xref: /openbsd-src/sys/uvm/uvm_fault.c (revision e5157e49389faebcb42b7237d55fbf096d9c2523)
1 /*	$OpenBSD: uvm_fault.c,v 1.79 2014/11/16 12:31:00 deraadt Exp $	*/
2 /*	$NetBSD: uvm_fault.c,v 1.51 2000/08/06 00:22:53 thorpej Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
29  */
30 
31 /*
32  * uvm_fault.c: fault handler
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/proc.h>
39 #include <sys/malloc.h>
40 #include <sys/mman.h>
41 #include <sys/user.h>
42 
43 #include <uvm/uvm.h>
44 
45 /*
46  *
47  * a word on page faults:
48  *
49  * types of page faults we handle:
50  *
51  * CASE 1: upper layer faults                   CASE 2: lower layer faults
52  *
53  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
54  *    read/write1     write>1                  read/write   +-cow_write/zero
55  *         |             |                         |        |
56  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
57  * amap |  V  |       |  ----------->new|          |        | |  ^  |
58  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
59  *                                                 |        |    |
60  *      +-----+       +-----+                   +--|--+     | +--|--+
61  * uobj | d/c |       | d/c |                   |  V  |     +----|  |
62  *      +-----+       +-----+                   +-----+       +-----+
63  *
64  * d/c = don't care
65  *
66  *   case [0]: layerless fault
67  *	no amap or uobj is present.   this is an error.
68  *
69  *   case [1]: upper layer fault [anon active]
70  *     1A: [read] or [write with anon->an_ref == 1]
71  *		I/O takes place in top level anon and uobj is not touched.
72  *     1B: [write with anon->an_ref > 1]
73  *		new anon is alloc'd and data is copied off ["COW"]
74  *
75  *   case [2]: lower layer fault [uobj]
76  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
77  *		I/O takes place directly in object.
78  *     2B: [write to copy_on_write] or [read on NULL uobj]
79  *		data is "promoted" from uobj to a new anon.
80  *		if uobj is null, then we zero fill.
81  *
82  * we follow the standard UVM locking protocol ordering:
83  *
84  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
85  * we hold a PG_BUSY page if we unlock for I/O
86  *
87  *
88  * the code is structured as follows:
89  *
90  *     - init the "IN" params in the ufi structure
91  *   ReFault:
92  *     - do lookups [locks maps], check protection, handle needs_copy
93  *     - check for case 0 fault (error)
94  *     - establish "range" of fault
95  *     - if we have an amap lock it and extract the anons
96  *     - if sequential advice deactivate pages behind us
97  *     - at the same time check pmap for unmapped areas and anon for pages
98  *	 that we could map in (and do map it if found)
99  *     - check object for resident pages that we could map in
100  *     - if (case 2) goto Case2
101  *     - >>> handle case 1
102  *           - ensure source anon is resident in RAM
103  *           - if case 1B alloc new anon and copy from source
104  *           - map the correct page in
105  *   Case2:
106  *     - >>> handle case 2
107  *           - ensure source page is resident (if uobj)
108  *           - if case 2B alloc new anon and copy from source (could be zero
109  *		fill if uobj == NULL)
110  *           - map the correct page in
111  *     - done!
112  *
113  * note on paging:
114  *   if we have to do I/O we place a PG_BUSY page in the correct object,
115  * unlock everything, and do the I/O.   when I/O is done we must reverify
116  * the state of the world before assuming that our data structures are
117  * valid.   [because mappings could change while the map is unlocked]
118  *
119  *  alternative 1: unbusy the page in question and restart the page fault
120  *    from the top (ReFault).   this is easy but does not take advantage
121  *    of the information that we already have from our previous lookup,
122  *    although it is possible that the "hints" in the vm_map will help here.
123  *
124  * alternative 2: the system already keeps track of a "version" number of
125  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
126  *    mapping) you bump the version number up by one...]   so, we can save
127  *    the version number of the map before we release the lock and start I/O.
128  *    then when I/O is done we can relock and check the version numbers
129  *    to see if anything changed.    this might save us some over 1 because
130  *    we don't have to unbusy the page and may be less compares(?).
131  *
132  * alternative 3: put in backpointers or a way to "hold" part of a map
133  *    in place while I/O is in progress.   this could be complex to
134  *    implement (especially with structures like amap that can be referenced
135  *    by multiple map entries, and figuring out what should wait could be
136  *    complex as well...).
137  *
138  * given that we are not currently multiprocessor or multithreaded we might
139  * as well choose alternative 2 now.   maybe alternative 3 would be useful
140  * in the future.    XXX keep in mind for future consideration//rechecking.
141  */
142 
143 /*
144  * local data structures
145  */
146 struct uvm_advice {
147 	int nback;
148 	int nforw;
149 };
150 
151 /*
152  * page range array: set up in uvmfault_init().
153  */
154 static struct uvm_advice uvmadvice[UVM_ADV_MASK + 1];
155 
156 #define UVM_MAXRANGE 16	/* must be max() of nback+nforw+1 */
157 
158 /*
159  * private prototypes
160  */
161 static void uvmfault_amapcopy(struct uvm_faultinfo *);
162 static __inline void uvmfault_anonflush(struct vm_anon **, int);
163 void	uvmfault_unlockmaps(struct uvm_faultinfo *, boolean_t);
164 void	uvmfault_update_stats(struct uvm_faultinfo *);
165 
166 /*
167  * inline functions
168  */
169 /*
170  * uvmfault_anonflush: try and deactivate pages in specified anons
171  *
172  * => does not have to deactivate page if it is busy
173  */
174 static __inline void
175 uvmfault_anonflush(struct vm_anon **anons, int n)
176 {
177 	int lcv;
178 	struct vm_page *pg;
179 
180 	for (lcv = 0 ; lcv < n ; lcv++) {
181 		if (anons[lcv] == NULL)
182 			continue;
183 		pg = anons[lcv]->an_page;
184 		if (pg && (pg->pg_flags & PG_BUSY) == 0 && pg->loan_count == 0) {
185 			uvm_lock_pageq();
186 			if (pg->wire_count == 0) {
187 				pmap_page_protect(pg, PROT_NONE);
188 				uvm_pagedeactivate(pg);
189 			}
190 			uvm_unlock_pageq();
191 		}
192 	}
193 }
194 
195 /*
196  * normal functions
197  */
198 /*
199  * uvmfault_init: compute proper values for the uvmadvice[] array.
200  */
201 void
202 uvmfault_init()
203 {
204 	int npages;
205 
206 	npages = atop(16384);
207 	if (npages > 0) {
208 		KASSERT(npages <= UVM_MAXRANGE / 2);
209 		uvmadvice[POSIX_MADV_NORMAL].nforw = npages;
210 		uvmadvice[POSIX_MADV_NORMAL].nback = npages - 1;
211 	}
212 
213 	npages = atop(32768);
214 	if (npages > 0) {
215 		KASSERT(npages <= UVM_MAXRANGE / 2);
216 		uvmadvice[POSIX_MADV_SEQUENTIAL].nforw = npages - 1;
217 		uvmadvice[POSIX_MADV_SEQUENTIAL].nback = npages;
218 	}
219 }
220 
221 /*
222  * uvmfault_amapcopy: clear "needs_copy" in a map.
