1 /* $OpenBSD: uvm_fault.c,v 1.52 2009/03/25 20:00:18 oga Exp $ */ 2 /* $NetBSD: uvm_fault.c,v 1.51 2000/08/06 00:22:53 thorpej Exp $ */ 3 4 /* 5 * 6 * Copyright (c) 1997 Charles D. Cranor and Washington University. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by Charles D. Cranor and 20 * Washington University. 21 * 4. The name of the author may not be used to endorse or promote products 22 * derived from this software without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 25 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 26 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 27 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 28 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 29 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 30 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 31 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 32 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 33 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 34 * 35 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp 36 */ 37 38 /* 39 * uvm_fault.c: fault handler 40 */ 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/proc.h> 46 #include <sys/malloc.h> 47 #include <sys/mman.h> 48 #include <sys/user.h> 49 50 #include <uvm/uvm.h> 51 52 /* 53 * 54 * a word on page faults: 55 * 56 * types of page faults we handle: 57 * 58 * CASE 1: upper layer faults CASE 2: lower layer faults 59 * 60 * CASE 1A CASE 1B CASE 2A CASE 2B 61 * read/write1 write>1 read/write +-cow_write/zero 62 * | | | | 63 * +--|--+ +--|--+ +-----+ + | + | +-----+ 64 * amap | V | | ----------->new| | | | ^ | 65 * +-----+ +-----+ +-----+ + | + | +--|--+ 66 * | | | 67 * +-----+ +-----+ +--|--+ | +--|--+ 68 * uobj | d/c | | d/c | | V | +----| | 69 * +-----+ +-----+ +-----+ +-----+ 70 * 71 * d/c = don't care 72 * 73 * case [0]: layerless fault 74 * no amap or uobj is present. this is an error. 75 * 76 * case [1]: upper layer fault [anon active] 77 * 1A: [read] or [write with anon->an_ref == 1] 78 * I/O takes place in top level anon and uobj is not touched. 79 * 1B: [write with anon->an_ref > 1] 80 * new anon is alloc'd and data is copied off ["COW"] 81 * 82 * case [2]: lower layer fault [uobj] 83 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area] 84 * I/O takes place directly in object. 85 * 2B: [write to copy_on_write] or [read on NULL uobj] 86 * data is "promoted" from uobj to a new anon. 87 * if uobj is null, then we zero fill. 88 * 89 * we follow the standard UVM locking protocol ordering: 90 * 91 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ) 92 * we hold a PG_BUSY page if we unlock for I/O 93 * 94 * 95 * the code is structured as follows: 96 * 97 * - init the "IN" params in the ufi structure 98 * ReFault: 99 * - do lookups [locks maps], check protection, handle needs_copy 100 * - check for case 0 fault (error) 101 * - establish "range" of fault 102 * - if we have an amap lock it and extract the anons 103 * - if sequential advice deactivate pages behind us 104 * - at the same time check pmap for unmapped areas and anon for pages 105 * that we could map in (and do map it if found) 106 * - check object for resident pages that we could map in 107 * - if (case 2) goto Case2 108 * - >>> handle case 1 109 * - ensure source anon is resident in RAM 110 * - if case 1B alloc new anon and copy from source 111 * - map the correct page in 112 * Case2: 113 * - >>> handle case 2 114 * - ensure source page is resident (if uobj) 115 * - if case 2B alloc new anon and copy from source (could be zero 116 * fill if uobj == NULL) 117 * - map the correct page in 118 * - done! 119 * 120 * note on paging: 121 * if we have to do I/O we place a PG_BUSY page in the correct object, 122 * unlock everything, and do the I/O. when I/O is done we must reverify 123 * the state of the world before assuming that our data structures are 124 * valid. [because mappings could change while the map is unlocked] 125 * 126 * alternative 1: unbusy the page in question and restart the page fault 127 * from the top (ReFault). this is easy but does not take advantage 128 * of the information that we already have from our previous lookup, 129 * although it is possible that the "hints" in the vm_map will help here. 130 * 131 * alternative 2: the system already keeps track of a "version" number of 132 * a map. [i.e. every time you write-lock a map (e.g. to change a 133 * mapping) you bump the version number up by one...] so, we can save 134 * the version number of the map before we release the lock and start I/O. 135 * then when I/O is done we can relock and check the version numbers 136 * to see if anything changed. this might save us some over 1 because 137 * we don't have to unbusy the page and may be less compares(?). 138 * 139 * alternative 3: put in backpointers or a way to "hold" part of a map 140 * in place while I/O is in progress. this could be complex to 141 * implement (especially with structures like amap that can be referenced 142 * by multiple map entries, and figuring out what should wait could be 143 * complex as well...). 144 * 145 * given that we are not currently multiprocessor or multithreaded we might 146 * as well choose alternative 2 now. maybe alternative 3 would be useful 147 * in the future. XXX keep in mind for future consideration//rechecking. 148 */ 149 150 /* 151 * local data structures 152 */ 153 154 struct uvm_advice { 155 int advice; 156 int nback; 157 int nforw; 158 }; 159 160 /* 161 * page range array: 162 * note: index in array must match "advice" value 163 * XXX: borrowed numbers from freebsd. do they work well for us? 164 */ 165 166 static struct uvm_advice uvmadvice[] = { 167 { MADV_NORMAL, 3, 4 }, 168 { MADV_RANDOM, 0, 0 }, 169 { MADV_SEQUENTIAL, 8, 7}, 170 }; 171 172 #define UVM_MAXRANGE 16 /* must be max() of nback+nforw+1 */ 173 174 /* 175 * private prototypes 176 */ 177 178 static void uvmfault_amapcopy(struct uvm_faultinfo *); 179 static __inline void uvmfault_anonflush(struct vm_anon **, int); 180 void uvmfault_unlockmaps(struct uvm_faultinfo *, boolean_t); 181 182 /* 183 * inline functions 184 */ 185 186 /* 187 * uvmfault_anonflush: try and deactivate pages in specified anons 188 * 189 * => does not have to deactivate page if it is busy 190 */ 191 192 static __inline void 193 uvmfault_anonflush(struct vm_anon **anons, int n) 194 { 195 int lcv; 196 struct vm_page *pg; 197 198 for (lcv = 0 ; lcv < n ; lcv++) { 199 if (anons[lcv] == NULL) 200 continue; 201 simple_lock(&anons[lcv]->an_lock); 202 pg = anons[lcv]->an_page; 203 if (pg && (pg->pg_flags & PG_BUSY) == 0 && pg->loan_count == 0) { 204 uvm_lock_pageq(); 205 if (pg->wire_count == 0) { 206 #ifdef UBC 207 pmap_clear_reference(pg); 208 #else 209 pmap_page_protect(pg, VM_PROT_NONE); 210 #endif 211 uvm_pagedeactivate(pg); 212 } 213 uvm_unlock_pageq(); 214 } 215 simple_unlock(&anons[lcv]->an_lock); 216 } 217 } 218 219 /* 220 * normal functions 221 */ 222 223 /* 224 * uvmfault_amapcopy: clear "needs_copy" in a map. 225 * 226 * => called with VM data structures unlocked (usually, see below) 227 * => we get a write lock on the maps and clear needs_copy for a VA 228 * => if we are out of RAM we sleep (waiting for more) 229 */ 230 231 static void 232 uvmfault_amapcopy(struct uvm_faultinfo *ufi) 233 { 234 235 /* 236 * while we haven't done the job 237 */ 238 239 while (1) { 240 241 /* 242 * no mapping? give up. 243 */ 244 245 if (uvmfault_lookup(ufi, TRUE) == FALSE) 246 return; 247 248 /* 249 * copy if needed. 