xref: /openbsd-src/sys/uvm/uvm_fault.c (revision c1a45aed656e7d5627c30c92421893a76f370ccb)
1 /*	$OpenBSD: uvm_fault.c,v 1.129 2022/04/04 09:27:05 kettenis Exp $	*/
2 /*	$NetBSD: uvm_fault.c,v 1.51 2000/08/06 00:22:53 thorpej Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
29  */
30 
31 /*
32  * uvm_fault.c: fault handler
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/percpu.h>
39 #include <sys/proc.h>
40 #include <sys/malloc.h>
41 #include <sys/mman.h>
42 #include <sys/tracepoint.h>
43 
44 #include <uvm/uvm.h>
45 
46 /*
47  *
48  * a word on page faults:
49  *
50  * types of page faults we handle:
51  *
52  * CASE 1: upper layer faults                   CASE 2: lower layer faults
53  *
54  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
55  *    read/write1     write>1                  read/write   +-cow_write/zero
56  *         |             |                         |        |
57  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
58  * amap |  V  |       |  ---------> new |          |        | |  ^  |
59  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
60  *                                                 |        |    |
61  *      +-----+       +-----+                   +--|--+     | +--|--+
62  * uobj | d/c |       | d/c |                   |  V  |     +----+  |
63  *      +-----+       +-----+                   +-----+       +-----+
64  *
65  * d/c = don't care
66  *
67  *   case [0]: layerless fault
68  *	no amap or uobj is present.   this is an error.
69  *
70  *   case [1]: upper layer fault [anon active]
71  *     1A: [read] or [write with anon->an_ref == 1]
72  *		I/O takes place in upper level anon and uobj is not touched.
73  *     1B: [write with anon->an_ref > 1]
74  *		new anon is alloc'd and data is copied off ["COW"]
75  *
76  *   case [2]: lower layer fault [uobj]
77  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
78  *		I/O takes place directly in object.
79  *     2B: [write to copy_on_write] or [read on NULL uobj]
80  *		data is "promoted" from uobj to a new anon.
81  *		if uobj is null, then we zero fill.
82  *
83  * we follow the standard UVM locking protocol ordering:
84  *
85  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
86  * we hold a PG_BUSY page if we unlock for I/O
87  *
88  *
89  * the code is structured as follows:
90  *
91  *     - init the "IN" params in the ufi structure
92  *   ReFault: (ERESTART returned to the loop in uvm_fault)
93  *     - do lookups [locks maps], check protection, handle needs_copy
94  *     - check for case 0 fault (error)
95  *     - establish "range" of fault
96  *     - if we have an amap lock it and extract the anons
97  *     - if sequential advice deactivate pages behind us
98  *     - at the same time check pmap for unmapped areas and anon for pages
99  *	 that we could map in (and do map it if found)
100  *     - check object for resident pages that we could map in
101  *     - if (case 2) goto Case2
102  *     - >>> handle case 1
103  *           - ensure source anon is resident in RAM
104  *           - if case 1B alloc new anon and copy from source
105  *           - map the correct page in
106  *   Case2:
107  *     - >>> handle case 2
108  *           - ensure source page is resident (if uobj)
109  *           - if case 2B alloc new anon and copy from source (could be zero
110  *		fill if uobj == NULL)
111  *           - map the correct page in
112  *     - done!
113  *
114  * note on paging:
115  *   if we have to do I/O we place a PG_BUSY page in the correct object,
116  * unlock everything, and do the I/O.   when I/O is done we must reverify
117  * the state of the world before assuming that our data structures are
118  * valid.   [because mappings could change while the map is unlocked]
119  *
120  *  alternative 1: unbusy the page in question and restart the page fault
121  *    from the top (ReFault).   this is easy but does not take advantage
122  *    of the information that we already have from our previous lookup,
123  *    although it is possible that the "hints" in the vm_map will help here.
124  *
125  * alternative 2: the system already keeps track of a "version" number of
126  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
127  *    mapping) you bump the version number up by one...]   so, we can save
128  *    the version number of the map before we release the lock and start I/O.
129  *    then when I/O is done we can relock and check the version numbers
130  *    to see if anything changed.    this might save us some over 1 because
131  *    we don't have to unbusy the page and may be less compares(?).
132  *
133  * alternative 3: put in backpointers or a way to "hold" part of a map
134  *    in place while I/O is in progress.   this could be complex to
135  *    implement (especially with structures like amap that can be referenced
136  *    by multiple map entries, and figuring out what should wait could be
137  *    complex as well...).
138  *
139  * we use alternative 2.  given that we are multi-threaded now we may want
140  * to reconsider the choice.
141  */
142 
143 /*
144  * local data structures
145  */
146 struct uvm_advice {
147 	int nback;
148 	int nforw;
149 };
150 
151 /*
152  * page range array: set up in uvmfault_init().
153  */
154 static struct uvm_advice uvmadvice[MADV_MASK + 1];
155 
156 #define UVM_MAXRANGE 16	/* must be max() of nback+nforw+1 */
157 
158 /*
159  * private prototypes
160  */
161 static void uvmfault_amapcopy(struct uvm_faultinfo *);
162 static inline void uvmfault_anonflush(struct vm_anon **, int);
163 void	uvmfault_unlockmaps(struct uvm_faultinfo *, boolean_t);
164 void	uvmfault_update_stats(struct uvm_faultinfo *);
165 
166 /*
167  * inline functions
168  */
169 /*
170  * uvmfault_anonflush: try and deactivate pages in specified anons
171  *
172  * => does not have to deactivate page if it is busy
173  */
174 static inline void
175 uvmfault_anonflush(struct vm_anon **anons, int n)
176 {
177 	int lcv;
178 	struct vm_page *pg;
179 
180 	for (lcv = 0; lcv < n; lcv++) {
181 		if (anons[lcv] == NULL)
182 			continue;
183 		KASSERT(rw_lock_held(anons[lcv]->an_lock));
184 		pg = anons[lcv]->an_page;
185 		if (pg && (pg->pg_flags & PG_BUSY) == 0) {
186 			uvm_lock_pageq();
187 			if (pg->wire_count == 0) {
188 				pmap_page_protect(pg, PROT_NONE);
189 				uvm_pagedeactivate(pg);
190 			}
191 			uvm_unlock_pageq();
192 		}
193 	}
194 }
195 
196 /*
197  * normal functions
198  */
199 /*
200  * uvmfault_init: compute proper values for the uvmadvice[] array.
201  */
202 void
203 uvmfault_init(void)
204 {
205 	int npages;
206 
207 	npages = atop(16384);
208 	if (npages > 0) {
209 		KASSERT(npages <= UVM_MAXRANGE / 2);
210 		uvmadvice[MADV_NORMAL].nforw = npages;
211 		uvmadvice[MADV_NORMAL].nback = npages - 1;
212 	}
213 
214 	npages = atop(32768);
215 	if (npages > 0) {
216 		KASSERT(npages <= UVM_MAXRANGE / 2);
217 		uvmadvice[MADV_SEQUENTIAL].nforw = npages - 1;
218 		uvmadvice[MADV_SEQUENTIAL].nback = npages;
219 	}
220 }
221 
222 /*
223  * uvmfault_amapcopy: clear "needs_copy" in a map.
224  *
225  * => called with VM data structures unlocked (usually, see below)
226  * => we get a write lock on the maps and clear needs_copy for a VA
227  * => if we are out of RAM we sleep (waiting for more)
228  */
229 static void
230 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
231 {
232 	for (;;) {
233 		/*
234 		 * no mapping?  give up.
235 		 */
236 		if (uvmfault_lookup(ufi, TRUE) == FALSE)
237 			return;
238 
239 		/*
240 		 * copy if needed.
241 		 */
242 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
243 			amap_copy(ufi->map, ufi->entry, M_NOWAIT,
244 				UVM_ET_ISSTACK(ufi->entry) ? FALSE : TRUE,
245 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
246 
247 		/*
248 		 * didn't work?  must be out of RAM.   unlock and sleep.
249 		 */
250 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
251 			uvmfault_unlockmaps(ufi, TRUE);
252 			uvm_wait("fltamapcopy");
253 			continue;
254 		}
255 
256 		/*
257 		 * got it!   unlock and return.