223  *
224  * => if we are out of RAM we sleep (waiting for more)
225  */
226 static void
227 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
228 {
229 
230 	/* while we haven't done the job */
231 	while (1) {
232 		/* no mapping?  give up. */
233 		if (uvmfault_lookup(ufi, TRUE) == FALSE)
234 			return;
235 
236 		/* copy if needed. */
237 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
238 			amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
239 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
240 
241 		/* didn't work?  must be out of RAM.  sleep. */
242 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
243 			uvmfault_unlockmaps(ufi, TRUE);
244 			uvm_wait("fltamapcopy");
245 			continue;
246 		}
247 
248 		/* got it! */
249 		uvmfault_unlockmaps(ufi, TRUE);
250 		return;
251 	}
252 	/*NOTREACHED*/
253 }
254 
255 /*
256  * uvmfault_anonget: get data in an anon into a non-busy, non-released
257  * page in that anon.
258  *
259  * => we don't move the page on the queues [gets moved later]
260  * => if we allocate a new page [we_own], it gets put on the queues.
261  *    either way, the result is that the page is on the queues at return time
262  * => for pages which are on loan from a uvm_object (and thus are not
263  *    owned by the anon): if successful, we return with the owning object
264  */
265 int
266 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
267     struct vm_anon *anon)
268 {
269 	boolean_t we_own;	/* we own anon's page? */
270 	boolean_t locked;	/* did we relock? */
271 	struct vm_page *pg;
272 	int result;
273 
274 	result = 0;		/* XXX shut up gcc */
275 	uvmexp.fltanget++;
276         /* bump rusage counters */
277 	if (anon->an_page)
278 		curproc->p_ru.ru_minflt++;
279 	else
280 		curproc->p_ru.ru_majflt++;
281 
282 	/* loop until we get it, or fail. */
283 	while (1) {
284 		we_own = FALSE;		/* TRUE if we set PG_BUSY on a page */
285 		pg = anon->an_page;
286 
287 		/*
288 		 * if there is a resident page and it is loaned, then anon
289 		 * may not own it.   call out to uvm_anon_lockpage() to ensure
290 		 * the real owner of the page has been identified.
291 		 */
292 		if (pg && pg->loan_count)
293 			pg = uvm_anon_lockloanpg(anon);
294 
295 		/* page there?   make sure it is not busy/released. */
296 		if (pg) {
297 			/*
298 			 * at this point, if the page has a uobject [meaning
299 			 * we have it on loan], then that uobject is locked
300 			 * by us!   if the page is busy, we drop all the
301 			 * locks (including uobject) and try again.
302 			 */
303 			if ((pg->pg_flags & (PG_BUSY|PG_RELEASED)) == 0) {
304 				return (VM_PAGER_OK);
305 			}
306 			atomic_setbits_int(&pg->pg_flags, PG_WANTED);
307 			uvmexp.fltpgwait++;
308 
309 			/*
310 			 * the last unlock must be an atomic unlock+wait on
311 			 * the owner of page
312 			 */
313 			if (pg->uobject) {	/* owner is uobject ? */
314 				uvmfault_unlockall(ufi, amap, NULL, anon);
315 				UVM_WAIT(pg, FALSE, "anonget1",0);
316 			} else {
317 				/* anon owns page */
318 				uvmfault_unlockall(ufi, amap, NULL, NULL);
319 				UVM_WAIT(pg, 0, "anonget2", 0);
320 			}
321 			/* ready to relock and try again */
322 		} else {
323 			/* no page, we must try and bring it in. */
324 			pg = uvm_pagealloc(NULL, 0, anon, 0);
325 
326 			if (pg == NULL) {		/* out of RAM.  */
327 				uvmfault_unlockall(ufi, amap, NULL, anon);
328 				uvmexp.fltnoram++;
329 				uvm_wait("flt_noram1");
330 				/* ready to relock and try again */
331 			} else {
332 				/* we set the PG_BUSY bit */
333 				we_own = TRUE;
334 				uvmfault_unlockall(ufi, amap, NULL, anon);
335 
336 				/*
337 				 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
338 				 * page into the uvm_swap_get function with
339 				 * all data structures unlocked.  note that
340 				 * it is ok to read an_swslot here because
341 				 * we hold PG_BUSY on the page.
342 				 */
343 				uvmexp.pageins++;
344 				result = uvm_swap_get(pg, anon->an_swslot,
345 				    PGO_SYNCIO);
346 
347 				/*
348 				 * we clean up after the i/o below in the
349 				 * "we_own" case
350 				 */
351 				/* ready to relock and try again */
352 			}
353 		}
354 
355 		/* now relock and try again */
356 		locked = uvmfault_relock(ufi);
357 
358 		/*
359 		 * if we own the page (i.e. we set PG_BUSY), then we need
360 		 * to clean up after the I/O. there are three cases to
361 		 * consider:
362 		 *   [1] page released during I/O: free anon and ReFault.
363 		 *   [2] I/O not OK.   free the page and cause the fault
364 		 *       to fail.
365 		 *   [3] I/O OK!   activate the page and sync with the
366 		 *       non-we_own case (i.e. drop anon lock if not locked).
367 		 */
368 		if (we_own) {
369 			if (pg->pg_flags & PG_WANTED) {
370 				wakeup(pg);
371 			}
372 			/* un-busy! */
373 			atomic_clearbits_int(&pg->pg_flags,
374 			    PG_WANTED|PG_BUSY|PG_FAKE);
375 			UVM_PAGE_OWN(pg, NULL);
376 
377 			/*
378 			 * if we were RELEASED during I/O, then our anon is
379 			 * no longer part of an amap.   we need to free the
380 			 * anon and try again.
381 			 */
382 			if (pg->pg_flags & PG_RELEASED) {
383 				pmap_page_protect(pg, PROT_NONE);
384 				uvm_anfree(anon);	/* frees page for us */
385 				if (locked)
386 					uvmfault_unlockall(ufi, amap, NULL,
387 							   NULL);
388 				uvmexp.fltpgrele++;
389 				return (VM_PAGER_REFAULT);	/* refault! */
390 			}
391 
392 			if (result != VM_PAGER_OK) {
393 				KASSERT(result != VM_PAGER_PEND);
394 
395 				/* remove page from anon */
396 				anon->an_page = NULL;
397 
398 				/*
399 				 * remove the swap slot from the anon
400 				 * and mark the anon as having no real slot.
401 				 * don't free the swap slot, thus preventing
402 				 * it from being used again.
403 				 */
404 				uvm_swap_markbad(anon->an_swslot, 1);
405 				anon->an_swslot = SWSLOT_BAD;
406 
407 				/*
408 				 * note: page was never !PG_BUSY, so it
409 				 * can't be mapped and thus no need to
410 				 * pmap_page_protect it...
411 				 */
412 				uvm_lock_pageq();
413 				uvm_pagefree(pg);
414 				uvm_unlock_pageq();
415 
416 				if (locked)
417 					uvmfault_unlockall(ufi, amap, NULL,
418 					    anon);
419 				return (VM_PAGER_ERROR);
420 			}
421 
422 			/*
423 			 * must be OK, clear modify (already PG_CLEAN)
424 			 * and activate
425 			 */
426 			pmap_clear_modify(pg);
427 			uvm_lock_pageq();
428 			uvm_pageactivate(pg);
429 			uvm_unlock_pageq();
430 		}
431 
432 		/* we were not able to relock.   restart fault. */
433 		if (!locked)
434 			return (VM_PAGER_REFAULT);
435 
436 		/* verify no one touched the amap and moved the anon on us. */
437 		if (ufi != NULL &&
438 		    amap_lookup(&ufi->entry->aref,
439 				ufi->orig_rvaddr - ufi->entry->start) != anon) {
440 
441 			uvmfault_unlockall(ufi, amap, NULL, anon);
442 			return (VM_PAGER_REFAULT);
443 		}
444 
445 		/* try it again! */
446 		uvmexp.fltanretry++;
447 		continue;
448 
449 	} /* while (1) */
450 	/*NOTREACHED*/
451 }
452 
453 /*
454  * Update statistics after fault resolution.
