xref: /openbsd-src/sys/uvm/uvm_fault.c (revision d6897f1437f202459dbd21f146260e2221e7ea7c)
1 /*	$OpenBSD: uvm_fault.c,v 1.140 2024/11/05 08:13:41 mpi Exp $	*/
2 /*	$NetBSD: uvm_fault.c,v 1.51 2000/08/06 00:22:53 thorpej Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
29  */
30 
31 /*
32  * uvm_fault.c: fault handler
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/percpu.h>
39 #include <sys/proc.h>
40 #include <sys/malloc.h>
41 #include <sys/mman.h>
42 #include <sys/tracepoint.h>
43 
44 #include <uvm/uvm.h>
45 
46 /*
47  *
48  * a word on page faults:
49  *
50  * types of page faults we handle:
51  *
52  * CASE 1: upper layer faults                   CASE 2: lower layer faults
53  *
54  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
55  *    read/write1     write>1                  read/write   +-cow_write/zero
56  *         |             |                         |        |
57  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
58  * amap |  V  |       |  ---------> new |          |        | |  ^  |
59  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
60  *                                                 |        |    |
61  *      +-----+       +-----+                   +--|--+     | +--|--+
62  * uobj | d/c |       | d/c |                   |  V  |     +----+  |
63  *      +-----+       +-----+                   +-----+       +-----+
64  *
65  * d/c = don't care
66  *
67  *   case [0]: layerless fault
68  *	no amap or uobj is present.   this is an error.
69  *
70  *   case [1]: upper layer fault [anon active]
71  *     1A: [read] or [write with anon->an_ref == 1]
72  *		I/O takes place in upper level anon and uobj is not touched.
73  *     1B: [write with anon->an_ref > 1]
74  *		new anon is alloc'd and data is copied off ["COW"]
75  *
76  *   case [2]: lower layer fault [uobj]
77  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
78  *		I/O takes place directly in object.
79  *     2B: [write to copy_on_write] or [read on NULL uobj]
80  *		data is "promoted" from uobj to a new anon.
81  *		if uobj is null, then we zero fill.
82  *
83  * we follow the standard UVM locking protocol ordering:
84  *
85  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
86  * we hold a PG_BUSY page if we unlock for I/O
87  *
88  *
89  * the code is structured as follows:
90  *
91  *     - init the "IN" params in the ufi structure
92  *   ReFault: (ERESTART returned to the loop in uvm_fault)
93  *     - do lookups [locks maps], check protection, handle needs_copy
94  *     - check for case 0 fault (error)
95  *     - establish "range" of fault
96  *     - if we have an amap lock it and extract the anons
97  *     - if sequential advice deactivate pages behind us
98  *     - at the same time check pmap for unmapped areas and anon for pages
99  *	 that we could map in (and do map it if found)
100  *     - check object for resident pages that we could map in
101  *     - if (case 2) goto Case2
102  *     - >>> handle case 1
103  *           - ensure source anon is resident in RAM
104  *           - if case 1B alloc new anon and copy from source
105  *           - map the correct page in
106  *   Case2:
107  *     - >>> handle case 2
108  *           - ensure source page is resident (if uobj)
109  *           - if case 2B alloc new anon and copy from source (could be zero
110  *		fill if uobj == NULL)
111  *           - map the correct page in
112  *     - done!
113  *
114  * note on paging:
115  *   if we have to do I/O we place a PG_BUSY page in the correct object,
116  * unlock everything, and do the I/O.   when I/O is done we must reverify
117  * the state of the world before assuming that our data structures are
118  * valid.   [because mappings could change while the map is unlocked]
119  *
120  *  alternative 1: unbusy the page in question and restart the page fault
121  *    from the top (ReFault).   this is easy but does not take advantage
122  *    of the information that we already have from our previous lookup,
123  *    although it is possible that the "hints" in the vm_map will help here.
124  *
125  * alternative 2: the system already keeps track of a "version" number of
126  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
127  *    mapping) you bump the version number up by one...]   so, we can save
128  *    the version number of the map before we release the lock and start I/O.
129  *    then when I/O is done we can relock and check the version numbers
130  *    to see if anything changed.    this might save us some over 1 because
131  *    we don't have to unbusy the page and may be less compares(?).
132  *
133  * alternative 3: put in backpointers or a way to "hold" part of a map
134  *    in place while I/O is in progress.   this could be complex to
135  *    implement (especially with structures like amap that can be referenced
136  *    by multiple map entries, and figuring out what should wait could be
137  *    complex as well...).
138  *
139  * we use alternative 2.  given that we are multi-threaded now we may want
140  * to reconsider the choice.
141  */
142 
143 /*
144  * local data structures
145  */
146 struct uvm_advice {
147 	int nback;
148 	int nforw;
149 };
150 
151 /*
152  * page range array: set up in uvmfault_init().
153  */
154 static struct uvm_advice uvmadvice[MADV_MASK + 1];
155 
156 #define UVM_MAXRANGE 16	/* must be max() of nback+nforw+1 */
157 
158 /*
159  * private prototypes
160  */
161 static void uvmfault_amapcopy(struct uvm_faultinfo *);
162 static inline void uvmfault_anonflush(struct vm_anon **, int);
163 void	uvmfault_unlockmaps(struct uvm_faultinfo *, boolean_t);
164 void	uvmfault_update_stats(struct uvm_faultinfo *);
165 
166 /*
167  * inline functions
168  */
169 /*
170  * uvmfault_anonflush: try and deactivate pages in specified anons
171  *
172  * => does not have to deactivate page if it is busy
173  */
174 static inline void
175 uvmfault_anonflush(struct vm_anon **anons, int n)
176 {
177 	int lcv;
178 	struct vm_page *pg;
179 
180 	for (lcv = 0; lcv < n; lcv++) {
181 		if (anons[lcv] == NULL)
182 			continue;
183 		KASSERT(rw_lock_held(anons[lcv]->an_lock));
184 		pg = anons[lcv]->an_page;
185 		if (pg && (pg->pg_flags & PG_BUSY) == 0) {
186 			uvm_lock_pageq();
187 			if (pg->wire_count == 0) {
188 				pmap_page_protect(pg, PROT_NONE);
189 				uvm_pagedeactivate(pg);
190 			}
191 			uvm_unlock_pageq();
192 		}
193 	}
194 }
195 
196 /*
197  * normal functions
198  */
199 /*
200  * uvmfault_init: compute proper values for the uvmadvice[] array.
201  */
202 void
203 uvmfault_init(void)
204 {
205 	int npages;
206 
207 	npages = atop(16384);
208 	if (npages > 0) {
209 		KASSERT(npages <= UVM_MAXRANGE / 2);
210 		uvmadvice[MADV_NORMAL].nforw = npages;
211 		uvmadvice[MADV_NORMAL].nback = npages - 1;
212 	}
213 
214 	npages = atop(32768);
215 	if (npages > 0) {
216 		KASSERT(npages <= UVM_MAXRANGE / 2);
217 		uvmadvice[MADV_SEQUENTIAL].nforw = npages - 1;
218 		uvmadvice[MADV_SEQUENTIAL].nback = npages;
219 	}
220 }
221 
222 /*
223  * uvmfault_amapcopy: clear "needs_copy" in a map.
224  *
225  * => called with VM data structures unlocked (usually, see below)
226  * => we get a write lock on the maps and clear needs_copy for a VA
227  * => if we are out of RAM we sleep (waiting for more)
228  */
229 static void
230 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
231 {
232 	for (;;) {
233 		/*
234 		 * no mapping?  give up.
235 		 */
236 		if (uvmfault_lookup(ufi, TRUE) == FALSE)
237 			return;
238 
239 		/*
240 		 * copy if needed.
241 		 */
242 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
243 			amap_copy(ufi->map, ufi->entry, M_NOWAIT,
244 				UVM_ET_ISSTACK(ufi->entry) ? FALSE : TRUE,
245 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
246 
247 		/*
248 		 * didn't work?  must be out of RAM.   unlock and sleep.
249 		 */
250 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
251 			uvmfault_unlockmaps(ufi, TRUE);
252 			uvm_wait("fltamapcopy");
253 			continue;
254 		}
255 
256 		/*
257 		 * got it!   unlock and return.
