xref: /openbsd-src/sys/uvm/uvm_fault.c (revision 91f110e064cd7c194e59e019b83bb7496c1c84d4)
1 /*	$OpenBSD: uvm_fault.c,v 1.69 2013/05/30 18:02:04 tedu Exp $	*/
2 /*	$NetBSD: uvm_fault.c,v 1.51 2000/08/06 00:22:53 thorpej Exp $	*/
3 
4 /*
5  *
6  * Copyright (c) 1997 Charles D. Cranor and Washington University.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by Charles D. Cranor and
20  *      Washington University.
21  * 4. The name of the author may not be used to endorse or promote products
22  *    derived from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
29  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
33  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
36  */
37 
38 /*
39  * uvm_fault.c: fault handler
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/malloc.h>
47 #include <sys/mman.h>
48 #include <sys/user.h>
49 
50 #include <uvm/uvm.h>
51 
52 /*
53  *
54  * a word on page faults:
55  *
56  * types of page faults we handle:
57  *
58  * CASE 1: upper layer faults                   CASE 2: lower layer faults
59  *
60  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
61  *    read/write1     write>1                  read/write   +-cow_write/zero
62  *         |             |                         |        |
63  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
64  * amap |  V  |       |  ----------->new|          |        | |  ^  |
65  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
66  *                                                 |        |    |
67  *      +-----+       +-----+                   +--|--+     | +--|--+
68  * uobj | d/c |       | d/c |                   |  V  |     +----|  |
69  *      +-----+       +-----+                   +-----+       +-----+
70  *
71  * d/c = don't care
72  *
73  *   case [0]: layerless fault
74  *	no amap or uobj is present.   this is an error.
75  *
76  *   case [1]: upper layer fault [anon active]
77  *     1A: [read] or [write with anon->an_ref == 1]
78  *		I/O takes place in top level anon and uobj is not touched.
79  *     1B: [write with anon->an_ref > 1]
80  *		new anon is alloc'd and data is copied off ["COW"]
81  *
82  *   case [2]: lower layer fault [uobj]
83  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
84  *		I/O takes place directly in object.
85  *     2B: [write to copy_on_write] or [read on NULL uobj]
86  *		data is "promoted" from uobj to a new anon.
87  *		if uobj is null, then we zero fill.
88  *
89  * we follow the standard UVM locking protocol ordering:
90  *
91  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
92  * we hold a PG_BUSY page if we unlock for I/O
93  *
94  *
95  * the code is structured as follows:
96  *
97  *     - init the "IN" params in the ufi structure
98  *   ReFault:
99  *     - do lookups [locks maps], check protection, handle needs_copy
100  *     - check for case 0 fault (error)
101  *     - establish "range" of fault
102  *     - if we have an amap lock it and extract the anons
103  *     - if sequential advice deactivate pages behind us
104  *     - at the same time check pmap for unmapped areas and anon for pages
105  *	 that we could map in (and do map it if found)
106  *     - check object for resident pages that we could map in
107  *     - if (case 2) goto Case2
108  *     - >>> handle case 1
109  *           - ensure source anon is resident in RAM
110  *           - if case 1B alloc new anon and copy from source
111  *           - map the correct page in
112  *   Case2:
113  *     - >>> handle case 2
114  *           - ensure source page is resident (if uobj)
115  *           - if case 2B alloc new anon and copy from source (could be zero
116  *		fill if uobj == NULL)
117  *           - map the correct page in
118  *     - done!
119  *
120  * note on paging:
121  *   if we have to do I/O we place a PG_BUSY page in the correct object,
122  * unlock everything, and do the I/O.   when I/O is done we must reverify
123  * the state of the world before assuming that our data structures are
124  * valid.   [because mappings could change while the map is unlocked]
125  *
126  *  alternative 1: unbusy the page in question and restart the page fault
127  *    from the top (ReFault).   this is easy but does not take advantage
128  *    of the information that we already have from our previous lookup,
129  *    although it is possible that the "hints" in the vm_map will help here.
130  *
131  * alternative 2: the system already keeps track of a "version" number of
132  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
133  *    mapping) you bump the version number up by one...]   so, we can save
134  *    the version number of the map before we release the lock and start I/O.
135  *    then when I/O is done we can relock and check the version numbers
136  *    to see if anything changed.    this might save us some over 1 because
137  *    we don't have to unbusy the page and may be less compares(?).
138  *
139  * alternative 3: put in backpointers or a way to "hold" part of a map
140  *    in place while I/O is in progress.   this could be complex to
141  *    implement (especially with structures like amap that can be referenced
142  *    by multiple map entries, and figuring out what should wait could be
143  *    complex as well...).
144  *
145  * given that we are not currently multiprocessor or multithreaded we might
146  * as well choose alternative 2 now.   maybe alternative 3 would be useful
147  * in the future.    XXX keep in mind for future consideration//rechecking.
148  */
149 
150 /*
151  * local data structures
152  */
153 
154 struct uvm_advice {
155 	int advice;
156 	int nback;
157 	int nforw;
158 };
159 
160 /*
161  * page range array:
162  * note: index in array must match "advice" value
163  * XXX: borrowed numbers from freebsd.   do they work well for us?
164  */
165 
166 static struct uvm_advice uvmadvice[] = {
167 	{ MADV_NORMAL, 3, 4 },
168 	{ MADV_RANDOM, 0, 0 },
169 	{ MADV_SEQUENTIAL, 8, 7},
170 };
171 
172 #define UVM_MAXRANGE 16	/* must be max() of nback+nforw+1 */
173 
174 /*
175  * private prototypes
176  */
177 
178 static void uvmfault_amapcopy(struct uvm_faultinfo *);
179 static __inline void uvmfault_anonflush(struct vm_anon **, int);
180 void	uvmfault_unlockmaps(struct uvm_faultinfo *, boolean_t);
181 void	uvmfault_update_stats(struct uvm_faultinfo *);
182 
183 /*
184  * inline functions
185  */
186 
187 /*
188  * uvmfault_anonflush: try and deactivate pages in specified anons
189  *
190  * => does not have to deactivate page if it is busy
191  */
192 
193 static __inline void
194 uvmfault_anonflush(struct vm_anon **anons, int n)
195 {
196 	int lcv;
197 	struct vm_page *pg;
198 
199 	for (lcv = 0 ; lcv < n ; lcv++) {
200 		if (anons[lcv] == NULL)
201 			continue;
202 		pg = anons[lcv]->an_page;
203 		if (pg && (pg->pg_flags & PG_BUSY) == 0 && pg->loan_count == 0) {
204 			uvm_lock_pageq();
205 			if (pg->wire_count == 0) {
206 #ifdef UBC
207 				pmap_clear_reference(pg);
208 #else
209 				pmap_page_protect(pg, VM_PROT_NONE);
210 #endif
211 				uvm_pagedeactivate(pg);
212 			}
213 			uvm_unlock_pageq();
214 		}
215 	}
216 }
217 
218 /*
219  * normal functions
220  */
221 
222 /*
223  * uvmfault_amapcopy: clear "needs_copy" in a map.
224  *
225  * => if we are out of RAM we sleep (waiting for more)
226  */
227 
228 static void
229 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
230 {
231 
232 	/*
233 	 * while we haven't done the job
234 	 */
235 
236 	while (1) {
237 
238 		/*
239 		 * no mapping?  give up.
240 		 */
241 
242 		if (uvmfault_lookup(ufi, TRUE) == FALSE)
243 			return;
244 
245 		/*
246 		 * copy if needed.
247 		 */
248 
249 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
250 			amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
251 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
252 
253 		/*
254 		 * didn't work?  must be out of RAM.  sleep.