455  * - maxrss
456  */
457 void
458 uvmfault_update_stats(struct uvm_faultinfo *ufi)
459 {
460 	struct vm_map		*map;
461 	struct proc		*p;
462 	vsize_t			 res;
463 #ifndef pmap_resident_count
464 	struct vm_space		*vm;
465 #endif
466 
467 	map = ufi->orig_map;
468 
469 	/* Update the maxrss for the process. */
470 	if (map->flags & VM_MAP_ISVMSPACE) {
471 		p = curproc;
472 		KASSERT(p != NULL && &p->p_vmspace->vm_map == map);
473 
474 #ifdef pmap_resident_count
475 		res = pmap_resident_count(map->pmap);
476 #else
477 		/*
478 		 * Rather inaccurate, but this is the current anon size
479 		 * of the vmspace.  It's basically the resident size
480 		 * minus the mmapped in files/text.
481 		 */
482 		vm = (struct vmspace*)map;
483 		res = vm->dsize;
484 #endif
485 
486 		/* Convert res from pages to kilobytes. */
487 		res <<= (PAGE_SHIFT - 10);
488 
489 		if (p->p_ru.ru_maxrss < res)
490 			p->p_ru.ru_maxrss = res;
491 	}
492 }
493 
494 /*
495  *   F A U L T   -   m a i n   e n t r y   p o i n t
496  */
497 
498 /*
499  * uvm_fault: page fault handler
500  *
501  * => called from MD code to resolve a page fault
502  * => VM data structures usually should be unlocked.   however, it is
503  *	possible to call here with the main map locked if the caller
504  *	gets a write lock, sets it recursive, and then calls us (c.f.
505  *	uvm_map_pageable).   this should be avoided because it keeps
506  *	the map locked off during I/O.
507  */
508 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
509 			 ~PROT_WRITE : PROT_MASK)
510 int
511 uvm_fault(vm_map_t orig_map, vaddr_t vaddr, vm_fault_t fault_type,
512     vm_prot_t access_type)
513 {
514 	struct uvm_faultinfo ufi;
515 	vm_prot_t enter_prot;
516 	boolean_t wired, narrow, promote, locked, shadowed;
517 	int npages, nback, nforw, centeridx, result, lcv, gotpages;
518 	vaddr_t startva, currva;
519 	voff_t uoff;
520 	paddr_t pa;
521 	struct vm_amap *amap;
522 	struct uvm_object *uobj;
523 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
524 	struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
525 
526 	anon = NULL;
527 	pg = NULL;
528 
529 	uvmexp.faults++;	/* XXX: locking? */
530 
531 	/* init the IN parameters in the ufi */
532 	ufi.orig_map = orig_map;
533 	ufi.orig_rvaddr = trunc_page(vaddr);
534 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
535 	if (fault_type == VM_FAULT_WIRE)
536 		narrow = TRUE;		/* don't look for neighborhood
537 					 * pages on wire */
538 	else
539 		narrow = FALSE;		/* normal fault */
540 
541 	/* "goto ReFault" means restart the page fault from ground zero. */
542 ReFault:
543 	/* lookup and lock the maps */
544 	if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
545 		return (EFAULT);
546 	}
547 
548 #ifdef DIAGNOSTIC
549 	if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0)
550 		panic("uvm_fault: fault on non-pageable map (%p, 0x%lx)",
551 		    ufi.map, vaddr);
552 #endif
553 
554 	/* check protection */
555 	if ((ufi.entry->protection & access_type) != access_type) {
556 		uvmfault_unlockmaps(&ufi, FALSE);
557 		return (EACCES);
558 	}
559 
560 	/*
561 	 * "enter_prot" is the protection we want to enter the page in at.
562 	 * for certain pages (e.g. copy-on-write pages) this protection can
563 	 * be more strict than ufi.entry->protection.  "wired" means either
564 	 * the entry is wired or we are fault-wiring the pg.
565 	 */
566 
567 	enter_prot = ufi.entry->protection;
568 	wired = VM_MAPENT_ISWIRED(ufi.entry) || (fault_type == VM_FAULT_WIRE);
569 	if (wired)
570 		access_type = enter_prot; /* full access for wired */
571 
572 	/* handle "needs_copy" case. */
573 	if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
574 		if ((access_type & PROT_WRITE) ||
575 		    (ufi.entry->object.uvm_obj == NULL)) {
576 			/* need to clear */
577 			uvmfault_unlockmaps(&ufi, FALSE);
578 			uvmfault_amapcopy(&ufi);
579 			uvmexp.fltamcopy++;
580 			goto ReFault;
581 		} else {
582 			/*
583 			 * ensure that we pmap_enter page R/O since
584 			 * needs_copy is still true
585 			 */
586 			enter_prot &= ~PROT_WRITE;
587 		}
588 	}
589 
590 	/* identify the players */
591 	amap = ufi.entry->aref.ar_amap;		/* top layer */
592 	uobj = ufi.entry->object.uvm_obj;	/* bottom layer */
593 
594 	/*
595 	 * check for a case 0 fault.  if nothing backing the entry then
596 	 * error now.
597 	 */
598 	if (amap == NULL && uobj == NULL) {
599 		uvmfault_unlockmaps(&ufi, FALSE);
600 		return (EFAULT);
601 	}
602 
603 	/*
604 	 * establish range of interest based on advice from mapper
605 	 * and then clip to fit map entry.   note that we only want
606 	 * to do this the first time through the fault.   if we
607 	 * ReFault we will disable this by setting "narrow" to true.
608 	 */
609 	if (narrow == FALSE) {
610 
611 		/* wide fault (!narrow) */
612 		nback = min(uvmadvice[ufi.entry->advice].nback,
613 			    (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
614 		startva = ufi.orig_rvaddr - ((vsize_t)nback << PAGE_SHIFT);
615 		nforw = min(uvmadvice[ufi.entry->advice].nforw,
616 			    ((ufi.entry->end - ufi.orig_rvaddr) >>
617 			     PAGE_SHIFT) - 1);
618 		/*
619 		 * note: "-1" because we don't want to count the
620 		 * faulting page as forw
621 		 */
622 		npages = nback + nforw + 1;
623 		centeridx = nback;
624 
625 		narrow = TRUE;	/* ensure only once per-fault */
626 	} else {
627 		/* narrow fault! */
628 		nback = nforw = 0;
629 		startva = ufi.orig_rvaddr;
630 		npages = 1;
631 		centeridx = 0;
632 	}
633 
634 	/* if we've got an amap, extract current anons. */
635 	if (amap) {
636 		anons = anons_store;
637 		amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
638 		    anons, npages);
639 	} else {
640 		anons = NULL;	/* to be safe */
641 	}
642 
643 	/*
644 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
645 	 * now and then forget about them (for the rest of the fault).
