xref: /openbsd-src/sys/uvm/uvm_glue.c (revision 3a3fbb3f2e2521ab7c4a56b7ff7462ebd9095ec5)
1 /*	$OpenBSD: uvm_glue.c,v 1.31 2001/12/19 08:58:07 art Exp $	*/
2 /*	$NetBSD: uvm_glue.c,v 1.44 2001/02/06 19:54:44 eeh Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * Copyright (c) 1991, 1993, The Regents of the University of California.
7  *
8  * All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by Charles D. Cranor,
24  *      Washington University, the University of California, Berkeley and
25  *      its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)vm_glue.c	8.6 (Berkeley) 1/5/94
43  * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  * uvm_glue.c: glue functions
72  */
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/proc.h>
77 #include <sys/resourcevar.h>
78 #include <sys/buf.h>
79 #include <sys/user.h>
80 #ifdef SYSVSHM
81 #include <sys/shm.h>
82 #endif
83 
84 #include <uvm/uvm.h>
85 
86 #include <machine/cpu.h>
87 
88 /*
89  * local prototypes
90  */
91 
92 static void uvm_swapout __P((struct proc *));
93 
94 /*
95  * XXXCDC: do these really belong here?
96  */
97 
98 int readbuffers = 0;		/* allow KGDB to read kern buffer pool */
99 				/* XXX: see uvm_kernacc */
100 
101 
102 /*
103  * uvm_kernacc: can the kernel access a region of memory
104  *
105  * - called from malloc [DIAGNOSTIC], and /dev/kmem driver (mem.c)
106  */
107 
108 boolean_t
109 uvm_kernacc(addr, len, rw)
110 	caddr_t addr;
111 	size_t len;
112 	int rw;
113 {
114 	boolean_t rv;
115 	vaddr_t saddr, eaddr;
116 	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
117 
118 	saddr = trunc_page((vaddr_t)addr);
119 	eaddr = round_page((vaddr_t)addr + len);
120 	vm_map_lock_read(kernel_map);
121 	rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
122 	vm_map_unlock_read(kernel_map);
123 
124 	/*
125 	 * XXX there are still some things (e.g. the buffer cache) that
126 	 * are managed behind the VM system's back so even though an
127 	 * address is accessible in the mind of the VM system, there may
128 	 * not be physical pages where the VM thinks there is.  This can
129 	 * lead to bogus allocation of pages in the kernel address space
130 	 * or worse, inconsistencies at the pmap level.  We only worry
131 	 * about the buffer cache for now.
132 	 */
133 	if (!readbuffers && rv && (eaddr > (vaddr_t)buffers &&
134 			     saddr < (vaddr_t)buffers + MAXBSIZE * nbuf))
135 		rv = FALSE;
136 	return(rv);
137 }
138 
139 /*
140  * uvm_useracc: can the user access it?
141  *
142  * - called from physio() and sys___sysctl().
143  */
144 
145 boolean_t
146 uvm_useracc(addr, len, rw)
147 	caddr_t addr;
148 	size_t len;
149 	int rw;
150 {
151 	vm_map_t map;
152 	boolean_t rv;
153 	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
154 
155 	/* XXX curproc */
156 	map = &curproc->p_vmspace->vm_map;
157 
158 	vm_map_lock_read(map);
159 	rv = uvm_map_checkprot(map, trunc_page((vaddr_t)addr),
160 	    round_page((vaddr_t)addr + len), prot);
161 	vm_map_unlock_read(map);
162 
163 	return(rv);
164 }
165 
166 #ifdef KGDB
167 /*
168  * Change protections on kernel pages from addr to addr+len
169  * (presumably so debugger can plant a breakpoint).
170  *
171  * We force the protection change at the pmap level.  If we were
172  * to use vm_map_protect a change to allow writing would be lazily-
173  * applied meaning we would still take a protection fault, something
174  * we really don't want to do.  It would also fragment the kernel
175  * map unnecessarily.  We cannot use pmap_protect since it also won't
176  * enforce a write-enable request.  Using pmap_enter is the only way
177  * we can ensure the change takes place properly.
178  */
179 void
180 uvm_chgkprot(addr, len, rw)
181 	caddr_t addr;
182 	size_t len;
183 	int rw;
184 {
185 	vm_prot_t prot;
186 	paddr_t pa;
187 	vaddr_t sva, eva;
188 
189 	prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
190 	eva = round_page((vaddr_t)addr + len);
191 	for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
192 		/*
193 		 * Extract physical address for the page.
194 		 * We use a cheezy hack to differentiate physical
195 		 * page 0 from an invalid mapping, not that it
196 		 * really matters...