258 		 */
259 		uvmfault_unlockmaps(ufi, TRUE);
260 		return;
261 	}
262 	/*NOTREACHED*/
263 }
264 
265 /*
266  * uvmfault_anonget: get data in an anon into a non-busy, non-released
267  * page in that anon.
268  *
269  * => Map, amap and thus anon should be locked by caller.
270  * => If we fail, we unlock everything and error is returned.
271  * => If we are successful, return with everything still locked.
272  * => We do not move the page on the queues [gets moved later].  If we
273  *    allocate a new page [we_own], it gets put on the queues.  Either way,
274  *    the result is that the page is on the queues at return time
275  */
276 int
277 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
278     struct vm_anon *anon)
279 {
280 	struct vm_page *pg;
281 	int error;
282 
283 	KASSERT(rw_lock_held(anon->an_lock));
284 	KASSERT(anon->an_lock == amap->am_lock);
285 
286 	/* Increment the counters.*/
287 	counters_inc(uvmexp_counters, flt_anget);
288 	if (anon->an_page) {
289 		curproc->p_ru.ru_minflt++;
290 	} else {
291 		curproc->p_ru.ru_majflt++;
292 	}
293 	error = 0;
294 
295 	/*
296 	 * Loop until we get the anon data, or fail.
297 	 */
298 	for (;;) {
299 		boolean_t we_own, locked;
300 		/*
301 		 * Note: 'we_own' will become true if we set PG_BUSY on a page.
302 		 */
303 		we_own = FALSE;
304 		pg = anon->an_page;
305 
306 		/*
307 		 * Is page resident?  Make sure it is not busy/released.
308 		 */
309 		if (pg) {
310 			KASSERT(pg->pg_flags & PQ_ANON);
311 			KASSERT(pg->uanon == anon);
312 
313 			/*
314 			 * if the page is busy, we drop all the locks and
315 			 * try again.
316 			 */
317 			if ((pg->pg_flags & (PG_BUSY|PG_RELEASED)) == 0)
318 				return (VM_PAGER_OK);
319 			atomic_setbits_int(&pg->pg_flags, PG_WANTED);
320 			counters_inc(uvmexp_counters, flt_pgwait);
321 
322 			/*
323 			 * The last unlock must be an atomic unlock and wait
324 			 * on the owner of page.
325 			 */
326 			if (pg->uobject) {
327 				/* Owner of page is UVM object. */
328 				uvmfault_unlockall(ufi, amap, NULL);
329 				rwsleep_nsec(pg, pg->uobject->vmobjlock,
330 				    PVM | PNORELOCK, "anonget1", INFSLP);
331 			} else {
332 				/* Owner of page is anon. */
333 				uvmfault_unlockall(ufi, NULL, NULL);
334 				rwsleep_nsec(pg, anon->an_lock, PVM | PNORELOCK,
335 				    "anonget2", INFSLP);
336 			}
337 		} else {
338 			/*
339 			 * No page, therefore allocate one.
340 			 */
341 			pg = uvm_pagealloc(NULL, 0, anon, 0);
342 			if (pg == NULL) {
343 				/* Out of memory.  Wait a little. */
344 				uvmfault_unlockall(ufi, amap, NULL);
345 				counters_inc(uvmexp_counters, flt_noram);
346 				uvm_wait("flt_noram1");
347 			} else {
348 				/* PG_BUSY bit is set. */
349 				we_own = TRUE;
350 				uvmfault_unlockall(ufi, amap, NULL);
351 
352 				/*
353 				 * Pass a PG_BUSY+PG_FAKE+PG_CLEAN page into
354 				 * the uvm_swap_get() function with all data
355 				 * structures unlocked.  Note that it is OK
356 				 * to read an_swslot here, because we hold
357 				 * PG_BUSY on the page.
358 				 */
359 				counters_inc(uvmexp_counters, pageins);
360 				error = uvm_swap_get(pg, anon->an_swslot,
361 				    PGO_SYNCIO);
362 
363 				/*
364 				 * We clean up after the I/O below in the
365 				 * 'we_own' case.
366 				 */
367 			}
368 		}
369 
370 		/*
371 		 * Re-lock the map and anon.
372 		 */
373 		locked = uvmfault_relock(ufi);
374 		if (locked || we_own) {
375 			rw_enter(anon->an_lock, RW_WRITE);
376 		}
377 
378 		/*
379 		 * If we own the page (i.e. we set PG_BUSY), then we need
380 		 * to clean up after the I/O.  There are three cases to
381 		 * consider:
382 		 *
383 		 * 1) Page was released during I/O: free anon and ReFault.
384 		 * 2) I/O not OK.  Free the page and cause the fault to fail.
385 		 * 3) I/O OK!  Activate the page and sync with the non-we_own
386 		 *    case (i.e. drop anon lock if not locked).
387 		 */
388 		if (we_own) {
389 			if (pg->pg_flags & PG_WANTED) {
390 				wakeup(pg);
391 			}
392 
393 			/*
394 			 * if we were RELEASED during I/O, then our anon is
395 			 * no longer part of an amap.   we need to free the
396 			 * anon and try again.
397 			 */
398 			if (pg->pg_flags & PG_RELEASED) {
399 				KASSERT(anon->an_ref == 0);
400 				/*
401 				 * Released while we had unlocked amap.
402 				 */
403 				if (locked)
404 					uvmfault_unlockall(ufi, NULL, NULL);
405 				uvm_anon_release(anon);	/* frees page for us */
406 				counters_inc(uvmexp_counters, flt_pgrele);
407 				return (VM_PAGER_REFAULT);	/* refault! */
408 			}
409 
410 			if (error != VM_PAGER_OK) {
411 				KASSERT(error != VM_PAGER_PEND);
412 
413 				/* remove page from anon */
414 				anon->an_page = NULL;
415 
416 				/*
417 				 * Remove the swap slot from the anon and
418 				 * mark the anon as having no real slot.
419 				 * Do not free the swap slot, thus preventing
420 				 * it from being used again.
421 				 */
422 				uvm_swap_markbad(anon->an_swslot, 1);
423 				anon->an_swslot = SWSLOT_BAD;
424 
425 				/*
426 				 * Note: page was never !PG_BUSY, so it
427 				 * cannot be mapped and thus no need to
428 				 * pmap_page_protect() it.
429 				 */
430 				uvm_lock_pageq();
431 				uvm_pagefree(pg);
432 				uvm_unlock_pageq();
433 
434 				if (locked) {
435 					uvmfault_unlockall(ufi, NULL, NULL);
436 				}
437 				rw_exit(anon->an_lock);
438 				return (VM_PAGER_ERROR);
439 			}
440 
441 			/*
442 			 * We have successfully read the page, activate it.
443 			 */
444 			pmap_clear_modify(pg);
445 			uvm_lock_pageq();
446 			uvm_pageactivate(pg);
447 			uvm_unlock_pageq();
448 			atomic_clearbits_int(&pg->pg_flags,
449 			    PG_WANTED|PG_BUSY|PG_FAKE);
450 			UVM_PAGE_OWN(pg, NULL);
451 		}
452 
453 		/*
454 		 * We were not able to re-lock the map - restart the fault.
455 		 */
456 		if (!locked) {
457 			if (we_own) {
458 				rw_exit(anon->an_lock);
459 			}
460 			return (VM_PAGER_REFAULT);
461 		}
462 
463 		/*
464 		 * Verify that no one has touched the amap and moved
465 		 * the anon on us.
466 		 */
467 		if (ufi != NULL && amap_lookup(&ufi->entry->aref,
468 				ufi->orig_rvaddr - ufi->entry->start) != anon) {
469 
470 			uvmfault_unlockall(ufi, amap, NULL);
471 			return (VM_PAGER_REFAULT);
472 		}
473 
474 		/*
475 		 * Retry..
476 		 */
477 		counters_inc(uvmexp_counters, flt_anretry);
478 		continue;
479 
480 	}
481 	/*NOTREACHED*/
482 }
483 
484 /*
485  * Update statistics after fault resolution.
486  * - maxrss
487  */
488 void
489 uvmfault_update_stats(struct uvm_faultinfo *ufi)
490 {
491 	struct vm_map		*map;
492 	struct proc		*p;
493 	vsize_t			 res;
494 
495 	map = ufi->orig_map;
496 
497 	/*
498 	 * If this is a nested pmap (eg, a virtual machine pmap managed
499 	 * by vmm(4) on amd64/i386), don't do any updating, just return.