258 		 */
259 		uvmfault_unlockmaps(ufi, TRUE);
260 		return;
261 	}
262 	/*NOTREACHED*/
263 }
264 
265 /*
266  * uvmfault_anonget: get data in an anon into a non-busy, non-released
267  * page in that anon.
268  *
269  * => Map, amap and thus anon should be locked by caller.
270  * => If we fail, we unlock everything and error is returned.
271  * => If we are successful, return with everything still locked.
272  * => We do not move the page on the queues [gets moved later].  If we
273  *    allocate a new page [we_own], it gets put on the queues.  Either way,
274  *    the result is that the page is on the queues at return time
275  */
276 int
277 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
278     struct vm_anon *anon)
279 {
280 	struct vm_page *pg;
281 	int error;
282 
283 	KASSERT(rw_lock_held(anon->an_lock));
284 	KASSERT(anon->an_lock == amap->am_lock);
285 
286 	/* Increment the counters.*/
287 	counters_inc(uvmexp_counters, flt_anget);
288 	if (anon->an_page) {
289 		curproc->p_ru.ru_minflt++;
290 	} else {
291 		curproc->p_ru.ru_majflt++;
292 	}
293 	error = 0;
294 
295 	/*
296 	 * Loop until we get the anon data, or fail.
297 	 */
298 	for (;;) {
299 		boolean_t we_own, locked;
300 		/*
301 		 * Note: 'we_own' will become true if we set PG_BUSY on a page.
302 		 */
303 		we_own = FALSE;
304 		pg = anon->an_page;
305 
306 		/*
307 		 * Is page resident?  Make sure it is not busy/released.
308 		 */
309 		if (pg) {
310 			KASSERT(pg->pg_flags & PQ_ANON);
311 			KASSERT(pg->uanon == anon);
312 
313 			/*
314 			 * if the page is busy, we drop all the locks and
315 			 * try again.
316 			 */
317 			if ((pg->pg_flags & (PG_BUSY|PG_RELEASED)) == 0)
318 				return (VM_PAGER_OK);
319 			atomic_setbits_int(&pg->pg_flags, PG_WANTED);
320 			counters_inc(uvmexp_counters, flt_pgwait);
321 
322 			/*
323 			 * The last unlock must be an atomic unlock and wait
324 			 * on the owner of page.
325 			 */
326 			if (pg->uobject) {
327 				/* Owner of page is UVM object. */
328 				uvmfault_unlockall(ufi, amap, NULL);
329 				rwsleep_nsec(pg, pg->uobject->vmobjlock,
330 				    PVM | PNORELOCK, "anonget1", INFSLP);
331 			} else {
332 				/* Owner of page is anon. */
333 				uvmfault_unlockall(ufi, NULL, NULL);
334 				rwsleep_nsec(pg, anon->an_lock, PVM | PNORELOCK,
335 				    "anonget2", INFSLP);
336 			}
337 		} else {
338 			/*
339 			 * No page, therefore allocate one.
340 			 */
341 			pg = uvm_pagealloc(NULL, 0, anon, 0);
342 			if (pg == NULL) {
343 				/* Out of memory.  Wait a little. */
344 				uvmfault_unlockall(ufi, amap, NULL);
345 				counters_inc(uvmexp_counters, flt_noram);
346 				uvm_wait("flt_noram1");
347 			} else {
348 				/* PG_BUSY bit is set. */
349 				we_own = TRUE;
350 				uvmfault_unlockall(ufi, amap, NULL);
351 
352 				/*
353 				 * Pass a PG_BUSY+PG_FAKE+PG_CLEAN page into
354 				 * the uvm_swap_get() function with all data
355 				 * structures unlocked.  Note that it is OK
356 				 * to read an_swslot here, because we hold
357 				 * PG_BUSY on the page.
358 				 */
359 				counters_inc(uvmexp_counters, pageins);
360 				error = uvm_swap_get(pg, anon->an_swslot,
361 				    PGO_SYNCIO);
362 
363 				/*
364 				 * We clean up after the I/O below in the
365 				 * 'we_own' case.
366 				 */
367 			}
368 		}
369 
370 		/*
371 		 * Re-lock the map and anon.
372 		 */
373 		locked = uvmfault_relock(ufi);
374 		if (locked || we_own) {
375 			rw_enter(anon->an_lock, RW_WRITE);
376 		}
377 
378 		/*
379 		 * If we own the page (i.e. we set PG_BUSY), then we need
380 		 * to clean up after the I/O.  There are three cases to
381 		 * consider:
382 		 *
383 		 * 1) Page was released during I/O: free anon and ReFault.
384 		 * 2) I/O not OK.  Free the page and cause the fault to fail.
385 		 * 3) I/O OK!  Activate the page and sync with the non-we_own
386 		 *    case (i.e. drop anon lock if not locked).
387 		 */
388 		if (we_own) {
389 			if (pg->pg_flags & PG_WANTED) {
390 				wakeup(pg);
391 			}
392 			/* un-busy! */
393 			atomic_clearbits_int(&pg->pg_flags,
394 			    PG_WANTED|PG_BUSY|PG_FAKE);
395 			UVM_PAGE_OWN(pg, NULL);
396 
397 			/*
398 			 * if we were RELEASED during I/O, then our anon is
399 			 * no longer part of an amap.   we need to free the
400 			 * anon and try again.
401 			 */
402 			if (pg->pg_flags & PG_RELEASED) {
403 				pmap_page_protect(pg, PROT_NONE);
404 				KASSERT(anon->an_ref == 0);
405 				/*
406 				 * Released while we had unlocked amap.
407 				 */
408 				if (locked)
409 					uvmfault_unlockall(ufi, NULL, NULL);
410 				uvm_anon_release(anon);	/* frees page for us */
411 				counters_inc(uvmexp_counters, flt_pgrele);
412 				return (VM_PAGER_REFAULT);	/* refault! */
413 			}
414 
415 			if (error != VM_PAGER_OK) {
416 				KASSERT(error != VM_PAGER_PEND);
417 
418 				/* remove page from anon */
419 				anon->an_page = NULL;
420 
421 				/*
422 				 * Remove the swap slot from the anon and
423 				 * mark the anon as having no real slot.
424 				 * Do not free the swap slot, thus preventing
425 				 * it from being used again.
426 				 */
427 				uvm_swap_markbad(anon->an_swslot, 1);
428 				anon->an_swslot = SWSLOT_BAD;
429 
430 				/*
431 				 * Note: page was never !PG_BUSY, so it
432 				 * cannot be mapped and thus no need to
433 				 * pmap_page_protect() it.
434 				 */
435 				uvm_lock_pageq();
436 				uvm_pagefree(pg);
437 				uvm_unlock_pageq();
438 
439 				if (locked) {
440 					uvmfault_unlockall(ufi, NULL, NULL);
441 				}
442 				rw_exit(anon->an_lock);
443 				return (VM_PAGER_ERROR);
444 			}
445 
446 			/*
447 			 * We have successfully read the page, activate it.
448 			 */
449 			pmap_clear_modify(pg);
450 			uvm_lock_pageq();
451 			uvm_pageactivate(pg);
452 			uvm_unlock_pageq();
453 		}
454 
455 		/*
456 		 * We were not able to re-lock the map - restart the fault.
457 		 */
458 		if (!locked) {
459 			if (we_own) {
460 				rw_exit(anon->an_lock);
461 			}
462 			return (VM_PAGER_REFAULT);
463 		}
464 
465 		/*
466 		 * Verify that no one has touched the amap and moved
467 		 * the anon on us.
468 		 */
469 		if (ufi != NULL && amap_lookup(&ufi->entry->aref,
470 				ufi->orig_rvaddr - ufi->entry->start) != anon) {
471 
472 			uvmfault_unlockall(ufi, amap, NULL);
473 			return (VM_PAGER_REFAULT);
474 		}
475 
476 		/*
477 		 * Retry..
478 		 */
479 		counters_inc(uvmexp_counters, flt_anretry);
480 		continue;
481 
482 	}
483 	/*NOTREACHED*/
484 }
485 
486 /*
487  * Update statistics after fault resolution.