197 		 */
198 		if (pmap_extract(pmap_kernel(), sva, &pa) == FALSE)
199 			panic("chgkprot: invalid page");
200 		pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
201 	}
202 }
203 #endif
204 
205 /*
206  * vslock: wire user memory for I/O
207  *
208  * - called from physio and sys___sysctl
209  * - XXXCDC: consider nuking this (or making it a macro?)
210  */
211 
212 int
213 uvm_vslock(p, addr, len, access_type)
214 	struct proc *p;
215 	caddr_t	addr;
216 	size_t	len;
217 	vm_prot_t access_type;
218 {
219 	vm_map_t map;
220 	vaddr_t start, end;
221 	int rv;
222 
223 	map = &p->p_vmspace->vm_map;
224 	start = trunc_page((vaddr_t)addr);
225 	end = round_page((vaddr_t)addr + len);
226 
227 	rv = uvm_fault_wire(map, start, end, access_type);
228 
229 	return (rv);
230 }
231 
232 /*
233  * vslock: wire user memory for I/O
234  *
235  * - called from physio and sys___sysctl
236  * - XXXCDC: consider nuking this (or making it a macro?)
237  */
238 
239 void
240 uvm_vsunlock(p, addr, len)
241 	struct proc *p;
242 	caddr_t	addr;
243 	size_t	len;
244 {
245 	uvm_fault_unwire(&p->p_vmspace->vm_map, trunc_page((vaddr_t)addr),
246 		round_page((vaddr_t)addr + len));
247 }
248 
249 /*
250  * uvm_fork: fork a virtual address space
251  *
252  * - the address space is copied as per parent map's inherit values
253  * - a new "user" structure is allocated for the child process
254  *	[filled in by MD layer...]
255  * - if specified, the child gets a new user stack described by
256  *	stack and stacksize
257  * - NOTE: the kernel stack may be at a different location in the child
258  *	process, and thus addresses of automatic variables may be invalid
259  *	after cpu_fork returns in the child process.  We do nothing here
260  *	after cpu_fork returns.
261  * - XXXCDC: we need a way for this to return a failure value rather
262  *   than just hang
263  */
264 void
265 uvm_fork(p1, p2, shared, stack, stacksize, func, arg)
266 	struct proc *p1, *p2;
267 	boolean_t shared;
268 	void *stack;
269 	size_t stacksize;
270 	void (*func) __P((void *));
271 	void *arg;
272 {
273 	struct user *up = p2->p_addr;
274 	int rv;
275 
276 	if (shared == TRUE) {
277 		p2->p_vmspace = NULL;
278 		uvmspace_share(p1, p2);			/* share vmspace */
279 	} else
280 		p2->p_vmspace = uvmspace_fork(p1->p_vmspace); /* fork vmspace */
281 
282 	/*
283 	 * Wire down the U-area for the process, which contains the PCB
284 	 * and the kernel stack.  Wired state is stored in p->p_flag's
285 	 * P_INMEM bit rather than in the vm_map_entry's wired count
286 	 * to prevent kernel_map fragmentation.
287 	 *
288 	 * Note the kernel stack gets read/write accesses right off
289 	 * the bat.
290 	 */
291 	rv = uvm_fault_wire(kernel_map, (vaddr_t)up,
292 	    (vaddr_t)up + USPACE, VM_PROT_READ | VM_PROT_WRITE);
293 	if (rv != KERN_SUCCESS)
294 		panic("uvm_fork: uvm_fault_wire failed: %d", rv);
295 
296 	/*
297 	 * p_stats currently points at a field in the user struct.  Copy
298 	 * parts of p_stats, and zero out the rest.
299 	 */
300 	p2->p_stats = &up->u_stats;
301 	memset(&up->u_stats.pstat_startzero, 0,
302 	       ((caddr_t)&up->u_stats.pstat_endzero -
303 		(caddr_t)&up->u_stats.pstat_startzero));
304 	memcpy(&up->u_stats.pstat_startcopy, &p1->p_stats->pstat_startcopy,
305 	       ((caddr_t)&up->u_stats.pstat_endcopy -
306 		(caddr_t)&up->u_stats.pstat_startcopy));
307 
308 	/*
309 	 * cpu_fork() copy and update the pcb, and make the child ready
310 	 * to run.  If this is a normal user fork, the child will exit
311 	 * directly to user mode via child_return() on its first time
312 	 * slice and will not return here.  If this is a kernel thread,
313 	 * the specified entry point will be executed.
314 	 */
315 	cpu_fork(p1, p2, stack, stacksize, func, arg);
316 }
317 
318 /*
319  * uvm_exit: exit a virtual address space
320  *
321  * - the process passed to us is a dead (pre-zombie) process; we
322  *   are running on a different context now (the reaper).