500 	 *
501 	 * pmap_nested() on other archs is #defined to 0, so this is a
502 	 * no-op.
503 	 */
504 	if (pmap_nested(map->pmap))
505 		return;
506 
507 	/* Update the maxrss for the process. */
508 	if (map->flags & VM_MAP_ISVMSPACE) {
509 		p = curproc;
510 		KASSERT(p != NULL && &p->p_vmspace->vm_map == map);
511 
512 		res = pmap_resident_count(map->pmap);
513 		/* Convert res from pages to kilobytes. */
514 		res <<= (PAGE_SHIFT - 10);
515 
516 		if (p->p_ru.ru_maxrss < res)
517 			p->p_ru.ru_maxrss = res;
518 	}
519 }
520 
521 /*
522  *   F A U L T   -   m a i n   e n t r y   p o i n t
523  */
524 
525 /*
526  * uvm_fault: page fault handler
527  *
528  * => called from MD code to resolve a page fault
529  * => VM data structures usually should be unlocked.   however, it is
530  *	possible to call here with the main map locked if the caller
531  *	gets a write lock, sets it recursive, and then calls us (c.f.
532  *	uvm_map_pageable).   this should be avoided because it keeps
533  *	the map locked off during I/O.
534  * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
535  */
536 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
537 			 ~PROT_WRITE : PROT_MASK)
538 struct uvm_faultctx {
539 	/*
540 	 * the following members are set up by uvm_fault_check() and
541 	 * read-only after that.
542 	 */
543 	vm_prot_t enter_prot;
544 	vm_prot_t access_type;
545 	vaddr_t startva;
546 	int npages;
547 	int centeridx;
548 	boolean_t narrow;
549 	boolean_t wired;
550 	paddr_t pa_flags;
551 };
552 
553 int		uvm_fault_check(
554 		    struct uvm_faultinfo *, struct uvm_faultctx *,
555 		    struct vm_anon ***, vm_fault_t);
556 
557 int		uvm_fault_upper(
558 		    struct uvm_faultinfo *, struct uvm_faultctx *,
559 		    struct vm_anon **, vm_fault_t);
560 boolean_t	uvm_fault_upper_lookup(
561 		    struct uvm_faultinfo *, const struct uvm_faultctx *,
562 		    struct vm_anon **, struct vm_page **);
563 
564 int		uvm_fault_lower(
565 		    struct uvm_faultinfo *, struct uvm_faultctx *,
566 		    struct vm_page **, vm_fault_t);
567 
568 int
569 uvm_fault(vm_map_t orig_map, vaddr_t vaddr, vm_fault_t fault_type,
570     vm_prot_t access_type)
571 {
572 	struct uvm_faultinfo ufi;
573 	struct uvm_faultctx flt;
574 	boolean_t shadowed;
575 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
576 	struct vm_page *pages[UVM_MAXRANGE];
577 	int error;
578 
579 	counters_inc(uvmexp_counters, faults);
580 	TRACEPOINT(uvm, fault, vaddr, fault_type, access_type, NULL);
581 
582 	/*
583 	 * init the IN parameters in the ufi
584 	 */
585 	ufi.orig_map = orig_map;
586 	ufi.orig_rvaddr = trunc_page(vaddr);
587 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
588 	flt.access_type = access_type;
589 	flt.narrow = FALSE;		/* assume normal fault for now */
590 	flt.wired = FALSE;		/* assume non-wired fault for now */
591 
592 	error = ERESTART;
593 	while (error == ERESTART) { /* ReFault: */
594 		anons = anons_store;
595 
596 		error = uvm_fault_check(&ufi, &flt, &anons, fault_type);
597 		if (error != 0)
598 			continue;
599 
600 		/* True if there is an anon at the faulting address */
601 		shadowed = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
602 		if (shadowed == TRUE) {
603 			/* case 1: fault on an anon in our amap */
604 			error = uvm_fault_upper(&ufi, &flt, anons, fault_type);
605 		} else {
606 			struct uvm_object *uobj = ufi.entry->object.uvm_obj;
607 
608 			/*
609 			 * if the desired page is not shadowed by the amap and
610 			 * we have a backing object, then we check to see if
611 			 * the backing object would prefer to handle the fault
612 			 * itself (rather than letting us do it with the usual
613 			 * pgo_get hook).  the backing object signals this by
614 			 * providing a pgo_fault routine.
615 			 */
616 			if (uobj != NULL && uobj->pgops->pgo_fault != NULL) {
617 				KERNEL_LOCK();
618 				rw_enter(uobj->vmobjlock, RW_WRITE);
619 				error = uobj->pgops->pgo_fault(&ufi,
620 				    flt.startva, pages, flt.npages,
621 				    flt.centeridx, fault_type, flt.access_type,
622 				    PGO_LOCKED);
623 				KERNEL_UNLOCK();
624 
625 				if (error == VM_PAGER_OK)
626 					error = 0;
627 				else if (error == VM_PAGER_REFAULT)
628 					error = ERESTART;
629 				else
630 					error = EACCES;
631 			} else {
632 				/* case 2: fault on backing obj or zero fill */
633 				error = uvm_fault_lower(&ufi, &flt, pages,
634 				    fault_type);
635 			}
636 		}
637 	}
638 
639 	return error;
640 }
641 
642 /*
643  * uvm_fault_check: check prot, handle needs-copy, etc.
644  *
645  *	1. lookup entry.
646  *	2. check protection.
647  *	3. adjust fault condition (mainly for simulated fault).
648  *	4. handle needs-copy (lazy amap copy).
649  *	5. establish range of interest for neighbor fault (aka pre-fault).
650  *	6. look up anons (if amap exists).
651  *	7. flush pages (if MADV_SEQUENTIAL)
652  *
653  * => called with nothing locked.
654  * => if we fail (result != 0) we unlock everything.
655  * => initialize/adjust many members of flt.
656  */
657 int
658 uvm_fault_check(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
659     struct vm_anon ***ranons, vm_fault_t fault_type)
660 {
661 	struct vm_amap *amap;
662 	struct uvm_object *uobj;
663 	int nback, nforw;
664 
665 	/*
666 	 * lookup and lock the maps
667 	 */
668 	if (uvmfault_lookup(ufi, FALSE) == FALSE) {
669 		return EFAULT;
670 	}
671 	/* locked: maps(read) */
672 
673 #ifdef DIAGNOSTIC
674 	if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0)
675 		panic("uvm_fault: fault on non-pageable map (%p, 0x%lx)",
676 		    ufi->map, ufi->orig_rvaddr);
677 #endif
678 
679 	/*
680 	 * check protection
681 	 */
682 	if ((ufi->entry->protection & flt->access_type) != flt->access_type) {
683 		uvmfault_unlockmaps(ufi, FALSE);
684 		return EACCES;
685 	}
686 
687 	/*
688 	 * "enter_prot" is the protection we want to enter the page in at.
689 	 * for certain pages (e.g. copy-on-write pages) this protection can
690 	 * be more strict than ufi->entry->protection.  "wired" means either
691 	 * the entry is wired or we are fault-wiring the pg.
692 	 */
693 	flt->enter_prot = ufi->entry->protection;
694 	flt->pa_flags = UVM_ET_ISWC(ufi->entry) ? PMAP_WC : 0;
695 	if (VM_MAPENT_ISWIRED(ufi->entry) || (fault_type == VM_FAULT_WIRE)) {
696 		flt->wired = TRUE;
697 		flt->access_type = flt->enter_prot; /* full access for wired */
698 		/*  don't look for neighborhood * pages on "wire" fault */
699 		flt->narrow = TRUE;
700 	}
701 
702 	/* handle "needs_copy" case. */
703 	if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
704 		if ((flt->access_type & PROT_WRITE) ||
705 		    (ufi->entry->object.uvm_obj == NULL)) {
706 			/* need to clear */
707 			uvmfault_unlockmaps(ufi, FALSE);
708 			uvmfault_amapcopy(ufi);
709 			counters_inc(uvmexp_counters, flt_amcopy);
710 			return ERESTART;
711 		} else {
712 			/*
713 			 * ensure that we pmap_enter page R/O since
714 			 * needs_copy is still true
715 			 */
716 			flt->enter_prot &= ~PROT_WRITE;
717 		}
718 	}
719 
720 	/*
721 	 * identify the players
722 	 */
723 	amap = ufi->entry->aref.ar_amap;	/* upper layer */
724 	uobj = ufi->entry->object.uvm_obj;	/* lower layer */
725 
726 	/*
727 	 * check for a case 0 fault.  if nothing backing the entry then
728 	 * error now.
