xref: /openbsd-src/sys/uvm/uvm_fault.c (revision b83f5574c0e515623aefa0e77b902fdf6ae24985)
1 /*	$OpenBSD: uvm_fault.c,v 1.161 2025/01/22 10:39:55 mpi Exp $	*/
2 /*	$NetBSD: uvm_fault.c,v 1.51 2000/08/06 00:22:53 thorpej Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
29  */
30 
31 /*
32  * uvm_fault.c: fault handler
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/percpu.h>
39 #include <sys/proc.h>
40 #include <sys/malloc.h>
41 #include <sys/mman.h>
42 #include <sys/tracepoint.h>
43 
44 #include <uvm/uvm.h>
45 
46 /*
47  *
48  * a word on page faults:
49  *
50  * types of page faults we handle:
51  *
52  * CASE 1: upper layer faults                   CASE 2: lower layer faults
53  *
54  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
55  *    read/write1     write>1                  read/write   +-cow_write/zero
56  *         |             |                         |        |
57  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
58  * amap |  V  |       |  ---------> new |          |        | |  ^  |
59  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
60  *                                                 |        |    |
61  *      +-----+       +-----+                   +--|--+     | +--|--+
62  * uobj | d/c |       | d/c |                   |  V  |     +----+  |
63  *      +-----+       +-----+                   +-----+       +-----+
64  *
65  * d/c = don't care
66  *
67  *   case [0]: layerless fault
68  *	no amap or uobj is present.   this is an error.
69  *
70  *   case [1]: upper layer fault [anon active]
71  *     1A: [read] or [write with anon->an_ref == 1]
72  *		I/O takes place in upper level anon and uobj is not touched.
73  *     1B: [write with anon->an_ref > 1]
74  *		new anon is alloc'd and data is copied off ["COW"]
75  *
76  *   case [2]: lower layer fault [uobj]
77  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
78  *		I/O takes place directly in object.
79  *     2B: [write to copy_on_write] or [read on NULL uobj]
80  *		data is "promoted" from uobj to a new anon.
81  *		if uobj is null, then we zero fill.
82  *
83  * we follow the standard UVM locking protocol ordering:
84  *
85  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
86  * we hold a PG_BUSY page if we unlock for I/O
87  *
88  *
89  * the code is structured as follows:
90  *
91  *     - init the "IN" params in the ufi structure
92  *   ReFault: (ERESTART returned to the loop in uvm_fault)
93  *     - do lookups [locks maps], check protection, handle needs_copy
94  *     - check for case 0 fault (error)
95  *     - establish "range" of fault
96  *     - if we have an amap lock it and extract the anons
97  *     - if sequential advice deactivate pages behind us
98  *     - at the same time check pmap for unmapped areas and anon for pages
99  *	 that we could map in (and do map it if found)
100  *     - check object for resident pages that we could map in
101  *     - if (case 2) goto Case2
102  *     - >>> handle case 1
103  *           - ensure source anon is resident in RAM
104  *           - if case 1B alloc new anon and copy from source
105  *           - map the correct page in
106  *   Case2:
107  *     - >>> handle case 2
108  *           - ensure source page is resident (if uobj)
109  *           - if case 2B alloc new anon and copy from source (could be zero
110  *		fill if uobj == NULL)
111  *           - map the correct page in
112  *     - done!
113  *
114  * note on paging:
115  *   if we have to do I/O we place a PG_BUSY page in the correct object,
116  * unlock everything, and do the I/O.   when I/O is done we must reverify
117  * the state of the world before assuming that our data structures are
118  * valid.   [because mappings could change while the map is unlocked]
119  *
120  *  alternative 1: unbusy the page in question and restart the page fault
121  *    from the top (ReFault).   this is easy but does not take advantage
122  *    of the information that we already have from our previous lookup,
123  *    although it is possible that the "hints" in the vm_map will help here.
124  *
125  * alternative 2: the system already keeps track of a "version" number of
126  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
127  *    mapping) you bump the version number up by one...]   so, we can save
128  *    the version number of the map before we release the lock and start I/O.
129  *    then when I/O is done we can relock and check the version numbers
130  *    to see if anything changed.    this might save us some over 1 because
131  *    we don't have to unbusy the page and may be less compares(?).
132  *
133  * alternative 3: put in backpointers or a way to "hold" part of a map
134  *    in place while I/O is in progress.   this could be complex to
135  *    implement (especially with structures like amap that can be referenced
136  *    by multiple map entries, and figuring out what should wait could be
137  *    complex as well...).
138  *
139  * we use alternative 2.  given that we are multi-threaded now we may want
140  * to reconsider the choice.
141  */
142 
143 /*
144  * local data structures
145  */
146 struct uvm_advice {
147 	int nback;
148 	int nforw;
149 };
150 
151 /*
152  * page range array: set up in uvmfault_init().
153  */
154 static struct uvm_advice uvmadvice[MADV_MASK + 1];
155 
156 #define UVM_MAXRANGE 16	/* must be max() of nback+nforw+1 */
157 
158 /*
159  * private prototypes
160  */
161 static void uvmfault_amapcopy(struct uvm_faultinfo *);
162 static inline void uvmfault_anonflush(struct vm_anon **, int);
163 void	uvmfault_unlockmaps(struct uvm_faultinfo *, boolean_t);
164 void	uvmfault_update_stats(struct uvm_faultinfo *);
165 
166 /*
167  * inline functions
168  */
169 /*
170  * uvmfault_anonflush: try and deactivate pages in specified anons
171  *
172  * => does not have to deactivate page if it is busy
173  */
174 static inline void
175 uvmfault_anonflush(struct vm_anon **anons, int n)
176 {
177 	int lcv;
178 	struct vm_page *pg;
179 
180 	for (lcv = 0; lcv < n; lcv++) {
181 		if (anons[lcv] == NULL)
182 			continue;
183 		KASSERT(rw_lock_held(anons[lcv]->an_lock));
184 		pg = anons[lcv]->an_page;
185 		if (pg && (pg->pg_flags & PG_BUSY) == 0) {
186 			uvm_lock_pageq();
187 			if (pg->wire_count == 0) {
188 				uvm_pagedeactivate(pg);
189 			}
190 			uvm_unlock_pageq();
191 		}
192 	}
193 }
194 
195 /*
196  * normal functions
197  */
198 /*
199  * uvmfault_init: compute proper values for the uvmadvice[] array.
200  */
201 void
202 uvmfault_init(void)
203 {
204 	int npages;
205 
206 	npages = atop(16384);
207 	if (npages > 0) {
208 		KASSERT(npages <= UVM_MAXRANGE / 2);
209 		uvmadvice[MADV_NORMAL].nforw = npages;
210 		uvmadvice[MADV_NORMAL].nback = npages - 1;
211 	}
212 
213 	npages = atop(32768);
214 	if (npages > 0) {
215 		KASSERT(npages <= UVM_MAXRANGE / 2);
216 		uvmadvice[MADV_SEQUENTIAL].nforw = npages - 1;
217 		uvmadvice[MADV_SEQUENTIAL].nback = npages;
218 	}
219 }
220 
221 /*
222  * uvmfault_amapcopy: clear "needs_copy" in a map.
223  *
224  * => called with VM data structures unlocked (usually, see below)
225  * => we get a write lock on the maps and clear needs_copy for a VA
226  * => if we are out of RAM we sleep (waiting for more)
227  */
228 static void
229 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
230 {
231 	for (;;) {
232 		/*
233 		 * no mapping?  give up.
234 		 */
235 		if (uvmfault_lookup(ufi, TRUE) == FALSE)
236 			return;
237 
238 		/*
239 		 * copy if needed.
240 		 */
241 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
242 			amap_copy(ufi->map, ufi->entry, M_NOWAIT,
243 				UVM_ET_ISSTACK(ufi->entry) ? FALSE : TRUE,
244 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
245 
246 		/*
247 		 * didn't work?  must be out of RAM.   unlock and sleep.
248 		 */
249 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
250 			uvmfault_unlockmaps(ufi, TRUE);
251 			uvm_wait("fltamapcopy");
252 			continue;
253 		}
254 
255 		/*
256 		 * got it!   unlock and return.
257 		 */
258 		uvmfault_unlockmaps(ufi, TRUE);
259 		return;
260 	}
261 	/*NOTREACHED*/
262 }
263 
264 /*
265  * uvmfault_anonget: get data in an anon into a non-busy, non-released
266  * page in that anon.