323  * - we must run in a separate thread because freeing the vmspace
324  *   of the dead process may block.
325  */
326 void
327 uvm_exit(p)
328 	struct proc *p;
329 {
330 	vaddr_t va = (vaddr_t)p->p_addr;
331 
332 	uvmspace_free(p->p_vmspace);
333 	p->p_flag &= ~P_INMEM;
334 	uvm_fault_unwire(kernel_map, va, va + USPACE);
335 	uvm_km_free(kernel_map, va, USPACE);
336 	p->p_addr = NULL;
337 }
338 
339 /*
340  * uvm_init_limit: init per-process VM limits
341  *
342  * - called for process 0 and then inherited by all others.
343  */
344 void
345 uvm_init_limits(p)
346 	struct proc *p;
347 {
348 
349 	/*
350 	 * Set up the initial limits on process VM.  Set the maximum
351 	 * resident set size to be all of (reasonably) available memory.
352 	 * This causes any single, large process to start random page
353 	 * replacement once it fills memory.
354 	 */
355 
356 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
357 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
358 	p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
359 	p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
360 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
361 }
362 
363 #ifdef DEBUG
364 int	enableswap = 1;
365 int	swapdebug = 0;
366 #define	SDB_FOLLOW	1
367 #define SDB_SWAPIN	2
368 #define SDB_SWAPOUT	4
369 #endif
370 
371 /*
372  * uvm_swapin: swap in a process's u-area.
373  */
374 
375 void
376 uvm_swapin(p)
377 	struct proc *p;
378 {
379 	vaddr_t addr;
380 	int s;
381 
382 	addr = (vaddr_t)p->p_addr;
383 	/* make P_INMEM true */
384 	uvm_fault_wire(kernel_map, addr, addr + USPACE,
385 	    VM_PROT_READ | VM_PROT_WRITE);
386 
387 	/*
388 	 * Some architectures need to be notified when the user area has
389 	 * moved to new physical page(s) (e.g.  see mips/mips/vm_machdep.c).
390 	 */
391 	cpu_swapin(p);
392 	s = splstatclock();
393 	if (p->p_stat == SRUN)
394 		setrunqueue(p);
395 	p->p_flag |= P_INMEM;
396 	splx(s);
397 	p->p_swtime = 0;
398 	++uvmexp.swapins;
399 }
400 
401 /*
402  * uvm_scheduler: process zero main loop
403  *
404  * - attempt to swapin every swaped-out, runnable process in order of
405  *	priority.
406  * - if not enough memory, wake the pagedaemon and let it clear space.
407  */
408 
409 void
410 uvm_scheduler()
411 {
412 	struct proc *p;
413 	int pri;
414 	struct proc *pp;
415 	int ppri;
416 
417 loop:
418 #ifdef DEBUG
419 	while (!enableswap)
420 		tsleep(&proc0, PVM, "noswap", 0);
421 #endif
422 	pp = NULL;		/* process to choose */
423 	ppri = INT_MIN;	/* its priority */
424 	LIST_FOREACH(p, &allproc, p_list) {
425 
426 		/* is it a runnable swapped out process? */
427 		if (p->p_stat == SRUN && (p->p_flag & P_INMEM) == 0) {
428 			pri = p->p_swtime + p->p_slptime -
429 			    (p->p_nice - NZERO) * 8;
430 			if (pri > ppri) {   /* higher priority?  remember it. */
431 				pp = p;
432 				ppri = pri;
433 			}
434 		}
435 	}
436 
437 #ifdef DEBUG
438 	if (swapdebug & SDB_FOLLOW)
439 		printf("scheduler: running, procp %p pri %d\n", pp, ppri);
440 #endif
441 	/*
442 	 * Nothing to do, back to sleep
443 	 */
444 	if ((p = pp) == NULL) {
445 		tsleep(&proc0, PVM, "scheduler", 0);
446 		goto loop;
447 	}
448 
449 	/*
450 	 * we have found swapped out process which we would like to bring
451 	 * back in.