255 		 */
256 
257 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
258 			uvmfault_unlockmaps(ufi, TRUE);
259 			uvm_wait("fltamapcopy");
260 			continue;
261 		}
262 
263 		/*
264 		 * got it!
265 		 */
266 
267 		uvmfault_unlockmaps(ufi, TRUE);
268 		return;
269 	}
270 	/*NOTREACHED*/
271 }
272 
273 /*
274  * uvmfault_anonget: get data in an anon into a non-busy, non-released
275  * page in that anon.
276  *
277  * => we don't move the page on the queues [gets moved later]
278  * => if we allocate a new page [we_own], it gets put on the queues.
279  *    either way, the result is that the page is on the queues at return time
280  * => for pages which are on loan from a uvm_object (and thus are not
281  *    owned by the anon): if successful, we return with the owning object
282  */
283 
284 int
285 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
286     struct vm_anon *anon)
287 {
288 	boolean_t we_own;	/* we own anon's page? */
289 	boolean_t locked;	/* did we relock? */
290 	struct vm_page *pg;
291 	int result;
292 
293 	result = 0;		/* XXX shut up gcc */
294 	uvmexp.fltanget++;
295         /* bump rusage counters */
296 	if (anon->an_page)
297 		curproc->p_ru.ru_minflt++;
298 	else
299 		curproc->p_ru.ru_majflt++;
300 
301 	/*
302 	 * loop until we get it, or fail.
303 	 */
304 
305 	while (1) {
306 
307 		we_own = FALSE;		/* TRUE if we set PG_BUSY on a page */
308 		pg = anon->an_page;
309 
310 		/*
311 		 * if there is a resident page and it is loaned, then anon
312 		 * may not own it.   call out to uvm_anon_lockpage() to ensure
313 		 * the real owner of the page has been identified.
314 		 */
315 
316 		if (pg && pg->loan_count)
317 			pg = uvm_anon_lockloanpg(anon);
318 
319 		/*
320 		 * page there?   make sure it is not busy/released.
321 		 */
322 
323 		if (pg) {
324 
325 			/*
326 			 * at this point, if the page has a uobject [meaning
327 			 * we have it on loan], then that uobject is locked
328 			 * by us!   if the page is busy, we drop all the
329 			 * locks (including uobject) and try again.
330 			 */
331 
332 			if ((pg->pg_flags & (PG_BUSY|PG_RELEASED)) == 0) {
333 				return (VM_PAGER_OK);
334 			}
335 			atomic_setbits_int(&pg->pg_flags, PG_WANTED);
336 			uvmexp.fltpgwait++;
337 
338 			/*
339 			 * the last unlock must be an atomic unlock+wait on
340 			 * the owner of page
341 			 */
342 			if (pg->uobject) {	/* owner is uobject ? */
343 				uvmfault_unlockall(ufi, amap, NULL, anon);
344 				UVM_WAIT(pg, FALSE, "anonget1",0);
345 			} else {
346 				/* anon owns page */
347 				uvmfault_unlockall(ufi, amap, NULL, NULL);
348 				UVM_WAIT(pg, 0, "anonget2", 0);
349 			}
350 			/* ready to relock and try again */
351 
352 		} else {
353 
354 			/*
355 			 * no page, we must try and bring it in.
356 			 */
357 			pg = uvm_pagealloc(NULL, 0, anon, 0);
358 
359 			if (pg == NULL) {		/* out of RAM.  */
360 
361 				uvmfault_unlockall(ufi, amap, NULL, anon);
362 				uvmexp.fltnoram++;
363 				uvm_wait("flt_noram1");
364 				/* ready to relock and try again */
365 
366 			} else {
367 
368 				/* we set the PG_BUSY bit */
369 				we_own = TRUE;
370 				uvmfault_unlockall(ufi, amap, NULL, anon);
371 
372 				/*
373 				 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
374 				 * page into the uvm_swap_get function with
375 				 * all data structures unlocked.  note that
376 				 * it is ok to read an_swslot here because
377 				 * we hold PG_BUSY on the page.
378 				 */
379 				uvmexp.pageins++;
380 				result = uvm_swap_get(pg, anon->an_swslot,
381 				    PGO_SYNCIO);
382 
383 				/*
384 				 * we clean up after the i/o below in the
385 				 * "we_own" case
386 				 */
387 				/* ready to relock and try again */
388 			}
389 		}
390 
391 		/*
392 		 * now relock and try again
393 		 */
394 
395 		locked = uvmfault_relock(ufi);
396 
397 		/*
398 		 * if we own the page (i.e. we set PG_BUSY), then we need
399 		 * to clean up after the I/O. there are three cases to
400 		 * consider:
401 		 *   [1] page released during I/O: free anon and ReFault.
402 		 *   [2] I/O not OK.   free the page and cause the fault
403 		 *       to fail.
404 		 *   [3] I/O OK!   activate the page and sync with the
405 		 *       non-we_own case (i.e. drop anon lock if not locked).
406 		 */
407 
408 		if (we_own) {
409 
410 			if (pg->pg_flags & PG_WANTED) {
411 				wakeup(pg);
412 			}
413 			/* un-busy! */
414 			atomic_clearbits_int(&pg->pg_flags,
415 			    PG_WANTED|PG_BUSY|PG_FAKE);
416 			UVM_PAGE_OWN(pg, NULL);
417 
418 			/*
419 			 * if we were RELEASED during I/O, then our anon is
420 			 * no longer part of an amap.   we need to free the
421 			 * anon and try again.
422 			 */
423 			if (pg->pg_flags & PG_RELEASED) {
424 				pmap_page_protect(pg, VM_PROT_NONE);
425 				uvm_anfree(anon);	/* frees page for us */
426 				if (locked)
427 					uvmfault_unlockall(ufi, amap, NULL,
428 							   NULL);
429 				uvmexp.fltpgrele++;
430 				return (VM_PAGER_REFAULT);	/* refault! */
431 			}
432 
433 			if (result != VM_PAGER_OK) {
434 				KASSERT(result != VM_PAGER_PEND);
435 
436 				/* remove page from anon */
437 				anon->an_page = NULL;
438 
439 				/*
440 				 * remove the swap slot from the anon
441 				 * and mark the anon as having no real slot.
442 				 * don't free the swap slot, thus preventing
443 				 * it from being used again.
444 				 */
445 				uvm_swap_markbad(anon->an_swslot, 1);
446 				anon->an_swslot = SWSLOT_BAD;
447 
448 				/*
449 				 * note: page was never !PG_BUSY, so it
450 				 * can't be mapped and thus no need to
451 				 * pmap_page_protect it...
452 				 */
453 				uvm_lock_pageq();
454 				uvm_pagefree(pg);
455 				uvm_unlock_pageq();
456 
457 				if (locked)
458 					uvmfault_unlockall(ufi, amap, NULL,
459 					    anon);
460 				return (VM_PAGER_ERROR);
461 			}
462 
463 			/*
464 			 * must be OK, clear modify (already PG_CLEAN)
465 			 * and activate
466 			 */
467 			pmap_clear_modify(pg);
468 			uvm_lock_pageq();
469 			uvm_pageactivate(pg);
470 			uvm_unlock_pageq();
471 		}
472 
473 		/*
474 		 * we were not able to relock.   restart fault.
475 		 */
476 
477 		if (!locked)
478 			return (VM_PAGER_REFAULT);
479 
480 		/*
481 		 * verify no one has touched the amap and moved the anon on us.
482 		 */
483 
484 		if (ufi != NULL &&
485 		    amap_lookup(&ufi->entry->aref,
486 				ufi->orig_rvaddr - ufi->entry->start) != anon) {
487 
488 			uvmfault_unlockall(ufi, amap, NULL, anon);
489 			return (VM_PAGER_REFAULT);
490 		}
491 
492 		/*
493 		 * try it again!