488  * - maxrss
489  */
490 void
491 uvmfault_update_stats(struct uvm_faultinfo *ufi)
492 {
493 	struct vm_map		*map;
494 	struct proc		*p;
495 	vsize_t			 res;
496 
497 	map = ufi->orig_map;
498 
499 	/*
500 	 * If this is a nested pmap (eg, a virtual machine pmap managed
501 	 * by vmm(4) on amd64/i386), don't do any updating, just return.
502 	 *
503 	 * pmap_nested() on other archs is #defined to 0, so this is a
504 	 * no-op.
505 	 */
506 	if (pmap_nested(map->pmap))
507 		return;
508 
509 	/* Update the maxrss for the process. */
510 	if (map->flags & VM_MAP_ISVMSPACE) {
511 		p = curproc;
512 		KASSERT(p != NULL && &p->p_vmspace->vm_map == map);
513 
514 		res = pmap_resident_count(map->pmap);
515 		/* Convert res from pages to kilobytes. */
516 		res <<= (PAGE_SHIFT - 10);
517 
518 		if (p->p_ru.ru_maxrss < res)
519 			p->p_ru.ru_maxrss = res;
520 	}
521 }
522 
523 /*
524  *   F A U L T   -   m a i n   e n t r y   p o i n t
525  */
526 
527 /*
528  * uvm_fault: page fault handler
529  *
530  * => called from MD code to resolve a page fault
531  * => VM data structures usually should be unlocked.   however, it is
532  *	possible to call here with the main map locked if the caller
533  *	gets a write lock, sets it recursive, and then calls us (c.f.
534  *	uvm_map_pageable).   this should be avoided because it keeps
535  *	the map locked off during I/O.
536  * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
537  */
538 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
539 			 ~PROT_WRITE : PROT_MASK)
540 struct uvm_faultctx {
541 	/*
542 	 * the following members are set up by uvm_fault_check() and
543 	 * read-only after that.
544 	 */
545 	vm_prot_t enter_prot;
546 	vm_prot_t access_type;
547 	vaddr_t startva;
548 	int npages;
549 	int centeridx;
550 	boolean_t narrow;
551 	boolean_t wired;
552 	paddr_t pa_flags;
553 };
554 
555 int		uvm_fault_check(
556 		    struct uvm_faultinfo *, struct uvm_faultctx *,
557 		    struct vm_anon ***);
558 
559 int		uvm_fault_upper(
560 		    struct uvm_faultinfo *, struct uvm_faultctx *,
561 		    struct vm_anon **, vm_fault_t);
562 boolean_t	uvm_fault_upper_lookup(
563 		    struct uvm_faultinfo *, const struct uvm_faultctx *,
564 		    struct vm_anon **, struct vm_page **);
565 
566 int		uvm_fault_lower(
567 		    struct uvm_faultinfo *, struct uvm_faultctx *,
568 		    struct vm_page **, vm_fault_t);
569 
570 int
571 uvm_fault(vm_map_t orig_map, vaddr_t vaddr, vm_fault_t fault_type,
572     vm_prot_t access_type)
573 {
574 	struct uvm_faultinfo ufi;
575 	struct uvm_faultctx flt;
576 	boolean_t shadowed;
577 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
578 	struct vm_page *pages[UVM_MAXRANGE];
579 	int error;
580 
581 	counters_inc(uvmexp_counters, faults);
582 	TRACEPOINT(uvm, fault, vaddr, fault_type, access_type, NULL);
583 
584 	/*
585 	 * init the IN parameters in the ufi
586 	 */
587 	ufi.orig_map = orig_map;
588 	ufi.orig_rvaddr = trunc_page(vaddr);
589 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
590 	if (fault_type == VM_FAULT_WIRE)
591 		flt.narrow = TRUE;	/* don't look for neighborhood
592 					 * pages on wire */
593 	else
594 		flt.narrow = FALSE;	/* normal fault */
595 	flt.access_type = access_type;
596 
597 
598 	error = ERESTART;
599 	while (error == ERESTART) { /* ReFault: */
600 		anons = anons_store;
601 
602 		error = uvm_fault_check(&ufi, &flt, &anons);
603 		if (error != 0)
604 			continue;
605 
606 		/* True if there is an anon at the faulting address */
607 		shadowed = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
608 		if (shadowed == TRUE) {
609 			/* case 1: fault on an anon in our amap */
610 			error = uvm_fault_upper(&ufi, &flt, anons, fault_type);
611 		} else {
612 			struct uvm_object *uobj = ufi.entry->object.uvm_obj;
613 
614 			/*
615 			 * if the desired page is not shadowed by the amap and
616 			 * we have a backing object, then we check to see if
617 			 * the backing object would prefer to handle the fault
618 			 * itself (rather than letting us do it with the usual
619 			 * pgo_get hook).  the backing object signals this by
620 			 * providing a pgo_fault routine.
621 			 */
622 			if (uobj != NULL && uobj->pgops->pgo_fault != NULL) {
623 				KERNEL_LOCK();
624 				rw_enter(uobj->vmobjlock, RW_WRITE);
625 				error = uobj->pgops->pgo_fault(&ufi,
626 				    flt.startva, pages, flt.npages,
627 				    flt.centeridx, fault_type, flt.access_type,
628 				    PGO_LOCKED);
629 				KERNEL_UNLOCK();
630 
631 				if (error == VM_PAGER_OK)
632 					error = 0;
633 				else if (error == VM_PAGER_REFAULT)
634 					error = ERESTART;
635 				else
636 					error = EACCES;
637 			} else {
638 				/* case 2: fault on backing obj or zero fill */
639 				error = uvm_fault_lower(&ufi, &flt, pages,
640 				    fault_type);
641 			}
642 		}
643 	}
644 
645 	return error;
646 }
647 
648 /*
649  * uvm_fault_check: check prot, handle needs-copy, etc.
650  *
651  *	1. lookup entry.
652  *	2. check protection.
653  *	3. adjust fault condition (mainly for simulated fault).
654  *	4. handle needs-copy (lazy amap copy).
655  *	5. establish range of interest for neighbor fault (aka pre-fault).
656  *	6. look up anons (if amap exists).
657  *	7. flush pages (if MADV_SEQUENTIAL)
658  *
659  * => called with nothing locked.
660  * => if we fail (result != 0) we unlock everything.
661  * => initialize/adjust many members of flt.
662  */
663 int
664 uvm_fault_check(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
665     struct vm_anon ***ranons)
666 {
667 	struct vm_amap *amap;
668 	struct uvm_object *uobj;
669 	int nback, nforw;
670 
671 	/*
672 	 * lookup and lock the maps
673 	 */
674 	if (uvmfault_lookup(ufi, FALSE) == FALSE) {
675 		return EFAULT;
676 	}
677 	/* locked: maps(read) */
678 
679 #ifdef DIAGNOSTIC
680 	if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0)
681 		panic("uvm_fault: fault on non-pageable map (%p, 0x%lx)",
682 		    ufi->map, ufi->orig_rvaddr);
683 #endif
684 
685 	/*
686 	 * check protection
687 	 */
688 	if ((ufi->entry->protection & flt->access_type) != flt->access_type) {
689 		uvmfault_unlockmaps(ufi, FALSE);
690 		return EACCES;
691 	}
692 
693 	/*
694 	 * "enter_prot" is the protection we want to enter the page in at.
695 	 * for certain pages (e.g. copy-on-write pages) this protection can
696 	 * be more strict than ufi->entry->protection.  "wired" means either
697 	 * the entry is wired or we are fault-wiring the pg.