267  *
268  * => Map, amap and thus anon should be locked by caller.
269  * => If we fail, we unlock everything and error is returned.
270  * => If we are successful, return with everything still locked.
271  * => We do not move the page on the queues [gets moved later].  If we
272  *    allocate a new page [we_own], it gets put on the queues.  Either way,
273  *    the result is that the page is on the queues at return time
274  */
275 int
276 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
277     struct vm_anon *anon)
278 {
279 	struct vm_page *pg;
280 	int error;
281 
282 	KASSERT(rw_lock_held(anon->an_lock));
283 	KASSERT(anon->an_lock == amap->am_lock);
284 
285 	/* Increment the counters.*/
286 	counters_inc(uvmexp_counters, flt_anget);
287 	if (anon->an_page) {
288 		curproc->p_ru.ru_minflt++;
289 	} else {
290 		curproc->p_ru.ru_majflt++;
291 	}
292 	error = 0;
293 
294 	/*
295 	 * Loop until we get the anon data, or fail.
296 	 */
297 	for (;;) {
298 		boolean_t we_own, locked;
299 		/*
300 		 * Note: 'we_own' will become true if we set PG_BUSY on a page.
301 		 */
302 		we_own = FALSE;
303 		pg = anon->an_page;
304 
305 		/*
306 		 * Is page resident?  Make sure it is not busy/released.
307 		 */
308 		if (pg) {
309 			KASSERT(pg->pg_flags & PQ_ANON);
310 			KASSERT(pg->uanon == anon);
311 
312 			/*
313 			 * if the page is busy, we drop all the locks and
314 			 * try again.
315 			 */
316 			if ((pg->pg_flags & (PG_BUSY|PG_RELEASED)) == 0)
317 				return 0;
318 			counters_inc(uvmexp_counters, flt_pgwait);
319 
320 			/*
321 			 * The last unlock must be an atomic unlock and wait
322 			 * on the owner of page.
323 			 */
324 			KASSERT(pg->uobject == NULL);
325 			uvmfault_unlockall(ufi, NULL, NULL);
326 			uvm_pagewait(pg, anon->an_lock, "anonget");
327 		} else {
328 			/*
329 			 * No page, therefore allocate one.
330 			 */
331 			pg = uvm_pagealloc(NULL, 0, anon, 0);
332 			if (pg == NULL) {
333 				/* Out of memory.  Wait a little. */
334 				uvmfault_unlockall(ufi, amap, NULL);
335 				counters_inc(uvmexp_counters, flt_noram);
336 				uvm_wait("flt_noram1");
337 			} else {
338 				/* PG_BUSY bit is set. */
339 				we_own = TRUE;
340 				uvmfault_unlockall(ufi, amap, NULL);
341 
342 				/*
343 				 * Pass a PG_BUSY+PG_FAKE+PG_CLEAN page into
344 				 * the uvm_swap_get() function with all data
345 				 * structures unlocked.  Note that it is OK
346 				 * to read an_swslot here, because we hold
347 				 * PG_BUSY on the page.
348 				 */
349 				counters_inc(uvmexp_counters, pageins);
350 				error = uvm_swap_get(pg, anon->an_swslot,
351 				    PGO_SYNCIO);
352 
353 				/*
354 				 * We clean up after the I/O below in the
355 				 * 'we_own' case.
356 				 */
357 			}
358 		}
359 
360 		/*
361 		 * Re-lock the map and anon.
362 		 */
363 		locked = uvmfault_relock(ufi);
364 		if (locked || we_own) {
365 			rw_enter(anon->an_lock, RW_WRITE);
366 		}
367 
368 		/*
369 		 * If we own the page (i.e. we set PG_BUSY), then we need
370 		 * to clean up after the I/O.  There are three cases to
371 		 * consider:
372 		 *
373 		 * 1) Page was released during I/O: free anon and ReFault.
374 		 * 2) I/O not OK.  Free the page and cause the fault to fail.
375 		 * 3) I/O OK!  Activate the page and sync with the non-we_own
376 		 *    case (i.e. drop anon lock if not locked).
377 		 */
378 		if (we_own) {
379 			if (pg->pg_flags & PG_WANTED) {
380 				wakeup(pg);
381 			}
382 
383 			/*
384 			 * if we were RELEASED during I/O, then our anon is
385 			 * no longer part of an amap.   we need to free the
386 			 * anon and try again.
387 			 */
388 			if (pg->pg_flags & PG_RELEASED) {
389 				KASSERT(anon->an_ref == 0);
390 				/*
391 				 * Released while we had unlocked amap.
392 				 */
393 				if (locked)
394 					uvmfault_unlockall(ufi, NULL, NULL);
395 				uvm_anon_release(anon);	/* frees page for us */
396 				counters_inc(uvmexp_counters, flt_pgrele);
397 				return ERESTART;	/* refault! */
398 			}
399 
400 			if (error != VM_PAGER_OK) {
401 				KASSERT(error != VM_PAGER_PEND);
402 
403 				/* remove page from anon */
404 				anon->an_page = NULL;
405 
406 				/*
407 				 * Remove the swap slot from the anon and
408 				 * mark the anon as having no real slot.
409 				 * Do not free the swap slot, thus preventing
410 				 * it from being used again.
411 				 */
412 				uvm_swap_markbad(anon->an_swslot, 1);
413 				anon->an_swslot = SWSLOT_BAD;
414 
415 				/*
416 				 * Note: page was never !PG_BUSY, so it
417 				 * cannot be mapped and thus no need to
418 				 * pmap_page_protect() it.
419 				 */
420 				uvm_lock_pageq();
421 				uvm_pagefree(pg);
422 				uvm_unlock_pageq();
423 
424 				if (locked) {
425 					uvmfault_unlockall(ufi, NULL, NULL);
426 				}
427 				rw_exit(anon->an_lock);
428 				/*
429 				 * An error occurred while trying to bring
430 				 * in the page -- this is the only error we
431 				 * return right now.
432 				 */
433 				return EACCES;	/* XXX */
434 			}
435 
436 			/*
437 			 * We have successfully read the page, activate it.
438 			 */
439 			pmap_clear_modify(pg);
440 			uvm_lock_pageq();
441 			uvm_pageactivate(pg);
442 			uvm_unlock_pageq();
443 			atomic_clearbits_int(&pg->pg_flags,
444 			    PG_WANTED|PG_BUSY|PG_FAKE);
445 			UVM_PAGE_OWN(pg, NULL);
446 		}
447 
448 		/*
449 		 * We were not able to re-lock the map - restart the fault.
450 		 */
451 		if (!locked) {
452 			if (we_own) {
453 				rw_exit(anon->an_lock);
454 			}
455 			return ERESTART;
456 		}
457 
458 		/*
459 		 * Verify that no one has touched the amap and moved
460 		 * the anon on us.
461 		 */
462 		if (ufi != NULL && amap_lookup(&ufi->entry->aref,
463 				ufi->orig_rvaddr - ufi->entry->start) != anon) {
464 
465 			uvmfault_unlockall(ufi, amap, NULL);
466 			return ERESTART;
467 		}
468 
469 		/*
470 		 * Retry..
471 		 */
472 		counters_inc(uvmexp_counters, flt_anretry);
473 		continue;
474 
475 	}
476 	/*NOTREACHED*/
477 }
478 
479 /*
480  * uvmfault_promote: promote data to a new anon.  used for 1B and 2B.
481  *
482  *	1. allocate an anon and a page.
483  *	2. fill its contents.
484  *
485  * => if we fail (result != 0) we unlock everything.
486  * => on success, return a new locked anon via 'nanon'.
487  * => it's caller's responsibility to put the promoted nanon->an_page to the
488  *    page queue.