729 	 */
730 	if (amap == NULL && uobj == NULL) {
731 		uvmfault_unlockmaps(ufi, FALSE);
732 		return EFAULT;
733 	}
734 
735 	/*
736 	 * for a case 2B fault waste no time on adjacent pages because
737 	 * they are likely already entered.
738 	 */
739 	if (uobj != NULL && amap != NULL &&
740 	    (flt->access_type & PROT_WRITE) != 0) {
741 		/* wide fault (!narrow) */
742 		flt->narrow = TRUE;
743 	}
744 
745 	/*
746 	 * establish range of interest based on advice from mapper
747 	 * and then clip to fit map entry.   note that we only want
748 	 * to do this the first time through the fault.   if we
749 	 * ReFault we will disable this by setting "narrow" to true.
750 	 */
751 	if (flt->narrow == FALSE) {
752 
753 		/* wide fault (!narrow) */
754 		nback = min(uvmadvice[ufi->entry->advice].nback,
755 		    (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
756 		flt->startva = ufi->orig_rvaddr - ((vsize_t)nback << PAGE_SHIFT);
757 		nforw = min(uvmadvice[ufi->entry->advice].nforw,
758 		    ((ufi->entry->end - ufi->orig_rvaddr) >> PAGE_SHIFT) - 1);
759 		/*
760 		 * note: "-1" because we don't want to count the
761 		 * faulting page as forw
762 		 */
763 		flt->npages = nback + nforw + 1;
764 		flt->centeridx = nback;
765 
766 		flt->narrow = TRUE;	/* ensure only once per-fault */
767 	} else {
768 		/* narrow fault! */
769 		nback = nforw = 0;
770 		flt->startva = ufi->orig_rvaddr;
771 		flt->npages = 1;
772 		flt->centeridx = 0;
773 	}
774 
775 	/*
776 	 * if we've got an amap then lock it and extract current anons.
777 	 */
778 	if (amap) {
779 		amap_lock(amap);
780 		amap_lookups(&ufi->entry->aref,
781 		    flt->startva - ufi->entry->start, *ranons, flt->npages);
782 	} else {
783 		*ranons = NULL;	/* to be safe */
784 	}
785 
786 	/*
787 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
788 	 * now and then forget about them (for the rest of the fault).
789 	 */
790 	if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
791 		/* flush back-page anons? */
792 		if (amap)
793 			uvmfault_anonflush(*ranons, nback);
794 
795 		/*
796 		 * flush object?
797 		 */
798 		if (uobj) {
799 			voff_t uoff;
800 
801 			uoff = (flt->startva - ufi->entry->start) + ufi->entry->offset;
802 			rw_enter(uobj->vmobjlock, RW_WRITE);
803 			(void) uobj->pgops->pgo_flush(uobj, uoff, uoff +
804 			    ((vsize_t)nback << PAGE_SHIFT), PGO_DEACTIVATE);
805 			rw_exit(uobj->vmobjlock);
806 		}
807 
808 		/* now forget about the backpages */
809 		if (amap)
810 			*ranons += nback;
811 		flt->startva += ((vsize_t)nback << PAGE_SHIFT);
812 		flt->npages -= nback;
813 		flt->centeridx = 0;
814 	}
815 
816 	return 0;
817 }
818 
819 /*
820  * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
821  *
822  * iterate range of interest:
823  *	1. check if h/w mapping exists.  if yes, we don't care
824  *	2. check if anon exists.  if not, page is lower.
825  *	3. if anon exists, enter h/w mapping for neighbors.
826  *
827  * => called with amap locked (if exists).
828  */
829 boolean_t
830 uvm_fault_upper_lookup(struct uvm_faultinfo *ufi,
831     const struct uvm_faultctx *flt, struct vm_anon **anons,
832     struct vm_page **pages)
833 {
834 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
835 	struct vm_anon *anon;
836 	boolean_t shadowed;
837 	vaddr_t currva;
838 	paddr_t pa;
839 	int lcv;
840 
841 	/* locked: maps(read), amap(if there) */
842 	KASSERT(amap == NULL ||
843 	    rw_write_held(amap->am_lock));
844 
845 	/*
846 	 * map in the backpages and frontpages we found in the amap in hopes
847 	 * of preventing future faults.    we also init the pages[] array as
848 	 * we go.
849 	 */
850 	currva = flt->startva;
851 	shadowed = FALSE;
852 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
853 		/*
854 		 * dont play with VAs that are already mapped
855 		 * except for center)
856 		 */
857 		if (lcv != flt->centeridx &&
858 		    pmap_extract(ufi->orig_map->pmap, currva, &pa)) {
859 			pages[lcv] = PGO_DONTCARE;
860 			continue;
861 		}
862 
863 		/*
864 		 * unmapped or center page.   check if any anon at this level.
865 		 */
866 		if (amap == NULL || anons[lcv] == NULL) {
867 			pages[lcv] = NULL;
868 			continue;
869 		}
870 
871 		/*
872 		 * check for present page and map if possible.
873 		 */
874 		pages[lcv] = PGO_DONTCARE;
875 		if (lcv == flt->centeridx) {	/* save center for later! */
876 			shadowed = TRUE;
877 			continue;
878 		}
879 		anon = anons[lcv];
880 		KASSERT(anon->an_lock == amap->am_lock);
881 		if (anon->an_page &&
882 		    (anon->an_page->pg_flags & (PG_RELEASED|PG_BUSY)) == 0) {
883 			uvm_lock_pageq();
884 			uvm_pageactivate(anon->an_page);	/* reactivate */
885 			uvm_unlock_pageq();
886 			counters_inc(uvmexp_counters, flt_namap);
887 
888 			/*
889 			 * Since this isn't the page that's actually faulting,
890 			 * ignore pmap_enter() failures; it's not critical
891 			 * that we enter these right now.
892 			 */
893 			(void) pmap_enter(ufi->orig_map->pmap, currva,
894 			    VM_PAGE_TO_PHYS(anon->an_page) | flt->pa_flags,
895 			    (anon->an_ref > 1) ?
896 			    (flt->enter_prot & ~PROT_WRITE) : flt->enter_prot,
897 			    PMAP_CANFAIL |
898 			     (VM_MAPENT_ISWIRED(ufi->entry) ? PMAP_WIRED : 0));
899 		}
900 	}
901 	if (flt->npages > 1)
902 		pmap_update(ufi->orig_map->pmap);
903 
904 	return shadowed;
905 }
906 
907 /*
908  * uvm_fault_upper: handle upper fault.
909  *
910  *	1. acquire anon lock.
911  *	2. get anon.  let uvmfault_anonget do the dirty work.
912  *	3. if COW, promote data to new anon
913  *	4. enter h/w mapping
914  */
915 int
916 uvm_fault_upper(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
917    struct vm_anon **anons, vm_fault_t fault_type)
918 {
919 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
920 	struct vm_anon *oanon, *anon = anons[flt->centeridx];
921 	struct vm_page *pg = NULL;
922 	int error, ret;
923 
924 	/* locked: maps(read), amap, anon */
925 	KASSERT(rw_write_held(amap->am_lock));
926 	KASSERT(anon->an_lock == amap->am_lock);
927 
928 	/*
929 	 * no matter if we have case 1A or case 1B we are going to need to
930 	 * have the anon's memory resident.   ensure that now.
931 	 */
932 	/*
933 	 * let uvmfault_anonget do the dirty work.
934 	 * if it fails (!OK) it will unlock everything for us.
935 	 * if it succeeds, locks are still valid and locked.
936 	 * also, if it is OK, then the anon's page is on the queues.
937 	 * if the page is on loan from a uvm_object, then anonget will
938 	 * lock that object for us if it does not fail.