698 	 */
699 
700 	flt->enter_prot = ufi->entry->protection;
701 	flt->pa_flags = UVM_ET_ISWC(ufi->entry) ? PMAP_WC : 0;
702 	flt->wired = VM_MAPENT_ISWIRED(ufi->entry) || (flt->narrow == TRUE);
703 	if (flt->wired)
704 		flt->access_type = flt->enter_prot; /* full access for wired */
705 
706 	/* handle "needs_copy" case. */
707 	if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
708 		if ((flt->access_type & PROT_WRITE) ||
709 		    (ufi->entry->object.uvm_obj == NULL)) {
710 			/* need to clear */
711 			uvmfault_unlockmaps(ufi, FALSE);
712 			uvmfault_amapcopy(ufi);
713 			counters_inc(uvmexp_counters, flt_amcopy);
714 			return ERESTART;
715 		} else {
716 			/*
717 			 * ensure that we pmap_enter page R/O since
718 			 * needs_copy is still true
719 			 */
720 			flt->enter_prot &= ~PROT_WRITE;
721 		}
722 	}
723 
724 	/*
725 	 * identify the players
726 	 */
727 	amap = ufi->entry->aref.ar_amap;	/* upper layer */
728 	uobj = ufi->entry->object.uvm_obj;	/* lower layer */
729 
730 	/*
731 	 * check for a case 0 fault.  if nothing backing the entry then
732 	 * error now.
733 	 */
734 	if (amap == NULL && uobj == NULL) {
735 		uvmfault_unlockmaps(ufi, FALSE);
736 		return EFAULT;
737 	}
738 
739 	/*
740 	 * establish range of interest based on advice from mapper
741 	 * and then clip to fit map entry.   note that we only want
742 	 * to do this the first time through the fault.   if we
743 	 * ReFault we will disable this by setting "narrow" to true.
744 	 */
745 	if (flt->narrow == FALSE) {
746 
747 		/* wide fault (!narrow) */
748 		nback = min(uvmadvice[ufi->entry->advice].nback,
749 		    (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
750 		flt->startva = ufi->orig_rvaddr - ((vsize_t)nback << PAGE_SHIFT);
751 		nforw = min(uvmadvice[ufi->entry->advice].nforw,
752 		    ((ufi->entry->end - ufi->orig_rvaddr) >> PAGE_SHIFT) - 1);
753 		/*
754 		 * note: "-1" because we don't want to count the
755 		 * faulting page as forw
756 		 */
757 		flt->npages = nback + nforw + 1;
758 		flt->centeridx = nback;
759 
760 		flt->narrow = TRUE;	/* ensure only once per-fault */
761 	} else {
762 		/* narrow fault! */
763 		nback = nforw = 0;
764 		flt->startva = ufi->orig_rvaddr;
765 		flt->npages = 1;
766 		flt->centeridx = 0;
767 	}
768 
769 	/*
770 	 * if we've got an amap then lock it and extract current anons.
771 	 */
772 	if (amap) {
773 		amap_lock(amap);
774 		amap_lookups(&ufi->entry->aref,
775 		    flt->startva - ufi->entry->start, *ranons, flt->npages);
776 	} else {
777 		*ranons = NULL;	/* to be safe */
778 	}
779 
780 	/*
781 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
782 	 * now and then forget about them (for the rest of the fault).
783 	 */
784 	if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
785 		/* flush back-page anons? */
786 		if (amap)
787 			uvmfault_anonflush(*ranons, nback);
788 
789 		/*
790 		 * flush object?
791 		 */
792 		if (uobj) {
793 			voff_t uoff;
794 
795 			uoff = (flt->startva - ufi->entry->start) + ufi->entry->offset;
796 			rw_enter(uobj->vmobjlock, RW_WRITE);
797 			(void) uobj->pgops->pgo_flush(uobj, uoff, uoff +
798 			    ((vsize_t)nback << PAGE_SHIFT), PGO_DEACTIVATE);
799 			rw_exit(uobj->vmobjlock);
800 		}
801 
802 		/* now forget about the backpages */
803 		if (amap)
804 			*ranons += nback;
805 		flt->startva += ((vsize_t)nback << PAGE_SHIFT);
806 		flt->npages -= nback;
807 		flt->centeridx = 0;
808 	}
809 
810 	return 0;
811 }
812 
813 /*
814  * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
815  *
816  * iterate range of interest:
817  *	1. check if h/w mapping exists.  if yes, we don't care
818  *	2. check if anon exists.  if not, page is lower.
819  *	3. if anon exists, enter h/w mapping for neighbors.
820  *
821  * => called with amap locked (if exists).
822  */
823 boolean_t
824 uvm_fault_upper_lookup(struct uvm_faultinfo *ufi,
825     const struct uvm_faultctx *flt, struct vm_anon **anons,
826     struct vm_page **pages)
827 {
828 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
829 	struct vm_anon *anon;
830 	boolean_t shadowed;
831 	vaddr_t currva;
832 	paddr_t pa;
833 	int lcv;
834 
835 	/* locked: maps(read), amap(if there) */
836 	KASSERT(amap == NULL ||
837 	    rw_write_held(amap->am_lock));
838 
839 	/*
840 	 * map in the backpages and frontpages we found in the amap in hopes
841 	 * of preventing future faults.    we also init the pages[] array as
842 	 * we go.
843 	 */
844 	currva = flt->startva;
845 	shadowed = FALSE;
846 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
847 		/*
848 		 * dont play with VAs that are already mapped
849 		 * except for center)
850 		 */
851 		if (lcv != flt->centeridx &&
852 		    pmap_extract(ufi->orig_map->pmap, currva, &pa)) {
853 			pages[lcv] = PGO_DONTCARE;
854 			continue;
855 		}
856 
857 		/*
858 		 * unmapped or center page.   check if any anon at this level.
859 		 */
860 		if (amap == NULL || anons[lcv] == NULL) {
861 			pages[lcv] = NULL;
862 			continue;
863 		}
864 
865 		/*
866 		 * check for present page and map if possible.
867 		 */
868 		pages[lcv] = PGO_DONTCARE;
869 		if (lcv == flt->centeridx) {	/* save center for later! */
870 			shadowed = TRUE;
871 			continue;
872 		}
873 		anon = anons[lcv];
874 		KASSERT(anon->an_lock == amap->am_lock);
875 		if (anon->an_page &&
876 		    (anon->an_page->pg_flags & (PG_RELEASED|PG_BUSY)) == 0) {
877 			uvm_lock_pageq();
878 			uvm_pageactivate(anon->an_page);	/* reactivate */
879 			uvm_unlock_pageq();
880 			counters_inc(uvmexp_counters, flt_namap);
881 
882 			/*
883 			 * Since this isn't the page that's actually faulting,
884 			 * ignore pmap_enter() failures; it's not critical
885 			 * that we enter these right now.
886 			 */
887 			(void) pmap_enter(ufi->orig_map->pmap, currva,
888 			    VM_PAGE_TO_PHYS(anon->an_page) | flt->pa_flags,
889 			    (anon->an_ref > 1) ?
890 			    (flt->enter_prot & ~PROT_WRITE) : flt->enter_prot,
891 			    PMAP_CANFAIL |
892 			     (VM_MAPENT_ISWIRED(ufi->entry) ? PMAP_WIRED : 0));
893 		}
894 	}
895 	if (flt->npages > 1)
896 		pmap_update(ufi->orig_map->pmap);
897 
898 	return shadowed;
899 }
900 
901 /*
902  * uvm_fault_upper: handle upper fault.
903  *
904  *	1. acquire anon lock.
905  *	2. get anon.  let uvmfault_anonget do the dirty work.
906  *	3. if COW, promote data to new anon
907  *	4. enter h/w mapping
908  */
909 int
910 uvm_fault_upper(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
911    struct vm_anon **anons, vm_fault_t fault_type)
912 {
913 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
914 	struct vm_anon *oanon, *anon = anons[flt->centeridx];
915 	struct vm_page *pg = NULL;
916 	int error, ret;
917 
918 	/* locked: maps(read), amap, anon */
919 	KASSERT(rw_write_held(amap->am_lock));
920 	KASSERT(anon->an_lock == amap->am_lock);
921 
922 	/*
923 	 * no matter if we have case 1A or case 1B we are going to need to
924 	 * have the anon's memory resident.   ensure that now.
925 	 */
926 	/*
927 	 * let uvmfault_anonget do the dirty work.
928 	 * if it fails (!OK) it will unlock everything for us.
929 	 * if it succeeds, locks are still valid and locked.
930 	 * also, if it is OK, then the anon's page is on the queues.
931 	 * if the page is on loan from a uvm_object, then anonget will
932 	 * lock that object for us if it does not fail.