250 */ 251 252 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) 253 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE, 254 ufi->orig_rvaddr, ufi->orig_rvaddr + 1); 255 256 /* 257 * didn't work? must be out of RAM. unlock and sleep. 258 */ 259 260 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) { 261 uvmfault_unlockmaps(ufi, TRUE); 262 uvm_wait("fltamapcopy"); 263 continue; 264 } 265 266 /* 267 * got it! unlock and return. 268 */ 269 270 uvmfault_unlockmaps(ufi, TRUE); 271 return; 272 } 273 /*NOTREACHED*/ 274 } 275 276 /* 277 * uvmfault_anonget: get data in an anon into a non-busy, non-released 278 * page in that anon. 279 * 280 * => maps, amap, and anon locked by caller. 281 * => if we fail (result != VM_PAGER_OK) we unlock everything. 282 * => if we are successful, we return with everything still locked. 283 * => we don't move the page on the queues [gets moved later] 284 * => if we allocate a new page [we_own], it gets put on the queues. 285 * either way, the result is that the page is on the queues at return time 286 * => for pages which are on loan from a uvm_object (and thus are not 287 * owned by the anon): if successful, we return with the owning object 288 * locked. the caller must unlock this object when it unlocks everything 289 * else. 290 */ 291 292 int 293 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap, 294 struct vm_anon *anon) 295 { 296 boolean_t we_own; /* we own anon's page? */ 297 boolean_t locked; /* did we relock? */ 298 struct vm_page *pg; 299 int result; 300 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist); 301 302 result = 0; /* XXX shut up gcc */ 303 uvmexp.fltanget++; 304 /* bump rusage counters */ 305 if (anon->an_page) 306 curproc->p_addr->u_stats.p_ru.ru_minflt++; 307 else 308 curproc->p_addr->u_stats.p_ru.ru_majflt++; 309 310 /* 311 * loop until we get it, or fail. 312 */ 313 314 while (1) { 315 316 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */ 317 pg = anon->an_page; 318 319 /* 320 * if there is a resident page and it is loaned, then anon 321 * may not own it. call out to uvm_anon_lockpage() to ensure 322 * the real owner of the page has been identified and locked. 323 */ 324 325 if (pg && pg->loan_count) 326 pg = uvm_anon_lockloanpg(anon); 327 328 /* 329 * page there? make sure it is not busy/released. 330 */ 331 332 if (pg) { 333 334 /* 335 * at this point, if the page has a uobject [meaning 336 * we have it on loan], then that uobject is locked 337 * by us! if the page is busy, we drop all the 338 * locks (including uobject) and try again. 339 */ 340 341 if ((pg->pg_flags & (PG_BUSY|PG_RELEASED)) == 0) { 342 UVMHIST_LOG(maphist, "<- OK",0,0,0,0); 343 return (VM_PAGER_OK); 344 } 345 atomic_setbits_int(&pg->pg_flags, PG_WANTED); 346 uvmexp.fltpgwait++; 347 348 /* 349 * the last unlock must be an atomic unlock+wait on 350 * the owner of page 351 */ 352 if (pg->uobject) { /* owner is uobject ? */ 353 uvmfault_unlockall(ufi, amap, NULL, anon); 354 UVMHIST_LOG(maphist, " unlock+wait on uobj",0, 355 0,0,0); 356 UVM_UNLOCK_AND_WAIT(pg, 357 &pg->uobject->vmobjlock, 358 FALSE, "anonget1",0); 359 } else { 360 /* anon owns page */ 361 uvmfault_unlockall(ufi, amap, NULL, NULL); 362 UVMHIST_LOG(maphist, " unlock+wait on anon",0, 363 0,0,0); 364 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0, 365 "anonget2",0); 366 } 367 /* ready to relock and try again */ 368 369 } else { 370 371 /* 372 * no page, we must try and bring it in. 373 */ 374 pg = uvm_pagealloc(NULL, 0, anon, 0); 375 376 if (pg == NULL) { /* out of RAM. */ 377 378 uvmfault_unlockall(ufi, amap, NULL, anon); 379 uvmexp.fltnoram++; 380 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0, 381 0,0,0); 382 uvm_wait("flt_noram1"); 383 /* ready to relock and try again */ 384 385 } else { 386 387 /* we set the PG_BUSY bit */ 388 we_own = TRUE; 389 uvmfault_unlockall(ufi, amap, NULL, anon); 390 391 /* 392 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN 393 * page into the uvm_swap_get function with 394 * all data structures unlocked. note that 395 * it is ok to read an_swslot here because 396 * we hold PG_BUSY on the page. 397 */ 398 uvmexp.pageins++; 399 result = uvm_swap_get(pg, anon->an_swslot, 400 PGO_SYNCIO); 401 402 /* 403 * we clean up after the i/o below in the 404 * "we_own" case 405 */ 406 /* ready to relock and try again */ 407 } 408 } 409 410 /* 411 * now relock and try again 412 */ 413 414 locked = uvmfault_relock(ufi); 415 if (locked || we_own) 416 simple_lock(&anon->an_lock); 417 418 /* 419 * if we own the page (i.e. we set PG_BUSY), then we need 420 * to clean up after the I/O. there are three cases to 421 * consider: 422 * [1] page released during I/O: free anon and ReFault. 423 * [2] I/O not OK. free the page and cause the fault 424 * to fail. 425 * [3] I/O OK! activate the page and sync with the 426 * non-we_own case (i.e. drop anon lock if not locked). 427 */ 428 429 if (we_own) { 430 431 if (pg->pg_flags & PG_WANTED) { 432 /* still holding object lock */ 433 wakeup(pg); 434 } 435 /* un-busy! */ 436 atomic_clearbits_int(&pg->pg_flags, 437 PG_WANTED|PG_BUSY|PG_FAKE); 438 UVM_PAGE_OWN(pg, NULL); 439 440 /* 441 * if we were RELEASED during I/O, then our anon is 442 * no longer part of an amap. we need to free the 443 * anon and try again. 444 */ 445 if (pg->pg_flags & PG_RELEASED) { 446 pmap_page_protect(pg, VM_PROT_NONE); 447 simple_unlock(&anon->an_lock); 448 uvm_anfree(anon); /* frees page for us */ 449 if (locked) 450 uvmfault_unlockall(ufi, amap, NULL, 451 NULL); 452 uvmexp.fltpgrele++; 453 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0); 454 return (VM_PAGER_REFAULT); /* refault! */ 455 } 456 457 if (result != VM_PAGER_OK) { 458 KASSERT(result != VM_PAGER_PEND); 459 460 /* remove page from anon */ 461 anon->an_page = NULL; 462 463 /* 464 * remove the swap slot from the anon 465 * and mark the anon as having no real slot. 466 * don't free the swap slot, thus preventing 467 * it from being used again. 468 */ 469 uvm_swap_markbad(anon->an_swslot, 1); 470 anon->an_swslot = SWSLOT_BAD; 471 472 /* 473 * note: page was never !PG_BUSY, so it 474 * can't be mapped and thus no need to 475 * pmap_page_protect it... 476 */ 477 uvm_lock_pageq(); 478 uvm_pagefree(pg); 479 uvm_unlock_pageq(); 480 481 if (locked) 482 uvmfault_unlockall(ufi, amap, NULL, 483 anon); 484 else 485 simple_unlock(&anon->an_lock); 486 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0); 487 return (VM_PAGER_ERROR); 488 } 489 490 /* 491 * must be OK, clear modify (already PG_CLEAN) 492 * and activate 493 */ 494 pmap_clear_modify(pg); 495 uvm_lock_pageq(); 496 uvm_pageactivate(pg); 497 uvm_unlock_pageq(); 498 if (!locked) 499 simple_unlock(&anon->an_lock); 500 } 501 502 /* 503 * we were not able to relock. restart fault. 