939 	 */
940 	error = uvmfault_anonget(ufi, amap, anon);
941 	switch (error) {
942 	case VM_PAGER_OK:
943 		break;
944 
945 	case VM_PAGER_REFAULT:
946 		return ERESTART;
947 
948 	case VM_PAGER_ERROR:
949 		/*
950 		 * An error occurred while trying to bring in the
951 		 * page -- this is the only error we return right
952 		 * now.
953 		 */
954 		return EACCES;	/* XXX */
955 	default:
956 #ifdef DIAGNOSTIC
957 		panic("uvm_fault: uvmfault_anonget -> %d", error);
958 #else
959 		return EACCES;
960 #endif
961 	}
962 
963 	KASSERT(rw_write_held(amap->am_lock));
964 	KASSERT(anon->an_lock == amap->am_lock);
965 
966 	/*
967 	 * if we are case 1B then we will need to allocate a new blank
968 	 * anon to transfer the data into.   note that we have a lock
969 	 * on anon, so no one can busy or release the page until we are done.
970 	 * also note that the ref count can't drop to zero here because
971 	 * it is > 1 and we are only dropping one ref.
972 	 *
973 	 * in the (hopefully very rare) case that we are out of RAM we
974 	 * will unlock, wait for more RAM, and refault.
975 	 *
976 	 * if we are out of anon VM we wait for RAM to become available.
977 	 */
978 
979 	if ((flt->access_type & PROT_WRITE) != 0 && anon->an_ref > 1) {
980 		counters_inc(uvmexp_counters, flt_acow);
981 		oanon = anon;		/* oanon = old */
982 		anon = uvm_analloc();
983 		if (anon) {
984 			anon->an_lock = amap->am_lock;
985 			pg = uvm_pagealloc(NULL, 0, anon, 0);
986 		}
987 
988 		/* check for out of RAM */
989 		if (anon == NULL || pg == NULL) {
990 			uvmfault_unlockall(ufi, amap, NULL);
991 			if (anon == NULL)
992 				counters_inc(uvmexp_counters, flt_noanon);
993 			else {
994 				anon->an_lock = NULL;
995 				anon->an_ref--;
996 				uvm_anfree(anon);
997 				counters_inc(uvmexp_counters, flt_noram);
998 			}
999 
1000 			if (uvm_swapisfull())
1001 				return ENOMEM;
1002 
1003 			/* out of RAM, wait for more */
1004 			if (anon == NULL)
1005 				uvm_anwait();
1006 			else
1007 				uvm_wait("flt_noram3");
1008 			return ERESTART;
1009 		}
1010 
1011 		/* got all resources, replace anon with nanon */
1012 		uvm_pagecopy(oanon->an_page, pg);	/* pg now !PG_CLEAN */
1013 		/* un-busy! new page */
1014 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE);
1015 		UVM_PAGE_OWN(pg, NULL);
1016 		ret = amap_add(&ufi->entry->aref,
1017 		    ufi->orig_rvaddr - ufi->entry->start, anon, 1);
1018 		KASSERT(ret == 0);
1019 
1020 		/* deref: can not drop to zero here by defn! */
1021 		oanon->an_ref--;
1022 
1023 #if defined(MULTIPROCESSOR) && !defined(__HAVE_PMAP_MPSAFE_ENTER_COW)
1024 		/*
1025 		 * If there are multiple threads, either uvm or the
1026 		 * pmap has to make sure no threads see the old RO
1027 		 * mapping once any have seen the new RW mapping.
1028 		 * uvm does it by inserting the new mapping RO and
1029 		 * letting it fault again.
1030 		 * This is only a problem on MP systems.
1031 		 */
1032 		if (P_HASSIBLING(curproc)) {
1033 			flt->enter_prot &= ~PROT_WRITE;
1034 			flt->access_type &= ~PROT_WRITE;
1035 		}
1036 #endif
1037 
1038 		/*
1039 		 * note: anon is _not_ locked, but we have the sole references
1040 		 * to in from amap.
1041 		 * thus, no one can get at it until we are done with it.
1042 		 */
1043 	} else {
1044 		counters_inc(uvmexp_counters, flt_anon);
1045 		oanon = anon;
1046 		pg = anon->an_page;
1047 		if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
1048 			flt->enter_prot = flt->enter_prot & ~PROT_WRITE;
1049 	}
1050 
1051 	/*
1052 	 * now map the page in .
1053 	 */
1054 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
1055 	    VM_PAGE_TO_PHYS(pg) | flt->pa_flags, flt->enter_prot,
1056 	    flt->access_type | PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0)) != 0) {
1057 		/*
1058 		 * No need to undo what we did; we can simply think of
1059 		 * this as the pmap throwing away the mapping information.
1060 		 *
1061 		 * We do, however, have to go through the ReFault path,
1062 		 * as the map may change while we're asleep.
1063 		 */
1064 		uvmfault_unlockall(ufi, amap, NULL);
1065 		if (uvm_swapisfull()) {
1066 			/* XXX instrumentation */
1067 			return ENOMEM;
1068 		}
1069 		/* XXX instrumentation */
1070 		uvm_wait("flt_pmfail1");
1071 		return ERESTART;
1072 	}
1073 
1074 	/*
1075 	 * ... update the page queues.
1076 	 */
1077 	uvm_lock_pageq();
1078 
1079 	if (fault_type == VM_FAULT_WIRE) {
1080 		uvm_pagewire(pg);
1081 		/*
1082 		 * since the now-wired page cannot be paged out,
1083 		 * release its swap resources for others to use.
1084 		 * since an anon with no swap cannot be PG_CLEAN,
1085 		 * clear its clean flag now.
1086 		 */
1087 		atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1088 		uvm_anon_dropswap(anon);
1089 	} else {
1090 		/* activate it */
1091 		uvm_pageactivate(pg);
1092 	}
1093 
1094 	uvm_unlock_pageq();
1095 
1096 	/*
1097 	 * done case 1!  finish up by unlocking everything and returning success
1098 	 */
1099 	uvmfault_unlockall(ufi, amap, NULL);
1100 	pmap_update(ufi->orig_map->pmap);
1101 	return 0;
1102 }
1103 
1104 /*
1105  * uvm_fault_lower_lookup: look up on-memory uobj pages.
1106  *
1107  *	1. get on-memory pages.
1108  *	2. if failed, give up (get only center page later).
1109  *	3. if succeeded, enter h/w mapping of neighbor pages.
1110  */
1111 
1112 struct vm_page *
1113 uvm_fault_lower_lookup(
1114 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1115 	struct vm_page **pages)
1116 {
1117 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1118 	struct vm_page *uobjpage = NULL;
1119 	int lcv, gotpages;
1120 	vaddr_t currva;
1121 
1122 	rw_enter(uobj->vmobjlock, RW_WRITE);
1123 
1124 	counters_inc(uvmexp_counters, flt_lget);
1125 	gotpages = flt->npages;
1126 	(void) uobj->pgops->pgo_get(uobj,
1127 	    ufi->entry->offset + (flt->startva - ufi->entry->start),
1128 	    pages, &gotpages, flt->centeridx,
1129 	    flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1130 	    PGO_LOCKED);
1131 
1132 	/*
1133 	 * check for pages to map, if we got any
1134 	 */
1135 	if (gotpages == 0) {
1136 		return NULL;
1137 	}
1138 
1139 	currva = flt->startva;
1140 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1141 		if (pages[lcv] == NULL ||
1142 		    pages[lcv] == PGO_DONTCARE)
1143 			continue;
1144 
1145 		KASSERT((pages[lcv]->pg_flags & PG_RELEASED) == 0);
1146 
1147 		/*
1148 		 * if center page is resident and not
1149 		 * PG_BUSY, then pgo_get made it PG_BUSY
1150 		 * for us and gave us a handle to it.
1151 		 * remember this page as "uobjpage."
1152 		 * (for later use).
1153 		 */
1154 		if (lcv == flt->centeridx) {
1155 			uobjpage = pages[lcv];
1156 			continue;
1157 		}
1158 
1159 		/*
1160 		 * note: calling pgo_get with locked data
1161 		 * structures returns us pages which are
1162 		 * neither busy nor released, so we don't
1163 		 * need to check for this.   we can just
1164 		 * directly enter the page (after moving it
1165 		 * to the head of the active queue [useful?]).