646 	 */
647 	if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) {
648 		/* flush back-page anons? */
649 		if (amap)
650 			uvmfault_anonflush(anons, nback);
651 
652 		/* flush object? */
653 		if (uobj) {
654 			uoff = (startva - ufi.entry->start) + ufi.entry->offset;
655 			(void) uobj->pgops->pgo_flush(uobj, uoff, uoff +
656 			    ((vsize_t)nback << PAGE_SHIFT), PGO_DEACTIVATE);
657 		}
658 
659 		/* now forget about the backpages */
660 		if (amap)
661 			anons += nback;
662 		startva += ((vsize_t)nback << PAGE_SHIFT);
663 		npages -= nback;
664 		centeridx = 0;
665 	}
666 
667 	/*
668 	 * map in the backpages and frontpages we found in the amap in hopes
669 	 * of preventing future faults.    we also init the pages[] array as
670 	 * we go.
671 	 */
672 	currva = startva;
673 	shadowed = FALSE;
674 	for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
675 		/*
676 		 * dont play with VAs that are already mapped
677 		 * except for center)
678 		 */
679 		if (lcv != centeridx &&
680 		    pmap_extract(ufi.orig_map->pmap, currva, &pa)) {
681 			pages[lcv] = PGO_DONTCARE;
682 			continue;
683 		}
684 
685 		/* unmapped or center page.   check if any anon at this level. */
686 		if (amap == NULL || anons[lcv] == NULL) {
687 			pages[lcv] = NULL;
688 			continue;
689 		}
690 
691 		/* check for present page and map if possible.   re-activate it. */
692 		pages[lcv] = PGO_DONTCARE;
693 		if (lcv == centeridx) {		/* save center for later! */
694 			shadowed = TRUE;
695 			continue;
696 		}
697 		anon = anons[lcv];
698 		/* ignore loaned pages */
699 		if (anon->an_page && anon->an_page->loan_count == 0 &&
700 		    (anon->an_page->pg_flags & (PG_RELEASED|PG_BUSY)) == 0) {
701 			uvm_lock_pageq();
702 			uvm_pageactivate(anon->an_page);	/* reactivate */
703 			uvm_unlock_pageq();
704 			uvmexp.fltnamap++;
705 
706 			/*
707 			 * Since this isn't the page that's actually faulting,
708 			 * ignore pmap_enter() failures; it's not critical
709 			 * that we enter these right now.
710 			 */
711 			(void) pmap_enter(ufi.orig_map->pmap, currva,
712 			    VM_PAGE_TO_PHYS(anon->an_page),
713 			    (anon->an_ref > 1) ? (enter_prot & ~PROT_WRITE) :
714 			    enter_prot,
715 			    PMAP_CANFAIL |
716 			     (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
717 		}
718 	}
719 	if (npages > 1)
720 		pmap_update(ufi.orig_map->pmap);
721 
722 	/* (shadowed == TRUE) if there is an anon at the faulting address */
723 	/*
724 	 * note that if we are really short of RAM we could sleep in the above
725 	 * call to pmap_enter.   bad?
726 	 *
727 	 * XXX Actually, that is bad; pmap_enter() should just fail in that
728 	 * XXX case.  --thorpej
729 	 */
730 	/*
731 	 * if the desired page is not shadowed by the amap and we have a
732 	 * backing object, then we check to see if the backing object would
733 	 * prefer to handle the fault itself (rather than letting us do it
734 	 * with the usual pgo_get hook).  the backing object signals this by
735 	 * providing a pgo_fault routine.
736 	 */
737 	if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
738 		result = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
739 				    centeridx, fault_type, access_type,
740 				    PGO_LOCKED);
741 
742 		if (result == VM_PAGER_OK)
743 			return (0);		/* pgo_fault did pmap enter */
744 		else if (result == VM_PAGER_REFAULT)
745 			goto ReFault;		/* try again! */
746 		else
747 			return (EACCES);
748 	}
749 
750 	/*
751 	 * now, if the desired page is not shadowed by the amap and we have
752 	 * a backing object that does not have a special fault routine, then
753 	 * we ask (with pgo_get) the object for resident pages that we care
754 	 * about and attempt to map them in.  we do not let pgo_get block
755 	 * (PGO_LOCKED).
756 	 *
757 	 * ("get" has the option of doing a pmap_enter for us)
758 	 */
759 	if (uobj && shadowed == FALSE) {
760 		uvmexp.fltlget++;
761 		gotpages = npages;
762 		(void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
763 				(startva - ufi.entry->start),
764 				pages, &gotpages, centeridx,
765 				access_type & MASK(ufi.entry),
766 				ufi.entry->advice, PGO_LOCKED);
767 
768 		/* check for pages to map, if we got any */
769 		uobjpage = NULL;
770 		if (gotpages) {
771 			currva = startva;
772 			for (lcv = 0 ; lcv < npages ;
773 			    lcv++, currva += PAGE_SIZE) {
774 				if (pages[lcv] == NULL ||
775 				    pages[lcv] == PGO_DONTCARE)
776 					continue;
777 
778 				KASSERT((pages[lcv]->pg_flags & PG_RELEASED) == 0);
779 
780 				/*
781 				 * if center page is resident and not
782 				 * PG_BUSY, then pgo_get made it PG_BUSY
783 				 * for us and gave us a handle to it.
784 				 * remember this page as "uobjpage."
785 				 * (for later use).
786 				 */
787 				if (lcv == centeridx) {
788 					uobjpage = pages[lcv];
789 					continue;
790 				}
791 
792 				/*
793 				 * note: calling pgo_get with locked data
794 				 * structures returns us pages which are
795 				 * neither busy nor released, so we don't
796 				 * need to check for this.   we can just
797 				 * directly enter the page (after moving it
798 				 * to the head of the active queue [useful?]).
799 				 */
800 
801 				uvm_lock_pageq();
802 				uvm_pageactivate(pages[lcv]);	/* reactivate */
803 				uvm_unlock_pageq();
804 				uvmexp.fltnomap++;
805 
806 				/*
807 				 * Since this page isn't the page that's
808 				 * actually faulting, ignore pmap_enter()
809 				 * failures; it's not critical that we
810 				 * enter these right now.
811 				 */
812 				(void) pmap_enter(ufi.orig_map->pmap, currva,
813 				    VM_PAGE_TO_PHYS(pages[lcv]),
814 				    enter_prot & MASK(ufi.entry),
815 				    PMAP_CANFAIL |
816 				     (wired ? PMAP_WIRED : 0));
817 
818 				/*
819 				 * NOTE: page can't be PG_WANTED because
820 				 * we've held the lock the whole time
821 				 * we've had the handle.
822 				 */
823 				atomic_clearbits_int(&pages[lcv]->pg_flags,
824 				    PG_BUSY);
825 				UVM_PAGE_OWN(pages[lcv], NULL);
826 			}	/* for "lcv" loop */
827 			pmap_update(ufi.orig_map->pmap);
828 		}   /* "gotpages" != 0 */
829 		/* note: object still _locked_ */
830 	} else {
831 		uobjpage = NULL;
832 	}
833 
834 	/*
835 	 * note that at this point we are done with any front or back pages.
836 	 * we are now going to focus on the center page (i.e. the one we've
837 	 * faulted on).  if we have faulted on the top (anon) layer
838 	 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
839 	 * not touched it yet).  if we have faulted on the bottom (uobj)
840 	 * layer [i.e. case 2] and the page was both present and available,
841 	 * then we've got a pointer to it as "uobjpage" and we've already
842 	 * made it BUSY.
