849803ae8aaSart const struct kmem_pa_mode kp_dirty = {
850ea41019aSart 	.kp_constraint = &no_constraint
851ea41019aSart };
852ea41019aSart 
853803ae8aaSart const struct kmem_pa_mode kp_dma = {
854ea41019aSart 	.kp_constraint = &dma_constraint
855ea41019aSart };
856ea41019aSart 
85712e839c5Sariane const struct kmem_pa_mode kp_dma_contig = {
85812e839c5Sariane 	.kp_constraint = &dma_constraint,
85912e839c5Sariane 	.kp_maxseg = 1
86012e839c5Sariane };
86112e839c5Sariane 
862803ae8aaSart const struct kmem_pa_mode kp_dma_zero = {
863ea41019aSart 	.kp_constraint = &dma_constraint,
864ea41019aSart 	.kp_zero = 1
865ea41019aSart };
866ea41019aSart 
867803ae8aaSart const struct kmem_pa_mode kp_zero = {
868ea41019aSart 	.kp_constraint = &no_constraint,
869ea41019aSart 	.kp_zero = 1
870ea41019aSart };
871ea41019aSart 
872803ae8aaSart const struct kmem_pa_mode kp_pageable = {
873ea41019aSart 	.kp_object = &uvm.kernel_object,
874ea41019aSart 	.kp_pageable = 1
875ea41019aSart /* XXX - kp_nomem, maybe, but we'll need to fix km_free. */
876ea41019aSart };
877ea41019aSart 
878803ae8aaSart const struct kmem_pa_mode kp_none = {
879ea41019aSart 	.kp_nomem = 1
880ea41019aSart };
881ea41019aSart 
882803ae8aaSart const struct kmem_dyn_mode kd_waitok = {
883ea41019aSart 	.kd_waitok = 1,
884ea41019aSart 	.kd_prefer = UVM_UNKNOWN_OFFSET
885ea41019aSart };
886ea41019aSart 
887803ae8aaSart const struct kmem_dyn_mode kd_nowait = {
888ea41019aSart 	.kd_prefer = UVM_UNKNOWN_OFFSET
889ea41019aSart };
890ea41019aSart 
891803ae8aaSart const struct kmem_dyn_mode kd_trylock = {
892ea41019aSart 	.kd_trylock = 1,
893ea41019aSart 	.kd_prefer = UVM_UNKNOWN_OFFSET
894ea41019aSart };
895