1166 		 */
1167 
1168 		uvm_lock_pageq();
1169 		uvm_pageactivate(pages[lcv]);	/* reactivate */
1170 		uvm_unlock_pageq();
1171 		counters_inc(uvmexp_counters, flt_nomap);
1172 
1173 		/*
1174 		 * Since this page isn't the page that's
1175 		 * actually faulting, ignore pmap_enter()
1176 		 * failures; it's not critical that we
1177 		 * enter these right now.
1178 		 */
1179 		(void) pmap_enter(ufi->orig_map->pmap, currva,
1180 		    VM_PAGE_TO_PHYS(pages[lcv]) | flt->pa_flags,
1181 		    flt->enter_prot & MASK(ufi->entry),
1182 		    PMAP_CANFAIL |
1183 		     (flt->wired ? PMAP_WIRED : 0));
1184 
1185 		/*
1186 		 * NOTE: page can't be PG_WANTED because
1187 		 * we've held the lock the whole time
1188 		 * we've had the handle.
1189 		 */
1190 		atomic_clearbits_int(&pages[lcv]->pg_flags, PG_BUSY);
1191 		UVM_PAGE_OWN(pages[lcv], NULL);
1192 	}
1193 	pmap_update(ufi->orig_map->pmap);
1194 
1195 	return uobjpage;
1196 }
1197 
1198 /*
1199  * uvm_fault_lower: handle lower fault.
1200  *
1201  */
1202 int
1203 uvm_fault_lower(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1204    struct vm_page **pages, vm_fault_t fault_type)
1205 {
1206 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
1207 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1208 	boolean_t promote, locked;
1209 	int result;
1210 	struct vm_page *uobjpage, *pg = NULL;
1211 	struct vm_anon *anon = NULL;
1212 	voff_t uoff;
1213 
1214 	/*
1215 	 * now, if the desired page is not shadowed by the amap and we have
1216 	 * a backing object that does not have a special fault routine, then
1217 	 * we ask (with pgo_get) the object for resident pages that we care
1218 	 * about and attempt to map them in.  we do not let pgo_get block
1219 	 * (PGO_LOCKED).
1220 	 */
1221 	if (uobj == NULL) {
1222 		/* zero fill; don't care neighbor pages */
1223 		uobjpage = NULL;
1224 	} else {
1225 		uobjpage = uvm_fault_lower_lookup(ufi, flt, pages);
1226 	}
1227 
1228 	/*
1229 	 * note that at this point we are done with any front or back pages.
1230 	 * we are now going to focus on the center page (i.e. the one we've
1231 	 * faulted on).  if we have faulted on the bottom (uobj)
1232 	 * layer [i.e. case 2] and the page was both present and available,
1233 	 * then we've got a pointer to it as "uobjpage" and we've already
1234 	 * made it BUSY.
1235 	 */
1236 
1237 	/*
1238 	 * locked:
1239 	 */
1240 	KASSERT(amap == NULL ||
1241 	    rw_write_held(amap->am_lock));
1242 	KASSERT(uobj == NULL ||
1243 	    rw_write_held(uobj->vmobjlock));
1244 
1245 	/*
1246 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
1247 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
1248 	 * have a backing object, check and see if we are going to promote
1249 	 * the data up to an anon during the fault.
1250 	 */
1251 	if (uobj == NULL) {
1252 		uobjpage = PGO_DONTCARE;
1253 		promote = TRUE;		/* always need anon here */
1254 	} else {
1255 		KASSERT(uobjpage != PGO_DONTCARE);
1256 		promote = (flt->access_type & PROT_WRITE) &&
1257 		     UVM_ET_ISCOPYONWRITE(ufi->entry);
1258 	}
1259 
1260 	/*
1261 	 * if uobjpage is not null then we do not need to do I/O to get the
1262 	 * uobjpage.
1263 	 *
1264 	 * if uobjpage is null, then we need to ask the pager to
1265 	 * get the data for us.   once we have the data, we need to reverify
1266 	 * the state the world.   we are currently not holding any resources.
1267 	 */
1268 	if (uobjpage) {
1269 		/* update rusage counters */
1270 		curproc->p_ru.ru_minflt++;
1271 	} else {
1272 		int gotpages;
1273 
1274 		/* update rusage counters */
1275 		curproc->p_ru.ru_majflt++;
1276 
1277 		uvmfault_unlockall(ufi, amap, NULL);
1278 
1279 		counters_inc(uvmexp_counters, flt_get);
1280 		gotpages = 1;
1281 		uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1282 		result = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1283 		    0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1284 		    PGO_SYNCIO);
1285 
1286 		/*
1287 		 * recover from I/O
1288 		 */
1289 		if (result != VM_PAGER_OK) {
1290 			KASSERT(result != VM_PAGER_PEND);
1291 
1292 			if (result == VM_PAGER_AGAIN) {
1293 				tsleep_nsec(&nowake, PVM, "fltagain2",
1294 				    MSEC_TO_NSEC(5));
1295 				return ERESTART;
1296 			}
1297 
1298 			if (!UVM_ET_ISNOFAULT(ufi->entry))
1299 				return (EIO);
1300 
1301 			uobjpage = PGO_DONTCARE;
1302 			uobj = NULL;
1303 			promote = TRUE;
1304 		}
1305 
1306 		/* re-verify the state of the world.  */
1307 		locked = uvmfault_relock(ufi);
1308 		if (locked && amap != NULL)
1309 			amap_lock(amap);
1310 
1311 		/* might be changed */
1312 		if (uobjpage != PGO_DONTCARE) {
1313 			uobj = uobjpage->uobject;
1314 			rw_enter(uobj->vmobjlock, RW_WRITE);
1315 		}
1316 
1317 		/*
1318 		 * Re-verify that amap slot is still free. if there is
1319 		 * a problem, we clean up.
1320 		 */
1321 		if (locked && amap && amap_lookup(&ufi->entry->aref,
1322 		      ufi->orig_rvaddr - ufi->entry->start)) {
1323 			if (locked)
1324 				uvmfault_unlockall(ufi, amap, NULL);
1325 			locked = FALSE;
1326 		}
1327 
1328 		/* didn't get the lock?   release the page and retry. */
1329 		if (locked == FALSE && uobjpage != PGO_DONTCARE) {
1330 			uvm_lock_pageq();
1331 			/* make sure it is in queues */
1332 			uvm_pageactivate(uobjpage);
1333 			uvm_unlock_pageq();
1334 
1335 			if (uobjpage->pg_flags & PG_WANTED)
1336 				/* still holding object lock */
1337 				wakeup(uobjpage);
1338 			atomic_clearbits_int(&uobjpage->pg_flags,
1339 			    PG_BUSY|PG_WANTED);
1340 			UVM_PAGE_OWN(uobjpage, NULL);
1341 		}
1342 
1343 		if (locked == FALSE) {
1344 			if (uobjpage != PGO_DONTCARE)
1345 				rw_exit(uobj->vmobjlock);
1346 			return ERESTART;
1347 		}
1348 
1349 		/*
1350 		 * we have the data in uobjpage which is PG_BUSY
1351 		 */
1352 	}
1353 
1354 	/*
1355 	 * notes:
1356 	 *  - at this point uobjpage can not be NULL
1357 	 *  - at this point uobjpage could be PG_WANTED (handle later)
1358 	 */
1359 	if (promote == FALSE) {
1360 		/*
1361 		 * we are not promoting.   if the mapping is COW ensure that we
1362 		 * don't give more access than we should (e.g. when doing a read
1363 		 * fault on a COPYONWRITE mapping we want to map the COW page in
1364 		 * R/O even though the entry protection could be R/W).
1365 		 *
1366 		 * set "pg" to the page we want to map in (uobjpage, usually)
1367 		 */
1368 		counters_inc(uvmexp_counters, flt_obj);
1369 		if (UVM_ET_ISCOPYONWRITE(ufi->entry))
1370 			flt->enter_prot &= ~PROT_WRITE;
1371 		pg = uobjpage;		/* map in the actual object */
1372 
1373 		/* assert(uobjpage != PGO_DONTCARE) */
1374 
1375 		/*
1376 		 * we are faulting directly on the page.
1377 		 */
1378 	} else {
1379 		/*
1380 		 * if we are going to promote the data to an anon we
1381 		 * allocate a blank anon here and plug it into our amap.