494 		 */
495 
496 		uvmexp.fltanretry++;
497 		continue;
498 
499 	} /* while (1) */
500 
501 	/*NOTREACHED*/
502 }
503 
504 /*
505  * Update statistics after fault resolution.
506  * - maxrss
507  */
508 void
509 uvmfault_update_stats(struct uvm_faultinfo *ufi)
510 {
511 	struct vm_map		*map;
512 	struct proc		*p;
513 	vsize_t			 res;
514 #ifndef pmap_resident_count
515 	struct vm_space		*vm;
516 #endif
517 
518 	map = ufi->orig_map;
519 
520 	/*
521 	 * Update the maxrss for the process.
522 	 */
523 	if (map->flags & VM_MAP_ISVMSPACE) {
524 		p = curproc;
525 		KASSERT(p != NULL && &p->p_vmspace->vm_map == map);
526 
527 #ifdef pmap_resident_count
528 		res = pmap_resident_count(map->pmap);
529 #else
530 		/*
531 		 * Rather inaccurate, but this is the current anon size
532 		 * of the vmspace.  It's basically the resident size
533 		 * minus the mmapped in files/text.
534 		 */
535 		vm = (struct vmspace*)map;
536 		res = vm->dsize;
537 #endif
538 
539 		/* Convert res from pages to kilobytes. */
540 		res <<= (PAGE_SHIFT - 10);
541 
542 		if (p->p_ru.ru_maxrss < res)
543 			p->p_ru.ru_maxrss = res;
544 	}
545 }
546 
547 /*
548  *   F A U L T   -   m a i n   e n t r y   p o i n t
549  */
550 
551 /*
552  * uvm_fault: page fault handler
553  *
554  * => called from MD code to resolve a page fault
555  * => VM data structures usually should be unlocked.   however, it is
556  *	possible to call here with the main map locked if the caller
557  *	gets a write lock, sets it recursive, and then calls us (c.f.
558  *	uvm_map_pageable).   this should be avoided because it keeps
559  *	the map locked off during I/O.
560  */
561 
562 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
563 			 ~VM_PROT_WRITE : VM_PROT_ALL)
564 
565 int
566 uvm_fault(vm_map_t orig_map, vaddr_t vaddr, vm_fault_t fault_type,
567     vm_prot_t access_type)
568 {
569 	struct uvm_faultinfo ufi;
570 	vm_prot_t enter_prot;
571 	boolean_t wired, narrow, promote, locked, shadowed;
572 	int npages, nback, nforw, centeridx, result, lcv, gotpages;
573 	vaddr_t startva, currva;
574 	voff_t uoff;
575 	paddr_t pa;
576 	struct vm_amap *amap;
577 	struct uvm_object *uobj;
578 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
579 	struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
580 
581 	anon = NULL;
582 	pg = NULL;
583 
584 	uvmexp.faults++;	/* XXX: locking? */
585 
586 	/*
587 	 * init the IN parameters in the ufi
588 	 */
589 
590 	ufi.orig_map = orig_map;
591 	ufi.orig_rvaddr = trunc_page(vaddr);
592 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
593 	if (fault_type == VM_FAULT_WIRE)
594 		narrow = TRUE;		/* don't look for neighborhood
595 					 * pages on wire */
596 	else
597 		narrow = FALSE;		/* normal fault */
598 
599 	/*
600 	 * "goto ReFault" means restart the page fault from ground zero.
601 	 */
602 ReFault:
603 
604 	/*
605 	 * lookup and lock the maps
606 	 */
607 
608 	if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
609 		return (EFAULT);
610 	}
611 
612 #ifdef DIAGNOSTIC
613 	if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0)
614 		panic("uvm_fault: fault on non-pageable map (%p, 0x%lx)",
615 		    ufi.map, vaddr);
616 #endif
617 
618 	/*
619 	 * check protection
620 	 */
621 
622 	if ((ufi.entry->protection & access_type) != access_type) {
623 		uvmfault_unlockmaps(&ufi, FALSE);
624 		return (EACCES);
625 	}
626 
627 	/*
628 	 * "enter_prot" is the protection we want to enter the page in at.
629 	 * for certain pages (e.g. copy-on-write pages) this protection can
630 	 * be more strict than ufi.entry->protection.  "wired" means either
631 	 * the entry is wired or we are fault-wiring the pg.
632 	 */
633 
634 	enter_prot = ufi.entry->protection;
635 	wired = VM_MAPENT_ISWIRED(ufi.entry) || (fault_type == VM_FAULT_WIRE);
636 	if (wired)
637 		access_type = enter_prot; /* full access for wired */
638 
639 	/*
640 	 * handle "needs_copy" case.
641 	 */
642 
643 	if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
644 		if ((access_type & VM_PROT_WRITE) ||
645 		    (ufi.entry->object.uvm_obj == NULL)) {
646 			/* need to clear */
647 			uvmfault_unlockmaps(&ufi, FALSE);
648 			uvmfault_amapcopy(&ufi);
649 			uvmexp.fltamcopy++;
650 			goto ReFault;
651 
652 		} else {
653 
654 			/*
655 			 * ensure that we pmap_enter page R/O since
656 			 * needs_copy is still true
657 			 */
658 			enter_prot &= ~VM_PROT_WRITE;
659 
660 		}
661 	}
662 
663 	/*
664 	 * identify the players
665 	 */
666 
667 	amap = ufi.entry->aref.ar_amap;		/* top layer */
668 	uobj = ufi.entry->object.uvm_obj;	/* bottom layer */
669 
670 	/*
671 	 * check for a case 0 fault.  if nothing backing the entry then
672 	 * error now.
673 	 */
674 
675 	if (amap == NULL && uobj == NULL) {
676 		uvmfault_unlockmaps(&ufi, FALSE);
677 		return (EFAULT);
678 	}
679 
680 	/*
681 	 * establish range of interest based on advice from mapper
682 	 * and then clip to fit map entry.   note that we only want
683 	 * to do this the first time through the fault.   if we
684 	 * ReFault we will disable this by setting "narrow" to true.
685 	 */
686 
687 	if (narrow == FALSE) {
688 
689 		/* wide fault (!narrow) */
690 		KASSERT(uvmadvice[ufi.entry->advice].advice ==
691 			 ufi.entry->advice);
692 		nback = min(uvmadvice[ufi.entry->advice].nback,
693 			    (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
694 		startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
695 		nforw = min(uvmadvice[ufi.entry->advice].nforw,
696 			    ((ufi.entry->end - ufi.orig_rvaddr) >>
697 			     PAGE_SHIFT) - 1);
698 		/*
699 		 * note: "-1" because we don't want to count the
700 		 * faulting page as forw
701 		 */
702 		npages = nback + nforw + 1;
703 		centeridx = nback;
704 
705 		narrow = TRUE;	/* ensure only once per-fault */
706 
707 	} else {
708 
709 		/* narrow fault! */
710 		nback = nforw = 0;
711 		startva = ufi.orig_rvaddr;
712 		npages = 1;
713 		centeridx = 0;
714 
715 	}
716 
717 	/*
718 	 * if we've got an amap, extract current anons.
719 	 */
720 
721 	if (amap) {
722 		anons = anons_store;
723 		amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
724 		    anons, npages);
725 	} else {
726 		anons = NULL;	/* to be safe */
727 	}
728 
729 	/*
730 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
731 	 * now and then forget about them (for the rest of the fault).