843 	 */
844 	/*
845 	 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
846 	 */
847 	/* redirect case 2: if we are not shadowed, go to case 2. */
848 	if (shadowed == FALSE)
849 		goto Case2;
850 
851 	/* handle case 1: fault on an anon in our amap */
852 	anon = anons[centeridx];
853 
854 	/*
855 	 * no matter if we have case 1A or case 1B we are going to need to
856 	 * have the anon's memory resident.   ensure that now.
857 	 */
858 	/*
859 	 * let uvmfault_anonget do the dirty work.
860 	 * also, if it is OK, then the anon's page is on the queues.
861 	 */
862 	result = uvmfault_anonget(&ufi, amap, anon);
863 	switch (result) {
864 	case VM_PAGER_OK:
865 		break;
866 
867 	case VM_PAGER_REFAULT:
868 		goto ReFault;
869 
870 	case VM_PAGER_ERROR:
871 		/*
872 		 * An error occured while trying to bring in the
873 		 * page -- this is the only error we return right
874 		 * now.
875 		 */
876 		return (EACCES);	/* XXX */
877 	default:
878 #ifdef DIAGNOSTIC
879 		panic("uvm_fault: uvmfault_anonget -> %d", result);
880 #else
881 		return (EACCES);
882 #endif
883 	}
884 
885 	/* uobj is non null if the page is on loan from an object (i.e. uobj) */
886 	uobj = anon->an_page->uobject;
887 
888 	/* special handling for loaned pages */
889 	if (anon->an_page->loan_count) {
890 		if ((access_type & PROT_WRITE) == 0) {
891 			/*
892 			 * for read faults on loaned pages we just cap the
893 			 * protection at read-only.
894 			 */
895 			enter_prot = enter_prot & ~PROT_WRITE;
896 		} else {
897 			/*
898 			 * note that we can't allow writes into a loaned page!
899 			 *
900 			 * if we have a write fault on a loaned page in an
901 			 * anon then we need to look at the anon's ref count.
902 			 * if it is greater than one then we are going to do
903 			 * a normal copy-on-write fault into a new anon (this
904 			 * is not a problem).  however, if the reference count
905 			 * is one (a case where we would normally allow a
906 			 * write directly to the page) then we need to kill
907 			 * the loan before we continue.
908 			 */
909 
910 			/* >1 case is already ok */
911 			if (anon->an_ref == 1) {
912 				/* get new un-owned replacement page */
913 				pg = uvm_pagealloc(NULL, 0, NULL, 0);
914 				if (pg == NULL) {
915 					uvmfault_unlockall(&ufi, amap, uobj,
916 					    anon);
917 					uvm_wait("flt_noram2");
918 					goto ReFault;
919 				}
920 
921 				/* copy data, kill loan */
922 				/* copy old -> new */
923 				uvm_pagecopy(anon->an_page, pg);
924 
925 				/* force reload */
926 				pmap_page_protect(anon->an_page, PROT_NONE);
927 				uvm_lock_pageq();	  /* KILL loan */
928 				if (uobj)
929 					/* if we were loaning */
930 					anon->an_page->loan_count--;
931 				anon->an_page->uanon = NULL;
932 				/* in case we owned */
933 				atomic_clearbits_int(
934 				    &anon->an_page->pg_flags, PQ_ANON);
935 				uvm_pageactivate(pg);
936 				uvm_unlock_pageq();
937 				if (uobj) {
938 					uobj = NULL;
939 				}
940 
941 				/* install new page in anon */
942 				anon->an_page = pg;
943 				pg->uanon = anon;
944 				atomic_setbits_int(&pg->pg_flags, PQ_ANON);
945 				atomic_clearbits_int(&pg->pg_flags,
946 				    PG_BUSY|PG_FAKE);
947 				UVM_PAGE_OWN(pg, NULL);
948 			}     /* ref == 1 */
949 		}       /* write fault */
950 	}         /* loan count */
951 
952 	/*
953 	 * if we are case 1B then we will need to allocate a new blank
954 	 * anon to transfer the data into.   note that we have a lock
955 	 * on anon, so no one can busy or release the page until we are done.
956 	 * also note that the ref count can't drop to zero here because
957 	 * it is > 1 and we are only dropping one ref.
958 	 *
959 	 * in the (hopefully very rare) case that we are out of RAM we
960 	 * will wait for more RAM, and refault.
961 	 *
962 	 * if we are out of anon VM we kill the process (XXX: could wait?).
963 	 */
964 
965 	if ((access_type & PROT_WRITE) != 0 && anon->an_ref > 1) {
966 		uvmexp.flt_acow++;
967 		oanon = anon;		/* oanon = old */
968 		anon = uvm_analloc();
969 		if (anon) {
970 			pg = uvm_pagealloc(NULL, 0, anon, 0);
971 		}
972 
973 		/* check for out of RAM */
974 		if (anon == NULL || pg == NULL) {
975 			if (anon)
976 				uvm_anfree(anon);
977 			uvmfault_unlockall(&ufi, amap, uobj, oanon);
978 			KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
979 			if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
980 				uvmexp.fltnoanon++;
981 				return (ENOMEM);
982 			}
983 
984 			uvmexp.fltnoram++;
985 			uvm_wait("flt_noram3");	/* out of RAM, wait for more */
986 			goto ReFault;
987 		}
988 
989 		/* got all resources, replace anon with nanon */
990 		uvm_pagecopy(oanon->an_page, pg);	/* pg now !PG_CLEAN */
991 		/* un-busy! new page */
992 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE);
993 		UVM_PAGE_OWN(pg, NULL);
994 		amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
995 		    anon, 1);
996 
997 		/* deref: can not drop to zero here by defn! */
998 		oanon->an_ref--;
999 
1000 		/*
1001 		 * note: anon is _not_ locked, but we have the sole references
1002 		 * to in from amap.
1003 		 * thus, no one can get at it until we are done with it.
1004 		 */
1005 	} else {
1006 		uvmexp.flt_anon++;
1007 		oanon = anon;
1008 		pg = anon->an_page;
1009 		if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
1010 			enter_prot = enter_prot & ~PROT_WRITE;
1011 	}
1012 
1013 	/*
1014 	 * now map the page in ...
1015 	 * XXX: old fault unlocks object before pmap_enter.  this seems
1016 	 * suspect since some other thread could blast the page out from
1017 	 * under us between the unlock and the pmap_enter.
1018 	 */
1019 	if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1020 	    enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1021 	    != 0) {
1022 		/*
1023 		 * No need to undo what we did; we can simply think of
1024 		 * this as the pmap throwing away the mapping information.
1025 		 *
1026 		 * We do, however, have to go through the ReFault path,
1027 		 * as the map may change while we're asleep.
1028 		 */
1029 		uvmfault_unlockall(&ufi, amap, uobj, oanon);
1030 		KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1031 		if (uvmexp.swpgonly == uvmexp.swpages) {
1032 			/* XXX instrumentation */
1033 			return (ENOMEM);
1034 		}
1035 		/* XXX instrumentation */
1036 		uvm_wait("flt_pmfail1");
1037 		goto ReFault;
1038 	}
1039 
1040 	/* ... update the page queues. */
1041 	uvm_lock_pageq();
1042 
1043 	if (fault_type == VM_FAULT_WIRE) {
1044 		uvm_pagewire(pg);
1045 		/*
1046 		 * since the now-wired page cannot be paged out,
1047 		 * release its swap resources for others to use.