1382 		 */
1383 #ifdef DIAGNOSTIC
1384 		if (amap == NULL)
1385 			panic("uvm_fault: want to promote data, but no anon");
1386 #endif
1387 
1388 		anon = uvm_analloc();
1389 		if (anon) {
1390 			/*
1391 			 * In `Fill in data...' below, if
1392 			 * uobjpage == PGO_DONTCARE, we want
1393 			 * a zero'd, dirty page, so have
1394 			 * uvm_pagealloc() do that for us.
1395 			 */
1396 			anon->an_lock = amap->am_lock;
1397 			pg = uvm_pagealloc(NULL, 0, anon,
1398 			    (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1399 		}
1400 
1401 		/*
1402 		 * out of memory resources?
1403 		 */
1404 		if (anon == NULL || pg == NULL) {
1405 			/*
1406 			 * arg!  must unbusy our page and fail or sleep.
1407 			 */
1408 			if (uobjpage != PGO_DONTCARE) {
1409 				uvm_lock_pageq();
1410 				uvm_pageactivate(uobjpage);
1411 				uvm_unlock_pageq();
1412 
1413 				if (uobjpage->pg_flags & PG_WANTED)
1414 					wakeup(uobjpage);
1415 				atomic_clearbits_int(&uobjpage->pg_flags,
1416 				    PG_BUSY|PG_WANTED);
1417 				UVM_PAGE_OWN(uobjpage, NULL);
1418 			}
1419 
1420 			/* unlock and fail ... */
1421 			uvmfault_unlockall(ufi, amap, uobj);
1422 			if (anon == NULL)
1423 				counters_inc(uvmexp_counters, flt_noanon);
1424 			else {
1425 				anon->an_lock = NULL;
1426 				anon->an_ref--;
1427 				uvm_anfree(anon);
1428 				counters_inc(uvmexp_counters, flt_noram);
1429 			}
1430 
1431 			if (uvm_swapisfull())
1432 				return (ENOMEM);
1433 
1434 			/* out of RAM, wait for more */
1435 			if (anon == NULL)
1436 				uvm_anwait();
1437 			else
1438 				uvm_wait("flt_noram5");
1439 			return ERESTART;
1440 		}
1441 
1442 		/*
1443 		 * fill in the data
1444 		 */
1445 		if (uobjpage != PGO_DONTCARE) {
1446 			counters_inc(uvmexp_counters, flt_prcopy);
1447 			/* copy page [pg now dirty] */
1448 			uvm_pagecopy(uobjpage, pg);
1449 
1450 			/*
1451 			 * promote to shared amap?  make sure all sharing
1452 			 * procs see it
1453 			 */
1454 			if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1455 				pmap_page_protect(uobjpage, PROT_NONE);
1456 			}
1457 #if defined(MULTIPROCESSOR) && !defined(__HAVE_PMAP_MPSAFE_ENTER_COW)
1458 			/*
1459 			 * Otherwise:
1460 			 * If there are multiple threads, either uvm or the
1461 			 * pmap has to make sure no threads see the old RO
1462 			 * mapping once any have seen the new RW mapping.
1463 			 * uvm does it here by forcing it to PROT_NONE before
1464 			 * inserting the new mapping.
1465 			 */
1466 			else if (P_HASSIBLING(curproc)) {
1467 				pmap_page_protect(uobjpage, PROT_NONE);
1468 			}
1469 #endif
1470 
1471 			/* dispose of uobjpage. drop handle to uobj as well. */
1472 			if (uobjpage->pg_flags & PG_WANTED)
1473 				wakeup(uobjpage);
1474 			atomic_clearbits_int(&uobjpage->pg_flags,
1475 			    PG_BUSY|PG_WANTED);
1476 			UVM_PAGE_OWN(uobjpage, NULL);
1477 			uvm_lock_pageq();
1478 			uvm_pageactivate(uobjpage);
1479 			uvm_unlock_pageq();
1480 			rw_exit(uobj->vmobjlock);
1481 			uobj = NULL;
1482 		} else {
1483 			counters_inc(uvmexp_counters, flt_przero);
1484 			/*
1485 			 * Page is zero'd and marked dirty by uvm_pagealloc()
1486 			 * above.
1487 			 */
1488 		}
1489 
1490 		if (amap_add(&ufi->entry->aref,
1491 		    ufi->orig_rvaddr - ufi->entry->start, anon, 0)) {
1492 			uvmfault_unlockall(ufi, amap, uobj);
1493 			uvm_anfree(anon);
1494 			counters_inc(uvmexp_counters, flt_noamap);
1495 
1496 			if (uvm_swapisfull())
1497 				return (ENOMEM);
1498 
1499 			amap_populate(&ufi->entry->aref,
1500 			    ufi->orig_rvaddr - ufi->entry->start);
1501 			return ERESTART;
1502 		}
1503 	}
1504 
1505 	/* note: pg is either the uobjpage or the new page in the new anon */
1506 	/*
1507 	 * all resources are present.   we can now map it in and free our
1508 	 * resources.
1509 	 */
1510 	if (amap == NULL)
1511 		KASSERT(anon == NULL);
1512 	else {
1513 		KASSERT(rw_write_held(amap->am_lock));
1514 		KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
1515 	}
1516 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
1517 	    VM_PAGE_TO_PHYS(pg) | flt->pa_flags, flt->enter_prot,
1518 	    flt->access_type | PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0)) != 0) {
1519 		/*
1520 		 * No need to undo what we did; we can simply think of
1521 		 * this as the pmap throwing away the mapping information.
1522 		 *
1523 		 * We do, however, have to go through the ReFault path,
1524 		 * as the map may change while we're asleep.
1525 		 */
1526 		if (pg->pg_flags & PG_WANTED)
1527 			wakeup(pg);
1528 
1529 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED);
1530 		UVM_PAGE_OWN(pg, NULL);
1531 		uvmfault_unlockall(ufi, amap, uobj);
1532 		if (uvm_swapisfull()) {
1533 			/* XXX instrumentation */
1534 			return (ENOMEM);
1535 		}
1536 		/* XXX instrumentation */
1537 		uvm_wait("flt_pmfail2");
1538 		return ERESTART;
1539 	}
1540 
1541 	if (fault_type == VM_FAULT_WIRE) {
1542 		uvm_lock_pageq();
1543 		uvm_pagewire(pg);
1544 		uvm_unlock_pageq();
1545 		if (pg->pg_flags & PQ_AOBJ) {
1546 			/*
1547 			 * since the now-wired page cannot be paged out,
1548 			 * release its swap resources for others to use.
1549 			 * since an aobj page with no swap cannot be clean,
1550 			 * mark it dirty now.
1551 			 *
1552 			 * use pg->uobject here.  if the page is from a
1553 			 * tmpfs vnode, the pages are backed by its UAO and
1554 			 * not the vnode.
1555 			 */
1556 			KASSERT(uobj != NULL);
1557 			KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock);
1558 			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1559 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1560 		}
1561 	} else {
1562 		/* activate it */
1563 		uvm_lock_pageq();
1564 		uvm_pageactivate(pg);
1565 		uvm_unlock_pageq();
1566 	}
1567 
1568 	if (pg->pg_flags & PG_WANTED)
1569 		wakeup(pg);
1570 
1571 	atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED);
1572 	UVM_PAGE_OWN(pg, NULL);
1573 	uvmfault_unlockall(ufi, amap, uobj);
1574 	pmap_update(ufi->orig_map->pmap);
1575 
1576 	return (0);
1577 }
1578 
1579 
1580 /*
1581  * uvm_fault_wire: wire down a range of virtual addresses in a map.
1582  *
1583  * => map may be read-locked by caller, but MUST NOT be write-locked.
1584  * => if map is read-locked, any operations which may cause map to
1585  *	be write-locked in uvm_fault() must be taken care of by
1586  *	the caller.  See uvm_map_pageable().
1587  */
1588 int
1589 uvm_fault_wire(vm_map_t map, vaddr_t start, vaddr_t end, vm_prot_t access_type)
1590 {
1591 	vaddr_t va;
1592 	int rv;
1593 
1594 	/*
1595 	 * now fault it in a page at a time.   if the fault fails then we have
1596 	 * to undo what we have done.   note that in uvm_fault PROT_NONE
1597 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1598 	 */
1599 	for (va = start ; va < end ; va += PAGE_SIZE) {
1600 		rv = uvm_fault(map, va, VM_FAULT_WIRE, access_type);
1601 		if (rv) {
1602 			if (va != start) {
1603 				uvm_fault_unwire(map, start, va);
1604 			}
1605 			return (rv);
1606 		}
1607 	}
1608 
1609 	return (0);
1610 }
1611 
1612 /*
1613  * uvm_fault_unwire(): unwire range of virtual space.