489  */
490 int
491 uvmfault_promote(struct uvm_faultinfo *ufi,
492     struct vm_page *uobjpage,
493     struct vm_anon **nanon, /* OUT: allocated anon */
494     struct vm_page **npg)
495 {
496 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
497 	struct uvm_object *uobj = NULL;
498 	struct vm_anon *anon;
499 	struct vm_page *pg = NULL;
500 
501 	if (uobjpage != PGO_DONTCARE)
502 		uobj = uobjpage->uobject;
503 
504 	KASSERT(uobj == NULL || rw_lock_held(uobj->vmobjlock));
505 
506 	anon = uvm_analloc();
507 	if (anon) {
508 		anon->an_lock = amap->am_lock;
509 		pg = uvm_pagealloc(NULL, 0, anon,
510 		    (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
511 	}
512 
513 	/* check for out of RAM */
514 	if (anon == NULL || pg == NULL) {
515 		uvmfault_unlockall(ufi, amap, uobj);
516 		if (anon == NULL)
517 			counters_inc(uvmexp_counters, flt_noanon);
518 		else {
519 			anon->an_lock = NULL;
520 			anon->an_ref--;
521 			uvm_anfree(anon);
522 			counters_inc(uvmexp_counters, flt_noram);
523 		}
524 
525 		if (uvm_swapisfull())
526 			return ENOMEM;
527 
528 		/* out of RAM, wait for more */
529 		if (anon == NULL)
530 			uvm_anwait();
531 		else
532 			uvm_wait("flt_noram3");
533 		return ERESTART;
534 	}
535 
536 	/*
537 	 * copy the page [pg now dirty]
538 	 */
539 	if (uobjpage != PGO_DONTCARE)
540 		uvm_pagecopy(uobjpage, pg);
541 
542 	*nanon = anon;
543 	*npg = pg;
544 	return 0;
545 }
546 
547 /*
548  * Update statistics after fault resolution.
549  * - maxrss
550  */
551 void
552 uvmfault_update_stats(struct uvm_faultinfo *ufi)
553 {
554 	struct vm_map		*map;
555 	struct proc		*p;
556 	vsize_t			 res;
557 
558 	map = ufi->orig_map;
559 
560 	/*
561 	 * If this is a nested pmap (eg, a virtual machine pmap managed
562 	 * by vmm(4) on amd64/i386), don't do any updating, just return.
563 	 *
564 	 * pmap_nested() on other archs is #defined to 0, so this is a
565 	 * no-op.
566 	 */
567 	if (pmap_nested(map->pmap))
568 		return;
569 
570 	/* Update the maxrss for the process. */
571 	if (map->flags & VM_MAP_ISVMSPACE) {
572 		p = curproc;
573 		KASSERT(p != NULL && &p->p_vmspace->vm_map == map);
574 
575 		res = pmap_resident_count(map->pmap);
576 		/* Convert res from pages to kilobytes. */
577 		res <<= (PAGE_SHIFT - 10);
578 
579 		if (p->p_ru.ru_maxrss < res)
580 			p->p_ru.ru_maxrss = res;
581 	}
582 }
583 
584 /*
585  *   F A U L T   -   m a i n   e n t r y   p o i n t
586  */
587 
588 /*
589  * uvm_fault: page fault handler
590  *
591  * => called from MD code to resolve a page fault
592  * => VM data structures usually should be unlocked.   however, it is
593  *	possible to call here with the main map locked if the caller
594  *	gets a write lock, sets it recursive, and then calls us (c.f.
595  *	uvm_map_pageable).   this should be avoided because it keeps
596  *	the map locked off during I/O.
597  * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
598  */
599 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
600 			 ~PROT_WRITE : PROT_MASK)
601 struct uvm_faultctx {
602 	/*
603 	 * the following members are set up by uvm_fault_check() and
604 	 * read-only after that.
605 	 */
606 	vm_prot_t enter_prot;
607 	vm_prot_t access_type;
608 	vaddr_t startva;
609 	int npages;
610 	int centeridx;
611 	boolean_t narrow;
612 	boolean_t wired;
613 	paddr_t pa_flags;
614 	boolean_t promote;
615 	int lower_lock_type;
616 };
617 
618 int		uvm_fault_check(
619 		    struct uvm_faultinfo *, struct uvm_faultctx *,
620 		    struct vm_anon ***, vm_fault_t);
621 
622 int		uvm_fault_upper(
623 		    struct uvm_faultinfo *, struct uvm_faultctx *,
624 		    struct vm_anon **);
625 boolean_t	uvm_fault_upper_lookup(
626 		    struct uvm_faultinfo *, const struct uvm_faultctx *,
627 		    struct vm_anon **, struct vm_page **);
628 
629 int		uvm_fault_lower(
630 		    struct uvm_faultinfo *, struct uvm_faultctx *,
631 		    struct vm_page **);
632 int		uvm_fault_lower_io(
633 		    struct uvm_faultinfo *, struct uvm_faultctx *,
634 		    struct uvm_object **, struct vm_page **);
635 
636 int
637 uvm_fault(vm_map_t orig_map, vaddr_t vaddr, vm_fault_t fault_type,
638     vm_prot_t access_type)
639 {
640 	struct uvm_faultinfo ufi;
641 	struct uvm_faultctx flt;
642 	boolean_t shadowed;
643 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
644 	struct vm_page *pages[UVM_MAXRANGE];
645 	int error;
646 
647 	counters_inc(uvmexp_counters, faults);
648 	TRACEPOINT(uvm, fault, vaddr, fault_type, access_type, NULL);
649 
650 	/*
651 	 * init the IN parameters in the ufi
652 	 */
653 	ufi.orig_map = orig_map;
654 	ufi.orig_rvaddr = trunc_page(vaddr);
655 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
656 	flt.access_type = access_type;
657 	flt.narrow = FALSE;		/* assume normal fault for now */
658 	flt.wired = FALSE;		/* assume non-wired fault for now */
659 	flt.lower_lock_type = RW_WRITE;	/* exclusive lock for now */
660 
661 	error = ERESTART;
662 	while (error == ERESTART) { /* ReFault: */
663 		anons = anons_store;
664 
665 		error = uvm_fault_check(&ufi, &flt, &anons, fault_type);
666 		if (error != 0)
667 			continue;
668 
669 		/* True if there is an anon at the faulting address */
670 		shadowed = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
671 		if (shadowed == TRUE) {
672 			/* case 1: fault on an anon in our amap */
673 			error = uvm_fault_upper(&ufi, &flt, anons);
674 		} else {
675 			struct uvm_object *uobj = ufi.entry->object.uvm_obj;
676 
677 			/*
678 			 * if the desired page is not shadowed by the amap and
679 			 * we have a backing object, then we check to see if
680 			 * the backing object would prefer to handle the fault
681 			 * itself (rather than letting us do it with the usual
682 			 * pgo_get hook).  the backing object signals this by
683 			 * providing a pgo_fault routine.
684 			 */
685 			if (uobj != NULL && uobj->pgops->pgo_fault != NULL) {
686 				rw_enter(uobj->vmobjlock, RW_WRITE);
687 				KERNEL_LOCK();
688 				error = uobj->pgops->pgo_fault(&ufi,
689 				    flt.startva, pages, flt.npages,
690 				    flt.centeridx, fault_type, flt.access_type,
691 				    PGO_LOCKED);
692 				KERNEL_UNLOCK();
693 			} else {
694 				/* case 2: fault on backing obj or zero fill */
695 				error = uvm_fault_lower(&ufi, &flt, pages);
696 			}
697 		}
698 	}
699 
700 	return error;
701 }
702 
703 /*
704  * uvm_fault_check: check prot, handle needs-copy, etc.
705  *
706  *	1. lookup entry.
707  *	2. check protection.
708  *	3. adjust fault condition (mainly for simulated fault).
709  *	4. handle needs-copy (lazy amap copy).
710  *	5. establish range of interest for neighbor fault (aka pre-fault).
711  *	6. look up anons (if amap exists).
712  *	7. flush pages (if MADV_SEQUENTIAL)
713  *
714  * => called with nothing locked.
715  * => if we fail (result != 0) we unlock everything.
716  * => initialize/adjust many members of flt.
717  */
718 int
719 uvm_fault_check(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
720     struct vm_anon ***ranons, vm_fault_t fault_type)
721 {
722 	struct vm_amap *amap;
723 	struct uvm_object *uobj;
724 	int nback, nforw;
725 
726 	/*
727 	 * lookup and lock the maps
728 	 */
729 	if (uvmfault_lookup(ufi, FALSE) == FALSE) {
730 		return EFAULT;
731 	}
732 	/* locked: maps(read) */
733 
734 #ifdef DIAGNOSTIC
735 	if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0)
736 		panic("uvm_fault: fault on non-pageable map (%p, 0x%lx)",
737 		    ufi->map, ufi->orig_rvaddr);
738 #endif
739 
740 	/*
741 	 * check protection
742 	 */
743 	if ((ufi->entry->protection & flt->access_type) != flt->access_type) {
744 		uvmfault_unlockmaps(ufi, FALSE);
745 		return EACCES;
746 	}
747 
748 	/*
749 	 * "enter_prot" is the protection we want to enter the page in at.