1048 		 * since an anon with no swap cannot be PG_CLEAN,
1049 		 * clear its clean flag now.
1050 		 */
1051 		atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1052 		uvm_anon_dropswap(anon);
1053 	} else {
1054 		/* activate it */
1055 		uvm_pageactivate(pg);
1056 	}
1057 
1058 	uvm_unlock_pageq();
1059 
1060 	/* done case 1!  finish up by unlocking everything and returning success */
1061 	uvmfault_unlockall(&ufi, amap, uobj, oanon);
1062 	pmap_update(ufi.orig_map->pmap);
1063 	return (0);
1064 
1065 
1066 Case2:
1067 	/* handle case 2: faulting on backing object or zero fill */
1068 	/*
1069 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
1070 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
1071 	 * have a backing object, check and see if we are going to promote
1072 	 * the data up to an anon during the fault.
1073 	 */
1074 	if (uobj == NULL) {
1075 		uobjpage = PGO_DONTCARE;
1076 		promote = TRUE;		/* always need anon here */
1077 	} else {
1078 		KASSERT(uobjpage != PGO_DONTCARE);
1079 		promote = (access_type & PROT_WRITE) &&
1080 		     UVM_ET_ISCOPYONWRITE(ufi.entry);
1081 	}
1082 
1083 	/*
1084 	 * if uobjpage is not null then we do not need to do I/O to get the
1085 	 * uobjpage.
1086 	 *
1087 	 * if uobjpage is null, then we need to ask the pager to
1088 	 * get the data for us.   once we have the data, we need to reverify
1089 	 * the state the world.   we are currently not holding any resources.
1090 	 */
1091 	if (uobjpage) {
1092 		/* update rusage counters */
1093 		curproc->p_ru.ru_minflt++;
1094 	} else {
1095 		/* update rusage counters */
1096 		curproc->p_ru.ru_majflt++;
1097 
1098 		uvmfault_unlockall(&ufi, amap, NULL, NULL);
1099 
1100 		uvmexp.fltget++;
1101 		gotpages = 1;
1102 		uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1103 		result = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1104 		    0, access_type & MASK(ufi.entry), ufi.entry->advice,
1105 		    PGO_SYNCIO);
1106 
1107 		/* recover from I/O */
1108 		if (result != VM_PAGER_OK) {
1109 			KASSERT(result != VM_PAGER_PEND);
1110 
1111 			if (result == VM_PAGER_AGAIN) {
1112 				tsleep(&lbolt, PVM, "fltagain2", 0);
1113 				goto ReFault;
1114 			}
1115 
1116 			if (!UVM_ET_ISNOFAULT(ufi.entry))
1117 				return (EACCES); /* XXX i/o error */
1118 
1119 			uobjpage = PGO_DONTCARE;
1120 			promote = TRUE;
1121 		}
1122 
1123 		/* re-verify the state of the world.  */
1124 		locked = uvmfault_relock(&ufi);
1125 
1126 		/*
1127 		 * Re-verify that amap slot is still free. if there is
1128 		 * a problem, we clean up.
1129 		 */
1130 		if (locked && amap && amap_lookup(&ufi.entry->aref,
1131 		      ufi.orig_rvaddr - ufi.entry->start)) {
1132 			if (locked)
1133 				uvmfault_unlockall(&ufi, amap, NULL, NULL);
1134 			locked = FALSE;
1135 		}
1136 
1137 		/* didn't get the lock?   release the page and retry. */
1138 		if (locked == FALSE && uobjpage != PGO_DONTCARE) {
1139 			uvm_lock_pageq();
1140 			/* make sure it is in queues */
1141 			uvm_pageactivate(uobjpage);
1142 			uvm_unlock_pageq();
1143 
1144 			if (uobjpage->pg_flags & PG_WANTED)
1145 				/* still holding object lock */
1146 				wakeup(uobjpage);
1147 			atomic_clearbits_int(&uobjpage->pg_flags,
1148 			    PG_BUSY|PG_WANTED);
1149 			UVM_PAGE_OWN(uobjpage, NULL);
1150 			goto ReFault;
1151 		}
1152 
1153 		/*
1154 		 * we have the data in uobjpage which is PG_BUSY
1155 		 */
1156 	}
1157 
1158 	/*
1159 	 * notes:
1160 	 *  - at this point uobjpage can not be NULL
1161 	 *  - at this point uobjpage could be PG_WANTED (handle later)
1162 	 */
1163 	if (promote == FALSE) {
1164 		/*
1165 		 * we are not promoting.   if the mapping is COW ensure that we
1166 		 * don't give more access than we should (e.g. when doing a read
1167 		 * fault on a COPYONWRITE mapping we want to map the COW page in
1168 		 * R/O even though the entry protection could be R/W).
1169 		 *
1170 		 * set "pg" to the page we want to map in (uobjpage, usually)
1171 		 */
1172 		uvmexp.flt_obj++;
1173 		if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1174 			enter_prot &= ~PROT_WRITE;
1175 		pg = uobjpage;		/* map in the actual object */
1176 
1177 		/* assert(uobjpage != PGO_DONTCARE) */
1178 
1179 		/*
1180 		 * we are faulting directly on the page.   be careful
1181 		 * about writing to loaned pages...
1182 		 */
1183 		if (uobjpage->loan_count) {
1184 
1185 			if ((access_type & PROT_WRITE) == 0) {
1186 				/* read fault: cap the protection at readonly */
1187 				/* cap! */
1188 				enter_prot = enter_prot & ~PROT_WRITE;
1189 			} else {
1190 				/* write fault: must break the loan here */
1191 				/* alloc new un-owned page */
1192 				pg = uvm_pagealloc(NULL, 0, NULL, 0);
1193 
1194 				if (pg == NULL) {
1195 					/*
1196 					 * drop ownership of page, it can't
1197 					 * be released
1198 					 */
1199 					if (uobjpage->pg_flags & PG_WANTED)
1200 						wakeup(uobjpage);
1201 					atomic_clearbits_int(
1202 					    &uobjpage->pg_flags,
1203 					    PG_BUSY|PG_WANTED);
1204 					UVM_PAGE_OWN(uobjpage, NULL);
1205 
1206 					uvm_lock_pageq();
1207 					/* activate: we will need it later */
1208 					uvm_pageactivate(uobjpage);
1209 
1210 					uvm_unlock_pageq();
1211 					uvmfault_unlockall(&ufi, amap, uobj,
1212 					  NULL);
1213 					uvmexp.fltnoram++;
1214 					uvm_wait("flt_noram4");
1215 					goto ReFault;
1216 				}
1217 
1218 				/*
1219 				 * copy the data from the old page to the new
1220 				 * one and clear the fake/clean flags on the
1221 				 * new page (keep it busy).  force a reload
1222 				 * of the old page by clearing it from all
1223 				 * pmaps.  then lock the page queues to
1224 				 * rename the pages.