732 	 */
733 
734 	if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) {
735 
736 		/* flush back-page anons? */
737 		if (amap)
738 			uvmfault_anonflush(anons, nback);
739 
740 		/* flush object? */
741 		if (uobj) {
742 			uoff = (startva - ufi.entry->start) + ufi.entry->offset;
743 			(void) uobj->pgops->pgo_flush(uobj, uoff, uoff +
744 				    (nback << PAGE_SHIFT), PGO_DEACTIVATE);
745 		}
746 
747 		/* now forget about the backpages */
748 		if (amap)
749 			anons += nback;
750 		startva += (nback << PAGE_SHIFT);
751 		npages -= nback;
752 		centeridx = 0;
753 	}
754 
755 	/*
756 	 * map in the backpages and frontpages we found in the amap in hopes
757 	 * of preventing future faults.    we also init the pages[] array as
758 	 * we go.
759 	 */
760 
761 	currva = startva;
762 	shadowed = FALSE;
763 	for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
764 
765 		/*
766 		 * dont play with VAs that are already mapped
767 		 * except for center)
768 		 */
769 		if (lcv != centeridx &&
770 		    pmap_extract(ufi.orig_map->pmap, currva, &pa)) {
771 			pages[lcv] = PGO_DONTCARE;
772 			continue;
773 		}
774 
775 		/*
776 		 * unmapped or center page.   check if any anon at this level.
777 		 */
778 		if (amap == NULL || anons[lcv] == NULL) {
779 			pages[lcv] = NULL;
780 			continue;
781 		}
782 
783 		/*
784 		 * check for present page and map if possible.   re-activate it.
785 		 */
786 
787 		pages[lcv] = PGO_DONTCARE;
788 		if (lcv == centeridx) {		/* save center for later! */
789 			shadowed = TRUE;
790 			continue;
791 		}
792 		anon = anons[lcv];
793 		/* ignore loaned pages */
794 		if (anon->an_page && anon->an_page->loan_count == 0 &&
795 		    (anon->an_page->pg_flags & (PG_RELEASED|PG_BUSY)) == 0) {
796 			uvm_lock_pageq();
797 			uvm_pageactivate(anon->an_page);	/* reactivate */
798 			uvm_unlock_pageq();
799 			uvmexp.fltnamap++;
800 
801 			/*
802 			 * Since this isn't the page that's actually faulting,
803 			 * ignore pmap_enter() failures; it's not critical
804 			 * that we enter these right now.
805 			 */
806 
807 			(void) pmap_enter(ufi.orig_map->pmap, currva,
808 			    VM_PAGE_TO_PHYS(anon->an_page),
809 			    (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
810 			    enter_prot,
811 			    PMAP_CANFAIL |
812 			     (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
813 		}
814 		pmap_update(ufi.orig_map->pmap);
815 	}
816 
817 	/* (shadowed == TRUE) if there is an anon at the faulting address */
818 
819 	/*
820 	 * note that if we are really short of RAM we could sleep in the above
821 	 * call to pmap_enter.   bad?
822 	 *
823 	 * XXX Actually, that is bad; pmap_enter() should just fail in that
824 	 * XXX case.  --thorpej
825 	 */
826 
827 	/*
828 	 * if the desired page is not shadowed by the amap and we have a
829 	 * backing object, then we check to see if the backing object would
830 	 * prefer to handle the fault itself (rather than letting us do it
831 	 * with the usual pgo_get hook).  the backing object signals this by
832 	 * providing a pgo_fault routine.
833 	 */
834 
835 	if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
836 		result = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
837 				    centeridx, fault_type, access_type,
838 				    PGO_LOCKED);
839 
840 		if (result == VM_PAGER_OK)
841 			return (0);		/* pgo_fault did pmap enter */
842 		else if (result == VM_PAGER_REFAULT)
843 			goto ReFault;		/* try again! */
844 		else
845 			return (EACCES);
846 	}
847 
848 	/*
849 	 * now, if the desired page is not shadowed by the amap and we have
850 	 * a backing object that does not have a special fault routine, then
851 	 * we ask (with pgo_get) the object for resident pages that we care
852 	 * about and attempt to map them in.  we do not let pgo_get block
853 	 * (PGO_LOCKED).
854 	 *
855 	 * ("get" has the option of doing a pmap_enter for us)
856 	 */
857 
858 	if (uobj && shadowed == FALSE) {
859 		uvmexp.fltlget++;
860 		gotpages = npages;
861 		(void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
862 				(startva - ufi.entry->start),
863 				pages, &gotpages, centeridx,
864 				access_type & MASK(ufi.entry),
865 				ufi.entry->advice, PGO_LOCKED);
866 
867 		/*
868 		 * check for pages to map, if we got any
869 		 */
870 
871 		uobjpage = NULL;
872 
873 		if (gotpages) {
874 			currva = startva;
875 			for (lcv = 0 ; lcv < npages ;
876 			    lcv++, currva += PAGE_SIZE) {
877 
878 				if (pages[lcv] == NULL ||
879 				    pages[lcv] == PGO_DONTCARE)
880 					continue;
881 
882 				KASSERT((pages[lcv]->pg_flags & PG_RELEASED) == 0);
883 
884 				/*
885 				 * if center page is resident and not
886 				 * PG_BUSY, then pgo_get made it PG_BUSY
887 				 * for us and gave us a handle to it.
888 				 * remember this page as "uobjpage."
889 				 * (for later use).
890 				 */
891 
892 				if (lcv == centeridx) {
893 					uobjpage = pages[lcv];
894 					continue;
895 				}
896 
897 				/*
898 				 * note: calling pgo_get with locked data
899 				 * structures returns us pages which are
900 				 * neither busy nor released, so we don't
901 				 * need to check for this.   we can just
902 				 * directly enter the page (after moving it
903 				 * to the head of the active queue [useful?]).
904 				 */
905 
906 				uvm_lock_pageq();
907 				uvm_pageactivate(pages[lcv]);	/* reactivate */
908 				uvm_unlock_pageq();
909 				uvmexp.fltnomap++;
910 
911 				/*
912 				 * Since this page isn't the page that's
913 				 * actually fauling, ignore pmap_enter()
914 				 * failures; it's not critical that we
915 				 * enter these right now.
916 				 */
917 
918 				(void) pmap_enter(ufi.orig_map->pmap, currva,
919 				    VM_PAGE_TO_PHYS(pages[lcv]),
920 				    enter_prot & MASK(ufi.entry),
921 				    PMAP_CANFAIL |
922 				     (wired ? PMAP_WIRED : 0));
923 
924 				/*
925 				 * NOTE: page can't be PG_WANTED because
926 				 * we've held the lock the whole time
927 				 * we've had the handle.
928 				 */
929 
930 				atomic_clearbits_int(&pages[lcv]->pg_flags,
931 				    PG_BUSY);
932 				UVM_PAGE_OWN(pages[lcv], NULL);
933 			}	/* for "lcv" loop */
934 			pmap_update(ufi.orig_map->pmap);
935 		}   /* "gotpages" != 0 */
936 		/* note: object still _locked_ */
937 	} else {
938 		uobjpage = NULL;
939 	}
940 
941 	/*
942 	 * note that at this point we are done with any front or back pages.
943 	 * we are now going to focus on the center page (i.e. the one we've
944 	 * faulted on).  if we have faulted on the top (anon) layer
945 	 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
946 	 * not touched it yet).  if we have faulted on the bottom (uobj)
947 	 * layer [i.e. case 2] and the page was both present and available,
948 	 * then we've got a pointer to it as "uobjpage" and we've already
949 	 * made it BUSY.
950 	 */
951 
952 	/*
953 	 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
954 	 */
955 
956 	/*
957 	 * redirect case 2: if we are not shadowed, go to case 2.