504 */ 505 506 if (!locked) { 507 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0); 508 return (VM_PAGER_REFAULT); 509 } 510 511 /* 512 * verify no one has touched the amap and moved the anon on us. 513 */ 514 515 if (ufi != NULL && 516 amap_lookup(&ufi->entry->aref, 517 ufi->orig_rvaddr - ufi->entry->start) != anon) { 518 519 uvmfault_unlockall(ufi, amap, NULL, anon); 520 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0); 521 return (VM_PAGER_REFAULT); 522 } 523 524 /* 525 * try it again! 526 */ 527 528 uvmexp.fltanretry++; 529 continue; 530 531 } /* while (1) */ 532 533 /*NOTREACHED*/ 534 } 535 536 /* 537 * F A U L T - m a i n e n t r y p o i n t 538 */ 539 540 /* 541 * uvm_fault: page fault handler 542 * 543 * => called from MD code to resolve a page fault 544 * => VM data structures usually should be unlocked. however, it is 545 * possible to call here with the main map locked if the caller 546 * gets a write lock, sets it recursive, and then calls us (c.f. 547 * uvm_map_pageable). this should be avoided because it keeps 548 * the map locked off during I/O. 549 */ 550 551 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \ 552 ~VM_PROT_WRITE : VM_PROT_ALL) 553 554 int 555 uvm_fault(vm_map_t orig_map, vaddr_t vaddr, vm_fault_t fault_type, 556 vm_prot_t access_type) 557 { 558 struct uvm_faultinfo ufi; 559 vm_prot_t enter_prot; 560 boolean_t wired, narrow, promote, locked, shadowed; 561 int npages, nback, nforw, centeridx, result, lcv, gotpages; 562 vaddr_t startva, currva; 563 voff_t uoff; 564 paddr_t pa; 565 struct vm_amap *amap; 566 struct uvm_object *uobj; 567 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon; 568 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage; 569 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist); 570 571 UVMHIST_LOG(maphist, "(map=%p, vaddr=0x%lx, ft=%ld, at=%ld)", 572 orig_map, vaddr, fault_type, access_type); 573 574 anon = NULL; 575 pg = NULL; 576 577 uvmexp.faults++; /* XXX: locking? */ 578 579 /* 580 * init the IN parameters in the ufi 581 */ 582 583 ufi.orig_map = orig_map; 584 ufi.orig_rvaddr = trunc_page(vaddr); 585 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */ 586 if (fault_type == VM_FAULT_WIRE) 587 narrow = TRUE; /* don't look for neighborhood 588 * pages on wire */ 589 else 590 narrow = FALSE; /* normal fault */ 591 592 /* 593 * "goto ReFault" means restart the page fault from ground zero. 594 */ 595 ReFault: 596 597 /* 598 * lookup and lock the maps 599 */ 600 601 if (uvmfault_lookup(&ufi, FALSE) == FALSE) { 602 UVMHIST_LOG(maphist, "<- no mapping @ 0x%lx", vaddr, 0,0,0); 603 return (EFAULT); 604 } 605 /* locked: maps(read) */ 606 607 #ifdef DIAGNOSTIC 608 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) 609 panic("uvm_fault: fault on non-pageable map (%p, 0x%lx)", 610 ufi.map, vaddr); 611 #endif 612 613 /* 614 * check protection 615 */ 616 617 if ((ufi.entry->protection & access_type) != access_type) { 618 UVMHIST_LOG(maphist, 619 "<- protection failure (prot=0x%lx, access=0x%lx)", 620 ufi.entry->protection, access_type, 0, 0); 621 uvmfault_unlockmaps(&ufi, FALSE); 622 return (EACCES); 623 } 624 625 /* 626 * "enter_prot" is the protection we want to enter the page in at. 627 * for certain pages (e.g. copy-on-write pages) this protection can 628 * be more strict than ufi.entry->protection. "wired" means either 629 * the entry is wired or we are fault-wiring the pg. 630 */ 631 632 enter_prot = ufi.entry->protection; 633 wired = VM_MAPENT_ISWIRED(ufi.entry) || (fault_type == VM_FAULT_WIRE); 634 if (wired) 635 access_type = enter_prot; /* full access for wired */ 636 637 /* 638 * handle "needs_copy" case. if we need to copy the amap we will 639 * have to drop our readlock and relock it with a write lock. (we 640 * need a write lock to change anything in a map entry [e.g. 641 * needs_copy]). 642 */ 643 644 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) { 645 if ((access_type & VM_PROT_WRITE) || 646 (ufi.entry->object.uvm_obj == NULL)) { 647 /* need to clear */ 648 UVMHIST_LOG(maphist, 649 " need to clear needs_copy and refault",0,0,0,0); 650 uvmfault_unlockmaps(&ufi, FALSE); 651 uvmfault_amapcopy(&ufi); 652 uvmexp.fltamcopy++; 653 goto ReFault; 654 655 } else { 656 657 /* 658 * ensure that we pmap_enter page R/O since 659 * needs_copy is still true 660 */ 661 enter_prot &= ~VM_PROT_WRITE; 662 663 } 664 } 665 666 /* 667 * identify the players 668 */ 669 670 amap = ufi.entry->aref.ar_amap; /* top layer */ 671 uobj = ufi.entry->object.uvm_obj; /* bottom layer */ 672 673 /* 674 * check for a case 0 fault. if nothing backing the entry then 675 * error now. 676 */ 677 678 if (amap == NULL && uobj == NULL) { 679 uvmfault_unlockmaps(&ufi, FALSE); 680 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0); 681 return (EFAULT); 682 } 683 684 /* 685 * establish range of interest based on advice from mapper 686 * and then clip to fit map entry. note that we only want 687 * to do this the first time through the fault. if we 688 * ReFault we will disable this by setting "narrow" to true. 689 */ 690 691 if (narrow == FALSE) { 692 693 /* wide fault (!narrow) */ 694 KASSERT(uvmadvice[ufi.entry->advice].advice == 695 ufi.entry->advice); 696 nback = min(uvmadvice[ufi.entry->advice].nback, 697 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT); 698 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT); 699 nforw = min(uvmadvice[ufi.entry->advice].nforw, 700 ((ufi.entry->end - ufi.orig_rvaddr) >> 701 PAGE_SHIFT) - 1); 702 /* 703 * note: "-1" because we don't want to count the 704 * faulting page as forw 705 */ 706 npages = nback + nforw + 1; 707 centeridx = nback; 708 709 narrow = TRUE; /* ensure only once per-fault */ 710 711 } else { 712 713 /* narrow fault! */ 714 nback = nforw = 0; 715 startva = ufi.orig_rvaddr; 716 npages = 1; 717 centeridx = 0; 718 719 } 720 721 /* locked: maps(read) */ 722 UVMHIST_LOG(maphist, " narrow=%ld, back=%ld, forw=%ld, startva=0x%lx", 723 narrow, nback, nforw, startva); 724 UVMHIST_LOG(maphist, " entry=%p, amap=%p, obj=%p", ufi.entry, 725 amap, uobj, 0); 726 727 /* 728 * if we've got an amap, lock it and extract current anons. 729 */ 730 731 if (amap) { 732 anons = anons_store; 733 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start, 734 anons, npages); 735 } else { 736 anons = NULL; /* to be safe */ 737 } 738 739 /* locked: maps(read), amap(if there) */ 740 741 /* 742 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages 743 * now and then forget about them (for the rest of the fault). 