1225 				 */
1226 				uvm_pagecopy(uobjpage, pg);	/* old -> new */
1227 				atomic_clearbits_int(&pg->pg_flags,
1228 				    PG_FAKE|PG_CLEAN);
1229 				pmap_page_protect(uobjpage, PROT_NONE);
1230 				if (uobjpage->pg_flags & PG_WANTED)
1231 					wakeup(uobjpage);
1232 				atomic_clearbits_int(&uobjpage->pg_flags,
1233 				    PG_BUSY|PG_WANTED);
1234 				UVM_PAGE_OWN(uobjpage, NULL);
1235 
1236 				uvm_lock_pageq();
1237 				uoff = uobjpage->offset;
1238 				/* remove old page */
1239 				uvm_pagerealloc(uobjpage, NULL, 0);
1240 
1241 				/*
1242 				 * at this point we have absolutely no
1243 				 * control over uobjpage
1244 				 */
1245 				/* install new page */
1246 				uvm_pagerealloc(pg, uobj, uoff);
1247 				uvm_unlock_pageq();
1248 
1249 				/*
1250 				 * done!  loan is broken and "pg" is
1251 				 * PG_BUSY.   it can now replace uobjpage.
1252 				 */
1253 
1254 				uobjpage = pg;
1255 
1256 			}		/* write fault case */
1257 		}		/* if loan_count */
1258 	} else {
1259 		/*
1260 		 * if we are going to promote the data to an anon we
1261 		 * allocate a blank anon here and plug it into our amap.
1262 		 */
1263 #ifdef DIAGNOSTIC
1264 		if (amap == NULL)
1265 			panic("uvm_fault: want to promote data, but no anon");
1266 #endif
1267 
1268 		anon = uvm_analloc();
1269 		if (anon) {
1270 			/*
1271 			 * In `Fill in data...' below, if
1272 			 * uobjpage == PGO_DONTCARE, we want
1273 			 * a zero'd, dirty page, so have
1274 			 * uvm_pagealloc() do that for us.
1275 			 */
1276 			pg = uvm_pagealloc(NULL, 0, anon,
1277 			    (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1278 		}
1279 
1280 		/*
1281 		 * out of memory resources?
1282 		 */
1283 		if (anon == NULL || pg == NULL) {
1284 			/* arg!  must unbusy our page and fail or sleep. */
1285 			if (uobjpage != PGO_DONTCARE) {
1286 				uvm_lock_pageq();
1287 				uvm_pageactivate(uobjpage);
1288 				uvm_unlock_pageq();
1289 
1290 				if (uobjpage->pg_flags & PG_WANTED)
1291 					wakeup(uobjpage);
1292 				atomic_clearbits_int(&uobjpage->pg_flags,
1293 				    PG_BUSY|PG_WANTED);
1294 				UVM_PAGE_OWN(uobjpage, NULL);
1295 			}
1296 
1297 			/* unlock and fail ... */
1298 			uvmfault_unlockall(&ufi, amap, uobj, NULL);
1299 			KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1300 			if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1301 				uvmexp.fltnoanon++;
1302 				return (ENOMEM);
1303 			}
1304 
1305 			uvm_anfree(anon);
1306 			uvmexp.fltnoram++;
1307 			uvm_wait("flt_noram5");
1308 			goto ReFault;
1309 		}
1310 
1311 		/* fill in the data */
1312 		if (uobjpage != PGO_DONTCARE) {
1313 			uvmexp.flt_prcopy++;
1314 			/* copy page [pg now dirty] */
1315 			uvm_pagecopy(uobjpage, pg);
1316 
1317 			/*
1318 			 * promote to shared amap?  make sure all sharing
1319 			 * procs see it
1320 			 */
1321 			if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1322 				pmap_page_protect(uobjpage, PROT_NONE);
1323 			}
1324 
1325 			/* dispose of uobjpage. drop handle to uobj as well. */
1326 			if (uobjpage->pg_flags & PG_WANTED)
1327 				wakeup(uobjpage);
1328 			atomic_clearbits_int(&uobjpage->pg_flags,
1329 			    PG_BUSY|PG_WANTED);
1330 			UVM_PAGE_OWN(uobjpage, NULL);
1331 			uvm_lock_pageq();
1332 			uvm_pageactivate(uobjpage);
1333 			uvm_unlock_pageq();
1334 			uobj = NULL;
1335 		} else {
1336 			uvmexp.flt_przero++;
1337 			/*
1338 			 * Page is zero'd and marked dirty by uvm_pagealloc()
1339 			 * above.
1340 			 */
1341 		}
1342 
1343 		amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1344 		    anon, 0);
1345 	}
1346 
1347 	/* note: pg is either the uobjpage or the new page in the new anon */
1348 	/*
1349 	 * all resources are present.   we can now map it in and free our
1350 	 * resources.
1351 	 */
1352 	if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1353 	    enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1354 	    != 0) {
1355 		/*
1356 		 * No need to undo what we did; we can simply think of
1357 		 * this as the pmap throwing away the mapping information.
1358 		 *
1359 		 * We do, however, have to go through the ReFault path,
1360 		 * as the map may change while we're asleep.
1361 		 */
1362 		if (pg->pg_flags & PG_WANTED)
1363 			wakeup(pg);
1364 
1365 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED);
1366 		UVM_PAGE_OWN(pg, NULL);
1367 		uvmfault_unlockall(&ufi, amap, uobj, NULL);
1368 		KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1369 		if (uvmexp.swpgonly == uvmexp.swpages) {
1370 			/* XXX instrumentation */
1371 			return (ENOMEM);
1372 		}
1373 		/* XXX instrumentation */
1374 		uvm_wait("flt_pmfail2");
1375 		goto ReFault;
1376 	}
1377 
1378 	uvm_lock_pageq();
1379 
1380 	if (fault_type == VM_FAULT_WIRE) {
1381 		uvm_pagewire(pg);
1382 		if (pg->pg_flags & PQ_AOBJ) {
1383 			/*
1384 			 * since the now-wired page cannot be paged out,
1385 			 * release its swap resources for others to use.
1386 			 * since an aobj page with no swap cannot be PG_CLEAN,
1387 			 * clear its clean flag now.
1388 			 */
1389 			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1390 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1391 		}
1392 	} else {
1393 		/* activate it */
1394 		uvm_pageactivate(pg);
1395 	}
1396 	uvm_unlock_pageq();
1397 
1398 	if (pg->pg_flags & PG_WANTED)
1399 		wakeup(pg);
1400 
1401 	atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED);
1402 	UVM_PAGE_OWN(pg, NULL);
1403 	uvmfault_unlockall(&ufi, amap, uobj, NULL);
1404 	pmap_update(ufi.orig_map->pmap);
1405 
1406 	return (0);
1407 }
1408 
1409 
1410 /*
1411  * uvm_fault_wire: wire down a range of virtual addresses in a map.
1412  *
1413  * => map may be read-locked by caller, but MUST NOT be write-locked.
1414  * => if map is read-locked, any operations which may cause map to
1415  *	be write-locked in uvm_fault() must be taken care of by
1416  *	the caller.  See uvm_map_pageable().
1417  */
1418 int
1419 uvm_fault_wire(vm_map_t map, vaddr_t start, vaddr_t end, vm_prot_t access_type)
1420 {
1421 	vaddr_t va;
1422 	pmap_t  pmap;
1423 	int rv;
1424 
1425 	pmap = vm_map_pmap(map);
1426 
1427 	/*
1428 	 * now fault it in a page at a time.   if the fault fails then we have
1429 	 * to undo what we have done.   note that in uvm_fault PROT_NONE
1430 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1431 	 */
1432 	for (va = start ; va < end ; va += PAGE_SIZE) {
1433 		rv = uvm_fault(map, va, VM_FAULT_WIRE, access_type);
1434 		if (rv) {
1435 			if (va != start) {
1436 				uvm_fault_unwire(map, start, va);
1437 			}
1438 			return (rv);
1439 		}
1440 	}
1441 
1442 	return (0);
1443 }
1444 
1445 /*
1446  * uvm_fault_unwire(): unwire range of virtual space.