933 	 */
934 	error = uvmfault_anonget(ufi, amap, anon);
935 	switch (error) {
936 	case VM_PAGER_OK:
937 		break;
938 
939 	case VM_PAGER_REFAULT:
940 		return ERESTART;
941 
942 	case VM_PAGER_ERROR:
943 		/*
944 		 * An error occurred while trying to bring in the
945 		 * page -- this is the only error we return right
946 		 * now.
947 		 */
948 		return EACCES;	/* XXX */
949 	default:
950 #ifdef DIAGNOSTIC
951 		panic("uvm_fault: uvmfault_anonget -> %d", error);
952 #else
953 		return EACCES;
954 #endif
955 	}
956 
957 	KASSERT(rw_write_held(amap->am_lock));
958 	KASSERT(anon->an_lock == amap->am_lock);
959 
960 	/*
961 	 * if we are case 1B then we will need to allocate a new blank
962 	 * anon to transfer the data into.   note that we have a lock
963 	 * on anon, so no one can busy or release the page until we are done.
964 	 * also note that the ref count can't drop to zero here because
965 	 * it is > 1 and we are only dropping one ref.
966 	 *
967 	 * in the (hopefully very rare) case that we are out of RAM we
968 	 * will unlock, wait for more RAM, and refault.
969 	 *
970 	 * if we are out of anon VM we wait for RAM to become available.
971 	 */
972 
973 	if ((flt->access_type & PROT_WRITE) != 0 && anon->an_ref > 1) {
974 		counters_inc(uvmexp_counters, flt_acow);
975 		oanon = anon;		/* oanon = old */
976 		anon = uvm_analloc();
977 		if (anon) {
978 			anon->an_lock = amap->am_lock;
979 			pg = uvm_pagealloc(NULL, 0, anon, 0);
980 		}
981 
982 		/* check for out of RAM */
983 		if (anon == NULL || pg == NULL) {
984 			uvmfault_unlockall(ufi, amap, NULL);
985 			if (anon == NULL)
986 				counters_inc(uvmexp_counters, flt_noanon);
987 			else {
988 				anon->an_lock = NULL;
989 				anon->an_ref--;
990 				uvm_anfree(anon);
991 				counters_inc(uvmexp_counters, flt_noram);
992 			}
993 
994 			if (uvm_swapisfull())
995 				return ENOMEM;
996 
997 			/* out of RAM, wait for more */
998 			if (anon == NULL)
999 				uvm_anwait();
1000 			else
1001 				uvm_wait("flt_noram3");
1002 			return ERESTART;
1003 		}
1004 
1005 		/* got all resources, replace anon with nanon */
1006 		uvm_pagecopy(oanon->an_page, pg);	/* pg now !PG_CLEAN */
1007 		/* un-busy! new page */
1008 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE);
1009 		UVM_PAGE_OWN(pg, NULL);
1010 		ret = amap_add(&ufi->entry->aref,
1011 		    ufi->orig_rvaddr - ufi->entry->start, anon, 1);
1012 		KASSERT(ret == 0);
1013 
1014 		/* deref: can not drop to zero here by defn! */
1015 		oanon->an_ref--;
1016 
1017 #ifndef __HAVE_PMAP_MPSAFE_ENTER_COW
1018 		/*
1019 		 * If there are multiple threads, either uvm or the
1020 		 * pmap has to make sure no threads see the old RO
1021 		 * mapping once any have seen the new RW mapping.
1022 		 * uvm does it by inserting the new mapping RO and
1023 		 * letting it fault again.
1024 		 */
1025 		if (P_HASSIBLING(curproc)) {
1026 			flt->enter_prot &= ~PROT_WRITE;
1027 			flt->access_type &= ~PROT_WRITE;
1028 		}
1029 #endif
1030 
1031 		/*
1032 		 * note: anon is _not_ locked, but we have the sole references
1033 		 * to in from amap.
1034 		 * thus, no one can get at it until we are done with it.
1035 		 */
1036 	} else {
1037 		counters_inc(uvmexp_counters, flt_anon);
1038 		oanon = anon;
1039 		pg = anon->an_page;
1040 		if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
1041 			flt->enter_prot = flt->enter_prot & ~PROT_WRITE;
1042 	}
1043 
1044 	/*
1045 	 * now map the page in .
1046 	 */
1047 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
1048 	    VM_PAGE_TO_PHYS(pg) | flt->pa_flags, flt->enter_prot,
1049 	    flt->access_type | PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0)) != 0) {
1050 		/*
1051 		 * No need to undo what we did; we can simply think of
1052 		 * this as the pmap throwing away the mapping information.
1053 		 *
1054 		 * We do, however, have to go through the ReFault path,
1055 		 * as the map may change while we're asleep.
1056 		 */
1057 		uvmfault_unlockall(ufi, amap, NULL);
1058 		if (uvm_swapisfull()) {
1059 			/* XXX instrumentation */
1060 			return ENOMEM;
1061 		}
1062 		/* XXX instrumentation */
1063 		uvm_wait("flt_pmfail1");
1064 		return ERESTART;
1065 	}
1066 
1067 	/*
1068 	 * ... update the page queues.
1069 	 */
1070 	uvm_lock_pageq();
1071 
1072 	if (fault_type == VM_FAULT_WIRE) {
1073 		uvm_pagewire(pg);
1074 		/*
1075 		 * since the now-wired page cannot be paged out,
1076 		 * release its swap resources for others to use.
1077 		 * since an anon with no swap cannot be PG_CLEAN,
1078 		 * clear its clean flag now.
1079 		 */
1080 		atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1081 		uvm_anon_dropswap(anon);
1082 	} else {
1083 		/* activate it */
1084 		uvm_pageactivate(pg);
1085 	}
1086 
1087 	uvm_unlock_pageq();
1088 
1089 	/*
1090 	 * done case 1!  finish up by unlocking everything and returning success
1091 	 */
1092 	uvmfault_unlockall(ufi, amap, NULL);
1093 	pmap_update(ufi->orig_map->pmap);
1094 	return 0;
1095 }
1096 
1097 /*
1098  * uvm_fault_lower_lookup: look up on-memory uobj pages.
1099  *
1100  *	1. get on-memory pages.
1101  *	2. if failed, give up (get only center page later).
1102  *	3. if succeeded, enter h/w mapping of neighbor pages.
1103  */
1104 
1105 struct vm_page *
1106 uvm_fault_lower_lookup(
1107 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1108 	struct vm_page **pages)
1109 {
1110 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1111 	struct vm_page *uobjpage = NULL;
1112 	int lcv, gotpages;
1113 	vaddr_t currva;
1114 
1115 	rw_enter(uobj->vmobjlock, RW_WRITE);
1116 
1117 	counters_inc(uvmexp_counters, flt_lget);
1118 	gotpages = flt->npages;
1119 	(void) uobj->pgops->pgo_get(uobj,
1120 	    ufi->entry->offset + (flt->startva - ufi->entry->start),
1121 	    pages, &gotpages, flt->centeridx,
1122 	    flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1123 	    PGO_LOCKED);
1124 
1125 	/*
1126 	 * check for pages to map, if we got any
1127 	 */
1128 	if (gotpages == 0) {
1129 		return NULL;
1130 	}
1131 
1132 	currva = flt->startva;
1133 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1134 		if (pages[lcv] == NULL ||
1135 		    pages[lcv] == PGO_DONTCARE)
1136 			continue;
1137 
1138 		KASSERT((pages[lcv]->pg_flags & PG_RELEASED) == 0);
1139 
1140 		/*
1141 		 * if center page is resident and not
1142 		 * PG_BUSY, then pgo_get made it PG_BUSY
1143 		 * for us and gave us a handle to it.
1144 		 * remember this page as "uobjpage."
1145 		 * (for later use).
1146 		 */
1147 		if (lcv == flt->centeridx) {
1148 			uobjpage = pages[lcv];
1149 			continue;
1150 		}
1151 
1152 		/*
1153 		 * note: calling pgo_get with locked data
1154 		 * structures returns us pages which are
1155 		 * neither busy nor released, so we don't
1156 		 * need to check for this.   we can just
1157 		 * directly enter the page (after moving it
1158 		 * to the head of the active queue [useful?]).