744 */ 745 746 if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) { 747 748 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages", 749 0,0,0,0); 750 /* flush back-page anons? */ 751 if (amap) 752 uvmfault_anonflush(anons, nback); 753 754 /* flush object? */ 755 if (uobj) { 756 uoff = (startva - ufi.entry->start) + ufi.entry->offset; 757 simple_lock(&uobj->vmobjlock); 758 (void) uobj->pgops->pgo_flush(uobj, uoff, uoff + 759 (nback << PAGE_SHIFT), PGO_DEACTIVATE); 760 simple_unlock(&uobj->vmobjlock); 761 } 762 763 /* now forget about the backpages */ 764 if (amap) 765 anons += nback; 766 startva += (nback << PAGE_SHIFT); 767 npages -= nback; 768 centeridx = 0; 769 } 770 771 /* locked: maps(read), amap(if there) */ 772 773 /* 774 * map in the backpages and frontpages we found in the amap in hopes 775 * of preventing future faults. we also init the pages[] array as 776 * we go. 777 */ 778 779 currva = startva; 780 shadowed = FALSE; 781 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) { 782 783 /* 784 * dont play with VAs that are already mapped 785 * except for center) 786 */ 787 if (lcv != centeridx && 788 pmap_extract(ufi.orig_map->pmap, currva, &pa)) { 789 pages[lcv] = PGO_DONTCARE; 790 continue; 791 } 792 793 /* 794 * unmapped or center page. check if any anon at this level. 795 */ 796 if (amap == NULL || anons[lcv] == NULL) { 797 pages[lcv] = NULL; 798 continue; 799 } 800 801 /* 802 * check for present page and map if possible. re-activate it. 803 */ 804 805 pages[lcv] = PGO_DONTCARE; 806 if (lcv == centeridx) { /* save center for later! */ 807 shadowed = TRUE; 808 continue; 809 } 810 anon = anons[lcv]; 811 simple_lock(&anon->an_lock); 812 /* ignore loaned pages */ 813 if (anon->an_page && anon->an_page->loan_count == 0 && 814 (anon->an_page->pg_flags & (PG_RELEASED|PG_BUSY)) == 0) { 815 uvm_lock_pageq(); 816 uvm_pageactivate(anon->an_page); /* reactivate */ 817 uvm_unlock_pageq(); 818 UVMHIST_LOG(maphist, 819 " MAPPING: n anon: pm=%p, va=0x%lx, pg=%p", 820 ufi.orig_map->pmap, currva, anon->an_page, 0); 821 uvmexp.fltnamap++; 822 823 /* 824 * Since this isn't the page that's actually faulting, 825 * ignore pmap_enter() failures; it's not critical 826 * that we enter these right now. 827 */ 828 829 (void) pmap_enter(ufi.orig_map->pmap, currva, 830 VM_PAGE_TO_PHYS(anon->an_page), 831 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) : 832 enter_prot, 833 PMAP_CANFAIL | 834 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0)); 835 } 836 simple_unlock(&anon->an_lock); 837 pmap_update(ufi.orig_map->pmap); 838 } 839 840 /* locked: maps(read), amap(if there) */ 841 /* (shadowed == TRUE) if there is an anon at the faulting address */ 842 UVMHIST_LOG(maphist, " shadowed=%ld, will_get=%ld", shadowed, 843 (uobj && shadowed == FALSE),0,0); 844 845 /* 846 * note that if we are really short of RAM we could sleep in the above 847 * call to pmap_enter with everything locked. bad? 848 * 849 * XXX Actually, that is bad; pmap_enter() should just fail in that 850 * XXX case. --thorpej 851 */ 852 853 /* 854 * if the desired page is not shadowed by the amap and we have a 855 * backing object, then we check to see if the backing object would 856 * prefer to handle the fault itself (rather than letting us do it 857 * with the usual pgo_get hook). the backing object signals this by 858 * providing a pgo_fault routine. 859 */ 860 861 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) { 862 simple_lock(&uobj->vmobjlock); 863 864 /* locked: maps(read), amap (if there), uobj */ 865 result = uobj->pgops->pgo_fault(&ufi, startva, pages, npages, 866 centeridx, fault_type, access_type, 867 PGO_LOCKED); 868 869 /* locked: nothing, pgo_fault has unlocked everything */ 870 871 if (result == VM_PAGER_OK) 872 return (0); /* pgo_fault did pmap enter */ 873 else if (result == VM_PAGER_REFAULT) 874 goto ReFault; /* try again! */ 875 else 876 return (EACCES); 877 } 878 879 /* 880 * now, if the desired page is not shadowed by the amap and we have 881 * a backing object that does not have a special fault routine, then 882 * we ask (with pgo_get) the object for resident pages that we care 883 * about and attempt to map them in. we do not let pgo_get block 884 * (PGO_LOCKED). 885 * 886 * ("get" has the option of doing a pmap_enter for us) 887 */ 888 889 if (uobj && shadowed == FALSE) { 890 simple_lock(&uobj->vmobjlock); 891 892 /* locked (!shadowed): maps(read), amap (if there), uobj */ 893 /* 894 * the following call to pgo_get does _not_ change locking state 895 */ 896 897 uvmexp.fltlget++; 898 gotpages = npages; 899 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset + 900 (startva - ufi.entry->start), 901 pages, &gotpages, centeridx, 902 access_type & MASK(ufi.entry), 903 ufi.entry->advice, PGO_LOCKED); 904 905 /* 906 * check for pages to map, if we got any 907 */ 908 909 uobjpage = NULL; 910 911 if (gotpages) { 912 currva = startva; 913 for (lcv = 0 ; lcv < npages ; 914 lcv++, currva += PAGE_SIZE) { 915 916 if (pages[lcv] == NULL || 917 pages[lcv] == PGO_DONTCARE) 918 continue; 919 920 KASSERT((pages[lcv]->pg_flags & PG_RELEASED) == 0); 921 922 /* 923 * if center page is resident and not 924 * PG_BUSY|PG_RELEASED then pgo_get 925 * made it PG_BUSY for us and gave 926 * us a handle to it. remember this 927 * page as "uobjpage." (for later use). 928 */ 929 930 if (lcv == centeridx) { 931 uobjpage = pages[lcv]; 932 UVMHIST_LOG(maphist, " got uobjpage " 933 "(%p) with locked get", 934 uobjpage, 0,0,0); 935 continue; 936 } 937 938 /* 939 * note: calling pgo_get with locked data 940 * structures returns us pages which are 941 * neither busy nor released, so we don't 942 * need to check for this. we can just 943 * directly enter the page (after moving it 944 * to the head of the active queue [useful?]). 945 */ 946 947 uvm_lock_pageq(); 948 uvm_pageactivate(pages[lcv]); /* reactivate */ 949 uvm_unlock_pageq(); 950 UVMHIST_LOG(maphist, 951 " MAPPING: n obj: pm=%p, va=0x%lx, pg=%p", 952 ufi.orig_map->pmap, currva, pages[lcv], 0); 953 uvmexp.fltnomap++; 954 955 /* 956 * Since this page isn't the page that's 957 * actually fauling, ignore pmap_enter() 958 * failures; it's not critical that we 959 * enter these right now. 960 */ 961 962 (void) pmap_enter(ufi.orig_map->pmap, currva, 963 VM_PAGE_TO_PHYS(pages[lcv]), 964 enter_prot & MASK(ufi.entry), 965 PMAP_CANFAIL | 966 (wired ? PMAP_WIRED : 0)); 967 968 /* 969 * NOTE: page can't be PG_WANTED or PG_RELEASED 970 * because we've held the lock the whole time 971 * we've had the handle. 972 */ 973 974 atomic_clearbits_int(&pages[lcv]->pg_flags, 975 PG_BUSY); 976 UVM_PAGE_OWN(pages[lcv], NULL); 977 } /* for "lcv" loop */ 978 pmap_update(ufi.orig_map->pmap); 979 } /* "gotpages" != 0 */ 980 /* note: object still _locked_ */ 981 } else { 982 uobjpage = NULL; 983 } 984 985 /* locked (shadowed): maps(read), amap */ 986 /* locked (!shadowed): maps(read), amap(if there), 987 uobj(if !null), uobjpage(if !null) */ 988 989 /* 990 * note that at this point we are done with any front or back pages. 