1447  */
1448 void
1449 uvm_fault_unwire(vm_map_t map, vaddr_t start, vaddr_t end)
1450 {
1451 
1452 	vm_map_lock_read(map);
1453 	uvm_fault_unwire_locked(map, start, end);
1454 	vm_map_unlock_read(map);
1455 }
1456 
1457 /*
1458  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1459  *
1460  * => map must be at least read-locked.
1461  */
1462 void
1463 uvm_fault_unwire_locked(vm_map_t map, vaddr_t start, vaddr_t end)
1464 {
1465 	vm_map_entry_t entry, next;
1466 	pmap_t pmap = vm_map_pmap(map);
1467 	vaddr_t va;
1468 	paddr_t pa;
1469 	struct vm_page *pg;
1470 
1471 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1472 
1473 	/*
1474 	 * we assume that the area we are unwiring has actually been wired
1475 	 * in the first place.   this means that we should be able to extract
1476 	 * the PAs from the pmap.   we also lock out the page daemon so that
1477 	 * we can call uvm_pageunwire.
1478 	 */
1479 	uvm_lock_pageq();
1480 
1481 	/* find the beginning map entry for the region. */
1482 	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1483 	if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1484 		panic("uvm_fault_unwire_locked: address not in map");
1485 
1486 	for (va = start; va < end ; va += PAGE_SIZE) {
1487 		if (pmap_extract(pmap, va, &pa) == FALSE)
1488 			continue;
1489 
1490 		/* find the map entry for the current address. */
1491 		KASSERT(va >= entry->start);
1492 		while (va >= entry->end) {
1493 			next = RB_NEXT(uvm_map_addr, &map->addr, entry);
1494 			KASSERT(next != NULL && next->start <= entry->end);
1495 			entry = next;
1496 		}
1497 
1498 		/* if the entry is no longer wired, tell the pmap. */
1499 		if (VM_MAPENT_ISWIRED(entry) == 0)
1500 			pmap_unwire(pmap, va);
1501 
1502 		pg = PHYS_TO_VM_PAGE(pa);
1503 		if (pg)
1504 			uvm_pageunwire(pg);
1505 	}
1506 
1507 	uvm_unlock_pageq();
1508 }
1509 
1510 /*
1511  * uvmfault_unlockmaps: unlock the maps
1512  */
1513 void
1514 uvmfault_unlockmaps(struct uvm_faultinfo *ufi, boolean_t write_locked)
1515 {
1516 	/*
1517 	 * ufi can be NULL when this isn't really a fault,
1518 	 * but merely paging in anon data.
1519 	 */
1520 	if (ufi == NULL) {
1521 		return;
1522 	}
1523 
1524 	uvmfault_update_stats(ufi);
1525 	if (write_locked) {
1526 		vm_map_unlock(ufi->map);
1527 	} else {
1528 		vm_map_unlock_read(ufi->map);
1529 	}
1530 }
1531 
1532 /*
1533  * uvmfault_unlockall: unlock everything passed in.
1534  *
1535  * => maps must be read-locked (not write-locked).
1536  */
1537 void
1538 uvmfault_unlockall(struct uvm_faultinfo *ufi, struct vm_amap *amap,
1539     struct uvm_object *uobj, struct vm_anon *anon)
1540 {
1541 
1542 	uvmfault_unlockmaps(ufi, FALSE);
1543 }
1544 
1545 /*
1546  * uvmfault_lookup: lookup a virtual address in a map
1547  *
1548  * => caller must provide a uvm_faultinfo structure with the IN
1549  *	params properly filled in
1550  * => we will lookup the map entry (handling submaps) as we go
1551  * => if the lookup is a success we will return with the maps locked
1552  * => if "write_lock" is TRUE, we write_lock the map, otherwise we only
1553  *	get a read lock.
1554  * => note that submaps can only appear in the kernel and they are
1555  *	required to use the same virtual addresses as the map they
1556  *	are referenced by (thus address translation between the main
1557  *	map and the submap is unnecessary).
1558  */
1559 
1560 boolean_t
1561 uvmfault_lookup(struct uvm_faultinfo *ufi, boolean_t write_lock)
1562 {
1563 	vm_map_t tmpmap;
1564 
1565 	/* init ufi values for lookup. */
1566 	ufi->map = ufi->orig_map;
1567 	ufi->size = ufi->orig_size;
1568 
1569 	/*
1570 	 * keep going down levels until we are done.   note that there can
1571 	 * only be two levels so we won't loop very long.
1572 	 */
1573 	while (1) {
1574 		if (ufi->orig_rvaddr < ufi->map->min_offset ||
1575 		    ufi->orig_rvaddr >= ufi->map->max_offset)
1576 			return(FALSE);
1577 
1578 		/* lock map */
1579 		if (write_lock) {
1580 			vm_map_lock(ufi->map);
1581 		} else {
1582 			vm_map_lock_read(ufi->map);
1583 		}
1584 
1585 		/* lookup */
1586 		if (!uvm_map_lookup_entry(ufi->map, ufi->orig_rvaddr,
1587 		    &ufi->entry)) {
1588 			uvmfault_unlockmaps(ufi, write_lock);
1589 			return(FALSE);
1590 		}
1591 
1592 		/* reduce size if necessary */
1593 		if (ufi->entry->end - ufi->orig_rvaddr < ufi->size)
1594 			ufi->size = ufi->entry->end - ufi->orig_rvaddr;
1595 
1596 		/*
1597 		 * submap?    replace map with the submap and lookup again.
1598 		 * note: VAs in submaps must match VAs in main map.
1599 		 */
1600 		if (UVM_ET_ISSUBMAP(ufi->entry)) {
1601 			tmpmap = ufi->entry->object.sub_map;
1602 			uvmfault_unlockmaps(ufi, write_lock);
1603 			ufi->map = tmpmap;
1604 			continue;
1605 		}
1606 
1607 		/* got it! */
1608 		ufi->mapv = ufi->map->timestamp;
1609 		return(TRUE);
1610 
1611 	}
1612 	/*NOTREACHED*/
1613 }
1614 
1615 /*
1616  * uvmfault_relock: attempt to relock the same version of the map
1617  *
1618  * => fault data structures should be unlocked before calling.
1619  * => if a success (TRUE) maps will be locked after call.
1620  */
1621 boolean_t
1622 uvmfault_relock(struct uvm_faultinfo *ufi)
1623 {
1624 	/*
1625 	 * ufi can be NULL when this isn't really a fault,
1626 	 * but merely paging in anon data.
1627 	 */
1628 	if (ufi == NULL) {
1629 		return TRUE;
1630 	}
1631 
1632 	uvmexp.fltrelck++;
1633 
1634 	/*
1635 	 * relock map.   fail if version mismatch (in which case nothing
1636 	 * gets locked).
1637 	 */
1638 	vm_map_lock_read(ufi->map);
1639 	if (ufi->mapv != ufi->map->timestamp) {
1640 		vm_map_unlock_read(ufi->map);
1641 		return(FALSE);
1642 	}
1643 
1644 	uvmexp.fltrelckok++;
1645 	return(TRUE);		/* got it! */
1646 }
1647