958 	 */
959 
960 	if (shadowed == FALSE)
961 		goto Case2;
962 
963 	/*
964 	 * handle case 1: fault on an anon in our amap
965 	 */
966 
967 	anon = anons[centeridx];
968 
969 	/*
970 	 * no matter if we have case 1A or case 1B we are going to need to
971 	 * have the anon's memory resident.   ensure that now.
972 	 */
973 
974 	/*
975 	 * let uvmfault_anonget do the dirty work.
976 	 * also, if it is OK, then the anon's page is on the queues.
977 	 */
978 
979 	result = uvmfault_anonget(&ufi, amap, anon);
980 	switch (result) {
981 	case VM_PAGER_OK:
982 		break;
983 
984 	case VM_PAGER_REFAULT:
985 		goto ReFault;
986 
987 	case VM_PAGER_ERROR:
988 		/*
989 		 * An error occured while trying to bring in the
990 		 * page -- this is the only error we return right
991 		 * now.
992 		 */
993 		return (EACCES);	/* XXX */
994 
995 	default:
996 #ifdef DIAGNOSTIC
997 		panic("uvm_fault: uvmfault_anonget -> %d", result);
998 #else
999 		return (EACCES);
1000 #endif
1001 	}
1002 
1003 	/*
1004 	 * uobj is non null if the page is on loan from an object (i.e. uobj)
1005 	 */
1006 
1007 	uobj = anon->an_page->uobject;
1008 
1009 	/*
1010 	 * special handling for loaned pages
1011 	 */
1012 
1013 	if (anon->an_page->loan_count) {
1014 
1015 		if ((access_type & VM_PROT_WRITE) == 0) {
1016 
1017 			/*
1018 			 * for read faults on loaned pages we just cap the
1019 			 * protection at read-only.
1020 			 */
1021 
1022 			enter_prot = enter_prot & ~VM_PROT_WRITE;
1023 
1024 		} else {
1025 			/*
1026 			 * note that we can't allow writes into a loaned page!
1027 			 *
1028 			 * if we have a write fault on a loaned page in an
1029 			 * anon then we need to look at the anon's ref count.
1030 			 * if it is greater than one then we are going to do
1031 			 * a normal copy-on-write fault into a new anon (this
1032 			 * is not a problem).  however, if the reference count
1033 			 * is one (a case where we would normally allow a
1034 			 * write directly to the page) then we need to kill
1035 			 * the loan before we continue.
1036 			 */
1037 
1038 			/* >1 case is already ok */
1039 			if (anon->an_ref == 1) {
1040 
1041 				/* get new un-owned replacement page */
1042 				pg = uvm_pagealloc(NULL, 0, NULL, 0);
1043 				if (pg == NULL) {
1044 					uvmfault_unlockall(&ufi, amap, uobj,
1045 					    anon);
1046 					uvm_wait("flt_noram2");
1047 					goto ReFault;
1048 				}
1049 
1050 				/*
1051 				 * copy data, kill loan
1052 				 */
1053 				/* copy old -> new */
1054 				uvm_pagecopy(anon->an_page, pg);
1055 
1056 				/* force reload */
1057 				pmap_page_protect(anon->an_page,
1058 						  VM_PROT_NONE);
1059 				uvm_lock_pageq();	  /* KILL loan */
1060 				if (uobj)
1061 					/* if we were loaning */
1062 					anon->an_page->loan_count--;
1063 				anon->an_page->uanon = NULL;
1064 				/* in case we owned */
1065 				atomic_clearbits_int(
1066 				    &anon->an_page->pg_flags, PQ_ANON);
1067 				uvm_pageactivate(pg);
1068 				uvm_unlock_pageq();
1069 				if (uobj) {
1070 					uobj = NULL;
1071 				}
1072 
1073 				/* install new page in anon */
1074 				anon->an_page = pg;
1075 				pg->uanon = anon;
1076 				atomic_setbits_int(&pg->pg_flags, PQ_ANON);
1077 				atomic_clearbits_int(&pg->pg_flags,
1078 				    PG_BUSY|PG_FAKE);
1079 				UVM_PAGE_OWN(pg, NULL);
1080 
1081 				/* done! */
1082 			}     /* ref == 1 */
1083 		}       /* write fault */
1084 	}         /* loan count */
1085 
1086 	/*
1087 	 * if we are case 1B then we will need to allocate a new blank
1088 	 * anon to transfer the data into.   note that we have a lock
1089 	 * on anon, so no one can busy or release the page until we are done.
1090 	 * also note that the ref count can't drop to zero here because
1091 	 * it is > 1 and we are only dropping one ref.
1092 	 *
1093 	 * in the (hopefully very rare) case that we are out of RAM we
1094 	 * will wait for more RAM, and refault.
1095 	 *
1096 	 * if we are out of anon VM we kill the process (XXX: could wait?).
1097 	 */
1098 
1099 	if ((access_type & VM_PROT_WRITE) != 0 && anon->an_ref > 1) {
1100 		uvmexp.flt_acow++;
1101 		oanon = anon;		/* oanon = old */
1102 		anon = uvm_analloc();
1103 		if (anon) {
1104 			pg = uvm_pagealloc(NULL, 0, anon, 0);
1105 		}
1106 
1107 		/* check for out of RAM */
1108 		if (anon == NULL || pg == NULL) {
1109 			if (anon)
1110 				uvm_anfree(anon);
1111 			uvmfault_unlockall(&ufi, amap, uobj, oanon);
1112 			KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1113 			if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1114 				uvmexp.fltnoanon++;
1115 				return (ENOMEM);
1116 			}
1117 
1118 			uvmexp.fltnoram++;
1119 			uvm_wait("flt_noram3");	/* out of RAM, wait for more */
1120 			goto ReFault;
1121 		}
1122 
1123 		/* got all resources, replace anon with nanon */
1124 
1125 		uvm_pagecopy(oanon->an_page, pg);	/* pg now !PG_CLEAN */
1126 		/* un-busy! new page */
1127 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE);
1128 		UVM_PAGE_OWN(pg, NULL);
1129 		amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1130 		    anon, 1);
1131 
1132 		/* deref: can not drop to zero here by defn! */
1133 		oanon->an_ref--;
1134 
1135 		/*
1136 		 * note: anon is _not_ locked, but we have the sole references
1137 		 * to in from amap.
1138 		 * thus, no one can get at it until we are done with it.
1139 		 */
1140 
1141 	} else {
1142 
1143 		uvmexp.flt_anon++;
1144 		oanon = anon;
1145 		pg = anon->an_page;
1146 		if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
1147 			enter_prot = enter_prot & ~VM_PROT_WRITE;
1148 
1149 	}
1150 
1151 	/*
1152 	 * now map the page in ...
1153 	 * XXX: old fault unlocks object before pmap_enter.  this seems
1154 	 * suspect since some other thread could blast the page out from
1155 	 * under us between the unlock and the pmap_enter.
1156 	 */
1157 
1158 	if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1159 	    enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1160 	    != 0) {
1161 		/*
1162 		 * No need to undo what we did; we can simply think of
1163 		 * this as the pmap throwing away the mapping information.
1164 		 *
1165 		 * We do, however, have to go through the ReFault path,
1166 		 * as the map may change while we're asleep.
1167 		 */
1168 		uvmfault_unlockall(&ufi, amap, uobj, oanon);
1169 		KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1170 		if (uvmexp.swpgonly == uvmexp.swpages) {
1171 			/* XXX instrumentation */
1172 			return (ENOMEM);
1173 		}
1174 		/* XXX instrumentation */
1175 		uvm_wait("flt_pmfail1");
1176 		goto ReFault;
1177 	}
1178 
1179 	/*
1180 	 * ... update the page queues.