991 * we are now going to focus on the center page (i.e. the one we've 992 * faulted on). if we have faulted on the top (anon) layer 993 * [i.e. case 1], then the anon we want is anons[centeridx] (we have 994 * not touched it yet). if we have faulted on the bottom (uobj) 995 * layer [i.e. case 2] and the page was both present and available, 996 * then we've got a pointer to it as "uobjpage" and we've already 997 * made it BUSY. 998 */ 999 1000 /* 1001 * there are four possible cases we must address: 1A, 1B, 2A, and 2B 1002 */ 1003 1004 /* 1005 * redirect case 2: if we are not shadowed, go to case 2. 1006 */ 1007 1008 if (shadowed == FALSE) 1009 goto Case2; 1010 1011 /* locked: maps(read), amap */ 1012 1013 /* 1014 * handle case 1: fault on an anon in our amap 1015 */ 1016 1017 anon = anons[centeridx]; 1018 UVMHIST_LOG(maphist, " case 1 fault: anon=%p", anon, 0,0,0); 1019 simple_lock(&anon->an_lock); 1020 1021 /* locked: maps(read), amap, anon */ 1022 1023 /* 1024 * no matter if we have case 1A or case 1B we are going to need to 1025 * have the anon's memory resident. ensure that now. 1026 */ 1027 1028 /* 1029 * let uvmfault_anonget do the dirty work. 1030 * if it fails (!OK) it will unlock everything for us. 1031 * if it succeeds, locks are still valid and locked. 1032 * also, if it is OK, then the anon's page is on the queues. 1033 * if the page is on loan from a uvm_object, then anonget will 1034 * lock that object for us if it does not fail. 1035 */ 1036 1037 result = uvmfault_anonget(&ufi, amap, anon); 1038 switch (result) { 1039 case VM_PAGER_OK: 1040 break; 1041 1042 case VM_PAGER_REFAULT: 1043 goto ReFault; 1044 1045 case VM_PAGER_ERROR: 1046 /* 1047 * An error occured while trying to bring in the 1048 * page -- this is the only error we return right 1049 * now. 1050 */ 1051 return (EACCES); /* XXX */ 1052 1053 default: 1054 #ifdef DIAGNOSTIC 1055 panic("uvm_fault: uvmfault_anonget -> %d", result); 1056 #else 1057 return (EACCES); 1058 #endif 1059 } 1060 1061 /* 1062 * uobj is non null if the page is on loan from an object (i.e. uobj) 1063 */ 1064 1065 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */ 1066 1067 /* locked: maps(read), amap, anon, uobj(if one) */ 1068 1069 /* 1070 * special handling for loaned pages 1071 */ 1072 1073 if (anon->an_page->loan_count) { 1074 1075 if ((access_type & VM_PROT_WRITE) == 0) { 1076 1077 /* 1078 * for read faults on loaned pages we just cap the 1079 * protection at read-only. 1080 */ 1081 1082 enter_prot = enter_prot & ~VM_PROT_WRITE; 1083 1084 } else { 1085 /* 1086 * note that we can't allow writes into a loaned page! 1087 * 1088 * if we have a write fault on a loaned page in an 1089 * anon then we need to look at the anon's ref count. 1090 * if it is greater than one then we are going to do 1091 * a normal copy-on-write fault into a new anon (this 1092 * is not a problem). however, if the reference count 1093 * is one (a case where we would normally allow a 1094 * write directly to the page) then we need to kill 1095 * the loan before we continue. 1096 */ 1097 1098 /* >1 case is already ok */ 1099 if (anon->an_ref == 1) { 1100 1101 /* get new un-owned replacement page */ 1102 pg = uvm_pagealloc(NULL, 0, NULL, 0); 1103 if (pg == NULL) { 1104 uvmfault_unlockall(&ufi, amap, uobj, 1105 anon); 1106 uvm_wait("flt_noram2"); 1107 goto ReFault; 1108 } 1109 1110 /* 1111 * copy data, kill loan, and drop uobj lock 1112 * (if any) 1113 */ 1114 /* copy old -> new */ 1115 uvm_pagecopy(anon->an_page, pg); 1116 1117 /* force reload */ 1118 pmap_page_protect(anon->an_page, 1119 VM_PROT_NONE); 1120 uvm_lock_pageq(); /* KILL loan */ 1121 if (uobj) 1122 /* if we were loaning */ 1123 anon->an_page->loan_count--; 1124 anon->an_page->uanon = NULL; 1125 /* in case we owned */ 1126 atomic_clearbits_int( 1127 &anon->an_page->pg_flags, PQ_ANON); 1128 uvm_pageactivate(pg); 1129 uvm_unlock_pageq(); 1130 if (uobj) { 1131 simple_unlock(&uobj->vmobjlock); 1132 uobj = NULL; 1133 } 1134 1135 /* install new page in anon */ 1136 anon->an_page = pg; 1137 pg->uanon = anon; 1138 atomic_setbits_int(&pg->pg_flags, PQ_ANON); 1139 atomic_clearbits_int(&pg->pg_flags, 1140 PG_BUSY|PG_FAKE); 1141 UVM_PAGE_OWN(pg, NULL); 1142 1143 /* done! */ 1144 } /* ref == 1 */ 1145 } /* write fault */ 1146 } /* loan count */ 1147 1148 /* 1149 * if we are case 1B then we will need to allocate a new blank 1150 * anon to transfer the data into. note that we have a lock 1151 * on anon, so no one can busy or release the page until we are done. 1152 * also note that the ref count can't drop to zero here because 1153 * it is > 1 and we are only dropping one ref. 1154 * 1155 * in the (hopefully very rare) case that we are out of RAM we 1156 * will unlock, wait for more RAM, and refault. 1157 * 1158 * if we are out of anon VM we kill the process (XXX: could wait?). 1159 */ 1160 1161 if ((access_type & VM_PROT_WRITE) != 0 && anon->an_ref > 1) { 1162 1163 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0); 1164 uvmexp.flt_acow++; 1165 oanon = anon; /* oanon = old, locked anon */ 1166 anon = uvm_analloc(); 1167 if (anon) { 1168 pg = uvm_pagealloc(NULL, 0, anon, 0); 1169 } 1170 1171 /* check for out of RAM */ 1172 if (anon == NULL || pg == NULL) { 1173 if (anon) 1174 uvm_anfree(anon); 1175 uvmfault_unlockall(&ufi, amap, uobj, oanon); 1176 KASSERT(uvmexp.swpgonly <= uvmexp.swpages); 1177 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) { 1178 UVMHIST_LOG(maphist, 1179 "<- failed. out of VM",0,0,0,0); 1180 uvmexp.fltnoanon++; 1181 return (ENOMEM); 1182 } 1183 1184 uvmexp.fltnoram++; 1185 uvm_wait("flt_noram3"); /* out of RAM, wait for more */ 1186 goto ReFault; 1187 } 1188 1189 /* got all resources, replace anon with nanon */ 1190 1191 uvm_pagecopy(oanon->an_page, pg); /* pg now !PG_CLEAN */ 1192 /* un-busy! new page */ 1193 atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE); 1194 UVM_PAGE_OWN(pg, NULL); 1195 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start, 1196 anon, 1); 1197 1198 /* deref: can not drop to zero here by defn! */ 1199 oanon->an_ref--; 1200 1201 /* 1202 * note: oanon still locked. anon is _not_ locked, but we 1203 * have the sole references to in from amap which _is_ locked. 1204 * thus, no one can get at it until we are done with it. 1205 */ 1206 1207 } else { 1208 1209 uvmexp.flt_anon++; 1210 oanon = anon; /* old, locked anon is same as anon */ 1211 pg = anon->an_page; 1212 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */ 1213 enter_prot = enter_prot & ~VM_PROT_WRITE; 1214 1215 } 1216 1217 /* locked: maps(read), amap, oanon */ 1218 1219 /* 1220 * now map the page in ... 1221 * XXX: old fault unlocks object before pmap_enter. this seems 1222 * suspect since some other thread could blast the page out from 1223 * under us between the unlock and the pmap_enter. 1224 */ 1225 1226 UVMHIST_LOG(maphist, " MAPPING: anon: pm=%p, va=0x%lx, pg=%p", 1227 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0); 1228 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg), 1229 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) 1230 != 0) { 1231 /* 1232 * No need to undo what we did; we can simply think of 1233 * this as the pmap throwing away the mapping information. 