750 	 * for certain pages (e.g. copy-on-write pages) this protection can
751 	 * be more strict than ufi->entry->protection.  "wired" means either
752 	 * the entry is wired or we are fault-wiring the pg.
753 	 */
754 	flt->enter_prot = ufi->entry->protection;
755 	flt->pa_flags = UVM_ET_ISWC(ufi->entry) ? PMAP_WC : 0;
756 	if (VM_MAPENT_ISWIRED(ufi->entry) || (fault_type == VM_FAULT_WIRE)) {
757 		flt->wired = TRUE;
758 		flt->access_type = flt->enter_prot; /* full access for wired */
759 		/*  don't look for neighborhood * pages on "wire" fault */
760 		flt->narrow = TRUE;
761 	}
762 
763 	/* handle "needs_copy" case. */
764 	if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
765 		if ((flt->access_type & PROT_WRITE) ||
766 		    (ufi->entry->object.uvm_obj == NULL)) {
767 			/* need to clear */
768 			uvmfault_unlockmaps(ufi, FALSE);
769 			uvmfault_amapcopy(ufi);
770 			counters_inc(uvmexp_counters, flt_amcopy);
771 			return ERESTART;
772 		} else {
773 			/*
774 			 * ensure that we pmap_enter page R/O since
775 			 * needs_copy is still true
776 			 */
777 			flt->enter_prot &= ~PROT_WRITE;
778 		}
779 	}
780 
781 	/*
782 	 * identify the players
783 	 */
784 	amap = ufi->entry->aref.ar_amap;	/* upper layer */
785 	uobj = ufi->entry->object.uvm_obj;	/* lower layer */
786 
787 	/*
788 	 * check for a case 0 fault.  if nothing backing the entry then
789 	 * error now.
790 	 */
791 	if (amap == NULL && uobj == NULL) {
792 		uvmfault_unlockmaps(ufi, FALSE);
793 		return EFAULT;
794 	}
795 
796 	/*
797 	 * for a case 2B fault waste no time on adjacent pages because
798 	 * they are likely already entered.
799 	 */
800 	if (uobj != NULL && amap != NULL &&
801 	    (flt->access_type & PROT_WRITE) != 0) {
802 		/* wide fault (!narrow) */
803 		flt->narrow = TRUE;
804 	}
805 
806 	/*
807 	 * establish range of interest based on advice from mapper
808 	 * and then clip to fit map entry.   note that we only want
809 	 * to do this the first time through the fault.   if we
810 	 * ReFault we will disable this by setting "narrow" to true.
811 	 */
812 	if (flt->narrow == FALSE) {
813 
814 		/* wide fault (!narrow) */
815 		nback = min(uvmadvice[ufi->entry->advice].nback,
816 		    (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
817 		flt->startva = ufi->orig_rvaddr - ((vsize_t)nback << PAGE_SHIFT);
818 		nforw = min(uvmadvice[ufi->entry->advice].nforw,
819 		    ((ufi->entry->end - ufi->orig_rvaddr) >> PAGE_SHIFT) - 1);
820 		/*
821 		 * note: "-1" because we don't want to count the
822 		 * faulting page as forw
823 		 */
824 		flt->npages = nback + nforw + 1;
825 		flt->centeridx = nback;
826 
827 		flt->narrow = TRUE;	/* ensure only once per-fault */
828 	} else {
829 		/* narrow fault! */
830 		nback = nforw = 0;
831 		flt->startva = ufi->orig_rvaddr;
832 		flt->npages = 1;
833 		flt->centeridx = 0;
834 	}
835 
836 	/*
837 	 * if we've got an amap then lock it and extract current anons.
838 	 */
839 	if (amap) {
840 		amap_lock(amap, RW_WRITE);
841 		amap_lookups(&ufi->entry->aref,
842 		    flt->startva - ufi->entry->start, *ranons, flt->npages);
843 	} else {
844 		*ranons = NULL;	/* to be safe */
845 	}
846 
847 	/*
848 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
849 	 * now and then forget about them (for the rest of the fault).
850 	 */
851 	if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
852 		/* flush back-page anons? */
853 		if (amap)
854 			uvmfault_anonflush(*ranons, nback);
855 
856 		/*
857 		 * flush object?
858 		 */
859 		if (uobj) {
860 			voff_t uoff;
861 
862 			uoff = (flt->startva - ufi->entry->start) + ufi->entry->offset;
863 			rw_enter(uobj->vmobjlock, RW_WRITE);
864 			(void) uobj->pgops->pgo_flush(uobj, uoff, uoff +
865 			    ((vsize_t)nback << PAGE_SHIFT), PGO_DEACTIVATE);
866 			rw_exit(uobj->vmobjlock);
867 		}
868 
869 		/* now forget about the backpages */
870 		if (amap)
871 			*ranons += nback;
872 		flt->startva += ((vsize_t)nback << PAGE_SHIFT);
873 		flt->npages -= nback;
874 		flt->centeridx = 0;
875 	}
876 
877 	return 0;
878 }
879 
880 /*
881  * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
882  *
883  * iterate range of interest:
884  *	1. check if h/w mapping exists.  if yes, we don't care
885  *	2. check if anon exists.  if not, page is lower.
886  *	3. if anon exists, enter h/w mapping for neighbors.
887  *
888  * => called with amap locked (if exists).
889  */
890 boolean_t
891 uvm_fault_upper_lookup(struct uvm_faultinfo *ufi,
892     const struct uvm_faultctx *flt, struct vm_anon **anons,
893     struct vm_page **pages)
894 {
895 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
896 	struct vm_anon *anon;
897 	struct vm_page *pg;
898 	boolean_t shadowed;
899 	vaddr_t currva;
900 	paddr_t pa;
901 	int lcv, entered = 0;
902 
903 	/* locked: maps(read), amap(if there) */
904 	KASSERT(amap == NULL ||
905 	    rw_write_held(amap->am_lock));
906 
907 	/*
908 	 * map in the backpages and frontpages we found in the amap in hopes
909 	 * of preventing future faults.    we also init the pages[] array as
910 	 * we go.
911 	 */
912 	currva = flt->startva;
913 	shadowed = FALSE;
914 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
915 		/*
916 		 * unmapped or center page.   check if any anon at this level.
917 		 */
918 		if (amap == NULL || anons[lcv] == NULL) {
919 			pages[lcv] = NULL;
920 			continue;
921 		}
922 
923 		/*
924 		 * check for present page and map if possible.
925 		 */
926 		pages[lcv] = PGO_DONTCARE;
927 		if (lcv == flt->centeridx) {	/* save center for later! */
928 			shadowed = TRUE;
929 			continue;
930 		}
931 
932 		anon = anons[lcv];
933 		pg = anon->an_page;
934 
935 		KASSERT(anon->an_lock == amap->am_lock);
936 
937 		/*
938 		 * ignore busy pages.
939 		 * don't play with VAs that are already mapped.
940 		 */
941 		if (pg && (pg->pg_flags & (PG_RELEASED|PG_BUSY)) == 0 &&
942 		    !pmap_extract(ufi->orig_map->pmap, currva, &pa)) {
943 			uvm_lock_pageq();
944 			uvm_pageactivate(pg);	/* reactivate */
945 			uvm_unlock_pageq();
946 			counters_inc(uvmexp_counters, flt_namap);
947 
948 			/* No fault-ahead when wired. */
949 			KASSERT(flt->wired == FALSE);
950 
951 			/*
952 			 * Since this isn't the page that's actually faulting,
953 			 * ignore pmap_enter() failures; it's not critical
954 			 * that we enter these right now.
955 			 */
956 			(void) pmap_enter(ufi->orig_map->pmap, currva,
957 			    VM_PAGE_TO_PHYS(pg) | flt->pa_flags,
958 			    (anon->an_ref > 1) ?
959 			    (flt->enter_prot & ~PROT_WRITE) : flt->enter_prot,
960 			    PMAP_CANFAIL);
961 			entered++;
962 		}
963 	}
964 	if (entered > 0)
965 		pmap_update(ufi->orig_map->pmap);
966 
967 	return shadowed;
968 }
969 
970 /*
971  * uvm_fault_upper: handle upper fault.