1181 	 */
1182 
1183 	uvm_lock_pageq();
1184 
1185 	if (fault_type == VM_FAULT_WIRE) {
1186 		uvm_pagewire(pg);
1187 
1188 		/*
1189 		 * since the now-wired page cannot be paged out,
1190 		 * release its swap resources for others to use.
1191 		 * since an anon with no swap cannot be PG_CLEAN,
1192 		 * clear its clean flag now.
1193 		 */
1194 		atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1195 		uvm_anon_dropswap(anon);
1196 	} else {
1197 		/* activate it */
1198 		uvm_pageactivate(pg);
1199 	}
1200 
1201 	uvm_unlock_pageq();
1202 
1203 	/*
1204 	 * done case 1!  finish up by unlocking everything and returning success
1205 	 */
1206 
1207 	uvmfault_unlockall(&ufi, amap, uobj, oanon);
1208 	pmap_update(ufi.orig_map->pmap);
1209 	return (0);
1210 
1211 
1212 Case2:
1213 	/*
1214 	 * handle case 2: faulting on backing object or zero fill
1215 	 */
1216 
1217 	/*
1218 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
1219 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
1220 	 * have a backing object, check and see if we are going to promote
1221 	 * the data up to an anon during the fault.
1222 	 */
1223 
1224 	if (uobj == NULL) {
1225 		uobjpage = PGO_DONTCARE;
1226 		promote = TRUE;		/* always need anon here */
1227 	} else {
1228 		KASSERT(uobjpage != PGO_DONTCARE);
1229 		promote = (access_type & VM_PROT_WRITE) &&
1230 		     UVM_ET_ISCOPYONWRITE(ufi.entry);
1231 	}
1232 
1233 	/*
1234 	 * if uobjpage is not null then we do not need to do I/O to get the
1235 	 * uobjpage.
1236 	 *
1237 	 * if uobjpage is null, then we need to ask the pager to
1238 	 * get the data for us.   once we have the data, we need to reverify
1239 	 * the state the world.   we are currently not holding any resources.
1240 	 */
1241 
1242 	if (uobjpage) {
1243 		/* update rusage counters */
1244 		curproc->p_ru.ru_minflt++;
1245 	} else {
1246 		/* update rusage counters */
1247 		curproc->p_ru.ru_majflt++;
1248 
1249 		uvmfault_unlockall(&ufi, amap, NULL, NULL);
1250 
1251 		uvmexp.fltget++;
1252 		gotpages = 1;
1253 		uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1254 		result = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1255 		    0, access_type & MASK(ufi.entry), ufi.entry->advice,
1256 		    PGO_SYNCIO);
1257 
1258 		/*
1259 		 * recover from I/O
1260 		 */
1261 
1262 		if (result != VM_PAGER_OK) {
1263 			KASSERT(result != VM_PAGER_PEND);
1264 
1265 			if (result == VM_PAGER_AGAIN) {
1266 				tsleep(&lbolt, PVM, "fltagain2", 0);
1267 				goto ReFault;
1268 			}
1269 
1270 			return (EACCES); /* XXX i/o error */
1271 		}
1272 
1273 		/*
1274 		 * re-verify the state of the world.
1275 		 */
1276 
1277 		locked = uvmfault_relock(&ufi);
1278 
1279 		/*
1280 		 * Re-verify that amap slot is still free. if there is
1281 		 * a problem, we clean up.
1282 		 */
1283 
1284 		if (locked && amap && amap_lookup(&ufi.entry->aref,
1285 		      ufi.orig_rvaddr - ufi.entry->start)) {
1286 			if (locked)
1287 				uvmfault_unlockall(&ufi, amap, NULL, NULL);
1288 			locked = FALSE;
1289 		}
1290 
1291 		/*
1292 		 * didn't get the lock?   release the page and retry.
1293 		 */
1294 
1295 		if (locked == FALSE) {
1296 			if (uobjpage->pg_flags & PG_WANTED)
1297 				/* still holding object lock */
1298 				wakeup(uobjpage);
1299 
1300 			uvm_lock_pageq();
1301 			/* make sure it is in queues */
1302 			uvm_pageactivate(uobjpage);
1303 
1304 			uvm_unlock_pageq();
1305 			atomic_clearbits_int(&uobjpage->pg_flags,
1306 			    PG_BUSY|PG_WANTED);
1307 			UVM_PAGE_OWN(uobjpage, NULL);
1308 			goto ReFault;
1309 
1310 		}
1311 
1312 		/*
1313 		 * we have the data in uobjpage which is PG_BUSY
1314 		 */
1315 
1316 	}
1317 
1318 	/*
1319 	 * notes:
1320 	 *  - at this point uobjpage can not be NULL
1321 	 *  - at this point uobjpage could be PG_WANTED (handle later)
1322 	 */
1323 
1324 	if (promote == FALSE) {
1325 
1326 		/*
1327 		 * we are not promoting.   if the mapping is COW ensure that we
1328 		 * don't give more access than we should (e.g. when doing a read
1329 		 * fault on a COPYONWRITE mapping we want to map the COW page in
1330 		 * R/O even though the entry protection could be R/W).
1331 		 *
1332 		 * set "pg" to the page we want to map in (uobjpage, usually)
1333 		 */
1334 
1335 		uvmexp.flt_obj++;
1336 		if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1337 			enter_prot &= ~VM_PROT_WRITE;
1338 		pg = uobjpage;		/* map in the actual object */
1339 
1340 		/* assert(uobjpage != PGO_DONTCARE) */
1341 
1342 		/*
1343 		 * we are faulting directly on the page.   be careful
1344 		 * about writing to loaned pages...
1345 		 */
1346 		if (uobjpage->loan_count) {
1347 
1348 			if ((access_type & VM_PROT_WRITE) == 0) {
1349 				/* read fault: cap the protection at readonly */
1350 				/* cap! */
1351 				enter_prot = enter_prot & ~VM_PROT_WRITE;
1352 			} else {
1353 				/* write fault: must break the loan here */
1354 
1355 				/* alloc new un-owned page */
1356 				pg = uvm_pagealloc(NULL, 0, NULL, 0);
1357 
1358 				if (pg == NULL) {
1359 					/*
1360 					 * drop ownership of page, it can't
1361 					 * be released
1362 					 */
1363 					if (uobjpage->pg_flags & PG_WANTED)
1364 						wakeup(uobjpage);
1365 					atomic_clearbits_int(
1366 					    &uobjpage->pg_flags,
1367 					    PG_BUSY|PG_WANTED);
1368 					UVM_PAGE_OWN(uobjpage, NULL);
1369 
1370 					uvm_lock_pageq();
1371 					/* activate: we will need it later */
1372 					uvm_pageactivate(uobjpage);
1373 
1374 					uvm_unlock_pageq();
1375 					uvmfault_unlockall(&ufi, amap, uobj,
1376 					  NULL);
1377 					uvmexp.fltnoram++;
1378 					uvm_wait("flt_noram4");
1379 					goto ReFault;
1380 				}
1381 
1382 				/*
1383 				 * copy the data from the old page to the new
1384 				 * one and clear the fake/clean flags on the
1385 				 * new page (keep it busy).  force a reload
1386 				 * of the old page by clearing it from all
1387 				 * pmaps.  then lock the page queues to
1388 				 * rename the pages.