1234 * 1235 * We do, however, have to go through the ReFault path, 1236 * as the map may change while we're asleep. 1237 */ 1238 uvmfault_unlockall(&ufi, amap, uobj, oanon); 1239 KASSERT(uvmexp.swpgonly <= uvmexp.swpages); 1240 if (uvmexp.swpgonly == uvmexp.swpages) { 1241 UVMHIST_LOG(maphist, 1242 "<- failed. out of VM",0,0,0,0); 1243 /* XXX instrumentation */ 1244 return (ENOMEM); 1245 } 1246 /* XXX instrumentation */ 1247 uvm_wait("flt_pmfail1"); 1248 goto ReFault; 1249 } 1250 1251 /* 1252 * ... update the page queues. 1253 */ 1254 1255 uvm_lock_pageq(); 1256 1257 if (fault_type == VM_FAULT_WIRE) { 1258 uvm_pagewire(pg); 1259 1260 /* 1261 * since the now-wired page cannot be paged out, 1262 * release its swap resources for others to use. 1263 * since an anon with no swap cannot be PG_CLEAN, 1264 * clear its clean flag now. 1265 */ 1266 atomic_clearbits_int(&pg->pg_flags, PG_CLEAN); 1267 uvm_anon_dropswap(anon); 1268 } else { 1269 /* activate it */ 1270 uvm_pageactivate(pg); 1271 } 1272 1273 uvm_unlock_pageq(); 1274 1275 /* 1276 * done case 1! finish up by unlocking everything and returning success 1277 */ 1278 1279 uvmfault_unlockall(&ufi, amap, uobj, oanon); 1280 pmap_update(ufi.orig_map->pmap); 1281 return (0); 1282 1283 1284 Case2: 1285 /* 1286 * handle case 2: faulting on backing object or zero fill 1287 */ 1288 1289 /* 1290 * locked: 1291 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null) 1292 */ 1293 1294 /* 1295 * note that uobjpage can not be PGO_DONTCARE at this point. we now 1296 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we 1297 * have a backing object, check and see if we are going to promote 1298 * the data up to an anon during the fault. 1299 */ 1300 1301 if (uobj == NULL) { 1302 uobjpage = PGO_DONTCARE; 1303 promote = TRUE; /* always need anon here */ 1304 } else { 1305 KASSERT(uobjpage != PGO_DONTCARE); 1306 promote = (access_type & VM_PROT_WRITE) && 1307 UVM_ET_ISCOPYONWRITE(ufi.entry); 1308 } 1309 UVMHIST_LOG(maphist, " case 2 fault: promote=%ld, zfill=%ld", 1310 promote, (uobj == NULL), 0,0); 1311 1312 /* 1313 * if uobjpage is not null then we do not need to do I/O to get the 1314 * uobjpage. 1315 * 1316 * if uobjpage is null, then we need to unlock and ask the pager to 1317 * get the data for us. once we have the data, we need to reverify 1318 * the state the world. we are currently not holding any resources. 1319 */ 1320 1321 if (uobjpage) { 1322 /* update rusage counters */ 1323 curproc->p_addr->u_stats.p_ru.ru_minflt++; 1324 } else { 1325 /* update rusage counters */ 1326 curproc->p_addr->u_stats.p_ru.ru_majflt++; 1327 1328 /* locked: maps(read), amap(if there), uobj */ 1329 uvmfault_unlockall(&ufi, amap, NULL, NULL); 1330 /* locked: uobj */ 1331 1332 uvmexp.fltget++; 1333 gotpages = 1; 1334 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset; 1335 result = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages, 1336 0, access_type & MASK(ufi.entry), ufi.entry->advice, 1337 PGO_SYNCIO); 1338 1339 /* locked: uobjpage(if result OK) */ 1340 1341 /* 1342 * recover from I/O 1343 */ 1344 1345 if (result != VM_PAGER_OK) { 1346 KASSERT(result != VM_PAGER_PEND); 1347 1348 if (result == VM_PAGER_AGAIN) { 1349 UVMHIST_LOG(maphist, 1350 " pgo_get says TRY AGAIN!",0,0,0,0); 1351 tsleep((caddr_t)&lbolt, PVM, "fltagain2", 0); 1352 goto ReFault; 1353 } 1354 1355 UVMHIST_LOG(maphist, "<- pgo_get failed (code %ld)", 1356 result, 0,0,0); 1357 return (EACCES); /* XXX i/o error */ 1358 } 1359 1360 /* locked: uobjpage */ 1361 1362 /* 1363 * re-verify the state of the world by first trying to relock 1364 * the maps. always relock the object. 1365 */ 1366 1367 locked = uvmfault_relock(&ufi); 1368 simple_lock(&uobj->vmobjlock); 1369 1370 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */ 1371 /* locked(!locked): uobj, uobjpage */ 1372 1373 /* 1374 * verify that the page has not be released and re-verify 1375 * that amap slot is still free. if there is a problem, 1376 * we unlock and clean up. 1377 */ 1378 1379 if ((uobjpage->pg_flags & PG_RELEASED) != 0 || 1380 (locked && amap && 1381 amap_lookup(&ufi.entry->aref, 1382 ufi.orig_rvaddr - ufi.entry->start))) { 1383 if (locked) 1384 uvmfault_unlockall(&ufi, amap, NULL, NULL); 1385 locked = FALSE; 1386 } 1387 1388 /* 1389 * didn't get the lock? release the page and retry. 1390 */ 1391 1392 if (locked == FALSE) { 1393 1394 UVMHIST_LOG(maphist, 1395 " wasn't able to relock after fault: retry", 1396 0,0,0,0); 1397 if (uobjpage->pg_flags & PG_WANTED) 1398 /* still holding object lock */ 1399 wakeup(uobjpage); 1400 1401 if (uobjpage->pg_flags & PG_RELEASED) { 1402 uvmexp.fltpgrele++; 1403 KASSERT(uobj->pgops->pgo_releasepg != NULL); 1404 1405 /* frees page */ 1406 if (uobj->pgops->pgo_releasepg(uobjpage,NULL)) 1407 /* unlock if still alive */ 1408 simple_unlock(&uobj->vmobjlock); 1409 goto ReFault; 1410 } 1411 1412 uvm_lock_pageq(); 1413 /* make sure it is in queues */ 1414 uvm_pageactivate(uobjpage); 1415 1416 uvm_unlock_pageq(); 1417 atomic_clearbits_int(&uobjpage->pg_flags, 1418 PG_BUSY|PG_WANTED); 1419 UVM_PAGE_OWN(uobjpage, NULL); 1420 simple_unlock(&uobj->vmobjlock); 1421 goto ReFault; 1422 1423 } 1424 1425 /* 1426 * we have the data in uobjpage which is PG_BUSY and 1427 * !PG_RELEASED. we are holding object lock (so the page 1428 * can't be released on us). 1429 */ 1430 1431 /* locked: maps(read), amap(if !null), uobj, uobjpage */ 1432 } 1433 1434 /* 1435 * locked: 1436 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj) 1437 */ 1438 1439 /* 1440 * notes: 1441 * - at this point uobjpage can not be NULL 1442 * - at this point uobjpage can not be PG_RELEASED (since we checked 1443 * for it above) 1444 * - at this point uobjpage could be PG_WANTED (handle later) 1445 */ 1446 1447 if (promote == FALSE) { 1448 1449 /* 1450 * we are not promoting. if the mapping is COW ensure that we 1451 * don't give more access than we should (e.g. when doing a read 1452 * fault on a COPYONWRITE mapping we want to map the COW page in 1453 * R/O even though the entry protection could be R/W). 1454 * 1455 * set "pg" to the page we want to map in (uobjpage, usually) 1456 */ 1457 1458 uvmexp.flt_obj++; 1459 if (UVM_ET_ISCOPYONWRITE(ufi.entry)) 1460 enter_prot &= ~VM_PROT_WRITE; 1461 pg = uobjpage; /* map in the actual object */ 1462 1463 /* assert(uobjpage != PGO_DONTCARE) */ 1464 1465 /* 1466 * we are faulting directly on the page. be careful 1467 * about writing to loaned pages... 