1159 		 */
1160 
1161 		uvm_lock_pageq();
1162 		uvm_pageactivate(pages[lcv]);	/* reactivate */
1163 		uvm_unlock_pageq();
1164 		counters_inc(uvmexp_counters, flt_nomap);
1165 
1166 		/*
1167 		 * Since this page isn't the page that's
1168 		 * actually faulting, ignore pmap_enter()
1169 		 * failures; it's not critical that we
1170 		 * enter these right now.
1171 		 */
1172 		(void) pmap_enter(ufi->orig_map->pmap, currva,
1173 		    VM_PAGE_TO_PHYS(pages[lcv]) | flt->pa_flags,
1174 		    flt->enter_prot & MASK(ufi->entry),
1175 		    PMAP_CANFAIL |
1176 		     (flt->wired ? PMAP_WIRED : 0));
1177 
1178 		/*
1179 		 * NOTE: page can't be PG_WANTED because
1180 		 * we've held the lock the whole time
1181 		 * we've had the handle.
1182 		 */
1183 		atomic_clearbits_int(&pages[lcv]->pg_flags, PG_BUSY);
1184 		UVM_PAGE_OWN(pages[lcv], NULL);
1185 	}
1186 	pmap_update(ufi->orig_map->pmap);
1187 
1188 	return uobjpage;
1189 }
1190 
1191 /*
1192  * uvm_fault_lower: handle lower fault.
1193  *
1194  */
1195 int
1196 uvm_fault_lower(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1197    struct vm_page **pages, vm_fault_t fault_type)
1198 {
1199 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
1200 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1201 	boolean_t promote, locked;
1202 	int result;
1203 	struct vm_page *uobjpage, *pg = NULL;
1204 	struct vm_anon *anon = NULL;
1205 	voff_t uoff;
1206 
1207 	/*
1208 	 * now, if the desired page is not shadowed by the amap and we have
1209 	 * a backing object that does not have a special fault routine, then
1210 	 * we ask (with pgo_get) the object for resident pages that we care
1211 	 * about and attempt to map them in.  we do not let pgo_get block
1212 	 * (PGO_LOCKED).
1213 	 */
1214 	if (uobj == NULL) {
1215 		/* zero fill; don't care neighbor pages */
1216 		uobjpage = NULL;
1217 	} else {
1218 		uobjpage = uvm_fault_lower_lookup(ufi, flt, pages);
1219 	}
1220 
1221 	/*
1222 	 * note that at this point we are done with any front or back pages.
1223 	 * we are now going to focus on the center page (i.e. the one we've
1224 	 * faulted on).  if we have faulted on the bottom (uobj)
1225 	 * layer [i.e. case 2] and the page was both present and available,
1226 	 * then we've got a pointer to it as "uobjpage" and we've already
1227 	 * made it BUSY.
1228 	 */
1229 
1230 	/*
1231 	 * locked:
1232 	 */
1233 	KASSERT(amap == NULL ||
1234 	    rw_write_held(amap->am_lock));
1235 	KASSERT(uobj == NULL ||
1236 	    rw_write_held(uobj->vmobjlock));
1237 
1238 	/*
1239 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
1240 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
1241 	 * have a backing object, check and see if we are going to promote
1242 	 * the data up to an anon during the fault.
1243 	 */
1244 	if (uobj == NULL) {
1245 		uobjpage = PGO_DONTCARE;
1246 		promote = TRUE;		/* always need anon here */
1247 	} else {
1248 		KASSERT(uobjpage != PGO_DONTCARE);
1249 		promote = (flt->access_type & PROT_WRITE) &&
1250 		     UVM_ET_ISCOPYONWRITE(ufi->entry);
1251 	}
1252 
1253 	/*
1254 	 * if uobjpage is not null then we do not need to do I/O to get the
1255 	 * uobjpage.
1256 	 *
1257 	 * if uobjpage is null, then we need to ask the pager to
1258 	 * get the data for us.   once we have the data, we need to reverify
1259 	 * the state the world.   we are currently not holding any resources.
1260 	 */
1261 	if (uobjpage) {
1262 		/* update rusage counters */
1263 		curproc->p_ru.ru_minflt++;
1264 	} else {
1265 		int gotpages;
1266 
1267 		/* update rusage counters */
1268 		curproc->p_ru.ru_majflt++;
1269 
1270 		uvmfault_unlockall(ufi, amap, NULL);
1271 
1272 		counters_inc(uvmexp_counters, flt_get);
1273 		gotpages = 1;
1274 		uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1275 		result = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1276 		    0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1277 		    PGO_SYNCIO);
1278 
1279 		/*
1280 		 * recover from I/O
1281 		 */
1282 		if (result != VM_PAGER_OK) {
1283 			KASSERT(result != VM_PAGER_PEND);
1284 
1285 			if (result == VM_PAGER_AGAIN) {
1286 				tsleep_nsec(&nowake, PVM, "fltagain2",
1287 				    MSEC_TO_NSEC(5));
1288 				return ERESTART;
1289 			}
1290 
1291 			if (!UVM_ET_ISNOFAULT(ufi->entry))
1292 				return (EIO);
1293 
1294 			uobjpage = PGO_DONTCARE;
1295 			uobj = NULL;
1296 			promote = TRUE;
1297 		}
1298 
1299 		/* re-verify the state of the world.  */
1300 		locked = uvmfault_relock(ufi);
1301 		if (locked && amap != NULL)
1302 			amap_lock(amap);
1303 
1304 		/* might be changed */
1305 		if (uobjpage != PGO_DONTCARE) {
1306 			uobj = uobjpage->uobject;
1307 			rw_enter(uobj->vmobjlock, RW_WRITE);
1308 		}
1309 
1310 		/*
1311 		 * Re-verify that amap slot is still free. if there is
1312 		 * a problem, we clean up.
1313 		 */
1314 		if (locked && amap && amap_lookup(&ufi->entry->aref,
1315 		      ufi->orig_rvaddr - ufi->entry->start)) {
1316 			if (locked)
1317 				uvmfault_unlockall(ufi, amap, NULL);
1318 			locked = FALSE;
1319 		}
1320 
1321 		/* didn't get the lock?   release the page and retry. */
1322 		if (locked == FALSE && uobjpage != PGO_DONTCARE) {
1323 			uvm_lock_pageq();
1324 			/* make sure it is in queues */
1325 			uvm_pageactivate(uobjpage);
1326 			uvm_unlock_pageq();
1327 
1328 			if (uobjpage->pg_flags & PG_WANTED)
1329 				/* still holding object lock */
1330 				wakeup(uobjpage);
1331 			atomic_clearbits_int(&uobjpage->pg_flags,
1332 			    PG_BUSY|PG_WANTED);
1333 			UVM_PAGE_OWN(uobjpage, NULL);
1334 		}
1335 
1336 		if (locked == FALSE) {
1337 			if (uobjpage != PGO_DONTCARE)
1338 				rw_exit(uobj->vmobjlock);
1339 			return ERESTART;
1340 		}
1341 
1342 		/*
1343 		 * we have the data in uobjpage which is PG_BUSY
1344 		 */
1345 	}
1346 
1347 	/*
1348 	 * notes:
1349 	 *  - at this point uobjpage can not be NULL
1350 	 *  - at this point uobjpage could be PG_WANTED (handle later)
1351 	 */
1352 	if (promote == FALSE) {
1353 		/*
1354 		 * we are not promoting.   if the mapping is COW ensure that we
1355 		 * don't give more access than we should (e.g. when doing a read
1356 		 * fault on a COPYONWRITE mapping we want to map the COW page in
1357 		 * R/O even though the entry protection could be R/W).
1358 		 *
1359 		 * set "pg" to the page we want to map in (uobjpage, usually)
1360 		 */
1361 		counters_inc(uvmexp_counters, flt_obj);
1362 		if (UVM_ET_ISCOPYONWRITE(ufi->entry))
1363 			flt->enter_prot &= ~PROT_WRITE;
1364 		pg = uobjpage;		/* map in the actual object */
1365 
1366 		/* assert(uobjpage != PGO_DONTCARE) */
1367 
1368 		/*
1369 		 * we are faulting directly on the page.