1389 				 */
1390 				uvm_pagecopy(uobjpage, pg);	/* old -> new */
1391 				atomic_clearbits_int(&pg->pg_flags,
1392 				    PG_FAKE|PG_CLEAN);
1393 				pmap_page_protect(uobjpage, VM_PROT_NONE);
1394 				if (uobjpage->pg_flags & PG_WANTED)
1395 					wakeup(uobjpage);
1396 				atomic_clearbits_int(&uobjpage->pg_flags,
1397 				    PG_BUSY|PG_WANTED);
1398 				UVM_PAGE_OWN(uobjpage, NULL);
1399 
1400 				uvm_lock_pageq();
1401 				uoff = uobjpage->offset;
1402 				/* remove old page */
1403 				uvm_pagerealloc(uobjpage, NULL, 0);
1404 
1405 				/*
1406 				 * at this point we have absolutely no
1407 				 * control over uobjpage
1408 				 */
1409 				/* install new page */
1410 				uvm_pagerealloc(pg, uobj, uoff);
1411 				uvm_unlock_pageq();
1412 
1413 				/*
1414 				 * done!  loan is broken and "pg" is
1415 				 * PG_BUSY.   it can now replace uobjpage.
1416 				 */
1417 
1418 				uobjpage = pg;
1419 
1420 			}		/* write fault case */
1421 		}		/* if loan_count */
1422 
1423 	} else {
1424 
1425 		/*
1426 		 * if we are going to promote the data to an anon we
1427 		 * allocate a blank anon here and plug it into our amap.
1428 		 */
1429 #ifdef DIAGNOSTIC
1430 		if (amap == NULL)
1431 			panic("uvm_fault: want to promote data, but no anon");
1432 #endif
1433 
1434 		anon = uvm_analloc();
1435 		if (anon) {
1436 			/*
1437 			 * In `Fill in data...' below, if
1438 			 * uobjpage == PGO_DONTCARE, we want
1439 			 * a zero'd, dirty page, so have
1440 			 * uvm_pagealloc() do that for us.
1441 			 */
1442 			pg = uvm_pagealloc(NULL, 0, anon,
1443 			    (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1444 		}
1445 
1446 		/*
1447 		 * out of memory resources?
1448 		 */
1449 		if (anon == NULL || pg == NULL) {
1450 
1451 			/*
1452 			 * arg!  must unbusy our page and fail or sleep.
1453 			 */
1454 			if (uobjpage != PGO_DONTCARE) {
1455 				if (uobjpage->pg_flags & PG_WANTED)
1456 					wakeup(uobjpage);
1457 
1458 				uvm_lock_pageq();
1459 				uvm_pageactivate(uobjpage);
1460 				uvm_unlock_pageq();
1461 				atomic_clearbits_int(&uobjpage->pg_flags,
1462 				    PG_BUSY|PG_WANTED);
1463 				UVM_PAGE_OWN(uobjpage, NULL);
1464 			}
1465 
1466 			/* unlock and fail ... */
1467 			uvmfault_unlockall(&ufi, amap, uobj, NULL);
1468 			KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1469 			if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1470 				uvmexp.fltnoanon++;
1471 				return (ENOMEM);
1472 			}
1473 
1474 			uvm_anfree(anon);
1475 			uvmexp.fltnoram++;
1476 			uvm_wait("flt_noram5");
1477 			goto ReFault;
1478 		}
1479 
1480 		/*
1481 		 * fill in the data
1482 		 */
1483 
1484 		if (uobjpage != PGO_DONTCARE) {
1485 			uvmexp.flt_prcopy++;
1486 			/* copy page [pg now dirty] */
1487 			uvm_pagecopy(uobjpage, pg);
1488 
1489 			/*
1490 			 * promote to shared amap?  make sure all sharing
1491 			 * procs see it
1492 			 */
1493 			if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1494 				pmap_page_protect(uobjpage, VM_PROT_NONE);
1495 			}
1496 
1497 			/*
1498 			 * dispose of uobjpage. drop handle to uobj as well.
1499 			 */
1500 
1501 			if (uobjpage->pg_flags & PG_WANTED)
1502 				wakeup(uobjpage);
1503 			atomic_clearbits_int(&uobjpage->pg_flags,
1504 			    PG_BUSY|PG_WANTED);
1505 			UVM_PAGE_OWN(uobjpage, NULL);
1506 			uvm_lock_pageq();
1507 			uvm_pageactivate(uobjpage);
1508 			uvm_unlock_pageq();
1509 			uobj = NULL;
1510 		} else {
1511 			uvmexp.flt_przero++;
1512 			/*
1513 			 * Page is zero'd and marked dirty by uvm_pagealloc()
1514 			 * above.
1515 			 */
1516 		}
1517 
1518 		amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1519 		    anon, 0);
1520 	}
1521 
1522 	/*
1523 	 * note: pg is either the uobjpage or the new page in the new anon
1524 	 */
1525 
1526 	/*
1527 	 * all resources are present.   we can now map it in and free our
1528 	 * resources.
1529 	 */
1530 
1531 	if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1532 	    enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1533 	    != 0) {
1534 
1535 		/*
1536 		 * No need to undo what we did; we can simply think of
1537 		 * this as the pmap throwing away the mapping information.
1538 		 *
1539 		 * We do, however, have to go through the ReFault path,
1540 		 * as the map may change while we're asleep.
1541 		 */
1542 
1543 		if (pg->pg_flags & PG_WANTED)
1544 			wakeup(pg);
1545 
1546 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED);
1547 		UVM_PAGE_OWN(pg, NULL);
1548 		uvmfault_unlockall(&ufi, amap, uobj, NULL);
1549 		KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1550 		if (uvmexp.swpgonly == uvmexp.swpages) {
1551 			/* XXX instrumentation */
1552 			return (ENOMEM);
1553 		}
1554 		/* XXX instrumentation */
1555 		uvm_wait("flt_pmfail2");
1556 		goto ReFault;
1557 	}
1558 
1559 	uvm_lock_pageq();
1560 
1561 	if (fault_type == VM_FAULT_WIRE) {
1562 		uvm_pagewire(pg);
1563 		if (pg->pg_flags & PQ_AOBJ) {
1564 
1565 			/*
1566 			 * since the now-wired page cannot be paged out,
1567 			 * release its swap resources for others to use.
1568 			 * since an aobj page with no swap cannot be PG_CLEAN,
1569 			 * clear its clean flag now.
1570 			 */
1571 			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1572 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1573 		}
1574 	} else {
1575 		/* activate it */
1576 		uvm_pageactivate(pg);
1577 	}
1578 	uvm_unlock_pageq();
1579 
1580 	if (pg->pg_flags & PG_WANTED)
1581 		wakeup(pg);
1582 
1583 	atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED);
1584 	UVM_PAGE_OWN(pg, NULL);
1585 	uvmfault_unlockall(&ufi, amap, uobj, NULL);
1586 	pmap_update(ufi.orig_map->pmap);
1587 
1588 	return (0);
1589 }
1590 
1591 
1592 /*
1593  * uvm_fault_wire: wire down a range of virtual addresses in a map.
1594  *
1595  * => map may be read-locked by caller, but MUST NOT be write-locked.
1596  * => if map is read-locked, any operations which may cause map to
1597  *	be write-locked in uvm_fault() must be taken care of by
1598  *	the caller.  See uvm_map_pageable().
1599  */
1600 
1601 int
1602 uvm_fault_wire(vm_map_t map, vaddr_t start, vaddr_t end, vm_prot_t access_type)
1603 {
1604 	vaddr_t va;
1605 	pmap_t  pmap;
1606 	int rv;
1607 
1608 	pmap = vm_map_pmap(map);
1609 
1610 	/*
1611 	 * now fault it in a page at a time.   if the fault fails then we have
1612 	 * to undo what we have done.   note that in uvm_fault VM_PROT_NONE
1613 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1614 	 */
1615 
1616 	for (va = start ; va < end ; va += PAGE_SIZE) {
1617 		rv = uvm_fault(map, va, VM_FAULT_WIRE, access_type);
1618 		if (rv) {
1619 			if (va != start) {
1620 				uvm_fault_unwire(map, start, va);
1621 			}
1622 			return (rv);
1623 		}
1624 	}
1625 
1626 	return (0);
1627 }
1628 
1629 /*
1630  * uvm_fault_unwire(): unwire range of virtual space.