1468 */ 1469 if (uobjpage->loan_count) { 1470 1471 if ((access_type & VM_PROT_WRITE) == 0) { 1472 /* read fault: cap the protection at readonly */ 1473 /* cap! */ 1474 enter_prot = enter_prot & ~VM_PROT_WRITE; 1475 } else { 1476 /* write fault: must break the loan here */ 1477 1478 /* alloc new un-owned page */ 1479 pg = uvm_pagealloc(NULL, 0, NULL, 0); 1480 1481 if (pg == NULL) { 1482 /* 1483 * drop ownership of page, it can't 1484 * be released 1485 */ 1486 if (uobjpage->pg_flags & PG_WANTED) 1487 wakeup(uobjpage); 1488 atomic_clearbits_int( 1489 &uobjpage->pg_flags, 1490 PG_BUSY|PG_WANTED); 1491 UVM_PAGE_OWN(uobjpage, NULL); 1492 1493 uvm_lock_pageq(); 1494 /* activate: we will need it later */ 1495 uvm_pageactivate(uobjpage); 1496 1497 uvm_unlock_pageq(); 1498 uvmfault_unlockall(&ufi, amap, uobj, 1499 NULL); 1500 UVMHIST_LOG(maphist, 1501 " out of RAM breaking loan, waiting", 1502 0,0,0,0); 1503 uvmexp.fltnoram++; 1504 uvm_wait("flt_noram4"); 1505 goto ReFault; 1506 } 1507 1508 /* 1509 * copy the data from the old page to the new 1510 * one and clear the fake/clean flags on the 1511 * new page (keep it busy). force a reload 1512 * of the old page by clearing it from all 1513 * pmaps. then lock the page queues to 1514 * rename the pages. 1515 */ 1516 uvm_pagecopy(uobjpage, pg); /* old -> new */ 1517 atomic_clearbits_int(&pg->pg_flags, 1518 PG_FAKE|PG_CLEAN); 1519 pmap_page_protect(uobjpage, VM_PROT_NONE); 1520 if (uobjpage->pg_flags & PG_WANTED) 1521 wakeup(uobjpage); 1522 /* uobj still locked */ 1523 atomic_clearbits_int(&uobjpage->pg_flags, 1524 PG_BUSY|PG_WANTED); 1525 UVM_PAGE_OWN(uobjpage, NULL); 1526 1527 uvm_lock_pageq(); 1528 uoff = uobjpage->offset; 1529 /* remove old page */ 1530 uvm_pagerealloc(uobjpage, NULL, 0); 1531 1532 /* 1533 * at this point we have absolutely no 1534 * control over uobjpage 1535 */ 1536 /* install new page */ 1537 uvm_pagerealloc(pg, uobj, uoff); 1538 uvm_unlock_pageq(); 1539 1540 /* 1541 * done! loan is broken and "pg" is 1542 * PG_BUSY. it can now replace uobjpage. 1543 */ 1544 1545 uobjpage = pg; 1546 1547 } /* write fault case */ 1548 } /* if loan_count */ 1549 1550 } else { 1551 1552 /* 1553 * if we are going to promote the data to an anon we 1554 * allocate a blank anon here and plug it into our amap. 1555 */ 1556 #ifdef DIAGNOSTIC 1557 if (amap == NULL) 1558 panic("uvm_fault: want to promote data, but no anon"); 1559 #endif 1560 1561 anon = uvm_analloc(); 1562 if (anon) { 1563 /* 1564 * In `Fill in data...' below, if 1565 * uobjpage == PGO_DONTCARE, we want 1566 * a zero'd, dirty page, so have 1567 * uvm_pagealloc() do that for us. 1568 */ 1569 pg = uvm_pagealloc(NULL, 0, anon, 1570 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0); 1571 } 1572 1573 /* 1574 * out of memory resources? 1575 */ 1576 if (anon == NULL || pg == NULL) { 1577 1578 /* 1579 * arg! must unbusy our page and fail or sleep. 1580 */ 1581 if (uobjpage != PGO_DONTCARE) { 1582 if (uobjpage->pg_flags & PG_WANTED) 1583 /* still holding object lock */ 1584 wakeup(uobjpage); 1585 1586 uvm_lock_pageq(); 1587 uvm_pageactivate(uobjpage); 1588 uvm_unlock_pageq(); 1589 atomic_clearbits_int(&uobjpage->pg_flags, 1590 PG_BUSY|PG_WANTED); 1591 UVM_PAGE_OWN(uobjpage, NULL); 1592 } 1593 1594 /* unlock and fail ... */ 1595 uvmfault_unlockall(&ufi, amap, uobj, NULL); 1596 KASSERT(uvmexp.swpgonly <= uvmexp.swpages); 1597 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) { 1598 UVMHIST_LOG(maphist, " promote: out of VM", 1599 0,0,0,0); 1600 uvmexp.fltnoanon++; 1601 return (ENOMEM); 1602 } 1603 1604 UVMHIST_LOG(maphist, " out of RAM, waiting for more", 1605 0,0,0,0); 1606 uvm_anfree(anon); 1607 uvmexp.fltnoram++; 1608 uvm_wait("flt_noram5"); 1609 goto ReFault; 1610 } 1611 1612 /* 1613 * fill in the data 1614 */ 1615 1616 if (uobjpage != PGO_DONTCARE) { 1617 uvmexp.flt_prcopy++; 1618 /* copy page [pg now dirty] */ 1619 uvm_pagecopy(uobjpage, pg); 1620 1621 /* 1622 * promote to shared amap? make sure all sharing 1623 * procs see it 1624 */ 1625 if ((amap_flags(amap) & AMAP_SHARED) != 0) { 1626 pmap_page_protect(uobjpage, VM_PROT_NONE); 1627 } 1628 1629 /* 1630 * dispose of uobjpage. it can't be PG_RELEASED 1631 * since we still hold the object lock. 1632 * drop handle to uobj as well. 1633 */ 1634 1635 if (uobjpage->pg_flags & PG_WANTED) 1636 /* still have the obj lock */ 1637 wakeup(uobjpage); 1638 atomic_clearbits_int(&uobjpage->pg_flags, 1639 PG_BUSY|PG_WANTED); 1640 UVM_PAGE_OWN(uobjpage, NULL); 1641 uvm_lock_pageq(); 1642 uvm_pageactivate(uobjpage); 1643 uvm_unlock_pageq(); 1644 simple_unlock(&uobj->vmobjlock); 1645 uobj = NULL; 1646 1647 UVMHIST_LOG(maphist, 1648 " promote uobjpage %p to anon/page %p/%p", 1649 uobjpage, anon, pg, 0); 1650 1651 } else { 1652 uvmexp.flt_przero++; 1653 /* 1654 * Page is zero'd and marked dirty by uvm_pagealloc() 1655 * above. 1656 */ 1657 UVMHIST_LOG(maphist," zero fill anon/page %p/%p", 1658 anon, pg, 0, 0); 1659 } 1660 1661 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start, 1662 anon, 0); 1663 } 1664 1665 /* 1666 * locked: 1667 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj) 1668 * 1669 * note: pg is either the uobjpage or the new page in the new anon 1670 */ 1671 1672 /* 1673 * all resources are present. we can now map it in and free our 1674 * resources. 1675 */ 1676 1677 UVMHIST_LOG(maphist, 1678 " MAPPING: case2: pm=%p, va=0x%lx, pg=%p, promote=%ld", 1679 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote); 1680 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg), 1681 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) 1682 != 0) { 1683 1684 /* 1685 * No need to undo what we did; we can simply think of 1686 * this as the pmap throwing away the mapping information. 1687 * 1688 * We do, however, have to go through the ReFault path, 1689 * as the map may change while we're asleep. 1690 */ 1691 1692 if (pg->pg_flags & PG_WANTED) 1693 wakeup(pg); /* lock still held */ 1694 1695 /* 1696 * note that pg can't be PG_RELEASED since we did not drop 1697 * the object lock since the last time we checked. 1698 */ 1699 1700 atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED); 1701 UVM_PAGE_OWN(pg, NULL); 1702 uvmfault_unlockall(&ufi, amap, uobj, NULL); 1703 KASSERT(uvmexp.swpgonly <= uvmexp.swpages); 1704 if (uvmexp.swpgonly == uvmexp.swpages) { 1705 UVMHIST_LOG(maphist, 1706 "<- failed. out of VM",0,0,0,0); 1707 /* XXX instrumentation */ 1708 return (ENOMEM); 1709 } 1710 /* XXX instrumentation */ 1711 uvm_wait("flt_pmfail2"); 1712 goto ReFault; 1713 } 1714 1715 uvm_lock_pageq(); 1716 1717 if (fault_type == VM_FAULT_WIRE) { 1718 uvm_pagewire(pg); 1719 if (pg->pg_flags & PQ_AOBJ) { 1720 1721 /* 1722 * since the now-wired page cannot be paged out, 1723 * release its swap resources for others to use. 1724 * since an aobj page with no swap cannot be PG_CLEAN, 1725 * clear its clean flag now. 1726 */ 1727 atomic_clearbits_int(&pg->pg_flags, PG_CLEAN); 1728 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT); 1729 } 1730 } else { 1731 /* activate it */ 1732 uvm_pageactivate(pg); 1733 } 1734 uvm_unlock_pageq(); 1735 1736 if (pg->pg_flags & PG_WANTED) 1737 wakeup(pg); /* lock still held */ 1738 1739 /* 1740 * note that pg can't be PG_RELEASED since we did not drop the object 1741 * lock since the last time we checked. 