972  *
973  *	1. acquire anon lock.
974  *	2. get anon.  let uvmfault_anonget do the dirty work.
975  *	3. if COW, promote data to new anon
976  *	4. enter h/w mapping
977  */
978 int
979 uvm_fault_upper(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
980    struct vm_anon **anons)
981 {
982 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
983 	struct vm_anon *oanon, *anon = anons[flt->centeridx];
984 	struct vm_page *pg = NULL;
985 	int error, ret;
986 
987 	/* locked: maps(read), amap, anon */
988 	KASSERT(rw_write_held(amap->am_lock));
989 	KASSERT(anon->an_lock == amap->am_lock);
990 
991 	/*
992 	 * no matter if we have case 1A or case 1B we are going to need to
993 	 * have the anon's memory resident.   ensure that now.
994 	 */
995 	/*
996 	 * let uvmfault_anonget do the dirty work.
997 	 * if it fails (!OK) it will unlock everything for us.
998 	 * if it succeeds, locks are still valid and locked.
999 	 * also, if it is OK, then the anon's page is on the queues.
1000 	 */
1001 	error = uvmfault_anonget(ufi, amap, anon);
1002 	switch (error) {
1003 	case 0:
1004 		break;
1005 
1006 	case ERESTART:
1007 		return ERESTART;
1008 
1009 	default:
1010 		return error;
1011 	}
1012 
1013 	KASSERT(rw_write_held(amap->am_lock));
1014 	KASSERT(anon->an_lock == amap->am_lock);
1015 
1016 	/*
1017 	 * if we are case 1B then we will need to allocate a new blank
1018 	 * anon to transfer the data into.   note that we have a lock
1019 	 * on anon, so no one can busy or release the page until we are done.
1020 	 * also note that the ref count can't drop to zero here because
1021 	 * it is > 1 and we are only dropping one ref.
1022 	 *
1023 	 * in the (hopefully very rare) case that we are out of RAM we
1024 	 * will unlock, wait for more RAM, and refault.
1025 	 *
1026 	 * if we are out of anon VM we wait for RAM to become available.
1027 	 */
1028 
1029 	if ((flt->access_type & PROT_WRITE) != 0 && anon->an_ref > 1) {
1030 		/* promoting requires a write lock. */
1031 		KASSERT(rw_write_held(amap->am_lock));
1032 
1033 		counters_inc(uvmexp_counters, flt_acow);
1034 		oanon = anon;		/* oanon = old */
1035 
1036 		error = uvmfault_promote(ufi, oanon->an_page, &anon, &pg);
1037 		if (error)
1038 			return error;
1039 
1040 		/* un-busy! new page */
1041 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE);
1042 		UVM_PAGE_OWN(pg, NULL);
1043 		ret = amap_add(&ufi->entry->aref,
1044 		    ufi->orig_rvaddr - ufi->entry->start, anon, 1);
1045 		KASSERT(ret == 0);
1046 
1047 		KASSERT(anon->an_lock == oanon->an_lock);
1048 
1049 		/* deref: can not drop to zero here by defn! */
1050 		KASSERT(oanon->an_ref > 1);
1051 		oanon->an_ref--;
1052 
1053 #if defined(MULTIPROCESSOR) && !defined(__HAVE_PMAP_MPSAFE_ENTER_COW)
1054 		/*
1055 		 * If there are multiple threads, either uvm or the
1056 		 * pmap has to make sure no threads see the old RO
1057 		 * mapping once any have seen the new RW mapping.
1058 		 * uvm does it by inserting the new mapping RO and
1059 		 * letting it fault again.
1060 		 * This is only a problem on MP systems.
1061 		 */
1062 		if (P_HASSIBLING(curproc)) {
1063 			flt->enter_prot &= ~PROT_WRITE;
1064 			flt->access_type &= ~PROT_WRITE;
1065 		}
1066 #endif
1067 
1068 		/*
1069 		 * note: anon is _not_ locked, but we have the sole references
1070 		 * to in from amap.
1071 		 * thus, no one can get at it until we are done with it.
1072 		 */
1073 	} else {
1074 		counters_inc(uvmexp_counters, flt_anon);
1075 		oanon = anon;
1076 		pg = anon->an_page;
1077 		if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
1078 			flt->enter_prot = flt->enter_prot & ~PROT_WRITE;
1079 	}
1080 
1081 	/*
1082 	 * now map the page in .
1083 	 */
1084 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
1085 	    VM_PAGE_TO_PHYS(pg) | flt->pa_flags, flt->enter_prot,
1086 	    flt->access_type | PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0)) != 0) {
1087 		/*
1088 		 * No need to undo what we did; we can simply think of
1089 		 * this as the pmap throwing away the mapping information.
1090 		 *
1091 		 * We do, however, have to go through the ReFault path,
1092 		 * as the map may change while we're asleep.
1093 		 */
1094 		uvmfault_unlockall(ufi, amap, NULL);
1095 		if (uvm_swapisfull()) {
1096 			/* XXX instrumentation */
1097 			return ENOMEM;
1098 		}
1099 #ifdef __HAVE_PMAP_POPULATE
1100 		pmap_populate(ufi->orig_map->pmap, ufi->orig_rvaddr);
1101 #else
1102 		/* XXX instrumentation */
1103 		uvm_wait("flt_pmfail1");
1104 #endif
1105 		return ERESTART;
1106 	}
1107 
1108 	/*
1109 	 * ... update the page queues.
1110 	 */
1111 	uvm_lock_pageq();
1112 	if (flt->wired) {
1113 		uvm_pagewire(pg);
1114 	} else {
1115 		uvm_pageactivate(pg);
1116 	}
1117 	uvm_unlock_pageq();
1118 
1119 	if (flt->wired) {
1120 		/*
1121 		 * since the now-wired page cannot be paged out,
1122 		 * release its swap resources for others to use.
1123 		 * since an anon with no swap cannot be PG_CLEAN,
1124 		 * clear its clean flag now.
1125 		 */
1126 		atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1127 		uvm_anon_dropswap(anon);
1128 	}
1129 
1130 	/*
1131 	 * done case 1!  finish up by unlocking everything and returning success
1132 	 */
1133 	uvmfault_unlockall(ufi, amap, NULL);
1134 	pmap_update(ufi->orig_map->pmap);
1135 	return 0;
1136 }
1137 
1138 /*
1139  * uvm_fault_lower_lookup: look up on-memory uobj pages.
1140  *
1141  *	1. get on-memory pages.
1142  *	2. if failed, give up (get only center page later).
1143  *	3. if succeeded, enter h/w mapping of neighbor pages.
1144  */
1145 
1146 struct vm_page *
1147 uvm_fault_lower_lookup(
1148 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1149 	struct vm_page **pages)
1150 {
1151 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1152 	struct vm_page *uobjpage = NULL;
1153 	int lcv, gotpages, entered;
1154 	vaddr_t currva;
1155 	paddr_t pa;
1156 
1157 	rw_enter(uobj->vmobjlock, flt->lower_lock_type);
1158 
1159 	counters_inc(uvmexp_counters, flt_lget);
1160 	gotpages = flt->npages;
1161 	(void) uobj->pgops->pgo_get(uobj,
1162 	    ufi->entry->offset + (flt->startva - ufi->entry->start),
1163 	    pages, &gotpages, flt->centeridx,
1164 	    flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1165 	    PGO_LOCKED);
1166 
1167 	/*
1168 	 * check for pages to map, if we got any
1169 	 */
1170 	if (gotpages == 0) {
1171 		return NULL;
1172 	}
1173 
1174 	entered = 0;
1175 	currva = flt->startva;
1176 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1177 		if (pages[lcv] == NULL ||
1178 		    pages[lcv] == PGO_DONTCARE)
1179 			continue;
1180 
1181 		KASSERT((pages[lcv]->pg_flags & PG_BUSY) == 0);
1182 		KASSERT((pages[lcv]->pg_flags & PG_RELEASED) == 0);
1183 
1184 		/*
1185 		 * if center page is resident and not PG_BUSY, then pgo_get
1186 		 * gave us a handle to it.
1187 		 * remember this page as "uobjpage." (for later use).
1188 		 */
1189 		if (lcv == flt->centeridx) {
1190 			uobjpage = pages[lcv];
1191 			continue;
1192 		}
1193 
1194 		if (pmap_extract(ufi->orig_map->pmap, currva, &pa))
1195 			continue;
1196 
1197 		/*
1198 		 * calling pgo_get with PGO_LOCKED returns us pages which
1199 		 * are neither busy nor released, so we don't need to check
1200 		 * for this.  we can just directly enter the pages.