1631  */
1632 
1633 void
1634 uvm_fault_unwire(vm_map_t map, vaddr_t start, vaddr_t end)
1635 {
1636 
1637 	vm_map_lock_read(map);
1638 	uvm_fault_unwire_locked(map, start, end);
1639 	vm_map_unlock_read(map);
1640 }
1641 
1642 /*
1643  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1644  *
1645  * => map must be at least read-locked.
1646  */
1647 
1648 void
1649 uvm_fault_unwire_locked(vm_map_t map, vaddr_t start, vaddr_t end)
1650 {
1651 	vm_map_entry_t entry, next;
1652 	pmap_t pmap = vm_map_pmap(map);
1653 	vaddr_t va;
1654 	paddr_t pa;
1655 	struct vm_page *pg;
1656 
1657 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1658 
1659 	/*
1660 	 * we assume that the area we are unwiring has actually been wired
1661 	 * in the first place.   this means that we should be able to extract
1662 	 * the PAs from the pmap.   we also lock out the page daemon so that
1663 	 * we can call uvm_pageunwire.
1664 	 */
1665 
1666 	uvm_lock_pageq();
1667 
1668 	/*
1669 	 * find the beginning map entry for the region.
1670 	 */
1671 	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1672 	if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1673 		panic("uvm_fault_unwire_locked: address not in map");
1674 
1675 	for (va = start; va < end ; va += PAGE_SIZE) {
1676 		if (pmap_extract(pmap, va, &pa) == FALSE)
1677 			continue;
1678 
1679 		/*
1680 		 * find the map entry for the current address.
1681 		 */
1682 		KASSERT(va >= entry->start);
1683 		while (va >= entry->end) {
1684 			next = RB_NEXT(uvm_map_addr, &map->addr, entry);
1685 			KASSERT(next != NULL && next->start <= entry->end);
1686 			entry = next;
1687 		}
1688 
1689 		/*
1690 		 * if the entry is no longer wired, tell the pmap.
1691 		 */
1692 		if (VM_MAPENT_ISWIRED(entry) == 0)
1693 			pmap_unwire(pmap, va);
1694 
1695 		pg = PHYS_TO_VM_PAGE(pa);
1696 		if (pg)
1697 			uvm_pageunwire(pg);
1698 	}
1699 
1700 	uvm_unlock_pageq();
1701 }
1702 
1703 /*
1704  * uvmfault_unlockmaps: unlock the maps
1705  */
1706 void
1707 uvmfault_unlockmaps(struct uvm_faultinfo *ufi, boolean_t write_locked)
1708 {
1709 	/*
1710 	 * ufi can be NULL when this isn't really a fault,
1711 	 * but merely paging in anon data.
1712 	 */
1713 
1714 	if (ufi == NULL) {
1715 		return;
1716 	}
1717 
1718 	uvmfault_update_stats(ufi);
1719 	if (write_locked) {
1720 		vm_map_unlock(ufi->map);
1721 	} else {
1722 		vm_map_unlock_read(ufi->map);
1723 	}
1724 }
1725 
1726 /*
1727  * uvmfault_unlockall: unlock everything passed in.
1728  *
1729  * => maps must be read-locked (not write-locked).
1730  */
1731 void
1732 uvmfault_unlockall(struct uvm_faultinfo *ufi, struct vm_amap *amap,
1733     struct uvm_object *uobj, struct vm_anon *anon)
1734 {
1735 
1736 	uvmfault_unlockmaps(ufi, FALSE);
1737 }
1738 
1739 /*
1740  * uvmfault_lookup: lookup a virtual address in a map
1741  *
1742  * => caller must provide a uvm_faultinfo structure with the IN
1743  *	params properly filled in
1744  * => we will lookup the map entry (handling submaps) as we go
1745  * => if the lookup is a success we will return with the maps locked
1746  * => if "write_lock" is TRUE, we write_lock the map, otherwise we only
1747  *	get a read lock.
1748  * => note that submaps can only appear in the kernel and they are
1749  *	required to use the same virtual addresses as the map they
1750  *	are referenced by (thus address translation between the main
1751  *	map and the submap is unnecessary).
1752  */
1753 
1754 boolean_t
1755 uvmfault_lookup(struct uvm_faultinfo *ufi, boolean_t write_lock)
1756 {
1757 	vm_map_t tmpmap;
1758 
1759 	/*
1760 	 * init ufi values for lookup.
1761 	 */
1762 
1763 	ufi->map = ufi->orig_map;
1764 	ufi->size = ufi->orig_size;
1765 
1766 	/*
1767 	 * keep going down levels until we are done.   note that there can
1768 	 * only be two levels so we won't loop very long.
1769 	 */
1770 
1771 	while (1) {
1772 		if (ufi->orig_rvaddr < ufi->map->min_offset ||
1773 		    ufi->orig_rvaddr >= ufi->map->max_offset)
1774 			return(FALSE);
1775 
1776 		/*
1777 		 * lock map
1778 		 */
1779 		if (write_lock) {
1780 			vm_map_lock(ufi->map);
1781 		} else {
1782 			vm_map_lock_read(ufi->map);
1783 		}
1784 
1785 		/*
1786 		 * lookup
1787 		 */
1788 		if (!uvm_map_lookup_entry(ufi->map, ufi->orig_rvaddr,
1789 		    &ufi->entry)) {
1790 			uvmfault_unlockmaps(ufi, write_lock);
1791 			return(FALSE);
1792 		}
1793 
1794 		/*
1795 		 * reduce size if necessary
1796 		 */
1797 		if (ufi->entry->end - ufi->orig_rvaddr < ufi->size)
1798 			ufi->size = ufi->entry->end - ufi->orig_rvaddr;
1799 
1800 		/*
1801 		 * submap?    replace map with the submap and lookup again.
1802 		 * note: VAs in submaps must match VAs in main map.
1803 		 */
1804 		if (UVM_ET_ISSUBMAP(ufi->entry)) {
1805 			tmpmap = ufi->entry->object.sub_map;
1806 			uvmfault_unlockmaps(ufi, write_lock);
1807 			ufi->map = tmpmap;
1808 			continue;
1809 		}
1810 
1811 		/*
1812 		 * got it!
1813 		 */
1814 
1815 		ufi->mapv = ufi->map->timestamp;
1816 		return(TRUE);
1817 
1818 	}	/* while loop */
1819 
1820 	/*NOTREACHED*/
1821 }
1822 
1823 /*
1824  * uvmfault_relock: attempt to relock the same version of the map
1825  *
1826  * => fault data structures should be unlocked before calling.
1827  * => if a success (TRUE) maps will be locked after call.
1828  */
1829 boolean_t
1830 uvmfault_relock(struct uvm_faultinfo *ufi)
1831 {
1832 	/*
1833 	 * ufi can be NULL when this isn't really a fault,
1834 	 * but merely paging in anon data.
1835 	 */
1836 
1837 	if (ufi == NULL) {
1838 		return TRUE;
1839 	}
1840 
1841 	uvmexp.fltrelck++;
1842 
1843 	/*
1844 	 * relock map.   fail if version mismatch (in which case nothing
1845 	 * gets locked).
1846 	 */
1847 
1848 	vm_map_lock_read(ufi->map);
1849 	if (ufi->mapv != ufi->map->timestamp) {
1850 		vm_map_unlock_read(ufi->map);
1851 		return(FALSE);
1852 	}
1853 
1854 	uvmexp.fltrelckok++;
1855 	return(TRUE);		/* got it! */
1856 }
1857