1370 		 */
1371 	} else {
1372 		/*
1373 		 * if we are going to promote the data to an anon we
1374 		 * allocate a blank anon here and plug it into our amap.
1375 		 */
1376 #ifdef DIAGNOSTIC
1377 		if (amap == NULL)
1378 			panic("uvm_fault: want to promote data, but no anon");
1379 #endif
1380 
1381 		anon = uvm_analloc();
1382 		if (anon) {
1383 			/*
1384 			 * In `Fill in data...' below, if
1385 			 * uobjpage == PGO_DONTCARE, we want
1386 			 * a zero'd, dirty page, so have
1387 			 * uvm_pagealloc() do that for us.
1388 			 */
1389 			anon->an_lock = amap->am_lock;
1390 			pg = uvm_pagealloc(NULL, 0, anon,
1391 			    (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1392 		}
1393 
1394 		/*
1395 		 * out of memory resources?
1396 		 */
1397 		if (anon == NULL || pg == NULL) {
1398 			/*
1399 			 * arg!  must unbusy our page and fail or sleep.
1400 			 */
1401 			if (uobjpage != PGO_DONTCARE) {
1402 				uvm_lock_pageq();
1403 				uvm_pageactivate(uobjpage);
1404 				uvm_unlock_pageq();
1405 
1406 				if (uobjpage->pg_flags & PG_WANTED)
1407 					wakeup(uobjpage);
1408 				atomic_clearbits_int(&uobjpage->pg_flags,
1409 				    PG_BUSY|PG_WANTED);
1410 				UVM_PAGE_OWN(uobjpage, NULL);
1411 			}
1412 
1413 			/* unlock and fail ... */
1414 			uvmfault_unlockall(ufi, amap, uobj);
1415 			if (anon == NULL)
1416 				counters_inc(uvmexp_counters, flt_noanon);
1417 			else {
1418 				anon->an_lock = NULL;
1419 				anon->an_ref--;
1420 				uvm_anfree(anon);
1421 				counters_inc(uvmexp_counters, flt_noram);
1422 			}
1423 
1424 			if (uvm_swapisfull())
1425 				return (ENOMEM);
1426 
1427 			/* out of RAM, wait for more */
1428 			if (anon == NULL)
1429 				uvm_anwait();
1430 			else
1431 				uvm_wait("flt_noram5");
1432 			return ERESTART;
1433 		}
1434 
1435 		/*
1436 		 * fill in the data
1437 		 */
1438 		if (uobjpage != PGO_DONTCARE) {
1439 			counters_inc(uvmexp_counters, flt_prcopy);
1440 			/* copy page [pg now dirty] */
1441 			uvm_pagecopy(uobjpage, pg);
1442 
1443 			/*
1444 			 * promote to shared amap?  make sure all sharing
1445 			 * procs see it
1446 			 */
1447 			if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1448 				pmap_page_protect(uobjpage, PROT_NONE);
1449 				}
1450 
1451 			/* dispose of uobjpage. drop handle to uobj as well. */
1452 			if (uobjpage->pg_flags & PG_WANTED)
1453 				wakeup(uobjpage);
1454 			atomic_clearbits_int(&uobjpage->pg_flags,
1455 			    PG_BUSY|PG_WANTED);
1456 			UVM_PAGE_OWN(uobjpage, NULL);
1457 			uvm_lock_pageq();
1458 			uvm_pageactivate(uobjpage);
1459 			uvm_unlock_pageq();
1460 			rw_exit(uobj->vmobjlock);
1461 			uobj = NULL;
1462 		} else {
1463 			counters_inc(uvmexp_counters, flt_przero);
1464 			/*
1465 			 * Page is zero'd and marked dirty by uvm_pagealloc()
1466 			 * above.
1467 			 */
1468 		}
1469 
1470 		if (amap_add(&ufi->entry->aref,
1471 		    ufi->orig_rvaddr - ufi->entry->start, anon, 0)) {
1472 			uvmfault_unlockall(ufi, amap, uobj);
1473 			uvm_anfree(anon);
1474 			counters_inc(uvmexp_counters, flt_noamap);
1475 
1476 			if (uvm_swapisfull())
1477 				return (ENOMEM);
1478 
1479 			amap_populate(&ufi->entry->aref,
1480 			    ufi->orig_rvaddr - ufi->entry->start);
1481 			return ERESTART;
1482 		}
1483 	}
1484 
1485 	/* note: pg is either the uobjpage or the new page in the new anon */
1486 	/*
1487 	 * all resources are present.   we can now map it in and free our
1488 	 * resources.
1489 	 */
1490 	if (amap == NULL)
1491 		KASSERT(anon == NULL);
1492 	else {
1493 		KASSERT(rw_write_held(amap->am_lock));
1494 		KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
1495 	}
1496 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
1497 	    VM_PAGE_TO_PHYS(pg) | flt->pa_flags, flt->enter_prot,
1498 	    flt->access_type | PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0)) != 0) {
1499 		/*
1500 		 * No need to undo what we did; we can simply think of
1501 		 * this as the pmap throwing away the mapping information.
1502 		 *
1503 		 * We do, however, have to go through the ReFault path,
1504 		 * as the map may change while we're asleep.
1505 		 */
1506 		if (pg->pg_flags & PG_WANTED)
1507 			wakeup(pg);
1508 
1509 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED);
1510 		UVM_PAGE_OWN(pg, NULL);
1511 		uvmfault_unlockall(ufi, amap, uobj);
1512 		if (uvm_swapisfull()) {
1513 			/* XXX instrumentation */
1514 			return (ENOMEM);
1515 		}
1516 		/* XXX instrumentation */
1517 		uvm_wait("flt_pmfail2");
1518 		return ERESTART;
1519 	}
1520 
1521 	if (fault_type == VM_FAULT_WIRE) {
1522 		uvm_lock_pageq();
1523 		uvm_pagewire(pg);
1524 		uvm_unlock_pageq();
1525 		if (pg->pg_flags & PQ_AOBJ) {
1526 			/*
1527 			 * since the now-wired page cannot be paged out,
1528 			 * release its swap resources for others to use.
1529 			 * since an aobj page with no swap cannot be clean,
1530 			 * mark it dirty now.
1531 			 *
1532 			 * use pg->uobject here.  if the page is from a
1533 			 * tmpfs vnode, the pages are backed by its UAO and
1534 			 * not the vnode.
1535 			 */
1536 			KASSERT(uobj != NULL);
1537 			KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock);
1538 			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1539 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1540 		}
1541 	} else {
1542 		/* activate it */
1543 		uvm_lock_pageq();
1544 		uvm_pageactivate(pg);
1545 		uvm_unlock_pageq();
1546 	}
1547 
1548 	if (pg->pg_flags & PG_WANTED)
1549 		wakeup(pg);
1550 
1551 	atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED);
1552 	UVM_PAGE_OWN(pg, NULL);
1553 	uvmfault_unlockall(ufi, amap, uobj);
1554 	pmap_update(ufi->orig_map->pmap);
1555 
1556 	return (0);
1557 }
1558 
1559 
1560 /*
1561  * uvm_fault_wire: wire down a range of virtual addresses in a map.
1562  *
1563  * => map may be read-locked by caller, but MUST NOT be write-locked.
1564  * => if map is read-locked, any operations which may cause map to
1565  *	be write-locked in uvm_fault() must be taken care of by
1566  *	the caller.  See uvm_map_pageable().
1567  */
1568 int
1569 uvm_fault_wire(vm_map_t map, vaddr_t start, vaddr_t end, vm_prot_t access_type)
1570 {
1571 	vaddr_t va;
1572 	int rv;
1573 
1574 	/*
1575 	 * now fault it in a page at a time.   if the fault fails then we have
1576 	 * to undo what we have done.   note that in uvm_fault PROT_NONE
1577 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1578 	 */
1579 	for (va = start ; va < end ; va += PAGE_SIZE) {
1580 		rv = uvm_fault(map, va, VM_FAULT_WIRE, access_type);
1581 		if (rv) {
1582 			if (va != start) {
1583 				uvm_fault_unwire(map, start, va);
1584 			}
1585 			return (rv);
1586 		}
1587 	}
1588 
1589 	return (0);
1590 }
1591 
1592 /*
1593  * uvm_fault_unwire(): unwire range of virtual space.