1201 		 */
1202 		if (pages[lcv]->wire_count == 0) {
1203 			uvm_lock_pageq();
1204 			uvm_pageactivate(pages[lcv]);
1205 			uvm_unlock_pageq();
1206 		}
1207 		counters_inc(uvmexp_counters, flt_nomap);
1208 
1209 		/* No fault-ahead when wired. */
1210 		KASSERT(flt->wired == FALSE);
1211 
1212 		/*
1213 		 * Since this page isn't the page that's actually faulting,
1214 		 * ignore pmap_enter() failures; it's not critical that we
1215 		 * enter these right now.
1216 		 * NOTE: page can't be PG_WANTED or PG_RELEASED because we've
1217 		 * held the lock the whole time we've had the handle.
1218 		 */
1219 		(void) pmap_enter(ufi->orig_map->pmap, currva,
1220 		    VM_PAGE_TO_PHYS(pages[lcv]) | flt->pa_flags,
1221 		    flt->enter_prot & MASK(ufi->entry), PMAP_CANFAIL);
1222 		entered++;
1223 
1224 	}
1225 	if (entered > 0)
1226 		pmap_update(ufi->orig_map->pmap);
1227 
1228 	return uobjpage;
1229 }
1230 
1231 /*
1232  * uvm_fault_lower: handle lower fault.
1233  *
1234  *	1. check uobj
1235  *	1.1. if null, ZFOD.
1236  *	1.2. if not null, look up unnmapped neighbor pages.
1237  *	2. for center page, check if promote.
1238  *	2.1. ZFOD always needs promotion.
1239  *	2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1240  *	3. if uobj is not ZFOD and page is not found, do i/o.
1241  *	4. dispatch either direct / promote fault.
1242  */
1243 int
1244 uvm_fault_lower(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1245    struct vm_page **pages)
1246 {
1247 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
1248 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1249 	int dropswap = 0;
1250 	struct vm_page *uobjpage, *pg = NULL;
1251 	struct vm_anon *anon = NULL;
1252 	int error;
1253 
1254 	/*
1255 	 * now, if the desired page is not shadowed by the amap and we have
1256 	 * a backing object that does not have a special fault routine, then
1257 	 * we ask (with pgo_get) the object for resident pages that we care
1258 	 * about and attempt to map them in.  we do not let pgo_get block
1259 	 * (PGO_LOCKED).
1260 	 */
1261 	if (uobj == NULL) {
1262 		/* zero fill; don't care neighbor pages */
1263 		uobjpage = NULL;
1264 	} else {
1265 		uobjpage = uvm_fault_lower_lookup(ufi, flt, pages);
1266 	}
1267 
1268 	/*
1269 	 * note that at this point we are done with any front or back pages.
1270 	 * we are now going to focus on the center page (i.e. the one we've
1271 	 * faulted on).  if we have faulted on the bottom (uobj)
1272 	 * layer [i.e. case 2] and the page was both present and available,
1273 	 * then we've got a pointer to it as "uobjpage" and we've already
1274 	 * made it BUSY.
1275 	 */
1276 
1277 	/*
1278 	 * locked:
1279 	 */
1280 	KASSERT(amap == NULL ||
1281 	    rw_write_held(amap->am_lock));
1282 	KASSERT(uobj == NULL ||
1283 	    rw_status(uobj->vmobjlock) == flt->lower_lock_type);
1284 
1285 	/*
1286 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
1287 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
1288 	 * have a backing object, check and see if we are going to promote
1289 	 * the data up to an anon during the fault.
1290 	 */
1291 	if (uobj == NULL) {
1292 		uobjpage = PGO_DONTCARE;
1293 		flt->promote = TRUE;		/* always need anon here */
1294 	} else {
1295 		KASSERT(uobjpage != PGO_DONTCARE);
1296 		flt->promote = (flt->access_type & PROT_WRITE) &&
1297 		     UVM_ET_ISCOPYONWRITE(ufi->entry);
1298 	}
1299 
1300 	/*
1301 	 * if uobjpage is not null then we do not need to do I/O to get the
1302 	 * uobjpage.
1303 	 *
1304 	 * if uobjpage is null, then we need to ask the pager to
1305 	 * get the data for us.   once we have the data, we need to reverify
1306 	 * the state the world.   we are currently not holding any resources.
1307 	 */
1308 	if (uobjpage) {
1309 		/* update rusage counters */
1310 		curproc->p_ru.ru_minflt++;
1311 		if (uobjpage != PGO_DONTCARE) {
1312 			uvm_lock_pageq();
1313 			uvm_pageactivate(uobjpage);
1314 			uvm_unlock_pageq();
1315 		}
1316 	} else {
1317 		error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1318 		if (error != 0)
1319 			return error;
1320 	}
1321 
1322 	/*
1323 	 * notes:
1324 	 *  - at this point uobjpage can not be NULL
1325 	 *  - at this point uobjpage could be PG_WANTED (handle later)
1326 	 */
1327 	if (flt->promote == FALSE) {
1328 		/*
1329 		 * we are not promoting.   if the mapping is COW ensure that we
1330 		 * don't give more access than we should (e.g. when doing a read
1331 		 * fault on a COPYONWRITE mapping we want to map the COW page in
1332 		 * R/O even though the entry protection could be R/W).
1333 		 *
1334 		 * set "pg" to the page we want to map in (uobjpage, usually)
1335 		 */
1336 		counters_inc(uvmexp_counters, flt_obj);
1337 		if (UVM_ET_ISCOPYONWRITE(ufi->entry))
1338 			flt->enter_prot &= ~PROT_WRITE;
1339 		pg = uobjpage;		/* map in the actual object */
1340 
1341 		/* assert(uobjpage != PGO_DONTCARE) */
1342 
1343 		/*
1344 		 * we are faulting directly on the page.
1345 		 */
1346 	} else {
1347 		KASSERT(amap != NULL);
1348 
1349 		/* promoting requires a write lock. */
1350 	        KASSERT(rw_write_held(amap->am_lock));
1351 	        KASSERT(uobj == NULL ||
1352 	            rw_status(uobj->vmobjlock) == flt->lower_lock_type);
1353 
1354 		/*
1355 		 * if we are going to promote the data to an anon we
1356 		 * allocate a blank anon here and plug it into our amap.
1357 		 */
1358 		error = uvmfault_promote(ufi, uobjpage, &anon, &pg);
1359 		if (error)
1360 			return error;
1361 
1362 		/*
1363 		 * fill in the data
1364 		 */
1365 		if (uobjpage != PGO_DONTCARE) {
1366 			counters_inc(uvmexp_counters, flt_prcopy);
1367 
1368 			/*
1369 			 * promote to shared amap?  make sure all sharing
1370 			 * procs see it
1371 			 */
1372 			if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1373 				pmap_page_protect(uobjpage, PROT_NONE);
1374 			}
1375 #if defined(MULTIPROCESSOR) && !defined(__HAVE_PMAP_MPSAFE_ENTER_COW)
1376 			/*
1377 			 * Otherwise:
1378 			 * If there are multiple threads, either uvm or the
1379 			 * pmap has to make sure no threads see the old RO
1380 			 * mapping once any have seen the new RW mapping.
1381 			 * uvm does it here by forcing it to PROT_NONE before
1382 			 * inserting the new mapping.
1383 			 */
1384 			else if (P_HASSIBLING(curproc)) {
1385 				pmap_page_protect(uobjpage, PROT_NONE);
1386 			}
1387 #endif
1388 			/* done with copied uobjpage. */
1389 			rw_exit(uobj->vmobjlock);
1390 			uobj = NULL;
1391 		} else {
1392 			counters_inc(uvmexp_counters, flt_przero);
1393 			/*
1394 			 * Page is zero'd and marked dirty by uvm_pagealloc(),
1395 			 * called in uvmfault_promote() above.