452 	 *
453 	 * XXX: this part is really bogus cuz we could deadlock on memory
454 	 * despite our feeble check
455 	 */
456 	if (uvmexp.free > atop(USPACE)) {
457 #ifdef DEBUG
458 		if (swapdebug & SDB_SWAPIN)
459 			printf("swapin: pid %d(%s)@%p, pri %d free %d\n",
460 	     p->p_pid, p->p_comm, p->p_addr, ppri, uvmexp.free);
461 #endif
462 		uvm_swapin(p);
463 		goto loop;
464 	}
465 	/*
466 	 * not enough memory, jab the pageout daemon and wait til the coast
467 	 * is clear
468 	 */
469 #ifdef DEBUG
470 	if (swapdebug & SDB_FOLLOW)
471 		printf("scheduler: no room for pid %d(%s), free %d\n",
472 	   p->p_pid, p->p_comm, uvmexp.free);
473 #endif
474 	uvm_wait("schedpwait");
475 #ifdef DEBUG
476 	if (swapdebug & SDB_FOLLOW)
477 		printf("scheduler: room again, free %d\n", uvmexp.free);
478 #endif
479 	goto loop;
480 }
481 
482 /*
483  * swappable: is process "p" swappable?
484  */
485 
486 #define	swappable(p)							\
487 	(((p)->p_flag & (P_SYSTEM | P_INMEM | P_WEXIT)) == P_INMEM &&	\
488 	 (p)->p_holdcnt == 0)
489 
490 /*
491  * swapout_threads: find threads that can be swapped and unwire their
492  *	u-areas.
493  *
494  * - called by the pagedaemon
495  * - try and swap at least one processs
496  * - processes that are sleeping or stopped for maxslp or more seconds
497  *   are swapped... otherwise the longest-sleeping or stopped process
498  *   is swapped, otherwise the longest resident process...
499  */
500 void
501 uvm_swapout_threads()
502 {
503 	struct proc *p;
504 	struct proc *outp, *outp2;
505 	int outpri, outpri2;
506 	int didswap = 0;
507 	extern int maxslp;
508 	/* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
509 
510 #ifdef DEBUG
511 	if (!enableswap)
512 		return;
513 #endif
514 
515 	/*
516 	 * outp/outpri  : stop/sleep process with largest sleeptime < maxslp
517 	 * outp2/outpri2: the longest resident process (its swap time)
518 	 */
519 	outp = outp2 = NULL;
520 	outpri = outpri2 = 0;
521 	LIST_FOREACH(p, &allproc, p_list) {
522 		if (!swappable(p))
523 			continue;
524 		switch (p->p_stat) {
525 		case SRUN:
526 			if (p->p_swtime > outpri2) {
527 				outp2 = p;
528 				outpri2 = p->p_swtime;
529 			}
530 			continue;
531 
532 		case SSLEEP:
533 		case SSTOP:
534 			if (p->p_slptime >= maxslp) {
535 				uvm_swapout(p);
536 				didswap++;
537 			} else if (p->p_slptime > outpri) {
538 				outp = p;
539 				outpri = p->p_slptime;
540 			}
541 			continue;
542 		}
543 	}
544 
545 	/*
546 	 * If we didn't get rid of any real duds, toss out the next most
547 	 * likely sleeping/stopped or running candidate.  We only do this
548 	 * if we are real low on memory since we don't gain much by doing
549 	 * it (USPACE bytes).
550 	 */
551 	if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
552 		if ((p = outp) == NULL)
553 			p = outp2;
554 #ifdef DEBUG
555 		if (swapdebug & SDB_SWAPOUT)
556 			printf("swapout_threads: no duds, try procp %p\n", p);
557 #endif
558 		if (p)
559 			uvm_swapout(p);
560 	}
561 }
562 
563 /*
564  * uvm_swapout: swap out process "p"
565  *
566  * - currently "swapout" means "unwire U-area" and "pmap_collect()"
567  *   the pmap.
568  * - XXXCDC: should deactivate all process' private anonymous memory
569  */
570 
571 static void
572 uvm_swapout(p)
573 	struct proc *p;
574 {
575 	vaddr_t addr;
576 	int s;
577 
578 #ifdef DEBUG
579 	if (swapdebug & SDB_SWAPOUT)
580 		printf("swapout: pid %d(%s)@%p, stat %x pri %d free %d\n",
581 	   p->p_pid, p->p_comm, p->p_addr, p->p_stat,
582 	   p->p_slptime, uvmexp.free);
583 #endif
584 
585 	/*
586 	 * Do any machine-specific actions necessary before swapout.
587 	 * This can include saving floating point state, etc.
588 	 */
589 	cpu_swapout(p);
590 
591 	/*
592 	 * Mark it as (potentially) swapped out.
593 	 */
594 	s = splstatclock();
595 	p->p_flag &= ~P_INMEM;
596 	if (p->p_stat == SRUN)
597 		remrunqueue(p);
598 	splx(s);
599 	p->p_swtime = 0;
600 	++uvmexp.swapouts;
601 
602 	/*
603 	 * Unwire the to-be-swapped process's user struct and kernel stack.
604 	 */
605 	addr = (vaddr_t)p->p_addr;
606 	uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !P_INMEM */
607 	pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
608 }
609 
610