1742 */ 1743 1744 atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED); 1745 UVM_PAGE_OWN(pg, NULL); 1746 uvmfault_unlockall(&ufi, amap, uobj, NULL); 1747 pmap_update(ufi.orig_map->pmap); 1748 1749 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0); 1750 return (0); 1751 } 1752 1753 1754 /* 1755 * uvm_fault_wire: wire down a range of virtual addresses in a map. 1756 * 1757 * => map may be read-locked by caller, but MUST NOT be write-locked. 1758 * => if map is read-locked, any operations which may cause map to 1759 * be write-locked in uvm_fault() must be taken care of by 1760 * the caller. See uvm_map_pageable(). 1761 */ 1762 1763 int 1764 uvm_fault_wire(vm_map_t map, vaddr_t start, vaddr_t end, vm_prot_t access_type) 1765 { 1766 vaddr_t va; 1767 pmap_t pmap; 1768 int rv; 1769 1770 pmap = vm_map_pmap(map); 1771 1772 /* 1773 * now fault it in a page at a time. if the fault fails then we have 1774 * to undo what we have done. note that in uvm_fault VM_PROT_NONE 1775 * is replaced with the max protection if fault_type is VM_FAULT_WIRE. 1776 */ 1777 1778 for (va = start ; va < end ; va += PAGE_SIZE) { 1779 rv = uvm_fault(map, va, VM_FAULT_WIRE, access_type); 1780 if (rv) { 1781 if (va != start) { 1782 uvm_fault_unwire(map, start, va); 1783 } 1784 return (rv); 1785 } 1786 } 1787 1788 return (0); 1789 } 1790 1791 /* 1792 * uvm_fault_unwire(): unwire range of virtual space. 1793 */ 1794 1795 void 1796 uvm_fault_unwire(vm_map_t map, vaddr_t start, vaddr_t end) 1797 { 1798 1799 vm_map_lock_read(map); 1800 uvm_fault_unwire_locked(map, start, end); 1801 vm_map_unlock_read(map); 1802 } 1803 1804 /* 1805 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire(). 1806 * 1807 * => map must be at least read-locked. 1808 */ 1809 1810 void 1811 uvm_fault_unwire_locked(vm_map_t map, vaddr_t start, vaddr_t end) 1812 { 1813 vm_map_entry_t entry; 1814 pmap_t pmap = vm_map_pmap(map); 1815 vaddr_t va; 1816 paddr_t pa; 1817 struct vm_page *pg; 1818 1819 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0); 1820 1821 /* 1822 * we assume that the area we are unwiring has actually been wired 1823 * in the first place. this means that we should be able to extract 1824 * the PAs from the pmap. we also lock out the page daemon so that 1825 * we can call uvm_pageunwire. 1826 */ 1827 1828 uvm_lock_pageq(); 1829 1830 /* 1831 * find the beginning map entry for the region. 1832 */ 1833 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map)); 1834 if (uvm_map_lookup_entry(map, start, &entry) == FALSE) 1835 panic("uvm_fault_unwire_locked: address not in map"); 1836 1837 for (va = start; va < end ; va += PAGE_SIZE) { 1838 if (pmap_extract(pmap, va, &pa) == FALSE) 1839 continue; 1840 1841 /* 1842 * find the map entry for the current address. 1843 */ 1844 KASSERT(va >= entry->start); 1845 while (va >= entry->end) { 1846 KASSERT(entry->next != &map->header && 1847 entry->next->start <= entry->end); 1848 entry = entry->next; 1849 } 1850 1851 /* 1852 * if the entry is no longer wired, tell the pmap. 1853 */ 1854 if (VM_MAPENT_ISWIRED(entry) == 0) 1855 pmap_unwire(pmap, va); 1856 1857 pg = PHYS_TO_VM_PAGE(pa); 1858 if (pg) 1859 uvm_pageunwire(pg); 1860 } 1861 1862 uvm_unlock_pageq(); 1863 } 1864 1865 /* 1866 * uvmfault_unlockmaps: unlock the maps 1867 */ 1868 void 1869 uvmfault_unlockmaps(struct uvm_faultinfo *ufi, boolean_t write_locked) 1870 { 1871 /* 1872 * ufi can be NULL when this isn't really a fault, 1873 * but merely paging in anon data. 1874 */ 1875 1876 if (ufi == NULL) { 1877 return; 1878 } 1879 1880 if (write_locked) { 1881 vm_map_unlock(ufi->map); 1882 } else { 1883 vm_map_unlock_read(ufi->map); 1884 } 1885 } 1886 1887 /* 1888 * uvmfault_unlockall: unlock everything passed in. 1889 * 1890 * => maps must be read-locked (not write-locked). 1891 */ 1892 void 1893 uvmfault_unlockall(struct uvm_faultinfo *ufi, struct vm_amap *amap, 1894 struct uvm_object *uobj, struct vm_anon *anon) 1895 { 1896 1897 if (anon) 1898 simple_unlock(&anon->an_lock); 1899 if (uobj) 1900 simple_unlock(&uobj->vmobjlock); 1901 uvmfault_unlockmaps(ufi, FALSE); 1902 } 1903 1904 /* 1905 * uvmfault_lookup: lookup a virtual address in a map 1906 * 1907 * => caller must provide a uvm_faultinfo structure with the IN 1908 * params properly filled in 1909 * => we will lookup the map entry (handling submaps) as we go 1910 * => if the lookup is a success we will return with the maps locked 1911 * => if "write_lock" is TRUE, we write_lock the map, otherwise we only 1912 * get a read lock. 1913 * => note that submaps can only appear in the kernel and they are 1914 * required to use the same virtual addresses as the map they 1915 * are referenced by (thus address translation between the main 1916 * map and the submap is unnecessary). 1917 */ 1918 1919 boolean_t 1920 uvmfault_lookup(struct uvm_faultinfo *ufi, boolean_t write_lock) 1921 { 1922 vm_map_t tmpmap; 1923 1924 /* 1925 * init ufi values for lookup. 1926 */ 1927 1928 ufi->map = ufi->orig_map; 1929 ufi->size = ufi->orig_size; 1930 1931 /* 1932 * keep going down levels until we are done. note that there can 1933 * only be two levels so we won't loop very long. 1934 */ 1935 1936 while (1) { 1937 1938 /* 1939 * lock map 1940 */ 1941 if (write_lock) { 1942 vm_map_lock(ufi->map); 1943 } else { 1944 vm_map_lock_read(ufi->map); 1945 } 1946 1947 /* 1948 * lookup 1949 */ 1950 if (!uvm_map_lookup_entry(ufi->map, ufi->orig_rvaddr, 1951 &ufi->entry)) { 1952 uvmfault_unlockmaps(ufi, write_lock); 1953 return(FALSE); 1954 } 1955 1956 /* 1957 * reduce size if necessary 1958 */ 1959 if (ufi->entry->end - ufi->orig_rvaddr < ufi->size) 1960 ufi->size = ufi->entry->end - ufi->orig_rvaddr; 1961 1962 /* 1963 * submap? replace map with the submap and lookup again. 1964 * note: VAs in submaps must match VAs in main map. 1965 */ 1966 if (UVM_ET_ISSUBMAP(ufi->entry)) { 1967 tmpmap = ufi->entry->object.sub_map; 1968 if (write_lock) { 1969 vm_map_unlock(ufi->map); 1970 } else { 1971 vm_map_unlock_read(ufi->map); 1972 } 1973 ufi->map = tmpmap; 1974 continue; 1975 } 1976 1977 /* 1978 * got it! 1979 */ 1980 1981 ufi->mapv = ufi->map->timestamp; 1982 return(TRUE); 1983 1984 } /* while loop */ 1985 1986 /*NOTREACHED*/ 1987 } 1988 1989 /* 1990 * uvmfault_relock: attempt to relock the same version of the map 1991 * 1992 * => fault data structures should be unlocked before calling. 1993 * => if a success (TRUE) maps will be locked after call. 1994 */ 1995 boolean_t 1996 uvmfault_relock(struct uvm_faultinfo *ufi) 1997 { 1998 /* 1999 * ufi can be NULL when this isn't really a fault, 2000 * but merely paging in anon data. 2001 */ 2002 2003 if (ufi == NULL) { 2004 return TRUE; 2005 } 2006 2007 uvmexp.fltrelck++; 2008 2009 /* 2010 * relock map. fail if version mismatch (in which case nothing 2011 * gets locked). 2012 */ 2013 2014 vm_map_lock_read(ufi->map); 2015 if (ufi->mapv != ufi->map->timestamp) { 2016 vm_map_unlock_read(ufi->map); 2017 return(FALSE); 2018 } 2019 2020 uvmexp.fltrelckok++; 2021 return(TRUE); /* got it! */ 2022 } 2023