1396 			 */
1397 		}
1398 
1399 		if (amap_add(&ufi->entry->aref,
1400 		    ufi->orig_rvaddr - ufi->entry->start, anon, 0)) {
1401 			if (pg->pg_flags & PG_WANTED)
1402 				wakeup(pg);
1403 
1404 			atomic_clearbits_int(&pg->pg_flags,
1405 			    PG_BUSY|PG_FAKE|PG_WANTED);
1406 			UVM_PAGE_OWN(pg, NULL);
1407 			uvmfault_unlockall(ufi, amap, uobj);
1408 			uvm_anfree(anon);
1409 			counters_inc(uvmexp_counters, flt_noamap);
1410 
1411 			if (uvm_swapisfull())
1412 				return (ENOMEM);
1413 
1414 			amap_populate(&ufi->entry->aref,
1415 			    ufi->orig_rvaddr - ufi->entry->start);
1416 			return ERESTART;
1417 		}
1418 	}
1419 
1420 	/*
1421 	 * anon must be write locked (promotion).  uobj can be either.
1422 	 *
1423 	 * Note: pg is either the uobjpage or the new page in the new anon.
1424 	 */
1425 	KASSERT(amap == NULL ||
1426 	    rw_write_held(amap->am_lock));
1427 	KASSERT(uobj == NULL ||
1428 	    rw_status(uobj->vmobjlock) == flt->lower_lock_type);
1429 	KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
1430 
1431 	/*
1432 	 * all resources are present.   we can now map it in and free our
1433 	 * resources.
1434 	 */
1435 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
1436 	    VM_PAGE_TO_PHYS(pg) | flt->pa_flags, flt->enter_prot,
1437 	    flt->access_type | PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0)) != 0) {
1438 		/*
1439 		 * No need to undo what we did; we can simply think of
1440 		 * this as the pmap throwing away the mapping information.
1441 		 *
1442 		 * We do, however, have to go through the ReFault path,
1443 		 * as the map may change while we're asleep.
1444 		 */
1445 		if (pg->pg_flags & PG_WANTED)
1446 			wakeup(pg);
1447 
1448 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED);
1449 		UVM_PAGE_OWN(pg, NULL);
1450 		uvmfault_unlockall(ufi, amap, uobj);
1451 		if (uvm_swapisfull()) {
1452 			/* XXX instrumentation */
1453 			return (ENOMEM);
1454 		}
1455 #ifdef __HAVE_PMAP_POPULATE
1456 		pmap_populate(ufi->orig_map->pmap, ufi->orig_rvaddr);
1457 #else
1458 		/* XXX instrumentation */
1459 		uvm_wait("flt_pmfail2");
1460 #endif
1461 		return ERESTART;
1462 	}
1463 
1464 	uvm_lock_pageq();
1465 	if (flt->wired) {
1466 		uvm_pagewire(pg);
1467 		if (pg->pg_flags & PQ_AOBJ) {
1468 			/*
1469 			 * since the now-wired page cannot be paged out,
1470 			 * release its swap resources for others to use.
1471 			 * since an aobj page with no swap cannot be clean,
1472 			 * mark it dirty now.
1473 			 *
1474 			 * use pg->uobject here.  if the page is from a
1475 			 * tmpfs vnode, the pages are backed by its UAO and
1476 			 * not the vnode.
1477 			 */
1478 			KASSERT(uobj != NULL);
1479 			KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock);
1480 			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1481 			dropswap = 1;
1482 		}
1483 	} else {
1484 		uvm_pageactivate(pg);
1485 	}
1486 	uvm_unlock_pageq();
1487 
1488 	if (dropswap)
1489 		uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1490 
1491 	if (pg->pg_flags & PG_WANTED)
1492 		wakeup(pg);
1493 
1494 	atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED);
1495 	UVM_PAGE_OWN(pg, NULL);
1496 	uvmfault_unlockall(ufi, amap, uobj);
1497 	pmap_update(ufi->orig_map->pmap);
1498 
1499 	return (0);
1500 }
1501 
1502 /*
1503  * uvm_fault_lower_io: get lower page from backing store.
1504  *
1505  *	1. unlock everything, because i/o will block.
1506  *	2. call pgo_get.
1507  *	3. if failed, recover.
1508  *	4. if succeeded, relock everything and verify things.
1509  */
1510 int
1511 uvm_fault_lower_io(
1512 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1513 	struct uvm_object **ruobj, struct vm_page **ruobjpage)
1514 {
1515 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1516 	struct uvm_object *uobj = *ruobj;
1517 	struct vm_page *pg;
1518 	boolean_t locked;
1519 	int gotpages, advice;
1520 	int result;
1521 	voff_t uoff;
1522 	vm_prot_t access_type;
1523 
1524 	/* grab everything we need from the entry before we unlock */
1525 	uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1526 	access_type = flt->access_type & MASK(ufi->entry);
1527 	advice = ufi->entry->advice;
1528 
1529 	uvmfault_unlockall(ufi, amap, NULL);
1530 
1531 	/* update rusage counters */
1532 	curproc->p_ru.ru_majflt++;
1533 
1534 	KASSERT(rw_write_held(uobj->vmobjlock));
1535 
1536 	counters_inc(uvmexp_counters, flt_get);
1537 	gotpages = 1;
1538 	pg = NULL;
1539 	result = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1540 	    0, access_type, advice, PGO_SYNCIO);
1541 
1542 	/*
1543 	 * recover from I/O
1544 	 */
1545 	if (result != VM_PAGER_OK) {
1546 		KASSERT(result != VM_PAGER_PEND);
1547 
1548 		if (result == VM_PAGER_AGAIN) {
1549 			tsleep_nsec(&nowake, PVM, "fltagain2", MSEC_TO_NSEC(5));
1550 			return ERESTART;
1551 		}
1552 
1553 		if (!UVM_ET_ISNOFAULT(ufi->entry))
1554 			return (EIO);
1555 
1556 		pg = PGO_DONTCARE;
1557 		uobj = NULL;
1558 		flt->promote = TRUE;
1559 	}
1560 
1561 	/* re-verify the state of the world.  */
1562 	locked = uvmfault_relock(ufi);
1563 	if (locked && amap != NULL)
1564 		amap_lock(amap, RW_WRITE);
1565 
1566 	/* might be changed */
1567 	if (pg != PGO_DONTCARE) {
1568 		uobj = pg->uobject;
1569 		rw_enter(uobj->vmobjlock, flt->lower_lock_type);
1570 		KASSERT((pg->pg_flags & PG_BUSY) != 0);
1571 		KASSERT(flt->lower_lock_type == RW_WRITE);
1572 	}
1573 
1574 	/*
1575 	 * Re-verify that amap slot is still free. if there is
1576 	 * a problem, we clean up.
1577 	 */
1578 	if (locked && amap && amap_lookup(&ufi->entry->aref,
1579 	      ufi->orig_rvaddr - ufi->entry->start)) {
1580 		if (locked)
1581 			uvmfault_unlockall(ufi, amap, NULL);
1582 		locked = FALSE;
1583 	}
1584 
1585 	/* release the page now, still holding object lock */
1586 	if (pg != PGO_DONTCARE) {
1587 		uvm_lock_pageq();
1588 		uvm_pageactivate(pg);
1589 		uvm_unlock_pageq();
1590 
1591 		if (pg->pg_flags & PG_WANTED)
1592 			wakeup(pg);
1593 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_WANTED);
1594 		UVM_PAGE_OWN(pg, NULL);
1595 	}
1596 
1597 	if (locked == FALSE) {
1598 		if (pg != PGO_DONTCARE)
1599 			rw_exit(uobj->vmobjlock);
1600 		return ERESTART;
1601 	}
1602 
1603 	/*
1604 	 * we have the data in pg.  we are holding object lock (so the page
1605 	 * can't be released on us).
1606 	 */
1607 	*ruobj = uobj;
1608 	*ruobjpage = pg;
1609 	return 0;
1610 }
1611 
1612 /*
1613  * uvm_fault_wire: wire down a range of virtual addresses in a map.
1614  *
1615  * => map may be read-locked by caller, but MUST NOT be write-locked.
1616  * => if map is read-locked, any operations which may cause map to
1617  *	be write-locked in uvm_fault() must be taken care of by
1618  *	the caller.  See uvm_map_pageable().