1594  */
1595 void
1596 uvm_fault_unwire(vm_map_t map, vaddr_t start, vaddr_t end)
1597 {
1598 
1599 	vm_map_lock_read(map);
1600 	uvm_fault_unwire_locked(map, start, end);
1601 	vm_map_unlock_read(map);
1602 }
1603 
1604 /*
1605  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1606  *
1607  * => map must be at least read-locked.
1608  */
1609 void
1610 uvm_fault_unwire_locked(vm_map_t map, vaddr_t start, vaddr_t end)
1611 {
1612 	vm_map_entry_t entry, oentry = NULL, next;
1613 	pmap_t pmap = vm_map_pmap(map);
1614 	vaddr_t va;
1615 	paddr_t pa;
1616 	struct vm_page *pg;
1617 
1618 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1619 
1620 	/*
1621 	 * we assume that the area we are unwiring has actually been wired
1622 	 * in the first place.   this means that we should be able to extract
1623 	 * the PAs from the pmap.
1624 	 */
1625 
1626 	/*
1627 	 * find the beginning map entry for the region.
1628 	 */
1629 	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1630 	if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1631 		panic("uvm_fault_unwire_locked: address not in map");
1632 
1633 	for (va = start; va < end ; va += PAGE_SIZE) {
1634 		if (pmap_extract(pmap, va, &pa) == FALSE)
1635 			continue;
1636 
1637 		/*
1638 		 * find the map entry for the current address.
1639 		 */
1640 		KASSERT(va >= entry->start);
1641 		while (entry && va >= entry->end) {
1642 			next = RBT_NEXT(uvm_map_addr, entry);
1643 			entry = next;
1644 		}
1645 
1646 		if (entry == NULL)
1647 			return;
1648 		if (va < entry->start)
1649 			continue;
1650 
1651 		/*
1652 		 * lock it.
1653 		 */
1654 		if (entry != oentry) {
1655 			if (oentry != NULL) {
1656 				uvm_map_unlock_entry(oentry);
1657 			}
1658 			uvm_map_lock_entry(entry);
1659 			oentry = entry;
1660 		}
1661 
1662 		/*
1663 		 * if the entry is no longer wired, tell the pmap.
1664 		 */
1665 		if (VM_MAPENT_ISWIRED(entry) == 0)
1666 			pmap_unwire(pmap, va);
1667 
1668 		pg = PHYS_TO_VM_PAGE(pa);
1669 		if (pg) {
1670 			uvm_lock_pageq();
1671 			uvm_pageunwire(pg);
1672 			uvm_unlock_pageq();
1673 		}
1674 	}
1675 
1676 	if (oentry != NULL) {
1677 		uvm_map_unlock_entry(oentry);
1678 	}
1679 }
1680 
1681 /*
1682  * uvmfault_unlockmaps: unlock the maps
1683  */
1684 void
1685 uvmfault_unlockmaps(struct uvm_faultinfo *ufi, boolean_t write_locked)
1686 {
1687 	/*
1688 	 * ufi can be NULL when this isn't really a fault,
1689 	 * but merely paging in anon data.
1690 	 */
1691 	if (ufi == NULL) {
1692 		return;
1693 	}
1694 
1695 	uvmfault_update_stats(ufi);
1696 	if (write_locked) {
1697 		vm_map_unlock(ufi->map);
1698 	} else {
1699 		vm_map_unlock_read(ufi->map);
1700 	}
1701 }
1702 
1703 /*
1704  * uvmfault_unlockall: unlock everything passed in.
1705  *
1706  * => maps must be read-locked (not write-locked).
1707  */
1708 void
1709 uvmfault_unlockall(struct uvm_faultinfo *ufi, struct vm_amap *amap,
1710     struct uvm_object *uobj)
1711 {
1712 	if (uobj)
1713 		rw_exit(uobj->vmobjlock);
1714 	if (amap != NULL)
1715 		amap_unlock(amap);
1716 	uvmfault_unlockmaps(ufi, FALSE);
1717 }
1718 
1719 /*
1720  * uvmfault_lookup: lookup a virtual address in a map
1721  *
1722  * => caller must provide a uvm_faultinfo structure with the IN
1723  *	params properly filled in
1724  * => we will lookup the map entry (handling submaps) as we go
1725  * => if the lookup is a success we will return with the maps locked
1726  * => if "write_lock" is TRUE, we write_lock the map, otherwise we only
1727  *	get a read lock.
1728  * => note that submaps can only appear in the kernel and they are
1729  *	required to use the same virtual addresses as the map they
1730  *	are referenced by (thus address translation between the main
1731  *	map and the submap is unnecessary).
1732  */
1733 
1734 boolean_t
1735 uvmfault_lookup(struct uvm_faultinfo *ufi, boolean_t write_lock)
1736 {
1737 	vm_map_t tmpmap;
1738 
1739 	/*
1740 	 * init ufi values for lookup.
1741 	 */
1742 	ufi->map = ufi->orig_map;
1743 	ufi->size = ufi->orig_size;
1744 
1745 	/*
1746 	 * keep going down levels until we are done.   note that there can
1747 	 * only be two levels so we won't loop very long.
1748 	 */
1749 	while (1) {
1750 		if (ufi->orig_rvaddr < ufi->map->min_offset ||
1751 		    ufi->orig_rvaddr >= ufi->map->max_offset)
1752 			return FALSE;
1753 
1754 		/* lock map */
1755 		if (write_lock) {
1756 			vm_map_lock(ufi->map);
1757 		} else {
1758 			vm_map_lock_read(ufi->map);
1759 		}
1760 
1761 		/* lookup */
1762 		if (!uvm_map_lookup_entry(ufi->map, ufi->orig_rvaddr,
1763 		    &ufi->entry)) {
1764 			uvmfault_unlockmaps(ufi, write_lock);
1765 			return FALSE;
1766 		}
1767 
1768 		/* reduce size if necessary */
1769 		if (ufi->entry->end - ufi->orig_rvaddr < ufi->size)
1770 			ufi->size = ufi->entry->end - ufi->orig_rvaddr;
1771 
1772 		/*
1773 		 * submap?    replace map with the submap and lookup again.
1774 		 * note: VAs in submaps must match VAs in main map.
1775 		 */
1776 		if (UVM_ET_ISSUBMAP(ufi->entry)) {
1777 			tmpmap = ufi->entry->object.sub_map;
1778 			uvmfault_unlockmaps(ufi, write_lock);
1779 			ufi->map = tmpmap;
1780 			continue;
1781 		}
1782 
1783 		/*
1784 		 * got it!
1785 		 */
1786 		ufi->mapv = ufi->map->timestamp;
1787 		return TRUE;
1788 
1789 	}	/* while loop */
1790 
1791 	/*NOTREACHED*/
1792 }
1793 
1794 /*
1795  * uvmfault_relock: attempt to relock the same version of the map
1796  *
1797  * => fault data structures should be unlocked before calling.
1798  * => if a success (TRUE) maps will be locked after call.
1799  */
1800 boolean_t
1801 uvmfault_relock(struct uvm_faultinfo *ufi)
1802 {
1803 	/*
1804 	 * ufi can be NULL when this isn't really a fault,
1805 	 * but merely paging in anon data.
1806 	 */
1807 	if (ufi == NULL) {
1808 		return TRUE;
1809 	}
1810 
1811 	counters_inc(uvmexp_counters, flt_relck);
1812 
1813 	/*
1814 	 * relock map.   fail if version mismatch (in which case nothing
1815 	 * gets locked).
1816 	 */
1817 	vm_map_lock_read(ufi->map);
1818 	if (ufi->mapv != ufi->map->timestamp) {
1819 		vm_map_unlock_read(ufi->map);
1820 		return FALSE;
1821 	}
1822 
1823 	counters_inc(uvmexp_counters, flt_relckok);
1824 	return TRUE;		/* got it! */
1825 }
1826