1614  */
1615 void
1616 uvm_fault_unwire(vm_map_t map, vaddr_t start, vaddr_t end)
1617 {
1618 
1619 	vm_map_lock_read(map);
1620 	uvm_fault_unwire_locked(map, start, end);
1621 	vm_map_unlock_read(map);
1622 }
1623 
1624 /*
1625  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1626  *
1627  * => map must be at least read-locked.
1628  */
1629 void
1630 uvm_fault_unwire_locked(vm_map_t map, vaddr_t start, vaddr_t end)
1631 {
1632 	vm_map_entry_t entry, oentry = NULL, next;
1633 	pmap_t pmap = vm_map_pmap(map);
1634 	vaddr_t va;
1635 	paddr_t pa;
1636 	struct vm_page *pg;
1637 
1638 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1639 	vm_map_assert_anylock(map);
1640 
1641 	/*
1642 	 * we assume that the area we are unwiring has actually been wired
1643 	 * in the first place.   this means that we should be able to extract
1644 	 * the PAs from the pmap.
1645 	 */
1646 
1647 	/*
1648 	 * find the beginning map entry for the region.
1649 	 */
1650 	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1651 	if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1652 		panic("uvm_fault_unwire_locked: address not in map");
1653 
1654 	for (va = start; va < end ; va += PAGE_SIZE) {
1655 		if (pmap_extract(pmap, va, &pa) == FALSE)
1656 			continue;
1657 
1658 		/*
1659 		 * find the map entry for the current address.
1660 		 */
1661 		KASSERT(va >= entry->start);
1662 		while (entry && va >= entry->end) {
1663 			next = RBT_NEXT(uvm_map_addr, entry);
1664 			entry = next;
1665 		}
1666 
1667 		if (entry == NULL)
1668 			return;
1669 		if (va < entry->start)
1670 			continue;
1671 
1672 		/*
1673 		 * lock it.
1674 		 */
1675 		if (entry != oentry) {
1676 			if (oentry != NULL) {
1677 				uvm_map_unlock_entry(oentry);
1678 			}
1679 			uvm_map_lock_entry(entry);
1680 			oentry = entry;
1681 		}
1682 
1683 		/*
1684 		 * if the entry is no longer wired, tell the pmap.
1685 		 */
1686 		if (VM_MAPENT_ISWIRED(entry) == 0)
1687 			pmap_unwire(pmap, va);
1688 
1689 		pg = PHYS_TO_VM_PAGE(pa);
1690 		if (pg) {
1691 			uvm_lock_pageq();
1692 			uvm_pageunwire(pg);
1693 			uvm_unlock_pageq();
1694 		}
1695 	}
1696 
1697 	if (oentry != NULL) {
1698 		uvm_map_unlock_entry(oentry);
1699 	}
1700 }
1701 
1702 /*
1703  * uvmfault_unlockmaps: unlock the maps
1704  */
1705 void
1706 uvmfault_unlockmaps(struct uvm_faultinfo *ufi, boolean_t write_locked)
1707 {
1708 	/*
1709 	 * ufi can be NULL when this isn't really a fault,
1710 	 * but merely paging in anon data.
1711 	 */
1712 	if (ufi == NULL) {
1713 		return;
1714 	}
1715 
1716 	uvmfault_update_stats(ufi);
1717 	if (write_locked) {
1718 		vm_map_unlock(ufi->map);
1719 	} else {
1720 		vm_map_unlock_read(ufi->map);
1721 	}
1722 }
1723 
1724 /*
1725  * uvmfault_unlockall: unlock everything passed in.
1726  *
1727  * => maps must be read-locked (not write-locked).
1728  */
1729 void
1730 uvmfault_unlockall(struct uvm_faultinfo *ufi, struct vm_amap *amap,
1731     struct uvm_object *uobj)
1732 {
1733 	if (uobj)
1734 		rw_exit(uobj->vmobjlock);
1735 	if (amap != NULL)
1736 		amap_unlock(amap);
1737 	uvmfault_unlockmaps(ufi, FALSE);
1738 }
1739 
1740 /*
1741  * uvmfault_lookup: lookup a virtual address in a map
1742  *
1743  * => caller must provide a uvm_faultinfo structure with the IN
1744  *	params properly filled in
1745  * => we will lookup the map entry (handling submaps) as we go
1746  * => if the lookup is a success we will return with the maps locked
1747  * => if "write_lock" is TRUE, we write_lock the map, otherwise we only
1748  *	get a read lock.
1749  * => note that submaps can only appear in the kernel and they are
1750  *	required to use the same virtual addresses as the map they
1751  *	are referenced by (thus address translation between the main
1752  *	map and the submap is unnecessary).
1753  */
1754 
1755 boolean_t
1756 uvmfault_lookup(struct uvm_faultinfo *ufi, boolean_t write_lock)
1757 {
1758 	vm_map_t tmpmap;
1759 
1760 	/*
1761 	 * init ufi values for lookup.
1762 	 */
1763 	ufi->map = ufi->orig_map;
1764 	ufi->size = ufi->orig_size;
1765 
1766 	/*
1767 	 * keep going down levels until we are done.   note that there can
1768 	 * only be two levels so we won't loop very long.
1769 	 */
1770 	while (1) {
1771 		if (ufi->orig_rvaddr < ufi->map->min_offset ||
1772 		    ufi->orig_rvaddr >= ufi->map->max_offset)
1773 			return FALSE;
1774 
1775 		/* lock map */
1776 		if (write_lock) {
1777 			vm_map_lock(ufi->map);
1778 		} else {
1779 			vm_map_lock_read(ufi->map);
1780 		}
1781 
1782 		/* lookup */
1783 		if (!uvm_map_lookup_entry(ufi->map, ufi->orig_rvaddr,
1784 		    &ufi->entry)) {
1785 			uvmfault_unlockmaps(ufi, write_lock);
1786 			return FALSE;
1787 		}
1788 
1789 		/* reduce size if necessary */
1790 		if (ufi->entry->end - ufi->orig_rvaddr < ufi->size)
1791 			ufi->size = ufi->entry->end - ufi->orig_rvaddr;
1792 
1793 		/*
1794 		 * submap?    replace map with the submap and lookup again.
1795 		 * note: VAs in submaps must match VAs in main map.
1796 		 */
1797 		if (UVM_ET_ISSUBMAP(ufi->entry)) {
1798 			tmpmap = ufi->entry->object.sub_map;
1799 			uvmfault_unlockmaps(ufi, write_lock);
1800 			ufi->map = tmpmap;
1801 			continue;
1802 		}
1803 
1804 		/*
1805 		 * got it!
1806 		 */
1807 		ufi->mapv = ufi->map->timestamp;
1808 		return TRUE;
1809 
1810 	}	/* while loop */
1811 
1812 	/*NOTREACHED*/
1813 }
1814 
1815 /*
1816  * uvmfault_relock: attempt to relock the same version of the map
1817  *
1818  * => fault data structures should be unlocked before calling.
1819  * => if a success (TRUE) maps will be locked after call.
1820  */
1821 boolean_t
1822 uvmfault_relock(struct uvm_faultinfo *ufi)
1823 {
1824 	/*
1825 	 * ufi can be NULL when this isn't really a fault,
1826 	 * but merely paging in anon data.
1827 	 */
1828 	if (ufi == NULL) {
1829 		return TRUE;
1830 	}
1831 
1832 	counters_inc(uvmexp_counters, flt_relck);
1833 
1834 	/*
1835 	 * relock map.   fail if version mismatch (in which case nothing
1836 	 * gets locked).
1837 	 */
1838 	vm_map_lock_read(ufi->map);
1839 	if (ufi->mapv != ufi->map->timestamp) {
1840 		vm_map_unlock_read(ufi->map);
1841 		return FALSE;
1842 	}
1843 
1844 	counters_inc(uvmexp_counters, flt_relckok);
1845 	return TRUE;		/* got it! */
1846 }
1847