1619  */
1620 int
1621 uvm_fault_wire(vm_map_t map, vaddr_t start, vaddr_t end, vm_prot_t access_type)
1622 {
1623 	vaddr_t va;
1624 	int rv;
1625 
1626 	/*
1627 	 * now fault it in a page at a time.   if the fault fails then we have
1628 	 * to undo what we have done.   note that in uvm_fault PROT_NONE
1629 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1630 	 */
1631 	for (va = start ; va < end ; va += PAGE_SIZE) {
1632 		rv = uvm_fault(map, va, VM_FAULT_WIRE, access_type);
1633 		if (rv) {
1634 			if (va != start) {
1635 				uvm_fault_unwire(map, start, va);
1636 			}
1637 			return (rv);
1638 		}
1639 	}
1640 
1641 	return (0);
1642 }
1643 
1644 /*
1645  * uvm_fault_unwire(): unwire range of virtual space.
1646  */
1647 void
1648 uvm_fault_unwire(vm_map_t map, vaddr_t start, vaddr_t end)
1649 {
1650 
1651 	vm_map_lock_read(map);
1652 	uvm_fault_unwire_locked(map, start, end);
1653 	vm_map_unlock_read(map);
1654 }
1655 
1656 /*
1657  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1658  *
1659  * => map must be at least read-locked.
1660  */
1661 void
1662 uvm_fault_unwire_locked(vm_map_t map, vaddr_t start, vaddr_t end)
1663 {
1664 	vm_map_entry_t entry, oentry = NULL, next;
1665 	pmap_t pmap = vm_map_pmap(map);
1666 	vaddr_t va;
1667 	paddr_t pa;
1668 	struct vm_page *pg;
1669 
1670 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1671 	vm_map_assert_anylock(map);
1672 
1673 	/*
1674 	 * we assume that the area we are unwiring has actually been wired
1675 	 * in the first place.   this means that we should be able to extract
1676 	 * the PAs from the pmap.
1677 	 */
1678 
1679 	/*
1680 	 * find the beginning map entry for the region.
1681 	 */
1682 	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1683 	if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1684 		panic("uvm_fault_unwire_locked: address not in map");
1685 
1686 	for (va = start; va < end ; va += PAGE_SIZE) {
1687 		/*
1688 		 * find the map entry for the current address.
1689 		 */
1690 		KASSERT(va >= entry->start);
1691 		while (entry && va >= entry->end) {
1692 			next = RBT_NEXT(uvm_map_addr, entry);
1693 			entry = next;
1694 		}
1695 
1696 		if (entry == NULL)
1697 			return;
1698 		if (va < entry->start)
1699 			continue;
1700 
1701 		/*
1702 		 * lock it.
1703 		 */
1704 		if (entry != oentry) {
1705 			if (oentry != NULL) {
1706 				uvm_map_unlock_entry(oentry);
1707 			}
1708 			uvm_map_lock_entry(entry);
1709 			oentry = entry;
1710 		}
1711 
1712 		if (!pmap_extract(pmap, va, &pa))
1713 			continue;
1714 
1715 		/*
1716 		 * if the entry is no longer wired, tell the pmap.
1717 		 */
1718 		if (VM_MAPENT_ISWIRED(entry) == 0)
1719 			pmap_unwire(pmap, va);
1720 
1721 		pg = PHYS_TO_VM_PAGE(pa);
1722 		if (pg) {
1723 			uvm_lock_pageq();
1724 			uvm_pageunwire(pg);
1725 			uvm_unlock_pageq();
1726 		}
1727 	}
1728 
1729 	if (oentry != NULL) {
1730 		uvm_map_unlock_entry(oentry);
1731 	}
1732 }
1733 
1734 /*
1735  * uvmfault_unlockmaps: unlock the maps
1736  */
1737 void
1738 uvmfault_unlockmaps(struct uvm_faultinfo *ufi, boolean_t write_locked)
1739 {
1740 	/*
1741 	 * ufi can be NULL when this isn't really a fault,
1742 	 * but merely paging in anon data.
1743 	 */
1744 	if (ufi == NULL) {
1745 		return;
1746 	}
1747 
1748 	uvmfault_update_stats(ufi);
1749 	if (write_locked) {
1750 		vm_map_unlock(ufi->map);
1751 	} else {
1752 		vm_map_unlock_read(ufi->map);
1753 	}
1754 }
1755 
1756 /*
1757  * uvmfault_unlockall: unlock everything passed in.
1758  *
1759  * => maps must be read-locked (not write-locked).
1760  */
1761 void
1762 uvmfault_unlockall(struct uvm_faultinfo *ufi, struct vm_amap *amap,
1763     struct uvm_object *uobj)
1764 {
1765 	if (uobj)
1766 		rw_exit(uobj->vmobjlock);
1767 	if (amap != NULL)
1768 		amap_unlock(amap);
1769 	uvmfault_unlockmaps(ufi, FALSE);
1770 }
1771 
1772 /*
1773  * uvmfault_lookup: lookup a virtual address in a map
1774  *
1775  * => caller must provide a uvm_faultinfo structure with the IN
1776  *	params properly filled in
1777  * => we will lookup the map entry (handling submaps) as we go
1778  * => if the lookup is a success we will return with the maps locked
1779  * => if "write_lock" is TRUE, we write_lock the map, otherwise we only
1780  *	get a read lock.
1781  * => note that submaps can only appear in the kernel and they are
1782  *	required to use the same virtual addresses as the map they
1783  *	are referenced by (thus address translation between the main
1784  *	map and the submap is unnecessary).
1785  */
1786 
1787 boolean_t
1788 uvmfault_lookup(struct uvm_faultinfo *ufi, boolean_t write_lock)
1789 {
1790 	vm_map_t tmpmap;
1791 
1792 	/*
1793 	 * init ufi values for lookup.
1794 	 */
1795 	ufi->map = ufi->orig_map;
1796 	ufi->size = ufi->orig_size;
1797 
1798 	/*
1799 	 * keep going down levels until we are done.   note that there can
1800 	 * only be two levels so we won't loop very long.
1801 	 */
1802 	while (1) {
1803 		if (ufi->orig_rvaddr < ufi->map->min_offset ||
1804 		    ufi->orig_rvaddr >= ufi->map->max_offset)
1805 			return FALSE;
1806 
1807 		/* lock map */
1808 		if (write_lock) {
1809 			vm_map_lock(ufi->map);
1810 		} else {
1811 			vm_map_lock_read(ufi->map);
1812 		}
1813 
1814 		/* lookup */
1815 		if (!uvm_map_lookup_entry(ufi->map, ufi->orig_rvaddr,
1816 		    &ufi->entry)) {
1817 			uvmfault_unlockmaps(ufi, write_lock);
1818 			return FALSE;
1819 		}
1820 
1821 		/* reduce size if necessary */
1822 		if (ufi->entry->end - ufi->orig_rvaddr < ufi->size)
1823 			ufi->size = ufi->entry->end - ufi->orig_rvaddr;
1824 
1825 		/*
1826 		 * submap?    replace map with the submap and lookup again.
1827 		 * note: VAs in submaps must match VAs in main map.
1828 		 */
1829 		if (UVM_ET_ISSUBMAP(ufi->entry)) {
1830 			tmpmap = ufi->entry->object.sub_map;
1831 			uvmfault_unlockmaps(ufi, write_lock);
1832 			ufi->map = tmpmap;
1833 			continue;
1834 		}
1835 
1836 		/*
1837 		 * got it!
1838 		 */
1839 		ufi->mapv = ufi->map->timestamp;
1840 		return TRUE;
1841 
1842 	}	/* while loop */
1843 
1844 	/*NOTREACHED*/
1845 }
1846 
1847 /*
1848  * uvmfault_relock: attempt to relock the same version of the map
1849  *
1850  * => fault data structures should be unlocked before calling.
1851  * => if a success (TRUE) maps will be locked after call.
1852  */
1853 boolean_t
1854 uvmfault_relock(struct uvm_faultinfo *ufi)
1855 {
1856 	/*
1857 	 * ufi can be NULL when this isn't really a fault,
1858 	 * but merely paging in anon data.
1859 	 */
1860 	if (ufi == NULL) {
1861 		return TRUE;
1862 	}
1863 
1864 	counters_inc(uvmexp_counters, flt_relck);
1865 
1866 	/*
1867 	 * relock map.   fail if version mismatch (in which case nothing
1868 	 * gets locked).
1869 	 */
1870 	vm_map_lock_read(ufi->map);
1871 	if (ufi->mapv != ufi->map->timestamp) {
1872 		vm_map_unlock_read(ufi->map);
1873 		return FALSE;
1874 	}
1875 
1876 	counters_inc(uvmexp_counters, flt_relckok);
1877 	return TRUE;		/* got it! */
1878 }
1879